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Let M" be a smooth manifold and let R(M) be the space of smooth
Riemannian metrics for M. Fix a complete metric go in R(M) and an
arbitrary point p in M. Much of the Riemannian geometry of (M, go)
is determined by the configuration of go-radial geodesics at p, that is,
with the set of all go ’half geodesics’

with c(O) = p and go(é(O), é(0)) = 1. Let Cgo(p) be the go-cut locus at p,
let ig0(p) : = distg0(p, C,,.(p» be the go-injectivity radius of M at p, and let
the go-injectivity radius of M be

In understanding the global geometry of M, most notably in the proof
of the sphere theorem, it has been necessary to find lower bounds on

ig0(M) for positively curved manifolds and to understand the map
p ~ i,.(p) from M ~ R for a fixed complete metric go E R(M). However,
no explicit study of the map

from R(M) x M - R has been made.
Our study of this map presented in this paper was motivated by our

study of metric deformations of curvature in [4]. We needed to know
that for M compact, the convexity radius function on R(M) was C2
locally minorized. That is, if go E R(M) was given we can find constants
03B4(g0) &#x3E; 0 and C(go) &#x3E; 0 such that if 9 in R(M) is 03B4(g0) close to go in the
C2 topology on R(M), then any g-metric ball of g-radius  C(go) would
be g-convex. In order to obtain this local minorization, we used Klingen-
berg’s minorization for ig0(M) in terms of an upper bound for the sectional
curvature of (M, go) and the length of the shortest smooth closed non-
trivial go-geodesic. The first step was to show there exist constants

03B4(g0) &#x3E; 0 and i(go) &#x3E; 0 such that g e R(M) and g C2 ô(go) close to go
implies that the length of the shortest smooth closed g-geodesic is greater
than L(go). This we did by applying a result of J. Cheeger, [2], minorizing
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the length of the shortest smooth closed geodesic for families of Rieman-
nian n-manifolds (M", g) with diameter less than d, volume greater than V,
and sectional curvature greater than H, for fixed constants d, V, and H.
The lower bound H on the sectional curvature evidently forced us to use
the C2-topology on R(M) to apply this local minorization. However
we will see in this paper that to prove the local minorization of the length
of the shortest smooth closed non-trivial geodesic, we need only C1-
closeness in R(M). Also there is no way to prove any of the lower semi-
continuity theorems using a result such as Cheeger’s theorem. It is

necessary to study the behavior of the radial geodesic configuration at
a point p in M for all metrics in a Ci neighborhood of a given metric.

Let M1 be a non-compact manifold, g0~R(M1) complete, and let C
be a compact subset of Mi. Then

is a family of complete metrics in R(M1). In order to prove a result in [4],
we needed to know that g ~ ig(M 1) was C2 locally minorized on families
of the form FC, go(M 1). Since M1 is non-compact, the result of Cheeger
mentioned above does not apply and his proof cannot be modified to
apply to FC, g0(M). Hence the geometry of compact and non-compact
manifolds would be different if g ~ ig(M) was not C2 locally minorized
for families of complete metrics Fc, g0(M), M non-compact. But it seemed
intuitively clear that R(M) and F c, go(M) should not seem different to the
injectivity radius functional g ~ ig(M). Once we take the point of view
of this paper that the local minorization of the injectivity radius functional
on R(M) for M compact should be derived by considering the radial
geodesic configuration, the local minorization for families of metrics of
the form FC, g0(M) is immediate. The geometry of R(M) and F c, g0(M1)
from the point of view of the minorization of the injectivity radius
functional is identical,

In Section 1, we review some basic facts from Riemannian geometry
that relate ig(p) to the behavior of the configuration of g-radial geodesics
from p. In Section 2 we prove an estimate for systems of first order
O.D.E.’s which enables us in Section 3 to study the behavior of the
configuration of radial geodesics from p for all metrics in a C 1 b-ball
about a given metric in R(M). In particular, if g is sufficiently close to
go in the CI topology and ig0(p) &#x3E; Ro, there is no smooth closed g-
geodesic through p of g-length less than Ro. In Section 4 for compact M
we uniformize this result to prove the Cl local minorization of the

length of the shortest smooth non-trivial closed geodesic. In section 5
we prove for M compact and p in M fixed that g ~ ig(p) from R(M) ~ R
is lower semicontinuous. In Section 6 we use the continuity of p ~ig0(p)
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for go E R(M) fixed and the lower semicontinuity of g ~ ig(p) for p in M
fixed to prove the lower semicontinuity of (g, p) ~ ig(p) from R(M) x M ~ R
for M compact. We also discuss briefly the problem in extending these
results to the complete non-compact case. The basic problem is just the
technical difficulty involved in defining a C2 topology for R(M) that is
independent of the choice of Riemann normal coordinates when M is
non-compact. In Section 7 we prove that for M compact the map g H iq(p)
is upper semicontinuous and hence continuous from R(M) ~ R with the
C2 topology on R(M). We note that for the upper semicontinuity we need
the C2 topology on R(M) to control (B) of Basic Lemma 1 of Section 1
whereas for the lower semicontinuity the C1 topology on R(M) suffices
to control (B). It is then possible to see that for M compact, the map
(g, p) H i,(p) from R(M) x M ~ R is upper semicontinuous and hence

continuous. Finally in Section 8 we show that the map g ~ ig(M) from
R(M) ~ R is continuous with the C2 topology on R(M) for M compact.
We thank Professors J. Cheeger and C. D. Hill for several conversations

on the elementary theory of ordinary differential equations. We thank
the staff and members of the Centre de Mathématiques of the Ecole
Polytechnique for their kindness to the author during his stay in Paris.
We thank Jean-Pierre Bourguignon of the Centre de Mathématiques for
criticizing a preliminary version of this manuscript. We thank Professor
H. Karcher for suggesting that we prove g ~ ig(M) is continuous and for
discussions concerning perturbations of the conjugate locus summarized
in Section 1 of this paper. We thank Professor W. Klingenberg for
inviting us to visit the Mathematisches Institut der Universitât Bonn
during early December, 1973 where Section 8 of this paper was written.
Finally we thank Professor E. Zaustinsky for suggesting a study of the
upper semicontinuity of the map g H ig(p) using the lower semicontinuity
during the early stages of our work on this paper.

Notational Conventions

Fix a smooth n-manifold M, n ~ 2. Let n : TM ~ M be the tangent
bundle of M. Let R(M) be the space of smooth Riemannian metrics for
M. Given g in R(M) and a sectionally smooth curve c : [a, b] - M,
define the g-length of c, written L,(c) by

Then let distg: M x M ~ [0, oo) be the distance function for M defined
in the usual way by
dist,(p, q) : = inf {Lg(c); c is a sectionally smooth curve from p to qi-
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Given 9 E R(M) and R &#x3E; 0, let

and

which is the g-unit sphere subbundle of T M with fiber at p

Define the injectivity radius function

written

by

is a diffeomorphism}
where exp : TM - M is the exponential map determined by g. We call

ig(p) the g-injectivity radius at p. Define the g-injectivity radius of M,
written ig(M), by

Given a chart (U, x1,···, xj with x = (x1,···, xj smooth in LI and

g E R(M), define the Christoffel symbols

from the functions

in the usual way. When a chart (U, x) is fixed as in section 1, we will
sometimes write 0393kij(g, q) for 0393kij(g, x, q). Let

and
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1. A review of local Riemannian geometry of geodesics

References for this section are [1] or [6]. Since this material is standard
no explicit further references will be given. Fix a complete metric go for
M. For all v~S1(M, g0) let

be the unique ’half geodesic’ determined by go with cv(0) = 03C0(v) and

ëv(O) = v. If exp : TM - M is the exponential map determined by go then
c,(t) = exp03C0(v) tv. Define

by

s(v) : = sup {t &#x3E; 0; distg0(cv(t), 03C0(v)) = t}

= sup {t &#x3E; 0; cv : [0, t] - M is the unique minimal

go-connection between cv(O) and cv(t)}.

If p : n(v) and q : expp s(v)v, then q is said to be the cut point of p
along the radial geodesic c, : [0, oo) ~ M. For instance, if s(v) = oo, then
cv is a ray and if in addition s( - v) = oo, then the geodesic c : R - M

with é(0) = v is a line. Given p in M, let C(p) : = {s(v)v; v~S1(M, g0)|p}
and define Cg0(p) : = expp(C(p)), called the go-cut locus at p. Then the
go-injectivity radius at p defined above satisfies

If M is compact, every radial geodesic from p has a cut point so ig0(p)
is finite for all p E M. Klingenberg showed that s : S1(M, go) ~ [0, oo ] is
continuous and hence p- ~ig0(p) from M ~ R is continuous.
An important result in the local geometry of geodesics is the character-

ization of points q in Cg0(p) with distg0(p, q) = i,.(p) for i,.(p)  oo and

go complète in terms of the behavior of the go-radial geodesic configura-
tion at p.

BASIC LEMMA I : Either one or both of the following holds.
(A) q is a first conjugate point to p along some radial geodesic from p, or
(B) there exist v, w E SI (M, g,)Ip, v ~ w such that if to : = i,.(p) then

cv(to) = cw(to) = q and cv(t0) = -cw(t0). Alternately, there is a geodesic
loop at p through q.

Let M be compact. Choose po E M with



156

Choose qo E C,.(p) with dist,.(po, qo) = i,.(po) and assume (B) of Basic
Lemma 1 holds. Then by (*), po must satisfy i,.(qo) = distg0(p0, qo) and
the two loops given by (B) in fact form a smooth closed geodesic. This
discussion together with the theory of conjugate points yields a minoriza-
tion of Klingenberg, namely

BASIC LEMMA II : Let M be compact, go E R(M), and let k(go) &#x3E; 0 be

any upper bound for the go-sectional curvatures. Then

where

Length (go) = inf {Lg(c); c is a smooth non-trivial closed go-geodesic}.
It is then clear from Basic Lemma 1 that to see that (g, p) ~ ig(p) is

continuous, we need to see why first conjugate points and geodesic loops
cannot jump inward or outward for metrics close to a given metric. The
analysis of the conjugate point behavior with the C2 topology is fairly
standard. After sketching below an argument of Dr. H. Karcher (personal
communication) to indicate that (A) perturbs nicely, we will make no
further mention of (A) in this paper, treating only (B) below in our proofs.
We remark here that while C2 closeness is clearly needed for the lower
semicontinuity of (g, p) H ig(p) because of (A), CI closeness is all that is
needed to prevent the geodesic loop of (B) from jumping inward.

Recall that conjugate points along the radial geodesics at p can be
interpreted as singularities of the differential of the exponential map
expp : Mp ~ M. Let e &#x3E; 0 be given. Suppose for v~S1(M, 9 o)lp, there is
no conjugate point along c, : [0, d] ~ M. It is then standard that for

metrics g sufficiently C2 close to go and tangent vectors w sufficiently
close to v in TM, there will be no conjugate points along the g-radial
geodesic with initial condition w up to at least time d201303B5. In particular,
this implies that (g, p) ~ ig(p) cannot fail to be lower semicontinuous

because of conjugate point behavior.
To see that the first conjugate point cannot jump outward, we must

consider the index form (formula (1), p. 142 of [6]). In the appendix to
[5], Karcher shows that the index form for a given metric can be viewed
as an operator of the form I + k where k is a compact operator which

changes continuously with a continuous perturbation of the curvature
tensor. It is then standard that the spectrum of these operators is upper
semicontinuous (but not necessarily lower semicontinuous) under con-
tinuous perturbations. This implies that the first conjugate point cannot
’jump outward’ with C2 perturbations of a given metric.

Define C contained in (M, g) to be g-convex iff for all p and q in C,
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there is precisely one minimal normal geodesic segment in C from p
to q. The basic result on the existence of convex neighborhoods (from
[6], p. 160) is

BASIC LEMMA III : Let Bg, R(p) satisfy the following two properties.
(A’) For all q c- Bg, R(p), expl : Ug, 2R(P) - Bg, 2R(P) is a diffeomorphism.
(B’) For ail v~S1(M, go)lp, the index form is positive definite for all

Jacobi fields J along ev : [0, R] - M with g(J, êv) - 0 and J(O) = 0.

Then B., R(P) is g-convex.

By standard comparison theory in Riemannian geometry, it is clear
that (B’) is locally minorized with the C2 topology on R(M). (See [4] for
details.) Hence the key step in minorizing the convexity radius functional
on R(M) is to minorize the injectivity radius functional. We thus leave
to the reader the formulation of the analogues of theorems 4 and 5 of
section 4 for the convexity radius functional.

2. An estimate for systems of ordinary differential equations

For completeness, we prove an estimate for first order systems of
O.D.E.’s similar to the estimate stated in [2] without proof which is not
found in any standard text known to us. For X = (x1, X2’...’ xm) E Rm,
let

PROPOSITION 1: Suppose X(t) = (XI(t),..., xm(t)) is a solution of

for t~ [0, R], i = 1,···, m, where the f are continuous and satisfy a
Lipschitz condition

jor i = 1, w, m.

Suppose Y(t) = (YI(t),..., ym(t)) is a solution of

for t E [0, R], i = 1,..., m where X(0) = Y(O), the gi are continuous, and

for all (X, t) and i = 1,..., m.
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Then for te [0, R] and i = 1,···, m

PROOF : Recall the following elementary facts. First, if X(t) ~ 0 then

and second, if F(X, t) : = (f1(X, t),···, fm(X, t)) then from (*)

It is enough to show that ~X(t)- Y(t)~2e-mLt ~ mat. Now

Hence

Thus if X(t) ~ Y(t), we have

since t ~ 0, L ~ 0. If X(t) = Y(t), the desired estimate clearly holds. Thus
suppose X(t) ~ Y(t). Choose to E [0, t) such that X(to) = Y(to) and
X(s) ~ Y(s) for all s~(t0, t]. Then

3. The local behavior of the configuration of radial geodesics

In this section, let M" be a fixed smooth manifold not necessarily
compact with n ~ 2. Fix a complete go E R(M) and p~M. Choose
Ro with 0  Ro  igo(p). Fix for this section a go-orthonormal basis
{e1,···, en} c Mp.Letx = (x1,···, xn) be go-Riemann normal coordinates
centered at p for Bg0, R0(p) defined by {e1,···, en}. Explicitly if q E Bg 0, R0(p)
we may choose a unique t &#x3E; 0 and v~S1(M, g0)|p such that q = expp tv
where expp : Mp ~ M is the exponential map determined by go. If

v = ¿iqiei’ then xi(q) = tai. Define for i = 1, ..., n
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as follows. Given q~Bg0, R0(p) - {p}, choose t, v = ¿iaiei with t &#x3E; 0

uniquely so that q = expp tv and put xi+n(q): = ai- Thus |xi+n| ~ 1 on
Bg0, R0(p) - {p} for i = 1,..., n.

Let gl E R(M) be complete. We want to study the difference in the
configuration of radial geodesics at p determined by go and gl . We fix
the following notation. For v c- S 1 (M, go) 1, let

be the unique go-geodesic with c0, v(0) = p and c0, v(0) = v. Let

be the unique g 1-geodesic with c1, v(0) = p and c1, v(0) = v. Fix v = Liaiei
in S1(M, g0)|p. Identifying as usual xi and xi - c0, v, the differential equation
for co, v written in terms of the go-Riemann normal coordinates is

with initial conditions Xi(O) = 0 and xi+n(0)=ai for i = 1,..., n. Let
X = (x1,···, xn, xn+1,···, x2n) and Y = (y1,···, yn yn+1,···, y ) 2n be arbi-
trary points in the domain of definition of (*) which is of course the
diagonal of Bg0, RO(P) x Bg0, R0(p) modulo the identification of Mp and !Rn
given by the go-frame {e1,···, en} in Mp. Then we may write (*) as

for i = 1,..., 2n where

and

for i = 1,···, n. Let

Then for i = 1,···, n
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and

since |xj+n|, |yj+n| ~ 1 by construction. Thus if we put

we have

for all X, Y in the domain of definition of (*) and i = 1,···, 2n.
In terms of the Riemann normal coordinates x = (x1,···, xn) for

Bg0, R0(p), the system of differential equations for the gl-radial geodesic
c1, v has the form

for i = 1,···, 2n with the initial condition Y(O) = X(0) where

and

for i = 1,···, n.
Suppose

for all q E B90,Ro(P) and for all i, j, k = 1,···, n. Then

and
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Hence Proposition 1 of Section 1 with m : = 2n implies

PROPOSITION 2: Let v~S1(M, go)lp and define Lo as above. Suppose

for all q E B,., R.(p) and all i, j, k = 1,..., n. Then for all t E [0, RO] and
i= 1,..., n,

and

Since e2nL0t ~e2nL0R0 for t~[0, R.] this estimate quantitatively
measures the fact that for gl b - CI close to go (as in Proposition 2) and
03B4 small, the gl-radial geodesic configuration at p is close to the go-radial
configuration at p near p. We can interpret the first estimate geometrically
as follows: for all v E SI (M, go)Ip and for all metrics g1 in a Cl b-ball
about go, the g 1 radial geodesic c1, v lies in a 03B4 ’cone neighborhood’ of
the go radial geodesic co, v.

In order to make this more precise, define a distance function

by

where x = (x1,···, xn) are the fixed Riemann normal coordinates for
Bg0, R0(p). It is elementary that [Bg0, R0(p), dist] is a metric space.
We say gl e R(M) is b-close to go on Bg0, R0(p) in the CI topology, written

|g1-g0|C1, x, Bg0, R0(p)  ô, with coordinates x = (x1,···, xj iff

for all v~TM|2013) and the Christoffel symbols 0393ijk(g0, x,·) and
0393ijk(g1, x, .) satisfy the condition of Proposition 2.
From the transformation formulas for the Christoffel symbols under

a change of coordinates, it is clear that although for b &#x3E; 0 fixed the

inequality |g1-g0|C1, x, Bg0, R0(p) ~ 03B4 is not invariant under coordinate
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change, the notion of a sequence of metrics {gn} ~ R(M) with

is well defined. This will become quite explicit in the construction of
Section 4.

By Proposition 2, for gl E R(M) that is 03B4-close to go on Bg0, Ro(P) in the
Cl topology, te [0, RoJ, and v E SI (M, g0)|p we have

Let gl E R(M) be b-close to go on Blo, Ro(P) in the Cl topology. Suppose
there is a smooth closed non-trivial gl-geodesic c through p contained
in Bg0, R0(p). We may choose a smallest to &#x3E; 0 and v~S1(M, g0)|p such
that s : = c1, v(t0) = c1, v(-t0) = c1, -v(t0) (that is, c is the union of the two
gl radial geodesics c1, v : [0, t0] - M and cl, - v : [0, t0] ~ M). Assume
c is sufficiently short that t0 ~ Ro. Let q : = co, veto) and r : = co, -veto).
Then since Ro  ig0(p), by basic Riemannian geometry, dist (q, r) =
dist (p, q) + dist (p, r) = 2to. But the triangle inequality for the metric
’dist’ implies

Thus we have the inequality 1 ~ 203B4n4e2nL0R0 which is false as 03B4 ~ 0.

Hence

THEOREM 3 : Given go E R(M) complete, Ro  ig0(p), and a fixed go-
Riemann normal coordinate system x = (x1,···, xn) on Bg0, R0(p) as above.
There exists a constant 03B4(g0, x, p) E (0, 1) such that g E R(M) and

implies there is no smooth closed non-trivial g-geodesic c through p of
g-length ~ Ro. Hence there is no sequence of metrics {gn} c R(M) with
I gn - go le x, Bg0, R 0 (p) ~ 0 and such that gn has a smooth closed non-trivial
geodesic en through p with Lg0(cn) - 0.

PROOF : If (1- 03B4)2g0 ~ g ~ (1 + b)2go, then for any sectionally smooth
curve c, we have
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Thus if c is a smooth closed g-geodesic through p of g-length ~ Ro,
it follows that the ‘to’ of the paragraph preceding Theorem 3 satisfies

so

From the proof, it is clear that making the upper bound on 03B4(g0, x, p)
smaller, the upper bound on L,(c) can be improved.

4. The local minorization of the length of the shortest smooth closed
non-trivial geodesic on R(M) for M compact

Fix go E R(M) and choose Ro &#x3E; 0 with 4Ro  ig0(M). Since M is

compact, fix p1,···, pmo in M so that

For each i, fix a go-orthonormal basis {ei,1,···, ei,n} for Mpi thus defining
once and for all go-Riemann normal coordinates Xi = (xi1,···, xin) on
Bg0, 4R0(pi) for i = 1,..., mo.
For each pi, parallel translate (using go) the basis {ei,1,···, ei, n} for Mpi
along radial geodesics getting a go-orthonormal frame {Ei, 1,···, Ei, n}
on Bg0, 4R0(pi) for each i = 1,..., mo. Hence for each point q in M we
obtain at most mo orthonormal bases for Mq by this procedure which
we will call distinguished bases for Mq.

DEFINITION: 9 E R(M) is b-close to go in the CI topology iff

and for each i = 1,..., mo, using the fixed Riemann normal coordinates

xi = (xi1,···, xin) on Bg0, 2R0(pi),

for all q E Bgo, 2RypiO
We define smooth maps

for each i and 1 ~ k, l ~ n as follows. Fix i for the moment and write

(x1,···, xn) for (xi1,···, xin). Given (q, s) in Bgo, R0/2(pi)  Bgo, 2Ro(pi) parallel
translate {ei, 1,···, ei, n} from Mpi along the unique unit speed go-radial
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geodesic from pi to q getting a distinguished basis {E1/q,···, En|q} for
Mq. Let y = (y1,···, y.) be go-Riemann normal coordinates defined on
Bgo, 2Ro(q) by {E1|q,···, En|q}. Then for S E Bgo, 2R.(Pi)

so (y1,···, yn) are smooth at g. Thus we may define

Since BgO’ RO/2(PJ x Bg0, 2RO(pJ is compact, we may choose a constant Ci
such that

for all k and 1 and all (q, s)~ B gO,Ro/2(Pi) x Bg0, 2R0(pi). In particular, for a
fixed q~Bg0, R0/2(pi), the maps from Bg0, R0(q) ~ R given by s ~ |Fikl(q, s)|
and s ~ |Gikl(q, s)| are bounded by Ci. Doing this construction for all
pi, i = 1,···, m0, we get constants Ci for i = 1,···, m0. Put C : =

max {C1,···, Cm0}.
Recall that if ( U, x) and (V, y) are two local coordinate systems with

x = (x1,···, xn) and y = (y1,···, y n) then for s E U ~V,

Thus if qEBgo,Ro/2(pJ and y = (y1,···, yn) are the go-Riemann normal
coordinates on Bg0, R0(q) obtained by go-parallel translation of

{ei, 1,···, ei, n} to Mq, we have for g~R(M) c5-close to go in the Cl topology

Hence for any q E M, if g~R(M) is Ô-close to go in the CI topology,
then using go-Riemann normal coordinates x = (x1,···, xj on Bg0, R.(q)
defined by any distinguished basis for Mq we have

for all SE BgO’ Ro(q). In particular, the CI neighborhoods of go defined as
above are independent of the choice of distinguished bases.
To apply the results of section 3, it only remains to see that for any q

in M and any Riemann normal coordinate system defined by any
distinguished basis for Mq that we have a uniform Lipschitz condition
on the O.D.E.’s for the go radial geodesics. Fix i with 1 ~ i ~ mo . Let

S:=S1(M, g0) [0, R0]. We define maps Sijkl:S ~ R and
Tipqrs:S ~ R as fofïows. Let (v, t) e S. Let q : = n(v) and let y = (y1,···, yn)
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be go Riemann normal coordinates defined on Bg0, 2R0(q) by go parallel
translation of {ei, 1,···, ei, n} ~ M Pi along the go-unit speed radial

geodesic from pi to q in Bg0, R.(pi). Then for all 1 ~ j, k, l, p, q, r, s ~ n put

and

where Co, v is the unique go geodesic with c0, v(0) = q and c’0, v(0) = v as
before. From basic Riemannian geometry these maps are continuous.
Thus we can choose constants ri, ôri &#x3E; 0 such that |Sijkl(v, t)| ~ ri and
|Tipqrs(v, t)| ~ ari for all (v, t)~S and 1 ~ j, k, l, p, q, r, s~ n. Doing this
construction for all i = 1,..., mo , put

and

Put

For any p E M, using go-Riemann normal coordinates x = (x1,···, xn)
on Bg0, R0(p) from any distinguished basis at p to define the system of
differential equations

for any radial geodesic c0, v at p as in section 2, we have

on x(Bg0, R0(p)). Now determine ô(go, xi, pi) for Bgo. 2R0(pi) for i = 1,..., mo
as in Theorem 3, Section 3. Let

In particular,

THEOREM 1: Let M be compact, go E R(M) and 4Ro  igo(M). With the
CI neighborhoods of go defined as above, there exists a constant 03B4(g0)
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with 0  03B4(g0)  1 such that gl E R(M) and

implies the gl-length of the shortest smooth non-trivial gl geodesic is

greater than or equal to Ro . 

PROOF: Suppose there exists a smooth closed non-trivial geodesic c
with Lg1(c)  Ro for gl ER(M) with |g1 -golc,  03B4(g0). As in Theorem 3,
Section 3, L,.(c)  2Ro. Let p : = c(O) and choose v and to  Ro as in
the proof of Theorem 3, Section 3. Put s : = c1, v(t0) = c1, -v(t0). Choosing
any distinguished basis at p, put go-Riemann normal coordinates on

BgO’ Ro(P). Write the O.D.E.’s for co, v and co, - v in the form

and for c1, v and c1, -v as

as before. By the construction of 03B4(g0), we have

and

Hence as in the proof of theorem 3, we obtain

contradicting (**). Q.E.D.

REMARK : L. Berard Bergery has shown us an example of a perturbation
of a surface of revolution shaped like a bowling pin to show that the map
from R(M) ~ R given by g ~ Length (g) (defined as in Basic Lemma II,
Section 1) is not upper or lower semicontinuous with the Cl topology
on R(M). Thus the local minorization of g ~ Length (g) given by Theorem
1 is the best possible result in general.
The following result is clear but seems not to be present in the standard

literature so we state it. A proof can be found in [4].

LEMMA: Let M be non-compact. Let go be a complete metric for M.
If g is any other metric agreeing with go off a compact subset of M, then g
is complete.



167

Hence for M non-compact, given a complete metric go for M and a
compact subset C contained in M, we may define a family of complete
metrics FC, g0(M) by

The following result is a consequence of the lower semicontinuity of
g ~ i,(p) proven in Section 5 together with the type of uniformity argument
given in proving Theorem 4 of this section from Theorem 3 of Section 3.
Let ig(C) : = inf{ig(q); q E CI -

THEOREM 5 : Let 9 l E FC, go(M). Then there exists constants b(gl , C) &#x3E; 0

and I(g1, C) &#x3E; 0 such that g2EFc,go(M) and

5. The lower semicontinuity of g ~ ig(p) from R(M) ~ R for M compact

In this section we show using a modified version of Proposition 3.2.

THEOREM 1 : Let M be compact and fix any point p E M. With the C2
topology on R(M), the map R(M) ~ [0, 00 J given by

is lower semicontinuous.

Fix go E R(M). By compactness, ig0(p)  oo. Given e &#x3E; 0 we must show

that there exists a 03B4 &#x3E; 0 such that g E R(M) and

implies ig(p) ~ igo(p) - 8. Put R0: = ig0(p)-03B5/100 and R, : = igo(p) - 8.
By Basic Lemma II of section 1 and our subsequent remarks, it suffices
to show that given 8 &#x3E; 0, there exists c5 &#x3E; 0 with the following property.
For g 1 E R(M) with

there does not exist a t0~(0, R1) and two g1-radial geodesics from p

and

with v~w, v, w~S1(M, g1)|p, s:= c1, v(t0) = c1, w(t0), and c1, v(t0) =
-c1, w(t0).
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Given £5 &#x3E; 0, we will suppose we have such a to e(0, RO) and two such
gl-radial geodesics forming a loop and see what inequality this forces a
to satisfy.
Choose 03B40 &#x3E; 0 such that ô E [0, £5oJ and gl E R(M) with

implies that R1~g0(v, v) ~ Ro and go(v, v) ~ 2 for all v~S1(M, g1)|p.
(This is possible because R1 = Ro + (99/100)·03B5 and go(v, v) ~ (1 + 03B4)g(v, v)
from C° closeness for all v E TM.)

Let f el , ’ ’ ’, en} c Mp be a go-orthonormal basis. Let x = (xl , ’ ’ ’, xj
be go-Riemann normal coordinates defined on Bg0, R0(p) by {e1,···, enl -
Define xi+n : Bg0, R0(p) ~ R as in Section 3. Then if g1(v, v) = 1 and
Igo -gl Ic.  03B40 we have

for all i = 1,···, n. Thus substituting |xi+n| ~ 2 for |xi+n| ~ 1 in the proof
of Proposition 3.2 we obtain

PROPOSITION 3.2’: Let

Suppose gl E R(M) satisfies |g1-g0|C0  03B40 and

for all s~Bg0, R0(p). Then for any v~S1(M, g)|p and t~[0, R1] we have

and

Let c : [0, A] ~ Bg0, R0(p) be a smooth curve. Then for to E (0, A),

Thus c1, v(t0) = -c1, v(t0) iff (xi°c1, v)’(t0) = -(xi°c1, w)’(t0) for all

i= 1,···, n.

Write v = I7=1 aiei and w = 03A3ni=1 biei in terms of the fixed go-ortho-
normal frame. Let Oo(v, w) be the go-angle between v and w.
We have three cases.
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Case I : cos Oo(v, w) ~ 1-1/100.
We have

Thus

But

Thus

Choose 03B41 e(0, tJ such that for any b e [0, 03B41]

Case II : 0 ~ cos 00(v, w) ~ 1-1/100.

Define dist : B90,RO(P) x Bg0, R0(p) ~ R by

as before. We have

and
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Thus

Choose 03B42 &#x3E; 0 such that for aIl l5 E [0, l5 2J

Case III: - 1 ~ cosOo(v, w) ~ 0.
The idea is the same as in Case II but the arithmetic is different. Again,
dist (q, r) ~ 4n303B4t0 e2nLoto . But

Thus

Choose 03B43 &#x3E; 0 such that 03B4~[0, 03B43] implies

PROPOSITION 2 : Let 03B5 &#x3E; 0 be given. There exists a constant 03B4(g0, x, p, e)
&#x3E; 0 such that g E R(M) and

and c1(t0) = -c2(t0).
With Proposition 2 and the compactness of M insuring that the C2

topology on R(M) is well defined, the proof of Theorem 1 is now clear.

REMARK: The added difficulty in proving Theorem 1 of this section
over Theorem 4 of section 4 is that the following situation may occur.
Fix p in M and e &#x3E; 0. Let B = Bg0, i(p)-E(p). Suppose g E R(M) and.the
closest points on the cut locus Cg(p) to p lie in B. Let q be such a point
and suppose there is a loop at p through q with initial vectors v and w
as in (B) of Basic Lemma 1 of Section 1. Let 0,(g) be the go-angle between
v and w. The method of proof of Theorem 4, Section 4, fails precisely
when there exist {gn}~n=1 c R(M) with gn ~ go in the C’ topology but
03B80(gn) ~ 0. H. Karcher noticed that in the C2 topology on R(M), Topono-
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goff’s triangle comparison theorem ([6], p. 183) implies no such sequence
exists. However, to apply this result, a lower bound on the sectional
curvatures of the metrics gn is needed which we do not have with the C’
topology on R(M).
Now let M be non-compact. Suppose for p E M and go E R(M) complete

we have i,.(p)  oo. Fix a go-orthonormal frame at p to define Riemann
normal coordinates x on Bg0, ig0(p)(p). Since K : = B go, ig0(p)(p) is compact,
we can define C2 closeness of g~ R(M) to go on K independent of a choice
of Riemann normal coordinates. Hence, the proof of Proposition 2
carries through and we have lower semicontinuity at (go, p) E R(M) x M
in the sense that given e &#x3E; 0, there exists a 03B4&#x3E; 0 such that g E R(M) and

|g-g0|C2, K  Ô implies ig(p) ~ ig0(p)-03B5.
If M is non-compact and ig0(p) = oo, then M is diffeomorphic to [Rn.

In this case, we cannot necessarily define a C2 neighborhood of go
independent of the choice of the go-orthonormal basis at p used to define
Riemann normal coordinates. However, the following analogue of

Proposition 2 holds. Fix N &#x3E; 0 and a go-orthonormal basis for Mp thus
defining Riemann normal coordinates x on any ball Bg0, R(p) for any
R &#x3E; 0. Then given N, let R1 : = N and Ro : = 2N. Then the same proof
(using Lipschitz estimates on Bg0, R0(p)) shows that there exists a constant
b(go , x, p, N) &#x3E; 0 such that g E R(M) and

implies that no g-geodesic loop through p lies in Bg0, N(p). Hence given
N &#x3E; 0, there exists a constant 03B4(g0, x, p, N) &#x3E; 0 such that

implies ig(p) ~ N.

6. The lower semicontinuity of (g, p) ~ i,(p) from R(M) x M - R
for M compact

We prove

THEOREM 1 : For M compact, (g, p).4 i,(p) from R(M) x M ~ R is lower
semicontinuous with the C2 topology on R(M).

PROOF : Fix (go, po) E R(M) x M. By compactness, i,.(p.) is finite. Let
s &#x3E; 0 be given. Fix a go-orthonormal basis {e1,···, en} m Mpo . 

Step 1 : By continuity of p ~ igo(p) from M ~ R, choose Ro &#x3E; 0 with
2Ro  ig0(p0) such that distg0 (po, q) ~ Ro implies ligo(Po) - igo(q)1 ~ B12.
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Then we will show there exists c5 &#x3E; 0 such that q E Bg0, R0(p0) and
Ig - golc2  c5 implies i,(q) ~ ig0(q) - e/2. This completes the proof for then

Step 2: Let

Since (q, s) H dist,,, (q, s) - ig0(q) - E/100 is continuous from M x M ~ R,
SE is closed in M x M and hence compact.

Step 3 : Parallel translate with the go metric the go-orthonormal basis
{e1,···, en} for M Po along the go-unit speed radial geodesics from po
getting a go-orthonormal frame field {E1,···, En} for Bg0, R0(p). For each
q E BgO,Ro(P) we define go-Riemann normal coordinates x(q) in

Bg0, ig0(q)-03B5/100(q) from the go-orthonormal basis {E1|q,···, En|q}. Fix

closed balls B1,···, Bm covering M to define the C2 topology on R(M).
Given any b &#x3E; 0, there exists a 03B4 &#x3E; 0 such that g 1 e R(M) and |g1-g0|C
 03B4 implies for all q~Bg0, Ro(po) that

for all s~Bg0, ig0(q)-03B5/100(q) and 1 ~ i, j, k ~ n.

Step 4 : Define continuous maps Fkij: SE - R and Glijk : SE - R for
1 ~ i, j, k, l ~ n by

and

where x(q) = (x1(q),···, xn(q)) are the go-Riemann normal coordinates on

Bg0,ig0(q)-03B5/100(q). Choose by compactness a constant B  oo with |Fkij|,
|glijk| ~ B on SE . (Note that these maps can be defined on a slightly
larger open set containing S, since E &#x3E; 0 and 2Ro  ig0(p0).)
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Step 5 : Using

calculate a Lipschitz constant Lip (go, p0, R0, e) using Step 4 such that
for all q~Bg0, R0(p0), on Bg0, ig0(q)-03B5/100(q) the go-O.D.E. system for the
go radial geodesics written as in Section 2 in terms of the go-Riemann
normal coordinates x(q) satisfies

Let ko : - max {ig0(q); q~Bg0, R0(p0)} &#x3E; 0 and k1 : = ko-8/100.
Then as in Section, if

on B90,igo(q)-E/100(q) and some pair of g1-radial geodesics from q meets
at an angle of 180 degrees in Bg0, ii (q)-03B5(q) we have the three estimates

(i) 2-1/100 ~ 64n703B42k21 e4nLip(/o,po,Ro, E)k1
(ii) J2 (1/100 - (199/100)03B4)1 2 ~ 4n3c5e2nLip(go,po,Ro,E)k1 

(iii) ~2~1-03B4 ~ 4n303B4e2n Lip (go, Po, Ro, E)k1.

Step 6: Choose 03B40 &#x3E; 0 such that for all q~Bg0, ,(po), |g-g0|C0 ~ 03B40 on
Bgo,Ro(PO) implies (ig0(q)-03B5/100)~g0(v, v) ~ ig0(q)-03B5 and go(v, v) ~ 2 for
all v E S1(M, g)lq . (This is possible by the continuity of p ~ igo(p).) Make
03B40 smaller if necessary so that 0 ~ 03B4 ~ ôo implies

(i) 2-1/100 &#x3E; 64n703B42 k2 e4n Lip (go, po, Ro, 03B5)k1
(ii) ~2(1/100 - (199/100)03B4)1 2 &#x3E; 4n303B4e4nLip(g0, p0, R0, 03B5)k1

(iii) ~2~1-03B4 &#x3E; 4n303B4e2n Lip (go, Po, Ro, E)k i.

Step 7: By step 3, choose c5 &#x3E; 0 such that |g-g0|C1  c5 implies
Li x(q), ·) - 0393kij(g, x(q), ·)|  03B40 on Bg0,ig0(q)-03B5/100(q) for all q ~Bg0, R0(p0).
The proof of Theorem 1 is now clear. Q.E.D.

Suppose M is non-compact. Let go be a complete metric for M.
Suppose po E M and ig0(p0)  oo. Then C2 neighborhoods of go restricted
to Bg0, ig0(p0)(p0) are well defined by the compactness of this set. From the
proof above, it is clear that given s &#x3E; 0, we can find a c5 &#x3E; 0 such that

g E R(M),

and distg0(p· q)  ô implies that i,(q) ~ ig0(p0) - 8. However, if i,.(po) = 00,
difficulties similar to those mentioned at the end of Section 5 occur.
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7. The upper semicontinuity of g H ig(p) from R(·M) ~ R for M compact

Fix p E M and let M be compact.

THEOREM 1: With the C2 topology on R(M), the map g ~ ig(p) from
R(M) - R is upper semicontinuous and hence continuous.

REMARK: Upper semicontinuity is more delicate than lower semi-

continuity in that to control the ’closing up’ of the radial geodesics to
form a loop (alternative (B) of Basic Lemma I, Section 1) in our proof
of Theorem 1 we need the C2 topology whereas the CI topology on
R(M) sufficed for alternative (B) in the proof of Theorem 5.1.

PROOF : Fix go E R(M). If 9 1-+ ig(p) is not upper semicontinuous at go,
then there exists an e &#x3E; 0 and {gm}~m=1 ~ R(M) with Igm-golc2  1/m
and igm(p) &#x3E; ig0(p) + e. As a matter of notation, for z E S1(M, g0)|p let

be the gm-radial geodesic from p with cm, z(0) = z.
For g E R(M) let diam(M, g, p) = sup{distg0(p, q); q~M}. Suppose

first that i,,,(p) = diam (M, go, p). Recall that

implies that ~1-03B4distg0 ~ distg ~ ~1+03B4 dist.. (see [4], section 2). Thus
|g-g0|C2  ô implies that

ig(p) ~ diam (M, g, p) ~ ~1+03B4 diam (M, g0, p) ~ ig0(p)· /1-+ ô
It is then clear that gm ~ g0 and igm(p) ~ ig0(p) + e is impossible.
Now we may suppose ig0(p)  diam (M, go, p) so choosing a new e &#x3E; 0

if necessary we may as well assume ig0(p)  diam (M, go , p) - e.
Choose q E Cgo(p) with distg, (p, q) = ig0(p). It is clear from our remarks

following Basic Lemma 1 of Section 1 that igm(p) &#x3E; ig0(p) + 03B5 and gm ~ go
in the C2 topology on R(M) implies that q cannot be a conjugate point
to p. Thus alternative (B) of Basic Lemma 1 must hold. That is, there
exist distinct v, w~S1(M, go) 1,, such that putting to : = ig0(p) we have
go-radial geodesics

with s : = co, v(to) = c0, w(to) and ëo, v( to) = - ëo, w( to). We will show that
this is impossible hence deriving the required contradiction and showing
that g ~ ig(p) is upper semicontinuous at go. The idea is first to fix a

metricgmo and thus minorize IXi 0 cm, zl for all m ~ mo and all z E SI (M, g0)|p
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and second to use this minorization to find a uniform Lipschitz constant
for all gm with m ? m° so as to be able to apply the proof of the lower
semicontinuity of the map g ~ ig(p) to the sequence {gm}.
We may choose tno &#x3E; 0 with the following properties. First just using

C° closeness of metrics we may suppose that for all w~S1(M, g0)|p and
m ~ m° that

Second we may suppose that Igo - gmlc2  1/100 and igm - gmolc2  1/100
for all m ~ m0.

Let B : Bgmol ig0(p)+03B5(p). Fixing a gmo-orthonormal basis at p, define
fixed gmo-Riemann normal coordinates x = (x1,···, xn) that are smooth
on an open set containing B. We will use these coordinates to make all
our estimates.

We may assume |gm-gm0|C2, x, B  1/100 and Igm-golc2,x,B  1/100 for
all m ~ mo . Explicitly, for all m ~ mo and all 1 ~ i, j, k, p ~ n we may
assume

and

Let L(g..) be the appropriate Lipschitz constant calculated on B for the
system of gm0-radial geodesics (with |xi| ~ 2). Then by Proposition 3.2,
for all m ~ mo

and

for all v~S1(M, g0)|p. Write for m ~ mo
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and

etc. Clearly we can find a constant Lip (grno) such that for any m ~ mo
the system of O.D.E.’s for the g.-radial geodesics cm, " written on B as in
Section 3 in terms of the fixed gmo-Riemann normal coordinates x =
(x 1 , ..., xn) has the Lipschitz constant Lip (g..).

Set Ro : = igo(p) + B. Let 00(v, w) be the go-angle between the go-unit
vectors v and w which are the initial directions of the go-loop through p
contained in B assumed to exist above. By the arguments of Section 5
applied to gm and go we derive the inequalities

(i) if cos 0,(v, w) ~ 1-1/100, then for all m ~ m0

(ii) if 0 ~ cos 0,(v, w) ~ 1-1/100, then for all m ~ m0

(iii) if cos 0,(v, w) ~ 0, then for all m &#x3E; mo

Evidently these inequalities fail to hold as m ~ oo so that the go-geodesics
c0, v and co, w cannot meet at s to form a loop giving the required contra-
diction. Q.E.D.

We now consider the map (g, p) ~ ig(p) from R(M) x M ~ R. We claim
this map is also upper semicontinuous. Fix (go, po) E R(M) x M. If the
map is not upper semicontinuous at (go, po), then there exists a sequence
{gm}~m=1 oe R(M) and {pm} c M with gm ~ go in the C2 topology on R(M),
pm ~ po on M, and igm(pm) ~ ig0(p0) + e for some 8 &#x3E; 0 and all m. Choose

Ro &#x3E; 0 such that q~Bg0, R0(p0) implies

Then there exists mo &#x3E; 0 such that m ~ mo implies

and
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Modulo uniformizing the estimates used in proving g ~ ig(p) is upper

semicontinuous, it is clear that essentially the same argument given for
the upper semicontinuity of g ~ ig(p) yields a contradiction in equations
(*) thus proving the upper semicontinuity of (g, p) ~ ig(p) at the point
(go, po). But in light of the proofs of Theorem 4.4 and 6.1, taking Ro
sufficiently small, the uniformity follows just as before.

THEOREM 2: Let M be compact. Let R(M) be given the C2 topology
defined as in Section 4. Then in the product topology on R(M) x M, the
map (g, p) ~ ig(p) from R(M) x M ~ R is continuous.

8. The continuity of g ~ ig(M) from R(·M) ~ R for M compact

We prove

THEOREM : Let M be compact. Then the map g ~ ig(M) is continuous

with the C2 topology on R(M).

Step 1: The upper semicontinuity of g ~ ig(M).
Fix go in R(M). If the map is not upper semicontinuous at go, then

there exists 03B5&#x3E;0 and {gn}n=1 ~ R(M) with ign(M) ~ ig0(M)+03B5 and
gn ~ go in the C2 topology on R(M). Choose po with ig0(p0) = igo(M). Then

which is impossible by the upper semicontinuity of g ~ ig(p0).

Step 2: The lower semicontinuity of g ~ il(M).
Fix go in R(M). Suppose g ~ ig(M) is not lower semicontinuous at go.

Then there exists 8&#x3E; 0 and {gn}~n=1 c R(M) with Igo-gnlc2  1/n and

ig n(M) ~ igo(M) - 8. Since M is compact, choose Pn with ign(Pn) = ign(M)
for all n. By compactness, {pn} has a convergent subsequence which we
will relabel as {pn} with pn ~ po . We have

By the continuity of p ~ i,,,(p), choose ô &#x3E; 0 such that dist.. (p, po)  ô

implies

Choose no so that n ~ no implies dist.. (Pn’ po)  b. Then n ~ no implies
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Thus we have {gn}n~n0 contained in R(M) and contained in
Bg0, 03B4(p0) with ign(pn) ~ ig0(pn)-03B5/2 and gn ~ go in the C2 topology on
R(M). But this is impossible by the proof of the lower semicontinuity of
(g, p) t-+ i,(P). Q.".
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