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Introduction

The purpose of this paper is to establish the existence of a

functional equation for certain L-functions of degree 4 attached to
cusp forms on PGL2 over a number field.
More precisely, let ’ir be an irreducible (admissible) constituent of

the space of cusp forms on PGL2 over a number field (same definition
as for GL2, cf. [8]). We can write ’ir as a tensor product of the local
representations °17"v which are class-one for almost all v.

Suppose °17"v is a class-one representation. Let p be a four dimen-
sional irreducible representation of SL2(C), the corresponding asso-
ciated group, and let a v be the semi-simple conjugacy class in SL2(C)
determined by °17"v (cf. [10], also see §5). Then in [10], Langlands
defines a local L-function attached to p, °17"v and a complex number s
as follows:

Clearly L(s, p, °17"v) depends only upon the classes of p and °17"v.
Now, let S be the finite set of places for which the corresponding

representations are ramified. We put

We also define a global coefficient ys(s, p, ’ir) (see §5) which is closely
related to the global root number E(s,p,’ir) introduced in [10]. The

* The bulk of this paper was written while the author was supported by a grant from
the National Science Foundation at the Institute for Advanced Study.
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main result of this paper is the functional equation

where p denotes the contragradient representation of p (Theorem
5.9). This is in fact the functional equation for the L-function
attached to p and °7r which has been conjectured in the context of an
arbitrary reductive group by Langlands [10]. This result together with
a result of Langlands [11] concerning the meromorphicity of these
L-functions, will prove the first conjecture in [10] for any cusp form
on PGL2, when p is as above. We extend this result to any cusp form
on GL2 for which the center acts according to an unramified quasi-
character of the corresponding idele class group (Corollary 5.10).
We should mention that the same result will essentially follow from

the works of P. Deligne, S. Gelbart, H. Jacquet and J.A. Shalika
[3, 9, 16] (see §2.3 of Gelbart’s paper ’Automorphic Forms and Artin’s
Conjecture’ which is based on a talk given at the 1976 Bonn Con-
ference on Modular Forms). However the approach is entirely
different from the one explained in this paper.

Except for certain technical difficulties (particularly at infinite

places), the same methods can be used to establish certain functional
equations for the adjoint groups of type A, following the non-

vanishing of some of their Fourier coefficients [15].
Interwoven with the proof of the functional equation is a descrip-

tion of the unique non-degenerate quotient of a certain induced

representation (cf. [14]) of a simple algebraic group of type G2 over a
p-adic field (see Appendix).

In this paper, we have used the principle of applying the Eisenstein
series to L-functions which is due to Langlands [11] (see also: R.
Godement, Formes automorphes et produits eulérien; d’après R.P.
Langlands; Séminaire Bourbaki, no. 349, 1968). For this reason we
shall recall the important facts of the theory of Eisenstein series in §2.

In §3, we shall study certain properties of the Whittaker models for
the algebraic groups of type G2. Needless to say these results are true
and can be proved by the same methods for an arbitrary split group
over a p-adic field. This is based on certain unpublished results of W.
Casselman and J.A. Shalika.

Most of the local computations are carried out in §4. In loose terms,
we shall compute ’the local coefficients’ which are basic to the

definition of ’Ys(s, p, 017"), using a key lemma (lemma 4.4) and certain
results of Jacquet [7]. Notice that these local coefficients differ from
the Langlands’ root numbers by a ratio of local L-functions. Again 1
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should mention that these computations can be done for an arbitrary
Chevalley group and it has been only for the sake of simplicity that
we have limited ourselves to the case of G2.

It is in §5 that we prove the functional equation (Theorem 5.9). We
observe that the local coefficients are in fact defined by the local
multiplicity one theorem of J.A. Shalika [15], together with a result of
F. Rodier [14].
The problem of finding the poles of these L-functions still remains

open.
1 would like to express my gratitude to Professor Robert Langlands

for his suggestion of the problem and for many helpful discussions
during my stay at the Institute for Advanced Study, where the bulk of
this paper was prepared.

1 would like to thank Professor Joseph Shalika for useful dis-

cussions and suggestions during the last year.

1. Notation and terminology

Let G be a simple algebraic group of type G2 and let g denote its
Lie algebra. We assume that G splits over Q. We fix a Cartan

subgroup T of G with Lie algebra . We use B to denote a fixed
Borel subgroup containing T. Put U for its unipotent radical.

Let IP denote the set of roots of g with respect to t). We use A, ’P’
and IP- for simple, positive, and negative roots, respectively. Then à
consists of two elements, a, the short root, and 6, the long one. Other

positive roots are a + 16, 2a + ig, 3a +,0, and 3a + 2,8. We have:

with root spaces gy, y E 1/1’.
Let W be the Weyl group of G. W is generated by the reflections

o,,, y e 0. We shall identify each ay with an element of No(T)
through the isomorphism between W and No(T)/Co(T). We denote
this element by wy.

Let F be a number field. For every place v of F, we shall write Gv
for the group of Fv-rational points of G. We use GF for the group of
F rational points.
For each v, we fix a maximal compact subgroup Kv of Gv relative

to Tv, so that
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To define Kv for the finite places, we fix a Chevalley lattice M for g
(cf. [11). If A is the ring of adèles of F, we write G,, for the

corresponding adèlized group. We use the same index for the cor-
responding subgroups.
By a character of a group we shall understand a homomorphism

from the group into the complex numbers of absolute value one.
We call a character y of U,,,IUF non-degenerate if its restriction to

every non-trivial subgroup UÎ,

is nontrivial, w E W. Clearly

where each X’Y is a non-trivial character of UXI Up. Hère U’Y denotes
the connected subgroup whose Lie algebra is gy, the root group for y.
Then Xy can be considered as a non-trivial character of AI F and

with each Xy,v a non-trivial character of FU. Furthermore for almost all
v, the largest ideal for which X,,, is trivial is the ring of integers Ov of
FU. Therefore we can write

with

a non-degenerate character of Uu.
Throughout this paper, we shall fix a non-degenerate character X of

U. Later in §5, we shall put certain conditions on X.
We use G’ to denote the associated complex group for G which is

defined in general by Langlands [10]. Then G’ is a complex group of
type G2.

Let T’ be a Cartan subgroup of G^ and let L’ be the root lattice of
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G^ with respect to TB We may identify L" with the Z-lattice

generated by

inb R. Here Hy is defined by

where K denotes the Killing form on g and

In fact we identify the simple roots of G’ relative to T’ with Hy,
El A.

Let b’ be the Lie algebra of T’; then Homz(jLB Z) can be identified
with a Z -lattice in b A. Thus we may identify b A with HomZ(L", C), which
itself is isomorphic to Homc(L A 0z C, C). Since L" 0z C is equal to hc,
the complexification of h ®Q 8, we conclude that hc and h A are dual to
each other.

Finally, let G be a split group defined over a local field, and let ir be
an irreducible admissible representation of G (or corresponding
algebra) on a complex vector space V. Fix a Borel subgroup B of G
and denote its unipotent radical by U. Let X be a character of U. By a
Whittaker functional on V, we shall mean a continuous linear

functional on V satisfying

for all u in U and v in V. Then from [15] it follows that the space of
such linear functionals is at most one-dimensional. If there is such a

functional, we shall say that ir is non-degenerate. Suppose ir is

non-degenerate. For each v in V, we define a complex function w, on
G by:

The space of all such functions is called the Whittaker model of ?r.

We denote this space by W(17"). The elements of W(ir) will be called
the Whittaker functions of ir.
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2. Eisenstein series and Fourier coefficients

Let P be a maximal parabolic subgroup of G containing B. We put
M for a fixed Levi factor of P and we write:

where N is the unipotent radical of P with Lie algebra n. We shall
identify M with the quotient PIN. We assume that is generated by
the root spaces g«, 9«+,6, g2a+p, g 3a+p, and g3a+2p. We also assume that

M contains T. Let A be the center of M. As in [ 11] we put

Then °G is the adjoint group of a split Lie algebra °g of type AI. More
precisely °G is isomorphic to PSL2.

Let °T be the image of T in °G. Put

We may consider ° U as unipotent radical of a Borel subgroup of °G.
Then the characters of ° U are the restriction of those of U.

As usual we use the index v for the F,-rational points of each of the
groups mentioned here. We put

where Pv rl Kv dénotes the image of Pv fl Kv under the natural pro-
jection,

and

From now on, we shall identify °G with the group PSL2.
Let ç* be a cusp form on GL2(A) as defined in [8]. More precisely

çlp* is a continuous function on GL2(A)IGL2(F) which under the
action of the global Hecke algebra generates an irreducible (ad-
missible) constituent of AO(w), the subspace of the cusp forms for
which the center of GL2(A) acts according to the quasi-character of W
of A*IF*. We shall assume that (o is unramified.
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cp* is assumed to be slowly increasing at infinite places (cf. [8]).
Put

Then ç is a cusp form on PGL2(A) and by restriction on PSL2(A). In
our notation, ç is a function in Ao(1), where 1 denotes the trivial

character of the group of the ideles of A. In fact, every cusp form on
PGL2(G) is a constituent of Ao(l).
For every place v, we shall identify °Kv with the maximal compact

subgroup of PSL2(Fv) induced from the standard maximal compact
subgroup of GL2(Fv). We also identify 0 U with the unipotent radical
of the standard parabolic subgroup of GL2.
The restriction of the character y of Ul UF to ° U,,I ° UF is a

non-degenerate character of ° U,,I ° UF which we still denote by X. We
consider

with g in OG,,. In §5, we shall use ’X to denote the restriction of X to
° II,,I ° Up.
We shall assume that

where f or every v, ° wv denotes a local Whittaker f unction which for
almost all v is a class-one function, i.e.

Then for g = (gv) in °G," we have

where almost all the factors are equal to 1. The function ° w is in fact

defined for g in GL2(A).
Let av be the finite dimensional representation of °Kv on the span

of Ow, by the elements of °Kv.
The representation Uv is in fact the restriction of the same represen-
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tation when °wv is considered as a function on GL2(Fv). Uv can be
extended to a representation of Pv fl Kv trivial on Av and Nv.
For every place v, we shall fix a finite dimensional representation of

Kv whose restriction to Pv f1 Kv contains uv. When w is the (one
dimensional) trivial representation of 0 Kv, we take this representation
also to be trivial. We denote this representation by úv. We put

and

which are representations of °K and K, respectively.
Let P. denote the projection onto the space of o-. Clearly

We define the f ollowing well-defined operator valued f unction (pro-
jection)

for m in M,,. Here dk denotes the Haar measure on °K which is a

product of local measures dkv for which

In the terminology of [5], this is a à-function on MA. It can be

extended to a or-function on G,, as follows:

where

with k in K, m in M,,, and n in N,,.
Let 8 p,v denote the modulus character of M with respect tojh. More

precisely, at each place v
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We define the global 8p by

for m = (mv) in M,,.
For a complex number s, we define

for

with k in K and b in B ^. Then 0, is a 3-finite function (cf. [5]), where
8 is the center of the universal enveloping algebra of

Now we define the Eisenstein series attached to q; as follows:

Here g is in GA.
The series converges absolutely for Re(s)  -2 and defines a

function which is holomorphic in s (whenever it converges ab-

solutely). As a function on G,,, it is a 6-function. Its restriction to Goo
is smooth and 8-finite (cf. [5] and [12]). Clearly (3.4) is a right
GF-invariant function.
As a fupction of s, E(s ; tP; g; P) can be continued to a meromor-

phic function on the whole complex plane.
We use WM to denote NM(T )/CM(T ). Then WM can be considered

as a subgroup of W. It is equal to the Weyl group for °G. We shall
assume that each wy (see § 1) has been chosen to lie in Gz n Koo, where

We use wo to denote W2,,,1,9. Modulo WM, wo is the longest element in
W.
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For Re(s )  -2, the integral

converges absolutely and can be continued to a meromorphic
function (in s) on the whole complex plane (cf. [5]).
Now, we define the function M(s)éj; on MA by

for m in M,. The function M(s)cp is in fact a cuspidal function on
°GA. It is a dr-function and °3-finite (’8 denotes the center of the
universal enveloping algebra of ’G.).
The functional equation for (2.4) can be written as follows (cf. [5]

and [12]):

where g is in G,.

REMARK: If we denote the function defined by the integral in (2.5)
by 1Í1’s, then the lef t hand side of (2.7) is equal to

We need the following notations.
For g in GA (resp. G,), we write (Iwasawa decomposition)

with k(g) in K (resp. K,) and b(g) in B, (resp. Bv). Also for b in BA
(resp. Bv), we write

with t(b) in TA (resp. Tv) and u(b) in U, (resp. Uv). Hence we can
write
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where

and

We also write

with k(g) in K (resp, Kv), p(g) in PA (resp. Pv), m(g) in MA (resp.
Mv), and n(g) in NA (resp. Nv).

The convergent integral

is called a Fourier coefficient of E(s; e; g; P). We denote (2.9) by
E,(s; 4ê; g; P). Then

for u in

LEMMA 2.1: For is equal to

PROOF: For Re(s )  - 2, we have

Then (2.10.1) is equal to

Using the Bruhat decomposition in (2.10.2) we have



182

In fact, w has been chosen to lie in GZ f1 Koo. We put

and

Then

Also let N’ be the quotient of U by V.
A single term in (2.10.3) is equal to

for some w. The integral over VAI VF factors through the integral

which vanishes if Vw is non-trivial. Hence there is only one non-zero
term which corresponds to the class of wo modulo WM. This

completes the proof of the lemma.

3. Whittaker models

The purpose of this section is to study the Whittaker models of
certain classes of induced representations. As we shall see later, these
are crucial in the definition of the corresponding local root numbers.

Let 017" be the irreducible (admissible) representation of the global
Hecke algebra of GL2 on the space generated by ç. Then ’ir can be
written as

where the tensor product is defined as in [8]. Let ° Vv be the space of
°17"v. For almost all v, the representation °17"v is a class one represen-
tation. For every v, let W(°17"v) be the Whittaker model of °17"v.
The same is true for 017"*, the representation generated by cp*, in

particular,
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In this section we shall assume that v is finite.

°17"v can be considered as a representation of Pv (trivial on AU and
Nv ). We shall study the Whittaker model of the f ollowing induced

representation

The space Vv of this representation consists of all the left Kv-finite
functions fv from Gv into the space W(oir,) which satisfy

The representation IIv is given by left inverse translations.
We use (/v(g), m) to denote the value of the Whittaker function

f v (g ) at a point m in Mv.
We need the f ollowing lemma.

LEMMA 3.1: Let N be a unipotent group over a non-archimedean
field. Then there exists an increasing sequence {N} of open compact
subgroups of N which exhausts N.

PROOF: N can be imbedded in the subgroup of n x n upper trian-

gular matrices (some n &#x3E; 0) for which the lemma holds.

Let {N,,il be a filtration of Nv as in Lemma 3.1. The following
proposition is essentially due to Casselman-Shalika [2], and 1 am

indebted to H. Jacquet for mentioning it to me.

PROPOSITION 3.2: Given f v in Vv, there exists an integer i(fv) so that
the integral

has a value À(fv) independent of i if i &#x3E;_ i ( fv ).

PROOF: Let Vx( Uv) denote the subspace generated by all the

functions in Vv of the form
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with u in Uv and f v in Vv. Then every fv in Vv can be written as

where f ,,v is in VX( Uv) and f 2,v has support in NvwoPv (cf. [2], see also
§2 in [9]). We may assume that

where uo is in Uv and f o,v is in Vv. Then for the large values of i, the
integral vanishes for f ,,v and converges for f 2,v since f 2,U has compact
support modulo P. This completes the proof of the proposition.

COROLLARY 3.3: The linear functional A defined by

(in the sense of Proposition 3.2) is a Whittaker functional for the
space of llv.

COROLLARY 3.4: As a function of s, the integral (3.2) is entire.

COROLLARY 3.5: There exists a function f, in Vv for which À(fv) is
non-zero.

Let (’e,, 0 Vv) denote the contragradient representation of (’ir,, 0 Vv).
We use

to denote the pairing on ° Vv x ° VU. Let v be an arbitrary vector in ° Vv.
Then:

PROPOSITION 3.6: The integral

converges absolutely for Re(s ) small enough and it can be extended to
a meromorphic function on the whole complex plane. Furthermore
there exists a polynomial P(q’) (qv denotes the number of the elements
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in the residual field) so that as a function of s

is entire.

PROOF: In the case in hand, this can be proved using the same
technique as in [4]. In general this is a result of Harish-Chandra [6].

Now, for f v in Vv we shall define

We put

then f v belongs to the space V v of the representation

Let À’ denote the primed analogue of the Whittaker functional
defined by (3.2). More precisely,

with f v in Vv.
Now, let fv be a function defined by (3.3). Then (3.4) defines

another Whittaker functional (which we still dénote by À’) on Vv by

Later in §5, we shall show that À is in fact a non-zero Whittaker

functional on IIv (Theorem 5.5). Therefore from [14] and [15] it

follows that À and À’ are proportional and the computations of the
next section will show that the coefficient of proportionality is

directly related to the Langlands’ root number attached to a four
dimensional representation of SL2.
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More precisely, let p be a four dimensional representation of SL2,
the associated group for °G. Assume at each place v the local

L-function L(s, p, °17"v) is defined. As we shall see later these

coefficients of proportionality will lead to certain local coefficients
which we denote by y(s, p, ’ir,, °Xv) (see §5). Then the Langlands’ root
numbers are defined by

where p denotes the contragredient representation of p.

4. Local coefficients

In this section, we shall explicitly compute the coefficients of

proportionality, which was mentioned at the end of §3, for certain
classes of representations.

Let v and 9 be two fixed vectors in the space of av and that of the

contragredient representation of âv, respectively. We use

for the natural pairing between âv and its contragredient. We shall
start with the following trivial lemma.

LEMMA 4.1 : The function

with

is a weil defined function on Gv. Furthermore f s,v belongs to Vv and
every function in Vv is a finite linear combination of the functions of
this type (different uv, Úv and °Wv).

For f s,v as above, we put
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Then

with the same notation as in §2, i.e.

with the obvious meanings for k(gnwo) and b (gnwo).
We shall use w s,v to denote the corresponding operator valued

function, i.e.

For each f s,v, the function f s,v defined by (3.3) is equal to

We still use f s,v to denote the analytic continuation of (4.3) by means
of Proposition 3.6. We put

for f s,v defined by (4.3).
Now we shall assume that °17"v is not supercuspidal (when v is a

finite place). Then there is a quasi-character qv of ° Tv so that °17"v can
be realized as a quotient of the space of the left °Ku-finite functions

°fU on °Gv which satisfy

with t in °Tv, u in 0 UV, and g in °Gv. Here °8v denotes the modulus
character of ° Tv and the corresponding Hecke algebra acts by con-
volutions (cf. [8]).
We use wi to denote wo which we realize as the longest element in



188

WM. Then, there is a function °/u so that

where g is in °Gv.
We shall consider rw as a character of Tv in the obvious manner

(i.e. trivial on Av).
The goal of this section is to compute explicitly w s,v in terms of

ws,v.

Following Jacquet [7], we define the f ollowing operator valued
function on Gv

Where P(w, TIv) dénotes the projection onto the subspace of the
vectors v which satisfy

with t in Kv f1 Tv and u in Kv fl Uv. The corresponding Whittaker
function is defined by

with

the longest element in W. As a function of s, w s,v is entire (cf. [7]).
We shall consider the f ollowing operator valued function

where the integral is convergent for Re(s) sufficiently small. Then
(4.3) implies that

We need the following lemma.



189

LEMMA 4.2: The non-zero operator

sends the space of w into the range of

We use H (° f v, âv) to denote the operator introduced in Lemma 4.2.

LEMMA 4.3: For Re(s) sufficiently small, we have

PROOF: Substitution of (4.5) into (4.8), followed by a simple change
of variables, shows that for Re(s) sufficiently small

with

and

Using

and Lemma 4.2, (4.9.1) reduces to

which is equal to

Therefore for Re(s) sufficiently small (4.9.2) implies that
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Then using Proposition 3.6 and (4.9.3), we can define f’,, for (almost)
all s and the lemma follows immediately.

To simplify the right hand side of (4.9), we need the following
results from the first part of [7].

For a local field K (archimedean or non-archimedean), let H denote
the group SL2(K) and let MH be the maximal compact subgroup of H
as in [7]. We put AH and NH for the diagonal and the standard
unipotent subgroups of H, respectively.
Let S be a finite dimensional representation of MH on the Hilbert

space H(Z). We use q to denote a character of K*, the multiplicative
subgroup of K. It can be considered as a character of AH by means of

We use 6(K2) to denote the space of the Schwartz-Bruhat

functions on K x K and End(H(Z» for the algebra of endomor-
phisms of H(£). Let s be a complex number and let 1/’ be a function

in

We define (Proposition 1.7 of [7])

with g in H and

Then

with
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if

with m in MH, a in AH, and n in NH. Here P(3), 7y) denotes the
projection into the subspace of the vectors v which satisfy

with a in AH fl MH and n in NH n MH. Let T be the additive character
of K fixed in Section 1 of [7]. We put

and

Finally the operator

introduced in Corollary (1.10) of [7], satisfies the following relations

and

Let s) be the coefficient (cf. [17]) defined by

where IP is a Schwartz function on K and

We shall prove the following important lemma.
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LEMMA 4.4: For Re(s) sufficiently small, one has

PROOF: We have

Then straight forward computations imply that the left hand side of
(4.17.1) is equal to

Using (4.16), this is equal to

The lemma follows if we apply (4.13) and (4.14) to (/t.17.1) and the
right hand side of (4.17.2).

REMARK: The lemma is still true if we assume that 71 is a quasi-
character and replace ii by q-’.

For every root y, there is an isomorphism xy from SL2 onto the group
G 1 whose Lie algebra is generated by Hy E h Xy E gy and X_y E g-y (G
is universal). It sends (’x), (X°), and (ô °-1) to exp(xXy), exp(xX-,), and
hy(t), respectively. There is also an isomorphism (conjugation by w)
between G’’ and G W(’Y) for every w in W.

For every place v, we have the Iwasawa decomposition

with

and
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We put

and

for a pair of roots y and S.
As we mentioned before, there is no harm in assuming that TIv is

trivial on the center and therefore qv is a quasi-character of Tv.
Notice that

by means of which we may consider each Tl t’y) as a quasi-character of
F*.
For a pair of roots y and 8, we define

for g in G s with

Here av denotes the modulus character (absolute value) and P(w, 71v)
is the corresponding projection. We put

We need the following lemma.

LEMMA 4.5: For Re(s) sufficiently small, the following relation

holds.

PROOF: In fact the ordering introduced here is the one in [4] (see
also [ 11 ]). Set
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then (4.20) is equal to

where N,(00) denotes the unipotent subgroup generated by 80. If we
put

and denote the unipotent subgroup generated by 81 by Nv(81), we can
write

Here °8a+/3,v is defined by

If we conjugate k(uw,+,g) with wow«+o and use the isomorphism
between G"’I’ and G? (through this conjugation), we shall see that
(4.20.1) is equal to

Then applying the same argument to

by means of the ordering introduced in the statement of the lemma,
completes the proof inductively.

At each finite place v, we shall fix a non-trivial character TU of Fv so
that the largest ideal for which Tv is trivial is the ring of integers Ov of
Fv. Then
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with ..t ’Y,v in F*. Notice that , y,v is a unit for almost all v. When v is
an infinite place, we shall fix Tv as in [7].
For a simple root 5, we put

LEMMA 4.6: With Bs,v as in (4.21) we have

PROOF: Put

We use the ordering introduced in Lemma 4.5 for the set

Then if we put y, for a + {3, ys will be equal to a.

Now, we inductively define the following quasi-characters of Tv :

and

with the obvious action of W on the character group. The index 5(i)
is defined by

and

and finally

Then from the functional equation of Jacquet ([7], Proposition 3.3), it
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follows that

for i = 1, ..., S. But

and

and the lemma follows if we consider (4.22.1) for 1:5i:55 and

combine them together with (4.22.2) and (4.22.3).
If we apply Lemmas 4.4, 4.5, and 4.6 to Lemma 4.3, we conclude

THEOREM 4.7: Let H(°fv, &#x26;,) be defined as in Lemma 4.2; then

COROLLARY 4.8: With notation as before, we have

We shall conclude this section by establishing a result similar to that
of Corollary 3.5 for the archimedean places.
Suppose v is an archimedean place. As usual, let C,(G,) denote the

space of smooth functions on Gv with compact support. We assume

C,’(G,) has the Schwartz topology.
For every function 03C8 in C,(G,), the integral

defines a function which satisfies
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with t in Tv and u in Uv. Hère de(b) denotes the lef t invariant Haar
measure on Bv.
The map sending 03C8 to h03C8 is a surjective homomorphism onto the

space of smooth functions on Gv which satisfy (4.26)
Let h be such a function; then the integral

converges absolutely f or Re(s ) sufficiently small (cf. [7]), and defines
a function w(g) on Gv.

LEMMA 4.0: There is a function 1/1 in C;(Gv) for which the function

(which is defined by this integral for Re(s) sufficiently small) does not
vanish identically.

PROOF: For Re(s ) sufficiently small we can write

Then we may choose 1/1 with support in Uvw2Bv (which is open in Gv) so
that w’l’(e) is not zero. This completes the lemma.

LEMMA 4.10: For Re(s) sufficiently small, the integral

defines a distribution on Gv.

PROOF: We define the f ollowing f unction on Gv :

if
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and zero otherwise. Then w,p(e) can be written as

which is clearly a distribution since f is locally integrable for Re(s)
sufficiently small. In fact, if ca is a compact subset of Gv, there exists a
positive function h in C,(G,) with

Then, it is clear that

But for the small values of Re(s) the right hand side of this inequality
is finite which implies the lemma.

The functions h s,v(g) (différent úv, v and v) will generate the

subspace of left Kv-finite functions on Gv which satisfy (4.26). Since
the subspace of left Kv-finite functions with compact support on Gv is
dense in C;(Gv), we conclude the following corollary.

COROLLARY 4.11: Let v be an archimedean place; then for Re(s)
sufficiently small, there is a function !!s,v, defined by (4.6), for which

w,,, is not identically zero.

5. Functional equation

From now on, we shall assume that the character X has been
chosen so that

The complex dual group for °G (or PGL2), i.e. °G", is SL2(C).
For an unramified place (i.e. when °wv is class-one and &#x3E; «,v is a unit

in Ov), qu is unramified and therefore we can write
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with a complex number si (si depends on v). Then the matrix

determines a semi-simple conjugacy class a Û in SL2( ) (see the

introduction). qv is the number of elements in the residue field.
Let p be a four dimensional irreducible representation of SL2(C)

(e.g. restriction of the third symmetric power of the standard

representation of GL2(C». In fact up to equivalence p is unique. The
highest weight for p is equal to 38 where 5 is the fundamental weight
for SL2(C). Then the local L-function L(s, p,’irv) defined by
Langlands in [10] is equal to

In fact

with notation as in Lemma 4.6 (cf. [11]).
Let us assume that

is an unramified quasi-character. This means that there exists a

complex number S2 such that

Then

where p* is the third symmetric power representation of GL2(C ) (the
associated group for GL2) and ’ir* is defined to be the v-th

component of ’,w*, the space generated by ça* (see §2).
To proceed, we need the following lemma which is a simple

consequence of Lemma 2.1.
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LEMMA. 5.1 : Let E-x(s; q); g; P) be the Fourier coefficient of
E(s; q); g; P) defined by (2.9), then for Re(s)  -1/2

with g = (gv) in G,,.

REMARK: For almost all v, gv is in Kv and w s,v is a class-one

function; thus for such places, we have

and the tensor product is defined without ambiguity.
The space of Úv (resp. its contragredient) is generated by the

vectors of the form Q?)vev (resp. Q?)v év) with ev (resp. év) in the space
of Úv (resp. its contragredient) where for almost all v, (ev, év) is equal
to 1. We put

We shall fix two such vectors (&#x26;, e, and 0, ê, for which

whenever °17"v is a class-one representation. We set

for g = (gv) in G,,.
Now we shall explain the analytic continuation of EX(s ; p ; g; P) as

a function of s. First we shall mention a result of W. Casselman and

J.A. Shalika [2] which unfortunately has not been published yet. We
use

to denote the local Hecke L-function attached to the trivial character

lv of F*. Let p denote the contragredient of p. As before put
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THEOREM 5.2: (W. Casselman-J.A. Shalika). Assume v is un-

ramified ; then

where L(-5 s + 1, p, °-rrv) is defined by (5.1).

Now as in introduction, let S be the finite set of ramified places
(including infinite places); then it follows from [10] that the product

is convergent for Re(s) sufficiently large. We put

which is again convergent for large values of Re(s). We have

COROLLARY 5.3: As a function of s, the product (which converges
for Re(s) sufficiently small)

can be continued to an entire function on the whole complex plane.

PROOF: This is an easy consequence of Theorem 5.2, Corollary 3.4
and the relation

REMARK: Corollary 5.3 may also be considered as a consequence
of the last section in [7].
As a consequence of relation (2.7) and Corollary 5.3 we have:

THEOREM 5.4 : As a function of s, the Fourier coefficients
Ex(s; e; g; P) can be continued to a meromorphic function on the
whole complex plane. Furthermore
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REMARK: For Re( s ) &#x3E; 2, we have

with w s,v defined as in §4.

THEOREM 5.5 : At each place v, the linear functional À’ defined by
(3.4) is non-zero. Therefore there exists a complex function

meromorphic in s, such that

Furthermore c(s,p, °17"v, Xv) depends only on the class of °17"v.

PROOF: For Re(s) &#x3E; 2, it follows from Corollary 3.5, Corollary 4.11,
functional équation (5.7), and the relation (5.8) that À’ is non-zero.

The existence of c(s, p, °17"v, Xv) follows from Theorem 2 of [14]. It

clearly dépends only upon the class of 017" v. Since ws,v(g) and ws,v(g)
are at most meromorphic, it follows that c(s, p, °?Tv, Xv) is a meromor-

phic function of s.

COROLLARY 5.6: As a function of s, c (s, p, °-rrv, Xv ) is holomorphic
whenever A’ is non-zero.

PROOF: For a fixed s, there exists a f unction w s,v f or which w s,v(go)
is not zéro for some go in Gv. Then if c(s, p, °17"v, Xv) had a pole at s, it
would appear as a pole f or w s,v(go) which is a contradiction to

Corollary 3.4.

REMARK: Since ws,u has already some poles coming from the

intertwining operators, it is not true that c(s, p, °1Tv, Xv) has no zeros.

Let °x be the restriction of X to 0 UA, then by the assumption on X,
we may assume that c(s, p, °17"v, Xv) dépends on °XU and write

c(s, p, ° ?Tv, ° Xv) for c(s, p, ° ?Tv, Xv)·
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PROPOSITION 5.7: Assume °17"v can be realized as a quotient of the
space of the left °Kv-finite functions °f v on °Gv which satisfy

where l1v is a quasi-character of °Tv (this includes all the irreducible
and admissible representations of the Hecke algebra of °Gv except
when v is finite and the representation is supercuspidal). Then

with t,ca,U, v, y and the ordering defined as before.

PROOF: This is a simple consequence of Corollary 4.8.

COROLLARY 5.8: As a function of s, the product

is holomorphic wheneverk’ is non-zero.

Now, f or v E S, put

where y( 1 v, 2 - 2s ) is defined by (4.16), and define

This product, as we shall see, is independent of °X. The main result of
this paper is the following theorem.

THEOREM 5.9 (functional equation). Let 017" be a cusp form on

PGL2(A). Denote by S the corresponding set of ramified places. Define
ys(s, p, 017") and Ls(s, p, 017") as before. Then
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In particular

is independent of °x.

PROOF: For Re(s ) sufficiently small,

is equal to

For any v, infinite or finite in which case we assume that 017" v is not

supercuspidal, Proposition 5.7 implies

Here E( 8, s) (local root number), for a quasi-character 0 of F*, is
defined by

Using (5.13.3) for unramified places, (5.13.2) can be written as

follows:

If we use analytic continuation of (5.13.1) to the large values of Re(s),



205

we conclude that

It is well known that

Now, if we cancel

from both sides of (5.13.4), and change s to s - 1/5 we get (5.13) and
therefore the theorem.

We put

and

Then we have:

COROLLARY 5.10 : Let °1T* be a cusp form on GL2(A). Assume its
restriction to the center of GL2(A) is unramified. Denote by S the

corresponding set of ramified places. Define ys(s, p*, 017"*) as above
and put

where the local factors are defined as before. Then

where p* denotes the contragredient representation of p*.
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PROPOSITION 5.11 : Let v be any place, infinite or finite in which
case we assume that °-rr * is not supercuspidal. Then

Appendix

In [13], Larlglands proved that, when v is an infinite place and Re(s )
is sufficiently small, the image of

under the intertwining operator

which is a subspace of

is in fact irreducible.

Let us assume the following conjecture.

CONJECTURE: Assume v is a finite place; then for Re(s) sufficiently
large, the image of Hv under the above intertwining operator is irreducible

(by means of analytic continuation).

COROLLARY TO CONJECTURE: Assume ’irv is a component of a

cusp form on PGL2(A) (v a finite place). Then for Re(s) sufficiently
large, the image of the space of IIu under the above intertwining
operator, is equivalent to the unique non-degenerate quotient of IIv.

At any rate we should have:
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PROPOSITION: Assume °7rv is a component of a cusp form on
PGL2(1A) (v finite or infinite). Then for Re(s) sufficiently large, the
image of the space of IIv under the above intertwining operator is
non-degenerate.
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