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THE DECOMPOSITION AND SPECIALIZATION OF

ALGEBRAIC FAMILIES OF VECTOR BUNDLES

Stephen S. Shatz*

Introduction

We consider vector bundles, by which we mean torsion free,
coherent sheaves on a nonsingular projective variety X. These vector
bundles subsume the "classical" vector bundles (locally free

sheaves), but they are themselves locally free over large open sets.
We will show that many of the pleasant properties of bundles over
curves are in fact true for these sheaves over X of any dimension. In

particular, we will obtain the canonical decomposition of bundles by
flags whose factors are stable in Mumford’s and Takemoto’s sense
[14, 16]. This was first done for curves by Harder and Narasimhan
[10], so we call these flags Harder-Narasimhan Flags (HNF’s).
The HNF’s lead to certain convex polygons, and we investigate the

behavior of these flags and polygons when a bundle moves in an
algebraic family over X. It turns out that there is a basic semi-

continuity theorem which states that the polygons rise under spe-
cialization. This is applied to construct a map from the set of

algebraic families of bundles on X, parametrized by a Noetherian
scheme S, to the semi-group of non-negative algebraic cycles on S.
The fibres of this map turn out to be the equivalence classes of
families of bundles under the identification: two families of bundles

are equivalent when their associated polygons on each fibre of XxkS
over S agree.

1 have been informed that Tjurin [17] constructed HNF’s for the
case of curves, and that he also mentioned the elementary properties
(A), (B), (C) of §2. However, in his work, the emphasis is not on the
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flags constructed, nor did he emphasize the controlling effect of the
notion of slope.

§1. Generalities on vector bundles

By a vector bundle on a locally Noetherian scheme X, we mean a
torsion-free coherent sheaf on X. We shall always assume that X has
property R1 of Serre [4], that is, for every point x E X of codim ~ 1,
the local ring OX,x is regular. It follows from this assumption that there
exists a non-empty open set, U, containing all points of codim ~ 1
such that our vector bundle is actually a locally free sheaf on U (i.e.,
a "classical" vector bundle on U). The reasons for using this more
general notion of vector bundle are amply explained in Langton’s
article [12]; not the least of these reasons being that every vector
bundle in the above sense has a complete flag. (Of course, a sub-
bundle is a subsheaf such that the associated quotient sheaf is again a
bundle.) Moreover, Gieseker has recently settled some moduli prob-
lems using this notion of bundle, [2].

Actually, some of our results are valid in a more general situation;
and, in fact, are best stated in this generality. We consider the full
subcategory of the coherent sheaves on X consisting of those co-
herent sheaves for which there is a non-empty open set U C X such
that

(1) U contains all points of codim ~ 1, and
(2) The sheaf restricted to U is locally free.

We then localize this category by considering as isomorphisms those
maps which are isomorphisms in codim ~ 1. When considering
isomorphisms in this sense, we shall write L-isomorphism (L standing
for "local"), and all propositions involving this set-up will have the
prefix "L" attached. Similar remarks apply to all constructions with
L-vector bundles. As an example, observe that if E is a vector bundle
on X, then Ar E need not be a bundle on X (except if r = rk E),
whereas if E is an L-vector bundle on X, then certainly ArE is again
an L-vector bundle on X for every r.

Assume now that X is irreducible, and keep this assumption
throughout the rest of the paper. The rank of a bundle E, denoted
rk (E), is the rank of its fibre at the generic point of X; the same
definition works for L-bundles. If f : E- E’ is a homomorphism of
vector bundles (or L-vector bundles), then the image of f, in the sheaf
theoretic sense, is a vector bundle (resp. an L-bundle) although not in

general a subbundle of E’. The rank of f, rk (f), is defined to be the
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rank of Im f. Notice that the rank of a bundle (or a map) is equal to
the rank of its associated L-bundle (resp. L-map).

PROPOSITION Ll: If V, W are bundles (resp. L-bundles) over X,
and if f is a homomorphism (resp. L-homomorphism), then the

following are equivalent :
(1) rk(f)=t~0,
(2) Arf = 0 in the L-category for r &#x3E; t, and A tf ~ 0.

The proof of this, being elementary and standard, will be left to the
reader.

REMARK: If f is a homomorphism of bundles V, W, then the

following are equivalent:
(1) f = 0
(2) f = 0 in the L-category
(3) rk(f)=0.

Clearly, (1) ~ (2) ~ (3). If (3) holds, then (Im f )x == (0), where x is the
generic point of X. Hence, Im f is a torsion subsheaf of W ; but W is
torsion-free; thus (1) holds.
Now let f : V - W be a homomorphism of vector bundles over X.

The kernel of f is a vector bundle and the image of f being a subsheaf
of W is also a vector bundle. We have the exact sequence of vector

bundles over X:

in which V1 = ker f and V2 = Im f. However, W/Im f need not be a
bundle. If t( W/Im f ) is the torsion subsheaf of WIIm f, let

W2 = ( W/Im f)/t(W/Im f).

We obtain a bundle, W2, over X and a surjection W- W2. Let
W1 = ker ( W ~ W2), then W, is a subbundle of W and we have a

diagram of bundles over X with exact rows:

We will refer to (*) as the canonical factorization of the map

f : V ~ W. Let us call a map of bundles f : V ~ W of maximal rank if
rk f = rk V. Then the map ~ of diagram (*) has maximal rank as is

obvious. This proves

PROPOSITION 2: If f : V--- &#x3E; W is a homomorphism of vector bundles
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over X, then f admits a canonical factorization (*) (above) in which
the map cp has maximal rank.

Note that Langton [12] calls W1 the subbundle generated by Im f.

§2. Slopes and stability

We assume that X is a non-singular projective variety over an
algebraically closed field, k. Let H denote a very ample divisor class
on X and let E be a vector bundle on X. The Chern classes of E,

cl(E), c2(E), ..., c,(E), are then defined and cl(E) is the unique
extension to X of the divisor class (= line bundle) A’ (E t U) where r
is the rank of E and U is an open set containing all points of

codim ~ 1 on which E is locally free. The intersection number

(cl(E) - H"-1) makes sense and is the H-degree of E. (Here, n =

dim X.) We shall usually delete the H and merely write deg E for the

degree of E. (For a full discussion of these matters see [11] and [12].)
The rational number

will be called the slope of E (or H-slope of E if necessary). Takemoto
(inspired by Mumford) [16] calls a bundle, E, H-stable (resp. H-semi-
stable) iff for every non-trivial subbundle F of E, we have

We shall delete the H and merely write stable (resp. semi-stable)
when (2) holds. If (2) is false, we call E unstable. Observe that these
definitions make sense in the L-category for L-bundles.
One sees rather simply that if f:E--&#x3E;E’ is a homomorphism of

maximal rank between vector bundles of the same rank, then

deg (E) ~ deg (E’). (Cf. [12].) Hence, we find that if E, E’ have the
same rank, and f is a maximal rank map from E to E’, then

03BC, (E) ~ li (E’).
There are several properties of the function g which are extremely

useful. They are all trivial to prove; so, we shall just state them and
omit the proofs.

(A) If 0-&#x3E; V’, V ~ V"- 0 is an exact sequence of vector bundles

(or L-vector bundles) on X, then
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and

(5) Equality holds in (3) iff equality holds in (4) iff 1£(V’) = IL(V").

(B) More generally, if V D Vt-1 ~ V- D ... D V, D (0) is a flag of
subbundles (or L-subbundles) of V, then

and

(8) Equality holds in (6) iff it holds in (7) iff IL( V;+d V;) = 03BC( Vj+d Vj)
for all i and j.

(C) If V, W are bundles (or L-bundles) on X, we have

Note. Harder and Narasimhan discuss these properties in their

article [10].

PROPOSITION L3: Let V, W be semi-stable vector bundles of the
same rank and assume 03BC ( V) = 03BC(W). ( V, W may also be L-vector
bundles.) Let f : V - W be a non-zero homomorphism and assume one
of V or W is stable. Then f is an L-isomorphism and the other bundle
is stable.

PROOF: This was proved by Narasimhan and Seshadri for curves
[15] and by Langton [12] in the general case-we give a slightly
different proof. In the first place, when f has maximal rank (say n),
then Anf : A nV ~ AnW is an L-isomorphism of L-line bundles be-
cause deg A"V= deg A nW. It follows instantly that f is an L-isomor-
phism of V to W. In the general case, make the canonical fac-

torization of f :

Since V, W are semi-stable, we deduce from property (A) (3, 4) that
03BC(V) ~ 03BC(V2); IL(W1) ~ IL(W). On the other hand, as ç has maximal
rank, our previous remarks show that bt(V2):5 IL (W1). This yields the
inequalities

all of which must therefore be equalities. However, as one of V, W is
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stable, we necessarily have either V = V2 or W, = W. Either case
implies the other as rk V = rk W, and we are done.
The same argument yields the

COROLLARY: If V, W are stable vector bundles such that g(V)
li (W) and if f : V ---&#x3E; W is a non-zero homomorphism, then

(1) rk V = rk W, and

(2) f is an L-isomorphism.

The next proposition is very important for what follows, it is a

direct generalization of the results of Narasimhan and Seshadri, [15].

PROPOSITION 4: Let V, W be semi-stable bundles on X and assume

li(V) &#x3E; g(W). Then

1 

that is, there does not exist any non-zero homomorphism from V to
W.

PROOF: If a non-zero homomorphism f : V - W were to exist, we
could factor it canonically and obtain

Since cp has maximal rank, IL(V2) ~ IL(W1). On the other hand, the

semi-stability of V and W shows that IL(V) ~ IL(V2), IL(W1) ~ IL(W);
hence, IL( V) ~ IL( W), a contradiction. Q.E.D.

REMARKS : (1) One sees easily that stability and semi-stability are
L-concepts.

(2) If F1, ..., Fr are semi-stable bundles of the same slope, then
their direct sum is semi-stable and of the same slope. Conversely, if a
semi-stable bundle, G, is a direct sum of bundles F,, ..., F,, then each

Fj is semi-stable and IL(Fj) = IL(G) for every j.

§3. Harder-Narasimhan flags and polygons

DEFINITION: Let E be a vector bundle on X. A Harder-Narasimhan

Flag for E (HNF for E) is a flag
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of subbundles of E having the following two properties:
(1) &#x3E;(Ej+ilEj)  &#x3E;(EjlEj-i), 1 ~ j ~ s - 1,
(2) Ej/ Ej-1 is semi-stable, 1 ~j~s.

Several properties of an HNF for E follow immediately from the
definition. Here are some of these properties:

PROPOSITION 5: If E = Es &#x3E; ES-1 &#x3E; ... &#x3E; El &#x3E; (0) is an HNF for E,
then

PROOF: Consider the exact sequences

By (1) of the definition of HNF and by the properties of IL, we obtain

Proceeding in this way stepwise, by induction one proves (a).
The exact sequence

and property (a) now imply, that (b) holds. Finally, one proves (c) by
an elementary induction using the exact sequences

We now wish to prove the existence and uniqueness of HNF’s for a
given vector bundle E. This was done for the case: X = a curve, by
Harder and Narasimhan [10]; our proof will be different and we will
give essentially two proofs of uniqueness. For the first of these proofs
we need

LEMMA 1: Let E be a vector bundle on X and let H C E be a

subbundle. Assume that

(1) IL(H) &#x3E; IL(E) (so that E is unstable) and
(2) If F is any subbundle of E whose rank is larger than rk (H),

then &#x3E; (F) ~ IL(E).
Under these assumptions, EIH is semi-stable.
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PROOF: Suppose that E/H were not semi-stable. Then there would
exist a subbundle FIH of EIH with G(FIH) &#x3E; IL(EIH). Since the rank
of F is larger than the rank of H, we find that IL(F) ~ IL(E). The exact
sequences

show that IL (EIH) &#x3E; IL (EIF) ~ 1£ (E). However, IL(H) &#x3E; &#x3E; (E) and we
arrive at a contradiction of equation (4) for the exact sequence

LEMMA 2: Let E be a vector bundle over X, then the numbers li(Q)
as Q ranges over all subbundles of E are bounded above.

PROOF: This is a variation on a classic argument of Grothendieck

[8]. In the first place, we may assume E is an L-bundle as g depends
on a bundle only up to L-isomorphism. Secondly, if we show that the
degrees of the L-subline bundles of the finitely many L-bundles E,
A 2E,..., AnE (n = rk E) are bounded above we will be done; for if Q
is an L-subbundle of E, then Ar Q is an L-subline bundle of l1 rE

(r = rk Q) and (Q)~ degQ = degArQ. But, Grothendieck showed
precisely that the degrees of the subline bundles of a bundle are
bounded above; hence, the proof is complete. Q.E.D.

PROPOSITION 6: Let E be an unstable vector bundle on X and let

g = {GI(l) G is a semi-stable subbundle of E,
(2) IL(G) is maximal among all semi-stable subbundles of E,
(3) Among the semi-stable subbundles of maximum IL, G has

maximal rankl.

Then

(a) YO 0, i.e., such G exist,
(b) 1£ (G) &#x3E; g (E),
(c) Y = {G}, i.e., there is only one such G.

PROOF: By Lemma 2, there certainly exist bundles Q of maximal IL.
Clearly, any subbundle of maximal g must be semi-stable. Hence, the
set

go = {QI( 1) Q is a semi-stable subbundle of E
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is maximal among all subbundles of E

is non-empty ((3) holds as E is unstable). In go, pick any element of
maximal rank; such an element lies in 9, so (a) and (b) are proved.
We will give two proofs of the uniqueness statement (c). The first is

by induction on rk E. If rk E = 1, the hypothesis fails; so, assume the
uniqueness for all unstable bundles of rank  n. Let E have rank n,
and among all subbundles, H, of E with u (H) &#x3E; li (E) pick one (call it
H, again) of maximal rank. Of course, rk (H) ~ rk ( G ) for any G E g.
Now if rk (F) &#x3E; rk (H), we have IL(F) ~ ju(E); so, Lemma 1 shows

that E/H is semi-stable.
Let G and G’ belong to g, and observe that ji (G) = g (G’) &#x3E; li (E) &#x3E;

IL(EIH). By Proposition 4, the composed maps

are both zero. This means both G and G’ are subbundles of H. If H is

semi-stable, it follows instantly by the choice of H, G, G’ that

rk (H) = rk G = rk G’ and that G = H = G’. If H is unstable, the

induction hypothesis applies to show that G = G’.
The second proof of uniqueness follows immediately from the next

lemma.

LEMMA 3: Let E be a vector bundle on X and let G be an element of
the set g introduced above. If F is a subbundle of E with 1£(F)
g (G), then F Ç G.

PROOF: Consider the bundles F v G, F n G as defined in [12].
Langton showed that

Let d = deg G, r = rk G, s = rk F, and p = rk (F ~ G). Since &#x3E; (F) =
IL(G), we find deg F = (slr)d. Also, IL(F ~ G) ~ IL(G), and so

deg (F rl G) ~ (plr)d. Hence,

It follows that g (F v G) = IL(G) and rk (F v G) = rk G. Hence, G =
F v G; that is, F C G. Q.E.D.

THEOREM 1: Every vector bundle, E, on X possesses a unique
Harder-Narasimhan Flag.
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PROOF: Existence. U se induction on the rank of E. If rk (E) = 1 or
if E is semi-stable, the existence is trivial. Thus, suppose E has rank
n &#x3E; 1 and is unstable. Let El be the unique subbundle guaranteed to
exist by Proposition 6. According to the induction hypothesis, the
bundle E/E, possesses an HNF, say

This flag lifts to a flag

in which Ej+d El = Èj, for 1 ~ j ~ t. It follows that Ej+d Ej is semi-

stable for j = 1, 2,..., t, and that

Since El is semi-stable, all we must prove is that IL (E21 El)  IL(E1).
Now both El and E2 are subbundles of E; so, Proposition 6 shows
that IL(E1) ~ li(E2). Next, E2 cannot be semi-stable, for if it were, we
would have IL(E1) ~ IL (E2). This would contradict Proposition 6, be-
cause the rank of E2 is strictly larger than that of E,. As E2 is

unstable, it possesses a subbundle, H, with IL(H) &#x3E; IL (E2). By Pro-
position 6 again, IL(E1) ~ IL(H) &#x3E; IL (E2), as required.

Uniqueness. Once again we proceed by induction on the rank of E.
If the rank of E is 1, the result is trivial; and more generally, if E is
semi-stable, then Proposition 5(c) yields the uniqueness immediately.
Consequently, assume E is unstable of rank n, and let

be two HNF’s for E. Let G be the unique semi-stable subbundle of E

given by Proposition 6, and let j be the smallest integer such that the
inclusion G4 E factors through Ej. Then we obtain a non-zero

homomorphism G --- &#x3E;Ej----&#x3E;EjIEj-1, and as E! Ej-1 is semi-stable, Pro-

position 4 implies that IL( G) ~ li(EjIEj-1). However, by Proposition 5,

which is a contradiction unless j = 1. In this case, G is contained in E1
which is semi-stable; hence, IL(G) = IL(E1). By Proposition 6, G and
E, have the same rank; therefore, G = El. In a similar way, G = Ej.
By considering E/E, = E/E!, we reduce the rank of the bundle under
consideration, and the induction hypothesis completes the

proof. Q.E.D.
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Since an HNF for E is unique, we may speak of the HNF for E
and write HNF(E) for this. If F is a vector bundle, we may associate
to it the point p(F) = (r, d) (where r = rk F and d = deg F), in the
plane with coordinates rank and degree. Of course, the slope of F is
then merely the slope of the line joining the origin and p (F). Now if

is the HNF(E), we may consider the points p (E1), p (E2), - - ., p (E,) =
p(E) in the plane and connect them successively by line segments.
The result is a polygon in the plane which we call the Harder-

Narasimhan Polygon of E, HNP(E). Observe that the slope of the
bundle EjIEj-,, li(EjIEj-,), is precisely the slope of the line segment
joining P(Ej-1) with p(Ej). Hence, from the definition of HNF’s, we
find that the HNP(E) is a convex polygon. A typical HNP is sketched
below.

It is clear what we mean by saying that a point in the plane lies on
or below the HNP (E). Hence, if IL(F) ~ IL(E), then F (that is, p(F))
certainly lies below the HNP(E). Secondly, observe that if F DE,,
then the coordinates of F/E1 are exactly the coordinates of p (F)
referred to the new origin p(E1). Hence, F lies on or below HNP(E) if
and only if FIE, lies on or below HNP(E/E1) because the EiE1 are
the Harder-Narasimhan subbundles for E/E1.

THEOREM 2: Let E be a vector bundle on X, and let F be a

subbundle of E. Then F lies on or below the HNP(E).

PROOF: We use induction on the length of the HNF(E). If E = El,
then IL(F) ~ IL(E) and our first observation above shows that F lies
on or below the HNP(E). Let E have HN length = n, and let F C E
be a given subbundle. Set r = rk E1, s = rk F, d = deg E1 and 03B4 =

deg F. If IL(F) = IL(E1), then the basic properties of EI (or Lemma 3)
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show that rk F ~ rk El; hence, F lies on or below HNP(E).
Thus, we may and do assume throughout the rest of the proof that

IL(F)  IL(E). Let p = rk (F fl E,), and consider the bundle E, v F,
[12]. Since deg (E, rl F) ~ (d/ r) p, and since

we obtain

(a) If r = p, then F D E1; and FIE, being a subbundle of EIEI, the
induction hypothesis implies that FIE, lies on or below HNP(E/El).
Our remarks above show that F lies on or below HNP(E).

(b) We now have the interesting case: p  r and IL(F)  IL(E1).
Since (Sls)  (dlr) and r - p &#x3E; 0, equation (t) yields

hence,

Now El v F ~ E,; so, by the induction hypothesis for E/E1 and by the
remarks above, we find that E, v F lies on or below HNP(E). But as
rk F ~ rk (E, v F), (tt) implies that F lies below E, v F. Thus, F lies
below HNP(E), as required. Q.E.D.

COROLLARY: Any polygon whose vertices are subbundles of a fixed
vector bundle, E, on X is dominated by the HNP(E). (Maximal
Property of HNP(E).)

PROOF: By Theorem 2, all the vertices lie on or below the HNP(E),
and HNP(E) is convex; so, we are done.

REMARK: Theorem 2 and its Corollary hold for subsheaves F of E,
not just for subbundles.

We can refine the HNF of a vector bundle E by decomposing the
semi-stable factors into flags whose factors are actually stable. Indeed
we have

PROPOSITION 7: Let E be a semi-stable bundle on X, then E

possesses a flag
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for which

(a) IL(E) = IL(Ei Ej-1), 1 ~ j ~ v,
(b) Ei Ej-1 is stable, 1 ~ j ~ v, and
(c) gr (E) = II 1=1 Ei Ej-1 is unique up to L-isomorphism.

PROOF: Existence. Let H be a proper subbundle of E with IL(H) =
IL(E) and having maximal rank with this property. (If no such H
exists, then E is already stable.) Observe that H is automatically
semi-stable; so the induction hypothesis gives the required flag in H.
We will be done when we show E/H is stable. Let FI H4 EIH be a
proper subbundle. Since F &#x3E; H, we have u (F)  g (E); thus, &#x3E;(E) 
&#x3E;(EIF). But IL(EIH) = IL(E), consequently IL (FIH)  IL(EIH), as

required.
Uniqueness of the graded object. We use induction on rk (E), the

result being trivial for rk (E) = 1. Let

be two flags satisfying (a) and (b). Pick t minimal such that El Ç E t (t
may very well be s). By the Corollary of Proposition 3, we find that
E, is L-isomorphic to Et/Et-1, and hence that E’ is L-isomorphic to
El Et) E t-1. Since El Ç E’, this yields the L-exact sequence

If Zj denotes the inverse image of Ej/Et in E/E1, then

and we obtain the filtrations

The induction hypothesis and the isomorphism E, ~ E’,IE’ 1 now
complete the proof. Q.E.D.

A flag obtained by interpolating the stable factors in the HNF will
be called a complete HNF. The polygon corresponding to a complete
HNF is the same as the HNP, we have merely inserted extra vertices
along the original edges.
When X = P1 (the projective line) a complete HNF corresponds

exactly to Grothendieck’s decomposition [8] of a bundle into a direct
sum of line bundles.

One more remark: By following an argument of Atiyah [1], we can
prove:
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PROPOSITION 8: Let E be a vector bundle over the curve X, and let
K denote the canonical line bundle on X. If E is indecomposable, and
if

is the HNF(E), then

One proves this by following Atiyah’s argument word for word
(except that Proposition 4 is used) for the cases j = 0, j = i - 1. The
general case then follows trivially.

§4. Algebraic families of vector bundles

Let X be, as above, a non-singular projective variety over an
algebraically closed field, k. Again, H will denote a very ample divisor
class on X. Let S be a scheme over k; we shall usually assume that S
is connected or, even better, irreducible. We consider XXKS and let p 1
(resp. P2) be the projection onto X (resp. S). By [4], H~k Os = P *H
is very ample for XxkS over S. If s ~ S is given, it follows that

HS = i * p * H is very ample for X, over K(S), where X, is the fibre of

XxkS over s and is is the morphism of the fibre Xs into the scheme
XXKS-
By an algebraic family of vector bundles on X parametrized by S,

we mean a vector bundle, E, on XxkS which is flat over S. If E is an
algebraic family of vector bundles (parametrized by S) on X, and if
s E S, then we let Es denote the sheaf i*E on the fibre Xs. As part of
the definition, we assume that Es is an L-bundle on XS, and that this is
still true even if E is only an L-bundle on XXKS. We have observed
that slopes are defined for L-bundles and that they are invariant under

L-isomorphism; so we define the slope of Es, IL(Es), to be its slope
with respect to the very ample sheaf HS.
Now let s, so be points of S with so a specialization of s, and let T

be the spectrum of a discrete valuation ring (DVR) which "covers" s
and so in the sense of [5]. Here, if e (resp. e,) is the general (resp.
special) point of T, there is a morphism T &#x3E; S such that eF--&#x3E; s and
Ço H so. Let À : T - S be the given morphism and let t (resp. to) be
the induced morphisms



177

so that we have the commutative diagram

in which X(s) is XxkS, and X(T) is XxkT. Then H03BE = t* Hs is very ample
for X03BE ; similarly, H03BE0 is very ample for X03BE0. Moreover, we have

so that

Since these intersection numbers are given by Hilbert Polynomials
(which are in turn certain Euler Characteristics) [12], Proposition
7.9.7 of EGA 3, [6], shows that

hence, that 1£(E03BE) = g(E,) and similarly IL(E4» = IL(Eso). Observe,
moreover, that in view of the invariance of Hilbert Polynomials in flat
families, we have

Given an algebraic family of vector bundles on X, parametrized by
S, we have the induced L-bundles E, on each fibre Xs. Since HNF’s
exist and are unique for L-bundles as well, we may examine the HNF
for ES :

We set

Of course,
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and

For each s E S we form the HNP of ES (from the above vertices

 pj (E, s), dj(E, s)) and we denote it by HNP(E, s). Since convex

polygons have an obvious partial ordering, we have a mapping from S
into the partially ordered set of convex polygons with lattice point
vertices.

If s and so e S are given with s, a specialization of s, and if T is the
spectrum of a DVR covering s and so, then by [12, Prop. 3] we know
that E03BE (resp. E03BE0) is semi-stable if and only if E, (resp. Eso) is

semi-stable. Since the li’s remain invariant under passage to T, it

follows that the HNF for Es pulls back to the HNF for E03BE, and
similarly for so and e,. (Remark: One needs to observe that inverse
image preserves L-exact sequences of L-bundles.) This proves

LEMMA 4 (Reduction Lemma): In studying the behavior of
HNP(E, s) and the functions ILj(E, s) under specialization, we may
assume S is the spectrum of a discrete valuation ring.

Consider Grothendieck’s quotient functor Quot (El XXkSI S), which
we shall abbreviate Q(E, X, S). Recall that for S’ over S, the value of

Q(E, X, S) on S’ is the set of all quasi-coherent quotients of E~os Os’
which are fiat over S’. We shall always stay inside the category of
locally Noetherian schemes (for S and S’), so the quotients we get as
well as the subsheaves of E ~os Os we obtain as kernels will always
be coherent. As usual, Grass (EIXXKS) will denote the subfunctor of
Q(E, X, S) consisting of those quotients which are locally free. If U
is an open subset of XXkS, then we have a commutative diagram

Now if 03C3 E Q(E, X, S)(S), and if for some open U of XXKS con-

taining all points of codimension ~ 1, the element 03C0(03C3) lies in the

image of iu, then the quotient determined by 03C3 is an L-bundle, and u
determines an L-subbundle of E over XXKS. If or is given and the

corresponding quotient, E’03C3, of E is torsion-free, then 03C3 determines a

subbundle of E over XXKS.
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PROPOSITION 9: Let S be Spec A where A is a DVR, and let E be an
algebraic family of vector bundles on X parametrized by S. Let s

(resp. so) be the general (resp. special) point of S and let

be a given flag of subbundles of the vector bundle Es. Then there exists
a unique flag of subbundles of E

which induces the given flag on the generic fibre. That is,

PROOF: The essential case occurs when r = 1, and we shall treat
this case first. The flag E, &#x3E; 03BE(’) &#x3E; (0) gives rise to a point (T of
Q(E, X, S) with values in Spec K(s). By Lemma 3.7 of [9], this section
can be extended to a global section, call it u again, of Q(E, X, S) over
S. The global section corresponds to a coherent quotient El E(1) of E
over XXkS, which is flat over S. Indeed there is a unique way of
making this extension.’ Since E(’) is already torsion-free, all we need
show is that El E(1) is torsion-free. Let T(EI E(1) be the torsion

subsheaf of El E(1) and let F be the subsheaf of E such that FI E(1) is
isomorphic to T(EI E(1»). Then F is a subbundle of E and E/F is flat
over S. Yet at any point, x, of the generic fibre X,, we have the
inclusion

and the right-hand side is torsion-free by assumption. Hence F t XS is
E(1), and the uniqueness shows that r(EI E(1») = (0).
The general case is by induction on r. We obtain the subbundle E(r)

which induces E(") by the above, and we use induction to obtain the
smaller flag E(r) &#x3E; E(r-l) &#x3E; ... &#x3E; E(1) &#x3E; (0) in E(r). Now splice the two
flags together to obtain the required flag in E. Q.E.D.

’ The uniqueness is a standard argument: We may assume E(I) is the largest subsheaf
of E inducing E(’). If É(I) is another such subsheaf with EIÉ(’) flat over S, then the
exact sequence

shows that E"’/Ê‘’’ is flat, hence torsion-free, over S. However, at the generic point
s E S, the sheaf E"’IÉ"’ must vanish; so, E"’/É"’ is a torsion sheaf over S. Therefore,
E"’/É"’ _ (0), as contended.
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THEOREM 3: Let E be an algebraic family of vector bundles on X,
parametrized by the scheme S. Let s, so E S with so a specialization of
s. Then HNP (E, so) ? HNP (E, s ) (in the partial ordering of convex
polygons); that is, the Harder-Narasimhan Polygon rises under spe-
cialization. In particular, JL1(E, so) ~ &#x3E;i(E, s).

PROOF: By the reduction lemma, we may and do assume that
S = Spec A, with A a DVR, and with s as generic point and So as

closed point. Let

be the HNF for Es. According to Proposition 9, the above flag can be
extended to the algebraic family, E, and it induces a flag on E,,.:

By our remarks at the beginning of this section, the polygon cor-
responding to (*) is precisely the HNP(E, s). However, by the corol-
lary of Theorem 2, the polygon of the flag (*) is dominated by the
HNP (E, so). Therefore, HNP (E, so) ~ HNP(E, s), as required.
Q.E.D.

§5. Constructibility of HNP(E)

We have shown that the Harder-Narasimhan polygon rises under

specialization. Here, we prove the constructibility of these polygons
as functions on S. Throughout this section S will be a locally
Noetherian scheme.

LEMMA 5 : If E is an algebraic family of vector bundles on X over S,
if S is irreducible, and if s E S is the generic point, then every flag

o f bundles on the generic fibre, Xs, may be extended to a flag on Xxk U,
where U is an open subset of ,S containing s.

PROOF: As in Prop. 9, the essential case is when v = 2; we shall
leave the induction step to the reader. We know (by the remarks

preceding Prop. 9) that to get the subbundle E1 of E over XXkU, it

will suffice to produce a section
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such that there is an open set W of Xxk U having the property that the
corresponding sheaf F03C3, when restricted to W, is locally free and all
points of codim ~ 1 lie in W.

Now, El(s) corresponds to a section of Q(E t XsIXs/S) over
Spec K(S), such that in the diagram

restr. (o) E Grass (E r Usl Us), Here, Us is open in XS and contains all
points of codim ~ 1. As 03C3 is a rational section of the scheme

Q(E, X, S) over S, it extends to a section over some open set, V,
containing s. Hence, there exists a subsheaf E1 of E over XXKV such
that E/E, is coherent and flat over V. Of course, El is torsion-free.

Write F = EIE, on XxkV and apply [3, Prop. 3.3.1] to F and Cv. We
obtain

Since V is locally noetherian, there is an open set U C V such that
Ass (V) n U consists only of the generic point s of S ([3, Prop.
3.1.6]). However, Fs is torsion-free; and so Ass (F), for F over XXkU,
consists entirely of the generic point of XXkU, Thus, F over Xxk U is
torsion-free, and El is a subbundle over U. Q.E.D.

S. Kleiman’ has proved the following theorem.

THEOREM (Kleiman): Let X - S be a projective morphism of
schemes with geometrically integral fibres and assume S is locally
Noetherian. If F is a coherent Ox-module flat over S and if s E S, set

03B4(F(s)) = sup {rk (F(s)) deg G - deg (F(s)) rk (G)IG is coherent and

Then, for every integer p, the set

is open in S.

Now a simple argument (left to the reader) using the fact that
torsion sheaves have non-negative degree shows that

’ Private communication.
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LEMMA 6: Let F be an algebraic family of vector bundles

parametized by S. Then
(1) F(s) is semi-stable iff 03B4(F(s))1, and
(2) F(s) is stable iff 03B4(F(s ))  0.

Hence, the sets

are open in S.’

PROPOSITION 10: Let X, S be an irreducible, non-singular, pro-
jective k-variety and a locally noetherian scheme over k respectively,
and let E be an algebraic family of vector bundles on X parametrized
by S. Then the function

is constructible.

PROOF: Let E be the pull back of E to the generic fibre Xs of XXkS.
(We may assume S is irreducible.) Form the HNF of E

and use Lemma 5 to extend this to a flag

over XXKU. The bundles (E/ Ej-1)s = ejlzj-l are semi-stable for 1 ~ j ~
v ; hence, by repeated application of Lemma 6, we see that there is an
open set, call it U again, containing s, such that for every t E U, the
bundles (Ejl Ej-1)t are semi-stable, l~j~.B
Now, for any t, we have

and it follows that for each t E U the flag induced at t by (*) satisfies
the two properties of HNF’s. By the uniqueness of HNF’s, each of
these induced flags is the HNF for E at the corresponding fibre.
However, all these flags have the same HNP; therefore, HNP(E, t ) is
contant on U. Q.E.D.

COROLLARY: Under the hypothesis of Prop. 10, the function
s  HNP(E, s) is upper semi-continuous.

’ M. Maruyama [ 13] has also proved that stability and semi-stability are open conditions in
an algebraic family of sheaves.
2 

(EjEj-t)t is torsion-free in an open set containing s by [7, Theorem 12.2.1(i)].
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PROOF: Conjoin Theorem 3 and Proposition 10.
One can view the corollary more geometrically as follows: Let P

be a fixed polygon which is convex and has vertices at lattice points.
Then the following three conditions are equivalent (when S is No-
etherian) :

(a) f s E S[HNP(E, s) &#x3E;_ Pl is closed
(b) f s E SIHNP(E, s) Pl is locally closed
(c) f s E SIHNP(E, s) Pl is constructible.

(By Prop. 11 below (a) =&#x3E; (b); clearly (b) =&#x3E; (c), and (c) ::&#x3E; (a) by the
proof of the corollary.) Hence, the vector bundle E stratifies S into
closed sets, namely the sets, Sp(E), of (a).

PROPOSITION 11: If S is Noetherian, the stratification of S induced

by the vector bundle E is finite.

PROOF: We first show that the numbers g(F) as F ranges over all
subbundles of the vector bundles E, for all s E S are uniformly
bounded above. Since S is Noetherian it has only finitely many
irreducible components, and so we may assume S is irreducible. Let s
be the generic point of S. Recall (Lemma 2) that a flag of line bundles
in each of the bundles A ’E, (1 - m : 5 rk E) serves to bound the

numbers IL(F) as F ranges over subbundles of E,. By Lemma 5, these
flags extend over an open set of S; hence the g (F) are uniformly
bounded as F ranges over all subbundles of Et with t lying in an open
subset, U, of S. The complement, Z, of U in S has lower dimension;
so an obvious inductive argument completes the uniform bounded-
ness.

Let Po be the HNP of E,, where s is generic in S. By Theorem 3,
HNP(E, t) - Po for all t E S. Let À be the largest of the g(F) as
above, and let Pl 1 be the polygon starting at (0, 0), consisting of a
straight line of slope À, and ending at the line x = rk E. By the

properties of HNP’s and by the choice of À, we have P, ? HNP(E, t)
for all t E S. As all HNP’s have lattice point vertices and as there are
only finitely many lattice points in the region bounded by Po, P 1,
x = 0, and x = rk (E), we are done. Q.E.D.

LEMMA 7: If S is Noetherian and irreducible, if E, X are as above,
and if Po is the HNP of E, for the generic point s E S, then the set

is open in S.
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PROOF: By the proof of Prop. 10, our set contains an open set

(~ 0); on the other hand our set is locally closed by the above

remarks. Hence, Sto(E) is open. Q.E.D.

§6. Connection with algebraic cycles on S

Throughout this section we will assume that S is Noetherian.

Suppose that P and Q are convex polygons which begin together (say
at (0, 0)) and which end together (say at (r, d)). Assume both have
vertices at lattice points. If P &#x3E; Q in the obvious ordering of convex

polygons, we shall define P - Q as an ordered r - 1 tuple of rational
numbers. Namely, the jth component of P - Q (1 ~ j ~r - 1) is the

différence of the ordinates of P and Q at the abscissa x = j.

Clearly, by the convexity of P and Q, we have P - Q if and only if
P - Q is a vector of non-negative rational numbers, and P = Q iff

(P - Q)j = 0, for all j.

LEMMA 8: With the notations above, if both polygons end at

abscissa r, then r !(P - Q)j is an integer for all j.

PROOF: We simply observe that the only denominators introduced
into (P - Q)j are integers between 1 and r (explicit computation).
Hence, r!(P - Q)j E Z. Q.E.D.

Our application is to the case: P = HNP(E, so), Q = HNP(E, s ),
where E is a vector bundle on XxkS (flat over S) and so is a

specialization of s. By an inductive procedure (inducing on dim S), we
shall associate to E (on XxkS) algebraic cycles (with positive co-
efficients) of S.
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Assume first that S is irreducible. If dim S = 0, we associate to E
the empty cycle. If dim S = 1, let s be the generic point of S, then by
Lemma 7, there is an open set, U, of S consisting of points t E S for
which HNP(E, t) = HNP(E, s). Let S - U = {t1,..., tq}, and associate
with t; the r - 1 non-negative cycles

The cycles we then associate to E are:

If S is reducible, we merely restrict E to XxkSm for m = l, ..., p,
where the Sm are the irreducible components of S, and proceed as
above for each S,,.
Now assume we have constructed algebraic cycles of S (associated

to E) for all S of dimension  b. Let S be b-dimensional, Noetherian
and irreducible; then by Lemma 7, the set

is open. Call this set U, and let S1, S2, ..., Sn be the irreducible
components of S - U. If si is the generic point of Si, we form the r - 1
algebraic cycles

where, as usual, s is generic for S. These cycles are what we get "at
the first step." We now restrict E to XXkSi for i = 1,..., n and repeat
the process there. The induction hypothesis yields algebraic cycles of
the Sl ; hence, of S. Upon putting these together with the cycles
defined explicitly in the first step, we obtain r - 1 cycles with non-
negative coefficients. If S is reducible, let S,,..., Sq be its irreducible
components. Restrict E to XxkSi, for i = 1, 2,..., q and apply the
above procedure to these Si. The cycles we get are considered as
cycles on S.

If .st1(S) denotes the semi-group of non-negative cycles on S, then
we have constructed a map

where Vectk (XXKS) denotes the families of rank r vector bundles on
X parametrized by S. The set Vectk (XXKS) breaks up into a disjoint
union
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in which P,, ..., Pq are convex polygons starting at (0, 0), ending at
(d, r), lying above (or on) the line through (o, 0) and (r, d), and where
S is reducible with S1, ..., Sq as components, Si is the generic point of
Sl, and Pi = HNP(E, s;). Of course, d (the degree of E) is arbitrary.
Now given two families E, F of vector bundles on X parametrized

by S, we shall say that E is Harder-Narasimhan equivalent to F if
and only if

PROPOSITION 12: Let S be Noetherian with irreducible components

S,,..., Sq and let P1, ..., P q be convex polygons beginning at (o, 0) and
ending at (r, d). If E, F are families of vector bundles on X lying in
Vectk l’ ’ pq (XxkS), then E is HN equivalent to F if and only if
O(E) = O(F) in .sIJ(S)r-1. Hence, the fibres of 0 in each piece of
Vectk (XXKS) are the HN equivalence classes.

PROOF: We may obviously assume S is irreducible, and we will

prove both necessity and sufliciency by induction on dim S.
Necessity. The statement is vacuous for dim S = 0; so, we look at S

of dimension p. If s is generic for S, then HNP(E, s) = P =

HNP(F, s ), (P = P,). Write S - U = U Si as in the construction of O,
and let s; be generic in Si. Since the cycle O(E) has Si components
given by r!(HNP(E, si) - HNP(E, s»jsi, we find that O(E) and O(F)
have the same Si components, i = 1, 2,..., q. Therefore, EPXXkSi,
FPXXkSi belong to the same piece of Vect (XXkSi). Since these

restricted bundles are HN equivalent and since dim Si p, the in-
duction hypothesis shows that all other components of O(E) and

O(F) agree. Therefore O(E) = O(F).
Sufficiency. If dim S = 0, then S is one point, and we are given

HNP(E, s ) = HNP(F, s ) = P at this point. So, assume dim S = p, and
observe that if s is generic for S, we know that HNP(E, s) = P =

HNP(F, s). The last relation holds on the open set U fl V where

HNP(E, t) = P and HNP(F, t) = P. (Cf. the construction of O(E),
and apply this construction to E and F.) Suppose t E U but te V.
Then if S - V = U Ti, the cycle O(F) contains each Ti with a positive
coefficient. Let t E Ti (say). Since O(F) = O(E), the cycle O(E)
contains Ti with a positive coefficient. Now Ti ~ Se for any t as te Se
for any e; hence the piece of O(E) equaling Ti (with positive
coefficient) arises from Et XXkSe for some e. That is, Ti ç Se for
some f; hence, t E Se for some t, a contradiction. This shows U C V,
and by symmetry, U = V.
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We have shown that the irreducible components Ti, Se are pairwise
identical; label them so that T, = S,, etc. Since O(E) = O(F), we have

r !(HNP(E, s ) - HNP(E, Si))jSi = r!(HNP(F, s ) - HNP(F, s;))jTi
for 1 ~ j ~ r - 1 and i = 1, 2, ..., q. We deduce that HNP(E, si) =

HNP(F, s ;), i = 1,..., q. (Here, of course, si is generic in Si = Ti.) It
follows that E t XXkSî is in the same piece as F l’ XxkSi, for all i.

Hence, as 8(E r Xxk U S; ) = O(F P Xxk U Si), the induction hypothesis
shows that E and F are HN equivalent. Q.E.D.

In another paper, we shall apply Prop. 12 to the study of vector
bundles on ruled surfaces.
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