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ALGEBRAIC SYSTEMS OF LINEARLY EQUIVALENT
DIVISOR-LIKE SUBSCHEMES

Allen B. Altman and Steven L. Kleiman1

COMPOSITIO MATHEMATICA, Vol. 29, Fasc. 2, 1974, pag. 113-139
Noordhoff International Publishing
Printed in the Netherlands

We develop a theory of algebraic systems of linearly equivalent divisor-
like subschemes, which extends Grothendieck’s theory (FGA 232 § 4)
of the fiber functor of the canonical map from the scheme of divisors to

the Picard scheme. Grothendieck used the theory in constructing the
Picard scheme (FGA 232 § 5), and any light shed is valuable in its own
right. We apply the extended theory and give a proof, in the geometric
spirit of Grothendieck’s work, that every closed subscheme of finite type
of the scheme of divisors is complete when the ambient scheme is a
geometrically normal, complete variety. This completeness theorem is
equivalent to the analogous one for the Picard scheme (it is shown in
(19) to imply its analogue; the proof of the converse is similar). Grothen-
dieck suggested two proofs of the completeness theorem for the Picard
scheme (FGA 236, Theorem 2.1); one involves the structure theorem for
commutative algebraic groups (Chevalley-Borel), and the other involves
the finiteness theorem for the Néron-Severi group and a Lefschetz
theorem. The completeness theorem for the scheme of divisors, however,
follows quickly 2, via the valuative criterion, from the theorem of Rama-
nujam-Samuel (EGA IV4, 21.14.1), a purely local result.
Our proof of the completeness theorem for the scheme of divisors also

uses the valuative criterion. Briefly, it runs as follows. Let X denote the
ambient variety and k the ground field. Let R be a discrete valuation
ring, K its quotient field, and ko its residue class field. Let D be an effective
divisor on X ~ K, and Y its scheme-theoretic closure in X Q R, which
is flat over R. We have to show that the special fiber, Y~R k0, is a
divisor. Let H be a high multiple of an ample divisor. Let U be the scheme
parametrizing the effective divisors on X that are linearly equivalent to
the ones of the form D + H’, where H’ runs through the divisors algebra-
ically equivalent to H. Let Z be the scheme parametrizing the closed
subschemes E of X that are linearly equivalent to the ones of the form,

1 This author would like to thank the Mathematics Department of the California
Institute of Technology for its generous hospitality during the preparation of this work
and the National Science Foundation for its partial financial support.

2 We wish to thank David Mumford for pointing this out.
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Y(ko) + H’ - that is, the ideal of E should be isomorphic to the tensor
product of the ideals of Y(ko) and H’ - where H’ runs through the divisors
algebraically equivalent to H; the normality of X is used in the construc-
tion of Z. There is a canonical monomorphism from U into the Hilbert
scheme, Hilb(x~K/K), that specializes into a monomorphism from Z into
Hilb(X~k0/k0), and both images in Hilb(X/k) lie in the same irreducible

component W ; in fact, U is embedded as an open subscheme of W Q K,
and the image of Z contains an open subscheme of W (D ko. Let k,
be an algebraically closed field containing k-isomorphic copies of K and
ko. Since W ~k1 is irreducible, its two open subsets U ~k1 and Q k1
must intersect. Let E be a subscheme of X (D k 1 that corresponds to a
point in the intersection. Then, on the one hand, E is a divisor, so its
ideal is invertible, and, on the other hand, its ideal is isomorphic to the
tensor product of the ideal of ( Y (8) R ko) ~k0 k1 and the ideal of a divisor.
Therefore, the ideal of ( Y (8) R ko) is invertible, and so Y (8) R ko is a divisor.
Most of the article is devoted to the study of algebraic systems of

linearly equivalent divisor-like subschemes. More precisely, let S be a
locally noetherian scheme, f : X ~ S a flat, proper morphism, P a
locally noetherian S-scheme, and 7 a coherent (9x,-Module. We study
the functor Lin Systj, whose value at a locally noetherian S-scheme T
is the set of pairs (g, Y) consisting of S-morphism g : T ~ P and of a flat,
closed subscheme Y of X T whose ideal is, locally over T, isomorphic to
(gx)*I. Notably, we represent Lin Syst, universally when the following
technical conditions are satisfied: (i) OS = f*OX holds universally;
(ii) there exists an open subset V of X p containing every point x of X p
with depth (OXP(fP(x)), x) ~ 1 such that Il V is invertible; and (iii) I is,
locally over P, isomorphic to the cokernel of a homomorphism of
locally free OXP-Modules with finite rank. In fact, Lin Syst, is universally
representable by an open subscheme of P(H), where H is the coherent
(9p-Module characterized by the condition that there be a functorial
isomorphism,

where M is a quasi-coherent OP-Module; if the fibers of f are geo-
metrically integral and if V contains each point x of X p with

depth (I( fP(x))x) = 0, then Lin Syst, is universally representable by
P(H) itself. In (EGA III2, 7.7.9, (ii)), the remark is made that condition
(iii) is fulfilled if f is projective. In (EGA 1112, 7.7.9, (iii)), it is stated that
condition (iii) is superfluous to the existence of H, but no proof is given;
for this reason alone, we have chosen to include condition (iii) as an
assumption. The OP-Module H is closely related to a coherent (9p-Module
Q, which exists when Hom (I, (9x,) is flat over P; the Module Q is char-
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acterized by the condition that there exist a functorial isomorphism,

where M is a quasi-coherent OP-Module. The relationship between H
and Q plays an important role in our applications. Grothendieck used
Q along in his development of the theory.
The completeness theorem for the scheme of divisors may be restated,

by virtue of the valuative criterion, in the following way: an effective
divisor on a geometrically normal, projective variety remains a divisor
under flat specialization. The result is optimal. A positive divisorial cycle
- a closed subscheme that has pure codimension one and no embedded

components - may acquire embedded components under flat specializa-
tion. Here, briefly, is an example; we plan to explain it in detail elsewhere.
Let Y be a nonsingular plane cubic, and X the (projective) cone over Y
For each k-point y of Y, let P(y) denote the (reduced) line determined by y
and the vertex, and consider the divisorial cycle,

where YI and Y2 are two fixed k-points of Y Then Dy is a divisor if and
only if y is equal to the third point Y3 in the intersection of Y and the
secant determined by y 1 and Y2 . Hence, the Dy are not isomorphic to the
closed fibers of a flat family, for otherwise almost all of them would be
divisors. There is, in fact, a flat family {Z(y)}y~Y of subschemes of X such
that Z(y) is equal to Dy for each k-point y not equal to Y3 and Z(Y3)
is equal to the union of D Y3 and an embedded component located at the
vertex of X.

1. Preliminary General Lemmas

1. LEMMA : Let X be a locally noetherian scheme, and I a coherent OX-
Module. Assume there exists an open subset U of X containing every point
x with depth (Ox) ~ 1 and every point x with depth (Ix) = 0, such that
I| U is invertible. Let F be a locally free OX-Module with finite rank, and
G a coherent (9x-Module. Then, the canonical map,

is an isomorphism.

PROOF: The assertion is local on X. So, we may replace X by an
arbitrary affine open subset and verify that the map 0393(X, s) is bijective.

Construct a commutative diagtam,
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where r and t are the restrictions. The map s is an isomorphism on U,
for this assertion is local on U and I is locally free with rank 1 on U;
hence, F(U, s) is bijective. Since U contains every point x with

depth(Ox) ~ 1 and since F is locally free with finite rank, U contains
every point x with depth (Hom (G, F)x) ~ 1 ([2], Lemma 2). Therefore,
r is bijective ([2], Lemma 3). Hence, u is bijective, because it is the com-
position of r and T(U, s).

Since U contains every point x with depth (1x) = 0 and since F is
locally free, U obviously also contains every point x with depth (Fx Q I x)
= 0; hence, the restriction t is injective ([2], Lemmas 2 and 3). Since u
is bijective, r(X, s) is therefore bijective.

2. LEMMA: Let f : X ~ S be a morphism of ringed spaces, and M and N
two (9s-Modules.

(i) Let u : M ~ N and v : f*M ~ f *N be homomorphisms, and consider
the following diagram :

where pm and PN are the canonical maps. It is commutative if and only if
v = f *(u) holds.

(ii) If the canonical map PN : N ~ f* f *N is an isomorphism, then the
canonical maps, 

are also isomorphisms.

PROOF: (i) Applying the formulas for the adjoint of a composition
(EGA 0I, 3.5), we obtain the equalities,



117

So, since the adjunction correspondence, w~w#, is bijective, f *(u) = v
holds if and only if PN 0 u = f*(v) 0 pm holds.

(ii) Let Ul U2 : M ~ N be (9s-homomorphisms satisfying f*(u1) =
f *(u2). Then, formula (2.4) yields (PN 0 u1)# = (PN 0 U2)1; hence, PN 0 ui 1 =
PN 0 U2 holds. So, since PN is injective, ul = U2 holds. Thus, (2.2) is injective.

Let v : f*M - f *N be an OX-homomorphism. Set u = 03C1-1N° f*(v) 0 pM .
Then, we obviously get a commutative diagram like (2.1). So, by (i), we
have f*(u) = v. Thus, (2.2) is surjective, so an isomorphism. It follows
immediately that (2.3) is an isomorphism..

3. LEMMA: Let S be a locally noetherian scheme, f : X ~ S a flat
morphism of finite type, and I a coherent OX-Module. Assume there exists
an open subset U of X containing every point x with depth (OX(f(x)), x) ~ 1
and every point x with depth (I(f(x))x) = 0 such that I| U is invertible, and
assume I is flat over S.

(i) For each coherent (9x-Module G and for each locally free (9x-Module
F with finite rank, the canonical map,

is an isomorphism.
(ii) Assume the comorphism, OS ~ f* (9x, is an isomorphism. Then, for

each coherent (9s-Module M and each locally free OS-Module N with
finite rank, the canonical map,

is an isomorphism.

PROOF: (i) Let x be a point of (X - U). Since (9x and I are flat over S
and since depth (OX(f(x)), x) ~ 2 and depth (I(f(x))x) ~ 1 hold, we have
depth (OX, x) ~ 2 and depth(Ix) ~ 1 by (GD VII, 4.2). So, the map (3.1)
is an isomorphism by (1).

(ii) The canonical map, pN : N ~ f* f *N, is an isomorphism, for the
question is local and, by hypothesis, N is locally free with finite rank and
the comorphism, 03C1OS:OS ~ f*OX, is an isomorphism. So, by (2, (ii)),
the canonical map,

is an isomorphism. Now, the canonical map,

is an isomorphism by (i). Composing the isomorphisms (3.3) and (3.4),
we obtain (3.2); so, (3.2) is an isomorphism.
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4. LEMMA : Let S be a locally noetherian scheme, f : X ~ S a morphism
of finite type, and F, G two coherent OX-Modules. Assume there is an

open subset U of X containing each point x with depth (F( f (x))x) = 0
such that GI U is locally free, and assume Hom (G, F) isflat over S. For each
quasi-coherent OS-Module M, consider the canonical map,

(i) If U contains each point x of X with

then b(M) is injective for each quasi-coherent (9s-Module M. Conversely,
if the map b(k(s)) is injective for each point s of S, then U contains each
point x of X where (4.2) holds.

(ii) Assume that F is flat over S and that U contains each point x of X
with depth (F(f(x))x) ~ 1. If U contains each point x of X with

then b(M) is bijective for each quasi-coherent (9s-Module M. Conversely,
if the map b(k(s)) is bijective for each point s of S, then U contains each
point x of X where (4.3) holds.

PROOF. All the hypotheses and assertions are clearly local on S and X;
so, we may assume S and X are affine. We prove (i) only, because it is all
we use; the proof of (ii) is similar.

First, assume M is coherent and U contains each point x of X where
(4.2) holds. We shall show that the map 0393(X, b(M)) of global sections is
injective. In the applications, we use only the case that M is coherent;
on the other hand, the case that M is quasi-coherent follows formally
because, over a ring, a module is the direct limit of its finitely generated
submodules, because the functors, tensor product and Hom (F, -)
with F finitely presented, commute with direct limits, and because a
direct limit of injective maps is injective.

Consider the commutative diagram,

Since GI U is locally free with finite rank, the map b(M) is an isomorphism
on U ; for, the assertion is local, and obvious when G is replaced by (9u,
Hence, the map F(U, b(M)) is bijective. Since U contains each point x



119

of X with depth (Hom (G, F)(f(x))x) = 0, it contains each point x with
depth ((Hom (G, F) Q f *M)x) = 0 by (GD VII, 4.2); hence, a is injective
by ([2], Lemma 3). Consequently, r(X, b(M)) is injective.

Conversely, assume b(k(s)) is injective for some point s of S. Since U
contains each point x with depth (F(f(x))x) = 0, it contains, in particular,
each point x of X(s) with depth (F(s)x) = 0; hence, U contains each
point x of X(s) with depth (Hom (G(s), F(s))x) = 0 ([2], Lemma 2).
Consequently, since b(k(s)) is injective, U obviously contains each point
x of X(s) where (4.2) holds.

5. LEMMA : Let f : X ~ S be a morphism of ringed spaces, and 1 an
(9x-Module. Assume the canonical map,

is an isomorphism. Then, the functor taking an invertible (9s-Module M
to the OX-Module 10 f *M establishes an equivalence of categories
between the category of invertible OS-Modules M and the category of
(9x-Modules G that are, locally over S, isomorphic to I.

PROOF : The map m and the functor, M H 10 f *M, are related in the
following way. Whether or not m is an isomorphism, it obviously induces
a homomorphism of sheaves,

thence, a map of pointed sets,

It is easy to see (EGA 01, 5.6.3) that the group 1(S, Wg) classifies invertible
sheaves on S; in the same way, it is easy to see that the set

H1(S, f* Isom (I, I)) classifies the (Qx-Modules G that are isomorphic to
I locally over S.
The map 1(S, m*) may be explicitly described as follows. Let L be

an invertible sheaf on S. Let (U03B1) be an open covering of S such that
there are isomorphisms, v03B1:L|U03B1 ~ OS|U03B1. Set u03B103B2 = v03B2°v-103B1. Then, L
corresponds to the class of (uaP) in 1((U03B1), (9*), and 1(S, m*) takes
this class to the class of (id, Q f*(uaP)) in 1(S, f* Isom (I, I)). Clearly,
the class of (id, (D f*(uap)) corresponds to the (9x-Module I ~f*L.
Thus, we obtain the formula,

Since the map m is an isomorphism, the maps m* and 1(S, m*) are
also isomorphisms. So, every OX-Module G that is, locally over S,
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isomorphic to I has the form I (8) f *L for some invertible OS-Module L.
Thus, the functor, L~I~ f *L, is essentially surjective.

Let L and M be two invertible sheaves on S. Let ( Ua) be an open
covering of S such that L|U03B1 and M|U03B1 are isomorphic to OS|U03B1 for each
a. Consider the following diagram :

where Uap = U03B1~U03B2 and V03B1 = f-1(U03B1) and V03B103B2 = f-1(U03B103B2). Since a
homomorphism of sheaves is determined locally, the two rows are exact.
Since L and M are trivial on the covering, the middle and right-hand
vertical maps are isomorphic to the products of the restrictions of m
to Ua and to U03B103B2; so, these two maps are bijective by hypothesis. There-
fore, the left-hand vertical map is also bijective. Thus, the functor,
L~I~ f *L, is fully faithful, so an equivalence of categories.

6. LEMMA : Let k be a field, Y a geometrically normal, algebraic k-scheme,
and y a point of Y Assume depth(Oy) ~ 1 holds. Then, Y is smooth over k
at y.

PROOF: Let k’ be an algebraically closed field containing k, and y’
a point of Y Q k’ that is a maximal point of the fiber over y. Then, by
(GD VII, 4.2), depth «(9 yI) is equal to depth «9y), for depth «9y, (8) (Dy k(y))
is zero since y’ is maximal in the fiber over y; so, the inequality,
depth «9y,) ~ 1, holds. Since, by hypothesis, Y ~ k’ is normal, (9y, is

therefore regular by Serre’s criterion (GD VII, 2.13). Hence, since k’ is
algebraically closed, Y (D k’ is smooth over k’ at y’ (GD VII, 6.3). There-
fore, Y is smooth over k at y (GD VII, 5.11).

7. LEMMA: Let S be an irreducible, regular, noetherian scheme of
dimension 1, and 1 the generic point of S. Let X be an S-scheme, and D
a closed subscheme of X(l). Then, the closure Y of D in X is the unique
closed subscheme of X that is flat over S and satisfies the condition,
Y n X(r¡) = D. Moreover, if X is smooth over S and D is a divisor in X(r¡),
then Y is a divisor in X.

PROOF : The first assertion is (EGA IV, 2.8.5). Assume X is smooth
over S, and D is a divisor. Let y be a point of Y with depth «9 y) = 0,
and let s be its image in S. Since Y is flat over S, we have the condition,
depth (OS) = 0, by (GD VII, 4.2). So, since S is integral, s is equal to ri.
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Therefore, y is in D. So, since D has no embedded components, Y has no
embedded components. Now, since S is regular, X is regular (GD VII, 4.9),
hence, locally factorial (GD VII, 3.14). Therefore, Y will be a divisor if
it has pure codimension 1.

Let z be the generic point of an irreducible component Z of Y. It is
clear that, since Y is the closure of D, the point z is also the generic point
of the irreducible component Z n D of D and we have (9x, z = OX(~), z.
Now, codim (Z n D, X(~)) is equal to dim(OX(~), z), and codim (Z, X) is
equal to dim (OX, z). Hence, codim (Z, X) is equal to codim (Z n D, X(~)),
which is equal to 1 by hypothesis. Thus, we have codim (Z, X) = 1.
Hence, Y is regularly embedded of codimension 1.

8. LEMMA: Let S be the spectrum of a discrete valuation ring, f : X - S
a flat, proper morphism with geometrically normal and geometrically
integral fibers. Let U denote the open subset of X where f is smooth;
let Y be a flat, closed subscheme of X/S; let P be a flat, locally noetherian
S-scheme; let L be an invertible (9xp-Module; set V = UP; set I = I(Y)p ~ L,
where 1(Y) denotes the ideal of Y; and set I= Hom (I, (9x,). Assume
the generic fiber of 1( Y)I U is invertible. Then :

(i) (9s = f* (9x holds universally.
(ii) U contains each point x of X with depth (OX(f(x)), x) ~ 1

(iii) V contains each point x of XP with depth (I(fP(x))x) = 0.
(iv) I is flat over P.
(v) V contains each point x of Xp with depth ((I)(fP(x))x) = 0.
(vi) I|V is invertible.

PROOF: Since f is flat, proper, and surjective and its fibers are geo-
metrically integral, (i) holds (EGA III2 , 7.8). By (6) applied with X ( f (x))
for Y, (ii) holds.

Since Y is flat over S, the sheaf I(Y)P(fP(x)) is clearly isomorphic to
an ideal in OXP(fp(x)) for each x in XP. So, I(fp(x» is locally isomorphic
to an ideal of (9x.(fp(x»" Hence, each x satisfying depth (I(fP(x))x) = 0
clearly also satisfies depth (OXP(fP(x)), x) = 0, and so x lies in V by (ii).
Thus, (iii) holds.

Assertion (iv) is obviously local on X, so to prove it we may assume X
is affine. Let t be a generator of the maximal ideal of T(S, (9s). Then, t is
a non-zero-divisor of T(X, (9x) because X is flat over S. Hence, t is

obviously a non-zero-divisor of Hom (I(Y), (9x). Therefore, Hom (I(Y), OX)
is flat over S; so, Hom (I(Y), (9x)p is flat over P. Since P is flat over S,
we have a canonical isomorphism,
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(EGA OI, 5.7.6). Hence, Hom (I(Y)p, OXP) is flat over P. Therefore, I v is
flat over P; that is, (iv) holds.

Let x be a point of (X - U). By (ii) we have the inequality,
depth(OX(f(x)), x) ~ 2. Since X is flat over S, we therefore have the in-
equality, depth(Ox) ~ 2, (GD VII, 4.2). So, the inequality,

holds ([2], Lemma 2). Therefore, (GD VII, 4.2), we have the inequality,

because Hom (I(Y), (9x) is flat over S (as was proved above) and the
inequality, depth (Of(x)) ~ 1, holds. Consequently, for each x in (XP - V),
we have the inequality,

because (8.1) holds and depth cannot decrease under a field extension
(cf. proof of (6)). Hence, for each x in (X p - V), we have the inequality,
depth((I)(fP(x))x) ~ 1. Thus, (v) holds.
Obviously, Y|U is a flat, closed subscheme of the smooth S-scheme U,

and its generic fiber is a divisor. So, by (7), it is a divisor. Thus, 1( Y)I U is
invertible. Therefore, l( Y)pl V is invertible, and so, I|V is also. Thus,
(vi) holds.

2. A Theory of Lin SystI

9. (Lin Systj). Let S be a locally noetherian scheme, f : X ~ S a flat
morphism of finite type, P a locally noetherian S-scheme, and I a coherent

(9xp-Module. For each S-scheme T, let Lin Syst¡(T) denote the subset of
(P x SHilb(X/S))(T) consisting of those pairs (g, Y) with Y in Hilb(X/S)(T)
and g in P(T) such that the ideal of Y is isomorpbic, locally over T, to
(gx)*I. Obviously, the sets, Lin Syst¡(T), as T runs through all locally
noetherian S-schemes, form a functor, Lin Systj, (obviously, a Zariski
sheaf).
The functor, Lin Systj, comes equipped with maps to Hilb(X/S) and

to P,

namely, the restrictions to Lin Syst, of the projections from P x SHilb(X/S).
Let S’ - S be a morphism of locally noetherian schemes. Then, clearly,

for each locally noetherian S’-scheme T, we have the formula,
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So, we also have the relations,

10. LEMMA : Let S be a locally noetherian scheme, f : X ~ S a flat
morphism of finite type, P a locally noetherian S-scheme, and I a coherent
(9,,-Module. Assume there is an open subset V of Xp containing every
point x of XP with depth (OXP(fP(x)), x) ~ 1 such that I| V is invertible. For
each locally noetherian S-scheme T and each morphism g : T ~ P, let ng
denote the family of pairs (M, u) where M is an invertible (9T-Module and
u is an OXT-homomorphism,

such that, for each point t of T, the induced map u(t) of OX(t)-Modules is
injective.

(i) Assume that (9s = f* OX holds universally. Let (g, Y) be an element
of Lin SystI(T) for some locally noetherian S-scheme T. Then, there exists
a pair (M, u) in ng such that the ideal I(Y) of Y has the form,

Moreover, this pair is uniquely determined up to unique isomorphism in the
sense that, if (M1, ul) is a second pair in ng such that u1((gX)*I ~ (fT)*M1)
is equal to I(Y), then there exists a unique isomorphism a : M ~ Ml that
makes the diagram,

commutative.

(ii) Assume f is proper. Then, for any locally noetherian S-scheme T,
any S-morphism g : T ~ P, and any pair (M, u) in ng, the image
u((gX)*I (D ( fT)*M) in OXT is the ideal of a subscheme of X x sT that is in
Lin Syst¡(T).

PROOF : (i) Since 1 T is locally isomorphic to the ideal of a flat sub-
scheme of X T/T, it is obviously flat over T, and each point x of X T with
depth(IT(fT(x))x) = 0 is in VT because each point x of X T with

depth (CD x T(f T(X», x) = 0 is in VT in view of the hypothesis. By (3, (ii»
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with T for S and with OT for M and for N, the canonical map,

is an isomorphism. So, by (5), there exist an invertible OT-Module M
and an isomorphism,

Let u denote the composition,

where i is the inclusion. Then, we obviously have the relation,

Since Y is flat over T, we obviously have, for each T-scheme T’, an
equality,

where I(YT,) denotes the ideal of YT,. In particular, for each point t of
T, the map, i(t) : I(Y)(t) - (9X(t), is injective. Since u’ is an isomorphism,
u’(t) is an isomorphism. So, u(t) is injective for each t E 7: Thus, the pair
(M, u) is an element of ng, and I(Y) has the required form.

If(M1, u1) is a second pair of wg satisfying u1((gX)*I Q (fT)*M1) = I(Y),
then there obviously exists a commutative diagram,

Since, by (5), the functor M ~ (gX)*I (8) ( fT)*M is fully faithful, there is
a unique isomorphism a : M rx Ml such that id(gX)*I Q (fT)*(a) is equal
to (u’1)-1°u’. Thus, the uniqueness assertion holds.

(ii) Since X T is flat over T and since u(t) is injective for each point t
of T, the quotient (9XTIIM (u) is flat over T and the map u is itself injective
(GD VII, 4.1). So, Im (u) is the ideal of a closed subscheme Y of XT
that is flat over T, and Im (u) is isomorphic, locally over T, to (gX)*I
(which implies, in particular, that (gX)*I is flat over T). Since f is proper,
Y is in Hilb(X/S)(T). So, (g, Y) is in Lin SystI(T).

11. PROPOSITION: Let S be a locally noetherian scheme, f : X ~ S a
flat morphism of finite type such that (9s = f* (9x holds universally, and
J a coherent (9x-Module. Assume there is an open subset U of X containing
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each point x of X with depth (OX(f(x)), x) ~ 1 such that JI U is invertible.
Let P be a locally noetherian S-scheme, L an invertible (9x,-Module, and
q : P - Pic(x/s) the map of functors defined by L, where by definition
Pic (X/S)(T) is equal to Pic (X x s T)/Pic(T) for each locally noetherian
S-scheme T. Finally, set I = JP p L-1.

(i) Suppose q : P - Pic(x/s) is a monomorphism. Then, so is the canonical
map of functors (9),

(ii) Suppose J is invertible. Then, the canonical map P2 from Lin.Syst,
to Hilb(x/s) factors through Div(x/s) and yields a cartesian diagram,

where JJ is defined by sending a divisor E on X x s T to the class of the
invertible sheaf (9x,(E) (D JT .

PROOF: (i) Let T be a locally noetherian S-scheme, (g, Y) and (g’, Y’)
two elements of Lin SystI(T) whose images in Hilb(X/S)(T) are equal,
that is, for which Y = Y’ holds. Since Y is flat over T, for each point t
of T, we obviously have I(Y)(t) = I(Y(t)), where I(Y) denotes the ideal
of Y and I(Y(t)) that of Y(t). So, since UT contains each point x with
depth(OXT(fT(x)), x) = 0, it contains each point x of X T with

Since JT is isomorphic, locally on X T, to I(Y), each point x of X T with
depth (JT( fT(x))x) = 0 is, therefore, in UT. Again, since JT is isomorphic
locally on X T to 1 ( Y), it is flat over T because Y is and so 1( Y) is.
By (10, (i)) there are invertible sheaves M and M’ and isomorphisms,

Therefore, we have an isomorphism,

By (3, (i)) with J for 7 and T for S, there is an isomorphism,

Therefore, we have q(g) = q(g’). Hence, since q is a monomorphism, we
have g = g’. Thus, the map P2 is a monomorphism.
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(ii) Let T be a locally noetherian S-scheme, and (g, Y) an element of
Lin SystI(T). Since J and L are invertible, so is the ideal I(Y) of Y Thus,
Y is in DiV(X/S)(T). Now, there are an invertible (9T-Module M and an
isomorphism, (gx)*1 ~(fT)*M ~ I(Y), by (10, (i)); so, there is an isomor-
phism, JT 0 (gX)*L-1 ~ (fT)*M --4 I( Y). Hence, (gx)*L and I(Y)-1 ~ JT
represent the same element of Pic(X/S)(T). However, OXT(Y)~JT
= l(y)-1 ~ JT represents the image of Y under lJ, while (gx)*L represents
the image of g under q. Thus, the diagram (11.2) is commutative.

Let T be a locally noetherian S-scheme, and (g, Y) a pair consisting
of an S-morphism g : T ~ P and a relative effective divisor Y on X x s T/T
such that (gx)*L and I(Y)-1 (D JT represent the same element ofPic(x/s)( T)
where I( Y) denotes the ideal of Y Then, clearly, (gx)*L and I(Y)-1 Q JT
are isomorphic locally over T. Hence, (g, Y) is an element of Lin Syst¡(T).
Thus, the commutative diagram (11.2) is cartesian.

12. (The sheaf Q(F)). Let f : X - S be a proper morphism of locally
noetherian schemes, and F a coherent (9,-Module that is flat over S.
Then, by (EGA 1112, 7.7.6), there exist a coherent (9s-Module Q(F) and
an element q(F) in r(X, F (D f*Q(F)) such that the Yoneda map,

is an isomorphism for each quasi-coherent OS-Module M (of course,
y(q(F)) is defined for each OS-Module M, quasi-coherent or not, and it
behaves functorially in M); in other words, the pair (Q(F), q(F)) represents
the functor, M ~ 0393(X, F~f*M), on the category of quasi-coherent
(9s-Modules.
By (EGA 1112, 7.7.9, (i)), the formation of the pair, (Q(F), q(F)),

commutes with base change in the sense that, for each morphism g : T - S
of schemes, the pair, (g*Q(F), g*(q(F))), represents the functor,

on the category of quasi-coherent (9T-Modules; if T is locally noetherian,
then the commutativity of the pair, (Q(F), q(F)), with the base change g
can be expressed by the formulas,

Moreover, for each morphism g : T ~ S and each (9s-Module M, quasi-
coherent or not, the diagram,
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is commutative by Yoneda’s lemma since the identity map of Q(F),
considered as an element of Hom (Q(F), Q(F)), is carried by both composi-
tions to the element g*(q(F)) of F(XTI (gX)*F Q ( fT)*g*Q(F)).

Let G be another coherent (9x-Module that is flat over S, and u : F ~ G
an OX-homomorphism. Denote by

the (9,-homomorphism representing the map of functors in the quasi-
coherent OS-Module M,

Then, by Yoneda’s lemma, the diagram,

is commutative for each OS-Module M, quasi-coherent or not.
A proof that the formation of the pair, (Q(F), q(F)), commutes with

base change runs as follows. Let g : T ~ S be a morphism of schemes,
and N a quasi-coherent OT-Module. We want to show that the map,

is an isomorphism. It is not hard to see that we may assume S and T
are affine.

If we take g* N for M in (12.2) and combine the resulting diagram
with the commutative diagram expressing the functoriality of the map
y(g*(q(F))) with respect to the canonical map, 03C3g(N) : g*g*N ~ N, we
obtain a commutative diagram,

Obviously, the left-hand map is the adjunction isomorphism, and the
right-hand map is induced by a canonical map,

This map is easily seen to be an isomorphism because S and T are affine.
So, the right-hand map is an isomorphism. Finally, the top map, y(q(F)),
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is an isomorphism because 9 * N is quasi-coherent. Hence, the bottom
map, y(g*(q(F)), is an isomorphism.

13. (The sheaf H(G, F)). Let f : X ~ S be a proper morphism of locally
noetherian schemes, and F and G two coherent (9x-Modules such that
(i) F is flat over S and (ii) G is, locally over S, isomorphic to the cokernel
of an (9x-homomorphism of locally free (9x-Modules with finite rank.
Then, there exist a coherent OS-Module H(G, F) and an element h(G, F)
in Hom (G, F (8) f*H(G, F)) such that the Yoneda map,

is an isomorphism for each quasi-coherent OS-Module M; in other words,
the pair, (H(G, F), h(G, F)), represents the functor M ~ Hom (G, F Q f *M)
on the category of quasi-coherent (9s-Modules. Indeed, the assertion
results from (EGA III2 , 7.7.8).
By (EGA III2, 7.7.9, (ii)), condition (ii) is always satisfied if f is projec-

tive ; ((EGA 1112, 7.7.9, (iii)) states that it will be proved superfluous in
Chapter V of EGA). By (EGA III2 ; 7.7.9, (i)), the formation of the pair
(H(G, F), h(G, F)), commutes with base change in the sense that, for each
morphism g : T - S of schemes, the pair, (g*H(G, F), g*h(G, F)), represents
the functor, N H Hom ((gX)*G, (gX)*F (D ( fT)*N), on the category of quasi-
coherent (9T-Modules; if T is locally noetherian, then the commutativity
of the pair, (H(G, F), h(G, F)), with the base change g can be expressed
by the formulas,

Moreover, for each morphism g : T ~ S and each (9s-Module M, quasi-
coherent or not, the diagram,

is commutative by Yoneda’s lemma, where the vertical maps are the
canonical ones.

14. (The natural map c(G, F) from H(G, F) to Q(Hom (G, F))). Let
f : X ~ S be a proper morphism of locally noetherian schemes, and F
and G coherent (9x-Modules such that (i) F is flat over S, (ii) G is, locally
over S, isomorphic to the cokernel of an (9x-homomorphism of locally
free OX-Modules with finite rank, and (iii) Hom (G, F) is flat over S.

Denote by
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the OS-homomorphism representing the map of functors in the quasi-
coherent OS-Module M,

Thus, by Yoneda’s lemma, the diagram,

is commutative for each (9,-Module M, quasi-coherent or not.
If M is quasi-coherent and b(M) is injective (resp. bijective), then

Hom (c(G, F), M) is injective (resp. bijective) because then the vertical
maps in (14.1) are bijective. Hence, if b(M) is injective (resp. bijective)
for every coherent OS-Module, then c(G, F) is surjective (resp. bijective)
(to prove surjectivity, take coker (c(G, F)) for M; then, to prove injectivity,
take H(G, F) for M.)

Let E be a locally free (9x-Module with finite rank. Then, with E for G,
(ii) is obviously satisfied, and (iii) is also satisfied because Hom (E, F)
is locally isomorphic to a finite direct sum of copies of F, so flat over S.
Moreover, in this case, b(M) is an isomorphism for each OS-Module M
because it obviously is for E = OX and the question is local on X. Hence,
c(E, F) is an isomorphism,

Let g : T - S be a morphism of locally noetherian schemes. Then, the
diagram,

is clearly commutative, where

is the canonical map. Each map in (14.3) appears in a diagram like (12.2),
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(13.2), (12.3), or (14.1). Taking Q(Hom (G, F)) for M and following its
identity map around these commutative diagrams, we see using Yoneda’s
lemma that the diagram,

is commutative; in short, we obtain the formula,

15. THEOREM : Let S be a locally noetherian scheme, f : X ~ S a flat,
proper morphism, P a locally noetherian S-scheme, and I a coherent
(9x,-Module. Assume I is isomorphic, locally over P, to the cokernel of an
OXP-homomorphism of locally free CDxp -Modules with finite rank (this
condition is automatically satisfied if f is projective (EGA 1112, 7.7.9, (ii».
Assume there is an open set V of X P containing each point x of XP with
depth (OXP(fP(x)), x) ç 1 such that I| V is invertible, and assume OS = f* (9x
holds universally. Then, the functor Lin Syst, is universally representable
by an open subscheme U of P(H(I, OXP)); that is, there is a canonical

isomorphism of functors of locally noetherian S-schemes,

whose formation commutes base change; if, also, the fibers of f are geomet-
rically integral and V contains each point x of XP with depth (I(fP(x))x) = 0,
then Lin Syst, is universall00FF representable by P(H(I, OXP)) itself.

PROOF : Set H = H(I, OXP). Let T be a locally noetherian S-scheme,
g : T ~ P an S-morphism, and M an invertible (9T-Module. By (13), there
exists an isomorphism,

which is functorial in M and g. For each quasi-coherent (9x,-Module F,
there obviously exists a canonical isomorphism,

Substituting (fT)*M-1 for F and composing these isomorphisms we
obtain a key isomorphism,
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which is clearly functorial in M and g.
Fix a locally noetherian S-scheme T and an S-morphism g : T ~ P.

We first establish a canonical functorial bijection,

from the set G1(g*H) of 1-quotients of g*H (that is, quotients of g*H
that are locally free with rank 1) to the set .aet 9 of equivalence classes of
pairs (M, u) where M is an invertible OT-Module and

is an (9,,-homomorphism with u(t) ~ 0 for each point t of T; pairs,
(M, u) and (Ml, u1), are considered equivalent if there exists an iso-
morphism, a : M ~ M 1, that induces a commutative diagram,

Let M be a 1-quotient of g*H, and let v : g*H ~ M denote the canonical
surjection. Let t be a point of T. By the functoriality of x in g, there is a
relation,

Obviously, v(t) is nonzero. Hence, (k(v))(t) is nonzero since x is injective.
Thus, (M, k(v)) represents an element of Mg. Define Bg by the formula,

Let M1 be a second 1-quotient of g*H, let vi : g*H ~ Mi denote the
canonical surjection, and assume there is an isomorphism a : M ~ M1
inducing a commutative diagram like (15.3). Then, since K is functorial
in M, clearly k(a° v) is equal to k(v1); so, since x is injective, a o v is equal
to v1. Hence, the 1-quotients, M and M 1, are equal. Thus, Bg is injective.

Let (M, u) represent an element of Mg, and let v:g*H ~ M de-
note k-1(u). Let t be a point of T. Since u(t) is nonzero, obviously
v(t) : (g*H)(t) ~ M(t) is nonzero. Since M(t) is a 1-dimensional vector space,
v(t) is therefore surjective. Hence, v is surjective by Nakayama’s lemma.
Therefore, g*H/ker (v) is a 1-quotient of g*H, and there is an isomorphism
a : g*H/Ker (v) ~ M such that a-1°v is equal to the canonical surjection.
Since K is functorial in M, there is a commutative diagram like (15.3).
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So, Bg(g*H/Ker (v)) is equal to the element represented by (M, u). Thus,
Bg is surjective, so bijective. Finally, Bg is clearly functorial in g because
k is.

Let 03B1#1 : HP(H) ~ OP(H)(1) denote the canonical surjection, and set

Let p : P(H) ~ S denote the structure morphism. Let h : T ~ P(H) be an
S-morphism satisfying the condition, p°h = g. Then, the functoriality of
x in M and of Bg in g yield the formula,

There is a functorial bijection from the set of S-morphisms h : T ~ P(H)
satisfying the condition, p o h = g, to the set, G1(g*H); it sends h to the
1-quotient of g*H defined by h*(af), (EGA II, 4.2.3). Following this
bijection with Bg, and letting g vary while keeping T fixed, we obtain a
bijection,

from the set P(H)(T) of S-morphisms, h : T ~ P(H), to the set MS(T) of
classes of triples (g, M, u) consisting of an S-morphism, g : T - P, an
invertible OT-Module M, and an (9T-homomorphism,

with u(t) ~ 0 for each point t of T ; triples (g, M, u) and (g1, M1, u1) are
considered equivalent if 9 is equal to gi and there exists an isomorphism
a : M + Ml inducing a commutative diagram exactly like (15.3).
Obviously, As(T) is given by the formula,

Clearly, the As(T) form an isomorphism of functors, As : P(H) ~ MS.
In short, the S-scheme P(H) represents the functor MS. It is evident from
the construction that P(H) universally represents MS; that is, the forma-
tion of As from f, P, and I commutes with any base change S’ ~ S, with
S’ locally noetherian; for, the formation of H, P(H) and P do.

Next, we construct a canonical monomorphism of functors,

whose formation commutes with any base change S’ ~ S, with S’ locally
noetherian. Let T be a locally noetherian S-scheme, and (g, Y) an
element of Lin Syst¡(T). By (10, (i)), the ideal of Y in (9x, has the form
u((gX)*I (8) (f,)*M - 1), where M is an invertible (9T-Module and
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is an (9x,-homomorphism such that u(t) is injective for each point t of T.
Since OS = f* (9x holds, f is surjective. Therefore, X T(t) is non-empty
for each point t of T. Since VT(t) contains each point x of X T(t) with
depth(OXT(t), x) = 0, it is nonempty. Finally, since IIV is invertible,
1 T(t) is nonzero. Therefore, u(t) is nonzero for each point t of T. Thus,
the triple (g, M, u) represents an element of MS(T). Moreover, the

uniqueness assertion of (10, (i)) implies that a different choice of such
a pair (M, u) yields the same class in MS(T). Define CS(T) by the formula,

The pair (M, u) determines the subscheme Y because the ideal of Y is
equal to the image of u ; so, CS(T) is injective. It is evident that the Cs(T)
form a natural transformation, Cs, and that the formation of Cs from f
P and 7 commutes with base change.
By construction, Cs carries Lin Syst, monomorphically into the

subfunctor of MS whose value at a locally noetherian S-scheme T is the
set of equivalence classes of triples (g, M, u) such that u(t) is injective for
each point t of T. By (10, (ii)), every such triple (g, M, u) arises from some
element (g, Y) of Lin Syst¡(T). Thus, Cs carries Lin Syst, isomorphically
onto this subfunctor.

Clearly, in view of (15.4), the map, A-1S°CS, carries Lin Systi iso-
morphically onto the subfunctor Ds of the functor of points of P(H)
whose value at a locally noetherian S-scheme T is the set of S-morphisms,
h : T ~ P(H), such that (h*(03B2))(t) is injective for each point t of T. We shall
now represent Ds by an open subscheme U of P(H); clearly, U then
universally represents Ds, and so U also universally represents Lin Systj. 

Let Vl denote the set of points of X RH) where Coker (03B2) is flat over
P(H); it is open by (GD V, 5.5). Set

Since f is proper, U is an open subset of P(H). Moreover, clearly, a point
t of P(H) lies in U if and only if fi is injective and Coker (03B2) is flat over
P(H) at each point x of XP(H) lying over t. Therefore, since f is flat,
a point t of P(H) lies in U if and only if 03B2(t) is injective (GD VII, 4.1).
Consequently, an S-morphism, h : T ~ P(H), factors through U if and
only if (h*03B2)(t) is injective for each t~T. Therefore, U represents Ds,
and so U universally represents Lin SystI.

Finally, assume that the fibers of f are geometrically integral and that
V contains each point x of Xp with depth (I(fp(x»x) = 0. We shall show
that U is equal to P(H) or, equivalently, that 03B2(t) is injective for each
point t of P(H). Since 03B2(t) is nonzero, it is nonzero at the generic point
~ of X P(H)(t) because this scheme is integral. However, at il, the source of
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03B2(t) is a 1-dimensional vector space. So, 03B2(t) is injective at ri. Since Vp(H)(t)
contains each point x of X P(H)(t) with depth (I P(H)(t)X) = 0 and since I| V
is invertible, 1 is the only point of XP(H)(t) where 1 P(H)(t) has depth 0.
So, 03B2(t) is injective because its kernel has no point with depth 0. Thus,
U is equal to P(H), and so P(H) universally represents Lin SystT.

16. COROLLARY : Let S be a locally noetherian scheme, f : X ~ S a flat,
proper morphism with geometrically integral fibers, P a locally noetherian
S-scheme, and L an invertible (9x.P-Module. Then, Lin SystL-1 is universally
representable by P( Q(L )).

PROOF : Obviously, L-1 is isomorphic to the cokernel of an (9x,-
homomorphism of locally free (9x,-Modules with finite rank, for example,
the cokernel of a zero map into L-1. Furthermore, since f is both open
and closed, we may replace S by f (X) and so assume f is surjective.
Then, OS = f*CDx holds universally (EGA III2, 7.8). Hence, by (15) with
XP for V, the functor Lin SystL -1 is universally representable by
P(H(L-1, (9x,». Finally, H(L-1, (9x,) is universally isomorphic to Q(L)
by (14).

17. REMARK: Let S be a locally noetherian scheme, f : X ~ S a flat,
projective, surjective morphism with geometrically integral fibers, and
P a locally noetherian S-scheme. Let V be an open subset of XP con-
taining each point x ofXp with depth (OXP(fP(x)), x) ~ 1. Let D be a closed
subscheme of Xp ; assume D is a divisor on V or, equivalently, its ideal
I(D) is invertible on V ; and consider Lin SystI(D). The hypotheses of (15)
are satisfied; indeed, the relation (9s == f*OX holds universally (EGA
1112, 7.8), and contains each point x of XP with depth (I(D)(fP(x))x) = 0
because it contains each point x of XP with depth (CD Xp(f p(x», x) = o. So,
Lin Syst¡(D) is universally representable by P(H(I(D), (9x,».
An important case occurs when the fibers of f are geometrically

normal. Then, the set V of smooth points of fP contains each point x
ofXp with depth (OXP(fP(x)), x) ~ 1 by (6), and a flat closed subscheme D
of X x P/P is a divisor on V if and only if, for each point z of P, the
restriction D(z)1 V(z) has pure codimension 1 and no embedded compo-
nents (cf. proof of (7)).

It is interesting to note that, in this case, the flat, closed subschemes
D of X x P/P that are divisors on V are parametrized by an open and
closed subset of Hilb(x x P/P); more precisely, this subset represents the
functor whose value at a locally noetherian P-scheme T is the set of flat,
closed subschemes of X x T that are divisors when restricted to V x T or,
equivalently whose fibers are divisors on the fibers of Tl x T/I It clearly
suffices to note that the set U of points t of Hilb(X P/P) such that the
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universal subscheme is a divisor at each point of V x Hilb(X P/P) lying
over t is open and closed. The set U is open because f is proper and
because U obviously has the form,

where UB is the open set on which the universal subscheme is a divisor.
The set U is closed because it is closed under specialization by (7) and
it is open (EGA 1, 6.1.8).

3. Completeness Theorems

18. THEOREM : Let k be a field, and X a geometrically normal, projective
k-scheme. Let Z be a closed subscheme of Div(x/k). If Z has finite type
over k, then Z is complete.

PROOF: We may assume k is algebraically closed, for the formation
of Div(X/k) commutes with base change and a scheme is complete if it
becomes complete after an fpqc base change (EGA IV, 2.7.1). Moreover,
since we clearly have a formula,

we may replace X by a connected component and so assume X is integral,
hence geometrically integral because k is algebraically closed (EGA IV,
4.4.4).
We use the valuative criterion (EGA II, 7.3.8). Let R be a discrete

valuation ring containing k. Let K denote the quotient field of R, and
ko its residue class field. Let D be an effective divisor on X (D K re-

presenting a K-point of Z. Let Y denote the closure of D in X (8) R.
Then, Yis flat over R by (7), so Ydefines an R-point of Hilb(x/k). We are
going to prove that Y (8) R ko is a divisor. Then, clearly, this R-point of
Hilb(X/k) lies in the open subscheme Div(X/k) and so also in Z. Thus, the
hypotheses of the valuative criterion are fulfilled.

Set P = Pico and let L be a Poincaré sheaf on X x P (that is, a
universal invertible sheaf; one exists because k is algebraically closed).
Choose an ample invertible sheaf OX(1), fix an integer n, and form the
following coherent sheaves on (X x P) (D R;

where I(Y) denotes the ideal of Y
All the hypotheses that appear in the various results we are about to

apply hold by virtue of (8).
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By (11, (i)), the canonical map of functors,

is a monomorphism. So, by (15), it is represented by a monomorphism
of R-schemes,

whose formation commutes with base change because the formation of

p2 does and because P(H(I, (9 XPOR » universally represents Lin Systj.
By (4, (i)), the canonical map,

is injective for each coherent OP~R-Module M. So, by (14), there is a
canonical surjection,

The composition of the closed embedding P(c) and the monomorphism
P2 is a key monomorphism,

Consider the generic fiber r Q K of r. It factors through the composi-
tion,

by (14.5). Since K is flat over R, the canonical map,

is an isomorphism (EGA 0,, 5.7.6); hence Q(b(K)) is an isomorphism.
Now, I(Y) (8)RK is isomôrphic to the ideal of D because Y is flat over R
(or because K is). So, 1(Y) QR K is invertible because D is a divisor.
Hence, Ix is invertible. Therefore, cK is an isomorphism by (14), and so
P(cK) is an isomorphism. Consequently, by (11, (ii)), r (8) K factors

through Div(X~K/K) and yields a cartesian diagram,

where q is the inclusion of P in Pic(X/k). Since q is an open (and closed)
embedding, the image of P(Q(I) ~ K) in Div(X~K/K) is equal to an open
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(and closed) subset U of Div(X~K/K), and we have the relation,

Since Div(X~K/K) is open in Hilb(X~K/K), the set U is open in Hilb(X~K/K).
Consider the special fiber r Q ko of r. It is a monomorphism because r

is. By Chevalley’s Theorem (GD V, 4.6), the image, (r (D ko)(P(Q(1 ) ~ ko)),
contains an open set, E of its closure in Hilb(X~k0/k0).

Since (9x(n) and L are each locally free with finite rank, we clearly have
a canonical isomorphism,

Since Pic(X/k) is locally of finite type over k (SGA6 XIII, 3.1), P is of
finite type over k (FGA, 236-02). Choose n so large that Rq( fPoR(IV)
vanishes for each q &#x3E; 0 (EGA III, 2.2.1). Then, Q(I) is locally free
(EGA III2, 7). Since P is geometrically irreducible and R is irreducible,
P Q R is irreducible (EGA IV, 4.5.8, (i)). So, P(Q(I)) is also irreducible.
Follow r by the projection from Hilb(X~R/R) to Hilb(X/k), and let H denote
the closure in Hilb(X/k) of the image of this composition. Then, H is also
irreducible. Since k is algebraically closed, H is geometrically irreducible
(EGA IV, 4.4.4). Furthermore, H ~ ko contains V because the projection
from Hilb(X~k0/k0) to Hilb(X/k) factors through Hilb(X~R/R). Similarly,
H Q K contains U.

Since U is open in Hilb(X~K/K), it is open in H (D K ; since H (8) K is
irreducible, U and H (8) K have the same dimension; so, by (18.1),
H Q K and P(Q(I) Q K) have the same dimension. Since P(Q(I) (8) ko)
is irreducible, and since (r ~ k0)-1(V) is open in P(Q(I) Q ko), they have
the same dimension ; since r (D ko is a monomorphism, V and (r ~ k0)-1(V)
have the same dimension; so V and P(Q(1) Q ko) have the same dimen-
sion. Since Q(I) is locally free with finite rank, P(Q(I) ~ K) and
P(Q(I°) Q ko) have the same dimension (namely, dim (P) + rank (Q(I))-1).
Therefore, H Q K and V have the same dimension; hence, so do H Q ko
and V, for H Q K and H (8) ko obviously do. Consequently, since H Q ko
is irreducible and closed and contains V, the closure of V in Hilb(X~k0/k0)
is equal to H ~ ko. Thus, since V is open in its closure in Hilb(X~k0/k0),
it is open in H (8) ko .

Let ki be an algebraically closed field containing k-isomorphic copies
of K and ko . Then, since H ~k1 is irreducible and since any two nonempty
open subsets of an irreducible set intersect, we have the relation,

Let E be a closed subscheme of X (D k1 corresponding to a point in the
intersection. Then, I(E), the ideal of E, is isomorphic to (I (8) R ko) 0 k. k1 1
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since E corresponds to a kl-point of v So, we have an isomorphism,

On the other hand, I(E) is invertible because E corresponds to a kl-
point of U. Hence, (I(Y)~Rk0)~k0k1 is invertible. However,

(I(Y)~Rk0)~k0k1 is isomorphic to I((Y~Rk0)~k0k1) because Y is

flat over R. Therefore, ( Y (8) R ko) (8)ko ki is a divisor; hence, so is Y OR ko . 

19. THEOREM : Let k be a field, and X a geometrically normal, projective
k-scheme. Let P be a closed subscheme of Pic(X/k). If P has finite type
over k, then P is complete.

PROOF : We may assume k is algebraically closed, for the formation of

Pic(x/k) commutes with base change and a scheme is complete if it becomes
complete after an fpqc base change (EGA IV, 2.7.1). Since we clearly
have a formula,

we may replace X by a connected component and so assume X is integral,
hence geometrically integral because k is algebraically closed (EGA IV,
4.5.14).

Since k is algebraically closed, there is a Poincaré sheaf L on X x Pic(X/k).
Set L = LIX x P. Let OX(1) be an ample invertible sheaf on X. By (EGA
III, 2.2.1), there is an integer n such that the conditions,

hold, where p : X x P ~ P denotes the projection, because P is of finite
type over k.

By (16) with S = Spec (k), the scheme P(Q(L(n))) represents the functor
Lin SystL -l(-n). By (11, (ii)) with J = OX( - n), we obtain a cartesian
diagram,

Hence, P(Q(L(n))) is embedded in Div(x/k) as a closed subscheme of finite
type. It is therefore complete by (18). Since conditions (19.1) hold,
Q(L(n)) is locally free with finite nonvanishing rank on P; hence, the
structure map P(Q(L(n))) ~ P is surjective. Therefore, by (EGA 1, 3.8.2,
(iv)), P is complete.
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