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RESTRICTED SUBGROUPS OF WREATH
PRODUCTS OF GROUPS

C. H. Houghton

1. Introduction

Hartley [5] investigated the conjugacy classes of baseless subgroups
of wreath products of groups, that is, subgroups which intersect the
base group trivially. In [8], it was shown that his results are related to
the theory of ends. Here we consider the conjugacy classes of those
subgroups of a wreath product whose intersection with the base group
consists of functions with support of size less than some fixed infinite
cardinal.

The wreath product W = A Wr B of groups A and B may be taken
as the split extension by B of the left B-group F = A® of functions
from B to A, with x(fg) = (xf)(xg) and x(°f) = (xb)f, for f, g EF, x,
b € B. Thus W consists of all pairs fb, with fEF, b € B, and
(fb)(gc) = (f°g)bc,for f,g € F and b, ¢ € B ; we shall assume through-
out that A and B are non-trivial. Let o (f) denote the support of f € F.
For an infinite cardinal «, we define F. to consist of those f € F such
that |o(f)] < « and we put W, = BF, = W. When « = &,, F, consists
of the functions with finite support and W, is the restricted wreath
product A wr B of A and B.

A subgroup L of W will be called a-restricted if L N F < F, ; in the
case @ = X,, we simply say that L is restricted. Clearly all subgroups
of W, are a-restricted and the question we consider is when an
a-restricted subgroup L of W is conjugate in W to a subgroup of W..

We define the B-image of a subgroup L of W to be the image of L
under the natural map from W to B. Our first result shows that if the
B-image C of an a-restricted subgroup L is sufficiently small, then L
is conjugate to a subgroup of W,. Let 8 be the least cardinal such that «
is the sum of B cardinals each < a.
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THEOREM (A): If a > Ry and |C| = Borifa = R, and C is countable
and locally finite, then all a-restricted subgroups of W = A Wr B with
B-image C are conjugate in W to subgroups of W..

The remaining results are concerned with the case a = X, and are
related to work of Farrell [3, 4] and Bieri [1]. We show that if C has a
normal finitely presented infinite subgroup N of infinite index, then, in
most cases, the problem reduces to finding the number of ends of N
and C/N. We summarise these results, using e¢(G) to denote the
number of ends of the group G.

THEOREM (B): Every restricted subgroup of W =A Wr B with
B-image C is conjugate to a subgroup of A wr B if C has a finitely
generated free subgroup of finite index or C has a finitely presented
normal subgroup N of infinite index such that either e(N)=1, or
e(N)=2 and e(C/N)=1, or e(N) =, ¢e(C/N)=1 and C is finitely
generated. There exist restricted subgroups with B-image C which are
not conjugate to subgroups of A wr B if C has a finitely presented
normal subgroup N with e(N)> 1 and e(C/N)> 1. For a polycyclic by
finite group C, every restricted subgroup with B-image C is conjugate to
a subgroup of A wr B if and only if C has Hirsch number 2.

If A® denotes the B-group of functions from B to A with finite
support, then A wr B is the split extension of A‘® by B. The previous
results imply the following theorem.

THEOREM (C): Let A be any non-trivial group. All extensions of A®
by B split if B is countable and locally finite or is finitely generated free
by finite. If B is polycyclic by finite, all extensions of A“® by B split if
and only if B has Hirsch number different from 2.

We make use of the theory of groupoids, details of which may be
found in Higgins [6]. Our definition of the wreath product has been
chosen to correspond to the natural multiplication in the covering
groupoid associated with a permutation representation of a given
group.

2. The general case
Suppose C acts as a group of permutations of a set X. The

associated covering groupoid of C is the set X X C with vertex set X
and multiplication (x, ¢)(xc,d)=(x,cd) for x € X, c,d € C. A map 6
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from X X C to a group A will be called an almost homomorphism if,
for each pair ¢, d € C, (x, ¢)0(xc, d)6 = (x, cd)#, for almost all x € X
that is, the exceptions form a set of cardinal less than «. All
homomorphisms are almost homomorphisms; in particular, this applies
to the trivial map. The almost homomorphisms 6 and ¢ are defined to
be equivalent if there is a map y from X to A such that, for each
c €C,(x,c)d =(xy) ' (x, c)8(xcy), for almost all x € X. We note that
if 6 is any almost homomorphism and v is any map from X to A, then
the corresponding ¢ will be an almost homomorphism. Also, for any
almost homomorphism 6, we have (x, 1)§ = 1, for almost all x € X, and
so 6 is equivalent to an almost homomorphism ¢ such that (x, )¢ =1,
for all x € X.

Let W be the wreath product of A and C relative to the action of C
on X; that is, W consists of all pairs fc, with f in the group F of
functions from X to A and ¢ € C, and the multiplication is given by
(fc)(gd) = (f “g)cd, where x(°g) = (xc)g. As before, F, denotes the
subgroup of F consisting of those f such that |o(f)] < « and a subgroup
L of W is a-restrictedif L N F < F,. If f, g € F are congruent modulo
F, then they differ on a set of cardinal < a. We say f is almost equal to
g and write f =“g. We shall consider the case where C acts semiregu-
larly on X, that is, the stabiliser of each point is trivial and so the
representation can be thought of as a sum of regular representations.

TrHEOREM (1): Let C act semiregularly on the set X and let W be the
wreath product of A and C relative to X. The conjugacy classes of
a-restricted subgroups containing F, and having C as image under the
projection from W to C correspond bijectively to the equivalence classes
of almost homomorphisms from X X C to A.

Let W, = A Wr B be the standard wreath product of A and B and
suppose C is a subgroup of B. Every a-restricted subgroup of W, with
B-image C is conjugate to a subgroup of the a-restricted wreath
product W, of A and B if and only if all almost homomorphisms from
B X C to A are equivalent.

ProOOF: Given an almost homomorphism 6 from X X C to A, we
define f. € F, for each ¢ € C, by xf. =(x, ¢)6. For ¢,d € C, we have
x(fef)=(x,¢)0(xc,d)d and xf..=(x,cd)6 and so f.°fs=°f, Let
R = R(0) be the subgroup of W generated by all f.c, with ¢ € C, and
by F,. Now f.°f,F, =f..F, so (f.c)(fud)F. = f..cdF. and R =
{fec: ¢ €C}F,. Hence RN F=F, and R = R(0) is an a-restricted
subgroup of W. Suppose ¢ is an almost homomorphism equivalent to 6
and so, for each ¢ € C, (x,c)¢ = (xy) '(x,c)0(xc)y, for almost all
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x € X. Putting xh. =(x,c)¢, we have h. =°y~'f.°y and (h.c)F, =
(y~'(fec)y)Fa so

R(¢)={hc:c ECIF, =y {f.c:c EC}F.y =y"'R(8)y.

Suppose R is an a-restricted subgroup of W containing F, and
having image C under the projection map from W to C. If T is a
transversal of the cosets of F, in R, then T ={f.c:c €C} and
f-fa =° f.a. Defining (x, ¢)8 = xf. gives an almost homomorphism from
X %X C to A. We note that § depends on the choice of transversal as
well as on R. Suppose S is a subgroup of W conjugate to R. We shall
show that if ¢ is an almost homomorphism associated with S then ¢ is
equivalent to 8. For some fb € W, we have S = fbRb~'f' and

bRb~' = bTh"'F, = {*f.(bcb™"): ¢ € C}F, = {*f.d :d € C}F.,
where d = bcb™'. Putting e = b ',
bfc =abfedb =abfebefdbedfb —a bfefddfb-

Also £,°f. =“ 1,50 °f. =°f,'f.%f, and bRb ' = f,;'{f.d: d € C}f,F.. Thus
S = ff.'Rf.f . Putting g = f,.f ' and choosing a transversal U for F, in
S, we have U ={k.c: ¢ € C} with k. =“g 'f.“g. Taking (x, ¢)¢ = xk.,
we have, for each ¢ € C, (x,c)¢ = (xg) (x, ¢)0(xc)g, for almost all
x € X, and hence ¢ is equivalent to 6. Thus the conjugacy classes of
restricted subgroups containing F, correspond to the equivalence
classes of almost homomorphisms.

Suppose every almost homomorphism from B X C to A is equival-
ent to the trivial one and let R be an a-restricted subgroup of W, with
B-image C. Then RF, is contained in the wreath product W of A and C
with X = B and therefore RF, is conjugate to a subgroup of W, and so
also is R. Conversely, if 6 is an almost homomorphism from B X C to
A, then there is a corresponding «-restricted subgroup R of W
containing F,. Now B normalises W, so if R is conjugate to a
subgroup of W.,, we have R” = W, and hence R = W,, for some
f € F, b € B. Since R’ is in the conjugacy class of R in W, the first part
implies that 0 is equivalent to the trivial homomorphism.

We note that if the subgroup R above is baseless, thatis, RN F =1,
then f.°f, = f.4, for all ¢,d € C, and then the corresponding 6 is a
homomorphism. The next result shows that Theorem C is a consequ-
ence of Theorems A and B.

THEOREM (2): Let F, be the B-group of functions f from B to A with
lo(f)| < a and x (°f) = (xb)f, for all x, b € B. All extensions of F, by B
split if and only if all a-restricted subgroups of W = A Wr B which
contain F, and have B-image B are conjugate.
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PrOOF: Let K be an extension of F, by B and let p be the natural
map from K to B. For each b € B, we may choose bt € K such that
brp = b and (b7)k(b7)"' ="k, for all k € K. We define w:K > W by
kw = fikp, where f, € F and bfi = 1((b7)k((b - kp)7)™"), for b € B; we
note that the last expression is the value at 1 of some element of F,. If
m € K then

komo = f.**f..(km)p
and

b(f*fm) = 1(b7)k((b - kp)T)"'1((b - kp)T)m((b - kp - mp)7)™" = bfim.

Thus w is a homomorphism. If k€ F, then ko =f, with bf, =
1((bT)k(bT) ) = 1(°k) = bk, for all b €EB, so ko =k. Then o is in-
jective and K is isomorphic to a subgroup L of W with B-image B
and L N F = F,. We call such a subgroup a full a-restricted subgroup
of W and note that we have shown that any extension of F, by B is
isomorphic to one of these.

A full a-restricted subgroup L of W which is conjugate to W,, = BF,
is a split extension of F,. Suppose conversely that L splits as an
extension of F, by B. Then L has a subgroup M = {f,b: b € B}, with
f» € F, and M is baseless, that is, M N F = 1. From Lemma 3.2(i) of
(5], M is conjugate in W to B and so L is conjugate to W.. (This also
follows from Lemma 3 below, since the 6 corresponding to M is a
homomorphism.) Thus all extensions split if and only if all full
a-restricted subgroups are conjugate.

We now explain the relation between our work and that of Farrell
[3, 4] and Bieri [5]. For abelian A, all extensions of F, by B split if and
only if H*(B, F.) = 0. Suppose R is a commutative ring with identity, A
is a free R-module and @ = X,. Then the B-group F, of functions from
B to A with finite support is B-isomorphic to A®xzRB. Thus
H*(B, F.) is isomorphic to H*(B, A®x RB), which is the group studied
by Farrell and Bieri. Farrell considers the case where R is a field and
obtains results which are not included in the results proved here for
general A.

We now consider the classification of the equivalence classes of
almost homomorphisms from X X C to A, under the assumption that C
acts semiregularly on X.

LeEMMA (3): Suppose 0 is an almost homomorphism from X X C to A
and G is a subgroupoid of X X C. If the restriction of 6 to G is a
homomorphism, there exists y : X - A such that (x, ¢)0 = (xy) '(xc)y,
for (x, ¢) € G, and 0 is equivalent to an almost homomorphism trivial
on G.
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ProoF: Let U be a subset of X containing one vertex from each
connected component of G. Since C acts semiregularly, all vertex
groups of G are trivial and there is a unique element joining one vertex
to another in the same component of G. If x is a vertex of G then
x = ud for a unique (u,d) € G with u € U. For ¢ € C, with (x, ¢) € G,
we have (x,c¢)=(x,d " YWu,dc)=(u,d) '(u,dc), so (u,dc)E G and
(x,¢)0 =((u,d)8) '(u,dc)d. Taking xy =(u,d) gives (x,c)0=
(xy) '(xc)y, for (x, ¢) € G. Let xy be defined in this way for all vertices
of G and let xy=1 for all other x€X If (x,c)¢ =
(xy)(x, ¢)8((xc)y) "', then ¢ is an almost homomorphism equivalent to
6 and trivial on G.

If D is a subgroup of C, we shall refer to a connected component of
X X D as a D-sheet of X X C. Thus each D-sheet consists of all (xd, e),
with d, ¢ € D and x afixed vertex of X. We recall that 8 was defined as
the least cardinal such that « is the sum of B cardinals each < a.

LEMMA (4): Suppose |C|< B and 6 is an almost homomorphism
from X X Cto A. Then 0 is a homomorphism on almost all C-sheets of
X x C, that is, there exists a subset T of X with |T| < a, such that the
restriction of 6 to xC X C is a homomorphism for all x € X\TC.

Proor: For ¢,d € C, let X(c, d) be the set of all x € X such that
(x, ¢)0(xc, d)8 # (x, cd)d. Then | X(c, d)| < a and if T is the union of all
X(c,d), with ¢, d € C, then |T|< a. Clearly the restriction of 6 to
(X\TC)x C is a homomorphism.

Theorem 1 shows that the next result implies Theorem A.

THEOREM (5): Suppose a > X, and |C|=B or a =X, and C is
countable and locally finite. If C acts semiregularly on X, all almost
homomorphisms from X X C to A are equivalent.

Proor: Considering « as an ordinal which is not equivalent to any of
its predecessors, our assumption implies that we can express C as
Ui G, with C; = C; for i =j, C, = U, C; for A a limit ordinal, and
|C:| < B for all i. Let 8 be an almost homomorphism from X x C to A.
For x € X, let J(x) be the set of ordinals j < 8 such that the restriction
of @ to the Cj-sheet containing x is not a homomorphism. If J(x) is
non-empty, it has a first element j(x). For a limit ordinal A, if 9 is a
homomorphism on all Cj-sheets containing x with j <A, then 6 is a
homomorphism on the C,-sheet containing x. Thus j(x) is not a limit
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ordinal and hence has an immediate predecessor. So for each x € X
there is a maximal ordinal i such that 6 restricted to the C;-sheet
containing x is a homomorphism; if J(x) is empty, i = 8. Suppose y is
another element of X with corresponding maximal ordinal j. If the
maximal sheets containing x and y intersect, then xC; N yC;# @ so,
assuming [ < j, we have xC; = yC; and hence i =j. Thus X is par-
titioned into maximal subsets xC; such that  is a homomorphism on
the Ci-sheet with vertex set xC.. If G denotes the subgroupoid which is
the union of all these sheets, then 6 is a homomorphism on G. Let X,
be the set of all vertices of X not contained in a C;-sheet of G. From
Lemma 4, |X;| < a|Ci|= a. From Lemma 3, we can choose y so that
(x,¢)0 = (xy) '(xc)y, for (x,c)€G. Then for c€C, (x,¢)0=
(xy) '(xc)y for x € X\X; and hence for almost all x € X. So 0 is
equivalent to the trivial homomorphism.

3. Thecase a = X,

From now on we restrict our attention to the case a = X,. Although
some of the lemmas hold for a general cardinal, we can only make
significant deductions in this case. We begin by describing the results
we need from the theory of ends. For further details, see Cohen [2].

A subset S of a group G is almost invariant if Sg N (G\S) is finite,
for all g € G. The number of ends of G, denoted by e(G), is the
supremum of the number of parts in a partition of G into infinite almost
invariant subsets. Then ¢(G) =0, 1, 2, or =, with ¢(G) = 0 if and only if
G is finite and ¢(G) =2 if and only if G is infinite cyclic by finite.
Finitely generated groups G with ¢(G) =« have been characterised
and any countable locally finite group G has e(G)=. If G has an
ascendant subgroup which is not locally finite and has no non-abelian
free subgroups, then ¢(G) =1, unless G is infinite cyclic by finite.
Further results may be found in [2] and [9].

Let G act semiregularly on X and let § be a homomorphism from
X X G to A. We say 0 is almost trivial if, for each g € G, (x,g)0 =1,
for almost all x € X. Two such homomorphisms 8 and ¢ will be called
equivalent if, for some function f from X to A, almost equal to a
function constant on all xG, we have (x, g)¢ = (xf)"'(x, g)0(xg)f, for all
(x,2) € X X G. We note that this definition of equivalence is much
weaker than equivalence between almost homomorphisms. From
Lemma 3, there is a function & from X to A such that (x,g)8 =
(xh)'(xg)h, for all (x, g) € X X G. Since 0 is almost trivial, h =°*h, for
all g € G. Such a function h is said to be almost G-invariant and we
note that any such function defines an almost trivial homomorphism
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from X X G to A by putting (x, g)0 = (xh) '(xg)h = x(h~'*h). Then
each almost trivial homomorphism 6 is given by (x, g)8 = x(h ' %h), for
some almost invariant function h, and if (x, g)¢ = x(k~'*k), with k
almost invariant, then § and ¢ are equivalent if and only if k~'%k =
f'h7'*h *f, for some f almost equal to a function constant on all xG
and for all g €G.

For any function f from X to A, let {S;: i € I} be the decomposition
of X into constancy sets of f, that is, x, y € S; if and only if xf = yf.
Then f is almost invariant if and only if U;<;(Sig N (X\S))) is finite, for
all g € G. In the case where X = G and f is almost invariant, the sets S;
are almost invariant subsets of G. Detailed analysis gives the following
results.

LEMMA (6): Let G act semiregularly on X. If e(G) =0 or 1, every
almost invariant function from G to A is almost equal to a constant
function and every almost trivial homomorphism from X X G to A is
equivalent to the trivial homomorphism. If e(G)=2 and {S, T} is a
partition of G into infinite almost invariant subsets, then any almost
invariant function from G to A is almost equal to a function constant
on S and T. If e(G)== and G is finitely generated, for any almost
invariant function f from G to A, there is a finite partition {S,, . . ., S,} of
G into infinite almost invariant subsets such that f is almost equal to a
function constant on each S. If e(G)>1, the set Z of equivalence
classes of almost trivial homomorphisms from X X G to A contains a
subset bijective with the set A§'®’, consisting of the functions with finite
support from X |G to the set A, of conjugacy classes of A; if e(G) =2,
this subset is the whole of Z.

Proor: If ¢(G) =0, G is finite and the results are immediate. For
infinite G, the remarks about almost invariant functions follow from
Lemmas 4.3 and 4.4 of [7]. Translation of Theorem 3 of [8] from the
language of wreath products to that of groupoids, shows that, if
e(G) =1, every almost trivial homomorphism from X X G to A is
equivalent to the trivial homomorphism. Finally, we must consider the
set Z when e¢(G)> 1.

Let S be an infinite almost invariant subset of G such that T = G\S
is infinite and let U be a transversal of the orbits of X under G. For any
function k € A‘Y’ with support V, we can define an almost invariant
function h = h(k) from X to A by taking (vS)h = vk, for v € V, and
(X\VS)h =1. If m is conjugate to k in A‘”> and t = h(m), then for
some function f from X to A, constant on all xG, we have t = fhf ™"
For g €G, t 't =fh 'f *f*h*f ' = fh '*h*f ', and thus the homo-
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morphisms corresponding to h and ¢ are equivalent. Conversely, if
the homomorphisms corresponding to h and t are equivalent, there
are functions e, f from X to A, with f constant on all xG and e =“f,
such that ¢ 't = eh '*h%¢”', for g € G. Then

tfh ' ="teh 'f =2 (teh ) == (tfh '),

for all g €G, and so tfh'f' is constant on all xG. For u € U,
(wDitfh'f'=1,s0 tfh™'f'=1and t = fhf . Then m is conjugate to k
and so we have shown that Z has a subset bijective with A§™.

In the case where e(G) = 2, a standard argument (see Theorem 3 of
[8] or Lemma 2.3 of [2]) shows that any almost invariant function f
from X to A is constant on almost all uG, u € U. Let V be the finite set
consisting of the remaining u € U. Since f is almost invariant on each
vG, v € V, it is almost equal to a function d with (vS)d = a,, (vT)d =
b,, for v € V, and (uG)d = a,, for u € U\V. Then the almost trivial
homomorphism associated with f is equivalent to the almost
homomorphism ¢ associated with d and defined by (x,g)¢ =
(xd) '(xg)d. Now (x,g)¢ =1, for x € X\VG, and if x € vG with
vEV,(x,2)¢p=1for x Ev(SNSg HUv(TNTg™), (x,g)p =a,'b,
for x€v(SNTg™), and (x,g)¢ =b.'a, for xEv(T N Sg™"). Let
k€ A be given by vk =a,'b, and let h = h(k). Then (x,g)¢ =
(xh)'(xg)h and hence every almost trivial homomorphism is equiva-
lent to one associated with A§Y.

We now return to the analysis of almost homomorphisms.

LEMMA (7): Suppose N is a finitely presented subgroup of C and let 0
be an almost homomorphism from X X C to A. Then 6 is equivalent to
an almost homomorphism  trivial on almost all N-sheets of X X C. If
N is free, ¢ may be taken as trivial on all N-sheets.

PRrROOF: Let (P : Q) be a presentation of N with P and Q finite; if N
is free, let Q be empty. A relator r in Q is expressed asaword y, - - - y,
with y; € P U P~'. For almost all x € X,

=10 =(x, 91" ¥:)0 =(x, y)O(xy,, y2)0 - - - (Xy1* " * ¥s-1, ¥5)0,

and also, for p €P, 1 =(x,1)0 = (x, p)0((x, p) ")0. Now P and Q are
finite, so there is a finite subset V of X such that, if x € Y = X\VN,
an equation of the previous kind holds for all relators in Q and
xp,p™M0=(x,p) "0 =(x,p)0)", for pEP. If N is free then,
replacing 6 by an equivalent almost homomorphism, we may assume V
is empty.
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With y €Y and a word w =p, - - - p,, where p, EP UP™', we can
associate the product v(y, w) = (y, p1)0(yp1, P2)0 - - - (Y1 * * Pe—1, P:)0.
Now (x,p)0(xp,p N8 =1=(xp,p ")0(x,p)6, for x €Y, so deletion
from w or insertion in w of products pp~' or p~'p, with p € P, gives a
word w' with v(y, w') = v(y, w). Similarly, if w’ is obtained from w by
deleting a relator, then v(y, w') = v(y, w). Suppose n € N has two
expressions interms of PUP ', n=p,---p, =2z, - z, and let w be
the word p,- - p.z;'- -+ z7'. After deletion and insertion of products
pp 'and p~'p, we obtain a word u which is a product of conjugates of
relators and for which v(y, u) = v(y, w). Deleting the relators from u
gives a word m with v(y, m) = v(y, u) and the invariance of v under
deletion of products pp~' and p 'p implies that v(y, m)=1. Hence
v(y, w)=1and v(y,p:---p)=v(y,z:---2z). For y€Y and n €N,
with n =p,-- - p, we put (y,n)¢ =(y,p)8 - - - (yp:* - - pi-1, p.)0. This
gives a well defined map from Y XN to A, which is clearly a
homomorphism. We extend ¢ to a map from X X C by taking
(x,c)d = (x,c)0 for (x, c) outside Y X N. Now (x, p)¢ = (x, p)0 for all
p €EP UP " and all x € X. Suppose m,n € N and (x, m)¢ = (x, m)8,
(x,n)¢ =(x,n)6, for almost all x € X. Then, for almost all y €Y,
(y, mn)p =(y, m)¢p(ym,n)¢ = (y, m)8(ym,n)0 =(y, mn)é and so
(x, mn)¢ = (x, mn)0o, for almost all x € X. Thus, for all n € N, we have
(x,n)¢p =(x,n)d, for almost all x €X, and so ¢ is an almost
homomorphism equivalent to §. From Lemma 3, ¢ is equivalent to an
almost homomorphism ¢, trivial on Y X N.

LEMMA (8): Suppose C has a finitely presented normal subgroup N of
infinite index. Every almost homomorphism from X XC to A is
equivalent to an almost homomorphism  trivial on all N-sheets of
X x C. For such a ¢, if xf. = (x, ¢)i, then f. is almost N-invariant, for
all c € C.

PRrOOF: From Lemma 7, any almost homomorphism is equivalent to
an almost homomorphism 6 trivial on almost all N-sheets. Let T be a
finite subset of X with one vertex in each exceptional N-sheet. Since
C/N is infinite, for any N-sheet with vertex set yN, y € T, there exists
d € C such that @ is trivial on the sheet with vertex set yNd = ydN. If
n € N, then d 'nd € N and, for almost all m € N,

(ym,n)0 = (ym, d)0(ymd, d 'nd)0((ymn, d)6)™'
= (ym, d)8((ymn, d)6)".

We now define y:X —>A by putting (ym)y =(ym,d)o, for y €T,
m € N, and d = d(y) chosen as above; we take xvy trivial on all other
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xE€X If (x,c)d =((xy) '(x,c)0(xc)y, for (x,c)E X XC, then ¢ is
equivalent to 0. For fixed n € N, (x, n)¢ is non-trivial only for x = ym,
where y € T, m € N, and for each y the exceptions m form a finite set.
Thus (x, n)¢ is trivial for almost all x € X and so ¢ is equivalent to an
almost homomorphism ¢ trivial on all N-sheets.

Let ¢ €C be fixed. For x€ X and n €N, we have (xn,c)=
(xn, n )(x, ¢)(xc, ¢ 'nc) so, for fixed n, (xn, ¢)y = (x, ¢)y, for almost
all x € X. Thus "f. =“f,, for all n €N, and f. is almost N-invariant.

LeEMMA (9): Suppose C has a finitely generated normal subgroup N.
Let U be a transversal of the orbits of X under C and T a transversal of
the cosets of N in C. If f: X - A is almost N-invariant, there exists a
partition {N,, . . ., N,} of N into infinite almost invariant subsets such
that f is almost equal to a function constant on almost all xN and on all
uNit, forue U, teT.

PrROOF: Let P be a finite generating set for N and let V be the
intersection of UT with (U,cp o(f'?f))N. Then V is finite and, for
x € X\VN, (xp)f = xf, for p €P, and so f is constant on xN. For
v=ut€V withueU,teT,Ilet h,=h:N - A be defined by mh =
(umt)f, for m € N. If m, n € N, then

m(*h) = (mn)h = (umnt)f = (umt(t 'nt))f = (umt)’f,

where y =t 'nt. But’f =°f so, for almostall m € N, m ("h) = (umt)f =
mh, and so h is almost invariant. If S;, i € I, are the constancy sets of h
and h is not constant on N, then, for each i €I, S;N# S; and so
Sip N(N\S;) is non-empty, for some p € P. But U;c; Sip N(N\S)) is
finite for all p € P and so I is finite. Consider all possible subsets of N
of the form N,cv R,, where R, is a constancy set of h,. These form a
finite partition of N into almost invariant subsets on which all h, are
constant. Incorporating all the finite parts in one of the infinite parts,
we have a partition {N,,..., N,} of N into infinite almost invariant
subsets such that, for v € V, h, =“k,, where k, is a function constant
on all N.. Then f is almost equal to a function constant on almost all xN
and on all uNi¢t, with u e U, t € T.

LEMMA (10): Suppose C has a finitely generated normal subgroup N
with a partition {N,, ..., N,} into infinite almost invariant subsets. Let
U be a transversal of the orbits of X under C and T a transversal of the
cosets of N in C and put Y = X/N, D = C/N. Let Z be the set of
equivalence classes of almost homomorphisms 6 from X X C to A
which are trivial on all N-sheets and such that, if xf. = (x, c)0, then f. is
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constant on almost all xN and constant on all uNit, with u € U, t € T.
Then Z is trivial if r = 1. If r =2, then Z has a subset bijective with the
set of equivalence classes of almost trivial homomorphisms from Y X D
to A and this is the whole of Z if r = 2.

ProoF: Let 6 be an almost homomorphism satisfying the given
conditions. If n €N, ¢ € C, then f,. =*f."f. =“f.. But f. and f,.. are
constant on all the infinite sets uN;it and so f. = f,..

Let p denote the natural maps from X to Y and D to C. For fixed i,
there is a well defined map ¢ = ¢ from Y XD to A given by
((ut)p, cp)d = (uNt)f,foruce U, t €T, c €C. If ¢, e € C, then

(((ut)p, cp)(utc)p, ep))d = ((ut)p, (ce)p)¢ = (uNit)f...

Since f.. =“f.°f., we have (unt)f.. = (unt)f.(untc)f., for almost all
n € N. For fixed ¢, ¢, we have tc = ms, for some m € N, s € T. Since
N:m N(N\N;) is finite, uN:ms N u(N\N;)s = uNitc N u(N\N;)s is
finite and hence (untc)f. = (uN:s)f., for almost all n € N.. Thus

(uN:t)fee = (uN:Df.(uN:s)f. = ((ut)p, cp)d((us)p, ep)d
= ((ut)p, cp)¢ ((utc)p, ep) .

So ¢ = ¢ is a homomorphism from Y X D to A.

We take i = 1 and note from Lemma 3 that thereisamap y: Y > A
such that (y,d)¢, = (yy) '(yd)y for yEY,dED. Let g: X > A be
given by xg = xpy, for x € X, and put (x, ¢)¢ = (xg)(x, ¢)0((xc)g)™",
for x € X, ¢ € C. Then ¢ is equivalent to 8 and, since g is constant on
each xN, ¢ satisfies the conditions given for 0. Let (x, ¢)¢ = xh. and,
for each i, let A; denote the homomorphism from Y XD to A
associated with ¢y and N.. Foru € U, t € T, ¢ € C, we have

((ut)p, CP)A] = (uN,t)h. = (uN,t)g(uN t, c)0(uN,tc)g
= (ut)py((ut)p, cp)d:((utc)py) ' = 1.

Thus A, is trivial and h. is trivial on UN,T. Since h. is constant on
almost all xN, it is trivial on almost all xN and so each A; is almost
trivial. Thus each almost homomorphism 6 is equivalent to an almost
homomorphism ¢ given by (unt, ¢) = ((ut)p, cp)r, foru e U, t € T,

c€C and n €N,, where A, =1, A,, ..., A, are almost trivial homo-
morphisms from Y X D to A.
Conversely, suppose A;=1, A, ..., A, are almost trivial homo-

morphisms from Y X Dto A and ¢ : X X C — A is given by (unt, c)§ =
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((ut)p,cp)Ar;, for ue U, t€T, c€C and n€N, If e€C and
n €N,

(unt, ce)y = ((ut)p, (ce)p)A, = ((ut)p, cp)A:((utc)p, ep)A..

Now (unt, ¢)¥ = ((ut)p, cp)A: and, if tc = ms with m € N, s € T, then
untc = unms € uN;s, for almost all n €N, and so (untc,e)y =
((utc)p, ep)A;, for almost all n € N,. So, for fixed u, t, ¢, e, we have
(unt, ce)d = (unt, c)y(untc, e), for almost all n € N. Since the A; are
almost trivial, (x, ¢ )¢ is trivial on almost all xN and hence (x, ce)y =
(x, c)¥(xc, e)y, for almost all x € X. Thus ¢ is an almost homo-
morphism.

Next suppose ¢ : X XC —-A corresponds to the almost trivial
homomorphisms w; =1, w,, ..., u, from Y X D to A. If ¢ is equivalent
to ¢ there is a map y:X —>A such that, for c€C, (x,c)d =
(xy) '(x, ¢)p(xc)y, for almost all x € X. Since ¢ and  are trivial on all
N-sheets, y =“"y, for n € N, and so vy is almost N-invariant. From
Lemma 9, vy =8, for some & constant on almost all xN and on all uSt,
where S runs through the sets in a finite partition of N into infinite
almost invariant subsets. For each i, there is some such S with
M; = N; N S infinite. Then M, is almost invariant and both § and all f.
are constant on all uM;t. Since 8 =°1v, (x, ¢)¢ = (x8) '(x, ¢)¥(xc)8, for
almost all x € X. Now (uNt,c)¢p =1=(uN,t, c)y so, for fixed t,
s € T with tc = ms, we have (unt)d = (untc)d = (unms)8§, for almost
all n € M,. Since M, N M,m is infinite, (uM,t)é = (uM,s)8, and so § is
constant on each uM,\T.Foru e U,t € T,c € C,withtc € Ns, s € T,
we have

((ut)p, cp)p: = (uNit, c) = (uMit, ¢ )¢
= ((uMit)8) '(uMit, ¢)y(uM;s)é

= ((uM;t)8)'((ut)p, cp)A:(uM.s)8.

Putting (ut)pe; = (uMit)d, we have

((ut)p, cp)pi = ((ut)pe:) ™ (ut)p, cp)A:(utc)pe..

Now & 1is constant on each uM,T and on almost all xN. Thus
(uMit)é = (uM,t)é, for almost all ut € UT and e is almost equal to the
function € = €,, which is constant on each upD. If B; = e, ', we have a
function €, constant on each yD, and functions B; =“ 1 such that
(y, A = (yB:i€) (v, d)A:(yd)Be. In this situation, we say that
(1, . - ., u,) is equivalent to (A4, . . ., A,). This implies, but is not implied
by, the equivalence of u; and A; for each i.

Finally, we show that if (u,, ..., u,) is equivalent to (A4, .. ., A,), then
¢ is equivalent to . We have functions B;, € from Y to A, with 8, = 1
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and € constant on each yD, such that
((ut)p, cp)p: = ((ut)pBi) ' ((ut)p, cp)A:(utc )pBe.

Define 6,v: X —>A by (uNit)é = (ut)pB:;, (uC)v =upe. Let c €C,
uce U, teT, be fixed. If tc = ms, with m € M, s € T, then

(uNit, c)d = ((ut)p, cp)p: = (uN;t)év) (uNit, ¢ ) (uN;s)dv.

Now v is constant on all xC, so (uns)v = (untc)v, for n € N. Also,
(uns)é = (untc)é unless, for some i, we have (utc)p € o(B:;) and
n € N, nm& N, that is, n € N, N (N\N,;)m ~'. For each i, 8; has finite
support and N; is almost invariant. Thus, for fixed ¢, only a finite
number of exceptions occur and so, for almost all x € X, (x,c)¢ =
(x6v)~'(x, ¢)¢(xc)dv. Hence ¢ is equivalent to .

We have shown that Z is bijective with the set of equivalence
classes of r-tuples (1, A,,..., A,) and so Z is trivial if r = 1. For r > 1,
(1, A5, 1,..., 1) is equivalent to (1, u,, 1,..., 1) if and only if A, and u,
are equivalent. So Z has a subset bijective with the set of equivalence
classes of almost trivial homomorphisms from Y X D to A, which is
the whole of Z when r =2.

THEOREM (11): Let C act semiregularly on X. If C has a finitely
presented normal subgroup N of infinite index such that e(N) = 1, then
all almost homomorphisms from X X C to A are equivalent.

PRroOOF: Since e¢(N) = 1, the only partition of N into infinite almost
invariant subsets is the trivial partition {N}. From Lemmas 8 and 9, any
almost homomorphism is equivalent to an almost homomorphism 6
satisfying the conditions of Lemma 10, with » = 1. Then 0 is equivalent
to the trivial homomorphism.

THEOREM (12): Let C act semiregularly on X and suppose C has a
normal subgroup N such that e(N)=2. If e(C/N)=1, all almost
homomorphisms from X X C to A are equivalent. If e(C/N) > 1, the set
Z of equivalence classes of almost homomorphisms contains a subset
bijective with A§'®, where A, is the set of conjugacy classes of A ; if
e(CIN) =2, this subset is the whole of Z.

PRrROOF: Let S be an infinite almost invariant subset of N with infinite
complement R. From Lemma 8, we need only consider almost
homomorphisms  trivial on all N-sheets and with f. almost N-
invariant, where xf. = (x, ¢)#. Since ¢(N) =2, Lemma 9 implies that
each f. is almost equal to a function constant on all uSt and uRt. Thus
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¢ is equivalent to an almost homomorphism satisfying the conditions
of Lemma 10 with r = 2. The result now follows from Lemma 6.

THEOREM (13): Let C act semiregularly on X. If C has a finitely
generated free subgroup of finite index, all almost homomorphisms
from X X C to A are equivalent. If C has a finitely presented normal
subgroup N of infinite index with e(N)=x, then all almost
homomorphisms from X X C to A are equivalent if C is finitely
generated and e(C/N) = 1. If e(C/N) > 1, there are inequivalent almost
homomorphisms.

Proor: If C is finitely generated free by finite, it has a finitely
generated free normal subgroup N of finite index. Using Lemmas 7
and 8, in both cases we need only consider almost homomorphisms
such that ¢ is trivial on all N-sheets and f. is almost N-invariant, where
xfe =(x,c)y. If C is finitely generated, then C ={(c,,..., c,, N) for
some ¢y,..., ¢, € C\N. From Lemma 9, for each ¢; there is a finite
partition of N into almost invariant subsets S such that f, is almost
equal to a function constant on almost all xN and on all uSt. Taking the
intersections of all such S that arise, over all j, we obtain a finite
partition of N into almost invariant subsets. If we incorporate the finite
parts in one of the infinite parts, we have a partition {N,,..., N,} of N
into infinite almost invariant subsets so that each f. is almost equal to a
function g,, constant on all uN;t and on almost all xN. Now f, = 1, for
n € N,and C ={(c,,..., ¢,, N). Suppose for some ¢, d € C, we have f.,
fs almost equal to functions g., g, constant on all uN;t and on almost all
xN. Then ‘g, is constant on almost all xN. Let xN = uNt be an
exception and suppose tc = ms, with m €N, s € T. For n €N,

(unt) “ga = (untc)gs = (unms)gy = (uN:s)gua,

unless n € N; N (N\N;)m~'. Thus °g, is almost equal to a function
constant on all uN;t and on almost all xN. Now f.-=°(“"f.)” and
f.a =°f.fs, so it follows by induction that, for all ¢ € C, f. is almost
equal to a function g., constant on all uN;t and almost all xN. Putting
(x, ¢)¢ = xg., we obtain an almost homomorphism equivalent to ¢ and
satisfying the conditions of Lemma 10. The first two statements of the
theorem now follow from Lemma 6. If ¢(C/N)>1, we take an
arbitrary partition of N into two infinite almost invariant subsets.
Applying Lemmas 10 and 6, we know that there are almost
homomorphisms not equivalent to the trivial homomorphism.
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Theorem B follows from Theorems 1, 11, 12 and 13, together with
the next result.

COROLLARY (14): Suppose C is a polycyclic by finite group acting
semiregularly on X. All almost homomorphisms from X X C to A are
equivalent unless C has Hirsch number 2.

ProOF: Let h be the Hirsch number of C. The result is trivial for
h =0, since C is then finite. Otherwise, C has a non-trivial poly-
(infinite cyclic) normal subgroup N of finite index. If h = 1, then N is
infinite cyclic and the result follows from Theorem 13. If A > 2, then C
has a normal series C =Co=N =C,> C,>1, with all C; finitely
presented, C/N finite, C,/C, infinite, and C, poly-(infinite cyclic) with
Hirsch number > 1. From the remarks preceding Lemma 6, e(C,) =1
and so Theorem 11 implies that an almost homomorphism from X X C
to A is equivalent to one # which is trivial on all N-sheets. Now N also
has 1 end and so Lemmas 8 and 9 show that 6 is equivalent to an almost
homomorphism satisfying the conditions of Lemma 10, with r = 1. So 6
is equivalent to the trivial homomorphism.

Finally, suppose h =2. Then C has a normal subgroup N of finite
index which is infinite cyclic by infinite cyclic. From Theorem 12, given
x € X, there is an almost homomorphism ¢ from xN X N to A which
is not equivalent to the trivial homomorphism. If we can extend ¢ to
X x C, the extension will not be equivalent to the trivial homomorph-
ism. Let T be a transversal of the cosets of N in C, with r:C —» T the
transversal map and 1ET. For t €T, n €N, ¢ €C, put (xnt,c)0 =
(xn, tc ((tc)7)")¢. Then @ extends ¢ to xC X C and if d € C,

(xnt, c)0(xntc,d)6
= (xn, tc((tc)T) N (xntc((te)7) ™", (tc)rd ((ted)T) ).

For fixed t, ¢, d, this equals (xn, tcd((tcd)7) )¢ = (xnt, cd)0, for
almost all n € N. Now T is finite, so (xe, c)0(xec, d)0 = (xe, cd)0, for
almost all e € C. Thus 6 is an almost homomorphism from xC X C to A
extending ¢. Defining 6 to be trivial on all other C-sheets, we have an
almost homomorphism from X X C to A which is not equivalent to the
trivial one.
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