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Introduction

It is our purpose in this paper to formulate a general notion of con-
volution and present three factorization theorems in terms of the gener-
alized convolution operation. In 1957, W. Rudin [5] proved that every
function in L1(R) can be expressed as the convolution product of two
suitable functions in L 1 (R). Since then several results of this type, usually
called factorization theorems, are proved by various authors. We men-
tion the papers of P. J. Cohen [1 ] and of P. C. Curtis and A. Figa-Tala-
manca [2], since our theorems are generalizations of some of their re-
sults. Cohen [1 ] proved that if one considers L 1 (G), for a compact group
G, as an algebra of operators under convolution acting on the continuous
functions on G, then each continuous function could be written as the
convolution product of another continuous function with an integrable
function. Curtis and Figa-Talamanca [2] obtain, among other things,
generalizations of Cohen’s results. Our theorems are inspired by these
results and further generalize them in terms of the convolution operation
we formulate below. The paper is organized in the following way. In
Section 1, we formulate our version of the convolution operation and in
Section 2 we present some examples and state our theorems. Section 3
contains all proofs.

1. Convolutions

The convolution of two Lebesgue integrable functions f, g on the real
line R is a well known concept, resulting in the (integrable) function
f * g given by the formula:

Generalization of this concept to locally compact groups is also well
known and is extensively used in abstract harmonic analysis. In this
setting the above formula takes the form:
* For the most part the contents of this paper are included in a doctoral thesis written
by R. K. Heckman under the direction of R. R. Chivukula and presented to the Uni-
versity of Nebraska.
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where G is a locally compact group, dy is a (fixed) Haar measure on G
and f, g are integrable with respect to dy. Also one talks about the con-
volution of two (finite, regular) Borel measures on G and the above for-
mulas become special cases of the convolutions of measures (namely, of
two measures each of which is absolutely continuous with respect to
Haar measure).
As indicated above, the classical convolution operation is customarily

defined by means of integrals. But from a functional analysis point of
view, it is best to think of convolution as an operation between linear
functionals. We adapt this view and our generalization will appear(in the
same way) as an operation between linear functionals. Before we write
our definition, it may be helpful to describe how the (classical) convo-
lution of measures is defined in terms of linear functionals. This is as
follows. Let G be a locally compact group and let Co(G) be the Banach
space (with supremum norm) of all real or complex valued continuous
functions on G which vanish at infinity. Let M(G) denote the Banach
space of all bounded regular Borel measures on G with the total variation
norm. As usual M(G) is (identified with) the normed dual of Co(G). For
any function f e Co(G) and any element x e G, let xf denote the left

translate of f by x ; that is x f is the function on G defined by (xf)(y) =
f(xy) for all y E G. Clearly xf ~ Co (G). Now for any measure y e M(G)
= C*0(G) and any function f e Co(G), let fif denote the function defined
as (03BCf)(x) = 03BC(xf) for all x ~ G. It is easy to prove that fife C0(G).
Finally, for any 03BB, 03BC e M(G) one defines 03BB * 03BC, called the convolution of
the measures 03BB and y, by the equation (03BB * p)(f) = 03BB(03BCf) for all f E C0(G)
It is not hard to prove that 03BB * 03BC is a bounded linear functional on the
Banach space Co(G). Hence, 03BB * 03BC e Cô (G) = M(G); and it is straight-
forward to check that 03BB * 03BC as defined above coincides with the classical
convolution of the measures 03BB and 03BC.
The advantage in considering convolution as an operation between

linear functionals arises from the fact that as such it can be extended to
more general situations. For example one could start, in great generality,
with a semigroup S and a linear space J of functions on S. Assuming
that J is closed under left translations and that L is a linear functional
on J with the property that Lf ~ J for all f ~ F, where (Lf)(x) =
L(xf), one could then define M * L, the convolution of M and L, by
(M * L)(f) = M(Lf) where M is any linear functional on F. Clearly
M * L is a linear functional on the linear space F and this construction
reduces to the classical convolution of measures if one takes S = G
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and 5’ = Co(G). This is exactly the point of view taken by Hewitt and
Ross [3]. We generalize the above construction as follows.

DEFINITION 1: Let S and T be sets and let 5’,s and 5T be linear spaces
of real or complex valued functions on S and T respectively. Suppose in
addition that S is a collection of transformations of T. For f ~ FT and
SES, define S f by (sf)(t) = f(s(t)) for all t E T; and suppose that for each
1 E 5T and s ~ S, sf ~ 5T (in otherwords, 5T is S-invariant). If M is a
linear functional on 5T and if f ~ FT, we denote by Mf the function on
S defined as (Mf)(s) = M(sf)for all s E S. Suppose further that M is such
that Mf ~ ,FS for all f ~ FT. Now if L is any linear functional on FS,
then the function whose value at any f e FT is L(Mf) = (L o M)(f) is
well defined. We call this function the convolution of the functionalsL and

M and denote it by L * M.
It is easy to verify that the function L * M, as defined above, is a linear

functional on the linear space e7T. Thus our convolution is an operation
between (certain) linear functionals and results in a linear functional.
Moreover if we take S = T to be a semigroup and take the action of
SES to be left translation we obtain, as a special case, the convolution of
Hewitt and Ross mentioned earlier. Thus Definition 1 is a generalization
of def. 19.1, p. 262, Hewitt and Ross [3].

2. Results and Examples

We are now in a position to state our theorems. As indicated in the in-
troduction, these theorems are inspired by some of the results in Curtis
and Figa-Talamanca [2]. Specifically, we adopt their Theorem 2.3 and
Corollary 2.4 by reformulating them in terms of our convolution. To this
end, let the sets S and T and linear spaces 57s and ff T be as in Definition
1. Further let Y(57s) and Y(5T) be (certain, prechosen) linear spaces
of linear functionals on FS and 5T respectively. Suppose that for each
M E L(FT) and each f ~ eT, the function Mf E FS. Then, as in Def-
finition 1, we can construct the convolution product L * M for all

L ~ L(FS) and M E L(FT). Now suppose further that L * M E L(FT).
[Note: Of course L * M is a linear functional on 3e7T, as always. We are
here assuming that L * M belongs to the already chosen linear space
L(FT) for all L and M. ] Under these assumptions, we may regard each
L as generating a linear mapping lof the linear space Y(57T) into itself,
defined by L(M) = L * M for all M E Y(57T)- Further we can also
define a mapping 1 by putting I(L ) = L. It is easy to see that the mapping
I is a linear mapping of L(FS) into the space of all linear mappings of
L(FT) into itself. The stage is now set for Theorems A and B, stated
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below, which are respectively reformulations of Theorem 2.3 and Corol-
lary 2.4 of Curtis and Figa-Talamanca [2].

THEOREM A: Let S, T, FS, FT, L(FS), L(FT) and L be as described
above. Suppose that 2(:Fs) and 2(:Fr) are Banach spaces and that
L * M ~ L(FT) for all LE2(:Fs) and ME2(:Fr). Suppose further
that I : L - L is a continuous one-one linear mapping of L(FS) into
B(L(FT)), the algebra of all bounded linear operators on the Banach
space L(FT), with ~I~ ~ c, a positive real number. Suppose that L(FS)
is the closed linear span of a bounded set d, 11 dl ~ N, with the property
that if -e = {BE E E}, then for each finite subset {1, ···, n} ~ 
and e &#x3E; 0 there exists  ~  satisfying ~ o i - i~  e, i = 1, ..., n.
Then L(FS) * 2(:F r) = {L * MIL E L(FS), M E L(FT)} is a closed
subspace Y of L(FT). Furthermore, for each M’ E Y and b &#x3E; 0 there

exist L E L(FS), ~L~ ~ N, and M" E Y satisfying ~M’ - M"~  ô

and L * M" = M’.

THEOREM B: Let S, T, FS, 57T, L(FS), 2(:F r) and L be as above.
Suppose that L(FT) is a Banach space and that L(FS) is a Banach
algebra with a bounded left approximate identity E = {E03B1}. [That is, d’
is directed and lim EaL = L for each L E K(FS).] Let I : L - L be a
bounded faithful representation of L(FS) into B(L(FT)), the algebra of
all bounded linear operators on the Banach space L(FT). Let Y = {M E
L(FT)| lima Ea(M) = lima E03B1 * M = M, 03B1 E I(E)}. Then Y is a closed
subspace of L(FT) and Y = L(FS) * 2(:FT). Moreover, for each
M’ E Yandb &#x3E; 0 there exist L E L(FS) and Mil E Ysuch that ~M’- M"~
 03B4 and L * M" = M’. Furthermore, ~L Il can be taken to be bounded by
a fixed constant.
We now proceed to describe the setting for our first factorization theo-

rem. This description provides an example of an instance where the full
force of our Definition 1 comes into play. Let X be a locally compact Haus-
dorff space and let G be a locally compact Hausdorff topological group.
Suppose that each g E G is a homeomorphism of X onto itself. Now, in
the notation of Definition 1, we take S = G and T = X. Further, we
take 57s = FG = Loo (G) the Banach space of all essentially bounded
complex valued Borel measurable functions on G; and we take 57T =
57x = Co(X) the Banach space of all continuous complex valued func
tions on X which vanish at infinity. Since these spaces L~(G) and eo(X)
are well known (for example, see [3]) we shall feel free to use their prop-
erties as needed. Next we need to specify spaces of linear functionals
2(:FG) and L(FX). We simply let L(FX) = C*(X) the normed dual
of Co (X). For L(FG) we take the space £1 (G) defined as follows.
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DEFINITION 2: Given f ~ L1(G) and H ~ L~(G), define

where dg denotes a (fixed) Haar measure on G. Let 1(G) = {|f ~L1(G)}.
Clearly this space L1 (G) is a linear space of linear functi onals on L~(G)},
our choice for 57G . [In fact each f is a continuous (even w*-continuous)
linear functional on L~(G)]. Now it remains to show that f * M is proper-
ly defined for all f E L, (G) and M E CÓ(X), in accord with Definition 1.
The following three propositions will do this.

(i) If F E C0(X) and g E G, then 9F E C0(X).
(ii) If M E C*0(X) and FE Co (X), then MF is a bounded right uniformly

continuous complex valued function on G and hence MF E C(G) g
L~(G) where C(G) denotes the Banach space (in supremum norm)
of all bounded continuous complex valued functions on G.

(iii) If 1 E 1(G) and M E CÓ(X), then M E CÓ(X). Thus we have
1(G) * CÓ(X) = {* MilE .L1(G), M E C*0(X)} ~ C*0(X).

Each of these propositions can be proved by standard methods of
functional analysis and so we omit their proofs. For a discussion of uni-
form continuity on topological groups we refer the reader to Kelley [4].
We are now ready for our first factorization theorem.

THEOREM 1: Let G be a locally compact group of homeomorphisms of
the locally compact topological space X. Assume that the mapping g ~ gF
from G into C0(X) is uniformly continuous for each F E C0(X). Suppose
also that 1 * M = 2 * M for all M E C*0(X) implies fl = f2 in L 1(G).
Then L, (G) * C*0 (X) is a closed subspace Y of CÓ (X) and furthermore given
M’ E Y and ô &#x3E; 0, there exist f E .L1 (G) and M" E Y satisfying M’ =
1* M" and 1 M’- M" |  b. Moreover ~~ can be taken to be bounded
by a fixed constant.
Our next result (Theorem 2, below) is an extension of Cor. 2.4 [2], in

that the need for the representation to be faithful is partially eliminated.
We use Theorem 2 to obtain two more factorization theorems (namely,
Theorems 3 and 4). It may be noted that since Theorem B (stated earlier)
is an adaptation of Cor. 2.4 [2], our extension (namely, Theorem 2) ap-
plies to Theorem B as well. This is how Theorem 2 will be used in proving
Theorems 3 and 4.

THEOREM 2: Let A be a Banach algebra with a bounded left approximate
identity d. [That is, C = {e03B1} is directed, and lim e03B1a = a for each a ~ A;
and Ile(X11 |  c for some positive c. ] Let a : A ~ B(X) be a bounded rep-
resentation of A in the algebra B(X) of bounded operators on a Banach
space X satisfying the property that if ea, e. E C and 03C3(e03B1) = a(eo), then
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ea = e03B2. Let Y = {x EX/lima Eax = x, Ea = 03C3(e03B1), ea E él. Then Y is a
closed subspace of X and A X = {03C3(a)x|a E A, x E X} = Y. Moreover,
for each y E Y and 03B4 &#x3E; 0 there exist a E A and z E Y such that liz-yll |  ô
and u(a)z = y. Furthermore, a can be taken to be bounded by a fixed con-
stant.

In our next factorization theorem (Theorem 3, below) the setting is
slightly different from that of Theorem 1. Instead of G being a group of
homeomorphisms on X, we now assume that G acts topologically to the
left on X. [This means that there is given a continuous mapping from
G x X into X, denoted by (g, x) ~ gx, such that ex = x and g1(g2x) =
(91 92)X where e is the identity of G and gl, g2 E G and x ~ X. ] The
choices for the various spaces remain the same and it follows that f * M
is properly defined, in accord with Definition 1. One difference may be

noted here. The condition that the mapping g ~ gF is uniformly contin-
uous was part of the hypothesis in Theorem 1. We are able to prove this
propcrty in the present context.

THEOREM 3: Let G be a locally compact topological group acting topo-
logically to the left on the locally compact topological space X. Assume
that G is first countable and that the map g ~ gx is one-one and open for
some (one element) x ~ X. Let Y = 1(G) * CÓ(X). Then Y is a closed
subspace of C*(X). Moreover, there exists a left approximate identity d’
{e03B1} in L 1 (G) such that Y = {M E C*0(X)| lim êa * M = M}. Also, given
M’ E Y and ô &#x3E; 0 there exist M" E Y and  E L, (G) satisfying M’ =  *
Mil and JIM-M"IL  03B4. Moreover, ~~ can be taken to be bounded
by a fixed constant. Furthermore for each M E C*0(X) and F E C0(X), we
have lim03B1 (ê03B1 * M)(F) = M(F).

In our next (and final) theorem the setting is the same as in Theorem 3,
except that it is assumed, in addition, that X carries a uniform structure
compatible with its topology. We denote by Cu(X) the Banach space (with
supremum norm) of all uniformly continuous complex valued functions
on X; and use Cu(X) in place of Co(X). The choices for the other spaces
remain the same and it follows that f * M is properly defined in accord
with Definition 1, and thatf * M E C*u(X)for all  E Îl (G) and M E C:(X).
At this point it may be interesting to note that the elements in C*u(X) are
not, in general, countably additive measures; whereas the elements of Cô
(X) are such measures. However, it will be seen in the next section that
Theorem 4 is proved in much the same way as Theorem 3.

THEOREM 4: Let G be a locally compact topological group which operates
topologically to the left on the locally compact topological space X and
further let X be a uniform space with uniformity u compatible with the
topology of X. Assume that each g E G (that is, the mapping x - gx) is
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uniformly continuous from X to X with respect to the uniformity u; and
that if V ~ 4Y, there exists an open set U in G containing the identity of G
such that if g E U, then the ordered pair (x, gx) E V for all x E X. Further
assume that G is, first countable and that the mapping g ~ gx from G to X
is one-one and open for some (one element) x E X. Let Y = L1 (G) * C:(X).
Then Y is a closed subspace of C:(X). Moreover, there exists an approxi-
mate identity e = {e03B1} in L 1 (G) such that Y = {M E C*u(X) lim03B1 ê03B1 * M
= M}. Also, given M’ E Y and ô &#x3E; 0 there exist f E 1(G) and M" E Y
satisfying M" = f * M’ and ~M’ - M"~  b. Moreover ~~can be taken
to be bounded by a fixed constant. Furthermore, for each M E C*u(X) and
F ~ Cu(X), we have lima (ê03B1 * M)(F) = M(F).

This completes the statements of all our theorems. The proofs are
given in the next section. We note that each of the convolutions described
above illustrate our Definition 1. In a sense, these are natural general-
izations of well known constructions involving convolutions. We close
this section by giving an example which seems to be entirely new. We
have some results in this context and we plan to publish them (and others
that we are working on) in a separate communication.

EXAMPLE: Let X be a Banach space and B = B(X) be the Banach alge-
bra of all bounded linear operators from X into X. Now, in the notation
of Definition 1, we take T = X and S = B = B(X). Further we let

57s = FB = B* and 5T = FX = X*. Now the following three propo-
sitions can be proved in a straight-forward manner: (i) given F ~ X*
and g E B, 9F ~ X*; (ii) If M ~ X** and F ~ X*, then MF ~ B*; and
(iii) If L E B * * then L * M, given by (L * M)(F) = L (MF) for all F ~ X*
and M ~ X**, is well defined and L* M ~ X**. Thus elements of B(X)**
may be convolved with elements of X * * for any Banach space X; or, al-

ternatively, elements of B(X)** can be considered as convolution opera-
tors on the Banach space X**.

3. Proofs

As noted in Section 2, Theorems A and B are reformulations of
Theorem 2.3 and Corollary 2.4 of [2] in terms of our convolution given in
Definition 1; and we therefore do not give their proofs here.

PROOF OF THEOREM 1: For convenience, we break the proof into the
following three propositions:
(a) 1(G) is a Banach algebra.
(b) 1(G) has a bounded left approximate identity lff = {E03B1}.
(c) The mapping 1: 1(G) ~ 1(G) = {| ~ 1(G)} is a bounded
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faithful representation of £1 (G) in the algebra of all bounded linear
operators on the Banach space Cô (X).

Once these three propositions are proved, Theorem 1 will follow as a
direct consequence of Theorem B. We now proceed to prove the propo-
sitions (a), (b) and (c).

(a) It is easy to verify that 1(G) is a linear space and that if we define

then ~~ = ~f~1. Hence the mapping J : L1(G) ~ 1(G) taking
f to f is a linear isometry and thus L1 (G) is a Banach space. Next we de-
fine 1 0394 2 = /2 */i for all f1 , f2 ~ L1(G); where f2 * f, denotes the stan-
dard convolution in the group algebra L 1 (G) given by

and dy stands for a (fixed) right Haar measure on G. Now it is clear that
the mapping J taking f ~ L1(G) to JE 1(G) is an anti-isomorphism and
linear isometry and hence 1(G) is a Banach algebra.

(b) As is well known (see [3 ], p. 303), the group algebra L1(G) admits
a bounded right approximate identity, say {e03B1}03B103B5A where A is an appro-
priate directed set. This means that lim03B1(f * e03B1) = f for every f E L, (G).
We let é = {E03B1|E03B1 = êa, a E A}. It is now easy to see that e is a bounded
left approximate identity for 1(G).

(c) First, we recall that the mapping 7 has been introduced in Section
2, immediately preceding Theorem A. For the convenience of the reader
we show how it works in the present context. We have already seen that
 * M ~ C* (X) for every f E il (G) and M E C* (X). The mapping I : il (G)
~ 1(G) is defined by I() =  where (M) = 1 * M for every M E C* (X).
It is clear that f is indeed a bounded linear operator on the Banach space
C*0(X). We also have for every F ~ Co(X),

where as usual, dg denotes right Haar measure and (MF)(g-1)=
M(,-,F). It was noted earlier that MFE C(G) c L~(G). We use the
above integral representation to show that the mapping 7 is a bounded
faithful representation of 1(G) in the algebra of bounded linear opera-
tors on CÓ(X).
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We need to show the following: (i) ~I~ I is finite; (ii) I is linear; (iii) I
is multiplicative, that is I(103942) = I(1) o I(f2) for all fl, 2 E £1 (G)
and o denotes composition of operators; and finally (iv) I is one-one,
that is if 1, 2 ~ £1 (G) and I(1) = I( f2 ) then 1 = f2 . The assertions
(i) and (ii) are immediate consequences of the properties of the mapping
7 and (iv) is part of the hypothesis of Theorem 1. We prove (iii) as fol-
lows :

Let fl , 2 ~ 1(G). Then I(103942) = I(f2*f1) = f2 * f1. Thus if

Me C*0(X) and Fe Co (X), then by the integral representation, we have

On the otherhand we have

Now by a careful use of Fubini’s theorem (see [6], p. 269 and [3], p. 153)
and the right invariance of the chosen Haar measure, we conclude that
the two integrals giving the values of [I(103942)(M)](F) and [(1(11)0
I(2(M)](F) are equal for every M E C*0(X) and Fe Co(X). Thus we
have proved (iii) and completed the proof of Theorem 1.

COROLLARY 1: If the right approximate identity {e03B1}03B103B5A in L 1 (G) is

appropriately chosen, then limx (êcx * M)(F) = M(F) for each M e C*0(X)
and FE Co(X).

PROOF: Let A = {03B1} denote the collection of all open subsets of G
with compact closure and containing the identity of G. Then A is partially
ordered and directed by set inclusion. For each a e A, define e03B1 on G by
e03B1(g) = 1 /À(a) if g E a and e03B1(g) = 0 otherwise, where À denotes the cho-
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sen right Haar measure on G. We now have {e03B1}03B103B5A is a right approximate
identity for L1(G) and also

for every a.

Now let Me Cô (X) and let 03BC denote the finite regular Borel measure
which corresponds to M by the Riesz representation theorem. Then we
have for every FE C0(X),

since the ea are supported on ’small neighborhoods’ of the identity of G
and the mapping g - gF is right uniformly continuous. This proves the
corollary.

PROOF OF THEOREM 2: Let E’ = a(e) = {E03B1|03C3(e03B1), e03B1 E E}. Then
~E03B1~ = ~03C3(e03B1)~ ~ ~03C3~ ~e03B1~ I ~ Ilail I C which means ~E’~ ~ ~03C3~ C.
Since e is a left approximate identity, given 8 &#x3E; 0 and a finite subset

{e1, ···, en} of é there exists e E tff such that ~eei - ei~  03B5/~03C3~, i = 1,
···, n. (See [2], p. 170.) But then

Hence E’ satisfies the hypothesis of Theorem 2.2 in [2] and if e9!’ denotes
the Banach algebra generated by E’, then we can conclude that

is a closed subspace of X.
It only remains to show that A X = {03C3(a)x|a E A} = A’X = Y.

Since lim(% e(% a = a for each a ~ A, it follows that lim(% E(%A = lima
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03C3(e03B1a) = u(a) = A, so that A X ~ Y. Equality of these last two spaces
will follow if we prove Y z siX. But this is an immediate consequence of

the last assertion of the theorem, which we prove now. Let 0  b  1/
(4~03C3~C). By Theorem 2.2 [2], if y ~ Y and 03B4 &#x3E; 0 there exist z E Y such
that Ilz-yll |  ô and a sequence {Ek} c é’ such that if

then Az = y. Now let ek = 03C3-1(Ek), which is meaningful since 03C3 is

faithful on 03B5. Clearly

converges absolutely in A if 0  b  1, since ~E~ is bounded. Thus if
0  b  1/(41IuIlC) and 0  b  1, then

and 6(a) = A. Now Q(a)z = Az = y. Also

PROOF or THEOREM 3: It is easy to verify that if F ~ Co(X), then gF E
Co(X) for each g e G. Next we prove a lemma.

LEMMA 1: If F ~ Co(X), then the mapping g ~ gF from G into Co(X)
is (right) uniformly continuous.

PROOF OF LEMMA 1 : We have to prove that given 03B5 &#x3E; 0, there exists

open subset U of G containing the identity such that if g1 g-12 ~ U, then
~g1F-g2F~ I = sup {|g1F(x)-g2F(x)~ x ~ X  03B5. Since ~gF~ = ~F~ for

any F ~ C0(X) and g E G, it is enough to show supx |F(x)--1g1g2F(x)|
 03B5. Also, since the space C00(X)(continuous functions with compact
supports) is norm dense in Co(X), we may assume that F has compact
support, say S. Now let x E S and let Vx be an open neighborhood of x
such that IF(x)-F(Y)1 |  E j2 for all y e Vx. By the continuity of the map-
ping (g, x) ~ g(x), there exists an open neighborhood Ux of the identity
in G and an open neighborhood V’x ~ Vx of x such that {g(x)|(g), x) E
Ux x V’x} ~ Vx. Also there exist U’x ~ Ux, an open neighborhood of the
identity, and V’’x ~ V’x an open neighborhood of x such that {g(x)|(g, x)
e Ux x V’’x} c V’x. Now if 9 e Ux and y ~ V’’x c Vx, then g(y) ~ V’x ~ vx,
which implies that |F(y) - gF(y)| ~ |F(y) - F(x)| + |F(x) - F(gy)|  B/2
+e/2 = 03B5. The family {V’’x|x e S} is an open covering of the compact S
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and hence there exists a finite subcovering, {V’’x1, ···, V’’xn}. Let

and let U = U’ n U’-1. Then U is nonempty (contains the identity) and
open in G.

We claim that for each x E X and g e U, IF(x)-gF(x)1 |  e which im-

plies ~F-gF~  03B5 and proves the lemma. To this end, consider |F(x)-
gF(x)|, where g e U. If

then x e V’xk ~ Vxk for some 1 ~ k ~ n and g ~ U ~ U’ ~ U’xk ~ Uxk
and thus g(x) ~ Vxk and we have |F(x) - gF(x)| ~ |F(x) - F(xk)| +
IF(xk)-F(g(x»1  e/2+ë/2 = 8. On the otherhand, if

then x 0 S and hence F(x) = 0. Consider g(x). There are three mutually
exclusive possibilities for the location of g(x):

and

In case (i) F(g(x)) = 0, so IF(x)-gF(x)1 = 0  8. In case (ii) again
F(g(x)) = 0 and IF(x)-gF(x)1 = 0  8. Finally in case

and so g(x) E Vx,’ for some 1 ~ k ~ n. Since g E U and U is a symmetric
neighborhood, g-1 E U and so

which contradicts the fact that
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Thus for all x e X and g E U we have |F(x)-gF(x)|  a and the lemma is

proved.
Now we are ready to proceed with the proof of Theorem 3. First we

observe that as in the proof of Theorem 1, we have: if M e C*0(X) and
F ~ C0(X), then MF ~ C(G) £ L~(G); and if f 1(G) and M CÓ(X),
then  * M e cri (X). Thus we have Ll(G) * cri (X) £ C*0(X). Now the
rest of Theorem 3 will follow from Theorem 2 if we carry out the fol-

lowing five steps: (a) 1(G) is a Banach algebra, (b) £1 ( G) has a bound-
ed left approximate identity, (c) I : f - Î is a bounded représentation
of L1(G) in the algebra of bounded linear operators on the Banach
space Cô (X), (d) the left approximate identity stated in (b) is faithfully
represented by I, and finally (e) that if {ê03B1} is the left approximate identity
given in (b), then lima (êa * M)(F) = M(F) for each Me Cô (X) and
FE Co(X).

(a) This was done in part (a) of the proof of Theorem 1.
(b) This was also done in part (b) of the proof of Theorem 1, but we

construct a special left approximate identity as follows, which will aid in
proving the remaining parts. Since G is first countable and locally com-
pact, there exists a sequence of open sets {Un}~1 in G each containing the
identity and having compact closure and such that Un ~ Um if n ~ m

where i denotes the identity of G. Let denote the i ight Haar measure
on G and define a sequence {en}~1 of functions on G as follows: For each
n, let en(g) = 1/03BB(Un) if g E Un and let en(g) = 0 otherwise. It is now
easily verified that {en}~1 is a right approximate identity for the group
algebra L 1 (G) and hence {ên}~1 is a left approximate identity for LI (G).
Finally, we remark that {ên}~1 will be kept fixed in the remainder of the
proof (of Theorem 3).

(c) Same as part (c) of the pi oof of Theorem 1.
(d) We need to show that if êm * M = êp * M for all Me C*0(X),

then em = ep . Let êm * M = êp * M. Then for F ~ Co(X), we have

where y is the finite regular Borel measure that corresponds to the func-
tional M by Riesz theorem and dg, as usual, denotes the right Haar mea-
sure on G. Similarly, we get
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We may suppose m ~ p, without loss of generality. Now (ê. * M)(F) =
(êp * M)(F) implies that

for all Fe Co(X) and for all bounded regular Borel measures y on X.
Applying Fubini’s theorem, as in part (c)(iii) of the proof of Theorem 1,
we get

Now let

Then we have

for every Il. It is easy to see that if F ~ Coo(X) then the corresponding
H E Coo(X), that is H is continuous with compact support if F is con-
tinuous with compact support. Thus if we start with a function F ~ Coo(X)
then it follows that H(x) = 0 identically for all x ~ X.
By hypothesis there exists an x e X such that the mapping g - g(x)

is one-one and open. Also m ~ p implies Um z Up and hence em - ep ~ 0
on Um. Now the set U-1m x is open in X, since Um 1 is open in G, and
x E U-1mx. Since the space x is locally compact (and Hausdorff), it is

completely regular and there exists (by Urysohn’s Lemma) a continuous
function F on X such that F(X) z [0, 1], F(x) = 1, F(y) = 0 for all

y E X B U-1mx (a closed set not containing x) and finally F has compact
support since F vanishes outside the compact set U-1m x ~ U-1m x. Thus
F ~ Coo(X). Now the only way the corresponding

can equal to zero (as established above) is if em = ep (as desired).
(e) Let M ~ C*0(X) and F e Co(X). Then
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since the map g ~ eF is uniformly continuous and the weights en are
supported on ’small’ neighborhoods of the identity of G. Thus lim,,
(ên * M)(F) = M(F) for each M e C*0(X) and F ~ Co(X) which proves
(e) and completes the proof of Theorem 3.

PROOF OF THEOREM 4: First we note that as in the proofs of theorems
1 and 3, we have: if g E G and F e Cu(X), then gF ~ Cu(X); if M e C*u(X)
and F ~ Cu(X), then MF e C(G) 5! L~(G); and f * M e C:(X) for each
f e 1(G) and M e C:(X). Further, like Theorem 3, our present theorem
will follow from Theorem 2 if we prove the following five steps: (a)
£1 (G) is a Banach algebra, (b) LI (G) has a bounded left approximate
identity, (c) 1 :  ~  is a bounded representation of Îl (G) in the algebra
of all bounded linear operators on the Banach space C:(X), (d) the left
approximate identity mentioned in (b) is faithfully represented by I, and
finally (e) if {ê03B1} denotes the left approximate identity mentioned in (b)
then lima (ê03B1 * M)(F) = M(F) for every M E C*u(X) and F ~ Cu(X).
Now (a), (b) and (c) are proved exactly as in the proof of Theorem 3.

Since C0(X) ~ C"(X), we can again prove that the left approximate iden-
tity is faithfully represented by I, in the same way as we did in part (d)
of the proof of Theorem 3. Finally, the hypothesis that given V e 4Y there
exists an open neighborhood U of the identity in G such that (x, g(x)) e V
for each g e U and x e X, clearly implies that the mapping 9 -+ gF from
G to C.(X) is right uniformly continuous. Using these facts we can prove
part (e) just as we did part (e) of Theorem 3.
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