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Introduction

Let X be a scheme of finite type over a finite field Fq with q = pa
elements. Let Ns = # X(Fq.) be the number of F,.-rational points on X.
The p-adic study of the N, is the outgrowth of the classical results of
Warning and Ax on p-divisibility of the number of solutions of equations
over finite fields.

PROPOSITION (Warning [60]): Let F(X1, ..., Xn) E Z[X1, ..., Xn] be a
polynomial of degree d  n. Then the number of solutions of

is divisible by p.

PROPOSITION (Ax [2]): Let F(X1, ..., Xn) ~ Z[X1, ..., Xn] be a poly-
nomial of degree d. Let J1 be the least nonnegative integer such that

Let N be the number of solutions of

in (Fq)n. Then

AU the information about the N, = # X(lFqs) is contained in the
zeta-function

of X over F., which Dwork [10] proved to be a rational function. For
example :

PROPOSITION (Ax [2]): Let X be a scheme of finite type over Fq, and
let J1 be a positive integer. Then the following are equivalent :

(i) the reciprocal of every zero and pole of Z(X/Fq; t) is of the form
ql’ (an algebraic integer);
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Now suppose that X is proper and smooth, dim X = n. Given any
’Weil cohomology’ H* in the sense of [29], the zeta-function is expressed
as an alternating product of the characteristic polynomials of the action
of the pth-power ’Frobenius’ endomorphism F:

In the proper and smooth case, the zeta-function has certain basic

properties, which were conjectured by Weil in 1949 and proved in the
following form by Grothendieck (i), (ii), (iii) and Deligne (iv):

(i) For any prime l ~ p, we have

where

(ii) If X is obtained by reduction from a proper smooth scheme
defined in characteristic 0, then bi = deg Pi is the i-th topological Betti
number of X.

(iii) (Functional Equation)

thus, if aij is a reciprocal root or pole, then so is qnjaij.
(iv) The Pi in (i) are independent of 1 ; Pi(t) E 1 + tZ[t], i.e., the 03B1ij are

algebraic integers; and

Note that the functional equation implies that all the aij are 1-adic
units for all primes 1 ~ p, because both aij and qn/03B1ij are algebraic
integers. Thus, there remains the question of the p-adic ordinals of the
03B1ij. As mentioned above, in classical terms these p-adic ordinals corre-
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spond to p-divisibility properties of the Ns.
In the cases considered in this paper there is only one ’interesting’

polynomial Pi in Z(X/Fq; t). If X is a complete intersection this is the
polynomial Pn, corresponding to middle dimensional cohomology. If X
is an abelian variety it is Pl, corresponding to H1(X). In such a case the
p-adic picture of the zeta-function is given by the ’Newton polygon’ of
Pn (resp. P 1 ). The Newton polygon of a polynomial

is defined as the convex hull of the points (i, v q(ai)), i = 0,..., b, where

v. is the p-adic valuation normalized so that v,(q) = 1.
The ’unit root’ part of the Newton polygon is the segment with zero

slope. Its length equals the number of p-adic unit reciprocal roots of P.
In general, the horizontal length of a segment of slope a/b equals the
number of reciprocal roots of P having vq = a/b. In the case of the zeta-
function of a complete intersection or an abelian variety, the functional
equation imposes the following symmetry on the Newton polygon:
0 ~ a/b ~ n, and the segments of slope a/b and n - (a/b) have the same
length. Here is a typical Newton polygon (here n = 1, b = 6, i.e., X is a
curve of genus 3):

A second constraint on the Newton polygon is that its vertices are
integral lattice points, i.e., the number of roots with vq = c is a multiple
of the denominator of c (cf. Manin, [34], Theorem 4.1, or Katz, [27],
Theorem 2).
A third constraint is imposed by the following special case of a theorem

of Mazur [36] (the ’Katz conjecture’) :

PROPOSITION : Let X/Fq be a projective smooth complete intersection of
dimension n. Then the Newton polygon of Pn lies on or above the Newton
polygon of
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It turns out that the unit root part of Pn is most easily studied, thanks
to the Katz congruence formula [21] :

where H’(X, (9x) is the Cech cohomology of X with coefficients in the
structure sheaf (abbreviated Hi(OX) from now on), and F is the Frobenius,
the ’p-linear’ vector space map induced by f F+ fp on the structure sheaf
(’p-linear’ means F(af + bg) = apF(f) + bpF(g)). Thus, the unit root part
of the Newton polygon of Pn corresponds to the ’semisimple’ part of
the vector space Hn(OX) under the action of the p-linear map F. (Recall
that two exact functors are defined on the category of pairs ( V, F), where
V is a k-vector space, k a field of characteristic p, and F is a p-linear
endomorphism:

’nilpotent part’ :

’semisimple part’ :

When k is a perfect field, we have V = Vnilp ~ Vss with F nilpotent on
Vnilp and bijective on Vss, and dim (Vss) is called the ’stable rank’ of F.)
The action of F on Hn«9x) is classically known as the Hasse-Witt matrix
(see, e.g., [32]). Thus, the number of p-adic unit reciprocal roots of Pn
is equal to the stable rank r(X) of the Hasse-Witt matrix.
The following questions will be investigated in this paper:
(1) As X varies over certain families (hypersurfaces of given dimension

and degree, complete intersections of given dimension and multidegree,
curves of given genus), does r(X) generically attain the maximal possible
value pg(X) = hg,n = dim Hn(OX) ?

(2) If X ~ PN is fixed and H is a varying hypersurface of degree d,
then how does the generic value of r(X. H) compare with pg(X · H),
especially as d ~ oo ? When does X satisfy the ’invertibility conjecture’
of Grothendieck-Miller, which asserts that generically r(X. H) = pg(X · H)
ifd»0?

In answering questions (1) and (2), an essential role is played by the
convenient fact that the Katz congruence formula expresses the unit
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root part as a coherent cohomology phenomenon.
(3) How are various moduli spaces (principally polarized abelian’

varieties, genus g curves) stratified by the stable rank r?
(4) What can be said about the refinement of this stratification accord-

ing to the entire Newton polygon?

1 wish to thank Professors B. Dwork, P. Deligne, B. Mazur, W. Messing,
D. Mumford, and A. Ogus for many valuable discussions, ideas, and
corrections. 1 am especially grateful to my adviser, Professor Nicholas
M. Katz, for suggesting the problem and giving me constant help
throughout my work on the subject.

I. Generic invertibility of the Hasse-Witt matrix

1. Hypersurface sections and their Hasse-Witt
Let X c P§§, where k = Fq, be an arbitrary n-dimensional closed sub-

scheme, corresponding to a homogeneous ideal I c k[X0, Xnl. Let
k be an algebraic closure of k, and let X = X xk k, I = I (8)k K, P N = PNk.
Let Sd ~ PB where v = vN, d = (N + d N) -1, be the projective space of
hypersurfaces H of degree d in PN. Let Sd have homogeneous coordinates
( Yo , ..., Yv).
We are interested in hypersurfaces H whose equation h is not a zero

divisor in (9,y, i.e., for which no irreducible component of X has h vanishing
at all of its points. Such H are said to ’intersect properly’ with X. In terms
of ideals, this means we want to eliminate from Sd those h contained in
any of the associated primes Pi of r (i.e., the minimal primes, corre-
sponding to maximal points of X ; we have r . n Pmi). Take some
P E {Pi} having homogeneous generators gu E k[X0, XNI of degrees
du, respectively. We first replace {gu} by {hj}mj=0, where the hj run through
all products of the gu with monomials of degree d - du, and we leave out a
gu if du &#x3E; d. Then h E P if and only if there exist ao, ..., am E k such that
h = 03A3mj=0ajhj. That is, we want to eliminate from Sd the image of the
morphism

given on closed points by

(ao, ..., am) H hypersurface with equation E ajhj.

This image is closed. Moreover, it does not contain all of Sd : take a
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point xeX in the component corresponding to the prime ideal P,
and take the point in Sd corresponding to a hypersurface H which does
not contain x; then, since all the hj vanish at x, it follows that the equation
of H is not of the form E ajhj. Thus, let Y c Sd be the nonempty Zariski
open set consisting of hypersurfaces which intersect properly with X.

Recall that the Hasse-Witt matrix of an n-dimensional variety X is
defined as the action of the Frobenius F on Hn(OX). However, when
considering high degree hypersurface sections X. H of a fixed variety X,
we modify the definition of the Hasse-Witt of the section as follows.
Under a mild assumption on X which we shall always make - namely,
the Cohen-Macaulay condition - it will follow that the restriction

induces

So if F fails to act bijectively on Hn-1(OX), then it also fails to act

bijectively on Hn-1(OX·H), which is the middle dimensional cohomology
of the (n -1 )-dimensional variety X. H, for any H. Hence, if we are

to have any hope of generic invertibility for high degree sections, we must
consider only the ’truly variable’ part of H*(OX·H) and define the Hasse-
Witt of a hypersurface section of any fixed variety X as the action of F on

Note that for high degree sections X . H the map

is far from surjective, since, as we shall see, dim Hn-1(OX·H) grows with
order D - dn/n!, where D is the ’degree’ of X (i.e., the number of intersection
points with the intersection of n hyperplanes in general position).
Katz [23] proved that, for a fixed Cohen-Macaulay variety X and for

generic H of degree d » 0, the Hasse-Witt matrix of X . H has positive
stable rank, i.e.,
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- in other words, the action of F is not nilpotent - and he conjectured
that much stronger estimates are possible.

2. Flatness and base-changing
We first need a few lemmas. The first lemma asserts the flatness and

properness of the families of varieties that are the primary concern of
this chapter.

(1) Let Yi = Y c Sd be the moduli space of hypersurfaces in PN
which intersect properly with a fixed variety X c PN. Let

be the ’generic’ form of degree d in K[X0, ..., XN] whose coefficient of
the i-th monomial term (i = 0, 1, ..., (N+d N)-1) is the corresponding Yi.
Now h defines a hypersurface H in PN x Sd " PN  Pv, since it is homo-
geneous of degree d in the first set of variables and degree 1 in the second
set. Let Mi = H - (X x Yl ), and let M 1 -+ Yi be the morphism induced
by the projection of X x Yi onto the second factor.

(2) For any fixed multidegree (d1, ..., dr) E 7L’"-t , r ~ 0, let

be the nonempty Zariski open set of r-tuples of hypersurfaces Hi c PN
of degree di which intersect properly, i.e., such that H1 · H2 ... Hr is a
complete intersection. This condition is equivalent to requiring that,
for i = 1, 2, ..., r, the equation of Hi is not a zero divisor in (9Hl - H2 ... Hi -1
(= OPN if i = 1). For each fixed i = 1, 2,..., r, let vi = (N + di N) - 1, and
let hi be the form in

which is the sum of the degree di monomials in the X’s with coefficient
the corresponding Yij, j = 1,..., vi. (The Yi’j with i’ ~ i do not appear
in hi.) Let M’ ~ PN  Sd1  Sd2  ... be the closed subvariety
defined by the ideal (hl,..., hr), let M2 = M’ . (pN x Y2), and let M2 ~ Y2
be the morphism induced by the projection of PN x Y2 onto the second
factor.

LEMMA 1: The families Mi ~ Y, i = 1, 2, are proper and flat.

PROOF: (1) M1 ~ Yi.
The morphism Mi m X x Yl is obtained by restriction of the closed
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immersion H  P N x Pv and so is itself a closed immersion:

The morphism M1 ~ Yi is the composition of two closed immersions
and one projection:

The third map PN  Yi ~ Yi is proper because PN is proper. over k.
Since all three morphisms are proper, M 1 -+ Yi is also proper.
As for flatness, by [3], ch. 2, § 3, Proposition 15, it suffices to verify

that the localization Bx of (9m, at any closed point x E M1 is flat over the
localization Ay of OY1 at the closed point y E Yl , where x ~ y. If Bx
denotes the localization of OX  Y1 at x ~ M1 = H · (X  Y1) ~ X  Y1,
then:

1. since OX  Y1 is flat (in fact, free) over OY1, it follows that Bx is flat
over Ay ;

2. we have the exact sequence

where the first map is multiplication by the restriction of the equation
of H to Bx . Let k = Ay/my be the residue field at y. Tensoring with k gives

But, by the definition of Yi, h is not a zero divisor in the structure sheaf
of the fibre over any closed point y E Yl . Thus, the map

is injective, and

This implies flatness of Bx over Ay by the ’local criterion for flatness’
(cf. [48]): If R ~ S is a local homomorphism of Noetherian local rings
and m is the maximal ideal of R, then S is flat over R if and only if
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The morphism M2 ~ Y2 is the composition of the morphisms

where the first is a closed immersion, and so M2 ~ Y2 is proper.
We prove flatness by induction on r. If r = 1, we have the special case

X = PN of the first part of this lemma. Suppose that r &#x3E; 1 and flatness

holds for r - 1.

Let  be the Y2 for r -1, i.e., the moduli space of complete intersections
of multidegree (dl, ..., dr-1) in P’. Let M be the closed subvariety of
PN x Sd 1 x ... x Sdr defined by the ideal (h1 , ..., hr-1). Let M’ be the
closed subvariety of

defined by the ideal (h1, ..., hr-1). (Recall that h1, ..., hr-1 do not involve
the coordinates Yr0,..., Yrvr of Sdr.) Let

The expression in brackets is the M2 for r - 1. Hence, the induction
assumption and the fact that flatness is preserved under change of base
imply flatness of the morphism

induced by the projection PN x  x Sdr ~  x Sdr . The morphism
M* ~ Y x Sdr remains flat when restricted to the Zariski open set over
Y2 c  x Sdr . That is, the following morphism is flat :

Now M2 = M’ · (PN x Y2) is the closed subvariety of  · (PN x Y2)
given by the equation hr. We are hence in the same situation as in part (1)
of this lemma. Namely, we must prove flatness of a morphism whose
local ring Bx at any point is the quotient of multiplication by hr in a
flat local ring B’x:
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The rest of the proof is identical to the proof of the first part of the
lemma. QED

LEMMA 2: Suppose that for some positive integer d

Then the cohomology along the fibers of the structure sheaf of the
family of properly intersecting hypersurface sections parametrized by
Yi c Sd is locally free on Yi, and its formation commutes with change of
base. 7hat is, the cohomology of the hypersurface section corresponding
to a point y E Yi is naturally isomorphic to the restriction to the fibre of
the cohomology of the family.

PROOF: Let f denote the morphism M1 ~ Yi. Let ff = OM1. By
Lemma 1, we may apply the base-changing theorems in Mumford, [42],
p. 50-51, which give the following information :

(a) For each i ? 0, the function Yi ~ Z given by

is upper semicontinuous on Yl .
(b) The function Yi ~ Z given by

is constant on Yl .
(c) If, for some i ~ 0,

is a constant function, then the direct image sheaf Rir*(F) is a locally
free sheaf on Yl , and for all y E Yi the natural map

is an isomorphism.
If y is a closed point in Yi, then



130

corresponds to taking specific values in k for the coefficients of h to
obtain a hypersurface Hy c PN.
Suppose that X and d are such that

For example, this is true for

or

(cf. [14], XII, § 1.4). Then

Now for y a closed point in Yi the sequence

is exact. The resulting long exact cohomology sequence gives

Hence the function Y1 ~ Z given by

is constant on closed points of Yi, and hence, by (a), is constant on Yi.
By (b), the function

is also constant on Y,. Hence we have the conclusion in (c) for all i,
and Lemma 2 is proved.

LEMMA 3: Let F : V ~ V be a p-linear endomorphism of an m-

dimensional vector space V over a perfect field of characteristic p. Then
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PROOF: Since V = VS QQ Vnilp, we immediately reduce to the case
V = Vnilp But then, if FiV ~ (0), i ~ 0, we have

Thus, dim FiV ~ m - i, i = 0, 1, ..., m, and FmV = (0). QED
For any closed point y E Yl , consider the semisimple part of

V = Hn-1(OX·Hy) under the action of the Frobenius F. Let m = dim V,
and let mss = dim Vss. Let Y’ = Spec A be an affine open neighborhood
of y over which  = Rn-1 f*(F) is free (for example, without loss of
generality we may take

That is,

(For any A-module we let the tilde denote the associated sheaf over
Spec A.)
We claim that for closed points y’ in some (perhaps smaller) neighbor-

hood Y’ of y, we have

Now the action of Fm on | Y0 ~ Ãm is given by an m x m matrix with
entries in A. Consider the map

induced by Fm on the mgg -th exterior product. By Lemmas 1 and 2, the
left side of (*) equals

For any point y’ E Y° this dimension is ~ mss if and only if

The set
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is open because Fmss, being an endomorphism of a free finitely generated
A-module, is given by a matrix with entries in A, so that Y° - Y’ is the
set of common zeros of all these entries. Since Y’D y, Y’ is a neighborhood
of y in which (*) holds.

Finally, because

is injective, it follows that the stable and nilpotent ranks of

under the Frobenius - that is, of the Hasse-Witt - differ by constants
independent of Hy, from the stable and nilpotent ranks of Hn-l«(9X’Hy’).
Hence we have proved :

LEMMA 4: If X c PNk is a projective Cohen-Macaulay scheme (resp.
a complete intersection) and if for some hypersurface Ho c PNk of degree
d » 0 (resp. d &#x3E; 0) which intersects properly with X = X x k k the

nilpotent rank of the Hasse- Witt matrix (the ’defect’) of X. Ho is given by
e(X, HO), then for general H (i.e., for all H in a nonempty Zariski open
set of the space Sd of hypersurfaces of degree d in PNk) the defect of X. H
is ~ e(X, HO).

3. Degree of a generically reduced projective scheme
We next discuss how to assign a degree D to an arbitrary n-dimensional

projective scheme X c P’ ail of whose n-dimensional irreducible

components are reduced, and how to bound dimk Hn(OX) in terms of n
and D.

Let X ° be the union in X of all n-dimensional components of X.
Then the closed immersion i : X ° y X gives an exact sequence of
sheaves on X

where the kernel K has support of dimension  n. Then the resulting
long exact cohomology sequence gives

so that lower dimensional components may be ignored in estimating
dimk Hn«9,).
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If X is reduced and irreducible, then from Safarevic ([5 1 ], ch. 1, § 6.5)
we know how to define deg X. Namely, let P* be the dual projective
space of hyperplanes in PN . Let

be the closed subvariety defined by the incidence relation: a closed point
(11, ..., ln+ 1, x) E S if and only if l1(x) = ... = ln+ 1(x) = 0. Let

be the projection. Then 03C0(S) turns out to have codimension one in
P*  n+1 times  P* and so is given by a reduced polynomial homogeneous
of some fixed degree D in each of n + 1 sets of N + 1 variables. By defini-
tion, deg X = D.

If we choose hyperplanes (Hi , ..., Hn) in the nonempty Zariski open
subset of P* x n times  P* in which Hi intersects properly with

then Xi H1 ... Hn consists of ~ D points, and consists of precisely D
reduced points for (H1, ..., Hn) in a nonempty Zariski open subset of
P*  n times  P* (cf.[51]).
If X c pN is an arbitrary n-dimensional projective scheme all of whose

n-dimensional irreducible components X1,..., X m are reduced, then we
define

Equivalently, we may define deg X as the number of points of intersection
of X with the intersection of n general hyperplanes, since the intersection
of n general hyperplanes misses both the lower dimensional components
of X and also all intersections Xi Xi of different n-dimensional
irreducible components. Thus

We further note that
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for r ~ n general hyperplanes H1, ..., Hr .
Finally, we shall need a slight generalization of the method for deter-

mining deg X by intersection with general hyperplanes. Namely, let

P c PN be a linear subspace disjoint from X, and let P* c P* be the
linear subspace of [* whose points correspond to hyperplanes con-
taining P. The exact same reasoning as for (H1, ..., Hn) ~ P* x n times x P*
will show that the intersection of general (H1, ..., Hn) E P* x ntimes x P*
meets X in D reduced points. We are now ready for

LEMMA 5: If X c PN (X c PNk, X = X x kk) is an arbitrary n-dimen-
sional projective scheme all of whose n-dimensional irreducible components
are reduced, and if D = deg X, then

PROOF : As mentioned above, we may assume that X is an equidimen-
sional projective variety of dimension n. We use the following

FACT : There exists a finite birational morphism

where X’ c Pn+1 is a hypersurface of degree D.
This fact is essentially proved in Mumford, [44], p. 373-378, using

a projection ç from a subspace P disjoint from X. The only new assertion
here is that deg X’ = deg X. But, as noted above, the hyperplanes used
to determine deg X may be chosen generically from among those con-
taining P. In addition, the n general hyperplanes in pn+1 used to determine
deg X’ may be chosen so that their intersection misses the closed sub-
variety of X’ where the birational morphism ç is not an isomorphism.
Thus, deg X’ - deg X.

So let ç : X - X’ be as in the above fact. We have the short exact sheaf

sequence

where the quotient sheaf Q has support of dimension ~ n -1, since ç
is birational. Then we have exactness of

so that
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(cf. Serre, [54], p. 258). QED

4. X-regular sequences
Let X c PNk be a projective scheme, with k any field for the duration of

this section. If H1, H2, ..., Hd are hypersurfaces in PN with equations
h1, ..., hd, we say that H1, ..., Hd is an X-regular sequence if in any
affine open set Spec R of X, for any il  i2  ...  ij, j ~ 1, multiplica-
tion by hij is injective in R/(hil’ ..., hij- 1) ( = R if j = 1). The definition
of an X-regular sequence may be restated: for any i l  i2  ...  ij,
Hij intersects properly with X · Hi, - Hi2 ... Hij-1 (= X if j = 1).

LEMMA 6: If X is an arbitrary projective scheme, then there exists a
constant C depending only on X such that for any sequence of hyperplanes
H1, H2 , ..., Hd which is X -regular :

PROOF : We prove by induction on d that for all i ~ 0 and all j ~ 0
there exists a constant Cd, i,j independent of the hyperplanes N1,..., Hd
such that

Since Hi(OX· H1 ... Hd) = 0 if i &#x3E; dim X - d, there are only finitely many
pairs (d, i) for which Cd, i, 0 ~ 0, so this claim implies the lemma.

If d = 0, there are no H’s and (*) is trivial. Suppose d ~ 1 and (*)
holds for d -1. If H1, ..., Hd is an X-regular sequence of hyperplanes,
then for any j ~ 0 the sequence of sheaves

is exact. Then we have for all i ~ 0
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Hence

LEMMA 7: Let X c PNk be any n-dimensional projective scheme, and let
Hi,..., Hd be an X -regular sequence of h ypersurfaces. Then the sequence
of sheaves

is exact. Here ao is restriction and ar on OX·Hi1···Hir has image in

r

~ is OX·Hi1 Ir J (by convention, io = 0, ir+1 = d+ 1),

where it is defined on the s-th term as (-1)r-s restriction.

PROOF : The map a is clearly a differential. We must prove acyclicity.
Let Spec A be any affine open set in X, let hi E A be the equation of Hi
in Spec A, i = 1, ..., d, and let (*) denote the restriction to Spec A of the
sheaf sequence in the lemma. We must prove that (*) is exact.
We let Z[X] = Z[X1,..., Xd], and we make A into a Z[X]-algebra

by the map (p : Z[X] ~ A sending Xi+4 hi. Then (*) is the sequence
obtained by applying A 01[x] to the sequence of Z[X]-modules

where ai is made up of the canonical surjections

and ar takes Z[X]/(Xi1,..., Xir) to

by (-1)r-s restriction. We prove the lemma in three steps.
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Step 1. (*’) is exact. Because a’ is made up of + restriction mappings,
it follows that (*’) is the direct sum of sequences over Z corresponding
to each monomial m = PJ Xvjij E Z[X] :

where 1 ~ {1,..., d} is the set of indices of Xi’s not appearing in m.
(If m is divisible by X1 X 2 ... Xd, i.e., 1 = p, then (*m) is the zero sequence.)
Without loss of generality, it suffices to take 1 = {1, ..., d}, i.e., m = 1,
and show exactness of (*m).
We define the free abelian groups

give them the usual structure of exterior multiplication, and define the
sequence

by letting each 03B1"i be exterior multiplication by

Then, because of the way the 03B1’i were defined, the complex (*’1) is iso-
morphic to (*"). In turn, the integral unimodular transformation of 039B 1
given by

induces an isomorphism of (*") with the sequence

where now the 03B2i are defined by exterior multiplication by dX 1 But (**)
is clearly exact, since for r = 1, ..., d

This concludes the proof of Step 1.
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Step 2. Exactness of (*’) implies exactness of (*) if we have

This is a standard fact about change of rings whose proof is easy and
will be omitted.

Step 3. We have :

We use induction on r. For r = 0 we trivially have

Suppose r ~ 1, and Tj;i1, ..., ir-1 = 0 for j &#x3E; 0, all il , ..., ir-1. Given any
il , ..., ir, consider the short exact sequence of Z[X]-modules

which leads to the long exact sequence of Tors

The first map in the bottom row is injective precisely by the definition
of an X-regular sequence. By the induction assumption Tj;i1,..., ir-1 = 0
for j &#x3E; 0. Hence Tj;i1,..., ir = 0 for j &#x3E; 0. This proves Step 3, and by the
same token Lemma 7. QED

5. Asymptotic invertibility
Again let k = IF q. If X c PNk is a reduced equidimensional projective

scheme of dimension n and degree D, we let Tn ~ P* X n times X P* be the
nonempty Zariski open set of n-tuples of hyperplanes H 1, ..., Hn for
which X . H1 ··· Hn consists of D reduced points. For d ~ n, we define
Td c P* x d times x P* as follows :
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where ni1... in is the map from P*  dtimes  P* onto P*  ntimes  P*
given by projection onto the il-th, i2-th, -.., in-th terms. For d  n, we let

where

is the projection onto the first d terms. Then for d &#x3E; 0 any (H1, ..., Hd) E Td
is an X-regular sequence.

THEOREM 1: Let X c pN (X = X x k k) be a reduced equidimensional
projective scheme of dimension n and degree D. Then there exists a h yper-
surface H in pN of any degree d &#x3E; 0 such that the defect

where c is a constant depending only on n and D. The stable rank of
the Hasse-Witt matrix of X. H then has the same leading term as
dimk Hn-1(OX·H), namely Ddn/nL

PROOF : We choose any hyperplanes (H1, ..., Hd) ~ Td. Let

H = H1 U ... u Hd . We claim that this H satisfies the theorem.
By Lemma 7, we have an exact sequence

We break this up into short exact sequences, by defining

We obtain:

(Note: we do not assume that d ~ n ; if d  n, some terms vanish and
the arguments still hold.)
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The first sequence gives the exact cohomology sequence

The Frobenius acts bijectively on the second and third terms in the first
row, because those intersection schemes are all reduced. Hence F also

acts bijectively on the first term. Since passing to the nilpotent part is
an exact functor, we have

by Lemma 5 applied to each scheme Xi Hi, ··· Hin-1. This same exact
sequence also gives us

(Note that X· Hi1··· Hin- 1 is not necessarily connected, but it has at

most D connected components.)
Similarly, the j-th short exact sequence above (j = 2, 3, ..., n-1) gives

the cohomology sequence

since it is clear (for example, arguing inductively) that Hq(Kj) = 0 for
q &#x3E; j. We have

Since Kn-1 = OX·H, we have
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where c depends only on n and D. But then

The final assertion of the theorem is proved as follow:

where C is the constant from Lemma 6 (which, we recall, may depend
on X, not only on deg X). Hence for some constants Ci and C2

where Ci depends only on deg X and C2 depends only on X. QED
Combining Theorem 1 and Lemma 4, we have

THEOREM 2: Let X c PN (X = X x k k) be an equidimensional projec-
tive variety of dimension n and degree D which is Cohen-Macaulay
(resp. is a complete intersection). Then there exists an integer do such that
for d ~ do (resp. for d &#x3E; 0) the general hypersurface H of degree d in
PN has defect

where c is a constant depending only on n and D (but do may depend on X).
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6. Invertibility for complete intersections
One of L. Miller’s results in [40] is a proof of the invertibility of the

Hasse-Witt matrix for general hypersurfaces of any degree. That is,

In particular, the invertibility conjecture (that e(X, d) = 0 for d » 0)
holds for X = Pi. Using the technique in the proof of Theorem 1,
we have a simple proof of a slight generalization of this.
Namely, let (d 1, d2 , ..., dr) ~ Zr+, r ~ 0, be any fixed multidegree.

Recall that

is the nonempty Zariski open set of r-tuples of hypersurfaces Hi c PN
of degree di which intersect properly, i.e., such that Hl - H2 ··· Hr is a
complete intersection. By ’the general complete intersection of multi-
.degree (d1, d2, ..., dr)’ we mean ’any complete intersection in some

nonempty Zariski open subset of S dl, d2, ..., d,.. 
’

THEOREM 3: The general complete intersection of multidegree
(dl, d2, ..., dr) in P’ has invertible Hasse- Witt matrix.

PROOF: By the second part of Lemma 1, we are dealing with a flat and
proper family of varieties. Then the same argument that was used to
prove Lemma 4 shows that it is sufficient to find a single example of a
complete intersection of given multidegree with invertible Hasse-Witt.
We show:

CLAIM : If H11, H12,..., H1d1, H21,..., H 2d2’ Hldr is a sequence of
dl + d2 + ... + dr hyperplanes in general position (i.e., ’a pn-regular
sequence; all possible intersections must have the ’right’ dimension)
and if

then the complete intersection

has invertible Hasse-Witt.
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We prove the claim by induction on r. The claim is trivial if r = 0.
Suppose r &#x3E; 0 and the claim holds for r -1 (for all dimensions

N ~ r -1 of the ambient projective space). Let {Hij} be an PN-regular
sequence of hyperplanes with Hi = ~dij=1 Hij, as in the claim. Let

(Let X = PN if r = 1.) Let n = dim X.
We apply Lemma 7 to the variety X and the hyperplanes

Hr 1, Hr2 , ..., Hrdr . As in the proof of Theorem 1, we break up the
resulting exact sequence into short exact sequences (Kn - 1 = (9X - Hr =

(!)Hl’H2’ ···Hr):

The first sequence gives the exact cohomology sequence

The Frobenius acts bijectively on the second and third terms in the first
row. Moreover, by the induction assumption applied to the complete
intersection

in the projective space

the Frobenius acts bijectively on
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Hence F acts bijectively on Hl(K 1).
Similarly, the j-th short exact sheaf sequence above (j = 2, 3, ..., n-1)

gives the exact cohomology sequence

(Here we use the fact that a j-dimensional complete intersection has
vanishing (j-1)-st cohomology, j ~ 2.) By the induction assumption
applied to the complete intersection

in the projective space Hri1··· Hrin-j, the Frobenius acts bijectively on
the third term. Suppose F acts bijectively on Hj-1(Kj-1). Then it acts
bijectively on Hj(Kj). Hence, it follows by induction that F acts bijectively
on Hj(Kj), j = 1, 2, ..., n-1. In particular, it acts bijectively on

Hn-1(Kn-1) = Hn-1(OH1·H2···Hr), and we are done. QED

COROLLARY : Let

(0 ~ r ~ N) be fixed imbeddings as successive hyperplanes. Let

denote the Zariski open set of complete intersections X c P’ of multi-
degree (dl, d2, ..., dr) for which:

(a) X intersects properly with each Pi, i = r, r + 1, ..., N -1;
(b) the X - P’ all have invertible Hasse-Witt matrices,

Then Sdl, d2, ..., dr is nonempty.

THEOREM 4: The general complete intersection X of multidegree
(dl , d2, ..., dr) in PN has the property that e(X, d) = 0 for d &#x3E; 0. In

particular, the invertibility conjecture holds for such general X.

PROOF : We prove that X E Sdl, d2, ..., dr implies e(X, d) = 0 for d &#x3E; 0.

The proof is by induction on N. The implication is trivial if N = r.
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Suppose that N &#x3E; r and that e(X’, d) = 0 for d &#x3E; 0 for any X’ in the

S*d1,d2,..., dr;N -1 corresponding to pN -1. By Lemma 4, for our

X ~ S*d1,d2..., dr;N we need only exhibit one H ~ Sd which intersects

properly with X and for which e(X, H) = 0.
We now use induction on d. First, e(X, 1) = 0 because X. PN-1 has

invertible Hasse-Witt. Suppose e(X, d-1) = 0. Let H’ c pN be a

hypersurface of degree d -1 intersecting properly with X such that:
(a) e(X, H’) = 0;
(b) H’ intersects properly with X- pN - 1 ;
(c) e(X·PN-1, H’·PN-1) = 0.

Such H’ need only be in the intersection of three nonempty Zariski open
sets in Sd-1. (Property (c)) is fulfilled for a nonempty Zariski open set
in Sd-1 because of the induction assumption on N and the fact that

Let H = H’ ~ PN-1. Since H’, PN-1 form an X-regular sequence of
hypersurfaces, the following sequence is exact by Lemma 7:

The resulting exact cohomology sequence is

By construction, the Frobenius acts bijectively on the first and third
terms. Hence F acts bijectively on HN-r-1(OX·H). QED

7. Invertibility for curves of given genus
In [39] Miller proves by explicitly computing an example that the

generic curve of genus g (in the sense of Deligne-Mumford [6]) has
invertible Hasse-Witt matrix. Here is a simpler, more geometrical
construction of an example :

THEOREM 5: The generic curve of genus g has invertible Hasse-Witt
matrix.

PROOF : Let E1, E2, ..., Eg be an y elliptic plane curves with nonzero
Hasse invariant. Imbed them in various planes in P3 so that for
1 ~ i  j ~ g:
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Let

Then C is a ’stable curve’ in the sense of [6]. The theorem is proved
if we show that

(1) genus C = g;
(2) C has invertible Hasse-Witt.
We prove this by induction on g. The claim is trivial for g = 1. Suppose

it holds for g - 1. Let

We have the short exact sheaf sequence

coming locally from the short exact sequence of ideals

The sheaf sequence gives the following exact cohomology sequence:

The top row is isomorphic to

so that the last map here is surjective, i.e., ô = 0. Hence the second row
gives

Therefore: 

(1) genus C = genus C’ + genus Eg = (g - 1) + 1 = g;
(2) the Frobenius is bijective on H1(OC’) (by the induction assumption)

and on H1(OEg) ~ it is bijective on H1(OC). QED
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COROLLARY OF PROOF : Given integers g and r, 0 ~ r ~ g, there exist
stable curves of genus g with diagonal Hasse-Witt matrix of rank r.

Namely, let Er+1, Er+2,...,Eg be supersingular in the above con-
struction.

REMARK: To show generic invertibility in the case of triangular genera
g = (d-1)(d- 2)/2, we see by the proof of Theorem 3 that it suffices

to take a stable plane curve, namely the union of d lines in P2 in general
position.

II. Invertibility conjecture for hypersurface sections

1. Algorithm for computing the Hasse-Witt matrix of a hypersurface
(see Dwork, [11], § 7.10 and Katz, [2 1 ], Corollary 6.1.13).

Let H c Pn+1 be a hypersurface of degree d defined by an equation

We have

In the resulting long exact cohomology sequence the coboundary gives

so that the Frobenius F on Hn(OH) corresponds to the map on

Hn+1(Pn+1, OPn+1(-d)) induced by

We write

explicitly in terms of monomials X03BB = 03A0X03BBi in k[X0, ..., Xn+1].
Now Hn+1(Pn+1, OPn+1(-d)) has basis elements 1/Xw, where

w = (wo,..., Wn+1) runs through (n + 2)-tuples of strictly positive integers
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for which wo + ... + wn+1 = d. We index these basis elements by w.
Then the (w, v)-entry in the Hasse-Witt matrix of H is given by:

The following lemma allows us to use this algorithm to compute
e(X, d) if X is a hypersurface.

LEMMA 8: If X c Pn+1k is a hypersurface, then for any hypersurface
H c Pn+1 intersecting properly with X we have :

For example, if X has invertible Hasse- Witt, then X. H has invertible
Hasse-Witt if and only if X ~ H has invertible Hasse-Witt.

PROOF : From Lemma 7 we have the exact sheaf sequence

This gives

from which the lemma follows immediately.

2. Counterexample to the invertibility conjecture
Recall that the invertibility conjecture of Grothendieck-Miller [40]

asserts that e(X, d) = 0 for d » 0. We show that this is false in general,
even for hypersurfaces X.

Let X c Pn+1Fp be the hypersurface with equation

i.e., X is the ’cone’ over the Fermat hypersurface in Pn-s with ’vertex’
consisting of the Ps at infinity (having homogeneous coordinates

Xn-s+1, Xn-s+2,...,Xn+1). Suppose that p  D, p D. Then:

CLAIM : e(X, d) &#x3E; 0 for all d &#x3E; n+1-D ; and, in fact,

e(X, d) - dS/s! for d » 0.

PROOF : Let H be any hypersurface of degree d &#x3E; n + 1- D which
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intersects properly with X. In the Hasse-Witt matrix of X u H there
are

rows corresponding to W ~ Zn+2+ for which wo = w 1 = ... = Wn-s = 1.
For such a w, the first n - s + 1 components of the vector pw - v are all
~ p-1  D for all v. Let 03A3A03BBX03BB be the equation of X u H raised
to the (p -1 )-st power:

Since (XD0 + XD1 + ... + XDn-s) divides 03A3A03BBX03BB, it follows that

Apw-v = 0 if the first n-s+1 components of pw-v are all  D. Thus,
the Hasse-Witt matrix of X u H has at least

zero rows. By Lemma 8,

3. Revised conjecture
It seems that the amount of singularity of the fixed variety X has a

bearing on the asymptotic order of growth of the defect of hypersurface
sections.

REVISED INVERTIBILITY CONJECTURE : Let X be an equidimensional
projective Cohen-Macaulay scheme of dimension n and degree D whose
singular locus has dimension s, where n &#x3E; 1, -1 ~ s ~ n. Then there
exists an integer do such that

where c is a constant depending only on n, s and D (but do may depend
on X). In particular, if X is smooth (i.e., s = -1), then X satisfies the
Grothendieck-Miller invertibility conjecture:
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REMARKS: (a) If s = n, i.e., if X has a non-reduced component, then the
conjecture only has meaning if we extend the definition of ’degree’
to such X, and then it is trivial, since

(b) The revised conjecture is true for s = n - 1 by Theorem 2.
(c) If s ~ 0, we may equally well define e(X, H) as

instead of

The revised conjecture is unaffected by the constant difference between
these two nilpotent ranks if s ~ 0. However, if s = 0 the new constant
c may now depend on X as well as n, s, and D.

(d) The counterexample in § 2 above shows that this revised conjecture
is the best possible general result we can hope for.

THEOREM 6: If the revised conjecture holds for some s - 1 ~ 0 ( for all
n ~ s), then it holds for s. However, if s -1 = 0, then the constant c in
the conjecture may depend on X as well as n, s, and D.

PROOF : Let X be as in the revised conjecture. Choose a hyperplane P
such that X · P is an equidimensional projective Cohen-Macaulay
scheme of degree D and dimension n - 1 whose singular locus has dimen-
sion s - l. By hypothesis, the revised conjecture applies to X. P. We
choose do large enough so that Lemma 4 applies to X for d ~ do and
so that the revised conjecture applies to X . P for d ~ do. 
Now for d ~ do + 1 let H’ be a hypersurface of degree d -1 intersecting

properly with X and with X . P such that:

Let H = H’ ~ P. By Lemma 7 we have the exact sequence
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which gives

Then we obtain

where cl , c2, C3 are constants, of which c, and c3 may depend on X
as well as on n and D. Let c4 = Cl + c2 + c3. Then

Using the same inequality with d -1 in place of d and iterating this
process until we reach do, we find

This inequality holds for d ~ d’0, where d’ is taken large enough
(depending on X) to take care of the constant e(X, do) and, if s -1 &#x3E; 0,
the linear term. Note that if s-1 = 0, then we have a new constant
coefficient of ds, namely c+c4, which may depend on X as well as n,
s, and D. QED

We are left with the following
Open questions. (a) If X is a projective Cohen-Macaulay variety with

point singularities, is the defect e(X, d) bounded as d ~ oo ?
(b) If X is a smooth projective variety, does e(X, d) = 0 for d » 0?
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4. Example showing that the revised conjecture is false without the
condition d » 0

Let X be the Fermat hypersurface of degree n + 1 and dimension n
defined over FP:

Note that X is smooth if p  n + 1.

CLAIM : If p  1 2n+1 (resp. if p = 2), then e(X, d) &#x3E; 0 for d ~ n + 3
(resp. for d ~ tn2 - 1).

PROOF: Since Hn(OX) = 0, X trivially has invertible Hasse-Witt.

Hence, by Lemma 8, for any properly intersecting hypersurface H

We use the algorithm to show that, if d ~ n + 3 (resp. d ~ !n2 - 1) and
p  2n + 1 (resp. p = 2), then the Hasse-Witt of X u H has a zero row
corresponding to any w ~ Zn+2+ whose components wi, i = 0, ..., n + 1,
are most nearly equal to each other (i.e., all equal to either

where [ ] is the ’greatest integer’ function). In fact, for such w all the
components of the vector pw - v are bounded by

But the polynomial E AÂ X’ in the algorithm is divisible by

In particular, Apw-v ~ 0 is only possible if some component of pw - v
is at least n + 1. Thus, the Hasse-Witt of X ~ H has at least one zero row.
The claim is proved.
Note that this example does not preclude good a priori estimates for
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do in the revised conjecture for low dimensions n. The next chapter
offers a conjecture along these lines in the case n = 2.

III. A conjecture on hyperplane sections of Lefschetz-imbedded surfaces

Let In, do be the set of smooth n-dimensional projective varieties

imbedded in Pm k (k = Fq) for some m for which the generic hypersurface
section of any degree ~ do has invertible Hasse-Witt matrix:

The revised invertibility conjecture asserts that all smooth varieties

belong to some ln, do. If n = 2, let 1 do = I2, do . In this case there is some
evidence for the following more precise conjecture.
An imbedding

of a smooth, proper, irreducible variety is said to be Lefschetz if there
exists a Lefschetz pencil of hyperplanes in the dual projective space P*.
Except in the special case when dim X is odd and X is defined over a
field of characteristic 2, this is equivalent to : the map

is either not everywhere ramified or else has image of codimension ~ 2
(see Katz, [25]). Here P(N) is the subvariety of X x P* consisting of
pairs (x, H) such that H is tangent to X at x, and ç is induced by the
projection

For example, if X is a hypersurface with homogeneous equation
F(Xo,..., X m), then P(N) xé X and 9 : X ~ P* is given in homogeneous
coordinates by the ‘Gauss map’

CONJECTURE: Let
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be a smooth, proper, irreducible surface. Then

In particular, X always belongs to 12 (since its second and higher Segre
imbeddings are always Lefschetz, cf. Katz, [25]).

EVIDENCE: 1°. If X is a Lefschetz-imbedded cubic surface in P3, then
Xe7i.

2°. If X is the Fermat cubic surface

defined over F2 - here X is not Lefschetz - then Xi I1 but X E 12 .
3°. Suppose X is the Fermat surface

defined over Fp, p  d. Since the Gauss map in this case is

it follows that X is Lefschetz if and only if p  d-1. Then first of all :

4°. In the situation of 3°,

Note that in 1 ° and 4° we have X E Il if X has a plane section with
invertible Hasse-Witt; this is a special case of

LEMMA 9: If X is a 2-dimensional complete intersection and Hl and H2
are hypersurfaces of degrees dl and d2 which intersect properly with X
and for which

then for any positive integers i and j
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PROOF: Since generic degree dl and degree d2 sections have zero
defect by Lemma 4, page 132, we may choose hypersurfaces

which have degrees

which form an M-regular sequence with respect to X, and for which

Let H = U Hrs. Then deg H = idl + jd2. By Lemma 7, page 136, we have
the exact sheaf sequence

which implies the exact cohomology sequence

Since we know that the Frobenius F acts bijectively on all terms except
perhaps for H1(OX·H), it follows that F must act bijectively there too.
Hence

and the lemma follows by Lemma 4. QED

PROOF oF 1°: Let P (-- P* be any Lefschetz pencil (here P* is the set
of planes in P3). Then the hyperplane section X . H is a genus one stable
curve if H E P. In fact, the moduli space Ml of genus one curves consists
of the j-line of elliptic curves completed at infinity by a point corre-
sponding to a rational cubic with an ordinary double point. Thus,
we have a morphism

which is not constant, since the image includes both singular and
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nonsingular cubics. Hence 03C8 is surjective, and so §(P) is not contained
in the set of supersingular cubics. QED

A LTERNATE PROOF OF 1 ° : Since i : X  P3 is Lefschetz, there exists a
hyperplane H tangent to X such that the only singularity of X . H is one
ordinary double point. That is, Xi H is the nodal cubic, which is non-
supersingular. QED

PROOF oF 2° : Here X is the Fermat cubic surface in characteristic 2.
The assertion X ~ I1 is a special case of the example on page 152 above
(where n = 2, p = 2, d = 1 ~ !n2-1).
By Lemma 9, X E 12 follows if we find quadric and cubic sections H2

and H3 of X for which X · H2 and X · H3 have invertible Hasse-Witt.
Since X has zero H2 and so trivially e(P3, X) = 0, it follows by Lemma 8,
page 148, that X · H2 and X · H3 have invertible Hasse-Witt if and only if
X u H2 and X u H3 have invertible Hasse-Witt.

First, let H2 have equation

By the algorithm for computing the Hasse-Witt of a hypersurface,
we must find the coefficient of X2w-v in

The following table gives these (w, v)-entries in the Hasse-Witt matrix
of X ~ H2:

This is obviously an invertible matrix.

Next, let H3 have equation

where a and fi are variable coefficients. Then X u H3 has a Hasse-Witt
matrix (see next page) whose determinant has the following leading
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term in (a, fi): (a + p)a2p2. Hence, this Hasse-Witt matrix is invertible
for some a, fl in some algebraic extension of F2. This establishes 2°.

Hasse-Witt Matrix of X u H3

PROOF OF 3° : Let d = tp + 1. Suppose X · H is a hyperplane section
with invertible Hasse-Witt. Without loss of generality we may assume
that the plane H has equation of the form

Then the equation f of X . H is

and we are interested in the Xpw-v coefficient (w, v E Z3+, 03A3 wi = E vi = d)
of

Let
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so that

In the Hasse-Witt matrix choose any v-column for which the sum of

the least positive residues mod p of - vi (which we denote ( - vi)) is at
least p. This is clearly possible (e.g., v = (1, 1, d - 2)). Let vo be such a v.
If a term in the above summation with indices rl, r2, r3, r4, sl, s2, S3
contributes to the coefficient of Xpw-vo for any w, then we must have

the mod p relations

But then

a contradiction. Hence the vo-column is identically zero. This proves 3°.

PROOF oF 4° : 4° is trivial for d = 1, 2 and is a special case of 1 ° for

d = 3.

Suppose d = 4. If p - 1 (mod 4), then the Fermat curve

has invertible Hasse-Witt, so we need only take the plane section Xo = 0
to show X ~ I1. Suppose p = 4t + 3, t ~ Z+ (by assumption p ~ 2, 3).

Consider the section given by Xo = aX1 + bX2 + cX3. This section
has Hasse-Witt matrix with (w, v)-entry (w, v ~ Z3+, Y wi = Y vi = 4)
equal to the coefficient of XPW-V in

We first make a table of the vectors pw - v as w, v run over the triples
(1,1, 2), (1, 2, 1), (2, 1, 1) :
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Considering the coefficient of Xpw-v as a polynomial in a, b, c, we take
only the monomial in each entry with the least total degree in a, b, c:

The determinant of the Hasse-Witt matrix, as a polynomial in a, b, c,

then has lowest degree term equal to

which is nonzero because p ~ 7. Hence the determinant is generically
nonzero.

Suppose d = 5. If p - 1 (mod 5), we may take the coordinate plane
section Xo = 0 as before. Suppose p = 5t+2, t ~ Z+ (by assumption
p ~ 2, 5). As before, we consider the pw - v coefficient in

as polynomials in a, b, c and we isolate the lowest degree term.
We index the w, v as follows:
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We first find the (w, v)-entries which have a constant term (i.e., with
no a, b, c). It is evident from the equation of fp-1 that the (w, v)-entry
has a constant term if and only if

That is, these constant terms - which turn out to equal

- are located on the upper half of the antidiagonal of the 6 x 6 Hasse-Witt
matrix. Hence, to show the non-vanishing of the first coefficient in the
determinant it suffices to consider the first coefficient in the determinant
of the lower-left hand 3 x 3 sub-matrix. The lowest degree term in a, b, c
in the determinant of this 3 x 3 matrix is easily computed. It equals

which is nonzero because p ~ 7.
The computations are analogous if d = 5 and p --- 3 or 4 (mod 5).

In the case p --- 4 (mod 5) there are no (w, v)-entries with constant term,
so the whole 6 x 6 matrix must be considered. We omit the details.

Finally, let d = 6. The case p --- 1 (mod 6) can be handled, as always,
by taking a coordinate plane section Xo = 0. Since p ~ 2, 3, 5 by assump-
tion, this leaves the case p = 6t + 5, t ~ Z+. Since there are no (w, v)-
entries with constant term, we must consider an entire 10 x 10 matrix

of terms of total degree 6 in a, b, c. (10 = genus = 1 2(6 - 1)(6 - 2).) We find
that this determinant can be immediately factored into the product of
a term which is nonzero when p  d, p  (d - 1) (this term is

and the following déterminant :
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This determinant is also nonzero for p = 6t + 5, t E Z+. Hence the Hasse-
Witt matrix is generically invertible in this case as well, and 4° is proved.

IV. p-r Rank stratification of principally polarized abelian varièties

1. Basic set-up
Let (A, 03BB) be a g-dimensional principally polarized abelian variety

defined over an algebraically closed field k of characteristic p &#x3E; 0,
where

is the polarization, which identifies A with its dual Â. Following Oort
[50], we define the p-rank rs of A to be the stable rank of the Hasse-Witt
matrix of A :

where F is the Frobenius. We define the rank r of A to be the rank of the

Hasse-Witt matrix:

We are interested in the stratification of the ’e(g + 1 )-dimensional
moduli space M. of g-dimensional principally polarized abelian varieties
over k according to the p-rank rs. More precisely, for N ~ 3 prime to p,
we consider principally polarized abelian varieties A together with a
’level N’ structure, i.e., an isomorphism
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where NA is the group of points of order N on A, such that

where the 03B4i = (0, ..., 0, 1, 0, ..., 0) are canonical generators of (Z/NZ)2g,
and , &#x3E; is the eN-pairing on NA x NÂ. By Mumford, [43], Theorem 7.9,
the functor of principally polarized abelian schemes over k-schemes with
a level N structure is representable by a fine moduli scheme M(N)g over k.
(In [43], the proof is for N &#x3E; 6gg!, and it is remarked that the fine
moduli scheme exists for N ? 3.) We further claim that M(N)g is smooth
over k. In fact, since this is a local question and M(N)g (p  N) is étale over
the moduli stack M. of principally polarized abelian varieties over
k-schemes (without level), it is sufficient to show that M. is smooth.
But M. is smooth because the functor of principally polarized abelian
schemes is formally smooth (cf. Oort, [49], p. 244-246).

Thus, let f : A(N)g ~ M(N)g be the universal family of g-dimensional
principally polarized abelian varieties over k with level N structure.
Since f is flat and proper, and dimk H1(A(N)g,y, @ (9 A(N» is constant at all

closed points y E M(N)g, it follows by the base-changing theorems (cf. [42],
p. 51) that R1(f* (9Ag (N» is a locally free sheaf C on M(N) 9 and that for all
y E M(N)g

Let m and n be any positive integers, and let F be the p-linear Frobenius
endomorphism on é = R’(f, (9A (N». Let Fn, m be the (pn-linear) endo-
morphism induced by F" on /Bmg (’matrix of minors’). If we choose an
affine open set Spec B c M(N) over which

is free, then Fn, m can be given by a matrix with entries in B. In particular,
the condition Fn,m --- 0 (identically) defines a closed subscheme of

Spec B. Thus, let SnNm be the closed subscheme of M(N)g defined by the
condition Fn, m ~ 0.
We first describe in terms of the SnNm the set of abelian varieties (i.e.,

closed points A ~ M(N)g for which rs(A) ~ rs . Suppose rs  g. Let

V = H1(OA). Notice that dim im Fi|V is strictly decreasing as i = 1, 2, ...
until this dimension reaches rs(A) (cf. proof of Lemma 3, p. 131).
Since dim im F|V ~ g -1, this means that
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Thus, the abelian varieties A E M(N) for which rs(A) ~ rs are the closed
points of

We similarly describe the set of abelian varieties A E M(N)g for which
rs(A) ~ rs and r(A) ~ r. The condition r(A) ~ r is clearly equivalent to

If r(A) ~ r, then rs(A) ~ rs if and only if dim im Fr-rs+1|V ~ rs , i.e.,
if and only if

Thus, the abelian varieties A e M(N)g for which r(A) ~ r and rs(A) ~ rs
are the closed points of

For later use, we further classify A E M(N)g;rs;r according to the least
i = 0, 1, ..., r - rs such that dim im Fi+1|V ~ rs . That is, we write M(N)g;rs;r
in terms of a disjoint union:

The goal of this chapter is to prove :

THEOREM 7: Let M(N)g (N ~ 3, p  N) be the fine moduli scheme of
g-dimensional principally polarized abelian varieties with level N structure
over an algebraically closed field of characteristic p &#x3E; 0. For 0 ~ rs ~ g,
let M(N)g;rs be the closed subset of M(N)g of abelian varieties of p-rank ~ rs.
Then :

(1) Each component of M(N)g;rs has codimension g-rs in M(N).
(2) If r,  g, then the locally closed set of abelian varieties in M(N)g;rs

whose Hasse-Witt matrix has r a n k g -1 is Zariski dense in M(N)g;rs.
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(3) M(N)g;rs is smooth at those abelian varieties whose H asse- ffitt matrix
has stable rank ~ rs and rank equal to g -1.

REMARK : It seems reasonable to conjecture that part (3) of Theorem 7

L is precise in the sense that M(N)g;rs is singular at abelian varieties whose
’ Hasse-Witt matrix has rank ~ g - 2.

2. Outline of proof of T heorem 7
A key element in the proof is the upper bound for the codimension

of the set M(N)g;rs that is provided by the following result of Oort (cf. [50],
Lemma 1.6) : Let S be an irreducible algebraic k-scheme, and let X ~ S
be an abelian scheme over S; let f be the p-rank of the generic fibre;
and let W be the closed subset of S over which the fibre has p-rank at
most f -1. Then either W is empty or each component of W has
codimension one in S.

We first note that the product of g supersingular elliptic curves has
p-rank zero, so that all the sets M(N)g;rs are nonempty. Fix rs  g. Let Crs
be any irreducible component of M(N)g;rs. Let Crs+1 ~ Crs be the unique
irreducible component of M(N)g;rs+1 which contains Crs . Note that a priori
Crs + 1 could equal Crs . In this manner we obtain Crs £; Crs+1 ~ ... ~ Cg.
For r’ = rs, rs+1,...,g-1, Oort’s result tells us that, if the p-rank of
the generic fibre of Cr’ +1 is strictly greater than the p-rank of the generic
fibre of Cr’, i.e., if Cr, =1= Cr’+1, then it follows that Cr’ has codimension
one in Cr’ +1. This implies that the codimension of Crs in M(N)g is ~ g - rs.
To obtain the opposite inequality we prove twn lemmas :

LEMMA 10: If A ~ M(N)g, rs(A)  g, r(A) = g -1, and rs(A) ~ r’ ~ g,
then the Zariski tangent space to M(N)g;r’ at A has codimension ~ 9 - r’
in the tangent space to M(N)g at A.

LEMMA 11: Let A ~ M(N)g, r(A) = 9 - h, h &#x3E; 1, and rs = rs(A). Suppose
that A is in the set S = S(N)1,g-h+1 n (S(N)i,rs+1) in the expression
for M(N)g;rs;g-h On p. 163 (where if i = 0 we take S(N)0,rs+1 = ~). Then the
Zariski tangent space to S at A has codimension &#x3E; 9 - r s in the tangent
space to M(N)g at A.

Theorem 7 is easily proved using Lemmas 10 and 11 and Oort’s upper
bound on the codimensions. In fact, by Lemma 11 and the smoothness

of M(N)g, it follows that M(N)g;r’;g-2 is a union of sets all having codimension
&#x3E; 9 - r’. Hence, if we define
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then Cr’,g-1 is Zariski dense in Cr, . Let A ~ Cr’g-1. By Lemma 10,
locally at A the set Cr. has codimension g - r’. But then Oort’s result
implies that Cr. has codimension = g- r’. This proves parts (1) and (2)
of Theorem 7. Part (3) now follows because at A E Cr’,g-1 the codimension
of the Zariski tangent space to Cr. in the tangent space to the smooth
scheme M(N)g is the same as the codimension of Cr. in M(N)g.

Since we shall henceforth be dealing exclusively with local questions,
we shall suppress the level N structure, writing Mg, Mg;rs, Mg;rs;r, Sn,m
in place of M(N)g, MgNrs, M(N)g;rs;r, SnNm. This is permissible because the
functor of infinitesimal deformations of A E M(N)g as principally polarized
abelian variety with level N structure is canonically isomorphic to the
functor of deformations of A as principally polarized abelian variety
without level.

Moreover, we know by a theorem of Grothendieck and Mumford
(cf. Oort, [49], p. 244-246) that this deformation functor is effectively
pro-representable by

That is, there exists an abelian scheme over k[[mt, Symm]] such that for
any artinian local k-algebra R with an isomorphism k z R/mR , an
element

corresponds to the deformation

In particular, the expression we shall derive for the Hasse-Witt matrix
of a deformation of A over the dual numbers k[03B5]/03B52 will also give us
the Hasse-Witt matrix of At modulo the square of the maximal ideal

mt, Symm of k[[mt, Symm]].
The basic tool needed to prove Lemmas 10 and 11 is

LEMMA 12: (1) The functor of deformations of A as principally
polarized abelian variety over artinian local rings is formally smooth and
effectively pro-representable by
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Here ‘Symm Hom’ means that if we choose dual bases coi, 11j of HO(Q’),
H1(OA), respectively, with respect to the polarization form given by

(’tg’ means tangent space at the origin), then ’Symm Hom’ corresponds to
symmetric matrices in these bases. 7hus, the tij in k[[{tij}]]/({tij-tji})
may be identified with the map .from H0(03A91A) to H1(OA) taking
Wi H 17 j, coi, H 0 if i’ =1= i.

(2) The deformation over k[03B5]/03B52 corresponding to the homomorphism
tij H uij03B5 has Hasse-Witt matrix

where H and B are g x g matrices, H is the Hasse- Witt matrix of A and
U = {uij}.

(3) The 2g x g matrix (’) has rank g.

Sections 3-7 below are devoted to proving Lemma 12. In sections
8-9 we prove Lemmas 10 and 11. Sections 10-11 discuss two further

applications of Lemma 12.
The idea of using a deformation theoretic approach to prove Theorem

7 is due to P. Deligne.

3. Deformations
Let (A, 03BB), 03BB : A  Â, be a fixed principally polarized abelian variety.

We want to know how A deforms (1) as abelian variety, and (2) as
principally polarized abelian variety.

Let’6k be the category of artinian local k-algebras R together with an
isomorphism k R/mR . Define a functor DAY from ’gk to Sets by

Let CCk be the full subcategory of k whose objects R have mi = 0.
We note that

gives an equivalence of categories between Wk and the category of finite
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dimensional k-vector spaces (with linear homomorphisms). Let

DAV : Yk  Sets be the restriction of the functor DAV to Yk.
A theorem of Grothendieck (cf. Oort, [49], p. 231) tells us that the

functor AV is pro-representable by k[[{tij}gi,j=1]]. It then follows that,
if mt is the ideal generated by the tij, and

then DAV is representable by k[mt]/mf.
We recall the explicit construction of the isomorphism

for R in Yk. Let mE denote the dual vector space of m,. Then canonically

Consider an open affine covering {Ui} of A, Ui = Spec Bi. Let

Then A’ has an affine open covering by U’i ~ Spec Bi[mR]/m2R. Then on
U’ij = U’i n U’j we have patching isomorphisms

such that qJij (8) R k = 1 Bij. Hence qJij induces a map y ij = (~ij - 1)|Bij
of By: 

where 03B3ij E Derk (Bij, Bij) (D mR, i.e., ~ij determines a section of 03B8A Q mR
over Uii. It is easy to see that the ~ij determine a 1-cocycle, which is
uniquely determined by the deformation modulo 1-coboundaries. Hence,
the deformations in DAV(R) are given by elements in
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Now the Kodaira-Spencer map from H1(A, 03B8A) x H0(03A91A) to H1(OA)
is defined by taking a 1-cocycle (yy) representing a class in H1(A, 03B8A)
and an element co E H0(03A91A) to the class in H1(OA) of the 1-cocyclc {fij},
where fij = 03B3ij, ay is obtained by evaluating the differential (D (restricted
to Uij) at the derivation yij. This Kodaira-Spencer map then gives a
canonical isomorphism

Then the map

is given by assigning to any deformation the corresponding class in

where ‘tg’ (resp. ’ctg’) denotes tangent space (resp. cotangent space)
at the origin. That is, the vector space mt in the above assertion is identi-
fied as the dual of the g2-dimensional vector space tgA Q tg :

Since the polarization 03BB induces da, : tgA  tgA, we may take

We define the functor F)ppAv k -yy- Sets by

Let DPPAV : Yk  Sets be the restriction of PPAV to Yk.
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4. ’Rigidity’ of H1R. ·
Let R be an object of k, and let A’ ~ AV(R). The i-th De Rham

cohomology along the fibres of the family

has a canonical integrable connection ~A’, the Gauss-Manin connection:

Thus, ~A’ gives an action of any d E Derk (R, R) on HiDR(A’). Following
Katz (unpublished notes), we use this structure to give an elementary
proof of freeness, base-changing, and degeneration of the Hodge =&#x3E;
De Rham spectral sequence for HDR(A’) over a ’small enough’ artinian
local ring (cf. Sublemma 7), and to construct a projection operator
P E Endk Hi which will explicitly give us a convenient basis of
H1DR(A’) for computing the infinitesimal behavior of the Frobenius F
on HbR(A’).

SUBLEMMA 1: Let Ro be any ring of characteristic p, let

and let M be an Rn-module with a (not necessarily integrable) connection

If M/(T1 , ..., Tn)M is flat over Ro, then M is flat over Rn .

PROOF: We first prove the sublemma for n = 1, i.e., T = Tl,
R = R 1 = R0[T]/Tp. By [13], Exp. IV, Corollary 5.5, M is flat over R
if and only if M/TM is flat over Ro and TorR (M, Ro) = 0. Now Ro
has a free resolution as R-module

Hence:
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Let T m = 0, m E M. We must show that m E Tp-1M. Since

we have

Let mo = m, and let

We prove by induction that m = (1/r!)Trmr. This is trivial for r = 0.

Suppose

Then Trmr-1 = (r-1)!Tm = 0, so that

as claimed. Letting r = p -1 concludes the proof of the sublemma for
. n = 1.

We now use induction on n. Suppose the sublemma holds for

1, 2, ..., n -1. Note that DerRo (Rn, Rn) is the free Rn-module

and thus that we have a natural inclusion
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Thus, V induces a connection on M as Rn-1-module. Moreover, for any
i = 1, 2, ..., n -1 and for any m E M we have

since ~Tn/~Ti = 0. Hence, for all d ~ DerR0(Rn-1, Rn-1) the endo-

morphism V(d) respects the. ideal 7§M, and so factors through
EndRo (M/TnM). Thus, M/TnM has a connection, and the induction
assumption applies. It follows that M/TnM is flat over Rn-1. Since
Rn = Rn-1[Tn]/Tpn, and since V restricted to Rn(~/~Tn) gives an Rn-1-
connection on M, we are now in the situation of the sublemma for n = 1,
with Rn-1 in place of Ro. We conclude that M is flat over Rn . QED

In our application, Ro = k,

A’ E D Av(Rn), M = Hi DR(A’), V = V,,. First note that, since k is a field,
the assumptions of Sublemma 1 all hold, and M is flat over Rn . For any
change of base Rn ~ S we have

This follows because of the flatness of the De Rham complex and the
flatness of its cohomology groups HiDR(A’). Thus:

SUBLEMMA 2: If A’ E D Av(Rn), where Rn = k[T1 , ..., 1;.]/(Tf, ..., 1;.P),
then for arbitrary change of base Rn ~ S

In particular, letting S = k, we have

SUBLEMMA 3 : Let Ro, Rn, M be as in Sublemma 1, with M/(T1 , ..., Tn)M
flat over Ro. Suppose that in the following diagram P is an Ro-linear map
such that no P = identity.
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Then the map

is an isomorphism. If M/(Tl’...’ 7’,,)M is free over Ro, then M is free
over Rn .

PROOF : Let N = M/(Tl’...’ Tn)M Q9Ro Rn’ and let 1 be the nilpotent
ideal (T1 , ..., Tn) in Rn . Then

In

the last arrow is surjective because, if m E M, then 3n E N such that

by the surjectivity of P ~ id (mod I); repeating this step for ml , ...,
we find a sequence n, nl, n2, ..., nr such that

Since I is nilpotent, it follows that P Q id is surjective. Now, since M
is flat over Rn’ applying QRn Ro to

gives

Hence Ker = I - Ker = I2 Ker = ... = 0 because I is nilpotent. QED
In our case, when M = HDR(A’), we want to find a map
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which allows us explicitly to ’trivialize’ HiDR(A’). We actually find a map
P e Endk (HiDR(A’)) such that Ker P = (T1 , ..., Tn)HiDR(A’) which induces
P on HiDR(A’)/(T1 , ..., Tn)HiDR(A’) ~ HiDR(A). This map is constructed by
’exponentiating’ the Gauss-Manin connection V A’, using a ’divided
power structure’ y on the ring Rn and the idéal ( Tl , ..., Tn).
Namely, back in the general case with M as in Sublemma 1, there

exists a divided power structure on the ring Rn and the ideal (T1 , ..., Tn)
(for the definition, see for example [38], p. 77) such that for

t = T1, T2, ..., Tn, wehave

We then define P E EndRo M by

where the w = (wl,..., wn) run through Zn~0, H E wi, and

Note that this is a finite sum. We also define an Ro-linear endomorphism
of Rn’ which will also be denoted P, by

for f E Rn .

SUBLEMMA 4 : If f E Rn, m E M, then P( f m) = P(f)P(m).

PROOF : We first claim that for u, v ~ Z~0 and for t E (Tl’ ..., Tn) we have

In fact, if u + v  p, then this becomes
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If either u or v ~ p, then both sides of (*) are zero. If u + v ~ p but u, v  p,
then the left side is zero, and the right side is (tu/u!)(tv/v!) = 0 because
tp=O.

Now

by repeated application of Liebnitz’s rule. By the change of indices
u = w - v we obtain

COROLLARY : If , f,g ~ Rn, then P(fg) = P(f)P(g).
(Apply Sublemma 4 to M = Rn with the ’obvious’ connection ~(~/~Ti)

= ê/ô Ti.)

SUBLEMMA 5 : P|Rn is a projection onto Ro with kernel (Tl , ..., Tn)Rn-

PROOF : If r ~ R0 , then, since all (~/~Ti)r = 0, obviously P(r) = r. For
t = 03A3riTi in the ideal (Tl , ..., Tn), to show P(t) = 0 it suffices by the
corollary to show that P(Ti) = 0, i = 1, ..., n. But, since (~/~Tj)Ti = ôij,
we have 

COROLLARY : Ker P|M = (Tl, - - ., Tn)M ; 
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is the identity, and p2 = P on M.
In fact, the formula for P shows that

which, together with Sublemma 5, immediately gives the corollary.

SUBLEMMA 6 : P(m2Rn M) c m2Rn M.

PROOF : We show that each term 03A003B3wi(Ti)03A0 in P takes
m2Rn M to itself. It suffices to show that for all r and s (say r ~ s; the
verification is analogous if r = s)

If wr &#x3E; 1, then (~/~Tr)wr(TrTs) = 0. If w, &#x3E; 1, then (~/~Ts)ws(TrTs) = 0.
If wi &#x3E; 0 for i ~ r, s, then (~/~Ti)wi(TrTs) = 0. This reduces (*) to the
following assertions:

These are all obvious. QED

SUBLEMMA 7: Let Rn = k[T1 , ..., Tn]/(Tp1, ..., Tpn), let A’ e DAy(Rn),
let Rn ~ S be a morphism in k, and let AS = A’ ~Rn S. Then the

Hodge ~ De Rham spectral sequence

degenerates at E1, and so we have an exact sequence

of modules which are free over S and whose formation commutes with
arbitrary change of base S ~ S’.
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PROOF : The degeneration of the Hodge ~ De Rham spectral sequence
in the case S = k is proved, for example, in Oda, [47], Proposition 5.1.

In general, since all the Ep,qr are S-modules of finite length, and hence
finite dimensional k-vector spaces, we have

(**) E degenerates at E 1 ~ 03A3p,q dimk Ep,q1 = L dimk 

We always have ~ in (**). We must show ~.
By Sublemma 3, HDRq(A’) : Hp+qDR(A) Q9k Rn’ so that, by Sublemma 2,

Hp+qDR(AS) ~ Hp+qDR(A) Qk S. Hence, the right hand side of (**) equals

Now by ’semi-continuity’ (cf. Deligne, [5], Theorem 3.3)

Hence,

because we know (**) for S = k. But this is equal to the right hand side
of (**).

Furthermore, we now know that equality holds in (***). Hence,
by the same Theorem 3.3 of [5], it follows that the Hq(AS, 03A9pAS) are all
free over S and thus their formation commutes with change of base.
In addition, the HbR(As) are free, and their formation commutes with
change of base. QED

5. Alternating inner product on H1R
We note that Sublemma 7 holds for a principally polarized abelian

scheme over any base scheme S, not just over an Rn-algebra. In fact, it
suffices to show this for the universal family f : A(N)g ~ M(N)g. In that case,
since dimk HiDR(A(N)g,y) and dimk Hq(A(N)g,y, 03A9pA(N)g,y) are constant at all closed
points y ~ M(N)g, which is reduced, we may apply the base-changing
theorems for coherent cohomology to conclude that the De Rham
cohomology and the Hodge cohomology are locally free sheaves on

M(N)g whose formation commutes with arbitrary change of base. It then
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follows by standard arguments that the Hodge ~ De Rham spectral
sequence degenerates at El if it degenerates at El at all closed points
y E M(N)g. But the case of an abelian variety over a field is proved, e.g.,
in [47], Proposition 5.1.

REMARK: Actually, this result is true for an abelian scheme over any
base, without requiring principal polarization. Messing proves this in
the ’Addendum’ to [37], to appear.

Thus, for any base scheme S and any principally polarized abelian
scheme AS ~ S we have

Using the principal polarization As : AS  Âs, we may identify

and thereby obtain a bilinear polarization form

We claim that , &#x3E; can be induced from a certain canonical alternating
inner product on H1R(As) by passing to the associated graded

The following construction, and the proof of its compatibility with the
polarization form, are due to P. Berthelot and W. Messing (unpublished
notes). 

Consider the product As x Âs with the two projections

Now AS x Âs has a canonical ’Poincaré line bundle’ fil such that the
restriction Y,, to the fibre of a closed point x e Âs is the line bundle on
AS corresponding to x. (Recall that, by definition, Âs parametrizes the
line bundles on AS algebraically equivalent to zero.) Then the class
c(fil) E H1(AS x Âs, (9Â,  ÂS) of the line bundle Y gives rise to the Chern



178

class CDR E HDR(As x Âs). We consider the map

n2* 0 (cup product with CDR) 0 ni

on H2g-1DR(AS). We have

by Poincaré duality;

again by Poincaré duality. Hence we have a canonical map

which can be shown to be an isomorphism. But H2g-1DR(AS) is dual to
H1DR(AS). Hence we have a perfect pairing

Since AS has a principal polarization Às, we have H1DR(ÂS) ~ H1DR(AS),
and so a pairing

It can be shown that this inner product is alternating; that the induced
bilinear form on the associated graded

has the properties: H0(03A91AS)~ = H0(03A91AS), H1(OAS)~ = H1(OAS) ; and that
the induced map

is the same as our earlier , ).

6. The Gauss-Manin map and principally polarized deformations
Let R be in rck, i.e., R = k[mR]/mi, mR = (T1 , ..., TN), and let
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A’ E DpPAV(R). We have an inclusion

given by f 1-+ the derivation d : R ~ R such that d|k = 0, dlmR = f.
(If p &#x3E; 2, this inclusion is a bijection.) Hence V A’ induces a canonical map

Because the functor DppAy is formally smooth and effectively pro-
representable, it follows that A’ can be realized by change of base from
some ARn E DppAy(Rn). Hence, applying Sublemma 7 to ARn and the
change of base Rn  R gives

Thus, ~A’ 03BF i gives a canonical map

Let d E Endk (mR). For any m E mR, co E HO(Q1,), we have

Hence VA,(d) kills MR H’(QÀ,). We easily see that, in addition, the image
of ~A’(d) is in MRHI«9A).

But, by the last assertion of Sublemma 7 applied to the change of base
S = R ~ k,

In addition, if we tensor

with H1(OA’), which is flat over R, we obtain
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Hence

Thus, VA, induces a map

By the ’Gauss-Manin map’, which will be denoted 03C1A’, we mean the

image of the identity of Endk (mR) in Hom (H0(03A91A), H1(OA)) Q mR .

SUBLEMMA 8 (cf. Katz, [20], Proposition 1.4.1.7) : PA’ is the element in

(tgA Q9 tgA) ~ mR ~ Hom (H0(03A91A), H1(OA)) Q9 mR

corresponding to the deformation A’ E DPPAV(R).

SUBLEMMA 9 : 03C1A’ E Symm Hom (H0(03A91A), H1((OA)) Q mR.

PROOF : Let 03C9’i, ~’j be a basis of H1R(A’) such that 03C9’i ~ H0(03A91A’) and
03C9’i, ~’j are dual with respect to the alternating inner product in section 5:

Let

Let tij E Hom (H0(03A91A), H’«9A» be the basis element roi Ho ~j, roi’ Ho 0 if
i’ =1= i (where roi = 03C9’i ~ R k and - is the image of ~’j ~R k in H1(OA)).
If we write
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then the mij are given by:

Because the cup-product construction of , &#x3E; is horizontal with respect
to the Gauss-Manin connection, we always have

Hence, since 03C9’i, 03C9’j&#x3E; = 0, we have

so that PA’ gives a symmetric element. QED

PROOF OF LEMMA 12 (1): According to a theorem of Grothendieck and
Mumford (cf. Oort, [49], p. 242-246), the functor DpPAY is a formally
smooth subfunctor of DAY, and the tij in Grothendieck’s theorem on the
pro-representability of DAV can be chosen in such a way that DppAÿ is
effectively pro-representable by

It then follows that the functor DPPAV is representable by

where mt, symm is defined as the quotient of the vector space generated
by the tij by the vector space generated by the tij - tji.

But by Sublemma 9 the functor DPPAV is a subfunctor of the subfunctor
of DAV represented by the vector space of symmetric elements. Since
DPPAY is represented by a vector space of the same dimension as this
vector space of symmetric elements, we may conclude that the symmetric
basis elements may be taken as the tij in the Grothendieck-Mumford
theorem. This proves part (1) of Lemma 12.
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7. Action of Frobenius
Let R,, == k[Tl, - - ., T,,]I(TP, - - ., T,,P), A’c- PPAV(Rn), M = H1DR(A’), and

let P E Endk M be as in section 4.

SUBLEMMA 10: PF(m) = F(m).

PROOF : We show that, for any m E M, F(m) is horizontal with respect
to V = ~A’, so that all terms of P with w ~ (0, 0, ..., 0) vanish on F(m).

In general, any change of base

induces a map a : 03A91Rn/R0 ~ 03A91S/S0 and then a connection ~(03B1) on M(03B1) =
M (8) Rn S as follows :

Now for m E M, s E S we define V(’)(m Q s) as

It is easy to see that V(’) is well-defined, and that V composed with the
map on M induced by the base change is V(’).

In our case, S = Rn, So = Ro = k, and the map

is the Frobenius F. Since F kills differentials, the map a is zero. Hence,
for any m E M, V(rx)(m Q 1) = 0. Because F as linear map M(F) ~ M is a
horizontal map from (M(F), ~(F)) to (M, V), it follows that F : M ~ M
as p-linear map satisfies
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for all m ~ M. QED
Now let {~j} be an arbitrary basis of H1(OA), and let {03C9i} be the dual

basis of H0(03A91A) with respect to the polarization form. Consider the Wi
as elements of H1DR(A) and choose any 1Jj e H1R(A) lifting ~j.

S UBLEMMA 11: There exists a basis 03C9’i, ~’j of H1R(A’) lifting 03C9i, ~j
and such that 03C9’j e H0(03A91A’) and P(~’j) = ~’j.

PROOF : Because

the basis 03C9i, ~j can be lifted to a basis 03C9’i, ~’j of H1R(A’) such that
03C9’i E H0(03A91A’). In fact, any elements in a free module M which reduce to
a basis in M/IM, I a nilpotent ideal, must themselves be a basis of M
(see proof of Sublemma 3). Let q’ = P(~’j). Since P is the identity modulo
(Ti,..., Tn)H1DR(A’), it follows that 03C9’i, ~’j still lift 03C9i, ~j and so are a basis of
HDR(A’) adopted to the Hodge filtration. Moreover, since P’ = P,
we have P(r¡j) = il’.. QED

Since F kills differentials, the matrix of F on HDR(A) with respect to
the basis Wi, r¡j is of the form

and the matrix of F on H1R(A’) with respect to the basis 03C9’i, ~’j is of the
form (8 Ir). In addition, F on H1R(A) has the property (cf. Oda, [47],
Proposition 5.4):

Hence the 2g x g matrix (B H) has rank g.
Now the Hasse-Witt matrix H’ = {h’ij} of A’ is given by

i.e.,
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Applying P to (*) gives

since b’ij, h’ij reduce in Rn/(T1,..., Tn) = k to the matrix of the action of
F on H1DR(A’)/(T1 , ..., Tn)H1DR(A’) ~ H1DR(A), namely bij, hij.
Now let mRn dénote the ideal (Ti,..., Tn), let S = Rn/mRn = k[mRn]/m2Rn,

and let AS = A’ Q9RnSEDPPAV(S). Then VA, induces ~As on H1R(As).
Let 03C9Si = 03C9’i ~RnS; ~sj = YJ’. ORn S.
By Sublemma 6, P induces an endomorphism Ps on

SUBLEMMA

PROOF : First note that all terms in P with |w| ~ 2 map all of H1DR(A’)
to m2Rn H1DR(A’)· Next, since Ti(~/~Ti) is a derivation of S, it follows by
the functoriality of the Gauss-Manin connection that

induces

Hence

PROOF OF LEMMA ’12 (2): The Hasse-Witt matrix HS = {hSij} of As is
given by
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Reducing the equation (**) above modulo m2Rn H1DR(A’) gives

Notice that Lr ~As(Tr(~/~Tr)) is the image of the identity endomorphism
of (Ti,..., Tn) under the map As defined in section 6.
We now specify a choice for S, As, Rn, A’. Let ms be the quotient of

the vector space with basis {Tij}gi,j=1 by the vector space generated by
the Tij- Tji. Let S = k[ms]/m2s. Let Rn = k[mS]/({mp}m~ms), i.e., here

Let As E DppA,(S) be the ’generic square zero deformation’, i.e., the
deformation corresponding to the element in

given by r;i Q qj H Tij. Since AS can be realized by change of base from
some A’ E PPAV(Rn), it follows that the construction in the last paragraph
applies. As remarked there, Lr ~As(Tr (8/8T,.)) is the image of 1 E Endk ms
under ~As. But, by Sublemma 8, ~As(1) induces the element in

namely PAs’ which corresponds to As. That is,

(Recall that úJi, i¡j were chosen to be dual bases.) Thus,

i.e.,

where T is the generic symmetric matrix {Tij}. Thus, the deformation
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over k[e]le’ corresponding to the homomorphism Tij ~ Uij8 has Hasse-
Witt matrix Hu = H 2013 03B5UB, and Lemma 12 is proved.

8. Isomorphism types of p-linear endomorphisms
We now discuss how to normalize H(A) in a convenient way by a

suitable choice of basis for H1(OA).
Let H be the matrix of a p-linear endomorphism F with respect to a

basis vl , ..., vg of a g-dimensional k-vector space V on which F acts.
First, vl , ..., vrs (rs = stable rank of H) may be chosen to be fixed by F
(cf. Katz, [21], Proposition 1.1). Then, just as in the linear case, we easily
see that, for suitable choice of vrs + 1, ..., vg, the p-linear action of F on

vnilp has matrix

where Ngi is the gi x gi nilpotent rank gi -1 matrix of the form

Hence, there is a one-to-one correspondence between isomorphism
types of p-linear endomorphisms of V and partitions P = (r’, gl , g2,..., gh)
of g such that

given by
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where Ir, is the r’ x r’ identity matrix.
If A E M. and the Hasse-Witt matrix H(A) is of type P,

then clearly

9. Tangent space computations
By [44], p. 331-332, the Zariski tangent space to the scheme Sn, m

at A is given by the set of morphisms

whose restrictions to Spec k have image point A. Since Mg represents
the deformation functor, this tangent space is given in Spec k[m,]/mt’
by the condition that the morphism k[mt]/m2t ~ k[03B5]/03B52

corresponds to a deformation Au whose Hasse-Witt matrix H. satisfies
the equations of Sn,m:

where the superscript (p’) denotes raising all entries to the pi-th power.
We saw that

where U is the matrix {uij} and where (8 H) is the matrix of F|H1DR(A)·
We may assume that a basis of H1DR(A) is chosen so that H is normalized
as in section 8 above. Then, since 82 = 0 and H has all entries 0 or 1,
we have



188

PROOF OF LEMMA 10: Here A E Mg, rs(A)  g, r(A) = g -1, and

rs(A) ~ r’ ~ g. The Zariski tangent space to Sg-r’,r’+1 at A, which
contains the tangent space to Mg,r’ = (Sg-r’,r’+1)red, is given by the
condition:

If we again take H(A) in the normalized form of section 8, which in this
case is (k. N " 9 _,, ), then clearly

and Hg-r’ is the same type of matrix with ’g - r’- l’ replaced by ’g - r"
(i.e., one more zero column) and with ’r’ - rs + 1’ replaced by ’r’ - r,’
(i.e., one fewer column on the right with a one). It follows that the possibly
nonzero (r’ + 1 )  (r’ + 1) minors in Hg-r’ - 8 U BHg - r’ - 1 are obtained by
multiplying the r’ ones in Hg-r’ and then taking a term in the

(r’ + 1 )-th, (r’ + 2)-th, ..., or g-th row and in the (rs + 1 )-th, (rs + 2)-th, ...,
or (g-r’+rs)-th column of 8UBHg-r’-1. But all of these columns of
03B5UBHg-r’-1 except for the (g - r’ + rs)-th vanish, while the i-th term

ai in the (g - r’ + rs)-th column is equal to

Since the (rs + 1)-th column of B is nonzero (or else we would have
~rs+1 E Ker F|H1DR(A)), it follows that the ai give nonzero linearly indepen-
dent forms in the uij. Hence the vanishing of all possible (r’+1) x (r’+1)
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minors is equivalent to the g - r’ independent conditions:

PROOF OF LEMMA 11: Here A E Mg, r(A) = g - h, h &#x3E; 1, and rs = rs(A).
Suppose H = H(A) is of isomorphism type P = (rs, gl , ..., gh). Since
Lemma 11 suppose A ~ Si+1,rs+1 - Si,rs+1, this means g 1 = i + 1. Since
Sgl-1,rs+l is a closed subscheme of Sg1,rs+1 not containing A, the claim
of Lemma 11 becomes: the Zariski tangent space to S1,g-h+1 n Sg1,rs+1
at A has codimension &#x3E; g - rs. Let Tl denote the tangent space to

S1,g-h+1 at A, and let T2 denote the tangent space to Sg1,rs+1 at A.

We must show that

Now Tl is given by the condition:

This condition implies that an entry in UB vanishes if it is in the

row of UB and in the

column. Since by assumption h &#x3E; 1, we have at least the following two
relations :

Next,, T2 is given by the condition:

all (r, + 1) x (r, + 1) minors in Hg1 - BUBHgl -1 vanish.

But the possibly nonzero minors are precisely equal to the entries in
the lower-right (g-rs) (g-rs) block of BUBHgl-1. Note that Hgl-1
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has at least one entry 1 in its lower-right (,g - rs) x (g - rs) block (it has more
if g2 - 91):

Let UBH91 -’ = {cij}. We set the following entries equal to zéro :

We obtain:

It suffices to show that, among the g - rs + 2 linear forms B Uo 1,
B Uo 2 , BU1, B U2 , ..., BUg-rs in (*1) and (*2), there are at least g-rs+1
independent forms. We must keep in mind that uij = uji, but that other-
wise the uij are linearly independent.

Suppose that the g-rs+1 forms B Uo 1, BU1, B U2 , ..., BUg-rs are
linearly dépendent :

First note that for some io ~ 0, g1 we must have aio ~ 0; otherwise the
two forms

would be linearly dependent, which is impossible because the (rs + 1)-th
and (rs + g 1 + l)-th columns of B are linearly independent.

Since ai. + 0, looking at the coefficient of urs + i0,j in (* 3) for any

j = 1, ..., rs gives
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(because for such j no other B U1 contains urs + i0,j = Uj,rs+i0).
Looking at the coefficient of urs+i0, rs+i0 in (* 3) (this variable only

occurs in BUio)’ we see that

Now for any il =1= 0, gl the coefficient of urs+i1,rs+i0 in (*3) is

Since this coefficient is zero, while aio ~ 0, we have

Now suppose that the g - rs + 1 forms BU02, BU1, BU2, ..., BUg-rs
are linearly dependent. In exactly the same way this would imply that

By (*4) and (*5), this means

But the (rs + l)-th column of B can not vanish.
Hence, we must have g - rs+ 1 linearly independent forms, so that the

codimension of Tl n T2 is strictly greater than g - rs . This proves Lemma
11, and completes the proof of Theorem 7. QED

10. Relation to Igusa’s theorem
Suppose that the Hasse-Witt matrix H(A) is identically zero. Then,

by Lemma 12, rank B = g. B can be regarded as the matrix of a bijective
p-linear homomorphism from H1(OA) to H0(03A91A) ~ Hom (H1(OA), k).

LEMMA 13: Let V be a g-dimensional vector space over a separably
closed field k of characteristic. p. Let V be the dual vector space. Let
qJ : V ~  be a bijective q-linear homomorphism, q = pa. Then there
exists a basis e of V whose image under qJ is the dual basis ê of V i.e.,
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PROOF : Let e be any basis of V, and write

Let F : GL(g, k) - GL(g, k) be the map ’raising all entries to the q-th
power.’ First, for C ~ GL(g, k), note that ’(Ce) = Ct-1ê (’t’ denotes

transpose). In fact,

Hence, the basis Ce satisfies the lemma if and only if

i.e., if and only if

The rest of the proof is identical to the proof of Proposition 1.1 in [21],
p. 4-5. QED

COROLLARY OF LEMMAS 12 AND 13: If H(A) = 0, and if Ht denotes
the Hasse-Witt matrix of the universal principally polarized deformation
At (see p. 165), then

where T = {tij} is the generic symmetric matrix.

In fact, the corollary follows by lifting the expression for Hu in Lemma
12, namely

from the deformation over k[03B5]/03B52 to the deformation At over

k[[mt,Symm]], and noting that, by Lemma 13, we may choose suitable
. bases Wi’ ijj of H0(03A91A), H1(OA), respectively, which are dual to each other,
such that B is the g x g identity matrix.

This corollary is a higher dimensional analogy of Igusa’s theorem
that the Hasse invariant of an elliptic curve has simple zeros. In the case
g = 1, the corollary gives an independent proof of that theorem. In fact,
it was Deligne’s proof of Igusa’s theorem by deformation theoretic
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methods that made it clear that these methods could be used to study
the behavior of the Hasse-Witt matrix near any principally polarized
abelian variety. (Compare: Deligne and Rapoport, [63], p. 138-139.)

11. The case g = 2

Here dim M2 - 3. There are four isomorphism types of Hasse-Witt,
represented by:

Theorem 7 gives a picture of the stratification except at those A whose
Hasse-Witt matrix is identically zero (type 4).

In that case, we can use the above corollary of Lemmas 12 and 13
to compute the leading term of the determinant of Ht (resp. compute
the leading terms of the entries of HtH(p)t) in order to determine what
kind of singularity M2;1 (resp. M2; o) has at an abelian variety of type 4.
The results of these computations are as follows :

(1) M2;1 is a (2-dimensional) divisor which is smooth at all points A
for which H(A) is of type 2 or 3 and which has isolated singularities at
points A for which H(A) is of type 4. These singularities are of the form:

(2) M2;0 is a curve which is smooth at all points A for which H(A)
is of type 3 and which is singular at points A for which H(A) is of type 4.
These singularities are ordinary (p + 1 )-points of the form :

where 03BE is any (p+1)-th root of -1.
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V. Examples and conjectures

1. Supersingular abelian varieties
DEFINITIONS (cf. Oort, [50]): An abelian variety (or curve) is called

very special if it has p-rank zero, i.e., if it has nilpotent Hasse- Witt matrix.
It is called s u p e r s i ng u l a r if the Newton polygon of its zeta-function (as
defined on p. 122) has all slopes 2.

COROLLARY OF THEOREM 7: The set of very special principally polarized
abelian varieties has pure codimension g in Mg. The set of supersingular
principally polarized abelian varieties has codimension ~ g, with strict
inequality holding if and only if every supersingular principally polarized
abelian variety is a specialization of a very special but no t supersingular
principally polarized abelian scheme.

CONJECTURE 1: in each irreducible component of the set of super-
singular principally polarized abelian varieties, only a proper closed
subset of the component is a specialization of a very special but not
supersingular principally polarized abelian scheme. Equivalently, the set
of supersingular principally polarized abelian varieties has pure codimen-
sion g in Mg.
The first case when the conjecture has content - i.e., not all very special

abelian varieties are supersingular. - occurs when 9 = 3. In this case
every 3-dimensional principally polarized abelian variety can be realized
as the jacobian of a genus 3 curve. Here dim M3 - 2g(g+ 1) = 6
(also = 3g - 3, the formula for the number of moduli of curves).
When g = 3, there are 5 possible Newton polygons, with the last two

types corresponding to the very special case rs = 0:

1 However, Professor Oort has recently disproved this conjecture. He has shown
that there are no 3-dimensional families of supersingular principally polarized 3-dimen-
sional abelian varieties. (But Oort and Oda have proved that in any characteristic there
exist 2-dimensional supersingular families in the moduli space. See their paper ’Super-
singular Abelian Varieties’, to appear.) In particular, Oort has thereby called into serious
question the conjectured transversality of the hyperelliptic locus to the Newton polygon
stratification. It now seems likely (though not yet proved) that an entire component of
the two-dimensional set of supersingular genus 3 curves is hyperelliptic.
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Let Si be the set of genus 3 curves whose zeta-function has Newton

polygon of type i, i = 1, 2, 3, 4, 5. We have

(Actually, dim SS - 3 does not strictly imply the conjecture as stated,
because of the possibility that S5 has some 3-dimensional and also some
lower dimensional components, i.e., that it is not of pure codimension 3;
but evidence that dim S5 = 3 will support the conjecture.) All of these
relations follow from Theorem 7, except for the equality dim S4 = 3
(Theorem 7 only gives dim (S4 ~ SS) = 3), which follows from a speciali-
zation theorem of Grothendieck and a result of Tate and Honda, which
will be discussed later.

We tested the conjecture experimentally on the IBM 360 computer,
which examined genus 3 hyperelliptic curves of the following form:

where f has distinct roots, ai E Fp, and:
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This is a convenient family of curves defined over the prime field which
are easily seen to be pairwise non-isomorphic.
The computer first found the Hasse-Witt matrix {hij}, using the

formula

To distinguish between types 4 and 5, the computer then had to count
the number of [Fp3-rational points on the curve. A very special genus
3 curve is supersingular (of type 5) if and only if the number of Fp3-
rational points is == 1 (mod p3).
The number of curves in each type in this family of hyperelliptic curves

was determined for p = 3, 5, 7,11, 13 :

This table seems to support the conjecture, since the drop from type 4
to type 5 - if any - is never as sharp as in the other cases, when the dimen-
sion drop is clearly evident. This point can be made more visually with
the help of logarithmic graph paper (see next page), which converts
constant-ratio sequences to linear sequences. Note that all five graphs
have a fair degree of linearity until the transition from type 4 to type 5,
indicated by the vertical dotted line on the graph.

REMARK: An implicit assumption has been that there is no loss of

generality in looking only at hyperelliptic genus 3 curves, which form a
5-dimensional subset in the 6-dimensional moduli space of all stable

genus 3 curves. In fact, the transversality of the condition of hyper-
ellipticity to the stratification is supported by the graph on p. 197, which
shows that the dimension drop in Theorem 7 seems to be preserved
under restriction to hyperelliptic curves.
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2. Fermat hypersurfaces
Let Fn,d,p C Pn+1Fp 1 denote the n-dimensional ’Fermat hypersurface’

If p  d, then Fn, d, p is smooth. We suppose in what follows that n ~ 1,
d ~ 2, P  d.
Algorithm for computing p-adic ordinals of the reciprocal roots of

Z(Fn, d, P/ FP; t) (cf. Weil [61] and Katz [26]). Let I = f 1, 2,..,.., d-1},
and let

Let H : W ~ Z+ be defined by

Let

Let {} : Z ~ {0, 1, ..., d - 1} be defined by

Then, the group (Z/dZ)x acts on W by

In particular, p § d acts on W Let o(z) denote the order of z in the multi-
plicative group (7L/d7L)x. Then :

(1) Wo is in one-to-one correspondence with a basis of Hn(OFn,d,p)
in such a way that the Hasse-Witt matrix H = {hv,w}v,w~W0 is given by

It follows that H has the form of a permutation matrix, and that
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i.e., the stable rank of H equals the number of w E Wo whose orbits in W
under the action of p remain in Wo. For example, Fn, d, p has invertible
Hasse-Witt if p ~ 1 (mod d). Conversely, suppose W0 ~ , i.e., d ~ n + 2,
and suppose p ~ 1 (mod d). Then, if

([ ] is the ’greatest integer’ function), it is easy to see that

so that H is not invertible.

(2) W is in one-to-one correspondence with the reciprocal roots aw
of the numerator of Z(Fn, d, p/Fp; t) in such a way that the p-adic ordinals
are given by

In particular,
(a) For fixed n, d and w and variable p, vp(03B1w) only depends on the

cyclic subgroup of (Z/dZ)x generated by p. 
(b) If p is a root of - 1 modulo d, i.e., p1 2o(p) ~ -1 (mod d), then

DEFINITION: An n-dimensional complete intersection is supersingular
if its Newton polygon (see p. 122) consists of one line of slope tn. (In the
case of a smooth curve, this definition agrees with the earlier definition
of supersingularity of its jacobian.)

CONJECTURE (I): The converse of (b) is true, i.e., if Fn, d, p is super-
singular, then p1 2o(p) ~ - 1 (mod d). 

LEMMA 14: The following two variants of Conjecture (I) are equivalent
to it: 

CONJECTURE (II) : For m ~ {1, 2, ..., d-1}, let Sm denote the average
of the numbers {pim}, i = 1, 2,..., o(p). Then

all the Sm = 1 2d p is a root of -1 modulo d.
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CONJECTURE (III) : Conjecture (1) holds when n = 1.

PROOF : Obviously I ~ III.

III ~ II. Suppose all the Sm = !d. The p-adic ordinals of the reciprocal
roots of Z(F1,d,p/Fp; t) are given by

Hence, by Conjecture III, p1 2o(p) ~ -1 (mod d).
Il ~ I. Suppose p is not a root of -1 modulo d. By Conjecture II,

there exists an m such that Sm =1= 2d. Let ml be any number in

{1, 2, ..., d - 11 such that Sml is minimal among all the Sm . Let

m2 = d - m1. Clearly Sm2 = d - Sm1 is maximal among all the Sm .
Obviously, Sml  2d. Consider three cases:

(i) For some such choice of ml for which Sml is minimal, we have:

Then let m’ = d - {(n + 1)m1}, and let

Now
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(ii) n ~ 3, and for all such choices of ml

Choose any m’, m" ~ {1,2,..., d-1} such that

Let

Then

since n ~ 3.

(iii) n = 1 or 2, and for all such choices of m,

If n = 1, then m1 = -îd, and Sml = 2d, a contradiction. Hence n = 2.
Then m1 = 1 3d or §d. We have p = 1 (mod 3), since if p = 2 (mod 3) we
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would have Sm1 = 1 2d. Thus, m1 = 1 3d, and m2 = td. Since p =1= 1 (mod d),
this means d ~ 6, so that m1 ~ 2. Let

Notice that in case iii with n = 2 the only possible choice for the pair
(m1 , m2) is (1 3d, 2 3d). That is, for m ~ 1 3d, 2 3d, we have Sml  Sm  Sm2 .
Hence

In all three cases Fn,d,p is not supersingular. QED

PARTIAL CONVERSE OF PROPERTY 2(b), p. 199: (1) If o(p) is odd, then

Fn, d, p is not supersingular. (2) If o(p) --- 2 (mod 4) and p1 2(p) ~ -1 (mod d),
then Fn,d,p is not supersingular.

PROOF : (1) If d is a power of 2, then o(p) odd ~ p ~ 1 (mod d) and
(1) is trivial. So let b be an odd number such that d = bc. If Fn, d, p were
supersingular, by the proof of Lemma 14 we would have

Since c divides the sum on the left, it follows that 2lo(p)b. But o(p) and b
are both odd.

(2) Let d be the least degree for which the assertion is false. d can not
be an odd prime power or twice an odd prime power, since then (Z/dZ)x
would be a cyclic group and

If d = 2r is a power of 2, then o(p) = 2, and so p = 2r-1 ± 1 (mod 2r),
r &#x3E; 2. But then
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Hence, there exist relatively prime numbers b1, b2 &#x3E; 2 such that

d = b 1 b2 . Let j = 1 or 2. Since for all m ~ {1,2,...,bj-1} we have

it follows that

But the summand on the left is the least residue of pim in Z/bjZ. Since
the order obip) of p in (7L/bj7L)X divides o(p), we have

By the proof of Lemma 14, Fn,bj,p is supersingular. But by part (1) and
the induction assumption, it follows that Obj(P) is even and p-’10bj(p) ~ -1
(mod bj). Hence p1 2o(p) ~ -1 (mod bj), j = 1, 2. Since d = bi b2 with
b 1, b2 relatively prime, we have p1 2o(p) ~ -1 (mod d), a contradiction.

QED

REMARKS: (1) Note that the remaining case 4|o(p) but p1 2o(p) ~ -1
(mod d) implies that d must either be divisible by 16 or else a multiple
at least three times a prime of the form 4m + 1, e.g., d = 15, 16, 20, 30, 32,....
The conjecture was verified by computer for all d  500.

(2) We can prove the conjecture if o(p) = 4, but the proof is longer,
and will be omitted.

(3) The Fermat hypersurfaces with pto(p) --- -1 (mod d) occur naturally
as an example of supersingularity because they have even more

automorphisms than other Fermat hypersurfaces. For example, if

d = p1 2o(p)+1, then over the field Fpo(p) the hypersurface Fn, d, p is taken
to itself by the projective transformations xj ~ 03A303B1ijxi, where {aij} is

a unitary matrix with respect to the conjugation a ~ ap1 2o(p) (cf. Tate, [57],
p. 101-102, where these hypersurfaces are cited in a slightly different
context).
The tables on the next page give the slopes of the Newton polygons
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Note : 
Table of Newton Polygons for F1,d,p,d ~ 20, all p

Note:
1. The Newton polygon only depénds on cyclic sub gp of p in (Z/dZ)x.
2. Because of the symmetry, horizontal lengths of the segments are only listed for slopes

m/n ~ -1; 2 the slope 1- m/n has same length.
3. The trivial subgp {1} is omitted; it has g slopes 0 and g slopes 1.
4. Any subgp containing - 1 is omitted; it has all slopes 2.

of all F1, d, p for d _ 20 as a function of p - more precisely, as a function
of the cyclic subgroups of (Z/dZ)x.

3. Artin-Schreier curves

Let C be the Artin-Schreier curve which is the nonsingular model of
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defined over k = Fq. Then its zeta-function Z( C/IF q; t) is given by

PROOF: The assertion is that the reciprocal roots Âj, j = 1,..., 2g
(g = 1 2(q - 1) = genus of C), of the numerator of Z(C/Fq; t) are given by

If Ns is the number of Fqs-rational points on C, then

so that our assertion is equivalent to:

We first note that for s = 1, 2, 3, ... the nonsingular model C has
exactly one F,.,-rational point over the point at infinity on the plane curve
given by y2 = xq - x. Hence, we are reduced to computing Ns = Ns- 1
for the nonsingular affine plane curve y2 - xq - x.

Case (1): s iss odd. Then x = 0 gives the one point x = y’ = 0. If x ~ 0,
we let x run through a set of(qS -l)/(q -1) multiplicative coset representa-
tives of Fxqs/Fxq. We claim that there are exactly q -1 solutions (y, ax),
y ~ Fqs, a ~ Fxq, for each coset representative. For the one coset with
x E Fq, we have the q -1 solutions (0, ax), a E Fxq. For the other coset
representatives x, we have xq - x ~ 0, and (ax)q - ax = a(xq - x) is a

square in F.. if and only if either both a and (xq - x) are squares in F,,.
or neither one is. Thus, regardless of whether or not xq - x is a square,
there are precisely 1 2(q - 1) values of a ~ Fxq for which (ax)g - ax is a square,
since

a is a square in Fqs « a is a square in Fq .
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(Here is where we use the fact that s is odd.) Each of these 1 2(q - 1) values
of ax gives 2 solutions ( ± y, ax).
We conclude that Ns equals:

Case (2): s = 2s’ is even. Let F’ = Fqs, c IF qS, i.e., IF qs/ F’ is a quadratic
extension. Let u E F’ be a nonsquare in F’, so that IFqs = F’(a) where
a2 = u. Next, let 03B2 be a square root of -1 in Fqs (which exists because
s is even). Then

(We recall that - 1 is a square in a finite field if and only if the number of
elements in the field is --- 1 (mod 4).)

If we let x = x1 + x203B1, y = y1 + y203B1, xi, yi ~ F’, then the equation
y2 = xq - x becomes

Since’’t is a nonsquare in F’, it follows that u1 2(qs’ - 1) = - 1. Hence the
additive homomorphism ç : F’ ~ F’ given by

is bijective, since if X2 =1= 0 were in its kernel we would have

Therefore, each solution x1, y1, y2 ~ F’ to

gives precisely one solution to (*) by setting

Thus N’s is the number of solutions to (**) in F’.
We consider two sub-cases.

Case (2a): 03B2 ~ F’. Replacing Y2 by PY2 transforms (**) to
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where NFqs/F, designates the norm from IFqs to F’. Now

so that x i - x 1 = 0 corresponds to q solution sets (x 1, 0, 0), x1 ~ Fq.
Suppose xq1 - x1 ~ 0. Let y = x i - x 1. Hence, if N"s(03B3) is the number

of solutions of

and if NS - N"s(03B3) is independent of y E F’", it follows that

But NlFqs/Ff is a multiplicative homomorphism from Fxqs to F’x. Moreover,
it is surjective, since the set

runs through all elements of F’x. Thus, for y E F’x we have

and

Case (2b): p fj F’. We may take u = -1, i.e., a = j8. Then (**) becomes

The nonsingular linear transformation
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allows us to replace this equation with the equation

For each x1 E F’ such that x1- x1 =1= 0, this equation has qS’ -1 solutions
(y’1, y’), one for each y’1 E F’x. If xq1 - x1 = 0, it has 2qS’ -1 solutions
(0, y’), (y’1, 0). Hence

and

In both cases (2a) and (2b) we have

COROLLARY : For any odd prime p and for g = 1 2(pa -1), there exists a
nonsingular supersingular curve of genus g in characteristic p.

REMARK : If the same curve C with equation y2 = xq - x is considered
as defined over the prime field Fp, then the same technique shows that

where q = p’; a = 2ra’, 2  a’; and J1 is the Môbius function:

EXAMPLE: If C is the genus 4 hyperelliptic curve y2 = x9 - x in

characteristic 3, then
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C is an example of a nonsingular supersingular genus 4 curve in char-
acteristic 3.

4. Stratification by the full Newton polygon
In this paper we have systematically studied only the unit root part

of the Newton polygon, i.e., the mod p zeta-function. For this reason
we have only needed mod p data, namely the Hasse-Witt matrix. A new
set of finer (and more difficult) questions arises if we concern ourselves
with the entire Newton polygon.
The simplest cases show that the Hasse-Witt matrix is the wrong

invariant for answering such questions.

EXAMPLE: Consider the following three nonsingular genus 3 curves
define over F3:

Ci is the Fermat plane curve X40 + X41 + X42 = 0;

C2 is the nonsingular model of y2 = f2(X) = X7 +1;

C3 is the nonsingular model of y2 = f3(X) = X7 - X + 1.

All have nilpotent Hasse-Witt. Ci and C2 are supersingular: Ci by
section 2 above, C2 by direct computation of the zeta-function. C3 is
Manin’s example in [34] of a curve with slopes t, 3. On the one hand,
Ci has Hasse-Witt identically zero by section 2, while C2 and C3 both
have Hasse-Witt of rank 2 (i.e., isomorphism type P = (0,3)). In fact,
the Hasse-Witt {hi,j;m} of Cm, m = 2, 3, is given by: hi,j;m equals the
coefficient of X3i-j in fm(X). Thus :

Thus, two curves can have the same Hasse-Witt and different Newton
polygons, or the same Newton polygon and different Hasse-Witt
matrices (i.e., Hasse-Witt matrices of different isomorphism types).

NOTATION : Let
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be a sequence of fractions in lowest terms (if m 1 = 0 we take n 1 = 1);
let ri &#x3E; 0, i = 1, ..., h-1, rh ~ 0; and let 

Let NP(03A3hi=1 ri(mi, ni)) denote the Newton polygon with segments of
slope mi/ni and 1- (mi/ni) each having horizontal length ri ni , i = 1,..., h.
Thus, any Newton polygon can be uniquely written as a ’sum’ E ri Ni
of ’simple’ Newton polygons Ni. Here if ml = 0, then ri is the length
of the unit root part.

REMARK: When we talk of a ’Newton polygon’, we mean, of course,
a convex polygonal line connecting (0, 0) with (2g, g) and having the
required symmetry. We note that Tate [58] and Honda [17] proved a
conjecture of Manin that any Newton polygon actually occurs as the
Newton polygon of the zeta-function of an abelian variety. According
to Oort and H. W. Lenstra, Jr. [64], any Newton polygon except for the
supersingular Newton polygon occurs as the Newton polygon of a
simple abelian variety; in [50], Oort proves that an abelian variety is
supersingular if and only if it is isogenous to a product of supersingular
elliptic curves.

Further, let S(NP) c Mg denote the set of g-dimensional principally
polarized abelian varieties whose zeta-function has Newton polygon
NP. Let S(NP) denote the Zariski closure of S(NP) in Mg. (Recall that
these sets are actually in the fine moduli scheme of principally polarized
abelian varieties with level N structure, but we shall omit mention of the
level N structure in what follows.) Let CD(NP) denote the codimension
of (a highest dimensional irreducible component of) the set S(NP).
For example, for elliptic curves we have

CONJECTURE :

REMARKS : (1) The conjecture in section 1, p. 194, is the following special
case of this conjecture:
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(In our notation NP(g(l, 2» is the supersingular Newton polygon.)
(2) In the case of the ’Hodge polygon’ NP(g(O, 1», this conjecture is

the well-known generic invertibility of the Hasse-Witt matrix of

principally polarized abelian varieties.
(3) Theorem 7 of Chapter IV implies the conjecture if the unit root

part is at least g - 2 (i.e., ml - 0, r1 ~ g - 2), since then the Newton
polygon is determined by the unit root part (p-rank).

In addition to the codimensions of the sets S(NP), it would be

interesting to know how they intersect - that is, what sequences of
Newton polygons can be obtained by successive specializations in the
moduli space.

DEFINITION : A p a r t i a 1 ordering on the set of Newton polygons is

introduced b y :

NP1 ~ NP2 ~ all points on NP1 are on or below NP2.

A theorem of Grothendieck (cf. [7], p. 91) says that specialization from
NP1 to NP2 is only possible if NP1 ~ NP2, i.e.,

Conversely, it may be asked whether all totally ordered sequences of
Newton polygons can be realized by successive specializations of princi-
pally polarized abelian varieties.

CONJECTURE : 

(The bar denotes Zariski closure.) In particular, the relation ’NP1
specializes to NP2’ is transitive (which is far from a priori obvious).
Note that the intersection in the conjecture can only be nonempty

if dim S(NP1) ~ h - 1.
This conjecture seems to be unknown even in the simplest case when
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it does not follow from the p-rank (unit root part) stratification, namely:
g = 3, NP1 = NP((1, 3)), NP2 = NP(3(1, 2)). In this case, whereas the
conjecture on p. 194 claimed that not all points of S(NP2) are specializa-
tions from S(NP1), this latest conjecture claims that some points of
S(NP2) are such specializations.

REMARK: This ’first nontrivial case’ of the conjecture follows in

characteristic p = 3 by computations of Manin (cf. [34], p. 77-78).
Namely, the family of hyperelliptic curves

parametrized by 03BB has nilpotent Hasse-Witt matrix. Since Manin’s

example (03BB = -1) has Newton polygon NP, = NP((1, 3)), it follows by
the Grothendieck specialization theorem that the generic point of the
family has Newton polygon NP1. But the specialization = 0 is super-
singular. Hence the specialization from NP1 to NP2 occurs in char-
acteristic 3.

LEMMA 15: The length of any maximal totally ordered sequence of
Newton polygons of genus g is equal to

PROOF: Let

Define the isomorphism (a, b) ~ (a, b)’ from Ri to R2 by
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Define a map 0 from Newton polygons to subsets of R 1 and a map ç
from Newton polygons to Z+ by

Note that 0 and ç are strictly order-preserving, i.e.,

because a Newton polygon is determined by the points in 7L2 through
which it passes, so that at least one of the lattice points on NP1 must be
strictly below NP2. Since

the lemma follows if we show that, if NP1  NP2, then

~ This follows immediately from the fact that ç is strictly order
preserving.
~ Let xl , X2 be two lattice points in fj)(NP2)-fj)(NP1). For j = 1, 2,

let NP3,j be the convex hull of NP2 and the two points xj, x’j. Clearly,
NP 3,j is an admissible Newton polygon, i.e., it has the required symmetry.
Moreover, N3,j  NP2 . In addition, NP3,j ~ NP1, since NP1 is convex
and passes on or below xj, x J and all points of NP2 . We must show that
this inequality is strict for j = 1 or 2. It suffices to show that

NP3,1 =1= NP3, 2 . If NP3,1 = NP3, 2, then Xl is on a segment joining
x2 either to x’2 or to a vertex of NP2, and x2 is on a segment joining
xi either to x’1 or to a vertex of NP2. In all possible cases, Xi 1 and x2

are both on some segment joining two vertices of NP2. By the convexity
of NP2 , x 1 and X2 can not be strictly below NP2 , a contradiction. QED
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COROLLARY: The analogous conjecture for the (3g - 3)-dimensional
moduli space of stable curves is false.

In fact, if g ~ 9, then the length of a maximal totally ordered sequence
of Newton polygons is greater than (3g - 3) + 1, so there are not enough
dimensions in the moduli space for the intersection in the conjecture to be
nonempty. That is, there must be other criteria besides the Grothendieck

specialization theorem for the possibility of sequences of specializations
of stable curves.

Note that Lemma 15 does not contradict the conjecture for principally
polarized abelian varieties, which have enough moduli, namely !g(g+ 1).
In general, the question of stratification for stable curves is probably
much more complicated than for principally polarized abelian varieties.
One preliminary step might be to extend the Grothendieck specialization
theorem to all (not necessarily smooth) stable curves.
The first problem in doing this is that even the degree of the numerator

of Z(C; t) drops when the genus g curve develops singularities. For
example, as remarked,, on p. 147, the simplest example of curves of tri-
angular genera g = !(d-1)(d-2) with invertible Hasse-Witt matrix is
the union C = L, u ... u Ld of d lines in general position in ¡p2. But
consider its actual zeta-function, which is easily computed by the ’ex-
clusion-inclusion principle’ :

where the zeta-functions are computed over a common field of definition

Fq of all the Li’s. Thus

On the one hand, the mod p zeta-function looks like the mod p zeta-
function of any nonsingular genus g curve; in fact, the base-changing
theorem for coherent cohomology, applied in Chapter I, shows that no
mod p ’discontinuity’ can be expected at singular curves. On the other
hand, the definition of P1(C; t) on p. 122 as the numerator of Z(C; t)
must be modified if we want to attach the genus g Hodge polygon to
this curve.

In this way, for a possibly singular stable curve C, considerations of
reciprocity (i.e., the roots permute under t H q/t) force us to make the
following definition of Pl (C; t):
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It is easy to see that this is the correct definition. In fact, suppose C is a
stable curve with r irredueible components CB,..., Cr and with s singular
points. Let Ni,..., Nr be normalizations of C1,.., Cr, respectively.
Then clearly

r

On the other hand,

and

is a polynomial of degree 2g with the right reciprocity. 

CONJECTURE: With this definition of the Newton polygon of Pl (C; t)
for a stable curve C, the Grothendieck specialization theorem applies
to the moduli space of stable curves of genus g.
One further question is the extent to which the Newton polygon

stratification depends on the characteristic p. The ’geometrical’ as

opposed to ’arithmetic’ nature of the techniques and results in this
paper support the following

CONJECTURE : In the set Mg of g-dimensional principally polarized
abelian varieties, the dimensions of the sets S(NP) and of any set

is independent of p. (The analogous conjecture for stable curves also
seems reasonable.)
However, certain other properties of the stratification clearly depend

on p: (1) the number of components in an S(NP) (that this depends
on p is already clear from the fact that the number of supersingular
elliptic curves depends on p); (2) the nature of the -singularities of an
S(NP) (that this depends on p was apparent in the computations in
section 11 of Chapter IV of the singularities of M2; o , which is a curve
in M2 with (p + l)-crossings).
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