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A CERTAIN SUBSPACE OF CHARACTERISTIC ZERO OF (/Y)*
D. van Dulst

Abstract

We construct an example of a subspace ! V of the conjugate E* = [®
of E = I' with characteristic (V) = 0 and satisfying the following two
conditions:

(Ky) if x, = x, for o(E, V), then lim ||x,]| = [|x,ll,
(K,) If x,, — x, for o(E, V') and

lim ||x,|| = ||x,ll, then lim ||x,—x,]] = O.
n->ow n—ao0
Introduction

Let E be a Banach space, E* its conjugate and ¥ a subspace of E*.
The unit ball of E(E*, V respectively) we denote by Sg(Sg., Sy respec-
tively). Dixmier ([2]) defined the characteristic r(¥") of V as follows:

r(V) = sup {«:a = 0 and aSg. cS—V"(E"E)}.

Clearly r(¥) > 0 implies that ¥ is ¢(E*, E)-dense in E*, but the converse
is not true (see [2] for an example).
The following two results involve characteristics.

PROPOSITION 1: ([6, proposition 4.11). Let E be a Banach space and let V
be a separable subspace of E*. Then (K,) is equivalent to r(V) = 1.

PROPOSITION 2: ([3], see also [9, p. 486]) Let E be a separable Banach
space and let V be a subspace of E* with r(V) > 0. Then there exists an
equivalent norm |||'||| on E for which (K) and (K;) hold.

Our example shows that in proposition 1 the separability of V is essen-
tial and also that in proposition 2 the condition r(¥’) > 0 is not necessary.

First we prove, setting E = I', E* = [®, that for each ke N there
exists a (non-separable) subspace V; of E* such that (X;) and (K,) hold
whereas

(V) < %

1 Apparently the problem of the existence of such a subspace was raised by Kadec.
We thank Prof. Singer for communicating it to us and for some discussions resulting
in the proof of proposition 1.
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This ¥V, will be a suitable quasi-complement of ¢, in E*, which we define
by modifying a construction of Rosenthal ([8]). This leads, by a proce-
dure of taking /!-sums, to a subspace ¥ of E* satisfying both (K,) and
(K3) and with r(¥) = 0.

We begin by sketching a proof of proposition 1 which differs from the
one suggested by Mil’'man.

PROOF OF PROPOSITION 1: We first observe that (K, ) is equivalent to the
sequential o(E, ¥V )-closedness of Si. Since V is separable, the topology
o(E, V) is metrizable when restricted to bounded subsets of E. Hence
the sequential o(E, V)-closure and the o(E, V)-closure of Sg coincide.
Thus (K;) means that S; is 6(E, ¥')-closed and this in turn is equivalent,
by [2, Théoréme 8], to r(¥) = 1.

Observe that r(¥) = 1 implies (K;) also for non-separable ¥, by [2,
Théoréme 8]. The separability of ¥ is needed only for the proof of the
converse implication.

One should also note that (K, ) implies that ¥ is 6(E*, E)-dense, wheth-
er V is separable or not.

Our example will be based on the following

LEMMA: Let E = I', E* = [* and let V be a o(I°, I')-dense quasi-com-
plement of ¢, inl® (We assume c, to be imbedded in 1% in the canonical
way). Then we have: If x, — x, for o(I*, V) and {x,} is norm-bounded,
then ||x,— x|l = 0. In particular, (K,) and (K,) are satisfied.

Proof: Let {x,} be any subsequence of {x,}. Since /! is the dual of the
separable space ¢,, {x,} contains (see [1]) a a(/', ¢o)-convergent sub-
sequence {x,.}. Thus {x,.} is a(I*, ¢, )-Cauchy as well as ¢(/*, V)-Cauchy
and therefore a(I', co+ V)-Cauchy. Since ¢,+ ¥V is norm-dense in /%,
the boundedness of {x,..} now implies that {x,.} is a(/*, /*)-Cauchy and
therefore norm-convergent (see [4, p. 281]), say to x. V being o(I*, I')-
dense in /®, ¢(I', V)-limits are unique. This evidently implies that
X = x,. We have now shown that any subsequence of {x,} contains a
subsequence converging to x, in norm. Hence |[x,—x,|| — O.

The statement proved clearly implies (K,), and also (K,), since (K,) is
equivalent to the sequential (', ¥)-closedness of Sj:.

In order to understand our example it is necessary to recall briefly
Rosenthal’s construction of a quasi-complement of ¢, in /® (cf. [8]).
This construction is based on the following observations, the complete
proofs of which can be found in [8].

(i) A subspace X of a Banach space E is quasi-complemented in E if
and only if there exists a 6(E*, E)-closed subspace Y of E* such that
Yn X' = {0}and Y, n X = {0}. Indeed, if ¥ has these properties,
then Y, is a quasi-complement of X in E.
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(ii) If Y is a reflexive subspace of E*, then Y is o(E*, E)-closed. This
follows from the Krein-Smulian theorem.
(iii) If an infinite compact topological space S contains an infinite per-
fect subset, then C(S)* contains a subspace isomorphic to /2.
Rosenthal’s construction ([8]) of a quasi-complement of ¢, now pro-
ceeds as follows. We may identify /* with C(BN), where SN denotes the
Stone-Cech compactifation of N. Then cg can be identified with
C(BN/N)*. Since BN"\\N is an infinite perfect compact Hausdorff space,
(iii) implies that cg contains /2 isomorphically. Let H < ¢ be isomorphic
to /2 and let {u,, - -, u,, - - -} be a basis of H equivalent to the ortho-
normal basis of /2. We assume that ||u,|| =1 (n = 1, 2, - - -). For each
n e N let 3, be the Dirac measure on N concentrated at n. Then the closed
linear span of {8, :ne N} in (I*°)* can be identified with /!, by the ca-
nonical map. Now let G be the closed linear span of

{%‘ +u,,:neN}.

It is easily verified that G is isomorphic to H and therefore o((I°)*, [*)-
closed, by (ii). Finally, G n ¢ = G, n ¢y = {0}, so ¥V = G, is a quasi-
complement of ¢, by (i).

Since, in this construction, V* nI* = G I' = {0}, V is o(I*, I')-
dense in /*, so the lemma applies.

ExAMPLE: We now show that by a slight modification of the construc-
tion described above we can obtain for each ke N a o(I%, I')-dense
quasi-complement ¥} of ¢, with r(V,) < 1/k.

Let k € N be arbitrary and let G, be the closed linear span of k6, + u,
and

{é' +u,,:n=2,3,-“}.
n

Clearly G, is isomorphic to H and therefore o((I)*, /°)-closed, by (ii).
Again, as before it is easily verified that

G 0 ¢y = (G N co = {0}.
Therefore V, = (G,), is a quasi-complement of ¢, in /°, by (i). Also
Vianl' =G, nl' ={0},
so that V, is 6(I®, I')-dense in [®.

Next we show that

.

r(Vi) =

x| =
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By [2, Théoréme 9] it suffices to prove that

—_— 1
(ll, Vkl) é E

(Here (X, Y), for arbitrary subspaces X and Y of a Banach space E, de-
notes the inclination of X to Y, i.e. the distance of the unit sphere of X
to Y (cf. [9]). Clearly, since J, € S;: and

1
01+ Eﬂl € G,

we have
I, G) < L
(3 k)= k’

1
01— (51+ EIM)

which proves our claim, since G, = V.
Now, for each k e N, let E, = I', E;f = I and let V, be the o(E{, E;)-
dense quasi-complement of ¢, in E; with

r(V) <

x

that was constructed above. Then, putting

E=(E1@E2®---@Ek®°'°),1,
we have
E*=(EIQE @  DE @ " )=.
We will show that
V=(®V,® @V® ) cE*

satisfies (K, ) and (K,) whereas r(V) = 0.

To prove (K, ), it suffices to show that Sg is sequentially o (E, V')-closed.
Let {x™}2 , with x™ = (x{, x{"- - -) e E(n e N), be a sequence in Sj
which converges for o(E, V) to x@ = (x®, x9, --)e E. We must
show that ||x‘®|] £ 1. For this it is enough to prove that for an arbi-
trary ke N

k
I (x) = X 11X £ 1,
n=1

where m, is the natural projection of E onto (E; @ -+ ® E, @ {0}
@ - ), which we identify with (E, ® E, ® ‘- @ E,):. Clearly
the sequence

{m(x") s
converges to m(x?) for o(m(E), nf(V)) = 6((E, ® - - - ® E)p,
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Vi@ ® Vi)=) Since |[m(x™)|| <1 for all neN, (E, @ - @
E,); (which is isometric to /') is isometric to the dual of the separable
space

(Co DD co)zao,
S —

k factors
and (Vi@ - @ Vi)~ isa .
o((EI® @ E{)=,(E; ® - ® E))-dense
quasi-complement of (co @ * - @ ¢o) in
(Ef @ @ E)w,

the Lemma applies here and yields that ||, (x®)]| < 1. Hence ||x?||< 1,
since k € N was arbitrary.

To show that (K,) holds, let us assume that x™ — x@ for o(E, ¥') and
that ||x™|] = [|x‘?’||. We may also assume that ||x'?|| = 1. Lete > 0 be
arbitrary and let & € N be such that

€)) 1—¢ < |lm(x) =1
As in the proof of (K, ) it follows from the Lemma that
”nk(x(n))_nk(x(O))” -0

(n > o). Hence there exists an ny € N such that

(2) ”7Tk(x("))—7fk(x(0))” <e (n = no),
and therefore, by (1),
) ) > NIm(x @) —& > 1-2& (n 2 no)

We may also assume that

)] [Ix®|| < 14+¢ (n = ny)
Thus
(5) 1x®—m (x| = x| = [Im(x™)l] < 1+e—(1—2¢) = 3¢

(n = no)
It follows now from (1), (2), (3), (4) and (5) that
1P =% < 1% =z (x| + e (6™) = 7 (xO + a(x ) = x|
< 3e+e+e = 5e (n=n,)

This proves (K,).
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Finally, let us show that r(¥) = 0. We have

SEt = H SE"‘k
k=1

and it is easily seen that

©
(E* E) _ o (Ex*, Ex).
SVU = l!.:IISVk k*s Erc

By the definition of r(¥;)

aSp,. ¢ SEEE for all o > i (ke N).

It follows that
aSgs ¢ S E"P for all a > 0.

Thus r(¥') = 0. This completes the example.

We conclude with a general result on quasi-complements of ¢, in /®.
All such quasi-complements obtained by Rosenthal’s construction are
o(I®, 1')-dense in /®. This may not be the case in general. However,
all quasi-complements of ¢, are ‘almost’ a(/*, /')-dense in /*, as we show
in the following

PROPOSITION 3: Let V be a quasi-complement of ¢, in I°. Then the
o(1®, 1*)- closure V' of V in I® has finite codimension in 1*.

PRrOOF: Suppose that dim /®°/V’ = oo. Then we have, since V, = V|,
that dim ¥, = oo and, of course, dim /*/V, = o0. By [7, Lemma 2]V,
contains a subspace L with dim L = oo which is complemented in /*.
Let M be a complement of L in I*. Then [® = L* @ M*. By [5] both
L* and M* are isomorphic to [®. In particular M* is non-separable. Since
L c V, we have ¥V < L*. Furthermore, [®/V is separable, by the defi-
nition of V, whereas [®/,L = M* is not. This is a contradiction, since
the canonical map [®°/V — [®/, L is a continuous surjection.
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