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CONJUGACY THEOREMS FOR A CLASS OF

LOCALLY FINITE LIE ALGEBRAS
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COMPOSITIO MATHEMATICA, Vol. 30, Fasc. 2, 1975, pag. 181-210
Noordhoff International Publishing
Printed in the Netherlands

The object of this paper is to extend the classical conjugacy theorems
for Levi, Borel, and Cartan subalgebras of finite-dimensional Lie algebras
over an algebraically closed field R of characteristic zero, to a class of
infinite-dimensional locally finite Lie algebras. The subject-matter lies
in an area where interactions between the theories of groups and of Lie

algebras have been, and may be, used to advantage. The classical concept
of a Cartan subalgebra was extended by Carter [9] to finite soluble
groups, and broadly generalized in the ’formation theory’ of Gaschütz
[13]. Stonehewer [33, 34, 35] extended much of this theory to certain
classes of infinite groups; Wehrfritz [39] to linear groups; and Tomkinson
[36] to periodic FC-groups (in which all conjugacy classes are finite).
Gardiner, Hartley, and Tomkinson [12] found a simultaneous general-
ization of the work of Stonehewer and of Wehrfritz; and recently
Klimowicz [18, 19, 20] has developed a general axiomatic setting for all
of these theories. On the other hand, the theory has returned to its origins,
in that Barnes and Gastineau-Hills [3], Barnes and Newell [4], and
Stitzinger [32] have developed a version of formation theory for finite-
dimensional Lie algebras.

This work, especially that of Tomkinson [36], is very suggestive as
regards certain infinite-dimensional Lie algebras. For a group is a

periodic FC-group if and only if it is generated by finite normal subgroups.
Let us define an analogous class (called F in [1] p. 258) of Lie algebras,
consisting of those algebras which can be generated by a system of
finite-dimensional ideals. We shall call algebras in F ideally finite (since
this is a property similar to, but stronger than, being locally finite). For
some time it has been suspected that generalizations of the classical
conjugacy theorems to this class might be possible, and some tentative
steps in this direction were taken in [26, 27, 28, 1], where much less is
proved but in a more general setting. We shall confirm this suspicion
here, provided that the ground field is algebraically closed and of char-
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acteristic zero. This restriction, which is natural in the context of the
conjugacy theorems but less so for the existence theorems, arises on
purely technical grounds as follows.

In the study of FC-groups a prominent role is played by the theorem
that a projective limit of non-empty finite sets is non-empty (equivalent
to, but more convenient than, the theorem of Kuros [21] p. 167 on

’projection sets’). For example the local conjugacy of Sylow p-subgroups
of a periodic FC-group is proved by finding a system ot conjugating
elements in each finite normal subgroup, and passing to a projective
limit to obtain an automorphism of the whole group with the correct
property. For ideally finite Lie algebras there is an obstacle, in that the
sets to which a projective limit argument must be applied are no longer
finite. In many instances, however, they have a natural structure as
algebraic varieties, suggesting a topological approach by way of the
Zariski topology. The usual non-emptiness theorem for projective limits
of topological spaces applies only to compact Hausdorff spaces (Bourbaki
[8] p. 89) and cannot be used since the Zariski topology, though compact,
is not Hausdorff. Instead we use a theorem of Serre [22] p. 15, based on
a criterion of Bourbaki [7] p. 138. Serre’s theorem is stated for homo-
geneous spaces arising from abelian algebraic groups, and requires an
algebraically closed field. The proof extends to a slightly more general
situation which is sufficient for our purposes. It turns out to be advan-

tageous to work with a topology weaker than the Zariski topology, but
still non-Hausdorff.
The restrictions on the field also occur in connection with a second

technical problem, of finding the ‘correct’ group of automorphisms. For
Levi and Borel subalgebras this is easy. But for Cartan subalgebras we
require a more delicate approach to cope with extension and lifting
arguments. This problem is dealt with in sections 3 and 6.
Because the results on projective limits are crucial for everything that

follows, we give a relatively self-contained discussion of them in section 2
below. In section 3 we recall some necessary facts about automorphisms
of finite-dimensional Lie algebras. In section 4 we discuss Levi sub-
algebras (a term preferable to the usual ’Levi factor’), that is, semisimple
complements to the locale soluble radical. The existence of Levi sub-
algebras follows from [26, 27] which establish it in the wider class F of
Lie algebras generated by finite-dimensional ascendant subalgebras. We
prove that Levi subalgebras are conjugate under a group of auto-
morphisms analogous to the ‘locally inner automorphisms’ which occur
in the group-theoretic results. In section 5 we define Borel subalgebras,
the existence of which is trivially true, and prove them conjugate. Section
6 develops lifting and extension properties of a particular type of auto-
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morphism, preparatory to the results of section 7 on Cartan subalgebras.
These are defined in that section as ’locally nilpotent projectors’ in the
sense of formation theory; and we prove existence and conjugacy.
1 am indebted to the referee for the existence proof given here. Between
the initial submission of this paper (which lacked an existence proof)
and the referee’s report (supplying one) 1 found another much longer
proof using a version of nilpotent-semisimple splitting and properties
of maximal tori. This approach is of some interest in its own right, and
is being written up as [29]. Finally in section 8 we give a conjugacy
theorem for Borel-Cartan pairs (B, C) where B is a Borel subalgebra and
C is a Cartan subalgebra of B ; show that C is in fact a Cartan subalgebra
of the whole algebra; and sharpen the conjugacy theorem for Levi
subalgebras so that the same group of automorphisms occurs in all
cases.

Levi, Borel, and Cartan subalgebras have been treated separately,
rather than some kind of formation-theoretic generalization, for several
reasons. The first is that we do not wish to be restricted to the locally
soluble case. A second is that over an algebraically closed field of char-
acteristic zero the only non-trivial saturated formations (in the sense of
Barnes and Gastineau-Hills [3]) are the classes of nilpotent or soluble
algebras; so the special cases of Borel and Cartan subalgebras exhaust
the interesting possibilities. A third is that such generalization, at the
present stage, would introduce more extraneous notions than the results
would warrant. The situation might be improved if a version of formation
theory could be developed for insoluble finite-dimensional Lie algebras
(with the usual restrictions on the field). There are slight hints that this
may be possible, for instance Levi subalgebras are precisely the projectors
for the class of semisimple algebras, but nothing definite seems to be
known.

1 am grateful to the referee for his proof of theorem 7.4; to Professors
D. Mumford and P. Deligne for information on projective limits in
algebraic geometry ; to Professors R. Richardson and D. Winter for some
thoughts on automorphisms; and to B. Hartley and S. E. Stonehewer for
their time, patience, and suggestions. This work was carried out at the
University of Tübingen, and financed by a research fellowship from the
Alexander von Humboldt-Stiftung, Bonn-Bad Godesberg. 1 am grateful
to Professor H. Wielandt and the members of the Tübingen Mathematics
Institute for their hospitality, and to the Humboldt Foundation and its
staff for affording me the opportunity to work in such congenial sur-
roundings.
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1. Notational conventions

Notation for infinite-dimensional Lie algebras, now fairly standard,
will be as in [25] p. 291 or in [1]. For convenience the more common
notation will be stated below. In addition the notation and results of

[26, 27] will be used freely.
Throughout this paper, R will denote an algebraically closed field of

characteristic zero and  a field of characteristic zero. This convention
will be used to shorten the statements of theorems, and should be borne
in mind when reading them.
A Lie algebra L is ideally finite if it can be generated by a system of

finite-dimensional ideals. We let  denote the class of ideally finite Lie
algebras. Clearly every ideally finite Lie algebra is locally finite, that is,
every finite subset is contained in a finite-dimensional subalgebra. The
class  is a subclass of , defined in [26], so the results of [26, 27J
apply to F-algebras over f. It is easy to find examples of ideally finite Lie
algebras : for instance any subquotient of a direct sum of finite-dimen-
sional algebras.

Let L be a Lie algebra. The notation H  L (respectively H a L) will
mean that H is a subalgebra (respectively ideal) of L. If x e L then x*
denotes the adjoint map L ~ L, given by yx* = [y, x] for y E L. Other
notations in the literature are ad(x) or x. To avoid ambiguity we write
xi. If (X is an automorphism of L we write x’ for the image of x~L under a.
This distinguishes automorphisms from other maps, which will be

written on the right (or sometimes left) in the usual way. If X ~ L we
define the centralizer

and the idealizer

If X = IL(X) we say that X is self-idealizing. We use 03B6n(L), Ln, and L (n)

respectively to denote the nth terms of the upper central, lower central, and
derived series of L ; so that 03B61(L) is the centre of L and L2 = [L, L] = L(1).
We write p(L) for the Hirsch-Plotkin radical of L, namely the unique
maximal locally nilpotent ideal of L (see Hartley [15] p. 265) and v(L)
for the Fitting radical, which is the sum of the nilpotent ideals of L.
If L is locally finite there exists a unique maximal locally soluble ideal
(see [26] p. 83) which we call u(L). If L is finite-dimensional then

p(L) = v(L) is the nil radical and 6(L) is the soluble radical. We say that
L is semisimple if a(L) = 0.
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By an algebraic group we shall always mean an affine algebraic group
over R (or f) of finite dimension. A morphism of algebraic groups is a
morphism of algebraic varieties which is also a group homomorphism.
If G is an algebraic group acting morphically on a variety V, and W ~ V,
then we define the stabilizer (or normalizer) of W in G to be

If G is a group of automorphisms of L, we say that two subsets X and Y
of L are G-conjugate if there exists a E G such that xa = Y

2. Projective limits

Much of the material in this section is standard, but we shall give
enough details to make it clear which definitions we use, and to make
the paper relatively self-contained.

Let 7 be a directed set with partial ordering ~. A projective limit system
over I (of topological spaces) is a set of topological spaces {Xi}i~I together
with continuous maps {fij : Xi ~ Xj : i,j ~ I, i ~ j} such that if i ~ j ~ k
are elements of I then

and f is the identity map on X for each i E I. We write

to denote such a system. The projective limit

is the subset of 03C0i~IXi consisting of those elements (xi) such that
h/Xi) = xj for all i, j E I with i ~ j. Restriction of the coordinate projec-
tions to X gives canonical maps fi: X ~ X i . We may equip X with the
weakest topology making all f continuous, which is the same as the
subspace topology on X induced by the Tychonoff topology on 03A0i~IXi
(see Bourbaki [7] p. 52 § 4 no. 4).
To settle terminology, let us call a topological space compact if every

open cover has a finite subcover; or equivalently if every collection of
closed sets, of which finite intersections are non-empty, has non-empty
intersection. (Bourbaki’s term is quasi-compact.) A Tl-space is one in
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which singletons are closed. A map f : X ~ Y, where X and Y are
topological spaces, is closed if f (F) is closed in Y for every closed set
F~X.

The following result (apart from (d)) can be read off from Bourbaki [7]
p. 138, appendix. For completeness we give a proof. It is fundamental
for the whole paper.

THEOREM (2.1) : Let X = {Xi, fijl be a projective limit system of topo-
logical spaces Xi, such that

(i) Each X is non-empty, compact, and Tl ;
(ii) The maps fij are closed.

Then

(a) X = proj lim X is non-empty;
(b) The image of the canonical projection f : X ~ X is

(c) If bars denote closures then for A 9 X,

and if A is closed then

(d) X is compact in the aforementioned topology.

PROOF : We use Zorn’s lemma. Let Y be the set of subsystems {Ai}
of X such that Ai is a non-empty closed subset of X and hiAJ £; Aj
for all i, j~I with i ~ j. Define a partial ordering  on i7 such that
{Ai} ~ {Bi} if Ai - Bi for all i E I. By compactness it follows that J
satisfies the hypotheses of Zorn’s lemma with respect to the inverse
ordering ~, so there exists a minimal (with respect to  ) member {Ai}
ofY. By (ii) it follows that

is closed in Ai, from which it is easy to see that {Bi}~J. By minimality
Bi = Ai for all i, or equivalently the maps fij are surjective when restricted
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to the Ai . For a fixed i E I choose xi~Ai. If we let

then the T, condition implies that {Cj} E E7. By minimality Ai = ci = {xi}.
Then (xi)~03C0Xi belongs to proj lim Xi, which proves (a).
For (b) take xi ~~j~i fji(Xj). Replace the Xj by f-1ji(xi) if j ~ i and

apply part (a) to the resulting system.
To prove (c) let

This is closed in X and contains A, hence contains A. We show that each

point of A’ is a closure point of A. Since the Tychonoff topology on
fl Xi is defined so that its non-empty open sets are unions of sets of the
form fl Gi, with Gi open in Xi and all but a finite number of Gi = Xi,
it suffices to prove that each neighbourhood of x E A’ which is of the form
f-1i(Gi) for Gi open in X must intersect A. For then every neighbourhood
of x must intersect A. Now fi(x)~Gi, and so Gi~fi(A) ~ 0, so
A ~f-1i(Gi) ~ Ø. Hence

If further A is closed then

Finally we prove part (d). Let {F03BB}03BB~039B be a set of closed subsets of X
with all finite intersections non-empty. Then

for each 03BB~A. For fixed i and variable 03BB the sets fi(F03BB) have all finite
intersections non-empty, so by compactness of Xi

Then {Bi}i~I forms a projective limit system whose maps are the restric-
tions ofthehj. Because hypotheses (i) and (ii) carry over to {Bi}, we have
proj lim Bi ~ Ø. If we take x ~ proj lim Bi then x ~ F’ for all Â ~ 039B, hence
x ~ ~03BB~039B F’ which is therefore non-empty. This proves that X is compact.
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In the sequel we shall require only part (a) of this theorem, but it is

likely that the other parts will be required in future developments. Note
that (d) does not contradict a statement of Serre [22] p. 16 since we are
assuming then to be closed.
We wish to apply the above theorem to certain varieties associated

with affine algebraic groups, and it is convenient to define a topology
weaker than the Zariski topology. Let G be an affine algebraic group
over R. Let J denote the Zariski topology on G. Define a topology W’
as follows : a closed subbase conists of all cosets xH of J-closed subgroups
H of G. Thus a closed set in W’ is a finite union

where x1,···, xn E G and H1,···, Hn are algebraic (or 2T-dosed) subgroups
of G.

Clearly W ~J so that G is compact in 1//’ (indeed noetherian, cf.

Borel [6]). Since the identity subgroup is J-closed, 1//’ is Tl. (Similar
remarks apply to W’, defined analogously but using cosets Hx instead
of xH, or to 1//’’’ generated by 1//’ and 1//".) The advantage of 1//’ over
J stems from:

LEMMA (2.2): Let G and K be affine algebraic groups over SI, and
a : G ~ K an affine algebraic group morphism. If G and K are equipped
with the 1//’ -topology, then a is both continuous and closed.

PROOF : Certainly a is iT-continuous. If H is a 2T-closed subgroup of
K then a - ’(H) is a J-closed subgroup of G. Let x K, and pick z E 03B1-1(x)
if this is non-empty. It is easy to check that

(independently of the choice of z) and the latter is 11/’ -closed in G. Hence
a is 11/’ -continuous.

Now let L be a Y-closed subgroup of G, and g~G. Then a(gL)
= a(g)a(L). Since R is algebraically closed it follows (Borel [6] p. 88

corollary 1.4(a)) that a(L) is J-closed in H, hence a(gL) is 11/’ -closed

in H. The same goes for finite unions of cosets, so a is a closed map.
Algebraic closure of R is essential here. If we consider the multiplicative

group G of non-zero reals as an algebraic group over the reals, then the
map a : G ~ G with a(x) = X2 (x E G) is a morphism, but a(G) is the group
of positive reals which is not algebraic, so a is not closed. If instead of 11/’
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we use e, then the analogue of lemma 2.2 does not hold, again because
a need not be J-closed.

Next consider the case of a homogeneous space G/H where H is a
!Z -closed subgroup of G. If a : G ~ K is an algebraic group morphism
and a(H) is contained ih a J-closed subgroup L of K there is induced
a map

If we equip G/H and K/L with their quotient topologies relative to 11/’
(which we still call 1I/’-topologies) then it remains the case that  is

continuous and closed. We define a coset variety over R to be any 11/’-
closed subset of a homogeneous space G/H where G is an affine algebraic
group over R and H is a e-closed subgroup. A map &#x26; : G/H ~ K/L,
or its restriction to a coset variety contained in G/H, will be called
affine if it is induced as above from an algebraic group morphism
oc : G ~ K such that a(H) z L. It follows that affine maps between coset
varieties are continuous and closed in the 11/’ -topology.
We may apply theorem 2.1 to this situation, to obtain the following

variant of a theorem of Serre [22] p. 15 or Bourbaki [7].

THEOREM (2.3): Let {Xi, fij} be a projective limit system, where the X i
are coset varieties over R equipped with the W-topology, and the hj are
affine maps. Suppose the X are non-empty. Then conclusions (a), (b), (c)
and (d) of lemma 2.1 hold.

The topology induced on proj lim Xi will also be called the 11/’ -topology.
In applications in this paper the X will be either cosets xH of an

algebraic group G acting on a vector space over R, where H is the stabilizer
of a subspace U of V; or else homogeneous spaces G/H where H is such
a stabilizer. For instance, the set of Cartan subalgebras of a finite-
dimensional Lie algebra over R is in natural bijective correspondence
with G/H where G is the automorphism group of the Lie algebra and H
is the stabilizer of a Cartan subalgebra; this because the Cartan sub-
algebras are G-conjugate (Jacobson [17] p. 273).
We are uncertain to what extent the hypotheses of theorem 2.3 may be

weakened. Some restriction on the field or the varieties is required,
as the following example (Deligne [11]) makes clear. Let  = Q(Ti)i~I
where the T are an arbitrary set of indeterminates, and consider the
affine cubic v g f2 defined by
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The t-points of V have rational coordinates, so are countable. We may
omit them one by one to give a projective limit system with empty limit.
By choosing I large enough we can make the cardinality of  arbitrarily
large. The best general results on projective limits of algebraic varieties
are in Grothendieck [14], but they involve passage to an algebraically
closed extension field.

For arbitrary fields the above methods will prove the (doubtless well
known) result that a projective limit of finite-dimensional vector spaces,
with affine linear maps, is non-empty. In place of the 1f/’-topology take
one with subbase the affine linear subspaces.

3. Groups of automorphisms

Let L be a Lie algebra, not necessarily of finite dimension, over 1.

If x E L is a nil element, that is, given any finite-dimensional subspace V
of L there exists an integer n such that V,*n = 0, then we may define the
exponential

and this is an automorphism of L (Hartley [15] p. 262, Jacobson [17]
p. 9). If X is a subset of a group, define X&#x3E; to be the subgroup generated
by X. We define several groups of automorphisms of L:

Clearly R(L) ~ N( I) c f(L) g A(L). The group R(L) was used in [26]
to prove a limited conjugacy theorem for Levi subalgebras.
More important for us is a further group introduced by Winter [40]

p. 93 (see also Humphreys [16] p. 82). Suppose that L is finite-dimensional
over R. For x E L, 03BB~R define

An element x ~ L is strongly ad-nilpotent if there exists y E L such that
y* has a non-zero eigenvalue 03BB with x ~ L03BB(y*). This forces x* to be
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nilpotent (Humphreys [16] p. 82) and so we may define

x strongly ad-nilpotent).

The group G(L) possesses several useful properties which the other groups
listed do not.

(a) Extension: If H ~ L and x is strongly ad-nilpotent in H, then x
is strongly ad-nilpotent in L. The map

extends in an obvious way to a map 03B5(H) ~ é(L).
(b) Lifting : Every epimorphism L ~ E induces an epimorphism

03B5(L) ~ 03B5(L).
For proofs see Humphreys [16] p. 82 or Winter [40] p. 93.
By virtue of these properties the elements of 03B5(L) are good substitutes

for inner automorphisms of groups. Finally, for technical reasons we
must ensure that we are working with algebraic groups. Now if L has
finite dimension then A(L) is affine algebraic (Chevalley [10] p. 143).
If G is an algebraic group acting morphically on a variety V and if W is
a closed subvariety of V then NG(W) is a closed subgroup of G, by
Borel [6] p. 97. Hence

is closed, thus algebraic. Now 9(L) is generated by 1-parameter sub-
groups

each ofwhich is a connected algebraic group. Finitely many of these there-
fore generate a connected algebraic group. But 03B5(L) is connected, and
satisfies the ascending chain condition for closed connected subgroups
(Borel [6] p. 5), so 03B5(L) is generated by finitely many 1-parameter sub-
groups, so is algebraic. Similarly N(L) and R(L) are algebraic groups.

(I am indebted to David Winter for this argument).
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4. Levi subalgebras

A Levi subalgebra of a locally finite Lie algebra L is a semisimple
subalgebra complementing the radical 03C3(L). From [27] it follows that

every semisimple ideally finite Lie algebra is a direct sum of finite-

dimensional simple algebras, and Levi subalgebras of ideally finite

algebras exist and are precisely the maximal semisimple subalgebras.
In this section we shall use the results of Section 2 to prove a conjugacy
theorem for Levi subalgebras. The considerations surrounding S are not
needed in this case (except for a sharper result which we give later) so
the method is particularly transparent.

Let L be an ideally finite Lie algebra over R, and let {Fi}i~I be the set
of all finite-dimensional ideals of L. We can partially order I by letting
i ~ j if Fi ~ Fj (i, j ~ I), and clearly this makes I a directed set. For each
i E I we define

so that 3f is an algebraic group acting linearly on Fi and fixing setwise
all smaller Fj. Now for j ~ i the restriction map defines a function

and one verifies that

is a projective limit system. We define

This is a group, with a natural action by automorphisms of L. For if
a = (ai) ~ (L) we may define, for x~Fj,

This is well defined by the projective property, and has inverse (ai 1);
it is an automorphism sonce any pair of elements of L lie in some Fi.
We might say that Î(L) is a proalgebraic group (although Serre [22]
and others use this term in a more restricted sense), that is, a projective
limit of algebraic groups. It has a natural compact topology, namely
the W-topology of § 2. We identify Î(L) with its image as a subgroup of
A(L), and it then contains f1ll(L).



193

THEOREM (4.1): Let L be ideally finite over R. Then all Levi subalgebras
of L are J(L)-conjugate.

PROOF : Let {Fi}i~I be the set of all finite-dimensional ideals of L, and
order I as above. First we show that for any Levi subalgebra 039B and any
finite-dimensional ideal F of L, the intersection F n A is a Levi subalgebra
of F. For let M be any Levi subalgebra of F. Then M is finite-dimensional,
so by [26] lemma 5.5 p. 93 there exists (X E f1ll(L) such that M03B1 ~ A. But
Fa = F so that M03B1 ~ 039B n F. Now M is maximal semisimple in F, and
039B n F a ll so is semisimple ([26] lemma 4.8 p. 90); hence 039B n F = Ma

and so is a Levi subalgebra of F.
Now let 039B1 and 039B2 be Levi subalgebras of L. By the above,

03BB1i = Ai n Fi and A2i = 039B2 n Fi are Levi subalgebras of Fi for all i~I.
Let

The classical conjugacy theorem for Levi subalgebras (Jacobson [17]
p. 92) shows that Bi~Ø for each i~I. Further, if we choose 03B1~Bi then
it is clear that Bi = aNi, where Ni = NJ(Fi)(039B2i) is a closed subgroup of
J(Fi) by Borel [6] p. 97. Hence each f!4i is a coset variety. If j ~ i then
Fj ~ Fi, so 039B1j ~ 039B1i and 039B2j ~ 039B2i. Hence, with hj as above, we have
fij(Bi) ~ Bj. Clearly hj is affine, so by theorem 2.3

Now if 03B1 ~ B ~ Î(L) it follows that 039B03B11i ~ 039B2i for all i E I, so that 039B03B11 ~ 039B2.
By maximality we have 039B03B11 = 039B2, and the theorem is proved.

This result has a corollary for the class F of [26]. Following Amayo
and Stewart [2] we define, for any Lie algebra L, the 3’-radical Pfj(L)
to be the sum of the finite-dimensional ideals of L. This is always a
characteristic ideal of L ([2] corollary 4.2), even for fields of non-zero
characteristic. We also define the locally nilpotent residual 03BBLR(L) to be
the intersection of the ideals I of L for which L/I is locally nilpotent. It is
easy to see (by considering finite-dimensional subalgebras) that in a
locally finite Lie algebra L we have L/ÀL9I(L) locally nilpotent. Hence
03BBLR(L) is the unique smallest ideal with locally nilpotent factor.
Suppose now that L~F over f, and let 3’*(L) be the set of ascendant

finite-dimensional subalgebras, as in [26]. By Simonjan [23] each
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is an ideal of L. Let

Then it is shown in [26] theorem 6.5 p. 97 that L/L* is locally nilpotent.
Clearly L* ~ Pg(L), so we have

We now have :

COROLLARY (4.2): Let L be an F-algebra over R. If 039B1 and 039B2 are
Levi subalgebras of L then they lie inside 03C1F(L), and are conjugate by an
element of J(ptj(L».

PROOF: If ll is a Levi subalgebra of L then is a direct sum
of finite-dimensional simple algebras 039Bk, for which llk = 039Bk. Hence
039B ~ L* ~ 03C1F(L). But the latter is ideally finite, and ll is a Levi subalgebra.
The result follows.

To obtain a conjugacy theorem for Levi subalgebras of F-algebras
using this result (if indeed such a theorem is true) it is necessary to extend
automorphisms from 03C1F(L) to L. We are unable to do this in general,
even using 03B5(L), but under more restrictive hypotheses it is possible.

THEOREM (4.3): Let L be an F-algebra over R having a Levi subalgebra
Tlo such that [039B0, p(L), 03C3(L)] = 0. Then all Levi subalgebras of L are
A (L)-conjugate.

Before giving the proof, we note:

COROLLARY (4.4): If L is an F-algebra over R, and if a(L) is abelian,
then all Levi subalgebras of L are A(L)-conjugate.

In fact, corollary 4.4 is true over f rather than R, as is proved without
using projective limits in Amayo and Stewart [1] theorem 13.5.10 p. 272.
However theorem 4.3 is more general. For the proof of this theorem
we need a lemma from [1] (lemma 13.5.9 p. 272): to state this we need
a definition. Let L be an F-algebra over f. A subalgebra T of L is tame
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if T is semisimple and u(L) + T  L, or equivalently T is a direct summand
of a Levi subalgebra of L.

LEMMA (4.5) : Let L be an F-algebra over f, T a tame subalgebra of L,
and A a Levi subalgebra of L. Suppose that a and f3 are two automorphisms
belonging to R(L), such that Ta and TP are subalgebras of A. Then
OEIT = 03B2/T.

PROOF OF THEOREM : 4.3: Let {Fj}j~J be the set of ascendant finite-
dimensional subalgebras of L, and let 039B1 be any Levi subalgebra of L.
Define

which are Levi subalgebras of F03C9j, and hence of Fj. Let Zj=03B61(03C3(Fj)).
We claim that

for all j E J. Certainly there exists a ~R(F03C9j) such that 039B03B10j = 039B1j, and hence

Further, Zj+039B0j is idealized by F03C9j. For if we let Rj = 03C3(F03C9j) we have
Fj = Rj+039B0j. Further, Rj is nilpotent (Jacobson [17] p. 91) so that
Rj ~ p(L) (see [26] corollary 3.15 p. 87). Hence

But

by hypothesis, and 1 so we have

and therefore
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as claimed. But then R(F03C9j) fixes setwise Zj+039B0j, and so

and (*) is proved.
It follows that there exists 03B2~R(Zj) such that

For each j~J we let Bj be the set of automorphisms P of Fj such that
(i) (039B0 ~ Fj)03B2 = 039B1~Fj,

(ii) If Fi ~ Fj for i~I then Ff = Fi .
We show that Bi ~ p. Since 039B0j ~ F03C9j it follows that Ao n Fj = 039B0j, and
similarly Ai n Fj = Alj. By (**) there exists 03B2~R(Zj) ~ R(Fj) such that
(i) holds, and p is the identity on 03C3(Fj). We prove that P satisfies (ii) as
well. We have Fi=03C3(Fi)+039B0i, and there exists 03B3~R(Fi) such that
Abi = 039B1i ~ Al. But 039B03B20i ~ Agj = 039B1j ~ 039B1; further AOi is tame. Since
R(Fi) ~ R(Fj) we may apply lemma 4.5 to conclude that

Therefore

since 03C3(Fi) ~ 03C3(Fj), on which fl is the identity. Hence (ii) holds.
The set of automorphisms p of Fj satisfying (ii) is an algebraic group,

and hence Rj is a coset variety. We partially order J by setting i ~ j if
Fi ~ Fi (i, j ~ J) which makes J a directed set by virtue of Hartley [15]
theorem 6 p. 259. If fij : Ri ~ f!4 j is restriction (j ~ i) then we obtain a
projective limit system {Ri, fij} of non-empty coset varieties. Exactly
as in theorem 4.1 we see that if 03B1 ~ R = proj lim 91 then A. = 039B1. Thus
any Levi subalgebra is conjugate to 039B0, and it follows that all Levi
subalgebras are conjugate.

Unlike the finite-dimensional case, we do not in general have conjugacy
of Levi subalgebras under R(L), or even %(L). This is easy to see. For
let K be any finite-dimensional Lie algebra over R having distinct Levi
subalgebras A, 039B’. Let M be an infinite index set, let K03BC be an isomorphic
copy of K for each y E M, and let Ail and A§ be the images of ll and A’
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under such an isomorphism. Then the direct sum

has Levi subalgebras

Obviously L is ideally finite. But any element of R(L) or %(L) is the
identity on all but a finite number of the Ku, hence 039B1 and A 2 cannot be
conjugate under R(L) or %(L).

5. Borel subalgebras

By a Borel subalgebra of a Lie algebra we shall mean a maximal locally
soluble subalgebra. By Zorn’s lemma, Borel subalgebras always exist,
and every locally soluble subalgebra is contained in a Borel subalgebra.
We can easily characterize the Borel subalgebras of F-algebras:

PROPOSITION (5.1): Let L be an F-algebra over f, and let Llu(L) be
canonicall y decomposed as a direct sum ~i~ISi of simple finite-dimensional
ideals. Then the Borel subalgebras of L are precisely the complete inverse
images in L of algebras 0 iEIBi, where for each i E 1, Bi is a Borel sub-
algebra of Si .

PROOF : It is clear that subalgebras of this type are Borel. If B is a Borel
subalgebra of L then 03C3(L)+B is locally soluble, hence 03C3(L) ~ B. Now
B/u(L) is a Borel subalgebra of Llu(L). By considering projections onto
the Si it follows that B/6(L) is contained in some EBieIBi, and hence by
maximality is of the desired form.

COROLLARY (5.2): Let L be an F-algebra over f, A any Levi subalgebra
of L, with canonical decomposition A = ~i~ISi. Then as the Bi range over
all Borel subalgebras of Si, the algebras 03C3(L) + ~i~IBi are precisely the
Borel subalgebras of L.

Examples similar to that in § 4 show that Borel subalgebras of ideally
finite algebras need not be N(L)-conjugate. However, in the algebraically
closed case, they will be Î(L)-conjugate. To prove this we need:

LEMMA (5.3): Let L be ideally finite over 1, having a Borel subalgebra B;
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and let F be a finite-dimensional ideal of L. Then B n F is a Borel sub-
algebra of F.

PROOF : As in 5.2 we have B = a(L) + ~i~IBi relative to a Levi sub-
algebra 039B of L. Now F = 6(F) + (ll n F) by the usual argument. Since
039B n F  F we have 039B n F = O iEJ Si for a finite subset J ~ I, where
039B = ~i~ISi is the canonical decomposition. But now

which is a Borel subalgebra of F.

THEOREM (5.4): Let L be ideally finite over R. Then all Borel subalgebras
of L are .J(L)-conjugate.

PROOF: The argument is exactly that used for Levi subalgebras in
theorem 4.1, using lemma 5.3 and the conjugacy of Borel subalgebras
in the finite-dimensional situation (Borel [5], Humphreys [16] p. 84).

We also have a homomorphism-invariance theorem for Borel sub-
algebras :

LEMMA (5.5): Let L be ideally finite over f, with a Borel subalgebra B,
and let 1 a L. Then B +III is a Borel subalgebra of LII.

PROOF: The radical u(I) = 03C3(L) ~ I ([26] p. 87 lemma 3.18) which is
an ideal of L. Since 03C3(7) ~ B we may pass to a quotient, and hence assume
J(1) = 0. Then 7 is a semisimple ideal of L and it follows from [26] § 5
that I is a direct summand of L, complemented by u(L) +A where ll is
semisimple. Then 039B + I is a Levi subalgebra of L, and using the character-
ization of Borel subalgebras given in proposition 5.1 we obtain the lemma.

Note that from theorem 4.1 it is easy to show that if 039B is a Levi sub-

algebra of an ideally finite algebra over R and if I  L , then A n I is a
Levi subalgebra of I. Hence in lemma 5.3 we may drop the requirement
that F be of finite dimension, provided we replace t by R.

6. Further properties of automorphisms

In this section we develop methods of constructing automorphisms
of ideally finite algebras over R, needed to prove existence and conjugacy
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of Cartan subalgebras in § 7. Recall that a Lie algebra L is residually
finite if it has a collection of ideals I03BB such that ~03BBI03BB = 0 and L/I03BB is
finite-dimensional for all 03BB. It is trivial to see that every ideally finite
Lie algebra is residually finite modulo its centre (lemma 7.2). In this
section we first deal with the residually finite case, and then find a method
for lifting the resulting automorphisms from a quotient algebra to the
whole algebra.
From now on let L be ideally finite over r. If I  an LII has finite

dimension we shall say that I is a cofinite ideal of L. A finite residual
system in L is a set of ideals Kj (j~J) of L, such that

(i) njeJKj = 0,
(ii) If i, j E J then there exists k E J such that Ki n Kj ~ Kk,

(iii) L/ Kj is finite-dimensional for all j E J.
Clearly L has such a system if and only if L is residually finite, and then

thes set of all cofinite ideals is a finite residual system. There may some-
times be advantages in using a smaller system, however.
We partially order J by letting i ~ j if Ki ~ Kj, so that (ii) implies that

J is directed. Whenever i ~ j there is a natural homomorphism

For each j E J we let -4j be the set of automorphisms of LIKI leaving
invariant all Ki K j for i ~ j. Clearly fJ4 j is an algebraic group. Further,
if i ~ j then nj, induces a morphism

and it is clear that

is a projective limit system. We define

Further, we let rcj be the set of 03B2~Bj such that j8 leaves invariant I/Kj
for every I  L with I ~ Kj. This is an algebraic subgroup of Bj, and
{Lj, pjilwjl is also a projective limit system. We set

Because L is ideally finite it transpires that elements of W(L) act
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naturally as automorphisms of L, and in fact there is a natural injection
L(L) ~ Î(L). The reason is :

LEMMA (6.1): Let L be an ideally finite algebra over R with a finite
residual system {Kj}j~J. If F is a finite-dimensional subspace of L then
Kk n F = 0 for some k~J.

PROOF : Let 0 ~ x E F. Then x 0 Ki for some j E J, and so

Inductively there exists i E J such that Ki n (Ki n F) = 0. If we take k E J
such that Kk ~ Ki n Ki then Kk n F = 0.
Now if y E W(L) then y = (03B3i)i~j where each yi is an automorphism of

L/Ki fixing all ideals of L/Ki; and if i ~ j then

Let x1, ···, xn E L. We can find a finite-dimensional ideal X of L con-
taining x1, ···, xn; and there exists k E J such that Kk ~ X = 0. Hence
there is a natural injection

and e(X) is an ideal of L/Kk . Hence Yk induces an automorphism of e(X),
and we can use e to pull this back to give an automorphism of X. Abusing
notation, this defines x03B31, ···, x7. The action of y is well defined by (*),
and it is easy to check that it yields an automorphism of L. Since y fixes
every finite-dimensional ideal of L, it follows without difficulty that
y E J(L).
To cope with lifting problems we need a little more. Let us call an

automorphism a of L locally inner if, given any finite set of elements
x1, ···, xn~L, we can find a finite-dimensional subalgebra X of L con-
taining x1,···, xn, and an automorphism f3 E i(X), such that xf = xf for
i = 1, 2,···, n. Using the extension property of é we may even assume X
to be an ideal of L. We let

The lifting property of 03B5(specifically, the surjectivity of the induced map)
shows that {Dj, pji|Dj} is a projective limit system, and we let
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It is now easy to check that under the injection L(L) ~ Î(L) the elements
of D(L) act as locally inner automorphisms of L. We define

to be the group of all locally inner automorphisms of L. So we may
assume that D(L) ~ J(L).

Similar results for groups may be found in Tomkinson [36] pp. 684-685,
but with more complicated proofs. The method above could be used to
simplify them.
We can now give a useful description of locally inner automorphisms

in terms of projective limits, as follows. For each i~I and j ~ i the group
6(Fj) induces automorphisms on Fi. Let cgji be the resulting subgroup
of A(Fi), and let the restriction map be denoted by

By the extension property, 03B5(Fi) ~ Jji for all j ~ i. We define

It is easy to see from the extension property that the set of all eji, for
j ~ i, is directed by inclusion; and so Wi is a subgroup of A(Fi) fixing
setwise all smaller Fk. Now 03B5(Fj) is generated by 1-parameter subgroups

where x is strongly ad-nilpotent. Hence 03B5(Fj) is connected (in the Zariski
topology. It follows (Borel [6] p. 88) that the Jji are closed connected
subgroups of d(FJ. Now an algebraic group is connected if and only
if it is irreducible as an algebraic variety (Borel [6] p. 87), and then the
finiteness of combinatorial dimension (Borel [6] p. 5) of A(L) implies
that

for some io ~ i. Hence in fact W, is a connected algebraic group. If fji is
the map induced by restriction Fj ~ Fi then we clearly have

for all j ~ i. This yields a projective limit system {Ji, fji} and evidently
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We can use this description to prove lifting and extension properties for
locally inner automorphisms (cf. Stonehewer [34]).

THEOREM (6.2): Let L be ideally finite over R, and H ~ L.
(i) Every element u’c- J(H) extends to an element a E J(L).

(ii) Every epimorphism L - L induces an epimorphism J(L) ~ 2(£).

PROOF: Let {Fi}i~I be the set of all finite-dimensional ideals of L,
with 7 ordered as usual.

(i) For each i E I define

noting that H n Fi is 6’-invariant. Obviously f!4i is a coset variety. We
prove f!4 i =1= Ø. If we choose x1,···, xn spanning H n Fi then we can find
j~ I such that x1,···, xn E H n Fj, and there exists 03C4~ 6(H n Fj) such that
x03C3’1 = x03C41,···, x03C3’n = x03C4n. If we extend i to T’on Fj and put a = 03C4’BFi then
03B1~Bi. Letting hi denote restriction, we obtain a projective limit system
{Bi, fjil. If we pick

then 03C3|H = Q’ and 03C3 E 2(L).
(ii) The proof is similar: we let Wi be the set of all (X E rsi such that a

induces the same automorphism as a given a’ on L, and choose

uc-proj lim W; . Surjectivity of the induced map is obvious.

If instead of éwe use X it is still possible to prove (ii) on the assumption
that the kernel of the epimorphism L ~ L’ is contained in the centre

(even the hypercentre) of L.

7. Cartan subalgebras

Many equivalent, but superficially different, properties may be used
to define a Cartan subalgebra of a finite-dimensional Lie algebra. When
generalized to infinite dimensions these properties may cease to be
equivalent. The definition of a Cartan subalgebra best adapted to the
present circumstances seems to be that suggested by formation theory.
Thus, let L be ideally finite. We say that a subalgebra C of L is a Cartan
subalgebra of L if

(i) C is locally nilpotent,
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(ii) If C ~ H ~ L, K  H, and H/K is locally nilpotent, then

K + C = H.
In formation-theoretic terms, C is a locally nilpotent projector of L.

That this property, in finite dimensions, is equivalent to the usual
definition of a Cartan subalgebra (nilpotent and self-idealizing) is proved
in Barnes and Gastineau-Hills [3] p. 343 example 1.3. (We shall show in
[29] that for ideally finite algebras over R the Cartan subalgebras are
precisely the locally nilpotent self-idealizing subalgebras, but this is less
convenient as a definition.) Immediate consequences of the definition are :

LEMMA (7.1) : Let L be an ideally finite Lie algebra over R, with X  L,
and let C be a Cartan subalgebra of L. Then

(i) C is a maximal locally nilpotent subalgebra of L.
(ii) C + X /X is a Cartan subalgebra of L/X.
(iii) If C ~ H  L then C is a Cartan subalgebra of H.
(iv) If C’IX is a Cartan subalgebra of L/X and C" is a Cartan sub-

algebra of C’, then C" is a Cartan subalgebra of L.
(v) C contains the centre of L.
(vi) If C’ contains the centre of L and if C’/03B61(L) is a Cartan subalgebra

of L/03B61(L), then C’ is a Cartan subalgebra of L.
(vii) If C ~ H ~ L then H is self-idealizing in L.

PROOF : (i), (ii), (iii) follow as in Barnes and Gastineau-Hills [3] lemmas
1.4 and 1.5, p. 344. For (iv) argue as in Gardiner, Hartley, and Tomkinson
[12] lemma 5.3 p. 201. Now (v) follows from (i) and (vi) from (iv) noting
that if a Lie algebra is locally nilpotent modulo its centre then it is locally
nilpotent. Finally (vii) follows as in Barnes and Gastineau-Hills [3]
lemma 1.7 p. 344.

Part (vi) of this lemma allows us to work modulo the centre of L.
The next lemma opens the way to the methods of § 6.

LEMMA (7.2) : If L is ideally finite then L/(l(L) is residually finite.

PROOF : If F is a finite-dimensional ideal of L then L/CL(F) is finite-
dimensional ([24] p. 302). The intersection of the CL(F) over all such F
is precisely the centre of L.

We use this result to construct Cartan subalgebras’from the top down’,
rather than working ’from the bottom up’ as for Levi and Borel sub-
algebras. This is because Cartan subalgebras do not behave well on
intersecting with ideals, but are suitably behaved under quotients.
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Following the argument of Tomkinson [36] we obtain the following
situation.

THEOREM (7.3) : Let L be a residually finite ideally finite algebra over R,
and let {Kj}j~J be the set of cofinite ideals of L. Then there exist subalgebras
Ci of L, for each j E J, such that

(i) Kj ~ Cj,
(ii) If Ki ~ Ki then Ci ~ Cj,
(iii) Cj/Kj is a Cartan subalgebra of L/Kj.

PROOF : Let Wi be the set of Cartan subalgebras Cj/Kj of L/Kj. The
natural homomorphisms induce maps

whenever j ~ i (that is, Kj ~ Ki), because of homomorphism-invariance
in finite dimensions (cf. lemma 7.1(ii)). We shall give the rcj the structure
of coset varieties, in such a way that the pij become affine. Now suppose
C is a Cartan subalgebra of a finite-dimensional Lie algebra F over 5t.
Since A(F) acts transitively on the set of Cartan subalgebras of F, this
set is in bijective correspondence with the points of the homogeneous
space A(F)/NA(F)(C). This carries the W-topology : if we can show that
the topology induced on rcj is independent of the choice of C it will follow
(choosing C’s related by a homomorphism) that the pij are affine. If

we choose a different Cartan subalgebra it will be of the form ca where
03B1~A(F). Now NA(F)(C03B1) = (NA(F)(C))03B1- 1. Since conjugation gives an
affine automorphism of A(F), which is both continuous and closed, the
*’-topology is unchanged on rcj. Therefore {Lj, pijl is a projective limit
system of coset varieties and affine maps, and we can find

Then the Cj satisfy (i), (ii), and (iii).

We now show (using an argument of the referee) that under these
conditions njeJCj is a Cartan subalgebra of L.

THEOREM (7.4): With the hypotheses o f theorem 7.3, and with sub-

algebras Ci satisfying (i), (ii), (iii) of that theorem, then n Ci is a Cartan
subalgebra of L.

PROOF: We use some finite-dimensional terminology, to be found in
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Jacobson [17]. If A is any finite-dimensional Lie algebra over K and B
is a Cartan subalgebra of A, then B = Ao(x) for some x E L, where Ao(x)
denotes the null-component. (Take x to be a regular element.) Further
if I  A then B+I/I = (A/I)0(x+I). In fact if D  A, y E A, and 0 is any
homomorphism of A, then Do(Y)4 = (D4)o(Y4).

Let F be any finite-dimensional ideal of L. Choose i E J such that

F n Ki = 0 and define CF = Ci n F. Let xi be any element of L such that
CilKi = (LI Ki)o(Xi + Ki). Then for large enough n,

and so Ci n F ~ F0(xi). But

so F0(xi) ~ Ci n F, and we get

this being therefore independent of the choice of xi . Let j ~ i and let

xj+Kj be an element of L/Kj such that

Applying the natural homomorphism L/Kj ~ L/Ki, we get that

and

Thus CF is independent of the choice of i. It follows that if F1 ~ F2
then CF1 ~ CF2 . Hence C = l)FCF is a locally nilpotent subalgebra of L.

Let F be any finite-dimensional ideal of L such that F + Ki = L,
choose j such that Kj ~ F = 0, and let xj+Kj be an element of L/Kj
with null-component Cj/Kj. Then Xj+Ki belongs to LIKI and Ci/Ki is
its null-component. The natural map F~L/Ki is an epimorphism
mapping F0(xj) onto Ci/Ki . In other words,

for all i E J.
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Suppose now that C ~ H fl K, and H/K is locally nilpotent. Let F
be a finite-dimensional ideal of L, choose i E J so that F n Ki = 0. Since
C + Ki = Ci, there exists xi~C such that xi+Ki belongs to L/Ki and
CilKi is its null-component. Then xi induces a nil endomorphism on
H/K and so induces a nilpotent endomorphism on H n F/K n F. Thus
H n F = (K n F) + (H n F)0(xi) ~ (K n F) + CF, and obviously equality
holds. Since L is the union of all such F, it follows that H = K + C.

Therefore C is a Cartan subalgebra. Clearly C = n Ci.

COROLLARY (7.5): Let L be ideally finite over R. Then L possesses at
least one Cartan subalgebra.

PROOF : If Z = 03B61(L) then L/Z is residually finite. By theorems 7.3 and
7.4, L/Z has a Cartan subalgebra C/Z. By lemma 7.1(vi) C is a Cartan
subalgebra of L.

The next corollary will be useful in future work:

COROLLARY (7.6): Let L be ideally finite over R, and let C be a sub-
algebra of L such that C + Kj/Kj is a Cartan subalgebra of L/Kj for every
cofinite ideal Ki of L. Then C+03B61(L) is a Cartan subalgebra of L.

PROOF : This is an immediate consequence of theorem 7.4 and lemma

7.1 (vi).

Next we turn to conjugacy.

THEOREM (7.7): Let L be ideally finite over R. Then any two Cartan
subalgebras of L are L(L)-conjugate.

PROOF: Both Cartan subalgebras contain (1 (L). Since elements of
J(L/03B61(L)) lift to Y(L) by theorem 6.2(ii) we may work modulo 03B61(L)
and hence assume L is residually finite. The methods of § 6 now apply,
as follows. Let CI and C2 be the two Cartan subalgebras. For each
cofinite ideal Ki of L it follows that Cl + KilKi and C2 + Kj/Kj are
Cartan subalgebras of L/Kj. Define

This is a non-empty coset variety, non-emptiness being 16.4 of Humphreys
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[16] p. 84. Therefore we can find a locally inner automorphism

Then

and so

The left-hand side contains Cl. Considering its image modulo each Ki
it is locally nilpotent; maximality (lemma 7.1(i) implies it equals C 1.
Similarly the right-hand side equals C2. This proves the theorem.

We intend to give an alternative approach to the existence of Cartan
subalgebras in [29], and to develop their properties in more detail in [30].

8. Borel-Cartan pairs

A Borel-Cartan pair of L is a pair (B, C) where B is a Borel subalgebra
of L and C is a Cartan subalgebra of B.

LEMMA (8.1): If L is ideally finite over R and (B, C) is a Borel-Cartan
pair, then C is a Cartan subalgebra of L.

PROOF : It is easy to give a proof based on corollary 7.6. For applications
in [29] we wish to avoid using theorem 7.4, to yield an alternative proof.
Therefore we proceed as follows.
Consider first the case where L is semisimple. Then L = ~i~ISi is a

direct sum of finite-dimensional simple ideals, and B = ~i~IBi where
Bi is a Borel subalgebra of Si. The projection Ci of C on Bi is a Cartan
subalgebra of Bi . Since C is maximal locally nilpotent, C=~i~I Ci.
The lemma is true in finite dimensions, so each Ci is a Cartan subalgebra
of Si. Suppose C ~ H o K where H/K is locally nilpotent. For each
finite-dimensional ideal

of L, we know that C n S is a Cartan subalgebra of S, so that H n S =
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(K n S) + (C n S). Therefore H = K+ C and C is a Cartan subalgebra.
In the general case, let R = 03C3(L). Then B ~ R and B/R is a Borel

subalgebra of L/R. Now C + R/R is a Cartan subalgebra of L/R by
lemma 7.1(ii). Since C is a Cartan subalgebra of C+R ~ B by lemma
7.1(iii) it follows by lemma 7.1(iv) that C is a Cartan subalgebra of L.

The argument of theorem 7.7, applied to Borel subalgebras, yields a
strengthening of theorem 5.4:

THEOREM (8.2): If L is ideally finite over R then any two Borel sub-
algebras of L are 2(L)-conjugate.

We may even combine theorems 7.7 and 8.2:

THEOREM (8.3): If L is ideally finite over SI, then any two Borel-Cartan
pairs of L are 2(L)-conjugate.

PROOF : Let (B, C) and (B’, C’) be Borel-Cartan pairs of L. By theorem
8.2 there exists a E 2(L) such that Ba = B’. But now C" and C’ are Cartan
subalgebras of B’. By theorem 7.7 there exists fi E 2(B’) such that cap = C’.
By theorem 6.2 we can extend 03B2 to fi’c- 2(L), and since B’03B2 = B’ it follows
that Bap’ = B’, C03B103B2’ = C’.

This result generalizes Winter [40] p. 99.
Theorem 4.1 can also be improved in a manner similar to that whereby

theorem 5.4 can be improved to theorem 8.2. The important case is in
finite dimensions:

LEMMA (8.4): Let L be a finite-dimensional Lie algebra over R. Then all
Levi subalgebras of L are 03B5(L)-conjugate.

PROOF : By induction on the dimension, using the lifting and extension
properties of tff(L), we may assume that L = A + 039B (split extension)
where A is an abelian ideal, ll is semisimple, and A is irreducible as
A-module. The theorem of Mal’cev and Harish-Chandra (Jacobson [17]
p. 92) asserts that all Levi subalgebras of L are conjugate under the group
generated by all exp (a*) for a E A.
Let B be the additive subgroup of A generated by all strongly ad-

nilpotent elements of L lying inside A. Then B is a vector subspace
invariant under all automorphisms of L. It follows that B is an ideal
of L (either by using corollary 3.2 of Towers [37] p. 443, proved also by
Tuck [38J, or by looking at the ad-nilpotent elements of ll which remain
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ad-nilpotent in their action on A by Humphreys [16] p. 30, so can be
exponentiated). Irreducibility implies B = 0 or B = A. If B = 0 then

every ad-semisimple element of 039B centralizes A, so ll centralizes A (being
generated by such elements), and now 039B is the unique Levi subalgebra
and conjugacy is trivial. Otherwise B = A, so every a E A can be written

for strongly ad-nilpotent a1,···, an. Then

belongs to e(L), and the theorem of Mal’cev and Harish-Chandra
implies 03B5(L)-conjugacy.

The above methods of using projective limits easily yield:

THEOREM (8.5): Let L be ideally finite over R. Then any two Levi
subalgebras of L are 2(L)-conjugate.

An analogue of this result holds for associative algebras. It is hoped to
publish details as [31].
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