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ON A(¢, P)-NUCLEARITY

M. S. Ramanujan* and B. Rosenberger

Introduction

We consider sequence spaces A(¢, P,») and A(¢, P, k) and define
A(¢, P, ©)-nuclear resp. A(¢, P, N)-nuclear spaces in order to unify the
concepts of A(P)-nuclearity, Ax(a)-nuclearity, and ¢-nuclearity con-
sidered in [7, 8, 9]; we are especially interested in obtaining universal
generators for the varieties of A(¢, P,)-nuclear and A(¢p, P,N)-
nuclear spaces. Section 1 of the paper contains various definitions and
some remarks on the operator ideal of A(P,x)-nuclear maps, P a
stable, nuclear G.-set; in section 2 we consider A(¢, P, ®)-
nuclear spaces and show that A(¢, P, ©)-nuclearity is the same as
A(Q, ©)-nuclearity, Q a suitably chosen G.-set. In section 3 we
introduce the concept of A(¢, P, N)-nuclearity and extend a result in
[8] by showing that A (Q, ) - Q suitably chosen G.-set —is a universal
generator for the variety of A(¢, P, N)-nuclear spaces whenever P is a
countable, monotone, stable, nuclear G.-set.

1. Definitions, notations, and some remarks on
A (P, )-nuclear maps

For terminology and notations not explained here we refer to
Koéthe [3], Pietsch [4], Dubinsky and Ramanujan [1], and Terzioglu
[12].

Let X and Y be Banach spaces, A a normal sequence space, and A~

* The first author acknowledges with pleasure the support of this work under SFB 72
at the University of Bonn and the hospitality of Professor E. Schock.
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its Kothe-dual. A continuous linear map T € L(X, Y) is said to be
(1) A-nuclear (written T € N, (X, Y)) if there exists a representation

Tx = 2 Valx, @)y, forxe X
n=0

with {y.}» €A, a. €X', |la.||=1, and y. €Y, {(yu, b)}» EA™ for each
bey’;

(i) pseudo-A-nuclear or X-nuclear (written T € N (X, Y)) if T has
a representation

Tx = D, ya(X, @.)y. forx € X
n=0

with {y.}. €A, a. €X', ||la.]|<1, y. €Y, and |ly.| =1;

(iii) of type A if {s**(T)}. €A where s:**(T) denotes the n-th
approximation number of T.

For a locally convex Hausdorff space (I.c.s.) E, U(E) will denote a
neighbourhood base of 0 of absolutely convex, closed sets; Ey will
denote the completion of the normed space E/p,'(0) U € U(E);
5.(V, U) denotes the n-th Kolmogorov-diameter of V € U(E) with
respect to U € U(E); A(E) denotes the A-diametral dimension of E,
viz., the sequences {v.}. such that given U € U(E) there exists a
V € U(E) with y,8.(V,U)—0.

Let A(P) be a Kothe space with its generating Kothe set P. The
Kothe set P is called a power set of infinite type if it satisfies the
following additional conditions:

(@) for each a €P, 0< a, =< a@n+1, 1 EN;

(ii) for each a € P, there exists a b € P with aZ<b,, n EN.

The corresponding space A (P, ) is called a smooth sequence space of
infinite type or a G.-space. For an example of a G.-space which is not
a power series space of infinite type see [1; theorem 2.25].

Throughout, A(P,«) is assumed to be a G.-space. The nuclearity
and related concepts of such spaces are discussed in [1, 12, 13]; we
only need the following result.

1.1 LEMMA: A(P, ) is nuclear if and only if there exists a sequence
{p.}» € P such that {1/p.}. €1..

We shall frequently say “P is a nuclear G.-set” to mean that the
corresponding A(P,») is a nuclear G.-space; P is said to be a
countable, monotone, nuclear G.-set if P ={{pi}.: i=1,2,...} with
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L =pi for each i, n EN and P is a nuclear G.-set; note that P is a
G.-set already implies 0 < p. < pi.1.

Let A(P, ) be nuclear; then a l.c.s. E is said to be A (P, ®)-nuclear
if for each U € U(E) there exists a VEU(E) such that V is
absorbed by U and the canonical map K(V,U) on Ey to Ey is a
A(P,x)-nuclear map. In [1] it is shown that a l.c.s. E is A(P,x)-
nuclear if and only if for each U € U(E) there exists V € U(E) such
that {6.(V, U)}, € A(P,©). We shall denote the class of all A(P, «)-
nuclear spaces by N «).

A lc.s. E is said to be stable if E X E is isomorphic to E. It is
known that a nuclear G.-space is stable if and only if for each p € P
there exists a ¢ € P such that {p../q.}. € 1. [14]. We say “P is a
stable G.-set” to mean that A(P,«) is a stable G.-space. Stability
plays an important role in the study of various permanence properties
of A(P,»)-nuclear spaces; the following result can be found in [7;
Proposition 4.5].

1.2 PrROPOSITION: Let P be a countable, monotone, nuclear G.-set,
P ={pi}:i=1,2,...}. Then the following statements are equivalent:

(i) For each j EN there exists a y(j) EN such that {pi./p1®}. €
L.
(i) If £ € A(P,®) for each k EN and B: N->NXN is a bijection
defined by B7'(k,m): =2“"'(2m —1) then there exist t. >0,
k €N, such that the sequence {tsm&aim}. € A(P,©) where
B(n) = (Bi(n), Bz(n)).
(iii) If &, n EA(P,®) and { = & * m: = (&1, M1, &2, M2, - - -) then there
exists a bijection m: N>N such that {{.}. € A(P, ®).
(iv) Niwe= is closed under the operation of forming countable
direct sums.
(V) Naw= is closed under the operation of forming finite Car-
tesian products.
(vi) Nia@w= is closed under the operation of forming arbitrary
Cartesian products.
(vii) The sum of two A(P,)-nuclear maps is a A(P,)-nuclear
map.
(viii) A(P, ) is stable.

An operator ideal A is said to be

(i) surjective if for each closed subspace N of a Banach space X and
each TEL(XIN,Y), Y a Banach space, TQX € A(X, Y) implies
T € A(XIN, Y), Q%: X - X|IN denotes the canonical map onto X/N;
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(ii) injective if for each closed subspace M of a Banach space Y and
each Te L(X,M), X a Banach space, J4T € A(X,Y) implies T €
AX,Y), J{: M ~>Y denotes the injection.

The following result shows that the operator ideal of A (P, x)-
nuclear maps — P a stable, countable, monotone, nuclear G.-set —is
injective and surjective.

1.3 PROPOSITION: Let P be a stable, countable, monotone, nuclear
G.-set, X and Y be Banach spaces with closed unit balls Ux and Uy.
Then the following statements are equivalent.

() TeL(X,Y) is A(P, ©)-nuclear.
(i) TEL(X,Y) is of type A(P, ).

(iii) {s5(T)}. € A(P, ®) where s2*(T): = inf {|TT%||: codim M <n, M

closed subspace of X} denotes the n-th Gelfand-number.

@iv) {sx(T)}. € A(P, ©) where s:(T): = 8.(TUx, Uy).

Proor: (i) & (i) is shown in [1] and [7]. (ii) => (iii) and (ii)) = (@iv)
are consequences of the facts that s2(T)=si(T) and sx(T)=<
s2P?(T) for each n €N [5]. (iii) = (ii) and (iv) = (ii) are consequences
of the facts that s:*(T) < (n + 1) s2(T) and s3(T) < (n + 1)sx°(T) for
each n €N [5] and the well known fact that {(n + 1)&.}. € A (P, ») for
{&}: EA(P, ).

1.4 CorOLLARY: Let P be a stable, countable, monotone, nuclear
G.-set. Then the operator ideal of A(P,»)-nuclear maps is injective
and surjective.

ProoF: Let X and Y be Banach spaces, M a closed subspace of
Y, and X/N a quotient space of X. Then s&'(T) = s*'(JxT) for all
T € L(X, M) and s:*(SQX) = s:°(S) for all S € L(X/N, Y) [5]. Now
the proof easily follows from Proposition 1.3.

1.5 CorROLLARY: Let P be a stable, countable, monotone, nuclear
G.-set, X and Y be Banach spaces such that each map TE L(X,Y)
is A(P, ®)-nuclear. Then X or Y must be finite-dimensional.

Proor: By Proposition 1.3 every operator T € L(X, Y) is of type
A(P, ), hence of type ;. By a result of Pietsch [6], X or Y must be
finite-dimensional.
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REMARK: With methods used in [11], it can be also shown that X or
Y is finite-dimensional if each nuclear map T € L(X, Y) is A (P, «)-
nuclear, P as in Corollary 1.5.

2. On A(¢, P, ©)-Nuclearity

Throughout, let @ denote the set of all functions ¢: [0, »]— [0, ]
which are continuous, strictly increasing, subadditive with ¢(0) =0
and ¢(1)=1, and satisfy the additional condition (+) there exist
constants M =1 and t, € [0, =] such that ¢$(V1)=Vé(Mt) for t €
[0, t5).

Note that all examples given in [10;2.6] do have the additional
property (+). So far we have been unable to find an example of a
continuous, strictly increasing, subadditive function ¢: [0, ©) — [0, »)
with ¢(0) =0 which does not fulfill condition (+).

2.1 DEFINITION: Let A(P,») be nuclear. For ¢ € @ define the
sequence space A(¢, P, ) by

)‘(d)’ P’ oo): = {{gn}n: {d)(lgnl)}" E A(P9 00)}_

A lc.s. E is called A(¢, P,»)-nuclear if for each U € U(E) there
exists a V € U(E) such that {5.(V, U)}. € A(d, P, ).

For ¢ =id this definition agrees with the definition of a A(P, «)-
nuclear space, so we write A(P,®)-nuclear instead of A(id, P, «)-
nuclear.

We now show that the concept of A(¢, P, )-nuclearity is exactly
the same as the concept of A(Q, ©)-nuclearity where Q is suitably
chosen depending on ¢.

2.2 LEMMA: Let P a countable, monotone, nuclear G.-set, P =
{pi}.i i=1,2,..}). Take ¢ € ®; define qi by 1/q.:= ¢ '(/p)) n,
iEN. Then Q:={{q:}.: i=1, 2,..} is a countable, monotone,
nuclear G.-set.

Proor: (i) It is obvious that Q is countable and monotone and that
for each n, i ENg: >0 and q. < gh+1.

(ii) Given q*, q' € Q, we have to show the existence of a g" € Q
such that q“q' <q’, i.e. gug. = Mq, for a constant M >0 and each
n €N. Since P is a Kothe set we find p™ € P and M, >0 such that

*<M,p7 and p.=M,p7% for each n €N. Since A(P, ) is nuclear,



118 M. S. Ramanujan and B. Rosenberger [6]

there exists a p° € P with {p’/p.}. € .. This can be seen as follows. By
Lemma 1.1 there exists a p' € P with {1/pi}. €1,; we choose p" € P
with p! =< M,p’ and p7 = M,p’ for n €N, we also choose p* € P with
(phY =p;: for all n € N. (This can be done by condition (ii) of a G.-set.)
From the inequalities

phIpr=pul(pr) < M/p. = Mi/p.

we get {pn/p:}. €1,. We also find an integer n, such that px/p; =<1,
pips =1, and 1/p; <t, for each n=n, (here t, is determined by
condition (+)). Because of condition (+) for the function ¢ we then have

M,'(1/ps)¢ '(1ps) =Mo" (1/p2)¢ " '(1p2) = ¢ ~'(1papr)

for each n = n,. Again because of the nuclearity of A(P,>) and the
second additional condition for a G.-set we find p"€P, n,EN,
n;=n,, such that p,p. =p. for each n = n,. Therefore there exists
K >0 such that ¢~ '(1/pr) <Ko '(1/pr)¢ '(1/p.) for each n €N, i.e.
q9“q'<q".

(iii) To prove the nuclearity of A(Q,») we use Lemma 1.1 and
show the existence of a sequence {qi}. € Q such that {1/q%}. €1..
Since A(P, ) is nuclear we can find p* €P such that {1/pk}. €1..
Since ¢ is subadditive we have 1/qk=¢ ' (1/p%¥)=M/p% for each
n €N, and A(Q, ») is nuclear.

If A(P, ) is a power series space of infinite type then A(Q, «) is in
general not a power series space as the following example shows.

ExampLE: Define p'€P by pi:=n', n, iEN. Let ¢ € P be the
function ¢, as given in [10], i.e.

0 fort=0
boe(t) :=3 —aflogt fort € (0, to], to sufficiently small
Bt +vy fort=t,

where a, B, y =0 are chosen in such a way that ¢.. is continuous
with ¢(1)=1. Then ¢ €E P and () = exp (—aft) for t €(0, o).
Therefore q. =exp (an’) for n = n,, i EN, and A(Q, ) is not a power
series space [1].

The following lemma is well known and can be found in [4].

2.3 LEMMA: Let P be a countable, monotone, nuclear G.-set. Then
x ={&}. EX(P,®) if and only if {&pa}s €1 for each i EN. The
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topologies determined by the semi-norms mi(x):=3.|&|ps resp.
oi(x):=sup |&|pi, i EN, are equivalent.

2.4 PrROPOSITION: Let P be a countable, nuclear G.-set, ¢ € .
Then the following statements are true.

@) A (¢, P,»)=A(Q,®)

(i) On A(¢, P,») the two topologies given by the F-norms
F(x) =3, p(|&Dps: resp. G:(x):=sup ¢(&pi, i EN, are
equivalent.

(iii) A (¢, P, ) with the above topologies is topologically equivalent
to A(Q, ®).

ProoF: (ii) For x = {&.}. € A(¢, P, ©) we always have 6:(x) = #:(x),
i €N. On the other hand for i €N there exists p" € P and p' € P such
that {1/p:} €1, and p'p" <p'; therefore

(x) = 2 ¢(&Dpn =2 &(&Dppilps = M3 $(&.Dpalp:
= Moei(x) forx €A(¢, P,®).

To prove (i) and (iii) notice that because of Lemma 2.3 x ={&}. €
Ao, P,0) S ¢d(&Dpr =1 for kEN and n=n. & |El. =¢'(1/pY) =
1/q% for k EN and n = n, & x € A(Q, ®).

2.5 CorROLLARY: Let P be a countable, nuclear G.-set. ¢ € ®. Then

A (Q, ®)) = [A(¢, P, ®)]:.

As an immediate consequence of Proposition 4.6 in [7] we finally
get

2.6 PROPOSITION: Let P be a stable, countable, monotone, nuclear
G.-set; ¢ ED. Let E be a l.c.s. Then the following statements are
equivalent.

(i) E is A(¢, P, ©)-nuclear.
(ii) E is A(Q, ®)-nuclear.
(iii) E is isomorphic to a subspace of a suitable I-fold product

[A(Q, )]

3. On A(¢, P, N)-nuclearity

In this section we study the concepts of A(¢, P, N)-nuclearity,
¢ € @, and A (P, N)-nuclearity, P a countable, monotone G.-set. As in
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the case of A(¢, P,«)-nuclearity we obtain that both concepts are
closely related. The main result in this section is that whenever P is a
countable, monotone, stable, nuclear G.-set A(P,») is a universal
generator for the variety of A(P,N)-nuclear spaces. For A(P,x)=
A-(a), a a stable exponent sequence, this result has been established
in [8].

Let P ={{p.}.: i=1, 2, 3,...} be a countable, monotone G.-set.
Fix k €N. We define the sequence space A(P, k) by

AP, k) :={{&}: Zlelpr <o)

It is obvious that A(P,k+1)CA(P,k) and A(P, )= N A(P, k). For
¢ €E @ define A($, P, k) by A(¢, P, k):={{&}.: {#(|& )} EA(P, K)}.

3.1 DerINITION: Let P be a countable, monotone, nuclear G.-set,
¢ € P. Alcs. E is said to be
@) X(d),P,k)-nuclear if for each U € U(E) there exists a V&
U (E) such that {5.(V, U)}. € A(¢, P, k);
(i) A(¢, P,N)-nuclear if E is A(¢, P, k)-nuclear for each k =k,
where {1/pk}. € I, because of the nuclearity of A(P, ).

For ¢ = id we write A (P, k)-nuclear resp. A (P, N)-nuclear instead of
A(id, P, K)-nuclear resp. A(id, P, N)-nuclear.

If « is an exponent sequence and if P = {{k*"}.: k EN}, then a L.c.s.
E is A(P,N)-nuclear iff E is An(a)-nuclear, i.e. A.(a)-nuclear for each
k > 1. So we indeed generalize the concept of Ax(a)-nuclearity con-
sidered in [8].

As in section 2 we now show that the concepts of A(¢, P,N)-
nuclearity and A (Q, N)-nuclearity are the same if Q is suitably chosen.

3.2 PROPOSITION: Let P be a countable, monotone, nuclear G.-set,
¢ € ®@. Define {q.:}. by 1/qi:=¢"" (1/p)) and Q :={{q.i}.}. Let Ebe a
l.c.s. Then the following statements are equivalent.

(i) E is A(¢, P,N)-nuclear.

(i) E is A(Q, N)-nuclear.

ProoF: Note that E is A(¢, P,N)-nuclear (resp. A(Q, N)-nuclear)
will follow if E is shown to be A(¢,P,k)-nuclear (resp. A(Q, k)-
nuclear) for each k = ko, ko as in 3.1. Therefore we will show (1) given
k = ko there exists | €N such that A(¢, P,1+1)CA(Q, k); (2) given
r = ro there exists s €N such that A(Q, s + 1) C A(¢, P, r). Given k, by
nuclearity of A(Q,») (Lemma 2.2) there exists [ EN such that
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{angi} €L If x ={&}. €EA(, P,1+1) then ¢(|&pi =<1 for n=n,
and therefore =, |&|qn = Zn |€|qnqa/qs < . On the other hand given r,
by nuclearity of A(P,«), find s EN such that {p;/p:}. €1,. So if
x ={&} €A(Q,s +1) we have |&|=<1/q; for n=n, and therefore
. d(&Dpr =2 d(|&])prprlps < ; this shows (1) and (2).

To prove (i) > (ii) fix k=k,, find | EN such that A(¢, P, +1)C
X(Q, k). Since E is A(¢, P, N)-nuclear, E is A(¢, P, | + 1)-nuclear and
therefore A(Q, N)-nuclear. The implication (ii) = (i) can be proved in
the same way.

REMARK: It is easily seen that for ¢ € @ A(¢, P, N)-nuclearity
implies ¢-nuclearity [9]. But the reverse of this implication is not true
in general as the following example shows.

Take ¢ = ¢ie; consider the power series space A(a) with
a.:=(n+17° We show that A.(a) is ¢e-nuclear but not
Ao, R,N)-nuclear if R:={n+1)}:k=1,2,...}. The e
nuclearity of A.(«) immediately folows from Korollar 3.6 in [9]. But
A(a) is A(dg, R, N)-nuclear if and only if there exists M > 1 such
that {p(1/M*)}, €EA(R, k) for each k [8]. Therefore A.(a) is
A(Piog, R, N )-nuclear if and only if for each k=k, the sum
S.(n+ 1) a,logM =32, (n+1)/log M is finite which obviously is
not true.

In order to answer the question what the model of a universal
A(¢, P,N)-nuclear space is, it is enough to describe the model of a
universal A(Q, N)-nuclear space; so from now on P is always sup-
posed to be a countable, monotone, nuclear G-set.

Since A(P,N)-nuclearity implies nuclearity one easily obtains fol-
lowing permanence properties.

3.3 ProrosITION: Subspaces, quotient spaces by closed subspaces,
and completions of A(P,N)-nuclear spaces are A(P,N)-nuclear.

3.4 LEmMA: For each k€N there exists rEN such that
{(n + D&} € AP, k) whenever {£,}, EALP, r+1).

ProofF: Fix k €N. Since A (P, ») is nuclear there exists [ €N such
that {p./p.}. € l.. Therefore for each n €N (pi/po)+- -+ (pilpr) =
M and n+1=<p.M/ps=: M,p}. This implies

pn <o,

Zm+Dlglpr =M X lpips =M. X |é.

3.5 LEmMA: Let H,, H, be Hilbert spaces and T € L(H,, H,). Then
() given k, T is A(P, k)-nuclear if T is of type A(P, k);
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(i) given k, there exists r so that T is of type A(P,k) if T is
):(P, r + 1)-nuclear.

Proor: (i): We recall that for a compact operator T € L(H,, H,) T
has a representation Tx =23, A.(x, e.)f. for suitable orthonormal
sequences {e.}, {f.} in H, resp. H,; also A, = 8,(TUx,, Usw,) = s:7°(T).

(ii) Fix k. Lemma 3.4 guarantees the existence of r €N such that
{(n+ D&Y EAP, k) if {&). EAP,r+1). Now let T be A(P,r+1)-
nuclear, then T has a representation Tx =3, y.(X, @x)Yn, {Yu}n €
AP, r+1), |la.|| =yl =1, a. € H, y. € H5. Since s;*(T) < Zi_,. i, we
have

2 s (T)px

Pﬁ;’)’i:;é‘)’ip:

n=0

i=0 i=0

3.6 PROPOSITION: Let P be a countable, monotone, stable, nuclear
G.-set. Then countable direct sums of A(P,N)-nuclear spaces are
A(P,N)-nuclear.

Proor: We only indicate a partial proof and refer the reader to [1,
Theorem 2.8] for the rest of the proof.

In E = @, E: a typical fundamental system of neighbourhoods of
0 is of the form U = I'((U:);) where each U is an absolutely convex,
closed, and absorbing neighbourhood of 0 in Ex and I" represents the
closed convex hull of the union. Stability of A(P,~) now gives a
single valued, increasing map y: N—N such that vy(j)>j and pi.=
0(p2?®). Then

(1) p¥-iam-1 =< phm= M ;p»® for each j, k, m where y' :=y oy

- o y (j-times)

(2) p;’*‘(zm—l) = P;’*‘(zm—l) = MPL,U) for each k = ]

Define B: N->NXN by B7'(j, m):=2""'(2m —1); B is a bijection and
B(®) = (Bi(n), Bx(m)). ]

We have to show that E = @; E; is A(P, k)-nuclear for each k = ko.
Fix k, assume i <k. Using the fact that E: is A(P, N)-nuclear and
therefore nuclear for each neighbourhood U € AU(E:;)) we find a
neighbourhood W: € AU (E;) so that the canonical map K:: (Ei)w,—
(E))u, is represented by

K(x)= 3 £h(x, anhyh

where {&n}n EAP, Y (k)+1), |lan]=1, |ly=]|=1; then we have
S0 Emp i <. Now pick t; >0 so that 2, -otiémp i < 1/2'M... For
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i =k we get a representation
Ki(x:)) = 2:0 EnX, Q)Y m

where {£n}. EAP, ¥ ()+1), |las|=1, |yx]|=1; then we have
S0 EmpPi® <, Pick t; >0 so that 35,_, t:£,.pn® < 1/2'M.. We then get

2 ool G613 =i 2 t1&x|Pa-tm
= 2 mf; |€npP1amn
D RTTTRNENS ) ST
S 2 blenMapi®+ 3 S tlehlMpr”
= i 27 <o,

-
I

Thus we have shown that {ts.,&m} € A(P, k). As in the proof of
Theorem 2.8 in [1], we now can show that E is A(P, k)-nuclear and
since this can be done for each k = ko, E is A(P, N)-nuclear.

3.7 COROLLARY: Arbitrary products of A(P,N)-nuclear spaces
again are A(P,N)-nuclear whenever P is a countable, monotone,
stable, nuclear G.-set.

3.8 PRrRoOPOSITION: Let P be a countable, monotone, nuclear G--set.
Then A(P,x) is A(P,N)-nuclear.

Prookr: Since A(P,«) is a nuclear G.-space, there exists a p' € P
such that {1/p.}€l.. Given k, r EN, there exists a p' € P such that
p'p“<p'; we also find a p* €EP so that p‘’p’ <p°. We then have

2 pwpilpr =M pilpa =M 2 (pap)(ipa) = Mo 2 1/ps <=,

s0 A(P, ©) is A(P, k)-nuclear for each k.
Our next result shows that A (P, «) is a universal generator for the
variety of A(P,N)-nuclear spaces if P is stable.

3.9 PROPOSITION: Let P be a countable, monotone, stable, nuclear
G.-set; then each A (P,N)-nuclear space E is isomorphic to a subspace
of [A(P, ) for a suitable I.
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Proor: Let k €N be fixed. By stability let y: N—>N be a single
valued, increasing function such that y(j) > j and pi.= 0(p;?). Write
k := y*(k). Since E is A(P,N)-nuclear we have p* € A(E), and there
exists an absolutely convex, closed, and absorbing neighbourhood
U € U(E) so that E{» (U° is the polar of U) is a Hilbert space; now
by Proposition IV.1 of [12] there exists an orthonormal basis {e5). in
E{r so that the set

A= {20 &prel: X l& = 1}
is equicontinuous in E’. Rearrange the set {ef:k,n=1,2,...}
into a single sequence by using the bijection map B: N >N XN
with B7'(k,n):=2"'(2n —1); use the Gram-Schmidt process to
obtain a new orthonormal basis {e,) for Eye. We then have
€ = Znmmt (€m, €)ek and therefore

2 Nem eDPI@R = 2 I(em e /(P

n=m/2 =m/2

Since piw=MpL® =MprX and since without loss of generality we

may assume M, =1, we get

2 e el I@nzy = 2 |(em e 1pn) < 1p1Y
and therefore pre € A

So we have shown that there exists an orthonormal basis {e.} of
E/, such that {pxe.: m =1, 2,...}is equicontinuous in E/,, for each
fixed k.

Let U = (U:: i €I) be a base of neighbourhoods of 0 in E so that
each U, is absolutely convex, closed, and absorbing and E/{r is a
Hilbert space. For each i €I we can get an orthonormal basis {e,.:
m =1, 2,...} of El0 such that the sets B, :={pre.: m=1,2,...}are
equicontinuous for each fixed k; for each i €I, define the map T::
E—>A(P,») by Tix :={x,emn)}m; T: goes into A(P,») and is con-
tinuous. Define T: E —[A(P,®)]" by Tx:={Tix}. Then T is con-
tinuous and one-to-one. With obvious changes, the rest of the proof is
exactly the same as of Proposition 3.4 in [8].

In [2], Fenske and Schock consider the class  of all l.c.s. E such
that the set o of all strictly positive, non-decreasing sequences of
reals is contained in A(E). They prove {2 to be a stability class of
nuclear spaces and therefore closed under the operations of forming
completions, subspaces, quotients by closed subspaces, arbitrary
products, countable direct sums, tensor products, and isomorphic
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images; more precisely they show 2 = N ecs Ny Where N, denotes the
class of ¢-nuclear spaces. The following proposition extends this
result.

3.10 PropPOSITION: Let P be a countable, monotone, stable, nuclear
G.-set. Then = ﬂd,ecp ./V).(.j,,}),N).

PROOF: Let E be a l.c.s. in Nyco Nuwrn, then E € Nyco Ny If &
denotes the set of all continuous, strictly increasing, subadditive
functions ¢ with ¢(0)=0, then obviously Nyco No = Nyes Ny
Therefore Nyece Nawrn C 2. Now fix E in 2, then o C A(E). Take
k EN, ¢ € @, then {1/¢ '(1/p%)} € w, so given U € U(E) one may find
Vi € U(E) such that 6.(V., U)/¢'(1/p%) =0 for n > «. For n = n, we
then have ¢(8.(Vi, U))pr =<1, and E is A(¢, P,N)-nuclear for each
b ED.
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