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FOUNDATIONS OF THE THEORY OF FANO SCHEMES
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COMPOSITIO MATHEMATICA, Vol. 34, Fasc. 1, 1977,
Noordhofl International Publishing
Printed in the Netherlands

The family of lines on a cubic hypersurface with a finite number of
singularities was studied by Fano for what it says about the hypersur-
face [FI; 1904] and for its own sake [F2; 1904]. The family is now
named after him. Recently the study has been taken up again. Bombieri
and Swinnerton-Dyer [B, S-D; 1967] were especially interested in
verifying the Weil conjectures for a smooth cubic threefold. Clemens
and Griffiths [C, G; 1972] established the irrationality of the cubic
threefold over the complex numbers (which Fano claimed to have
done); Murre [Mr 2; 1973] did this in characteristic different from 2.
Clemens and Griffiths [C, G; 1972] also proved a Torelli theorem for
the cubic threefold; Tjurin [Tj 2; 1971] did too, following an earlier
suggestion of Griffiths [Gr; 1970]. Below some basic properties and
invariants of Fano schemes are properly treated using schemes.
The chief results for the case of a base field are presented in section

1. Most of these are proved in greater generality than before, notably,
in arbitrary characteristic (except for one minor failure (1.16, (iii)) in
characteristic 3) and for hypersurfaces with singularities. The proofs
are not ad hoc, but applications of general principles, and the methods
might apply to other problems. Often the proofs in section 1 refer

ahead to more general results in later sections.
Let F denote the Fano scheme of lines on a cubic hypersurface X

over a field. The first main result (1.3) is that F is the scheme of zeroes
of a regular section of the locally free sheaf SYM3 (Q), where Q is the
universal quotient bundle on the ambient grassmannian. This result
yields a formula for the dualizing sheaf of F and a formula for the class
of F in the Chow ring of the grassmannian. Then Schubert calculus
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work and the National Science Foundation for partial financial support under NSF P
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yields the degree of F, the genus of a 1-dimensional linear section, and,
if X is a threefold, it yields the (weighted) number 6 of lines through a
general point. The idea of expressing the family of lines on a quartic
hypersurface as the zeroes of a regular section of Sym4 ( Q ) and the
idea of using Schubert calculus appear (independently) in Tennison’s
article [Tn; 1974].
The second major result (1.10) is in two parts. Part (i) asserts that F

is smooth at a point if and only if X is smooth along the corresponding
line. The proof given below, using the universal family of Fano
schemes, is an abstract version of one communicated privately by
Lipman [Lp; 1974]. Part (ii), the so-called tangent bundle theorem,
asserts that the sheaf of differentials on the smooth locus of F is the

restriction of the universal quotient Q, if X is a threefold. This result is
obtained by a simple direct computation made possible by a trick,
(2.10) with s = 3 and t = 2, which turns certain short exact sequences
into others. The result was earlier obtained using more roundabout
means by Tjurin [Tj 1; 1970] and independently by Clemens and
Griffiths [C, G; 1972]. Lieberman [Lb; 1973] inspired the work by
pointing out that the tangent bundle theorem is one of the key
ingredients, which, when combined with the general theory of the
intermediate jacobian, yields the irrationality of the smooth cubic
threefold.

Assume dim (X) a 3. The third major result (1.16) asserts that F is
geometrically connected, that F is linearly normal in the Plücker
embedding (that is, it lies in no hyperplane and the linear system of
hyperplanes is complete) and that, at least if the characteristic is not 3,
every quadric hypersurface containing F contains the grassmannian.
This result follows from a study of the cohomology groups H’(F, 0,(n»
for n = 0, 1, 2. For example, h’(F, 0,) = 1 is proved, whence F is
geometrically connected. When X is a cubic threefold, and so F is a
surface, these cohomology groups also yield the values of the various
classical invariants of F (see (1.21) and (1.23)).

Section 2 contains miscellaneous general facts needed elsewhere.
Some of them are more or less well-known, but there are no convenient
references. Section 3 discusses the universal family W/H of degree d
hypersurfaces, the universal family P(Q)/G of r-planes, and the

universal family Z/H of Fano schemes of r-planes on degree d

hypersurfaces. Some of the assertions are up-to-date, finer versions of
familiar facts; others are new results. Section 4 discusses the smooth-
ness of the families W/H and Z/H, and it computes the relative
differentials of the smooth locus of Z /H for r = 1 and d = 3, obtaining
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a generalized version (4.4) of the tangent bundle theorem. The context
of both sections 3 and 4 is set over an arbitrary locally noetherian base
(the hypothesis "locally noetherian" can be eliminated in the usual way
if desired). Section 5 discusses the elementary but lengthy computa-
tions of the cohomology groups of the sheaf E(n) = (Sym3 (Q)V)(n) for
n = 0, 1, 2. The results are used in section 1 to study the cohomology
groups H’(F, 0,(n) via the Koszul resolution A "E - OF ~ 0 of the
regular section whose scheme of zeroes is F.

Blanket notation. Fix a locally noetherian base scheme S and a locally
free Os-Module V with rank (m + 1) for fixed m &#x3E; 3. Set

denote the fundamental sequence on G. Regard G as embedded in
P(A (m+l) V) by the Plücker embedding (see [EGA 1], 9.8.1), and note the
formula,

The scheme H parametrizes degree d hypersurfaces (see (3.1, (i))). Let

denote the universal family of degree d hypersurfaces. Let

denote the scheme which parametrizes pairs (X, L) where X is a

degree d hypersurface and L is an r-plane contained in X (see (3.3,
(i))). The subscheme Z is an example of an incidence correspondence.
Below, Z/H is usually thought of as the universal family of Fano
schemes.
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1. Some basic properties and invariants of Fano schemes

(1.0) NOTATION: In this section take

where k is a field. Let X be a cubic hypersurface with only finitely
many singularities (nonsmooth points) in the projective m-space over
S. Exclude the case that X is a surface (i.e., m = 3) with a triple point
(except in ( 1.5)).

(1.1) DEFINITION: The Fano scheme F of X is the S-scheme

parametrizing the lines of P which lie entirely in X.

(1.2) REMARK: Suppose X is a cubic threefold in 4-space (i.e.,
m = 4). Then the Fano scheme F of X is a surface by (1.3), and it is
reduced if X has no triple points by ( 1.19a). This surface was studied
by G. Fano ([FI], [F2]).

(1.3) THEOREM: The Fano scheme F of X exists and is equal to the
subscheme Za (s ) of G of zeroes of a regular section s of the locally free
0,,-Module Sym3 (Q ). (See (2.2) for a definition of a scheme of zeroes.)
Moreover, each component has dimension 2(m - 3).

PROOF: Clearly F is equal to the fiber of Z/H over the point x of H
corresponding to X. Note k(x) = k holds because X is an S-scheme.
Hence the assertions will all follow from the equivalence of (a), (b) and
(c’) of (3.3, (iv)) once F is proved nonempty with dimensions 2(m -
3).
By (5.1) the dimension h °(F, 0,) is equal to 1, and so F is nonempty.

Alternately, by (1.6, (ü)) the degree of F is positive, and so F is

nonempty.
Let £ denote the set of points t of F such that the corresponding

line of X@k(l) contains a nonsmooth point of X@k(l). Then (F - 1 )
is smooth with dimension 2(m - 3) by (4.2), if it is nonempty. Moreover,
the dimension of £ is less than or equal to 2(m - 3) by (1.5). Therefore
F has dimension z5 2(m - 3), and the proof is complete.

(1.4) COROLLARY: The Fano scheme F is locally a complete intersec -
tion with pure dimension 2(m - 3). Its normal sheaf is given by the
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formula,

PROOF: The assertions follow immediately from (1.3) and (2.5).

(1.5) LEMMA: Let! denote the set of points t of F such that the
corresponding line of X(Dk(t) contains a nonsmooth point of
X@k(t).

(i) Assume X has a triple point x. Then X is a cone over a smooth cubic
hypersurface Xi in Pkm-l) and 1 has dimension (m - 2).

(ii) Assume X has no triple point. Then either X is smooth or £ has
dimension (m - 3).

PROOF: We may assume that the ground field k is algebraically
closed.

(i) Take an affine space lAme P with x as origin and take C = 0 as
the equation defining X in A-. Then, since x is a triple point and X is a
cubic, C is a homogeneous cubic polynomial. Let Xi denote the
hypersurface in the pm-l at infinity defined by the equation C = 0. Then
X is obviously equal to the cone over Xi, and Xi is smooth because X
has only finitely many singularities.
By the theory of cones (see [J], (C 11)) there is an injective map from

Xi to F sending a point xi to the generator through x 1. Clearly every
line through x is a generator. Now, x is clearly the only singularity of
X. Hence the family of generators consists of all lines through a
nonsmooth point of X. Therefore the image of this map is equal to X.
Since the dimension of Xi is equal to (m - 2), the dimension of £ is

also equal to (m - 2).
(ii) Let x be a double point of X. Then the cone Tx in P of tangent

lines to X at x is a quadric hypersurface. It will now be proved that
Tx f1 X is a cone with vertex x over a scheme Yx with dimension

(m - 3) (cf. [FI], §4, p. 602 and [C, G], p. 306). Clearly any line on X

passing through x lies in Tx. On the other hand, let y be a point of
Tx fl X and let t be the line through x and y. Since the intersection

multiplicity of t and X at x is at least 3, clearly e must lie in X by
Bézout’s theorem. So, each point of Tx fl X lies on a line in X through
x. Hence Tx fl X is a cone. The dimension of the base Yx is obviously
equal to (m - 3).
By the theory of cones, there is an injective map,
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Hence there is a formula,

Let {x 1, ..., x,, 1 be the singular set of X. Since X has no triple point
and since X is a cubic, each xi is a double point of X. Now, Z is equal
to U 1£,,i (Y,,i). Hence the dimension of £ is equal to (m - 3).

(1.6) PROPOSITION: (i) The class of F in the Chow ring A (G) is given
by the formula,

(ii) The degree of F is given by the formula,

PROOF: (i) Since F is equal to the subscheme of G of zeroes of a
regular section of Sym3 ( Q ) by (1.3), the class of F in A (G ) is equal to
c4(Sym3 (Q)) by ([Ch], 18 bis p. 153). So (2.14) yields (i).

(ii) The Chern classes ci(Q) and c,(Q) are equal to 03C31= (m - 2, m )
and (m - 2, m - 1) (see the proof of Proposition 5.6, [Kt 1].) So using
Pieri’s formula ([Kt 2], p. 18) and Giambelli’s (determinantal) formula
([Kt 2], p. 18) yields the formulas,

where U2 = (m - 3, m ) and where the last two terms (resp. the last term)
in the third line are zero for m = 3 (resp. m = 4). The formula for the
degree of a Schubert cycle ([Kt 2], p. 20) now yields the result.

(1.7) PROPOSITION: Assume X is a cubic threefold and the ground
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field k is algebraically closed. Then the number of lines, counted with
appropriate multiplicity, passing through a general point of X is equal
to 6. The 6 lines are distinct if the characteristic is different from 2,
from 3, and from 5, or if the characteristic is different from 2 and from
3 and F is irreducible (e.g., X smooth by (1.12) and (1.16, (i))).

PROOF: The class in A (G) of the Schubert variety of lines which
meet a given line is 03C32 = (1, 4). Thus, by (1.6, (i)), the number of lines in
X which meet a general line in 4-space is equal to

By Pieri’s formula and Giambelli’s formula, this number is equal to 18.
Let p, g denote the two projections from the product P x G, let L be

a general line in P, and consider the following subvarieties of P x G :

Let C1, ..., Cn denote the irreducible components of C. Then o,2 is

given by the formula,

This formula yields

Equating the two values of (ce(F) - U2) yields

In particular, since one of the degrees [k(Ci):k(X)] is therefore

nonzero, the restriction p’: C --&#x3E; X is surjective.
There is an open set U of X such that each fiber (p’)-1(x), for x E U,

is finite by ([EGA IV3], 13.1.4), and U is nonempty because it contains
the generic point 03BE of X since both C and X have dimension 3 and p’ is
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surjective. Now, by ([EGA IV2], 4.5.10), the fiber (p)-’(e) has

geometric components; hence, by ([EGA IV3], 9.7.8), there is a

nonempty open set U’ of X such that the fiber (p ’)-l(X) over each point
x of U’ has t geometric points. However, the number of geometric
points of (p ’)-l(X) is clearly equal to the number of distinct lines

passing through x. Therefore the number of lines, counted with

multiplicity, passing through a point x of U’ is equal to 6.
The multiplicity of a line represented by a point of ci fl (p ’)-l(X) is

equal to the degree of inseparability [k (Cj): k (X)li. Hence the multip-
licity is equal to 1 if the characteristic is different from 2, 3, and 5
because 2, 3 and 5 are the only primes dividing a summand of 6. The
multiplicity is equal to 1 also if the characteristic is different from 2 and
3 and F is irreducible because then C = P(Q IF) is irreducible too and 2
and 3 are the only primes dividing 6.

(1.8) PROPOSITION: The dualizing sheaf of Fis given by the formula,

PROOF: There are formulas,

(1.9) COROLLARY: The dualizing sheaf of a linear space section F’ of
F of codimension p is given by the formula,

If F’ is a curve, its genus is given by the formula,

(see (1.6, (ii)) for the value of deg (F)).
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PROOF: There are formulas,

Consequently there are formulas,

(1.10) THEOREM: (i) Let e be a point of F, and let L denote the
corresponding line on X@k(l). Then éis a smooth point of F if and
only if L lies entirely in the smooth locus of X@k(l).

(ii) (The Tangent Bundle Theorem). Assume X is a threefold in
4-space (i.e., m = 4), and let FO denote the smooth locus of F. Then
there is a canonical isomorphism,

PROOF: (i) By (1.3), F has dimension 2(m - 3) at t. Hence the

assertion results from (4.2).
(ii) The assertion results immediately from (4.4) by restriction to the

fiber.

(1.11) COROLLARY: The nonsmooth locus of F is equal to the set X of
points t E F such that the corresponding line on X@k(t) passes
through a nonsmooth point of X@k(l).

(1.12) COROLLARY: Assume X is smooth. Then its Fano scheme F is
smooth.

(1.13) COROLLARY: Assume X is a smooth cubic surface (in 3-

space) and the ground field k is algebraically closed. Then X contains

precisely 27 distinct lines.

PROOF: The Fano scheme F is smooth by (1.2), it has dimension 0 by
(1.3), and it has degree 27 by (1.6). Hence it consists of 27 distinct

points.
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(1.14) LEMMA: Recall E = Symd (Q)v. For each integer n, there is a

spectral sequence,

PROOF: Since F is equal to the subscheme of G of zeroes of a
regular section of Sym3 (Q) by (1.3), the Koszul complex Kp =

(ll -p B)(n) of the section is a resolution of 0,(n). Taking an injective
Cartan-Eilenberg resolution and proceeding in the usual way yields the
asserted spectral sequence.

(1.15) PROPOSITION: (i) For dim (X) = 3, there are formulas (valid in
any characteristic ),

(ii) For dim(X)&#x3E;3, the canonical map,

is bijective for n = 0, 1, and if char (k) # 3, it is injective for n = 2.

PROOF: By (1.14), there is a spectral sequence,

By (5.1) all the Ef,q-terms are zero except for those represented by the
black spots in the above figure, and the latter have the appropriate
ranks. Clearly the spectral sequence degenerates and yields assertions
(i) and (ii) for n = 0. The proofs for n = 1 and n = 2 are similar.

(1.16) THEOREM: Assume dim (X) - 3 holds.

(i) F is geometrically connected.
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(ii) F is linearly normal in the Plücker embedding ; that is, no

hyperplane contains F and the linear system of hyperplane
sections of F is complete.

(iii) Every quadric hypersurface containing F contains G, at least in
characteristic different from 3.

PROOF: Assertion (iii) follows directly from (1.15, (ii» for n = 2. The
map,

is bijective for n = 0, 1 (cf. proof of Prop. 13, p. 8, [Lk]). Hence in view
of (1.15, (ii», the map,

is bijective for n = 0, 1. The bijectivity for n = 0 implies h°(F, 0,) is
equal to 1, and so F is geometrically connected. The bijectivity for
n = 1 is equivalent to (ii).

(1.17) REMARK (Fano [F2], p. 79): There is a cubic hypersurface
containing F but not containing G. Recall that the set of lines that meet
a subvariety X’ of P with codim (X’, P ) = 2 and with deg (X’) = d is a
section G’ of G by a hypersurface with degree d. In our case, take X’
to be a hyperplane section of X. Clearly X’ has codimension 2 and
degree 3. Moreover, every line in X meets X’ because every line in P
meets every hyperplane. Thus G’ is a cubic hypersurface section of G
that contains F.

(1.18) REMARK: For a cubic threefold X, the dualizing sheaf úJp of F
is equal to OF ( 1 ) by (1.8). So, by duality ([GD], I, 1.3, p. 5), there are
formulas,

These are clearly consistent with (1.15, (1)).

(1.19) PROPOSITION: Assume either:
(a) m = 4 (resp. m = 5) holds and X has no triple point ; or
(b) m &#x3E; 5 (resp. m ? 6) holds.

Then F is geometrically reduced (resp. geometrically normal and

geometrically irreducible ).
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PROOF: We may assume k is algebraically closed. Both (a) and (b)
imply that the codimension of the singular locus of F is at least one
(resp. two) by (1.3), by (1.11), and by (1.5). Thus F satisfies condition
Ro (resp. Ri). Since F is locally a complete intersection by (1.4), it also
satisfies condition S1 (resp. S2). Thus F is reduced by ([EGA IV,],
5.8.5) (resp. normal by ([EGA IV2], 5.8.6)). Finally a normal connected
scheme is obviously irreducible.

(1.20) REMARK: (i) Suppose dim (X) = 3. If X has a triple point, then
the Fano surface F is not reduced because the nonsmooth locus

Sing (F) is 2-dimensional by (1.11) and (1.5, (i)). If F is normal, then it
is smooth because the dimension of Sing (F) cannot be zero by (1.5)
and (1.11).

(ii) If m &#x3E; 5 holds, then the smooth locus F° of F is connected by
([EGA IV2], 5.10.7) because F is connected by (1.16, (i)) and locally a
complete intersection by (1.4). Hence F° is irreducible. Moreover, F° is
dense in F because F is geometrically reduced by (1.19). Hence F is
irreducible. (If m &#x3E; 6 holds, this provides an alternate proof to that in
(1.19).) If m = 4 holds and X has 5 or fewer double points, then Fano
shows F is irreducible ([FI], p. 603), and he shows F is not necessarily
irreducible if it has 6 double points ([FI], §6, p. 605). Clemens and
Griffiths show that if X has one ordinary double point, then F is

irreducible ([C, G], p. 315, [It is an algebro-geometric proof]).

(1.21) PROPOSITION: Assume X is a cubic threefold. Then F is a
surface with geometric genus pg = 10, with irregularity q = 5, and with
arithmetic genus Pa = 5. Moreover, the Hilbert polynomial is given by
the formula,

PROOF: The first assertion follows immediately from (1.3) and (1.15,
(i)); for pg is equal to h 2(F, 0,), and q is equal to h 1(F, OF), and pa is
equal to pg - q. Now, X(F, OF (n)) has the form,

So, formula (1.21.1) results straightforwardly from (1.15, (i)).

(1.22) REMARK: Since the degree of F is equal to the coefficient of

(n+l) in the Hilbert polynomial, Proposition (1.21) yields an alternate
derivation of the formula deg (F) = 45.
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(1.23) PROPOSITION: Assume X is a smooth threefold. Then F is a
smooth, geometrically irreducible surface, and its topological Euler
characteristic E (F) is equal to 27.

PROOF: By (1.12), F is smooth; by (1.16, (i)), geometrically irreduci-
ble ; by (1.3), a surface. Now, there are formulas,

(1.24) REMARK: Assume X is a smooth cubic threefold. An alternate
derivation of X(OF) = 6 comes from Noether’s formula,

a special case of the Riemann-Roch Theorem. Indeed, by (1.10, (ii)),
there is a formula T, = QV. Now, Cl(Q)2 is equal to the degree of F, so
to 45 by (1.6) and c2(Tp) is equal to 27 by the proof of (1.23).
The Riemann-Roch formula now yields

This result agrees with (1.21). This derivation requires X to be smooth

(for Noether’s formula but not for the Riemann-Roch formula);
however, it does not require the lengthy computations of §5.
Another derivation of the Hilbert polynomial of F was found by

Libgober [Lr; 1973].

2. Miscellany

(2.1) LEMMA: Let p : Y ---&#x3E; S be a morphism of schemes and let

u : p *E - F be an Oy-homomorphism.
(i) For each base change g : T - S, the triangle,
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is commutative where b is the base change map. In short, adjunction
commutes with base change up to the base change map.

(ii) Set u(F) = (id,(,*F»". For each base change g : T --&#x3E; S, the square,

is commutative where b is the base change map. In short, the formation
of u commutes with base change up to the base change map.

PROOF: The assertions are easy consequences of the definition of b

([EGA 1], 9.3.1) and of the three formulas (see [EGA OI], 3.5.3, 3.5.4,
and 3.5.5) for the adjoint of a composition. In fact, (ii) follows from (i)
with u = o-(F) and from ([EGA OI], 3.5.4.2). (Note that in ([EGA OI],
3.5.3) the maps v and w refer to maps,

where G and H are sheaves on X and that the map v in (3.5.3.4) should
be replaced by w.)

(2.2) DEFINITION: Let p : Y - S be a morphism of schemes, and let
u :A---&#x3E; B be an 0,-homomorphism of Oy-Modules. A closed sub-
scheme of S is called the scheme of zeroes of u if it has the universal
property that a map g : T --&#x3E; S factors through it if and only if

uT = g*(u) is equal to zero. If it exists, the scheme of zeroes is denoted
Zs(u).

(2.3) PROPOSITION: Let p : Y - ,S be a morphism of schemes, and let
u : p *E -&#x3E; F be an Oy-homomorphism. Assume that E is quasi-
coherent and that p *F is locally free and its formation commutes with
base change. Then the scheme Zs(U) of zeroes of u exists and it is equalto the scheme Zs (uh) of zeroes of the adjoint uh : E ---&#x3E; p *F.
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PROOF: By ([EGA 1], 9.7.9.1), there exists a scheme of zeroes

Zs(uh). By (2.1), it is equal to Zs(u).

(2.4) DEFINITION (see [EGA IV4], 16.1.2): Let Y be a closed

subscheme of a scheme S and denote by

its Ideal. The conormal sheaf of Y in S is the OY-Module defined by
the formula,

The normal sheaf of Y in S is the dual Oy-Module and is defined by
the formula,

(2.5) LEMMA: Let E be a locally free Os-Module, let u be a section of
E, and consider the scheme Y = Zs (u) of zeroes of u. Assume u is

regular. Then there is a canonical isomorphism

PROOF: By construction (see [EGA I], 9.7.9.1), the Ideal I of Y is
equal to the image of the map,

Since s is regular, (1/12) is a locally free OY-Module whose rank is
equal to the rank of E (see [EGA IV4], 16.9.2). Hence SV induces an

isomorphism from E vI y to (1112), and the assertion holds.

(2.6) LEMMA: Let

be an exact sequence of quasi-coherent Os-Modules. Set

(i) The image of the composition
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is equal to the Ideal of Y’ in Y, where a denotes the fundamental
surjection.

(ii) If u is injective and if B and C are locally free, then Y’ is equal to
the scheme of zeroes ZY(s ) of a regular section s of A rtl) and there is a
formula for the conormal sheaf,

PROOF: (i) Applying tilde to the natural exact sequence,

yields an exact sequence,

by ([J], Al.2) and ([EGA II], 3.5.2, (i)). Hence Im (v ) is equal to the
Ideal of Y’ in Y. Since v factors through B[- l]@Sym (B), clearly b is
equal to the composition (2.6.1).

(ii) It follows from (i) that Y’ is equal to the scheme of zeroes ZY(s)
where s is equal to the image of 1 under the dual of the com-

position (2.6.1).
Since Y is flat over S, we may replace S by the spectrum of a field to

verify that s is regular by ([EGA IV3], 11.3.8). Now Y is Cohen-

Macaulay because it is smooth over a field. Since codim (Y’, Y) is
equal to the rank of A, the section s is regular by ([EGA OivL 16.5.6).
An alternate proof that s is regular may be based on the fact that the
sections of B defining Y’ come from indeterminates in the homogene-
ous coordinate (polynomial) ring of Y.

(2.7) PROPOSITION: There are formulas,

PROOF: One proof, due to Porteous ([P], Prop. 0.2, p. 292), runs
briefly as follows. The tangent bundle of G/S is equal to the normal
bundle N(L1, G xsG) of the diagonal by ([EGA IV4], 16.3.1). Let P1,
p2 : G xs G - G denote the projections. Then the diagonal is clearly
equal to the subscheme of zeroes of the composition, p tm - VGxG ~
P*2Q, so to the zeroes of a global section Hom(p*Mp*Q). This
section is clearly regular. Hence N(~, G x G) is equal to Hom (M, Q)
by (2.5).
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A second proof can be based on the deformation theory of quotient
Modules ([SGA 3], p. 127), and a third can use the second fundamental
form ([Gr 1], (2.19), p. 199 or [GD], 1, 3.1, p. 11). A fourth is virtually
given in the course of proving (4.2) (see especially the middle isomorph-
ism in (4.2.1) and (4.2.5)).

(2.8) LEMMA: Let p : P ---&#x3E; S denote the structure map, and let K
denote the kernel of the fundamental surjection a r: Vp - Op (1). For
m &#x3E; 1, the only nonzero sheaves of the form R ip *K (n) are indicated by
the darkened portions of the following figure :

Moreover, each sheaf R ip *K (n) is locally free, and the Euler charac-
teristic is given by

PROOF: For each integer n, there is an exact sequence,

The associated long exact sequence of derived functors R ip * and
Serre’s explicit computation yield the assertions. (Note that the maps
p * V (n ) ~ p * Op (n) are surjective because the compositions,

are surjective for n &#x3E; 0.)

(2.9) LEMMA: Let 0 ---&#x3E; A - B ---&#x3E; C ---&#x3E; 0 be an exact sequence of locally
free Os-Modules, with A invertible. Then the following natural sequence
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is exact for n - 0:

PROOF: The exactness is local, so we may assume B = A ~ C holds.
The assertion follows from the following formula (see [EGA 1], 9.4.4, p.
371):

(2.10) LEMMA: Let 0 - N - B - L - 0 be an exact sequence of
locally free Os-Modules, with L invertible. For each pair of positive
integers (s, t), there is an exact sequence,

PROOF: For each positive integer p, there is an exact sequence (see
[SGA 6], V, Lemma 2.2.1, p. 315),

Tensoring these sequences with appropriate powers of L and piecing
the results together yield the required exact sequence.

(2.11) PROPOSITION: For each integer n &#x3E; 0, there is an exact

sequence,

PROOF (Kempf [K], p. 8): Applying (2.10) with s = t = (m + 1) to the
fundamental exact sequence on P and tensoring the result with Op (n )
yield the following exact sequence (the Koszul complex of

By Serre’s explicit computation there is a formula,

where p : P --&#x3E; S denotes the structure map. So, the spectral sequence
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of hyperdirect images of the complex (2.11.2) degenerates and yields
the complex (2.11.1). So, (2.11.1) is exact because (2.11.2) is so.

(2.12) LEMMA: Let R be a locally free Os-Module with rank 2. Then
there is a formula,

PROOF: By ([SGA 6], X, 6.2.3, p. 554), there are an integer t
(independent of R ) and a formula,

To determine t, we may take R =A@B with A and B invertible.
Then, since the symmetric algebra of a sum is equal to the tensor
product of the symmetric algebras, there is a formula,

Hence t is equal to n (n + 1)/2.

(2.13) LEMMA (Svanes [S]): For any locally free Os-Module R with
rank s, there is a functorial map,

and it is an isomorphism for t = 3 and s = 2 if 3 is invertible in Os.

PROOF: The natural pairing,

yields an isomorphism,

because R is locally free with a finite rank. Define the map (2.13.1) as
the composition,

where the middle map is (2.13.2) and the two end maps come from the
natural surjection from the tensor product to the symmetric product.
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To show that (2.13.1) is an isomorphism, we may assume S is afline
and L is free. Let (u, v ) be a basis of L and (û, v ) the dual basis of LV.
Then (u 3, u2v, uv2, v3) is a basis of Sym3 (L). It is easy to see that
(2.13.1) carries the dual basis (û3, u2v, uvB U3) to the set (û3, 3ù2 ig, 3uv2,
v 3). So, if 3 is invertible, then (2.13.1) is an isomorphism.

(2.14) LEMMA: Let R be a locally free Os-Module with rank 2 and
assume S admits a theory of Chern classes. Then there are formulas,

PROOF: By the splitting principle, we may assume R is equal to
A (f)B with A and B invertible. Then the formula for the symmetric
product of a sum yields the relation,

by additivity. So the linearity of c 1(-) yields this formula,

It is easy to verify the formula,

for indeterminates X, Y. So combining the formulas,

with those above yields the assertion.

(2.15) LEMMA: Let p : A - B be a projective morphism of locally
noetherian schemes.

(i) Let F be a coherent OA-Module that is flat over B. Then there exist
a coherent OB-Module Q (F) and an element q (F) E HO(A, F@Q(F))
such that the Yoneda map and the induced map of sheaves,
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are isomorphisms for each quasi-coherent OB-Module M. The pair
(Q(F), q(F)) is f unctorial in F and determined up to a unique
isomorphism, and its formation commutes with base change. Moreover,
if H1(A(b), F@k(b)) is equal to zero for each point b of B, then Q (F)
is locally free and there is a canonical functorial isomorphism,

(ii) Let I, J be coherent OA-Modules and assume J is flat over B. Then
there exists a coherent OB-Module H(I, J) and an element h (I, J) E
Hom (I, J@H(I, J)) such that the Yoneda map and the induced map of
sheaves,

are isomorphisms for each quasi-coherent OB-Module M. The pair
(H,(I, J), h (I, J)) is functorial in I and J and determined up to a unique
isomorphism, and its formation commutes with base change. Moreover,
if I is locally free, then there is a canonical functorial isomorphism,

PROOF: Almost all the assertions are discussed in ([ASDS], (12), (13),
(14)) and are virtually proved in ([EGA III2], 7.5.5, 7.7.6, 7.7.8,
and 7.7.9).

(2.16) PROPOSITION: Let A be a projective S-scheme, set D =

Hilb(,,,,,), and let

denote the universal subscheme of A I S. Then there is a canonical

isomorphism,

and h = h (N( Y, A x D), Oy) is the unique map fitting into the follow -
ing natural commutative diagram :



24

PROOF: This is a rephrasing of the usual infinitesimal theory of the
Hilbert scheme (see [FGA], 221-22, 23, or [SGA 3], p. 130, or [A], p.
62).

(2.17) THEOREM: Let A be a projective S-scheme, set D = Hilb(AIS)
and let Y C A x D denote the universal subscheme of A /S. Let B be a
closed subscheme of A, and set F = Hilb(,,,/s).

(i) F is a closed subscheme of D, and C = Y xD F is the universal
subscheme of B/S. Moreover, Fis equal to the scheme of zeroes ZD(v),
where

denotes the natural map.

(ii) There is a natural commutative diagram with exact rows and
canonical isomorphisms in the middle and on the right,

PROOF: The bottom row is exact by ([EGA IV4], 16.4.21) and the two
canonical isomorphisms exist by (2.16) (note that the top middle term is
equal to H(N(Y, A x D), OY)IF because H(-, -) commutes with base
change and because of the defining formula C = Y xDF). The exis-
tence of the top row and its exactness follow from the usual exact

sequence of normal sheaves ([EGA IV4], 16.2.7) and abstract nonsense.

Alternately, the exactness of the top row will follow from the exact-
ness of the bottom once the commutativity is established. Set

Let w: H(I, Oy) ~ OD denote the map corresponding under the
Yoneda map to the natural map, v : I ---&#x3E; Oy. Then Im (w) defines a
closed subscheme F’ of D, and there is a commutative diagram with
exact rows,
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Let g : T ---&#x3E; D be a morphism of schemes. The following four
statements are equivalent (the parenthetical comments indicate why a
statement and the one before it are equivalent):

(1) g factors through F’;
(2) The map, wT : H(I, Oy)T - OT, is equal to zero (in view of the

exactness of the top row in (2.17.2)) ;
(3) The map v, : IT ---&#x3E; OYT is equal to zero (because the formation of

(H(I, Oy), h (I, Ou)) commutes with base change);
(4) The family YT / T is contained in B x T / T. Therefore, F’ is equal

to F = Hilb(BIS) and to Z,,(v), and C is equal to the universal
subscheme of B/S; that is, (i) holds.

There are formulas,

The first results from the commutativity of (H (I, Oy), h (I, OY)) with
base change; the second results from the relation C = Y xDF and from
the canonical isomorphism,

for each Op-Module M. So w’, which is the left hand vertical map in

(2.17.2), induces, by restriction to F, a surjection,

This is the map that fits into the left hand square of diagram (2.17.1).
We now prove that square is commutative.

To show that the two maps in

are equal is equivalent to showing that their images in

under the Yoneda map are equal. Now, one image is defined as the
composition at the bottom of the natural diagram,
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The right hand square is commutative because it is the restriction over
F of (2.16.1). The left hand square is obviously commutative.
The other image is defined as the composition at the bottom of the

natural diagram,

where v’:I ~I(F, D)@Oy is the image of w’ under the Yoneda map
and v " is the image of w " under the Yoneda map. Since the formation
of (H(I, Oy), h (I, OY)) commutes with base change, v’IF is equal to
the image of w’IF under the Yoneda map, and so the left hand square is
commutative in view of the way w’ induces w". The right hand square
is obviously commutative.

In each diagram the composition at the top followed by the right
right hand vertical map is equal to [Oc@(dDIF)] 0 (v IF). Hence since
the two diagrams are commutative and since the left hand vertical map
in each is surjective, the two images are equal.
A similar but easier argument shows the right hand square of (2.17.1)

is commutative.

3. Schemes of r-planes

(3.1) PROPOSITION: (i) There is a universal flat family W 1 H of
hypersurfaces of P with degree d.

(ii) Let f : P --&#x3E; S denote the structure map, and for each base change
g : T - S, let

denote the base change map. Let

denote the fundamental surjection and set

There is a canonical exact sequence on PH = P xsH,
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(iii) W is a divisor on PH, its associated invertible sheaf is equal to
OH(I)@Op(d), and there is a formula for the conormal sheaf,

PROOF: The formation of s from a commutes with an arbitrary base
change T ----&#x3E; H; that is, there is a formula,

The formula results from (2.1, (i)) with s for u because of the way the
base change maps are compatible with composition ([BC], (6.5), p. 35).
Moreover, b T is an isomorphism for each T by Serre’s explicit
computation.

Consequently, the restriction of s to each fiber of PH/H is nonzero
as the restriction of a is nonzero. So the restriction of s is injective
because each fiber is integral. Hence, since P is flat over S, the map s is
injective and coker(s) is flat over H by ([EGA IV3], 11.3.8).

Define W so that the sequence (3.1.1 ) is right exact. Then, in view of
the above, W is flat over H and (3.1.1) is exact. Obviously W is a
family of hypersurfaces with degree d.

Let W’ I T be any flat family of hypersurfaces of P with degree d.
Then its ideal 1 (W’ , PT) is isomorphic to Op (- dT) on the fibers of
PT / T. Hence there are an invertible OT-Module L and an isomorphism
([M 2], p. 54),

The inclusion of 1 (W’ , PT) in 0,, gives rise to an injection,

and thence to the composite map,

Clearly (s’)6 is nonzero on each fiber of PT/T. Hence (b T)-l 0 (s’)b is
also. Therefore, by ([EGA OI], 5.5.4), (b T)-l 0 (s’)b is left invertible and
so its dual is surjective. Therefore, by ([EGA II], 4.2.3), there is a

unique S-morphism T - H with a T = (b T)-l . (s’)6 . So s’ is equal to sT
by formula (3.1.2). Hence W’ is equal to the pullback of W to T. Thus
W is the universal flat family of hypersurfaces with degree d.
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(3.2) PROPOSITION: (i) The grassmannian G parametrizes the r-

planes of P, and P(Q) C P x G is the universal flat family of r-planes.
(ii) There is a canonical isomorphism,

PROOF: (i) Obviously P(Q) is flat over G and is a family of r-planes
of P.

Let Y/ T be a flat family of r-planes of P. Let R denote the direct

image of OY(l) on T. By Serre’s explicit computation, H1(Y(t), Oy(t)(I»
is equal to zero for each point t of T. Hence R is locally free with
rank (r + 1) and its formation commutes with base change ([M 1], 3°
Lecture 7, pp. 50-53).

Consider the following canonical map and its adjoint:

Fix t E T. By (2.1, (i)), the map u (t)b factors as follows:

Now, u(t)6 is surjective because Y(t ) is an r-plane of P~k(t) by
hypothesis. Hence (ub )(t) is surjective. Therefore, by Nakayama’s
lemma, uh is surjective.

With 03C3 = (idR)#, there is a natural commutative diagram (see [EGA
01], 3.5.4.2),

There is a corresponding commutative diagram of schemes (see [EGA
II], 3.7.1 and 2.8.4),
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where 0(u) denotes the composition of Proj (u ) with the projection
PT x Y ---&#x3E; PT.

Let t be a point of T. Set 03C3’ = (idR,)# with R’ the direct image of
OY(t)(I). Then by (2.1, (ii)) there is a formula,

where b is the base change map for Oy 1). So, there is a commutative
diagram (see [EGA II], 2.8.4),

By ([EGA II], 4.2.3), the map 0 (u’) is an isomorphism. So since 0(03C3(t))
is equal to 0 (u)(t) (see [EGA II], 3.5.3), the map 6(u )(t) is an

isomorphism.
By ([EGA II], 3.7.1), the map 0(u) is equal to the given closed

embedding of Y in PT. Hence 0 (03C3) is an embedding (see [EGA 1],
5.1.8). The formation of the Ideal I(Y, P(R)) commutes with base
change because Y is flat over T. Each of its fibers is equal to zero
because each fiber of 0(u) is an isomorphism. Hence the ideal itself is
equal to zero by Nakayama’s lemma. Thus Y is equal to P(R).

Finally, let Ta G be the map defined by ub. Then QT is equal to R
and so P(Q)T is equal to Y. Thus P(Q) is the universal flat family of

r-planes.
(ii) A subscheme of a projective space is an r-plane if and only if its

Hilbert polynomial is equal to cp. Hence, by (i), G also parametrizes the
subschemes with Hilbert polynomial cp.

(3.3) THEOREM : (i) The pairs consisting of a flat family of hypersur-
faces with degree d and a flat family of r-planes contained in it, both

parametrized by the same S-scheme T, are the T-points of a closed
subscheme Z of H x G.

(ii) There is a canonical isomorphism of G-schemes,

where K is defined by the following exact sequence on G :
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(iii) Z is the scheme of zeroes of a regular section of the locally free
sheaf Symd (Q)@OH(I) on H x G, and there is a formula for the
conormal sheaf,

(iv) Let e be a point of Z, and F the fiber of Z/H through t. The
following conditions are equivalent :

(a) Z/H is flat at e.
(b) F is the scheme of ,zeroes of a section of Symd (Q(x)), which is

regular at t, where x is the image of e in H.
(c) dime

(c’) dim,

PROOF: Let Y be a flat family of hypersurfaces with degree d, and
a flat family of r-planes, both parametrized by the same S-scheme T.
Then t is contained in Y if and only if the composition,

is equal to zero. By (3.1, (i)) and (3.2), there is a map T ---&#x3E; H x G such

that Y = WT and l = P(Q)T hold. Hence, by (3.1, (ii)), the twist of
(3.3.2) by 0,,(d) is equal to the pullback of the composition,

Therefore the sought scheme Z is equal to the scheme of zeroes
ZHxa (u). The latter exists by (2.3) because, by Serre’s explicit compu-
tation, the direct image SYMD (Q) of 0,(Q)(d) is locally free and its
formation commutes with base change. Thus, (i) holds.

By (2.3) as well, Z is equal to ZH XG (u6) . By the formula for the
adjoint of a composition ([EGA OI], 3.5.3.2) and by (3.1.2), ub is

canonically isomorphic to the following composition (the two base
change maps involved are isomorphisms by Serre’s explicit computa-
tion) :

Hence, by construction (see [EGA 1], 9.7.9.1), the Ideal of Z is equal to
the image of the composition,
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Apply (2.6) to the sequence dual to (3.3.1). First (2.6, (i)) yields that
P(K’) has the same Ideal as Z, and so these schemes are equal, as
asserted in (ii). Next, (2.6, (ii)) yields (iii).

Statements (a) and (b) of (iv) are equivalent by ([EGA IV3], 11.3.8).
Statements (b), (c) and (c’) are equivalent by ([EGA 01,], 16.5.6)
because of the formulas,

(3.4) REMARK: It is easy to generalize (3.3) to the case of r-planes
contained in several hypersurfaces of various degrees.

4. Infinitesimal theory

(4.1) LEMMA: Set Y = Ps, let p : Y - S denote the structure map, and
let s be a point of S. Let

be an Op-homomorphism. If p *(u) is surjective at s, then u is surjective
along p -’(s) for j &#x3E; 0, and the converse holds for r = 1 and j3.

PROOF: Consider the commutative diagram,

The right hand vertical map is surjective (see [EGA II], 4.1.6 for the
case j = 1, the general case is similar). Therefore, if p *(u ) is surjective
at s, then u is surjective at each point of p -1(s).
To prove the converse, we may replace S by an infinite extension

field k of k(s). Indeed, p*(u@k) is equal to p*(u)@k because the
formation of p *Oy(i) commutes with base change by Serre’s explicit
computation. Hence, if p*(u@k) is surjective, p *(u ) is also surjective
by Nakayama’s lemma.
The map u (-1) : 0 Y’"--&#x3E; Oy(j - 1) is defined by n global sections of

Oy(j - 1). Since u is surjective, they have no common zero. Therefore,
since the set of zeroes of each section is finite, because r = 1 holds, and
since k is infinite, taking a general linear combination yields a pair of
sections with no common zero. So, we may assume n = 2 holds.
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yields the formula,

Assume j :5 3 holds. Then by Serre’s explicit computation, R lp *K is
equal to zero. Hence p *(u ) is surjective.

(4.2) THEOREM: Let F be a fiber of Z/H, and let X be the fiber of W/H
over the same point of H. Let é be a point of F, and let L be the
corresponding r-plane on X@k(l). For d = 1, 2, or 3 and r = 1, if
X@k(l) is smooth along L, then W/H is smooth along the image of L
and Z/H is smooth at é with relative dimension (r + 1)(m - 1) - (d+rr).
Conversely, for any d ? 1 and r &#x3E; 1, if F is smooth at l with dimension
(r + 1)(m - 1) - (d r, then Z/H is smooth at é and X@k(l) is smooth
along L.

PROOF: Recall (3.2) that G is equal to Hilb(Pls) for ç (n ) = (r+n) and
P(Q) is the universal flat family of r-planes of P/S. So, since Hilb
commutes with base change, G x H is equal to Hilb(PXHIH) and Y =

P(Qjj) is the universal fiat family of r-planes of P x H/H. Let f : Y -
G x H denote the structure map.

Apply (2.17) with H f or S, with P x H for A, and with W for B. By
(2.17, (i)) the scheme Z is equal to Hilb(WIH) and C =P(Qz) is the

universal fiat family of r-planes. By (2.17, (ii)) there is a natural

commutative diagram with exact rows,

There are formulas for the restriction of the conormal sheaf,

by the fiatness

of W/H



33

Hence there are canonical isomorphisms,

Similarly, there are canonical isomorphisms,

Hence, as above, there are canonical isomorphisms,

By (4.2.3) and by (3.3, (iii)), the source and target of the left hand
vertical map in (4.2.1) are isomorphic locally free sheaves. Since the
map is surjective, it is therefore an isomorphism.
The following eleven statements are equivalent for all r &#x3E; 1 and

d &#x3E; 1, except that the implication (5):~ (4) holds only for r = 1 and
d = 1, 2 or 3. The equivalence of (0), (1), (9) and (10) yields the
assertions. The parenthetical comments indicate why a statement and
the one before it are equivalent.

(0) F is smooth at t with dimension (r + 1)(m - 1) - (d+r).
(1) Z/H is smooth at e (3.3, (iv) and [EGA IV4], 17.8.2).
(2) The bottom left hand map of (4.2.1) is left invertible at e [EGA

IV4], 17.12.1). 
(3) The natural map,

is left invertible at e ((4.2.1), where the left hand vertical map is an

isomorphism, (4.2.3) and (4.2.5)). 

invertible along f-l( l) (both terms are locally free by (4.2.2) and
(4.2.4)).
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(7) The composition,

(9) W/H is smooth along the image of L (because f-l( l) = L
obviously holds).

(10) Xok(,e) is smooth along L ([EGA IV4], 17.8.2 because W/H is
flat).

(4.3) COROLLARY (of the proof): Let U denote the smooth locus of
Z/H. Set C = P(QZ) and let f : C ---&#x3E; Z denote the structure map. There is

a canonical left-exact sequence,

and it is exact on f-l( U). Moreover there is a formula,

PROOF: Sequence (4.3.1) is simply the usual left-exact sequence of
conormal sheaves ([EGA IV4], 16.2.7) with the second and third terms
identified by (4.2.4) and (4.2.2). Sequence (4.3.1) is exact on f-l( U) by
the implication (1) ~ (5) of the proof of (4.2). Finally, formula (4.3.2)
follows formally from the right hand vertical isomorphism in diagram
(4.2.1) and from (2.15, (ii)) with M = Oz.

(4.4) THEOREM (generalized Tangent Bundle Theorem): Assume W
is the universal family of cubic threefolds (i.e., d = 3 and m = 4). Let U
denote the smooth locus of Z/H. Then there is a canonical

isomorphism,

PROOF: By (4.3), the sequence (4.3.1) is exact on f-l( U). Applying
(2.10) with s = 3 and t = 2 yields an exact sequence on f-1( U),

computation, applying f * and R If * to the middle term yields 0. Hence,
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the long exact sequence of derived images associated to (4.4.1) yields a
canonical isomorphism,

yields a canonical isomorphism,

Combining (4.4.3), (4.4.2) and (4.3.2) yields the assertion.

5. Cohomological study

In this section, take S to be the spectrum of a field k, and take r = 1
and d = 3. Recall,

The object is to prove the following theorem, which summarizes the
results in Propositions (5.8)-(5.13).

(5.1) THEOREM: For n = 0, 1, 2 and m &#x3E; 4, the dimensions

h’(AjE(n» of the only nonzero vector spaces of the form
Hi(G,(AjE)(n» are the following : for m = 4,

except that in characteristic 3 for all m &#x3E; 4 both h l(E (2» and h °(E(2))
may be nonzero.
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(5.2) SETUP: Let F denote the incidence correspondence subscheme
of P x G that parametrizes the pairs consisting of a point and a line
through it. The subscheme F exists because it is a flag scheme ([EGA
1], 9.9.3).

fundamental sheaves for q and p

fundamental sequences

It is easy to establish the two canonical isomorphisms involving F in
figure 1. It is easy to establish a canonical isomorphism,

and the existence of the following commutative diagram with exact
rows and columns,

(One proves Ker (a1#(Q )) = N and Vr/Ker (a1#(K )) = q*Q.) Note for
future référence the formula,

(5.3) LEMMA: The dualizing sheaves are given by the following
formulas :
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PROOF: By (2.7), there are formulas,

In view of (5.2.1), the third formula yields the following one:

The formula for the determinant of a tensor product and the
additivity of the determinant yield formulas,

Since FIP is smooth, the sequence

is exact (EGA IV4, 17.2.3). So there are formulas,

Finally, since 03A9topA/B is equal to WAIB when A/B is smooth ([RD], p.
140), the assertion holds.

(5.4) LEMMA: There are formulas,

PROOF: The first formula follows immediately from (2.12). Now, by
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the duality of the exterior algebra, there is a formula,

Since A 2Q is equal toOG(l), the second formula now follows from the
first.

(5.5) LEMMA: For each integer j, there are exact sequences,

PROOF: These two sequences result from (2.10) applied to the

fundamental short exact sequence on P (see fig. 1).

(5.6) LEMMA: For m ? 3, there are formulas,

PROOF: The exact sequence,

with j = 0 and with j = - 3 yields the formulas,

in view of (2.8).
The exact sequences, (5.5.1) with j = 0 and (5.5.2) with j = -3 yield

the formulas,

in view of Serre’s explicit computation.
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Finally consider the exact sequence,

obtained from (2.11). With j = 0, it yields (5.6.1), and with j = - 3 it

yields (5.6.2).

(5.7) LEMMA: There are formulas,

PROOF: By (5.2.1) there is a canonical isomorphism,

So Serre’s explicit computation for R’p *NS implies that the Leray
spectral sequence,

degenerates and yields the formula (5.7.1). The formula (5.7.2) follows
similarly because of the formulas,

(5.8) PROPOSITION: There are formulas,
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PROOF: For arbitrary n &#x3E; 0, Laksov [Lk] has verified the formulas,

ALTERNATE PROOF: Formulas (5.7) yield the formulas,

So the cases n = 0 and n = 1 follow from Serre’s explicit computation
and from (2.8). The case n = 2 is similar but more involved.

(5.9) PROPOSITION: For n = 0, 1, 2 and for m - 4, the dimensions
h’(A4E(n)) of the only nonzero vector spaces of the form
H’(G,(A4E)(n)) are the following: h8(A4E)=1 for m = 5; and

h6(A 4E) = 10 and h6(A 4E(1)) = 1 for m = 4.

PROOF: There are canonical isomorphisms,

The last term is equal to zero for 5 &#x3E; n &#x3E; 7 - m by (5.7.1). The
assertions now result from (5.7.1), from Serre’s explicit calculation,
from (2.8) and from (5.6).

(5.10) PROPOSITION: For n = 0, 1, 2 and for m - 4, the dimension
h’(A3E(n)) of the only nonzero vector space of the form
H’(G, (A 3B)(n» is given by the formula,

PROOF: By (5.4.2), there is a canonical isomorphism,

Therefore there are formulas,
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PROOF: By Serre’s explicit computation, the spectral sequence,

degenerates and yields canonical isomorphisms,

for any locally free sheaf L with a finite rank.
There are canonical isomorphisms,

For each n, the bottom sequence in (5.2.2) yields the exact sequ-
ences,

By (5.7.1), all the end terms have zero cohomology for n = 0, 1, 2

except R-4 and N-’OR -2 . However, it is easy to see that these terms
have zero cohomology as well using duality on f, (5.7.1), and Serre’s
explicit computation. These formulas follow:

By (2.9) applied to the bottom sequence in (5.2.2.), there is an exact
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sequence,

Applying (2. lo) and tensoring with N(n-4)@R (n-4) yield the exact

sequence,

For n = 0, 1, 2, the end terms have zero cohomology by (5.11.3) and by
(5.7.1), Serre’s explicit computation, and (2.8). This formula follows:

Tensoring (5.11.5) with N(n-5)@R(n-3) yields the exact sequence,

The left end terms have zero cohomology by (5.11.4). So there is a
formula,

By (2.9) applied to the bottom sequence of (5.2.2), there is an exact
sequence,

Applying (2.10) and tensoring with j 
sequence,

yields the exact

Therefore, (5.11.2), (5.11.6), and (5.11.7) yield the formula,

By (5.7.1) the formula hi’(A2E(n))=0 for all i now holds if the

inequalities 4 &#x3E; n &#x3E; 6 - m hold. For n = 2 the assertion thus holds. For
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by duality and (5.3). The remaining assertions now follow from (5.7.1)
and Serre’s explicit computation.

(5.12) LEMMA: For n = 0, 1, 2 and for m &#x3E; 4, all vector spaces of the
form H‘ (G, E(n )) are equal to zero with the possible exceptions of
H‘ (G, E (2)) for i = 0, 1.

PROOF: Since R is the fundamental sheaf for FIG, there is a

canonical isomorphism,

by Serre’s explicit computation. So there are formulas,

Hence there are formulas,

for n = 0, 1, 2. The cases n = 0 and n = 1 now result from (2.8) and
from (5.6.2).
The proof of the case n = 2 proceeds in several steps.
(a) Applying (2.10) to the fundamental sequence on P yields these

exact sequences,

The first yields the formula,
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in view of Serre’s explicit computation. Tensoring the second with
K(- 1) yields the exact sequence,

The spectral sequence of cohomology and (2.8) yield the formula,

(b) Tensoring the fundamental exact sequence with K(n ) yields the
exact sequence,

By (2.8), it yields the formulas,

The exact sequence,

obtained by tensoring the fundamental exact sequence with

K@K(-2), now yields the formula,

The exact sequence,

obtained from (2.11), now yields the formula,
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(c) Consider the exact sequence,

obtained from (2.11). It yields a spectral sequence of cohomology
whose E1-terms are all zero except for H(P, A~K@K(-2)) and
possibly H‘ (P, KOSym2 (K)(- 2)) for i = 1, 2 and whose end terms are
zero. Since h ‘ (E (2)) is equal to hi+1(P, Sym3 (K )(- 2)) by (5.12.1), the
case n = 2 follows.

(5.13) PROPOSITION: Assume char (k) # 3 holds. Then there is a

formula,

PROOF: Since Q has rank 2, there is a canonical isomorphism,

because of the formula,

Moreover, N-1 is equal to the fundamental sheaf of P(Q’) because of
the formula (see (5.2.2)),

Therefore, there are formulas,

Since char (k) # 3 holds, Sym3 (QV) is isomorphic to E. Therefore there
are formulas,
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