COMPOSITIO MATHEMATICA

S. COEN Factoriality of a ring of holomorphic functions

Compositio Mathematica, tome 29, nº 2 (1974), p. 191-196 <http://www.numdam.org/item?id=CM_1974_29_2_191_0>

© Foundation Compositio Mathematica, 1974, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

FACTORIALITY OF A RING OF HOLOMORPHIC FUNCTIONS

S. Coen*

A non negative Cousin II distribution $\mathcal{D} = \{U_i, f_i\}_{i \in I}$ on a complex (reduced) space X is the datum of an open covering $\{U_i\}_{i \in I}$ of X and, for every $i \in I$, of a holomorphic function $f_i : U_i \to \mathbb{C}$ with the property that for $U_i \cap U_j \neq \emptyset$ one has, on $U_i \cap U_j$, $f_i = \eta_{ij} f_j$ where η_{ij} is a holomorphic function on $U_i \cap U_j$ and η_{ij} is nowhere zero. A solution of \mathcal{D} is a holomorphic function $f : X \to \mathbb{C}$ such that $f = \eta_i f_i$ on every U_i when $\eta_i : U_i \to \mathbb{C}$ is a nowhere zero, holomorphic function. One says that X is a Cousin-II space when every non negative Cousin-II distribution on X has a solution; if $K \subset X$ we say that K is a Cousin-II set when K has, in X, an open neighborhood base \mathcal{U} and every $U \in \mathcal{U}$ is a Cousin-II space.

The object of this note is to prove the following

THEOREM: Let X be a complex manifold; let K be a semianalytic connected compact Cousin-II subset of X; then the ring of the holomorphic functions on K is a unique factorization domain.

Observe that, in the preceding conditions, K is not necessarily a Stein set.

In the proof we shall use some results of J. Frisch [1].

The proof is based on two lemmas. We begin with some notations and definitions.

Let X be a complex space; the structure sheaf of X is denoted by \mathcal{O}_X or \mathcal{O} . Let Y be a (closed) analytic subset of X; we say that a *function* $f \in H^0(X, \mathcal{O})$ is associated, in X, to Y if for every $x \in X$ the germ f_x generates the ideal of Y in x, Id Y_x . If $g \in H^0(X, \mathcal{O})$ we set $Z(X, g) := \{x \in X | g(x) = 0\}$; we write also Z(g) to denote Z(X, g).

LEMMA 1: Let X be a complex space, $f \in H^0(X, \mathcal{O})$; let $\mathscr{C} = \{C_i\}_{i \in I}$ $(I = \{1, \dots, m\} \ m \leq \infty)$ be the family of the analytic irreducible components of Z(X, f) and suppose that \mathscr{C} does not contain any irreducible

^{*} While preparing this work the author had a fellowship of C.N.R. and was part of G.N.S.A.G.A. of C.N.R.

component of X. For every $i \in \{1, \dots, d\} \subset I$ let a function g_i be given associated, in X, to C_i .

Then g_i is irreducible in the ring $H^0(X, \mathcal{O})$ for $1 \leq i \leq d$. Furthermore there are d natural numbers $\lambda_1, \dots, \lambda_d$ such that the following factorization holds

$$f = k_d(g_1)^{\lambda_1} \cdots (g_d)^{\lambda_d}$$

and $k_d(x) \neq 0$ for every $x \in X - \bigcup_{j \geq d+1} C_j$.

PROOF: Every g_i is irreducible in $H^0(X, \mathcal{O})$. Indeed, if $g_i = ab$ with $a, b \in H^0(X, \mathcal{O})$ then we may suppose without loss of generality $Z(X, a) = C_i$, because C_i is irreducible. Let $z \in C_i$; we call \mathcal{M}_z the maximal ideal of \mathcal{O}_z ; there is a suitable natural number s such that $(g_i)_z \in \mathcal{M}_z^{s-1}$, $(g_i)_z \notin \mathcal{M}_z^s$; by the definition of g_i there exists a germ $c_z \in \mathcal{O}_z$ for which $a_z = (g_i)_z c_z$; it follows that $(g_i)_z = (g_i)_z c_z b_z$ and hence $b_z \notin \mathcal{M}_z$; therefore b is a unit in $H^0(X, \mathcal{O})$.

We will prove the assumptions by induction on d. Let d = 1. Since f vanishes on C_1 , it follows from the definition of g_1 that there exists $k \in H^0(X, \mathcal{O})$ such that

$$f = kg_1$$

We observe that if k vanishes in a point $z' \in C_1 - \bigcup_{j \ge 2} C_j$, then k vanishes on the whole of C_1 . Indeed, if U is a neighborhood of z' in X with $U \cap (\bigcup_{j \ge 2} C_j) = \emptyset$, then we have $U \cap Z(k) = U \cap Z(k) \cap C_1$; hence from the equality of analytic set germs

$$Z(k)_{z'} = (Z(k) \cap C_1)_{z'}$$

it follows $\operatorname{codim}_{\mathbb{C}}(Z(k) \cap C_1)_{z'} = 1 = \operatorname{codim}_{\mathbb{C}}(C_1)_{z'}$; as C_1 is irreducible, it follows $Z(k) \cap C_1 = C_1$.

Then there is $k' \in H^0(X, \mathcal{O})$ with $k = k'g_1$, $f = (k')g_1^2$. If k' vanishes in $z'' \in C_1 - \bigcup_{j \ge 2} C_j$, then $k'_{|C_1|} = 0$; but since f has a zero of finite order in every point of C_1 , a number $\lambda_1 \ge 1$ must exist such that

$$f = k_1(g_1)^{\lambda_1}$$

with $k_1 \in H^0(X, \mathcal{O})$ and $k_1(z'') \neq 0$; it follows that $k_1(x) \neq 0$ for every $x \in C_1 - \bigcup_{j \ge 2} C_j$, hence $k_1(x) \neq 0$ for $x \in X - \bigcup_{j \ge 2} C_j$.

Suppose that the thesis holds for d-1. We have

$$f = k_{d-1}(g_1)^{\lambda_1} \cdots (g_{d-1})^{\lambda_{d-1}}$$

with $k_{d-1}(x) \neq 0$ for every $x \in X - \bigcup_{j \geq d} C_j$.

One has $k_{d-1}(x) = 0$ for every $x \in C_d$; therefore there is $h \in H^0(X, \mathcal{O})$ such that $k_{d-1} = hg_d$, $f = h(g_1)^{\lambda_1} \cdots (g_{d-1})^{\lambda_{d-1}}g_d$. If h(w) = 0 at a point $w \in C_d - \bigcup_{j \ge d+1} C_j$, then h vanishes on C_d ; indeed, $Z(h)_w = (Z(h) \cap C_d)_w$. As in the case d = 1, we deduce that there exists $\lambda_d \ge 1$ with

$$f = k_d(g_1)^{\lambda_1} \cdots (g_{d-1})^{\lambda_{d-1}} (g_d)^{\lambda^d}$$

where $k_d \in H^0(X, \mathcal{O})$ and $k_d(x) \neq 0$ for every $x \in C_d - \bigcup_{j \ge d+1} C_j$, as required.

Let f be a holomorphic function on a complex space X; let $K \subset X$; f_K denotes the 'holomorphic function' induced by f on K; i.e. f_K is the class of the functions g which are holomorphic in a neighborhood of K and such that $g_{|U} = f_{|U}$ in some neighborhood $U = U_g$ of K in X.

The ring of all the holomorphic functions on K is denoted by H(K). We say that the *property* (C) holds on X when, for every holomorphic function f on X, every irreducible analytic component D of Z(X, f) has, in X, an associated function; it is said that the property (C) holds on K when K has an open neighborhood base \mathscr{B} such that the property (C) holds on every $B \in \mathscr{B}$.

LEMMA 2: Let X be a complex space; assume that $f \in H^0(X, \mathcal{O})$ does not vanish identically on any irreducible analytic component of X. Let K be a compact semianalytic subset of K and let the property (C) hold on K.

Then f_K is uniquely expressible as finite product of irreducible elements of H(K), except for units and for the order of the factors.

PROOF:

(I) Existence of the factorization. Let $\mathscr{U} = \{U_i\}_{i \in I}$ be an open neighborhood base of K in X such that on every $U \in \mathscr{U}$ the property (C) holds.

Let \mathscr{C}_1 be the family of the irreducible components of $Z(U_1, f_{|U_1})$ which contain points of K. As K is compact, \mathscr{C}_1 has only a finite number of elements. Lemma 1 proves that, without loss of generality, we may suppose that $f_{|U_1}$ is irreducible in $H^0(U_1, \mathcal{O})$; indeed, there is a factorization $f = uq_1 \cdots q_r$ where q_1, \cdots, q_r are irreducible elements of $H^0(U_1, \mathcal{O})$ and $u \in H^0(U_1, \mathcal{O})$ induces on K a function u_K that is a unit in H(K).

Assume that there is no factorization of f_K as required by the thesis.

Under this hypothesis we shall prove, in the following step (a), that there is a suitable sequence $\{U_h, x_h\}_{h \ge 1}$ with $U_h \in \mathcal{U}$ and $x_h \in U_h$ satisfying certain properties specified below and, later in (b), we shall prove that the existence of this sequence, implies a contradiction.

(a) We define a sequence $\{U_h, x_h\}_{h \ge 1}$ such that $U_h \in \mathcal{U}$ and $x_h \in U_h \cap K$ for every $h \ge 1$; furthermore we impose that the four following properties hold for every $h \ge 1$:

(1) there are $m_h \ge 1$ functions $g_1^{(h)}, \dots, g_{m_h}^{(h)}$ holomorphic on U_h and irreducible in $H^0(U_h, \mathcal{O})$ such that on U_h

[4]

$$f = k^{(h)} (g_1^{(h)})^{\lambda_{h, 1}} \cdots (g_{m_h}^{(h)})^{\lambda_{h, m}}$$

where $\lambda_{h,1}, \dots, \lambda_{h,m}$ are non zero natural numbers and $k^{(h)} \in H^0(U_h, \mathcal{O})$ is such that $k^{(h)}(x) \neq 0$ for every $x \in K$;

(2) if \mathscr{C}_h is the family of the irreducible components C of $Z(U_h, f_{|U_h})$ such that $C \cap K \neq \emptyset$, then $\mathscr{C}_h = \{Z(U_h, g_1^{(h)}), \dots, Z(U_h, g_{m_h}^{(h)})\}$ and \mathscr{C}_h has exactly m_h elements;

(3) $m_h \geq h$;

(4) there are h different elements C_1, \dots, C_h of \mathscr{C}_h with $x_1 \in C_1, \dots, x_h \in C_h$.

To define (U_1, x_1) it suffices to call x_1 an arbitrary point of $Z(U_1, f_{|U_1|}) \cap K$.

Now, we assume $(U_1, x_1), \dots, (U_{h-1}, x_{h-1})$ already defined and we define (U_h, x_h) .

First of all we choose U_h . Since f_K has no finite decomposition as product of irreducible elements of H(K), there is, at least, a function $g_j^{(h-1)}$, say $g_1^{(h-1)}$, which satisfies the following properties. On an open set $V \in \mathcal{U}, V \subset U_{h-1}$ two holomorphic functions a, b are given such that $g_1^{(h-1)} = ab, Z(V, a) \cap K \neq \emptyset, Z(V, b) \cap K \neq \emptyset$; furthermore there is a point $x \in K$ such that $a(x) \neq 0, b(x) = 0$. We set $U_h := V$. Certainly \mathcal{C}_h is a finite set; let m_h be the cardinality of \mathcal{C}_h ; for every $G_j \in \mathcal{C}_h$ $(j = 1, \dots, m_h)$, we call $g_j^{(h)}$ a holomorphic function on U_h , associated to G_j . Property (2) is true. Lemma 1 implies that also property (1) holds. For every $j \in \{1, \dots, m_{h-1}\}$ we write briefly C_j to indicate $Z(U_{h-1}, g_j^{(h-1)})$; let $D_j^1, \dots, D_j^{i_j}$ be the different irreducible components of $C_j \cap U_h$, such that $D_j^i \cap K \neq \emptyset$ for every $i = 1, \dots, i_j$. Certainly $i_j \ge 1$ for every such j; furthermore the definition of U_h implies $i_1 > 1$.

The analytic sets D_j^i are 1-codimensional in U_h (we consider the complex dimension); hence they are irreducible components of $Z(U_h, f_{|U_h})$ i.e. they are elements of \mathscr{C}_h . If $D_j^i = D_t^s$ then (i, j) = (s, t); indeed, there exist points which are both in C_j and in C_t and which are regular in $Z(U_{h-1}, f_{|U_{h-1}})$. It follows $m_h \ge m_{h-1} + 1$, that is condition (3) is fulfilled. Let C_1, \dots, C_{h-1} be different elements of \mathscr{C}_{h-1} such that

 $x_1 \in C_1, \cdots, x_{h-1} \in C_{h-1};$

for each $j = 1, \dots, h-1$ the analytic subset $C_j \cap U_h$ of U_h contains at least one element D_j of \mathscr{C}_h such that $x_j \in D_j$; it was previously observed that D_1, \dots, D_{h-1} are different one from the other. Let $D \in \mathscr{C}_h$ such that $D \neq D_j$ for every $j \in \{1, \dots, h-1\}$; pick a point x_h in $D \cap K$.

With this definition $\{(U_1, x_1), \dots, (U_h, x_h)\}$ satisfies (1), (2), (3) and also (4).

In step (b) we shall find a contradiction.

(b) Let x be a cluster point of the sequence $\{x_h\}_{h \ge 1}$; since K is compact,

 $x \in K$. We call \mathcal{M}_x the maximal ideal of \mathcal{O}_x ; $f_x \in \mathcal{M}_x$; let $s \in \mathbb{N}$ be such that $f_x \in \mathcal{M}_x^{s-1}$, $f_x \notin \mathcal{M}_x^s$.

Let \mathscr{T} be the coherent ideal sheaf on U_1 associated to the analytic subset $Z(U_1, f_{|U_1})$ of U_1 and let $\mathscr{F} = \mathcal{O}/\mathcal{T}$.

With regard to \mathscr{F} there is an open neighborhood base \mathscr{B} of x in K such that every $V \in \mathscr{B}$ has an open neighborhood base \mathscr{X}_V in X so that every $W \in \mathscr{X}_V$ is an \mathscr{F} -privileged neighborhood of x. The existence of \mathscr{B} and of the families \mathscr{X}_V is proved in ([1], théor. (1.4), (1.5)).

Let $V \in \mathscr{B}$; V contains s terms x_{i_1}, \dots, x_{i_s} with $i_1 < \dots < i_s$.

Let us consider U_{i_s} ; because of property (4), there are s irreducible components C_1, \dots, C_s of $Z(U_{i_s}, f_{|U_{i_s}})$ different one from the other such that $x_{i_j} \in C_j$ for every $j = 1, \dots, s$. Let S be the union of the irreducible components of $Z(U_{i_s}, f_{|U_{i_s}})$ which contain x; because of (2) for everyone of these components C there is a suitable $t, 1 \leq t \leq s$, such that $C = Z(U_{i_s}, g_t^{(i_s)})$. But the functions $g_j^{(i_s)}$ vanishing in x may not be more than s-1, because of (1). Hence we may suppose, without loss of generality, that C_1 is not contained in S. Let $W \in \mathscr{X}_V$ be an \mathscr{F} -privileged neighborhood of V in X such that $W \subset U_{i_s}$ and let $y \in W \cap C_1, y \notin S$. Property (C) implies that a function $F \in H^0(U_{i_s}, \mathcal{O})$ exists that vanishes in the points of S and only in these points. The function F induces a section $F' \in H^0(W, \mathscr{F})$; F' is not the zero section of \mathscr{F} on W because $F(y) \neq 0$; but $F'_x \in \mathscr{F}_x$ is the zero germ. This is a contradiction.

(II) Uniqueness of the decomposition in irreducible factors. Let

$$f_K = \delta \alpha_1^{m_1} \cdots \alpha_t^{m_t}$$
$$f_K = \lambda \beta_1^{p_1} \cdots \beta_s^{p_s}$$

where δ , λ are units in H(K) and $\alpha_1, \dots, \alpha_t$, β_1, \dots, β_s are irreducible elements of H(K). Furthermore assume that, for $i \neq j$ and $1 \leq i, j \leq t$, α_i and α_j , are not associated elements in H(K) and that, for $i \neq j$ and $1 \leq i, j \leq s, \beta_i$ and β_j are not associated elements in H(K).

In a suitable neighborhood $U \in \mathcal{U}$ there are holomorphic functions $d, a_1, \dots, a_t, l, b_1, \dots, b_s$ such that they induce respectively $\delta, \alpha_1, \dots, \alpha_t, \lambda, \beta_1, \dots, \beta_s$ and on U

$$f = da_1^{m_1} \cdots a_t^{m_t} = lb_1^{p_1} \cdots b_s^{p_s}.$$

Each a_i , for $i = 1, \dots, t$, defines an irreducible component V_i of $Z(U, a_i)$ such that $V_i \cap K \neq \emptyset$. Such a V_i is unique; indeed, if $Z_i \neq V_i$ is an irreducible component of $Z(U, a_i)$ and $Z_i \cap K \neq \emptyset$, then, by lemma 1 and by recalling that property (C) holds on U, we can write $a_i = vgh$ where v, g, h are holomorphic functions on U and g, h are respectively associated in U to V_i and to Z_i ; it follows that $\alpha_i = v_K g_K h_K$; this is a contradiction, because g_K and h_K are not units in H(K). Let $i, j \in \{1, \dots, t\}$, $i \neq j$, then $V_i \neq V_j$. Assume, in fact, $V_i = V_j$; let g_i be a holomorphic function associated in U to V_j ; since g_i divides a_i and a_j in $H(U, \mathcal{O})$, it follows that α_i, α_j are associated elements in H(K). Every V_i is an irreducible component of $Z := Z(U, f_{|U})$; indeed, if $x \in V_i$, then $\dim_{\mathbb{C}}(V_i)_x = \dim_{\mathbb{C}} X_x - 1$ $= \dim_{\mathbb{C}} Z_x$; vice versa for every irreducible component C of Z such that $C \cap K \neq \emptyset$, there is one $i \in \{1, \dots, t\}$ such that $C = V_i$. Every b_j defines, for $j = 1, \dots, s$, one and only one irreducible component W_j of $Z(U, b_j)$ such that $W_j \cap K \neq \emptyset$; by what we have just proved it follows that t = s and, eventually changing the indicization of $b_1, \dots, b_s, V_i = W_i$ for every $i \in \{1, \dots, t\}$. Then we can deduce that for each i the elements α_i, β_i are associated in the ring H(K).

Pick, now, $i \in \{1, \dots, t\}$ let $x \in V_i$ be a regular point of Z with $d(x) \neq 0$, $l(x) \neq 0$ and let g_i be a function associated to V_i in U. Recall that V_i is an irreducible component of Z; by lemma 1, $a_i = s_i g_i^r$ and $s_i(x) \neq 0$; by the irreducibility of α_i it follows r = 1. Furthermore $a_j(x) \neq 0$, $b_j(x) \neq 0$ for $j \neq i$. Then on U we can write

$$f = f_1 g_i^{m_i} = f_2 g_i^{p_i}$$

where $f_1, f_2 \in H^0$ $(U, \mathcal{O}), f_1(x) \neq 0, f_2(x) \neq 0$; it follows that $m_i = p_i$. The lemma is proved.

Note that property (C) holds on each Cousin-II space U in which the local rings $\mathcal{O}_{U,y}$ are U.F.D. (= unique factorization domains) for every $y \in U$. Thus, we have proved that if K is a semianalytic, connected, compact Cousin-II subset of a complex space X and if K has an open neighborhood U in X so that the rings \mathcal{O}_y are U.F.D. for every $y \in U$, then H(K) is an U.F.D.

By a different way, in [2] a criterion is given for the factoriality of H(K) in the case that K is a compact Stein set and that every element of H(K) is expressible as product of irreducible elements.

REFERENCES

- J. FRISCH: Points de platitude d'un morphisme d'espaces analytiques complexes. Inv. Math. 4 (1967) 118–138.
- [2] K. LANGMANN: Ringe holomorpher Funktionen und endliche Idealverteilungen. Schriftenreihe des Math. Inst. Münster (1971) 1-125.

(Oblatum 8-V-1974)

Università di Pisa Istituto di Matematica Via Derna, 1 – Pisa (Italy)