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This paper deals mainly with fine moduli spaces. We consider over
the complex numbers the following types of algebraic varieties with
level n-structure, where n is a sufficiently large integer,

(a) canonically polarized algebraic varieties with very ample canonical
sheaf and fixed Hilbert polynomial,

(b) polarized K - 3 surfaces with fixed Hilbert polynomial,
(c) stable curves of genus g &#x3E; 2 1,

and show that there exist algebraic spaces of finite type over C which
are over the complex numbers fine moduli spaces for these objects.
More precisely, for large n there exist algebraic spaces M(n) of finite

type over C and proper, flat families 0393(n) - M(n) of polarized varieties
of the above mentioned types which are universal with respect to proper,
flat and polarized families of such varieties with level n-structure.

(Compare also [12] p. 97.)
In chapter 1 a representablility theorem for functors in the category

of noetherian algebraic C-spaces is proved. This theorem is essential
to obtain the families 0393(n) ~ M(n). It is related to theorem 4.7 in [1 ; 11]
and also to [12], proposition 7.5, and states that under certain conditions
fine moduli spaces are obtained as geometric quotients from a covering
of a Hilbert-scheme via the action of PGL(N).

Chapter II contains the existence of the coarse moduli spaces for
canonically polarized algebraic varieties and for polarized varieties with
irregularity 0 (excluding certain ruled varieties) and furthermore the
construction of the families 0393(n) ~ M(n) for varieties of type (a) and (b).
The case of stable curves is treated separately in chapter III. The

universal family (n) ~ (n) of stable curves of genus g with level n-
structure is constructed by compactifying the universal family F (n) ~ M(n)

1 For abelian varieties see remark (2.4), for Enriques surfaces the remark at the end of
chapter II.
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for smooth curves of genus g with level n-structure. (See remark (2.4)
for the existence of 0393(n) ~ M(n) for smooth curves.)
The philosophy is as follows. The papers [18] and [24] show that

a fibre space X ~ S of curves of genus g is determined essentially by the
smooth part X0 ~ So and the monodromy action of 03C01(S0) on the
integral homology of X0 ~ So. So, wanting a good universal family for
stable curves one should add in a global way the monodromy.
One expects that if to the universal family 0393H ~ H of 3-canonical

stable curves of genus g the monodromy is added, the new family has
better properties. Using the monodromy action on the level n-structure
of the smooth part r Ho --+ H0 of 0393H ~ H we construct a finite normal
(ramified) covering p : H(n) ~ H of H where p : 03C1-1(H0) ~ Ho is etale
and 03C1-1(H0) = H(n)0 is the scheme which parametrizes the smooth

3-canonical curves with level n-structure. So H(n) is nothing but the
normalisation of H in the function field of H(n)0. But the important fact
is a geometric interpretation of the points of H (n) which results from our
monodromy considerations. Roughly speaking, a point Q ~ H(n) is

determined by cp(Q) E H and a symplectic basis of H1(r p(Q), Z/n), where

039303C1(Q) is the fibre in 0393H ~ H over p(Q).
This fact allows to show that the natural operation of PGL(N) on

H(n) is fixpoint free if n ~ 3. Having this available we look to the family
rVP = 0393H  H H(n) ~ H (n) . The group PGI.(N) operates on 0393(n)H ~ H (n)
properly and fixpoint free if n ~ 3, yielding that the quotient family
(n) ~ (n) which exists in the category of algebraic spaces is a family
of stable curves with good universal properties. The algebraic spaces
(n) respectively (n) are proper over C and compactifications of 0393(n)

respectively M(n).
It seems to be necessary to indicate the significance of universal

families and in particular the universal family 0393(n) - (n) of curves for
classification theory of algebraic varieties. The m-canonical mappings
(compare Itaka’s theorem [20], 5.10) relate algebraic varieties X of
Kodaira dimension = dim (X) -1 to families of elliptic curves. Surfaces
with Kodaira dimension 1, the elliptic surfaces of general type, are thus
related to pencils of elliptic curves. The Albanese mapping a : X ~ Alb(X)
of an algebraic variety X determines a canonical fibration of X. This
fibration is a fibration into curves if dim (03B1(X)) = dim X -1. If X is of
general type, the general fibre of a is by [20], theorem 5.11, also of general
type and hence, if it is a curve, of genus ~ 2. Both facts lead to the problem
of classifications of algebraic varieties which carry a family of curves
and more general of families of curves. The idea of classification is as
follows.
Let : X - S first be a 1-parameter family of curves of genus g ~ 2
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where X and S are smooth schemes of dimension 2 respectively 1 and
where 03BB is a proper and flat morphism which is smooth when restricted
to 03BB-1 (s - {P1, ..., Pn}); the Pi are closed points in S, sufficiently many.
Furthermore, the surface X shall be minimal with respect to 03BB. The stable
reduction theorem leads in this case to a galois covering f : S’ - S
with galois group G which is unramified outside the points Pi and to
a family À’ : X’ ~ S’ of stable curves such that

( 1 ) If U = S - {P1, ..., Pn} and U’ = f-1(U) then the families

03BB: X x UU’ ~ U’ and : X’ x s, U’ - U’ are isomorphic.
(2) G operates on X’ and À’ is a G-map.
(3) The quotient X,a --+ S’G = S is a fibre space over S which, restricted

to U, is isomorphic to X x s U - U. From X,a --+ S the family X - S
is obtained by resolving the singularities of X’G in a minimal way.

Having these facts available the problem becomes to classify stable
curves over a proper (1-dimensional) base S and secondly to describe
the resolution of the singularities on X’G by invariants.
To solve the first problem a ’universal’ family of stable curves of genus

g over a compact base is needed. The best to expect would be to have
a good family of stable curves over the moduli space for stable curves
available. Such a family however does not exist, it even does not exist
for smooth curves. But for smooth curves with level n-structure, n ~ 3,
universal families r(n) ~ M(n) do exist. So, one might ask if it is possible
to introduce for stable curves the notion of a level n-structure which is
consistent with the smooth case and to obtain universal families for
stable curves with level n-structure. Chapter III contains the construction
of these families.

Concerning the second problem, describing the minimal resolution
of the singularities of X" --+ S by invariants, we refer to the thesis of
Viehweg [21]. There, for 1-parameter families, invariants are introduced
using the Hilbert scheme of 3-canonical stable curves of genus g, which
allow to describe the closed fibres of a family r - Spec (R) over a
discrete valuation ring R with residue characteristic &#x3E; 2g + 1. It is not
difficult to rewrite these results using the family F(n) ~ M(n).
For smooth, projective algebraic varieties X which carry a fibration

03BB : X - S into curves of genus g &#x3E; 1 with a proper base S of dimension
&#x3E; 1, at least a birational classification is possible using the universal
family F(n) ~ M(n) as follows:
We may assume that S is projective and smooth. Consider the smooth

part À : X0 ~ So of À : X ~ 8 and let S(n)0 be the galois covering of So,
parametrizing the level n-structures of the fibres of 03BB : X0 ~ S O. Denote
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by S’ an irreducible component of the normalisation of S in the ring of
rational fùnctions of st), and by ~ : s(n) - S the covering map. Let G
be the galois group of this covering. By changing S birationally we may
assume that there exist morphism p : S - M and p (n) : s(n) ~ M(n) such
that 03C1(n) extends p. Let À (n) : X(n) = 0393(n) x M(n) S(n) ~ s(n) be the pullback
of 0393(n) ~ M(n). Then G operates on X(n) such that 03BB(n) is a G-map and the
quotient X(n)G which exists as a scheme is birationally isomorphic in X.

Classification theory is a birational theory. Its general principals are
described in [19], [20] and [24]. According to these principals, fine
moduli spaces and a compactification of these spaces together with a
good interpretation of the boundary points are needed for algebraic
varieties with Kodaira dimension 0 and for algebraic varieties of general
type. We have indicated above how one can obtain these fine moduli

spaces and how one should use them to classify higher dimensional
varieties. Compare in this respect also the paper [18]. Recently,
Y. Namikawa [23] has constructed for this purpose a compactification
of the family of polarized abelian varieties with level n-structure.

1 am grateful to the referee for two good suggestions concerning the
exposition of the paper and to Dr. Y. Namikawa for helpful discussions.

Chapter I. A representability theorem for functors

We work entirely over the complex numbers C. All schemes and
algebraic spaces are C-spaces.
The notion of a (smooth) polarized algebraic variety (V, ) is as

introduced in [14], 2.1, hence we deal in this chapter with inhomogeneous
polarized varieties. (See [14], p. 25.) hv(x) denotes the Hilbert polynomial
of (V, X) ([14], p. 23) and Mh(x) the set of isomorphy classes of polarized
algebraic varieties defined over C with h(x) as Hilbert polynomial.
We assume in the following that IDIh(x) satisfies one of the two conditions
a) or b)1, i.e. we restrict IDIh(x) if necessary :

(a) All elements (g X) of 9yh(,,) are canonically polarized, i.e. the polar
set X contains a very ample (positive) multiple of a canonical divisor of V.
(b) For every (V, X) E 9Rh(x) the irregularity of V is zero.

We assume furthermore that the polarization of the varieties (K X)
is sufficiently ample. (See [14], p. 26, for this assumption.)

1 The case of abelian varieties is excluded. See remark (2.4).
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For a noetherian C-scheme S we consider smooth, proper, (inhomo-
geneous) polarized families (VIS, X/S)over S, [14], p. 24, with the property
that every geometric fibre of V/S together with the induced polarization
belongs to IDIh(x).

Let JI(S) be the set of isomorphy classes of such families. The collection
of sets JI(S) form a contravariant functor from the category of noetherian
C-schemes to the category of sets. The sheafification of the functor
S ~ JI(S) with respect to the etale topology of schemes and its extension
to the category of noetherian algebraic C-spaces (see [8], p. 103) is also
denoted by JI and is considered in the following. JI is then a contra-
variaht functor from the category of noetherian algebraic C-spaces to
the category of sets, which is a sheaf with respect to the etale topology
and which is called the functor of polarized varieties ouf Mh(x).

Recall that for a noetherian algebraic C-space S an element T - S
of JI(S) is (up to isomorphism) determined by a commutative diagram

In this diagram R  S’ ~ S and 0393R  TS, ~ 0393 are representable etale
coverings of S and T, respectively, (R, S’, FR and TS. are schemes);
0393s’ - S’ and r R --+ R are polarized families belonging to M(S’) and
M(R), respectively, such that 0393R ~ R is the pullback (as polarized
family) of FS, ~ S’ with respect to 03C01 and 03C02.

REMARK: The functor JI introduced above is in general different from
the deformation functor considered in [14]; they are however related.
It is easily checked that the deformation functor from [14] is an open
subfunctor of JI and that JI is the direct sum of finitely many deforma-
tion functors for appropriately chosen elements in 9Jlh(x).

For a polarized algebraic variety (V, X) E IDIh(X) we consider projective
embeddings 0 : V ~ PN where 0 is a map determined by the multiple
of the canonical sheaf úJy which is in X, if (V, X) is canonically polarized,
i.e. we are in case (a), and by any sheaf of X in case V has irregularity 0.
The assumption that the polarization (V, X) is sufficiently ample yields

that the varieties (K X) are all mapped by 03A6 into the same projective space
and that the image variety has h(x) as Hilbert polynomial. Let Hh(x)PN
be the Hilbert scheme which parametrizes the proper flat families of
closed subschemes of PN with h(x) as Hilbert polynomial and r - Hh(x)PN
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the corresponding universal family.
By the arguments of [14], propositions 2.11 and 2.12, there exists a

locally closed subscheme H of Hh(x)PN such that the following statements
are satisfied.

(1) Let 0393H ~ H be the pullback of the universal family 0393 ~ Hh(x)PN
to H ; then 0393H ~ H with the polarization induced from the hyperplane
sections of PN belongs to JI(H).

(2) Every family (V/S, XIS) of M(S) is locally, with respect to the etale
topology, a pullback of rH -+ H.

(3) The group PGI(N) operates on H and rH in a natural way such
that the following holds: Let S be a noetherian C-scheme and 03931/S,
T2/S two pullback families of 0393H/H via S-valued points f : S ~ H,
i = 1, 2. Then 03931/S and r 21S are isomorphic as polarized families if

and only if the S-valued points f are equivalent with respect to the action
of PGI(N).

(4) If the fibres of 0393H ~ H are unruled varieties (this is the case if the
varieties are canonically polarized; for the irregularity zero case compare
Chap.II) the operation of PGL(N) on H is proper and with finite

stabilizers. Hence, the geometric quotient H of H by PGL(N) exists as
an algebraic space and is a coarse moduli space for the functor aV in
the sense of [14], Definition 2.8. (This is obtained by [15], theorem 1.4,
together with the considerations in [14], chapter II. Notice that the

restriction to Hred, which was necessary in [14], is no longer needed.)
The statements 1-3 imply:

PROPOSITION (1.1): The etale sheafification e of the quotient functor
HIPGL(N) with respect to the etale topology and its extension to the

category of noetherian algebraic C-spaces coincides with the functor JI.

The following theorem will give in many cases the representability
of M.

THEOREM (1.2): Let X be a quasi-projective algebraic variety 1 over C
and G an algebraic group which acts on X properly and freely. Then the
geometric quotient X which exists as an algebraic space, represents the
etale sheafification PI of the quotient functor 2 XIG.

PROOF : There exists a natural map of functors : X(S) - X(S), which
is defined as follows. Consider the diagram from [14], p. 12

1 The theorem still holds if Xis a separated algebraic space of finite type over C. Compare
[15], p. 55.

2 The S-valued points of the quotient functor X/G are X(S)/G(S).
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where the horizontal arrows are etale and R :4 Il Ui determines the
geometric quotient X as an algebraic space.1 The isomorphism
G  R  R is obtained as described in [14], p. 13, if X is reduced.
For the non-reduced case one has to use in addition arguments as in

[15], p. 67.
Let 9 E X(S) and RS,  S’ - S a representable etale covering of S

together with an S’-valued point s’ : S’ ~ X which determines s. We may
assume that s’ factors through X’. Then qJ 0 s’ : S’ --+ il Ui determines
the S-valued point 03BB(s) of X via the diagram

The diagram (*) implies that À is surjective. For the injectivity of À the
following fact is needed.

CLAIM : The graph map 03A8 : G  X ~ X  X is an isomorphism of G x X
and X x xX.

PROOF : Recall that R  RR  X’  UX’ ~ X  X X is a representable
étale covering of X x XX. The graph maps 03A81 : G x X’ ~ X’ x X’ and
03A82 : G  R ~ R  R determine by [12], proposition 0.9, isomorphisms
of G x X’ and X’ x uX’ respectively G x R and R  RR. The diagram

implies therefore the claim.
Let now S1, S2 E X(S) such that 03BB(S1) = À(S2). Let RS,  S’ ~ S be a

properly choosen etale covering of S and s’i : S’ - X be S’-valued points
which define si, i = 1, 2. Then 03BB(S1) = À(S2) implies that the morphisms

1 The reducedness of X is because of [15], chapter 1 not needed.
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~ s’i : S’ ~ X, i = 1, 2, induce a map (s’1, s’2) : S’ ~ X  XX. As

X x XX = P(X x G) ~ X x G holds, the S’-valued points si are in the

same orbit with respect to G, hence sl - S2 and the injectivity of 03BB

follows. Q.E.D.

To apply theorem (1.2) to the functor JI, one of the essential facts is
the fixpoint free action of PGL(N) on H. In practice this is, due to the
existence of non trivial automorphisms of the considered algebraic
varieties, almost never the case. One has to modify the situation by
considering varieties with level n-structure.
For an arbitrary smooth, proper family V/S over a C-scheme S of

finite type we constructed in [14], p. 32, an etale covering P(n)(V/S) of S.
(The assumption made there that VIS is pullback Of FHIH is not needed.)
A level n-structure of VIS is a section of P(n)(V/S) over S.
The covering H(n) = p(n)(0393H/H) of H is of particular interest. We have

shown in [14] that PGL(N) operates on H(n) in a natural way such that
the map p : H(n) ~ H is a PGL(N) map1. This fact can be used to define
the notion of a level n-structure for an arbitrary noetherian C-scheme
S and a family VIS which is pullback of 0393H/H.

DEFINITION (1.3): Let f : S - H be a map and v/S the pullback
family of 0393H/H via f. Let S(n) = H(n)  HS be the pullback of H(n) also
with respect to f. Then a section a of S(n) over S is called a level

n-structure of VIS.
It is clear that the pair of maps ( f, a) determines a unique map

F : S ~ H(n) such that the diagram

is commutative and, conversely, that F determines ( f, a). See [14], p. 33.)
We write F = ( f, a) in the following. Continuing, if X(n)(S) is the set of
polarized families which are pullbacks of F,IH with level n-structure,
this set corresponds functorially to the set of S valued points of H(n)
and the functors ;Yf(n)(s) and Hom (S, H(n») are equal. The group
PGL(N)(S) operates therefore on X(n)(S) via this correspondence as
follows.

1 The important fact to be used is that P(n)(V/S) is functorial in the following sense.
Let hliS and Y2/S be families of N(S) and qJ : V1/S ~ V21S an isomorphism of families.
Then ç induces in a natural way an isomorphism P(n)(V2/S) ~ P(n)(V1/S).
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Let (VIS, XIs)(n) E X(n)(S) and F : S - H (n) be the corresponding
S-valued point. Let F = ( f, a) with f : S - H and a a level n-structure.
If ç is a S-valued point of PGL(N), the image (V~/S, X~/S)(n) of

(V/S, XIS)(n) under (p is determined by the S-valued point F» = (f~, 03B1~-1)
of H (n) . As VIS and VLIS are the pullbacks of r HIH with respect to f
and f~ we obtain that the family VIS is mapped isomorphically to V91S
by the projective transformation ç of PN/S. In particular V/S and V91S
are isomorphic as polarized algebraic varieties. (XqJ - is a level n-structure
of vep IS which is called the image of a.
The interpretation of oc9 -’ 

1 

is much more natural if S is a scheme of
finite type over C. Then we can use the schemes p(n)( VIS) and P(n)(V~/S),
and the isomorphism ç : V/S ~ V~/S induces a natural isomorphism
ç : P(n)(V~/S) ~ P(n)(V/S). (See [14], p. 34.) Via the inverse ~-1 of this
isomorphism the level n-structure a of V/S is mapped to the level

n-structure (Xep -1 of V91S.
With the usual notion of isomorphism the following holds. For a

C-scheme S of finite type two families of X(n)(S) are isomorphic if and
only if they are equivalent with respect to the action of PGL(N).

This leads to consider the quotient functor

We sheafify this functor with respect to the etale topology. The sheaf
thus obtained extends to the category of noetherian algebraic C-spaces,
yielding to a functor JI(n) of this category (with values in sets), called
the functor of polarized varieties of 9Rh(,,) with level n-structure. The
representability of JI(n) is established by the following Theorem.

THEOREM (1.4): If PGL(N) operates properly and fixpoint free1 on
H("), the geometric quotient H(n) of H (n) by PGL(N), which exists by [15],
Theorem 1.4, as an algebraic space, represents the functor M(n).

PROOF: Proposition (1.1) and Theorem (1.2) yield that the geometric
quotient H(n) represents M(n). The universal family for JI(n) is obtained
as follows. Look at the pullback family 0393(n) ~ H(n) of rH --+ H to H (nl.
The operations of PGL(N) on H (n) and 0393H induce an operation of
PGL(N) on 0393(n) = 0393H  HH(n) via the components such that 0393(n) ~ H(n)
is a PGL(N) map. The proper action of PGL(N) on H(n) implies (use [6],
II, 5.4.3) that the operation of PGL(N) on 0393(n) is also proper. The action
is moreover. fixpoint free.

1 For K- 3 surfaces and varieties with a very ample canonical sheaf, this is the case
for sufficiently large n. Compare Chapter II.
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This facts yield by [15], Theorem 1.4, that the geometric quotient
r(n) of r(n) with respect to the action of PGL(N) exists in the category
of algebraic C-spaces. If Ui, i = 1, ..., s, are locally closed subschemes
of H(n) (see [15], p. 64) such that LI Ui , H(n) is a representable etale
covering, the pullback families T Ui = 0393(n) x H(n) Ui -’ Ui will determine
0393(n) as an algebraic space. More precisely, there exists an etale map
i 0393Ui ~ r(n) which is a representable etale covering of 0393(n). (Use that
0393(n) ~ H (n) is smooth and therefore T Ui transversal to the orbits of points
of T Ui in connection with [15], Theorem 1.4.) The map 0393(n) - H(n)
induces a map r(n) - R(n) yielding that 0393(n) ~ n(n) is a family which
belongs to M(n)(H(n)). The family r(n) ~ H(n) is the universal family for
JIt(n) denoted in the introduction by 0393(n) - M(n).

REMARK (1.5): In the construction of the universal family 0393(n) ~ H(n)
described above the smoothness of 0393(n) ~ H (n) is not essential. One needs

only that for the families 0393Ui ~ Ui the following is satisfied.
For any point Y ~ 0393Ui the scheme 0393UiT is transversal to thé orbit Oy

of Y. (Orbit with respect to the action of PGL(N) on 0393(n).) This fact is
also available for the universal family 0393(n) ~ H(n) of 3-canonical stable
curves of genus g ~ 2 with level n-structure (see chapter III for the
definition of this family) if the Ui are choosen appropriately, and is

obtained as follows.

Let Q ~ H(n) and let P = qJ(Q) E H where ~ : H(n) ~ H is the natural
covering map (H is the scheme parametrizing 3-canonical stable curves
of genus g, see chapter III). Let U be a transversal section to the orbit
Op of P on H at the point P. Then the considerations in Chap. III (use
that the covering H(n) ~ H is ramified along a divisor with strong
normal crossings) yield that ~-1(U) = u(n) is at Q transversal to the
orbit OQ of Q on H(n). We obtain by [15], Chapter I, that H(n) is locally
at Q isomorphic to U(n) x PGL(N). Consider the pullback family
ru = T H  HU ~ U. As this family is, by the results of [2], locally at P
isomorphic to the Kuranishi family of the fibre TP of 0393H ~ H we obtain
that 0393(n) ~ H(n) is locally at Q the pullback of 0393U ~ U with respect to
the morphism

From this it is seen that the family r(n) ~ H(n) is locally at Q isomorphic
to 0393U(n) x PGL(N) where 0393U(n) = 0393U x u U(n). Hence if we choose the

subscheme Ui c H(n) in such a way that ~(Ui) c H is transversal to
the orbit Op for every point P E qJ(Ui) the families 0393Ui ~ U will have
the desired properties.
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Chapter II. Applications to moduli of algebraic varieties

a. Coarse moduli spaces for algebraic varieties with an ample canonical
sheaf. Fine moduli spaces for algebraic varieties with a very ample canonical
sheaf

Let 9JÏ be the set of isomorphy classes of smooth, projective, algebraic
varieties defined over C such that a positive multiple of the canonical
sheaf mv is very ample.
By [9], Proposition 3.1, ~(V, 03C9~tV) is a polynomial hv(t) in t called the

Hilbert polynomial of the (canonically polarized) variety JI:

We subdivide the set 9K according to the Hilbert polynomials. Let
Mh(t) = {V ~ M; hv(t) = h(t)l, then 9Jl = U Mh(t).
For a noetherian C-scheme S let Mh(t)(S) be the set of isomorphy

classes of smooth, proper families V/S with the property that the

geometric fibres of v/S are in IDIh(t).
The sets Jlh(tlS) form in a obvious way a contravariant functor which

we sheafify with respect to the etale topology and extend to the category
of noetherian algebraic C-spaces. The functor thus obtained is also
denoted by JI h(t) or Mh and is called the functor of canonically polarized
varieties with h(t) as Hilbert polynomial. 1 The sheafified functor Mh
is dealt with in the following.

THEOREM (2.1): There exists an algebraic space Mh(t) of finite type
over C which is a coarse moduli space for Mh(t) in the sense of [14], 2.8.

PROOF : By [10] there exists an integer c &#x3E; 0, depending only on h(t),
such that for every E Wlh(t) the sheaf 03C9~mV is very ample and even
sufficiently ample if m ~ c.
We pick an integer m ~ c and we consider for a noetherian C-scheme

S isomorphy classes of inhomogeneous polarized families (V/S, X/S)
with V/S E Jlh(S) such that 03C9~mV/S E X/S, where úJYjS is the canonical sheaf
of V/S. Families (V/S, XIS) of this type are called m-canonically polarized
families with h(t) as Hilbert polynomial.2

Let mMh(S) be the functor of isomorphy classes of m-canonical

polarized families (V/S, X/S) such that V/S ~ Mh. The sheafification of
mMh with respect to the etale topology and the extension of the resulting
sheaf to the category of noetherian C-spaces is considered in the following

1 Notice, the families VISE.Ah(S) carry a natural polarization determined by the
canonical sheaf of h/S. There is therefore methodically no difference between this section
and the next sections of this chapter.

2 The Hilbert polynomial of the fibres of (V/S, xl S) in the sense of Chapter 1 is h(m · t).
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and denoted also by mMh. By construction, for every family VIS E Mh(S)
the m-canonical sheaf 03C9~mV/S of v/S is restricted to the fibres sufficiently
ample. This implies, see [14], p. 27, that VIS is locally (with respect to
the etale topology) a pullback of a family in mJl h(S), yielding that the
functors JIt h and .-Oh are equal. Hence we can work with mNh in the
following. But for mJlt h the considerations from page 5 apply. We consider
m-canonical embeddings of the varieties of mh(t), i.e., embeddings of
varieties V ~ Mh determined by a birational map which is associated
to the sheaf cov

Let rH --+ H be the universal family parametrizing these m-canonical
embedded algebraic varieties (see page 6). Then the geometric quotient
H of H by PGL(N) exists as an algebraic space and is a coarse moduli
space for Jlth. Put H = Mh(t). Q.E.D.

Let M*h(t) ~ 9Xh(,) be the set of isomorphy classes of smooth, canonically
polarized, algebraic varieties over C, such that the canonical sheaf cvv
of V E 9x* is very ample. We assume that m*h(t) is not empty. Let m be an
integer ~ c where c is as above and r H --+ H the universal family
parametrizing the m-canonical embedded algebraic varieties of Uh(l).

Let n be a sufficiently large integer, H(n) = p(n)(0393H/H) the etale covering
of H considered in chapter 1 and 0393(n) - H(n) the pullback family. Then
PGL(N) operates on H(n) properly and with finite stabilizers. Further-
more the stabilizer of a point P E H(n) is the identity if the fibre r p in
0393(n) - H(n) belongs to U*. The last fact follows because the auto-

morphisms of a variety V E m: operate faithfully on the integral
cohomology of V and n is taken sufficiently large. (See [14], p. 37.)

CLAIM : The set of points P E H(n) where the stabilizer is the identity
form an open subscheme H(n) of H(n) which contains in particular all
points P E H(n) where the corresponding fibre in r(n) ~ H(n) is in M*h.

PROOF : Consider the graph map

which is proper.
Let 0394H(n) be the diagonal of H(n) x H(n) and 03C8-1 (0394H(n)) = Y the fibre

of IF over 0394H(n). Look at

and notice that if P, P’ are points of H(n) such that P’ is a specialization
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of P over C with Ip, = {Id}, then also Ip = {Id} (I p = stabilizer of P
with respect to PGL(N)), or equivalently that if 03A8-1(P’) consists of only
one point then also 03A8-1(P).

Let H1,..., Hr be all of those irreducible components of L1 H(n) such
that the generic fibres of the maps Y = 03A8-1(Hi) ~ Hi contain only
one point. By 03A8-1 (Hi) = Y the fibre of IF : Y - 0394H(n) over Hi is denoted.
Let Y(1)i,..., Y(si i be the irreducible components of Yi; then only one of
them, say Y(1)i, is mapped surjectively to Hi by the map tp and the open
subscheme

satisfies the claim.

Consider the pullback 03930 ~ Ho of 0393H ~ H to Ho. Using 03930 ~ Ho
and the etale covering H(n)0 = P(n)(03930/H0) of Ho we define as in chapter 1
an operation of PGL(N) on H. consider the sheafification M(n)0 of the
quotient functor H(n)0/PGL(N) with respect to the etale topology and its
extension to noetherian algebraic C-spaces. By construction, the natural
operation of PGL(N) on H(n)0 is proper and fixpoint free as n is sufficiently
large. We may apply Theorem (1.4) and obtain

THEOREM (2.2): The functor Abn) is represented by the quotient family
0393(n)0 ~ H(n)0 of 0393(n)0 ~ H(n)0 with respect to the action of PGL(N).

REMARK (2.3): By construction, the fibres of the families 0393/S of M(n)0(S)
have the property that its automorphism groups operate faithfully on
the integral cohomology. In particular varieties from m*h appear in
M(n)0. It might be that M(n)0 is equal to M(n)h. To decide this is an interesting
question which is open for dim ~ 2.

REMARK (2.4) : Over the complex numbers for smooth curves of genus
g ~ 2 with level n-structure the above considerations lead to universal
families 0393(n) ~ M(n), provided n ~ 3. Also in the case of polarized abelian
varieties of dimension g with level n-structure the above method leads to
universal families 0393(n) ~ M(n) of algebraic spaces. However some

modifications are necessary for abelian varieties and one needs the

important fact, to be found in Mumford [12], p. 120 ff., that on a polarized
abelian variety (V, X) one can pick in X an ample sheaf in a functorial
way. But more is known for curves and abelian varieties. By the work
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of Mumford it is known that the families 0393(n) ~ M(n) exist as schemes
and as such even over Z.

b. Coarse moduli spaces for non ruled polarized algebraic varieties
with irregularity 0. Fine moduli spaces for K - 3 surfaces
The methods used for the construction of the coarse moduli spaces

for algebraic varieties with ample canonical sheaf together with results
from [9] and [11] yield to the existencé of coarse moduli spaces for
homogeneously polarized algebraic varieties with Hilbert polynomial h
and irregularity 0. Certain ruled varieties have to be excluded. (Use [9],
Theorem 6.)
For a polarized K - 3 surface X we have shown in [14] that their

automorphisms operate faithfully on H2(X, Z). The considerations of
Chapter 1 imply therefore the existence of fine moduli spaces for homo-
geneously polarized K - 3 surfaces with Hilbert polynomial h and with
level n-structure, provided n is sufficiently large.

REMARK ON ENRIQUES SURFACES. It is not difficult to obtain by the
above method and the results on Enriques surfaces in [17] an algebraic
C-space which is over the complex numbers a coarse moduli space for
Enriques surfaces. However, the existence of a universal family for

Enriques surfaces with level n-structure is an open and interesting
problem.

Chapter III. Fine moduli spaces for stable curves with level n-structure

We shall work again entirely over the complex numbers C. Consider
3-canonically embedded stable curves of genus g over C. All these
curves live in the projective space PN, where N = 5g - 6, and have
h(x) = (6x - 1)(g - 1) as Hilbert polynomial.

Let Hh(x)PN be the Hilbert scheme which parametrizes the closed sub-
schemes of PN with h(x) as Hilbert polynomial and let H be the locally
closed subscheme of Hh(x)PN parametrizing the 3-canonical embedded
stable curves (see [2] and [15]).
Denote by rH --+ H the universal family of 3-canonical embedded

stable curves of genus g. For a noetherian C-scheme S let 4(S) be the set
of families VIS c4 PN x S of 3-canonical stable curves which are pullbacks
of rH --+ H. On the set 4(S) the group PGL(N)(S) operates in a functorial
way. The sheafification Ag of the quotient functor 4(S)/PGL(N)(S)
(sheafify with respect to the etale topology) and its extension to the
category of noetherian C-spaces is called the functor of stable curves
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of genus g. (Note that Jlg does not depend on the 3-canonical stable
curves. We could have used instead m-canonical stable curves for any
m ~ 3.) As the operation of PGL(N) on H is proper and with finite
stabilizers, see [15], the geometric quotient TI of H by PGL(N) exists
and is a coarse moduli space for Mg.

Let Ho be the maximal open subscheme of H such that the pullback
family TH x H Ho = 0393H0 ~ H0 is smooth. By the results in [2] the

scheme H is smooth and irreducible and D = H - Ho is a divisor on H
with strong normal crossings as singularities.
For smooth families of curves of genus g the notion of a level n-structure

was introduced in [14], p. 33, using an arbitrary basis of the first integral
cohomology groups of the curves. The more convenient level n-structure
for curves is obtained if one uses the construction of [14] and instead
of arbitrary basis symplectic basis of the first integral cohomology
groups. For smooth families V - S of curves of genus g with a scheme

S of finite type over C as base, one constructs then as in [14] for every
integer n ~ 1 a finite etale covering, denoted again by

of S such that the points of the fibre 03C1-1(P) over P e S are in 1-1
correspondence to the symplectic basis of H1(Vp, Zln), where Vp is the
fibre of V - S over P. A level n-structure of V/S is again a section of
s(n) over S with respect to the morphism s(n) ~ S.
We deal in the following with level n-structures using a symplectic

basis. The properties shown in [14] and Chapter 1 for the coverings
P(n)(V/S) are also valid for the new coverings. In particular, the arguments
in Chapter 1 yield, that the functor h(n)0(S) of smooth families of 3-canonical
curves of genus g with level n-structure is represented by

To obtain the notion of a level n-structure for proper and flat families

of stable curves of genus g we first look at 3-canonical stable cûrves and
in particular to the universal family 0393H ~ H of 3-canonical stable curves.
Let H(n)0 be the C-scheme from above and let C(H(n)0) be the field of rational
functions on H(n)10 Denote by H(n) the normalization of H in C(Hbn») and
H(") ~ H the natural map. Then H(n) is a reduced C-scheme and

p : H(n) ~ H is a covering which is unramified outside the divisor

D = H - Ho. Let Tl/S be a family of 3-canonical embedded stable curves

1 en) is irreducible by Teichmüller theory [1], 7-07.
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of genus g and f : S ~ H the morphism induced by V - S. Let

s(n) = S  H H(n) be the pullback with respect to f and S(n) ~ S the

covering map induced by p. We define

DEFINITION (3.1): A level n-structure of a family of 3-canonical

embedded stable curves V ~ S is a section of S(n) over S with respect
to the map p : S(n) - S.
For a noetherian C-scheme S we denote by h(n)(S) the set of 3-canonical

embedded stable curves with level n-structure. The collection of sets

A(n)(s) is a functor represented by H(n). As in [14] one shows that
PGL(N) operates on Ht) such that the map Ht) --+ Ho is a PGL(N) map.
Using the fact that H is normal (it is even smooth) and [17], Lemma 6.1,
we conclude that this operation of PGL(N) on H(n)0 extends to an opera-
tion of PGL(N) on H(n) such that the map p : H(n) ~ H is also a PGL(N)
map. In particular we obtain that the group PGL(N) operates on h(n).
We consider the sheafification of the quotient functor j4(")(S)IPGL(N)(S)
with respect to the etale topology of schemes, and extend this sheaf
to the category of noetherian C-spaces. The obtained functor is denoted
by M(n)g and is called the functor of stable curves of genus g with level
n-structure. To justify the name of the functor M(n)g we must show that
M(n)g is independent of the 3-canonical stable curves used in its definition,
i.e. that we obtain the same functor if we use m-canonical stable curves

instead of 3-canonical stable curves, m ~ 3.
Let m ~ 3 and 0393m ~ Hm be the universal family of m-canonical stable

curves of genus g. Let H(n)m ~ Hm be the covering of Hm which is con-
structed according to the above procedure and which parametrizes
the m-canonical embedded stable curves with level n-structure.

CLAIM: H(n)m is locally the pullback of H(n)3.

PROOF : Let P E Hm and Ôp the completion of the local ring OP, Hm . Let
T = Spec (Ôp) and identify the closed point of T with P. Using the
formal moduli space W - Y for the fibre 0393P of the family r m --+ Hm
over P it is shown in [2], p. 82 ff., that T = T  Spec (e, PGL(N(m)))
where Ô e, PGL(N(m» is the local ring of the identity element e of the group
PGL(N(m)).
The pullback 0393*m ~ T of r m --+ Hm to T allows a 3-canonical

embedding. Fixing one, we obtain a map

Let f(P) = Q and T’ = Spec (ÔQ, H3). Then



253

and there are unique morphisms

such that T m = L   T and 0393*3 = l x :Y T’ where the isomorphisms
between the families are such that they induce the identity on the closed
fibre. The map f factors through T’ and one may choose f in such a way
that the diagram

is commutative and that f maps Y x {e} to 1 x {e} and is on 1 the
identity. Knowing this we look at the diagram

The map p restricted to the inverse image 03C1-1(OQ) of the orbit OQ of Q
by PGL(N(3)) is etale. Also the map f : T - T’ maps

This yields

and that T  H3 H(n)3 is normal since and

are normal. The first two facts follow if one uses that the ramification

locus of the covering p : H(n)3 ~ H3 has strong normal crossings as
singularities and Abhyankar’s Lemma [7], p. 279.
The third fact results from H(n)3 ~ H3 being etale over the orbit of Q.

This yields that H(n)m is locally a pullback of H(n) 3 ~ H3 . To make this more
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precise we recall that 0393m/Hm is locally a pullback of 03933 ~ H3, i.e. for
every point P e Hm there exists an affine open neighborhood U p such
that r m x UP ~ Up is pullback of 03933 ~ H3.

But then H(n)m x Hm UP ~ H(n)3 x H3 UP’ since H(n)3 x H3 U p is normal by
the above considerations and since the schemes H(n)m x Hm U p and

H(n)3  H3 UP are clearly birationally isomorphic. (Use the smooth part
f m --+ Ù p of r m --+ U p and the etale covering P(n)(m/P) of Ù p.)
Our considerations yield that every 3-canonical family of stable curves

with level n-structure is locally a pullback of m-canonical stable curves
with level n-structure. As we can interchange m and 3 in the above
argument, we obtain that M(n)g is independent of the 3-canonical stable
curves used in its definition.

In the following we deal again with 3-canonical stable curves. Our
aim is to show that M(n)g is representable, if n ~ 3.

PROPOSITION (3.2) : Let H(n) be the scheme from above which parametrizes
the 3-canonical stable curves of genus 9 with level n-structure. If n ~ 3
the natural action of PGL(N) on H(n) is fixpoint free.

For the proof of the proposition a geometric interpretation of the
stalks in the map p : H(n) - H ist needed. For this purpose we give
another description of the topological space consisting of the C-valued
points of H(n) with the complex topology. We define a set X(n)(P) by

(1) If P E Ho , i.e., 0393P is smooth, X(n)(P) = set of symplectic iso-

morphisms a : H1(0393P’ Z/n) ~ (Zln)2g,
(2) if P E H - Ho = D, i.e., r p is singular, X(n)(P) = set of symplectic

homomorphism (X : H1(0393P, Z/n) ~ (Z/n)2g which are injective but not
necessarily surjective.

Let ;Yf(n) = ~P~H X(n)(P) be the disjoint union and f : X(n) ~ H the
natural map of sets.

LEMMA (3.3): There exists a topology on X(n) such that the map

f : X(n) ~ H is an analytic covering of H in the sense of Grauert-Remmert
[3], Def 3.

PROOF OF LEMMA (3.3) : Let P ~ H 2013 H0, i.e., 0393P is singular. d shall be
the number of nodes of r p. Then the number of irreducible components
of the divis or D at P is d. As D has normal crossings at P, we can pick
a small neighborhood U = {(t1 , ..., tN); Itil  ~} of P on H such that
U-D is isomorphic to (E’)d x EN-d, where E = {t ~ C; |t|  03B5} and

E’ = {t ~ C; 0  |t|  03B5}. The fundamental group 03C01((E’)d  EN - d) of

(E’)d x EN - d is the free abelian group J.l1 Z E9 03BC2 Z E9 ... E9 03BCd Z, where



255

J1i is the homotopy class of a circle rounding the divisor ti = 0 through
P counterclockwise. (See [13].) We call a neighborhood of P on H of
the above type a distinguished neighborhood of P. Clearly the distin-
guished neighborhoods generate the complex topology on H. Let

Q E U - D and T Q be the fibre of the family 0393H ~ H over Q. Then
03C01( U - D) operates on H1(FQ, Z) by the usual monodromie action (see
[13]), and also on the set ;Yf(n)(Q) defined above. We define X(n)(P) =
;Yf(n)(Q)I1C1(U - D) = set of residue classes of X(n)(Q) by the action of
03C01(U - D). (Clearly (n)(Q) = ;Yf(n)(Q) holds for Q ~ H0.) jf(n)(p) is as

a set independent of the choice of the point Q as long as we restrict to
distinguished neighborhoods of P.
Denote by aQ, P : X(n)(Q) ~ (n)(P) the natural quotient map. It is

then obvious by the definition of (n)(P) that for every P’ E D n U
there exists a map (Xp’, p : (n)(P’) - (n)(P).

PROOF : Consider the natural surjective homomorphismus

Let 03B11, ..., ocg" 03B21, ..., 03B2g’ , fil, - - 03BCt, 03B4 1, ô, be a symplectic base of
H1(0393Q, Zln) as in [13], such that ~(03B1i), ~(03B2i), cp(y) form a symplectic
basis of H1(0393P, Z/n) and b1,..., bt a basis for the vanishing cycles.

If y is a distinguished generator of 03C01(U - D) the monodromy operation
h = hy : H1(0393Q , Z/n) ~ H1(0393Q, Z/n) is the identity or is characterized

by the following properties (compare [4] and [13])
(1) h(03B1i) = 03B1i, h(03B2i) = 03B2i, i = 1,..., g’.
(2) There exists jo such that h(Yjo) = 03B3j0 ± 03B4j0, h(03B3j) = yj, Vj + jo.
(3) h(03B4i) = bb Vi.

Passing to the dual spaces H1(0393Q, Z/n) and H1(0393P, Z/n) we obtain an
injection H1(r p, Z/n) y H1(0393Q, Z/n). If 03B1*i, 03B2*i, 03B3*j, 03B4*j is the dual basis
to oci, 03B2i, 03B3j, bj, the space H1(0393P, Z/n) is spanned by (Xi, 03B2*i, 03B3*i and the
monodromy operation h* induced by 03B3 ~ 03C01(U - D) is the identity or is
determined by

These facts imply (using elementary results on symplectic geometry)
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that any two symplectic basis of H1(0393Q, Zln) which extend the same
symplectic basis of H1(0393P, Zln) are conjugate by the monodromy
operation Of1C1(U-D) and imply the claim.
Now we define for every point P’ E X(n) a system of sets which will be

a base for the neighborhood filter of P’ of the desired topology on Ye .
For a distinguished neighborhood U of P = f(P’) we consider

and then take WP’, U to be an open neighborhood of P’. As P’ and U
vary the sets WP’,U define a topology on X(n) such that f : X(n) ~ H
becomes an analytic covering of H. (Note that f is obviously proper.
Moreover, for a distinguished open set U of P the following holds:
if W is a connected component of f-1(U) then W - f-1(D) is also

connected. These two facts imply immediately that X(n) ~ H satisfies
[3], Definition 3. Lemma (3.3) is proved.
By [3], § 3, ;Yf(n) carries a unique algebraic structure such that X(n)

with this structure is a normal algebraic C-scheme. Furthermore the
map f : X(n) ~ H is a finite map in the sense of algebraic geometry,
i.e., X(n) ~ H is a ramified normal covering of H, [7].

CLAIM II: The covering Xn ~ H is isomorphic to the covering H(n) ~ H.

PROOF : Clearly, the covering X(n)0 = f-1(H(n)0) ~ Ho is isomorphic
to H(n)0 ~ Ho. This implies that X(n) and H(n) have the same field K of
rational functions. But then X(n) and H(n) are both isomorphic to the
normalisation of H in K. Q.E.D.

We identify in the following the C-schemes X(n) and H(n). For the
proof of proposition (3.2) it remains to show that the action of PGL(N)
on H(n) is fixpoint free for n ~ 3. Let 6 E PGL(N) be a C-valued point
and P’ ~ X(n) = H(n) with u(P’) = P’. Let P = f (P’) E H be the image
point. Then J induces an automorphism of the fibre TP over P of the
universal curve FH -+ H. This automorphism leaves the symplectic
basis of H1(0393P, Zln) fixed which is determined by P’. The following
Lemma (3.4) implies then that 6 is the identity automorphism on TP.
But TP is a 3-canonical curve in PN and as such not contained in any
hyperplane of pN , hence J has to be the identity of PGL(N).

LEMMA (3.4): Let FIC be a stable curve of genus g ~ 2 and J an auto-
morphism of F. Let 03C3* be the automorphism of H1(r, Zln), n ~ 3, induced
by 6. If 6* is the identity, also 6 is the identity.
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PROOF: H1(r, Z/n) is canonical isomorphic to the dual of the Z/n-
module of n-partition points Pic’ (0393/C)(n) of the connected component
Pic’ (T/C) of Pic (T/C). It suffices therefore to show that the induced
action of an automorphism 6, 03C3 ~ Id, on these n-partition points is not
the identity. Now, [2], 1.13, yields that the automorphism 6* of

Pic’ (T/C) induced by 6 is not the identity. As Pic°(T/C) is a group scheme
without unipotent radical, [2], 2.3, and, because 03C3* is of finite order,
we obtain by [5], IX, 4.7.1, the Lemma.
Having Proposition (3.2) available, the situation for stable curves

with level n-structure is similar to the situation for smooth varieties
with very ample canonical bundle and level n-structure which was
considered in Chapter II. We obtain along the same lines: Let M(n)g be
the functor of stable curves of genus g with level n-structure, n ~ 3, and
r(n) ~ H(n) be the universal family of 3-canonical curves with level
n-structure. Denote by (n) - (n) the quotient family of 0393(n) --+ H(n)
with respect to the action of PGL(N). (Notice, (n) and H(n) are by [15]
proper algebraic C-spaces.) Then the following Theorem holds.

THEOREM (3.5) : The functor M(n)g is represented by the family r(n) ~ H(n).

PROOF: Follows from Theorem (1.4) together with Remark (1.5) and
[15], p. 70.
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