Compositio Mathematica

Allen B. Altman Steven L. Kleiman
 Algebraic systems of linearly equivalent divisor-like subschemes

Compositio Mathematica, tome 29, $\mathrm{n}^{\circ} 2$ (1974), p. 113-139
http://www.numdam.org/item?id=CM_1974__29_2_113_0
© Foundation Compositio Mathematica, 1974, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ALGEBRAIC SYSTEMS OF LINEARLY EQUIVALENT DIVISOR-LIKE SUBSCHEMES

Allen B. Altman and Steven L. Kleiman ${ }^{1}$

We develop a theory of algebraic systems of linearly equivalent divisorlike subschemes, which extends Grothendieck's theory (FGA 232 §4) of the fiber functor of the canonical map from the scheme of divisors to the Picard scheme. Grothendieck used the theory in constructing the Picard scheme (FGA 232 §5), and any light shed is valuable in its own right. We apply the extended theory and give a proof, in the geometric spirit of Grothendieck's work, that every closed subscheme of finite type of the scheme of divisors is complete when the ambient scheme is a geometrically normal, complete variety. This completeness theorem is equivalent to the analogous one for the Picard scheme (it is shown in (19) to imply its analogue; the proof of the converse is similar). Grothendieck suggested two proofs of the completeness theorem for the Picard scheme (FGA 236, Theorem 2.1); one involves the structure theorem for commutative algebraic groups (Chevalley-Borel), and the other involves the finiteness theorem for the Néron-Severi group and a Lefschetz theorem. The completeness theorem for the scheme of divisors, however, follows quickly ${ }^{2}$, via the valuative criterion, from the theorem of Rama-nujam-Samuel (EGA IV ${ }_{4}, 21.14 .1$), a purely local result.

Our proof of the completeness theorem for the scheme of divisors also uses the valuative criterion. Briefly, it runs as follows. Let X denote the ambient variety and k the ground field. Let R be a discrete valuation ring, K its quotient field, and k_{0} its residue class field. Let D be an effective divisor on $X \otimes K$, and Y its scheme-theoretic closure in $X \otimes R$, which is flat over R. We have to show that the special fiber, $Y \otimes_{R} k_{0}$, is a divisor. Let H be a high multiple of an ample divisor. Let U be the scheme parametrizing the effective divisors on X that are linearly equivalent to the ones of the form $D+H^{\prime}$, where H^{\prime} runs through the divisors algebraically equivalent to H. Let Z be the scheme parametrizing the closed subschemes E of X that are linearly equivalent to the ones of the form,

[^0]$Y\left(k_{0}\right)+H^{\prime}$ - that is, the ideal of E should be isomorphic to the tensor product of the ideals of $Y\left(k_{0}\right)$ and H^{\prime} - where H^{\prime} runs through the divisors algebraically equivalent to H; the normality of X is used in the construction of Z. There is a canonical monomorphism from U into the Hilbert scheme, $\operatorname{Hilb}_{(X \otimes K / K)}$, that specializes into a monomorphism from Z into $\operatorname{Hilb}_{\left(X \otimes k_{0} / k_{0}\right)}$, and both images in $\operatorname{Hilb}_{(X / k)}$ lie in the same irreducible component W; in fact, U is embedded as an open subscheme of $W \otimes K$, and the image of Z contains an open subscheme V of $W \otimes k_{0}$. Let k_{1} be an algebraically closed field containing k-isomorphic copies of K and k_{0}. Since $W \otimes k_{1}$ is irreducible, its two open subsets $U \otimes k_{1}$ and $V \otimes k_{1}$ must intersect. Let E be a subscheme of $X \otimes k_{1}$ that corresponds to a point in the intersection. Then, on the one hand, E is a divisor, so its ideal is invertible, and, on the other hand, its ideal is isomorphic to the tensor product of the ideal of $\left(Y \otimes_{R} k_{0}\right) \otimes_{k_{0}} k_{1}$ and the ideal of a divisor. Therefore, the ideal of $\left(Y \otimes_{R} k_{0}\right)$ is invertible, and so $Y \otimes_{R} k_{0}$ is a divisor.

Most of the article is devoted to the study of algebraic systems of linearly equivalent divisor-like subschemes. More precisely, let S be a locally noetherian scheme, $f: X \rightarrow S$ a flat, proper morphism, P a locally noetherian S-scheme, and I a coherent $\mathcal{O}_{X_{P}}$-Module. We study the functor Lin Syst $_{I}$, whose value at a locally noetherian S-scheme T is the set of pairs (g, Y) consisting of S-morphism $g: T \rightarrow P$ and of a flat, closed subscheme Y of X_{T} whose ideal is, locally over T, isomorphic to $\left(g_{X}\right)^{*} I$. Notably, we represent Lin Syst ${ }_{I}$ universally when the following technical conditions are satisfied: (i) $\mathcal{O}_{S}=f_{*} \mathcal{O}_{X}$ holds universally; (ii) there exists an open subset V of X_{P} containing every point x of X_{P} with depth $\left(\mathcal{O}_{X_{P}\left(f_{P}(x)\right), x}\right) \leqq 1$ such that $I \mid V$ is invertible; and (iii) I is, locally over P, isomorphic to the cokernel of a homomorphism of locally free $\mathcal{O}_{X_{P}}$-Modules with finite rank. In fact, Lin Syst ${ }_{I}$ is universally representable by an open subscheme of $\mathbb{P}(H)$, where H is the coherent \mathcal{O}_{P}-Module characterized by the condition that there be a functorial isomorphism,

$$
\operatorname{Hom}(H, M) \leadsto \operatorname{Hom}\left(I,\left(f_{P}\right)^{*} M\right)
$$

where M is a quasi-coherent \mathcal{O}_{P}-Module; if the fibers of f are geometrically integral and if V contains each point x of X_{P} with depth $\left(I\left(f_{P}(x)\right)_{x}\right)=0$, then Lin Syst $_{I}$ is universally representable by $\mathbb{P}(H)$ itself. In (EGA III $2,7.7 .9$, (ii)), the remark is made that condition (iii) is fulfilled if f is projective. In (EGA $\mathrm{III}_{2}, 7.7 .9$, (iii)), it is stated that condition (iii) is superfluous to the existence of H, but no proof is given; for this reason alone, we have chosen to include condition (iii) as an assumption. The \mathcal{O}_{P}-Module H is closely related to a coherent \mathcal{O}_{P}-Module Q, which exists when $\underline{\operatorname{Hom}}\left(I, \mathcal{O}_{X_{P}}\right)$ is flat over P; the Module Q is char-
acterized by the condition that there exist a functorial isomorphism,

$$
\operatorname{Hom}(Q, M) \leftrightharpoons \Gamma\left(X_{P}, \operatorname{Hom}\left(I, \mathcal{O}_{X_{P}}\right) \otimes\left(f_{P}\right)^{*} M\right)
$$

where M is a quasi-coherent \mathcal{O}_{P}-Module. The relationship between H and Q plays an important role in our applications. Grothendieck used Q along in his development of the theory.

The completeness theorem for the scheme of divisors may be restated, by virtue of the valuative criterion, in the following way: an effective divisor on a geometrically normal, projective variety remains a divisor under flat specialization. The result is optimal. A positive divisorial cycle - a closed subscheme that has pure codimension one and no embedded components - may acquire embedded components under flat specialization. Here, briefly, is an example; we plan to explain it in detail elsewhere. Let Y be a nonsingular plane cubic, and X the (projective) cone over Y. For each k-point y of Y, let $P(y)$ denote the (reduced) line determined by y and the vertex, and consider the divisorial cycle,

$$
D_{y}=P\left(y_{1}\right)+P\left(y_{2}\right)+P(y)
$$

where y_{1} and y_{2} are two fixed k-points of Y. Then D_{y} is a divisor if and only if y is equal to the third point y_{3} in the intersection of Y and the secant determined by y_{1} and y_{2}. Hence, the D_{y} are not isomorphic to the closed fibers of a flat family, for otherwise almost all of them would be divisors. There is, in fact, a flat family $\{Z(y)\}_{y \in Y}$ of subschemes of X such that $Z(y)$ is equal to D_{y} for each k-point y not equal to y_{3} and $Z\left(y_{3}\right)$ is equal to the union of $D_{y_{3}}$ and an embedded component located at the vertex of X.

1. Preliminary General Lemmas

1. Lemma: Let X be a locally noetherian scheme, and I a coherent $\mathcal{O}_{X^{-}}$ Module. Assume there exists an open subset U of X containing every point x with depth $\left(\mathcal{O}_{x}\right) \leqq 1$ and every point x with depth $\left(I_{x}\right)=0$, such that $I \mid U$ is invertible. Let F be a locally free \mathcal{O}_{X}-Module with finite rank, and G a coherent \mathcal{O}_{X}-Module. Then, the canonical map,

$$
s: \underline{\operatorname{Hom}}(G, F) \rightarrow \underline{\operatorname{Hom}}(G \otimes I, F \otimes I),
$$

is an isomorphism.
Proof: The assertion is local on X. So, we may replace X by an arbitrary affine open subset and verify that the map $\Gamma(X, s)$ is bijective. Construct a commutative diagram,

where r and t are the restrictions. The map s is an isomorphism on U, for this assertion is local on U and I is locally free with rank 1 on U; hence, $\Gamma(U, s)$ is bijective. Since U contains every point x with depth $\left(\mathcal{O}_{x}\right) \leqq 1$ and since F is locally free with finite rank, U contains every point x with depth $\left(\underline{\operatorname{Hom}}(G, F)_{x}\right) \leqq 1([2]$, Lemma 2). Therefore, r is bijective ([2], Lemma 3). Hence, u is bijective, because it is the composition of r and $\Gamma(U, s)$.

Since U contains every point x with depth $\left(I_{x}\right)=0$ and since F is locally free, U obviously also contains every point x with depth $\left(F_{x} \otimes I_{x}\right)$ $=0$; hence, the restriction t is injective ([2], Lemmas 2 and 3). Since u is bijective, $\Gamma(X, s)$ is therefore bijective.
2. Lemma: Let $f: X \rightarrow S$ be a morphism of ringed spaces, and M and N two \mathcal{O}_{S}-Modules.
(i) Let $u: M \rightarrow N$ and $v: f^{*} M \rightarrow f^{*} N$ be homomorphisms, and consider the following diagram:

where ρ_{M} and ρ_{N} are the canonical maps. It is commutative if and only if $v=f^{*}(u)$ holds.
(ii) If the canonical map $\rho_{N}: N \rightarrow f_{*} f^{*} N$ is an isomorphism, then the canonical maps,

$$
\begin{equation*}
\operatorname{Hom}(M, N) \rightarrow \operatorname{Hom}\left(f^{*} M, f^{*} N\right) \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\underline{\operatorname{Hom}}(M, N) \rightarrow f_{*} \underline{\operatorname{Hom}}\left(f^{*} M, f^{*} N\right), \tag{2.3}
\end{equation*}
$$

are also isomorphisms.
Proof: (i) Applying the formulas for the adjoint of a composition (EGA $0_{I}, 3.5$), we obtain the equalities,

$$
\begin{align*}
& \left(\rho_{N} \circ u\right)^{\#}=i d_{N} \circ f^{*}(u), \tag{2.4}\\
& \left(f_{*}(v) \circ \rho_{M}\right)^{\#}=v \circ i d_{M} . \tag{2.5}
\end{align*}
$$

So, since the adjunction correspondence, $w \mapsto w^{\#}$, is bijective, $f^{*}(u)=v$ holds if and only if $\rho_{N} \circ u=f_{*}(v) \circ \rho_{M}$ holds.
(ii) Let $u_{1}, u_{2}: M \rightarrow N$ be \mathcal{O}_{S}-homomorphisms satisfying $f^{*}\left(u_{1}\right)=$ $f^{*}\left(u_{2}\right)$. Then, formula (2.4) yields $\left(\rho_{N} \circ u_{1}\right)^{\sharp}=\left(\rho_{N} \circ u_{2}\right)^{\#}$; hence, $\rho_{N} \circ \mathrm{u}_{1}=$ $\rho_{N} \circ u_{2}$ holds. So, since ρ_{N} is injective, $u_{1}=u_{2}$ holds. Thus, (2.2) is injective.

Let $v: f^{*} M \rightarrow f^{*} N$ be an \mathcal{O}_{X}-homomorphism. Set $u=\rho_{N}^{-1} \circ f_{*}(v) \circ \rho_{M}$. Then, we obviously get a commutative diagram like (2.1). So, by (i), we have $f^{*}(u)=v$. Thus, (2.2) is surjective, so an isomorphism. It follows immediately that (2.3) is an isomorphism.
3. Lemma: Let S be a locally noetherian scheme, $f: X \rightarrow S$ a flat morphism of finite type, and I a coherent $\mathcal{O}_{X^{-}}$-Module. Assume there exists an open subset U of X containing every point x with depth $\left(\mathcal{O}_{X(f(x)), x}\right) \leqq 1$ and every point x with depth $\left(I(f(x))_{x}\right)=0$ such that $I \mid U$ is invertible, and assume I is flat over S.
(i) For each coherent \mathcal{O}_{X}-Module G and for each locally free \mathcal{O}_{X}-Module F with finite rank, the canonical map,

$$
\begin{equation*}
\underline{\operatorname{Hom}}(G, F) \rightarrow \underline{\operatorname{Hom}}(I \otimes G, I \otimes F), \tag{3.1}
\end{equation*}
$$

is an isomorphism.
(ii) Assume the comorphism, $\mathcal{O}_{S} \rightarrow f_{*} \mathcal{O}_{X}$, is an isomorphism. Then, for each coherent \mathcal{O}_{S}-Module M and each locally free \mathcal{O}_{S}-Module N with finite rank, the canonical map,

$$
\begin{equation*}
\underline{\operatorname{Hom}}(M, N) \rightarrow f_{*} \underline{\operatorname{Hom}}\left(I \otimes f^{*} M, I \otimes f^{*} N\right) \tag{3.2}
\end{equation*}
$$

is an isomorphism.
Proof: (i) Let x be a point of $(X-U)$. Since \mathcal{O}_{X} and I are flat over S and since depth $\left(\mathcal{O}_{X(f(x)), x}\right) \geqq 2$ and depth $\left(I(f(x))_{x}\right) \geqq 1$ hold, we have $\operatorname{depth}\left(\mathcal{O}_{X, x}\right) \geqq 2$ and depth $\left(I_{x}\right) \geqq 1$ by (GD VII, 4.2). So, the map (3.1) is an isomorphism by (1).
(ii) The canonical map, $\rho_{N}: N \rightarrow f_{*} f^{*} N$, is an isomorphism, for the question is local and, by hypothesis, N is locally free with finite rank and the comorphism, $\rho_{\mathcal{O}_{S}}: \mathcal{O}_{S} \rightarrow f_{*} \mathcal{O}_{X}$, is an isomorphism. So, by (2 , (ii)), the canonical map,

$$
\begin{equation*}
\underline{\operatorname{Hom}}(M, N) \rightarrow f_{*} \underline{\operatorname{Hom}}\left(f^{*} M, f^{*} N\right) \tag{3.3}
\end{equation*}
$$

is an isomorphism. Now, the canonical map,

$$
\begin{equation*}
f_{*} \underline{\operatorname{Hom}}\left(f^{*} M, f^{*} N\right) \rightarrow f_{*} \underline{\operatorname{Hom}}\left(I \otimes f^{*} M, I \otimes f^{*} N\right) \tag{3.4}
\end{equation*}
$$

is an isomorphism by (i). Composing the isomorphisms (3.3) and (3.4), we obtain (3.2); so, (3.2) is an isomorphism.
4. Lemma: Let S be a locally noetherian scheme, $f: X \rightarrow S$ a morphism of finite type, and F, G two coherent \mathcal{O}_{X}-Modules. Assume there is an open subset U of X containing each point x with depth $\left(F(f(x))_{x}\right)=0$ such that $G \mid U$ is locally free, and assume Hom (G, F) is flat over S. For each quasi-coherent \mathcal{O}_{S}-Module M, consider the canonical map,

$$
\begin{equation*}
b(M): \underline{\operatorname{Hom}}(G, F) \otimes f^{*} M \rightarrow \underline{\operatorname{Hom}}\left(G, F \otimes f^{*} M\right) . \tag{4.1}
\end{equation*}
$$

(i) If U contains each point x of X with

$$
\begin{equation*}
\operatorname{depth}\left(\underline{\operatorname{Hom}}(G, F)(f(x))_{x}\right)=0, \tag{4.2}
\end{equation*}
$$

then $b(M)$ is injective for each quasi-coherent \mathcal{O}_{S}-Module M. Conversely, if the map $b(k(s))$ is injective for each point s of S, then U contains each point x of X where (4.2) holds.
(ii) Assume that F is flat over S and that U contains each point x of X with depth $\left(F(f(x))_{x}\right) \leqq 1$. If U contains each point x of X with

$$
\begin{equation*}
\operatorname{depth}\left(\underline{\operatorname{Hom}}(G, F)(f(x))_{x}\right) \leqq 1, \tag{4.3}
\end{equation*}
$$

then $b(M)$ is bijective for each quasi-coherent \mathcal{O}_{S}-Module M. Conversely, if the map $b(k(s)$) is bijective for each point s of S, then U contains each point x of X where (4.3) holds.

Proof. All the hypotheses and assertions are clearly local on S and X; so, we may assume S and X are affine. We prove (i) only, because it is all we use; the proof of (ii) is similar.

First, assume M is coherent and U contains each point x of X where (4.2) holds. We shall show that the map $\Gamma(X, b(M))$ of global sections is injective. In the applications, we use only the case that M is coherent; on the other hand, the case that M is quasi-coherent follows formally because, over a ring, a module is the direct limit of its finitely generated submodules, because the functors, tensor product and $\operatorname{Hom}(F,-)$ with F finitely presented, commute with direct limits, and because a direct limit of injective maps is injective.

Consider the commutative diagram,

Since $G \mid U$ is locally free with finite rank, the map $b(M)$ is an isomorphism on U; for, the assertion is local, and obvious when G is replaced by \mathcal{O}_{U}. Hence, the map $\Gamma(U, b(M))$ is bijective. Since U contains each point x
of X with depth $\left(\operatorname{Hom}(G, F)(f(x))_{x}\right)=0$, it contains each point x with depth $\left(\left(\operatorname{Hom}(G, F) \otimes f^{*} M\right)_{x}\right)=0$ by (GD VII, 4.2); hence, a is injective by ([2], Lemma 3). Consequently, $\Gamma(X, b(M)$) is injective.

Conversely, assume $b(k(s))$ is injective for some point s of S. Since U contains each point x with depth $\left(F(f(x))_{x}\right)=0$, it contains, in particular, each point x of $X(s)$ with depth $\left(F(s)_{x}\right)=0$; hence, U contains each point x of $X(s)$ with depth $\left(\operatorname{Hom}(G(s), F(s))_{x}\right)=0$ ([2], Lemma 2). Consequently, since $b(k(s))$ is injective, U obviously contains each point x of $X(s)$ where (4.2) holds.
5. Lemma: Let $f: X \rightarrow S$ be a morphism of ringed spaces, and I an \mathcal{O}_{X}-Module. Assume the canonical map,

$$
m: \mathcal{O}_{S} \rightarrow f_{*} \underline{\operatorname{Hom}}(I, I),
$$

is an isomorphism. Then, the functor taking an invertible \mathcal{O}_{S}-Module M to the \mathcal{O}_{X}-Module $I \otimes f^{*} M$ establishes an equivalence of categories between the category of invertible \mathcal{O}_{S}-Modules M and the category of \mathcal{O}_{X}-Modules G that are, locally over S, isomorphic to I.

Proof: The map m and the functor, $M \mapsto I \otimes f^{*} M$, are related in the following way. Whether or not m is an isomorphism, it obviously induces a homomorphism of sheaves,

$$
m^{*}: \mathcal{O}_{S}^{*} \rightarrow f_{*} \text { Isom }(I, I),
$$

thence, a map of pointed sets,

$$
\check{H}^{1}\left(S, m^{*}\right): \check{H}^{1}\left(S, \mathcal{O}_{S}^{*}\right) \rightarrow \check{H}^{1}\left(S, f_{*} \underline{\text { Isom }}(I, I)\right) .
$$

It is easy to see $\left(\right.$ EGA $\left.0_{I}, 5.6 .3\right)$ that the group $\check{H}^{1}\left(S, \mathcal{O}_{S}^{*}\right)$ classifies invertible sheaves on S; in the same way, it is easy to see that the set $\check{H}^{1}\left(S, f_{*}\right.$ Isom $\left.(I, I)\right)$ classifies the \mathcal{O}_{X}-Modules G that are isomorphic to I locally over S.

The map $\check{H}^{1}\left(S, m^{*}\right)$ may be explicitly described as follows. Let L be an invertible sheaf on S. Let $\left(U_{\alpha}\right)$ be an open covering of S such that there are isomorphisms, $v_{\alpha}: L\left|U_{\alpha} \simeq \mathcal{O}_{S}\right| U_{\alpha}$. Set $u_{\alpha \beta}=v_{\beta} \circ v_{\alpha}^{-1}$. Then, L corresponds to the class of $\left(u_{\alpha \beta}\right)$ in $\check{H}^{1}\left(\left(U_{\alpha}\right), \mathcal{O}_{S}^{*}\right)$, and $\check{H}^{1}\left(S, m^{*}\right)$ takes this class to the class of $\left(\operatorname{id}_{I} \otimes f^{*}\left(u_{\alpha \beta}\right)\right)$ in $\check{H}^{1}\left(S, f_{*}\right.$ Isom $\left.(I, I)\right)$. Clearly, the class of $\left(\mathrm{id}_{I} \otimes f^{*}\left(u_{\alpha \beta}\right)\right)$ corresponds to the \mathcal{O}_{X}-Module $I \otimes f^{*} L$. Thus, we obtain the formula,

$$
\check{H}^{1}\left(S, m^{*}\right)(L)=I \otimes f^{*} L
$$

Since the map m is an isomorphism, the maps m^{*} and $\check{H}^{1}\left(S, m^{*}\right)$ are also isomorphisms. So, every \mathcal{O}_{X}-Module G that is, locally over S,
isomorphic to I has the form $I \otimes f^{*} L$ for some invertible \mathcal{O}_{S}-Module L. Thus, the functor, $L \mapsto I \otimes f^{*} L$, is essentially surjective.

Let L and M be two invertible sheaves on S. Let $\left(U_{\alpha}\right)$ be an open covering of S such that $L \mid U_{\alpha}$ and $M \mid U_{\alpha}$ are isomorphic to $\mathcal{O}_{S} \mid U_{\alpha}$ for each α. Consider the following diagram:

$\left.\begin{array}{rr}\operatorname{Hom}\left(I \otimes f^{*} L,\right.\end{array}\right] \prod_{\alpha} \operatorname{Hom}\left(\left(I \otimes f^{*} L\right) \mid V_{\alpha}, ~ \longrightarrow \prod_{\alpha, \beta} \operatorname{Hom}\left(\left(I \otimes f^{*} L\right) \mid V_{\alpha \beta}\right.\right.$,
where $U_{\alpha \beta}=U_{\alpha} \cap U_{\beta}$ and $V_{\alpha}=f^{-1}\left(U_{\alpha}\right)$ and $V_{\alpha \beta}=f^{-1}\left(U_{\alpha \beta}\right)$. Since a homomorphism of sheaves is determined locally, the two rows are exact. Since L and M are trivial on the covering, the middle and right-hand vertical maps are isomorphic to the products of the restrictions of m to U_{α} and to $U_{\alpha \beta}$; so, these two maps are bijective by hypothesis. Therefore, the left-hand vertical map is also bijective. Thus, the functor, $L \mapsto I \otimes f^{*} L$, is fully faithful, so an equivalence of categories.
6. Lemma: Let k be a field, Y a geometrically normal, algebraic k-scheme, and y a point of Y. Assume depth $\left(\mathcal{O}_{y}\right) \leqq 1$ holds. Then, Y is smooth over k at y.

Proof: Let k^{\prime} be an algebraically closed field containing k, and y^{\prime} a point of $Y \otimes k^{\prime}$ that is a maximal point of the fiber over y. Then, by (GD VII, 4.2), depth $\left(\mathcal{O}_{y^{\prime}}\right)$ is equal to depth $\left(\mathcal{O}_{y}\right)$, for $\operatorname{depth}\left(\mathcal{O}_{y^{\prime}} \otimes_{\mathcal{O}_{y}} k(y)\right.$) is zero since y^{\prime} is maximal in the fiber over y; so, the inequality, $\operatorname{depth}\left(\mathcal{O}_{y^{\prime}}\right) \leqq 1$, holds. Since, by hypothesis, $Y \otimes k^{\prime}$ is normal, $\mathcal{O}_{y^{\prime}}$ is therefore regular by Serre's criterion (GD VII, 2.13). Hence, since k^{\prime} is algebraically closed, $Y \otimes k^{\prime}$ is smooth over k^{\prime} at y^{\prime} (GD VII, 6.3). Therefore, Y is smooth over k at y (GD VII, 5.11).
7. Lemma: Let S be an irreducible, regular, noetherian scheme of dimension 1, and η the generic point of S. Let X be an S-scheme, and D a closed subscheme of $X(\eta)$. Then, the closure Y of D in X is the unique closed subscheme of X that is flat over S and satisfies the condition, $Y \cap X(\eta)=D$. Moreover, if X is smooth over S and D is a divisor in $X(\eta)$, then Y is a divisor in X.

Proof: The first assertion is (EGA IV, 2.8.5). Assume X is smooth over S, and D is a divisor. Let y be a point of Y with $\operatorname{depth}\left(\mathcal{O}_{Y, y}\right)=0$, and let s be its image in S. Since Y is flat over S, we have the condition, $\operatorname{depth}\left(\mathcal{O}_{s}\right)=0$, by (GD VII, 4.2). So, since S is integral, s is equal to η.

Therefore, y is in D. So, since D has no embedded components, Y has no embedded components. Now, since S is regular, X is regular (GD VII, 4.9), hence, locally factorial (GD VII, 3.14). Therefore, Y will be a divisor if it has pure codimension 1.

Let z be the generic point of an irreducible component Z of Y. It is clear that, since Y is the closure of D, the point z is also the generic point of the irreducible component $Z \cap D$ of D and we have $\mathcal{O}_{X, z}=\mathcal{O}_{X(\eta), z}$. Now, $\operatorname{codim}(Z \cap D, X(\eta))$ is equal to $\operatorname{dim}\left(\mathcal{O}_{X(\eta), z}\right)$, and $\operatorname{codim}(Z, X)$ is equal to $\operatorname{dim}\left(\mathcal{O}_{X, z}\right)$. Hence, $\operatorname{codim}(Z, X)$ is equal to $\operatorname{codim}(Z \cap D, X(\eta))$, which is equal to 1 by hypothesis. Thus, we have $\operatorname{codim}(Z, X)=1$. Hence, Y is regularly embedded of codimension 1.
8. Lemma: Let S be the spectrum of a discrete valuation ring, $f: X \rightarrow S$ a flat, proper morphism with geometrically normal and geometrically integral fibers. Let U denote the open subset of X where f is smooth; let Y be a flat, closed subscheme of X / S; let P be a flat, locally noetherian S-scheme; let L be an invertible $\mathcal{O}_{X_{P}}-M$ odule; set $V=U_{P} ;$ set $I=I(Y)_{P} \otimes L$, where $I(Y)$ denotes the ideal of Y; and set $I^{\check{ }}=\underline{\operatorname{Hom}}\left(I, \mathcal{O}_{X_{P}}\right)$. Assume the generic fiber of $I(Y) \mid U$ is invertible. Then:
(i) $\mathcal{O}_{S}=f_{*} \mathcal{O}_{X}$ holds universally.
(ii) U contains each point x of X with $\operatorname{depth}\left(\mathcal{O}_{X(f(x)), x}\right) \leqq 1$.
(iii) V contains each point x of X_{P} with $\operatorname{depth}\left(I\left(f_{P}(x)\right)_{x}\right)=0$.
(iv) I^{2} is flat over P.
(v) V contains each point x of X_{P} with depth $\left(\left(I^{\check{\prime}}\right)\left(f_{P}(x)\right)_{x}\right)=0$.
(vi) $I \mid V$ is invertible.

Proof: Since f is flat, proper, and surjective and its fibers are geometrically integral, (i) holds (EGA $\mathrm{III}_{2}, 7.8$). By (6) applied with $X(f(x))$ for Y, (ii) holds.

Since Y is flat over S, the sheaf $I(Y)_{P}\left(f_{P}(x)\right)$ is clearly isomorphic to an ideal in $\mathcal{O}_{X_{P\left(f_{P}(x)\right)}}$ for each x in X_{P}. So, $I\left(f_{P}(x)\right)$ is locally isomorphic to an ideal of $\mathcal{O}_{X_{P}\left(f_{P}(x)\right)}$: Hence, each x satisfying depth $\left(I\left(f_{P}(x)\right)_{x}\right)=0$ clearly also satisfies depth $\left(\mathcal{O}_{X_{P}\left(f_{P(x)}\right), x}\right)=0$, and so x lies in V by (ii). Thus, (iii) holds.

Assertion (iv) is obviously local on X, so to prove it we may assume X is affine. Let t be a generator of the maximal ideal of $\Gamma\left(S, \mathcal{O}_{S}\right)$. Then, t is a non-zero-divisor of $\Gamma\left(X, \mathcal{O}_{X}\right)$ because X is flat over S. Hence, t is obviously a non-zero-divisor of $\operatorname{Hom}\left(I(Y), \mathcal{O}_{X}\right)$. Therefore, $\underline{\operatorname{Hom}\left(I(Y), \mathcal{O}_{X}\right)}$ is flat over S; so, $\operatorname{Hom}\left(I(Y), \mathcal{O}_{X}\right)_{P}$ is flat over P. Since P is flat over S, we have a canonical isomorphism,

$$
\begin{equation*}
\underline{\operatorname{Hom}}\left(I(Y), \mathcal{O}_{X}\right)_{P}=\underline{\operatorname{Hom}}\left(I(Y)_{P}, \mathcal{O}_{X_{P}}\right), \tag{8.1}
\end{equation*}
$$

 flat over P; that is, (iv) holds.

Let x be a point of $(X-U)$. By (ii) we have the inequality, depth $\left(\mathcal{O}_{X(f(x)), x}\right) \geqq 2$. Since X is flat over S, we therefore have the inequality, depth $\left(\mathcal{O}_{x}\right) \geqq 2$, (GD VII, 4.2). So, the inequality,

$$
\operatorname{depth}\left(\operatorname{Hom}\left(I(Y)_{x}, \mathcal{O}_{x}\right)\right) \geqq 2,
$$

holds ([2], Lemma 2). Therefore, (GD VII, 4.2), we have the inequality,

$$
\operatorname{depth}\left(\underline{\operatorname{Hom}}\left(I(Y), \mathcal{O}_{X}\right)(f(x))_{x}\right) \geqq 1,
$$

because $\operatorname{Hom}\left(I(Y), \mathcal{O}_{X}\right)$ is flat over S (as was proved above) and the inequality, depth $\left(\mathcal{O}_{f(x)}\right) \leqq 1$, holds. Consequently, for each x in $\left(X_{P}-V\right)$, we have the inequality,

$$
\operatorname{depth}\left(\underline{\operatorname{Hom}}\left(I(Y)_{P}, \mathcal{O}_{X_{P}}\right)\left(f_{P}(x)\right)_{x}\right) \geqq 1 \text {, }
$$

because (8.1) holds and depth cannot decrease under a field extension (cf. proof of (6)). Hence, for each x in $\left(X_{P}-V\right)$, we have the inequality, $\operatorname{depth}\left((I)\left(f_{P}(x)\right)_{x}\right) \geqq 1$. Thus, (v) holds.

Obviously, $Y \mid U$ is a flat, closed subscheme of the smooth S-scheme U, and its generic fiber is a divisor. So, by (7), it is a divisor. Thus, $I(Y) \mid U$ is invertible. Therefore, $I(Y)_{P} \mid V$ is invertible, and so, $I \mid V$ is also. Thus, (vi) holds.

2. A Theory of Lin $\underline{S y s t}^{1}$

9. (Lin Syst_{I}). Let S be a locally noetherian scheme, $f: X \rightarrow S$ a flat morphism of finite type, P a locally noetherian S-scheme, and I a coherent $\mathcal{O}_{X_{P}}$-Module. For each S-scheme T, let $\underline{\operatorname{Lin}} \operatorname{Syst}_{I}(T)$ denote the subset of $\left(P \times_{S} \mathcal{H i l b}_{(X / S)}\right)(T)$ consisting of those pairs (g, Y) with Y in $\operatorname{Hilb}_{(X / S)}(T)$ and g in $P(T)$ such that the ideal of Y is isomorphic, locally over T, to $\left(g_{X}\right)^{*} I$. Obviously, the sets, $\operatorname{Lin}_{\operatorname{Syst}}^{I}(T)$, as T runs through all locally noetherian S-schemes, form a functor, Lin Syst ${ }_{I}$, (obviously, a Zariski sheaf).

The functor, Lin $\underline{S y s t}_{I}$, comes equipped with maps to $\underline{H i l b}_{(X / S)}$ and to P,

namely, the restrictions to $\underline{\operatorname{Lin}} \underline{S y s t}_{I}$ of the projections from $P \times{ }_{S} \underline{H i l b}_{(X / S)}$.
Let $S^{\prime} \rightarrow S$ be a morphism of locally noetherian schemes. Then, clearly, for each locally noetherian S^{\prime}-scheme T, we have the formula,

$$
\left(\underline{\text { Lin }} \underline{\operatorname{Syst}}_{I} \times{ }_{S} S^{\prime}\right)(T)=\underline{\operatorname{Lin}}{\underline{\operatorname{Syst}^{S^{\prime}}}}(T) .
$$

So, we also have the relations,

$$
\begin{gathered}
\underline{\operatorname{Lin}} \underline{S y s t}_{I} \times{ }_{S} S^{\prime}=\underline{\operatorname{Lin}} \underline{\text { Syst }}_{I_{s^{\prime}}} \\
\underline{p}_{i} \times{ }_{S} S^{\prime}=\left(\underline{p}_{i}\right)_{S^{\prime}} \quad \text { for } i=1,2 .
\end{gathered}
$$

10. Lemma: Let S be a locally noetherian scheme, $f: X \rightarrow S$ a flat morphism of finite type, P a locally noetherian S-scheme, and I a coherent $\mathcal{O}_{X_{P}}$-Module. Assume there is an open subset V of X_{P} containing every point x of X_{P} with depth $\left(\mathcal{O}_{\left.X_{P\left(f_{P}(x)\right) . x}\right)} \leqq 1\right.$ such that $I \mid V$ is invertible. For each locally noetherian S-scheme T and each morphism $g: T \rightarrow P$, let n_{g} denote the family of pairs (M, u) where M is an invertible \mathcal{O}_{T}-Module and u is an $\mathcal{O}_{X_{T}}$-homomorphism,

$$
u:\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M \rightarrow \mathcal{O}_{X_{T}}
$$

such that, for each point t of T, the induced map $u(t)$ of $\mathcal{O}_{X(t)}$-Modules is injective.
(i) Assume that $\mathcal{O}_{S}=f_{*} \mathcal{O}_{X}$ holds universally. Let (g, Y) be an element
 a pair (M, u) in n_{g} such that the ideal $I(Y)$ of Y has the form,

$$
I(Y)=u\left(\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M\right)
$$

Moreover, this pair is uniquely determined up to unique isomorphism in the sense that, if $\left(M_{1}, u_{1}\right)$ is a second pair in n_{g} such that $u_{1}\left(\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M_{1}\right)$ is equal to $I(Y)$, then there exists a unique isomorphism $a: M \leadsto M_{1}$ that makes the diagram,

commutative.
(ii) Assume f is proper. Then, for any locally noetherian S-scheme T, any S-morphism $g: T \rightarrow P$, and any pair (M, u) in n_{g}, the image $u\left(\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M\right)$ in $\mathcal{O}_{X_{T}}$ is the ideal of a subscheme of $X \times_{S} T$ that is in $\underline{\text { Lin } \operatorname{Syst}_{I}(T) .}$

Proof: (i) Since I_{T} is locally isomorphic to the ideal of a flat subscheme of X_{T} / T, it is obviously flat over T, and each point x of X_{T} with depth $\left(I_{T}\left(f_{T}(x)\right)_{x}\right)=0$ is in V_{T} because each point x of X_{T} with $\operatorname{depth}\left(\mathcal{O}_{X_{T}\left(f_{T}(x), x\right.}\right)=0$ is in V_{T} in view of the hypothesis. By (3, (ii))
with T for S and with \mathcal{O}_{T} for M and for N, the canonical map,

$$
\mathcal{O}_{T} \rightarrow\left(f_{T}\right)_{*} \underline{\operatorname{Hom}}\left(\left(g_{X}\right)^{*} I,\left(g_{X}\right)^{*} I\right),
$$

is an isomorphism. So, by (5), there exist an invertible \mathcal{O}_{T}-Module M and an isomorphism,

$$
u^{\prime}:\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M \leadsto I(Y)
$$

Let u denote the composition,

$$
u:\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M \xrightarrow{u^{\prime}} I(Y) \xrightarrow{i} \mathcal{O}_{X_{T}}
$$

where i is the inclusion. Then, we obviously have the relation,

$$
u\left(\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M\right)=I(Y)
$$

Since Y is flat over T, we obviously have, for each T-scheme T^{\prime}, an equality,

$$
I\left(Y_{T^{\prime}}\right)=I(Y)_{T^{\prime}}
$$

where $I\left(Y_{T^{\prime}}\right)$ denotes the ideal of $Y_{T^{\prime}}$. In particular, for each point t of T, the map, $i(t): I(Y)(t) \rightarrow \mathcal{O}_{X(t)}$, is injective. Since u^{\prime} is an isomorphism, $u^{\prime}(t)$ is an isomorphism. So, $u(t)$ is injective for each $t \in T$. Thus, the pair (M, u) is an element of n_{g}, and $I(Y)$ has the required form.

If $\left(M_{1}, u_{1}\right)$ is a second pair of n_{g} satisfying $u_{1}\left(\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M_{1}\right)=I(Y)$, then there obviously exists a commutative diagram,

Since, by (5), the functor $M \mapsto\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M$ is fully faithful, there is a unique isomorphism $a: M \leadsto M_{1}$ such that $\operatorname{id}_{\left(g_{X}\right)^{*} I} \otimes\left(f_{T}\right)^{*}(a)$ is equal to $\left(u_{1}^{\prime}\right)^{-1} \circ u^{\prime}$. Thus, the uniqueness assertion holds.
(ii) Since X_{T} is flat over T and since $u(t)$ is injective for each point t of T, the quotient $\mathcal{O}_{X_{T}} / \operatorname{Im}(u)$ is flat over T and the map u is itself injective (GD VII, 4.1). So, $\operatorname{Im}(u)$ is the ideal of a closed subscheme Y of X_{T} that is flat over T, and $\operatorname{Im}(u)$ is isomorphic, locally over T, to $\left(g_{X}\right)^{*} I$ (which implies, in particular, that $\left(g_{X}\right)^{*} I$ is flat over T). Since f is proper, Y is in $\underline{H i l b}_{(X / S)}(T)$. So, (g, Y) is in $\underline{\operatorname{Lin}} \operatorname{Syst}_{I}(T)$.
11. Proposition: Let S be a locally noetherian scheme, $f: X \rightarrow S a$ flat morphism of finite type such that $\mathcal{O}_{S}=f_{*} \mathcal{O}_{X}$ holds universally, and J a coherent \mathcal{O}_{X}-Module. Assume there is an open subset U of X containing
each point x of X with depth $\left(\mathcal{O}_{X(f(x)), x}\right) \leqq 1$ such that $J \mid U$ is invertible. Let P be a locally noetherian S-scheme, L an invertible $\mathcal{O}_{X_{P}}-M o d u l e$, and $\underline{q}: P \rightarrow \operatorname{Pic}_{(X / S)}$ the map of functors defined by L, where by definition $\mathrm{Pic}_{(X / S)}(T)$ is equal to $\operatorname{Pic}\left(X \times_{S} T\right) / \operatorname{Pic}(T)$ for each locally noetherian S-scheme T. Finally, set $I=J_{P} \otimes L^{-1}$.
(i) Suppose $\underline{q}: P \rightarrow \underline{\operatorname{Pic}}_{(X / S)}$ is a monomorphism. Then, so is the canonical map of functors (9),

$$
\begin{equation*}
\underline{p}_{2}: \underline{\text { Lin }}_{\underline{\text { Syst }}_{I} \rightarrow \underline{\operatorname{Hilb}}_{(X / S)} .} \tag{11.1}
\end{equation*}
$$

(ii) Suppose J is invertible. Then, the canonical map \underline{p}_{2} from $\underline{\operatorname{Lin}}^{\operatorname{Syst}_{I}}$ to $\underline{H i l b}_{(X / S)}$ factors through $\underline{\operatorname{Div}}_{(X / S)}$ and yields a cartesian diagram,

where \underline{l}_{J} is defined by sending a divisor E on $X \times_{s} T$ to the class of the invertible sheaf $\mathcal{O}_{X_{T}}(E) \otimes J_{T}$.

Proof: (i) Let T be a locally noetherian S-scheme, (g, Y) and ($\left.g^{\prime}, Y^{\prime}\right)$ two elements of $\underline{\operatorname{Lin}}_{\underline{\operatorname{Syst}_{I}}}(T)$ whose images in $\operatorname{Hilb}_{(X / S)}(T)$ are equal, that is, for which $Y=Y^{\prime}$ holds. Since Y is flat over T, for each point t of T, we obviously have $I(Y)(t)=I(Y(t))$, where $I(Y)$ denotes the ideal of Y and $I(Y(t))$ that of $Y(t)$. So, since U_{T} contains each point x with $\operatorname{depth}\left(\mathcal{O}_{X_{T}\left(f_{T}(x)\right), x}\right)=0$, it contains each point x of X_{T} with

$$
\operatorname{depth}\left(I(Y)\left(f_{T}(x)\right)_{x}\right)=0
$$

Since J_{T} is isomorphic, locally on X_{T}, to $I(\mathrm{Y})$, each point x of X_{T} with $\operatorname{depth}\left(J_{T}\left(f_{T}(x)\right)_{x}\right)=0$ is, therefore, in U_{T}. Again, since J_{T} is isomorphic locally on X_{T} to $I(Y)$, it is flat over T because Y is and so $I(Y)$ is.

By (10, (i)) there are invertible sheaves M and M^{\prime} and isomorphisms,

$$
u:\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M \leadsto I(Y) \quad \text { and } \quad u^{\prime}:\left(g_{X}^{\prime}\right)^{*} I \otimes\left(f_{T}\right)^{*} M^{\prime} \leadsto I(Y) .
$$

Therefore, we have an isomorphism,

$$
v:\left(g_{X}\right)^{*} L^{-1} \otimes J_{T} \otimes\left(f_{T}\right)^{*} M \leadsto\left(g_{X}^{\prime}\right)^{*} L^{-1} \otimes J_{T} \otimes\left(f_{T}\right)^{*} M^{\prime}
$$

By (3, (i)) with J for I and T for S, there is an isomorphism,

$$
v^{\prime}:\left(g_{X}\right)^{*} L^{-1} \otimes\left(f_{T}\right)^{*} M \leadsto\left(g_{X}^{\prime}\right)^{*} L^{-1} \otimes\left(f_{T}\right)^{*} M^{\prime}
$$

Therefore, we have $q(g)=\underline{q}\left(g^{\prime}\right)$. Hence, since \underline{q} is a monomorphism, we have $g=g^{\prime}$. Thus, the map \underline{p}_{2} is a monomorphism.
(ii) Let T be a locally noetherian S-scheme, and (g, Y) an element of Lin $\operatorname{Syst}_{I}(T)$. Since J and L are invertible, so is the ideal $I(Y)$ of Y. Thus, Y is in $\underline{\operatorname{Div}}_{(X / S)}(T)$. Now, there are an invertible \mathcal{O}_{T}-Module M and an isomorphism, $\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M \leadsto I(Y)$, by (10, (i)); so, there is an isomorphism, $J_{T} \otimes\left(g_{X}\right)^{*} L^{-1} \otimes\left(f_{T}\right)^{*} M \leadsto I(Y)$. Hence, $\left(g_{X}\right)^{*} L$ and $I(Y)^{-1} \otimes J_{T}$ represent the same element of $\operatorname{Pic}_{(X / S)}(T)$. However, $\mathcal{O}_{X_{T}}(Y) \otimes J_{T}$ $=I(Y)^{-1} \otimes J_{T}$ represents the image of Y under l_{J}, while $\left(g_{X}\right)^{*} L$ represents the image of g under \underline{q}. Thus, the diagram (11.2) is commutative.

Let T be a locally noetherian S-scheme, and (g, Y) a pair consisting of an S-morphism $g: T \rightarrow P$ and a relative effective divisor Y on $X \times{ }_{S} T / T$ such that $\left(g_{X}\right)^{*} L$ and $I(Y)^{-1} \otimes J_{T}$ represent the same element of $\underline{\operatorname{Pic}_{(X / S)}}(T)$ where $I(Y)$ denotes the ideal of Y. Then, clearly, $\left(g_{X}\right)^{*} L$ and $I\left(\overline{Y)^{-1}} \otimes J_{T}\right.$ are isomorphic locally over T. Hence, (g, Y) is an element of $\operatorname{Lin}_{\operatorname{Syst}_{I}}(T)$. Thus, the commutative diagram (11.2) is cartesian.
12. (The sheaf $Q(F)$). Let $f: X \rightarrow S$ be a proper morphism of locally noetherian schemes, and F a coherent \mathcal{O}_{X}-Module that is flat over S. Then, by (EGA $\mathrm{III}_{2}, 7.7 .6$), there exist a coherent \mathcal{O}_{S}-Module $Q(F)$ and an element $q(F)$ in $\Gamma\left(X, F \otimes f^{*} Q(F)\right)$ such that the Yoneda map,

$$
y(q(F)): \operatorname{Hom}(Q(F), M) \rightarrow \Gamma\left(X, F \otimes f^{*} M\right)
$$

is an isomorphism for each quasi-coherent \mathcal{O}_{S}-Module M (of course, $y(q(F))$ is defined for each \mathcal{O}_{S}-Module M, quasi-coherent or not, and it behaves functorially in M); in other words, the pair $(Q(F), q(F))$ represents the functor, $M \mapsto \Gamma\left(X, F \otimes f^{*} M\right)$, on the category of quasi-coherent 0_{S}-Modules.

By (EGA $\mathrm{III}_{2}, 7.7 .9$, (i)), the formation of the pair, $(Q(F), q(F)$), commutes with base change in the sense that, for each morphism $g: T \rightarrow S$ of schemes, the pair, $\left(g^{*} Q(F), g^{*}(q(F))\right)$, represents the functor,

$$
N \mapsto \Gamma\left(X_{T},\left(g_{X}\right)^{*} F \otimes\left(f_{T}\right)^{*} N\right)
$$

on the category of quasi-coherent \mathcal{O}_{T}-Modules; if T is locally noetherian, then the commutativity of the pair, $(Q(F), q(F))$, with the base change g can be expressed by the formulas,

$$
\begin{equation*}
Q\left(\left(g_{X}\right)^{*} F\right)=g^{*} Q(F) \quad \text { and } \quad q\left(\left(g_{X}\right)^{*} F\right)=g^{*}(q(F)) \tag{12.1}
\end{equation*}
$$

Moreover, for each morphism $g: T \rightarrow S$ and each \mathcal{O}_{S}-Module M, quasicoherent or not, the diagram,

is commutative by Yoneda's lemma since the identity map of $Q(F)$, considered as an element of $\operatorname{Hom}(Q(F), Q(F)$), is carried by both compositions to the element $g^{*}(q(F))$ of $\Gamma\left(X_{T},\left(g_{X}\right)^{*} F \otimes\left(f_{T}\right)^{*} g^{*} Q(F)\right)$.

Let G be another coherent \mathcal{O}_{X}-Module that is flat over S, and $u: F \rightarrow G$ an \mathcal{O}_{X}-homomorphism. Denote by

$$
Q(u): Q(G) \rightarrow Q(F)
$$

the \mathcal{O}_{S}-homomorphism representing the map of functors in the quasicoherent \mathcal{O}_{S}-Module M,

$$
\Gamma\left(X, u \otimes f^{*}(M)\right): \Gamma\left(X, F \otimes f^{*}(M)\right) \rightarrow \Gamma\left(X, G \otimes f^{*}(M)\right)
$$

Then, by Yoneda's lemma, the diagram,

is commutative for each \mathcal{O}_{S}-Module M, quasi-coherent or not.
A proof that the formation of the pair, $(Q(F), q(F))$, commutes with base change runs as follows. Let $g: T \rightarrow S$ be a morphism of schemes, and N a quasi-coherent \mathcal{O}_{T}-Module. We want to show that the map,

$$
y\left(g^{*}(q(F))\right): \operatorname{Hom}\left(g^{*} Q(F), N\right) \rightarrow \Gamma\left(X_{T},\left(g_{X}\right)^{*} \otimes\left(f_{T}\right)^{*} N\right)
$$

is an isomorphism. It is not hard to see that we may assume S and T are affine.

If we take $g_{*} N$ for M in (12.2) and combine the resulting diagram with the commutative diagram expressing the functoriality of the map $y\left(g^{*}(q(F))\right)$ with respect to the canonical map, $\sigma_{g}(N): g^{*} g_{*} N \rightarrow N$, we obtain a commutative diagram,

Obviously, the left-hand map is the adjunction isomorphism, and the right-hand map is induced by a canonical map,

$$
F \otimes f^{*} g_{*} N \rightarrow\left(g_{X}\right)_{*}\left(\left(g_{X}\right)^{*} F \otimes\left(f_{T}\right)^{*} N\right)
$$

This map is easily seen to be an isomorphism because S and T are affine. So, the right-hand map is an isomorphism. Finally, the top map, $y(q(F))$,
is an isomorphism because $g_{*} N$ is quasi-coherent. Hence, the bottom map, $y\left(g^{*}(q(F))\right.$, is an isomorphism.
13. (The sheaf $H(G, F)$). Let $f: X \rightarrow S$ be a proper morphism of locally noetherian schemes, and F and G two coherent \mathcal{O}_{X}-Modules such that (i) F is flat over S and (ii) G is, locally over S, isomorphic to the cokernel of an \mathcal{O}_{X}-homomorphism of locally free \mathcal{O}_{X}-Modules with finite rank. Then, there exist a coherent \mathcal{O}_{S}-Module $H(G, F)$ and an element $h(G, F)$ in $\operatorname{Hom}\left(G, F \otimes f^{*} H(G, F)\right)$ such that the Yoneda map,

$$
y(h(G, F)): \operatorname{Hom}(H(G, F), M) \rightarrow \operatorname{Hom}\left(G, F \otimes f^{*} M\right)
$$

is an isomorphism for each quasi-coherent \mathcal{O}_{S}-Module M; in other words, the pair, $(H(G, F), h(G, F))$, represents the functor $M \mapsto \operatorname{Hom}\left(G, F \otimes f^{*} M\right)$ on the category of quasi-coherent \mathcal{O}_{S}-Modules. Indeed, the assertion results from (EGA III ${ }_{2}, 7.7 .8$).
$\mathrm{By}\left(\mathrm{EGA} \mathrm{III}_{2}, 7.7 .9\right.$, (ii)), condition (ii) is always satisfied if f is projective; ((EGA III ${ }_{2}, 7.7 .9$, (iii)) states that it will be proved superfluous in Chapter V of EGA). By (EGA III ${ }_{2} ; 7.7 .9$, (i)), the formation of the pair $(H(G, F), h(G, F))$, commutes with base change in the sense that, for each morphism $g: T \rightarrow S$ of schemes, the pair, $\left(g^{*} H(G, F), g^{*} h(G, F)\right.$), represents the functor, $N \mapsto \operatorname{Hom}\left(\left(g_{X}\right)^{*} G,\left(g_{X}\right)^{*} F \otimes\left(f_{T}\right)^{*} N\right)$, on the category of quasicoherent \mathcal{O}_{T}-Modules; if T is locally noetherian, then the commutativity of the pair, $(H(G, F), h(G, F))$, with the base change g can be expressed by the formulas,

$$
\begin{array}{ll}
H\left(\left(g_{X}\right)^{*} G,\left(g_{X}\right)^{*} F\right)=g^{*} H(G, F) & \text { and } \tag{13.1}\\
& h\left(\left(g_{X}\right)^{*} G,\left(g_{X}\right)^{*} F\right)=g^{*}(h(G, F)) .
\end{array}
$$

Moreover, for each morphism $g: T \rightarrow S$ and each \mathcal{O}_{S}-Module M, quasicoherent or not, the diagram,

is commutative by Yoneda's lemma, where the vertical maps are the canonical ones.
14. (The natural map $c(G, F)$ from $H(G, F)$ to $Q(\operatorname{Hom}(G, F))$). Let $f: X \rightarrow S$ be a proper morphism of locally noetherian schemes, and F and G coherent \mathcal{O}_{X}-Modules such that (i) F is flat over S, (ii) G is, locally over S, isomorphic to the cokernel of an \mathcal{O}_{X}-homomorphism of locally free \mathcal{O}_{X}-Modules with finite rank, and (iii) $\operatorname{Hom}(G, F)$ is flat over S. Denote by

$$
c(G, F): H(G, F) \rightarrow Q(\underline{\operatorname{Hom}}(G, F)),
$$

the $\mathcal{O}_{\mathbf{S}}$-homomorphism representing the map of functors in the quasicoherent \mathcal{O}_{S}-Module M,

$$
\Gamma(X, b(M)): \Gamma\left(X, \underline{\operatorname{Hom}}(G, F) \otimes f^{*} M\right) \rightarrow \operatorname{Hom}\left(G, F \otimes f^{*} M\right) .
$$

Thus, by Yoneda's lemma, the diagram,

is commutative for each \mathcal{O}_{S}-Module M, quasi-coherent or not.
If M is quasi-coherent and $b(M)$ is injective (resp. bijective), then $\operatorname{Hom}(c(G, F), M)$ is injective (resp. bijective) because then the vertical maps in (14.1) are bijective. Hence, if $b(M)$ is injective (resp. bijective) for every coherent \mathcal{O}_{S}-Module, then $c(G, F)$ is surjective (resp. bijective) (to prove surjectivity, take coker $(c(G, F)$) for M; then, to prove injectivity, take $H(G, F)$ for M.)

Let E be a locally free \mathcal{O}_{X}-Module with finite rank. Then, with E for G, (ii) is obviously satisfied, and (iii) is also satisfied because $\operatorname{Hom}(E, F)$ is locally isomorphic to a finite direct sum of copies of F, so flat over S. Moreover, in this case, $b(M)$ is an isomorphism for each \mathcal{O}_{S}-Module M because it obviously is for $E=\mathcal{O}_{X}$ and the question is local on X. Hence, $c(E, F)$ is an isomorphism,

$$
\begin{equation*}
c(E, F): H(E, F) \leadsto Q(\underline{\operatorname{Hom}}(E, F)) . \tag{14.2}
\end{equation*}
$$

Let $g: T \rightarrow S$ be a morphism of locally noetherian schemes. Then, the diagram,

$\Gamma\left(X, \underline{\operatorname{Hom}}\left(G, F \otimes f^{*} M\right)\right) \longrightarrow \Gamma\left(X_{T}, \underline{\left.\operatorname{Hom}\left(\left(g_{X}\right)^{*} G,\left(g_{X}\right)^{*} F \otimes\left(f_{T}\right)^{*} g^{*} M\right)\right), ~}\right.$
is clearly commutative, where

$$
b(T):\left(g_{X}\right)^{*} \underline{\operatorname{Hom}}(G, F) \rightarrow \underline{\operatorname{Hom}}\left(\left(g_{X}\right)^{*} G,\left(g_{X}\right)^{*} F\right)
$$

is the canonical map. Each map in (14.3) appears in a diagram like (12.2),
 identity map around these commutative diagrams, we see using Yoneda's lemma that the diagram,

is commutative; in short, we obtain the formula,

$$
\begin{equation*}
g^{*}(c(G, F))=Q(b(T)) \circ c\left(\left(g_{X}\right)^{*} G,\left(g_{X}\right)^{*} F\right) \tag{14.5}
\end{equation*}
$$

15. Theorem: Let S be a locally noetherian scheme, $f: X \rightarrow S$ a flat, proper morphism, P a locally noetherian S-scheme, and I a coherent $\mathcal{O}_{X_{P}}-$ Module. Assume I is isomorphic, locally over P, to the cokernel of an $\mathcal{O}_{X_{P}}$-homomorphism of locally free $\mathcal{O}_{X_{P}}$-Modules with finite rank (this condition is automatically satisfied if f is projective (EGA III ${ }_{2}, 7.7 .9$, (ii)). Assume there is an open set V of X_{P} containing each point x of X_{P} with $\operatorname{depth}\left(\mathcal{O}_{X_{P}\left(f_{P}(x)\right), x}\right) \leqq 1$ such that $I \mid V$ is invertible, and assume $\mathcal{O}_{S}=f_{*} \mathcal{O}_{X}$ holds universally. Then, the functor Lin Syst_{I} is universally representable by an open subscheme U of $\mathbb{P}\left(H\left(I, \mathcal{O}_{X_{P}}\right)\right)$; that is, there is a canonical isomorphism of functors of locally noetherian S-schemes,

$$
\begin{equation*}
U \simeq \underline{\operatorname{Lin}} \underline{\text { Syst }}_{I}, \tag{15.1}
\end{equation*}
$$

whose formation commutes base change; if, also, the fibers of f are geometrically integral and V contains each point x of X_{P} with depth $\left(I\left(f_{P}(x)\right)_{x}\right)=0$, then Lin $\underline{\text { Syst }}_{I}$ is universally representable by $\mathbb{P}\left(H\left(I, \mathcal{O}_{X_{P}}\right)\right.$) itself.

Proof: Set $H=H\left(I, \mathcal{O}_{X_{P}}\right)$. Let T be a locally noetherian S-scheme, $g: T \rightarrow P$ an S-morphism, and M an invertible \mathcal{O}_{T}-Module. By (13), there exists an isomorphism,

$$
\operatorname{Hom}\left(g^{*} H, M\right) \rightrightarrows \operatorname{Hom}\left(\left(g_{X}\right)^{*} I,\left(f_{T}\right)^{*} M\right)
$$

which is functorial in M and g. For each quasi-coherent $\mathcal{O}_{X_{T}}$-Module F, there obviously exists a canonical isomorphism,

$$
\operatorname{Hom}\left(\left(g_{X}\right)^{*} I, \underline{\operatorname{Hom}}\left(F, \mathcal{O}_{X_{T}}\right)\right)=\operatorname{Hom}\left(\left(g_{X}\right)^{*} I \otimes F, \mathcal{O}_{X_{T}}\right)
$$

Substituting $\left(f_{T}\right)^{*} M^{-1}$ for F and composing these isomorphisms we obtain a key isomorphism,

$$
\begin{equation*}
\kappa: \operatorname{Hom}\left(g^{*} H, M\right) \leadsto \operatorname{Hom}\left(\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M^{-1}, \mathcal{O}_{X_{T}}\right) \tag{15.2}
\end{equation*}
$$

which is clearly functorial in M and g.
Fix a locally noetherian S-scheme T and an S-morphism $g: T \rightarrow P$. We first establish a canonical functorial bijection,

$$
B_{g}: G_{1}\left(g^{*} H\right) \rightarrow \mathscr{M}_{g},
$$

from the set $G_{1}\left(g^{*} H\right)$ of 1-quotients of $g^{*} H$ (that is, quotients of $g^{*} H$ that are locally free with rank 1) to the set \mathscr{M}_{g} of equivalence classes of pairs (M, u) where M is an invertible \mathcal{O}_{T}-Module and

$$
u:\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M^{-1} \rightarrow \mathcal{O}_{X_{T}}
$$

is an $\mathcal{O}_{X_{T}}$-homomorphism with $u(t) \neq 0$ for each point t of T; pairs, (M, u) and $\left(M_{1}, u_{1}\right)$, are considered equivalent if there exists an isomorphism, $a: M \simeq M_{1}$, that induces a commutative diagram,

Let M be a 1-quotient of $g^{*} H$, and let $v: g^{*} H \rightarrow M$ denote the canonical surjection. Let t be a point of T. By the functoriality of κ in g, there is a relation,

$$
(\kappa(v))(t)=\kappa(v(t))
$$

Obviously, $v(t)$ is nonzero. Hence, $(\kappa(v))(t)$ is nonzero since κ is injective. Thus, $(M, \kappa(v))$ represents an element of \mathscr{M}_{g}. Define B_{g} by the formula,

$$
B_{g}(M)=\operatorname{class}(M, \kappa(v))
$$

Let M_{1} be a second 1-quotient of $g^{*} H$, let $v_{1}: g^{*} H \rightarrow M_{1}$ denote the canonical surjection, and assume there is an isomorphism $a: M \leftrightharpoons M_{1}$ inducing a commutative diagram like (15.3). Then, since κ is functorial in M, clearly $\kappa(a \circ v)$ is equal to $\kappa\left(v_{1}\right)$; so, since κ is injective, $a \circ v$ is equal to v_{1}. Hence, the 1-quotients, M and M_{1}, are equal. Thus, B_{g} is injective.

Let (M, u) represent an element of \mathscr{M}_{g}, and let $v: g^{*} H \rightarrow M$ denote $\kappa^{-1}(u)$. Let t be a point of T. Since $u(t)$ is nonzero, obviously $v(t):\left(g^{*} H\right)(t) \rightarrow M(t)$ is nonzero. Since $M(t)$ is a 1-dimensional vector space, $v(t)$ is therefore surjective. Hence, v is surjective by Nakayama's lemma. Therefore, $g^{*} H / \operatorname{ker}(v)$ is a 1-quotient of $g^{*} H$, and there is an isomorphism $a: g^{*} H / \operatorname{Ker}(v) \Longrightarrow M$ such that $a^{-1} \circ v$ is equal to the canonical surjection. Since κ is functorial in M, there is a commutative diagram like (15.3).

So, $B_{g}\left(g^{*} H / \operatorname{Ker}(v)\right)$ is equal to the element represented by (M, u). Thus, B_{g} is surjective, so bijective. Finally, B_{g} is clearly functorial in g because κ is.

Let $\alpha_{1}^{\#}: H_{\mathbb{P}(H)} \rightarrow \mathcal{O}_{\mathbb{P}(H)}(1)$ denote the canonical surjection, and set

$$
\beta=\kappa\left(\alpha_{1}^{\#}\right) .
$$

Let $p: \mathbb{P}(H) \rightarrow S$ denote the structure morphism. Let $h: T \rightarrow \mathbb{P}(H)$ be an S-morphism satisfying the condition, $p \circ h=g$. Then, the functoriality of κ in M and of B_{g} in g yield the formula,

$$
B_{g}\left(g^{*} H / \operatorname{Ker}\left(h^{*}\left(\alpha_{1}^{*}\right)\right)\right)=\operatorname{class}\left(h^{*} \mathcal{O}_{p}(1), h^{*}(\beta)\right) .
$$

There is a functorial bijection from the set of S-morphisms $h: T \rightarrow \mathbb{P}(H)$ satisfying the condition, $p \circ h=g$, to the set, $G_{1}\left(g^{*} H\right)$; it sends h to the 1-quotient of $g^{*} H$ defined by $h^{*}\left(\alpha_{1}^{\#}\right)$, (EGA II, 4.2.3). Following this bijection with B_{g}, and letting g vary while keeping T fixed, we obtain a bijection,

$$
A_{S}(T): \mathbb{P}(H)(T) \simeq \mathscr{M}_{S}(T)
$$

from the set $\mathbb{P}(H)(T)$ of S-morphisms, $h: T \rightarrow \mathbb{P}(H)$, to the set $\mathscr{M}_{S}(T)$ of classes of triples (g, M, u) consisting of an S-morphism, $g: T \rightarrow P$, an invertible $\mathcal{O}_{\boldsymbol{T}}$-Module M, and an \mathcal{O}_{T}-homomorphism,

$$
u:\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M^{-1} \rightarrow \mathcal{O}_{X_{T}}
$$

with $u(t) \neq 0$ for each point t of T; triples (g, M, u) and $\left(g_{1}, M_{1}, u_{1}\right)$ are considered equivalent if g is equal to g_{1} and there exists an isomorphism $a: M \leadsto M_{1}$ inducing a commutative diagram exactly like (15.3). Obviously, $A_{S}(T)$ is given by the formula,

$$
\begin{equation*}
A_{S}(T)(h)=\operatorname{class}\left(p \circ h, h^{*}\left(\mathcal{O}_{\mathbb{P}(H)}(1)\right), h^{*}(\beta)\right) . \tag{15.4}
\end{equation*}
$$

Clearly, the $A_{S}(T)$ form an isomorphism of functors, $A_{S}: \mathbb{P}(H) \rightarrow \mathscr{M}_{S}$. In short, the S-scheme $\mathbb{P}(H)$ represents the functor \mathscr{M}_{S}. It is evident from the construction that $\mathbb{P}(H)$ universally represents \mathscr{M}_{S}; that is, the formation of A_{S} from f, P, and I commutes with any base change $S^{\prime} \rightarrow S$, with S^{\prime} locally noetherian; for, the formation of $H, \mathbb{P}(H)$ and β do.

Next, we construct a canonical monomorphism of functors,

$$
C_{S}: \underline{\text { Lin }} \underline{\text { Syst }_{I}} \hookrightarrow \mathscr{M}_{S},
$$

whose formation commutes with any base change $S^{\prime} \rightarrow S$, with S^{\prime} locally noetherian. Let T be a locally noetherian S-scheme, and (g, Y) an element of $\operatorname{Lin} \operatorname{Syst}_{I}(T)$. By (10, (i)), the ideal of Y in $\mathcal{O}_{X_{T}}$ has the form $u\left(\left(g_{X}\right)^{*} I \otimes\left(f_{T}\right)^{*} M^{-1}\right)$, where M is an invertible \mathcal{O}_{T}-Module and

$$
u:\left(g_{X}\right)^{*} I \cdot \otimes\left(f_{T}\right)^{*} M^{-1} \rightarrow \mathcal{O}_{X_{T}}
$$

is an $\mathcal{O}_{X_{T}}$-homomorphism such that $u(t)$ is injective for each point t of T. Since $\mathcal{O}_{S}=f_{*} \mathcal{O}_{X}$ holds, f is surjective. Therefore, $X_{T}(t)$ is non-empty for each point t of T. Since $V_{T}(t)$ contains each point x of $X_{T}(t)$ with depth $\left(\mathcal{O}_{X_{T}(t), x}\right)=0$, it is nonempty. Finally, since $I \mid V$ is invertible, $I_{T}(t)$ is nonzero. Therefore, $u(t)$ is nonzero for each point t of T. Thus, the triple (g, M, u) represents an element of $\mathscr{M}_{S}(T)$. Moreover, the uniqueness assertion of (10 , (i)) implies that a different choice of such a pair (M, u) yields the same class in $\mathscr{M}_{S}(T)$. Define $C_{S}(T)$ by the formula,

$$
C_{S}(T)(g, Y)=\operatorname{class}(g, M, u)
$$

The pair (M, u) determines the subscheme Y because the ideal of Y is equal to the image of u; so, $C_{S}(T)$ is injective. It is evident that the $C_{S}(T)$ form a natural transformation, C_{S}, and that the formation of C_{S} from f, P and I commutes with base change.

By construction, C_{S} carries Lin Syst $_{I}$ monomorphically into the subfunctor of \mathscr{M}_{S} whose value at a locally noetherian S-scheme T is the set of equivalence classes of triples (g, M, u) such that $u(t)$ is injective for each point t of T. By (10, (ii)), every such triple (g, M, u) arises from some element (g, Y) of $\underline{\operatorname{Lin}} \operatorname{Syst}_{I}(T)$. Thus, C_{S} carries Lin $\underline{S y s t}_{I}$ isomorphically onto this subfunctor.

Clearly, in view of (15.4), the map, $A_{S}^{-1} \circ C_{S}$, carries Lin Syst ${ }_{I}$ isomorphically onto the subfunctor D_{S} of the functor of points of $\mathbb{P}(H)$ whose value at a locally noetherian S-scheme T is the set of S-morphisms, $h: T \rightarrow \mathbb{P}(H)$, such that $\left(h^{*}(\beta)\right)(t)$ is injective for each point t of T. We shall now represent D_{S} by an open subscheme U of $\mathbb{P}(H)$; clearly, U then universally represents D_{S}, and so U also universally represents Lin Syst ${ }_{I}$.

Let V_{1} denote the set of points of $X_{\mathbf{P}(H)}$ where $\operatorname{Coker}(\beta)$ is flat over $\mathbb{P}(H)$; it is open by (GD V, 5.5). Set

$$
U=\mathbb{P}(H)-\left(f_{\mathbb{P}(H)}\right)\left[\left(X_{\mathbb{P}(\boldsymbol{H})}-V_{1}\right) \cup(\operatorname{Supp}(\operatorname{Ker}(\beta)))\right] .
$$

Since f is proper, U is an open subset of $\mathbb{P}(H)$. Moreover, clearly, a point t of $\mathbb{P}(H)$ lies in U if and only if β is injective and Coker (β) is flat over $\mathbb{P}(H)$ at each point x of $X_{\mathbb{P}(H)}$ lying over t. Therefore, since f is flat, a point t of $\mathbb{P}(H)$ lies in U if and only if $\beta(t)$ is injective (GD VII, 4.1). Consequently, an S-morphism, $h: T \rightarrow \mathbb{P}(H)$, factors through U if and only if $\left(h^{*} \beta\right)(t)$ is injective for each $t \in T$. Therefore, U represents D_{S}, and so U universally represents Lin Syst $_{I}$.

Finally, assume that the fibers of f are geometrically integral and that V contains each point x of X_{P} with depth $\left(I\left(f_{P}(x)\right)_{x}\right)=0$. We shall show that U is equal to $\mathbb{P}(H)$ or, equivalently, that $\beta(t)$ is injective for each point t of $\mathbb{P}(H)$. Since $\beta(t)$ is nonzero, it is nonzero at the generic point η of $X_{\mathbf{P}(H)}(t)$ because this scheme is integral. However, at η, the source of
$\beta(t)$ is a 1-dimensional vector space. So, $\beta(t)$ is injective at η. Since $V_{\mathbf{P}(H)}(t)$ contains each point x of $X_{\mathbb{P}(H)}(t)$ with depth $\left(I_{\mathbb{P}(H)}(t)_{x}\right)=0$ and since $I \mid V$ is invertible, η is the only point of $X_{\mathbb{P}(H)}(t)$ where $I_{\mathbb{P}(H)}(t)$ has depth 0 . So, $\beta(t)$ is injective because its kernel has no point with depth 0 . Thus, U is equal to $\mathbb{P}(H)$, and so $\mathbb{P}(H)$ universally represents Lin Syst ${ }_{I}$.
16. Corollary : Let S be a locally noetherian scheme, $f: X \rightarrow S$ a flat, proper morphism with geometrically integral fibers, P a locally noetherian S-scheme, and L an invertible $\mathcal{O}_{X_{P}}-$ Module. Then, Lin Syst $_{L^{-1}}$ is universally representable by $\mathbb{P}(Q(L))$.

Proof: Obviously, L^{-1} is isomorphic to the cokernel of an $\mathcal{O}_{X_{P}}$ homomorphism of locally free $\mathcal{O}_{X_{P}}$-Modules with finite rank, for example, the cokernel of a zero map into L^{-1}. Furthermore, since f is both open and closed, we may replace S by $f(X)$ and so assume f is surjective. Then, $\mathcal{O}_{S}=f_{*} \mathcal{O}_{X}$ holds universally (EGA III $2,7.8$). Hence, by (15) with X_{P} for V, the functor Lin $\operatorname{Syst}_{L^{-1}}$ is universally representable by $\mathbb{P}\left(H\left(L^{-1}, \mathcal{O}_{X_{P}}\right)\right)$. Finally, $H\left(L^{-1}, \mathcal{O}_{X_{P}}\right)$ is universally isomorphic to $Q(L)$ by (14).
17. Remark: Let S be a locally noetherian scheme, $f: X \rightarrow S$ a flat, projective, surjective morphism with geometrically integral fibers, and P a locally noetherian S-scheme. Let V be an open subset of X_{P} containing each point x of X_{P} with depth $\left(\mathcal{O}_{X_{P}\left(f_{P}(x)\right), x}\right) \leqq 1$. Let D be a closed subscheme of X_{P}; assume D is a divisor on V or, equivalently, its ideal $I(D)$ is invertible on V; and consider Lin $\operatorname{Syst}_{I(D)}$. The hypotheses of (15) are satisfied; indeed, the relation $\mathcal{O}_{S}=f_{*} \mathcal{O}_{X}$ holds universally (EGA $\mathrm{III}_{2}, 7.8$), and V contains each point x of X_{P} with depth $\left(I(D)\left(f_{P}(x)\right)_{x}\right)=0$ because it contains each point x of X_{P} with depth $\left(\mathcal{O}_{X_{P}\left(f_{P}(x)\right), x}\right)=0$. So, Lin $\underline{\operatorname{Syst}}_{I(D)}$ is universally representable by $\mathbb{P}\left(H\left(I(D), \mathcal{O}_{X_{P}}\right)\right)$.

An important case occurs when the fibers of f are geometrically normal. Then, the set V of smooth points of f_{P} contains each point x of X_{P} with depth $\left(\mathcal{O}_{X_{P}\left(f_{P}(x)\right), x}\right) \leqq 1$ by (6), and a flat closed subscheme D of $X \times P / P$ is a divisor on V if and only if, for each point z of P, the restriction $D(z) \mid V(z)$ has pure codimension 1 and no embedded components (cf. proof of (7)).

It is interesting to note that, in this case, the flat, closed subschemes D of $X \times P / P$ that are divisors on V are parametrized by an open and closed subset of $\mathrm{Hilb}_{(X \times P / P)}$; more precisely, this subset represents the functor whose value at a locally noetherian P-scheme T is the set of flat, closed subschemes of $X \times T$ that are divisors when restricted to $V \times T$ or, equivalently whose fibers are divisors on the fibers of $V \times T / T$. It clearly suffices to note that the set U of points t of $\operatorname{Hilb}_{(X \times P / P)}$ such that the
universal subscheme is a divisor at each point of $V \times \operatorname{Hilb}_{(X \times P / P)}$ lying over t is open and closed. The set U is open because f is proper and because U obviously has the form,

$$
U=\operatorname{Hilb}_{(X \times P / P)}-\left(f_{P}\right)\left[\left(X \times \operatorname{Hilb}_{(X \times P / P)}\right)-\left(U_{1} \cap\left(V \times \operatorname{Hilb}_{(X \times P / P)}\right)\right)\right]
$$

where U_{1} is the open set on which the universal subscheme is a divisor. The set U is closed because it is closed under specialization by (7) and it is open (EGA I, 6.1.8).

3. Completeness Theorems

18. Theorem: Let k be a field, and X a geometrically normal, projective k-scheme. Let Z be a closed subscheme of $\operatorname{Div}_{(X / k)}$. If Z has finite type over k, then Z is complete.

Proof: We may assume k is algebraically closed, for the formation of $\operatorname{Div}_{(X / k)}$ commutes with base change and a scheme is complete if it becomes complete after an $f p q c$ base change (EGA IV, 2.7.1). Moreover, since we clearly have a formula,

$$
\operatorname{Div}_{\left(\left(X_{1} \amalg X^{2}\right) / k\right)}=\operatorname{Div}_{\left(X_{1} / k\right)} \times \operatorname{Div}_{\left(X_{2} / k\right)}
$$

we may replace X by a connected component and so assume X is integral, hence geometrically integral because k is algebraically closed (EGA IV, 4.4.4).

We use the valuative criterion (EGA II, 7.3.8). Let R be a discrete valuation ring containing k. Let K denote the quotient field of R, and k_{0} its residue class field. Let D be an effective divisor on $X \otimes K$ representing a K-point of Z. Let Y denote the closure of D in $X \otimes R$. Then, Y is flat over R by (7), so Y defines an R-point of $\operatorname{Hilb}_{(X / k)}$. We are going to prove that $Y \otimes_{R} k_{0}$ is a divisor. Then, clearly, this R-point of $\operatorname{Hilb}_{(X / k)}$ lies in the open subscheme $\operatorname{Div}_{(X / k)}$ and so also in Z. Thus, the hypotheses of the valuative criterion are fulfilled.

Set $P=\operatorname{Pic}_{(X / k)}^{0}$ and let L be a Poincaré sheaf on $X \times P$ (that is, a universal invertible sheaf; one exists because k is algebraically closed). Choose an ample invertible sheaf $\mathcal{O}_{X}(1)$, fix an integer n, and form the following coherent sheaves on $(X \times P) \otimes R$;

$$
\begin{aligned}
I & =I(Y)_{P} \otimes L_{R}^{-1}(-n) \\
I^{2} & =\underline{\operatorname{Hom}}\left(I, \mathcal{O}_{(X \times P) \otimes R}\right),
\end{aligned}
$$

where $I(Y)$ denotes the ideal of Y.
All the hypotheses that appear in the various results we are about to apply hold by virtue of (8).

By (11, (i)), the canonical map of functors,

$$
\underline{p}_{2}: \underline{\text { Lin }}_{\text {Syst }_{I}} \rightarrow \underline{\text { Hilb }}_{(X \otimes R / R)}
$$

is a monomorphism. So, by (15), it is represented by a monomorphism of R-schemes,

$$
p_{2}: \mathbb{P}\left(H\left(I, \mathcal{O}_{X_{P \otimes R}}\right)\right) \rightarrow \operatorname{Hilb}_{(X \otimes R / R)}
$$

whose formation commutes with base change because the formation of p_{2} does and because $\mathbb{P}\left(H\left(I, \mathcal{O}_{X_{P \otimes R}}\right)\right)$ universally represents Lin $\underline{\operatorname{Syst}}_{I}$. By (4, (i)), the canonical map,

$$
b(M): \underline{\operatorname{Hom}}\left(I, \mathcal{O}_{X_{P \otimes R}}\right) \otimes\left(f_{P \otimes R}\right)^{*} M \rightarrow \underline{\operatorname{Hom}}\left(I,\left(f_{P \otimes R}\right)^{*} M\right),
$$

is injective for each coherent $\mathcal{O}_{P \otimes R}$ - Module M. So, by (14), there is a canonical surjection,

$$
c: H\left(I, \mathcal{O}_{X_{P \otimes R}}\right) \rightarrow Q\left(I^{\check{ }}\right)
$$

The composition of the closed embedding $\mathbb{P}(c)$ and the monomorphism p_{2} is a key monomorphism,

$$
r: \mathbb{P}\left(Q\left(I^{\prime}\right)\right) \rightarrow \operatorname{Hilb}_{(X \otimes R / R)}
$$

Consider the generic fiber $r \otimes K$ of r. It factors through the composition,

$$
\mathbb{P}\left(Q\left(I^{\check{\prime}}\right) \otimes K\right) \xrightarrow{Q(b(K))} \mathbb{P}\left(Q\left(\underline{\text { Hom }}\left(I_{K}, \mathcal{O}_{X_{P \otimes K}}\right)\right) \xrightarrow{\mathbb{P}\left(c_{\left.c_{K}\right)}\right.} \mathbb{P}\left(H\left(I_{K}, \mathcal{O}_{X_{P \otimes K}}\right)\right),\right.
$$

by (14.5). Since K is flat over R, the canonical map,

$$
b(K):\left(I^{\check{\prime}}\right) \otimes K \rightarrow \underline{\operatorname{Hom}}\left(I_{K}, \mathcal{O}_{X_{P \otimes K}}\right)
$$

is an isomorphism (EGA $0_{I}, 5.7 .6$); hence $Q(b(K))$ is an isomorphism. Now, $I(Y) \otimes_{R} K$ is isomorphic to the ideal of D because Y is flat over R (or because K is). So, $I(Y) \otimes_{R} K$ is invertible because D is a divisor. Hence, I_{K} is invertible. Therefore, c_{K} is an isomorphism by (14), and so $\mathbb{P}\left(c_{K}\right)$ is an isomorphism. Consequently, by (11, (ii)), $r \otimes K$ factors through $\operatorname{Div}_{(X \otimes K / K)}$ and yields a cartesian diagram,

where q is the inclusion of P in $\operatorname{Pic}_{(X / k)}$. Since q is an open (and closed) embedding, the image of $\mathbb{P}\left(Q\left(I^{〔}\right) \otimes K\right)$ in $\operatorname{Div}_{(X \otimes K / K)}$ is equal to an open
(and closed) subset U of $\operatorname{Div}_{(X \otimes K / K)}$, and we have the relation,

$$
\begin{equation*}
\operatorname{dim}(U)=\operatorname{dim}\left(\mathbb{P}\left(Q\left(I^{\prime}\right) \otimes K\right)\right) \tag{18.1}
\end{equation*}
$$

Since $\operatorname{Div}_{(X \otimes K / K)}$ is open in $\operatorname{Hilb}_{(X \otimes K / K)}$, the set U is open in $\operatorname{Hilb}_{(X \otimes K / K)}$. Consider the special fiber $r \otimes k_{0}$ of r. It is a monomorphism because r is. By Chevalley's Theorem (GD V, 4.6), the image, $\left(r \otimes k_{0}\right)\left(\mathbb{P}\left(Q(I) \otimes k_{0}\right)\right)$, contains an open set, V, of its closure in $\operatorname{Hilb}_{\left(X \otimes k_{0} / k_{0}\right)}$.

Since $\mathcal{O}_{X}(n)$ and L are each locally free with finite rank, we clearly have a canonical isomorphism,

$$
I^{\check{\prime}}=\left[\underline{\operatorname{Hom}}\left(I(Y)_{P}, \mathcal{O}_{X_{P \otimes R}}\right) \otimes L_{R}\right](n) .
$$

Since $\operatorname{Pic}_{(X / k)}$ is locally of finite type over k (SGA6 XIII, 3.1), P is of finite type over k (FGA, 236-02). Choose n so large that $R^{q}\left(f_{P \otimes R}\left(I^{〔}\right)\right.$ vanishes for each $q>0$ (EGA III, 2.2.1). Then, $Q\left(I^{\check{\prime}}\right)$ is locally free (EGA III ${ }_{2}, 7$). Since P is geometrically irreducible and R is irreducible, $P \otimes R$ is irreducible (EGA IV, 4.5.8, (i)). So, $\mathbb{P}\left(Q\left(I^{`}\right)\right)$ is also irreducible. Follow r by the projection from $\operatorname{Hilb}_{(X \otimes R / R)}$ to $\operatorname{Hilb}_{(X / k)}$, and let H denote the closure in $\mathrm{Hilb}_{(X / k)}$ of the image of this composition. Then, H is also irreducible. Since k is algebraically closed, H is geometrically irreducible (EGA IV, 4.4.4). Furthermore, $H \otimes k_{0}$ contains V because the projection from $\operatorname{Hilb}_{\left(X \otimes k_{0} / k_{0}\right)}$ to $\operatorname{Hilb}_{(X / k)}$ factors through $\operatorname{Hilb}_{(X \otimes R / R)}$. Similarly, $H \otimes K$ contains U.

Since U is open in $\operatorname{Hilb}_{(X \otimes K / K)}$, it is open in $H \otimes K$; since $H \otimes K$ is irreducible, U and $H \otimes K$ have the same dimension; so, by (18.1), $H \otimes K$ and $\mathbb{P}\left(Q\left(I^{\check{\prime}}\right) \otimes K\right)$ have the same dimension. Since $\mathbb{P}\left(Q\left(I^{\check{\prime}}\right) \otimes k_{0}\right)$ is irreducible, and since $\left(r \otimes k_{0}\right)^{-1}(V)$ is open in $\mathbb{P}\left(Q\left(I^{\check{ }}\right) \otimes k_{0}\right)$, they have the same dimension; since $r \otimes k_{0}$ is a monomorphism, V and $\left(r \otimes k_{0}\right)^{-1}(V)$ have the same dimension; so V and $\mathbb{P}\left(Q\left(I^{\prime}\right) \otimes k_{0}\right)$ have the same dimension. Since $Q\left(I^{\check{ }}\right)$ is locally free with finite rank, $\mathbb{P}\left(Q\left(I^{\check{ }}\right) \otimes K\right)$ and $\mathbb{P}\left(Q\left(I^{\check{\prime}}\right) \otimes k_{0}\right)$ have the same dimension $\left(\operatorname{namely}, \operatorname{dim}(P)+\operatorname{rank}\left(Q\left(I^{\prime}\right)\right)-1\right)$. Therefore, $H \otimes K$ and V have the same dimension; hence, so do $H \otimes k_{0}$ and V, for $H \otimes K$ and $H \otimes k_{0}$ obviously do. Consequently, since $H \otimes k_{0}$ is irreducible and closed and contains V, the closure of V in $\operatorname{Hilb}_{\left(X \otimes k_{0} / k_{0}\right)}$ is equal to $H \otimes k_{0}$. Thus, since V is open in its closure in $\operatorname{Hilb}_{\left(X \otimes k_{0} / k_{0}\right)}$, it is open in $H \otimes k_{0}$.

Let k_{1} be an algebraically closed field containing k-isomorphic copies of K and k_{0}. Then, since $H \otimes k_{1}$ is irreducible and since any two nonempty open subsets of an irreducible set intersect, we have the relation,

$$
\left(V \otimes_{k_{0}} k_{1}\right) \cap\left(U \otimes_{K} k_{1}\right) \neq \phi
$$

Let E be a closed subscheme of $X \otimes k_{1}$ corresponding to a point in the intersection. Then, $I(E)$, the ideal of E, is isomorphic to $\left(I \otimes_{R} k_{0}\right) \otimes_{k_{0}} k_{1}$
since E corresponds to a k_{1}-point of V. So, we have an isomorphism,

$$
I(E) \cong\left(\left(\left(I(Y) \otimes_{R} k_{0}\right) \otimes_{k_{0}} k_{1}\right) \otimes L^{-1}(-n)\right)
$$

On the other hand, $I(E)$ is invertible because E corresponds to a k_{1} point of U. Hence, $\left(I(Y) \otimes_{R} k_{0}\right) \otimes_{k_{0}} k_{1}$ is invertible. However, $\left(I(Y) \otimes_{R} k_{0}\right) \otimes_{k_{0}} k_{1}$ is isomorphic to $I\left(\left(Y \otimes_{R} k_{0}\right) \otimes_{k_{0}} k_{1}\right)$ because Y is flat over R. Therefore, $\left(Y \otimes_{R} k_{0}\right) \otimes_{k_{0}} k_{1}$ is a divisor; hence, so is $Y \otimes_{R} k_{0}$.
19. THEOREM: Let k be a field, and X a geometrically normal, projective k-scheme. Let P be a closed subscheme of $\mathrm{Pic}_{(X / k)}$. If P has finite type over k, then P is complete.

Proof: We may assume k is algebraically closed, for the formation of $\operatorname{Pic}_{(X / k)}$ commutes with base change and a scheme is complete if it becomes complete after an fpqc base change (EGA IV, 2.7.1). Since we clearly have a formula,

$$
\operatorname{Pic}_{\left(\left(X_{1} \amalg X_{2}\right) / k\right)}=\operatorname{Pic}_{\left(X_{1} / k\right)} \times \operatorname{Pic}_{\left(X_{2} / k\right)},
$$

we may replace X by a connected component and so assume X is integral, hence geometrically integral because k is algebraically closed (EGA IV, 4.5.14).

Since k is algebraically closed, there is a Poincare sheaf L^{\prime} on $X \times \operatorname{Pic}_{(X / k)}$. Set $L=L^{\prime} \mid X \times P$. Let $\mathcal{O}_{X}(1)$ be an ample invertible sheaf on X. By (EGA III, 2.2.1), there is an integer n such that the conditions,

$$
\begin{align*}
R^{q} p_{*}(L(n))=0 & \text { for } q>0 \tag{19.1}\\
p_{*}(L(n))_{x} \neq 0 & \text { for each } x \in P,
\end{align*}
$$

hold, where $p: X \times P \rightarrow P$ denotes the projection, because P is of finite type over k.

By (16) with $S=\operatorname{Spec}(k)$, the scheme $\mathbb{P}(Q(L(n)))$ represents the functor Lin $\operatorname{Syst}_{L^{-1}(-n)}$. By (11, (ii)) with $J=\mathcal{O}_{X}(-n)$, we obtain a cartesian diagram,

Hence, $\mathbb{P}(Q(L(n)))$ is embedded in $\operatorname{Div}_{(X / k)}$ as a closed subscheme of finite type. It is therefore complete by (18). Since conditions (19.1) hold, $Q(L(n))$ is locally free with finite nonvanishing rank on P; hence, the structure map $\mathbb{P}(Q(L(n))) \rightarrow P$ is surjective. Therefore, by (EGA I, 3.8.2, (iv)), P is complete.

REFERENCES

[1] A. Altman and S. Kleiman: Introduction to Grothendieck Duality Theory. Lecture Notes in Math. Vol. 146. Springer-Verlag, (1970) (cited GD).
[2] A. Altman and S. Kleiman: On the Purity of the Branch Locus. Compositio Mathematica, Vol. 23, Fasc. 4, (1971) pp 461-465.
[3] P. Berthelot, A. Grothendieck, L. Illusie: Théorie des Intersections et Théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois Marie 1966/67. Lecture Notes in Math., Vol. 225. Springer-Verlag, (1971) (cited SGA 6).
[4] A. Grothendieck: Technique de descente et théorèmes d'existence en géométrie algébrique. V. Les schémas de Picard. Théorèmes d'existence. VI. Les schémas de Picard. Propriétés générales. Fondements de la géométrie algébrique. Extraits du Séminaire Bourbaki, 1957-62, multigraphié (cited FGA 232, FGA 236).
[5] A. Grothendieck and J. Dieudonné: Eléments de Géométrie Algébrique I. SpringerVerlag (1971) (cited EGA 01, EGA I).
[6] A. Grothendieck and J. Dieudonné: Eléments de Géométrie Algébrique. Publ. Math No. 8, 11, 17, 21, 32. IHES, (1961, 1961, 1963, 1965, 1967) (cited EGA II, EGA III, EGA III_{2}, EGA IV, EGA IV_{4}).

Department of Mathematics University of California San Diego La Jolla, California 92037 U.S.A.

[^0]: ${ }^{1}$ This author would like to thank the Mathematics Department of the California Institute of Technology for its generous hospitality during the preparation of this work and the National Science Foundation for its partial financial support.
 ${ }^{2}$ We wish to thank David Mumford for pointing this out.

