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Introduction

In part 1, [22], in this series of papers we have shown that over the
complex numbers coarse moduli spaces exist for polarized K-3 surfaces
and for algebraic varieties with a very ample canonical bundle and that
these moduli spaces are algebraic spaces of finite type over C in the sense
of [2].

In this paper we treat, in Section 2, the moduli problem for surfaces
of general type defined over C. We will show that for such surfaces coarse
moduli spaces exist (theorem 2.7), and that these spaces are algebraic
spaces of finite type over C. This fact has interesting applications to the

structure of the Albanese mapping a : X ~ Alb (X) of 4-dimensional
compact manifolds X without meromorphic functions.

We obtain by using the existence of non constant meromorphic
functions on the moduli spaces of surfaces of general type (this holds, be-
cause the moduli spaces are algebraic spaces) that the general fibre of a
has Kodaira dimension ~ 0. It is this kind of applications to the classi-
fication theory of compact complex manifolds (compare the introduction
to [22]) which make it important to know that moduli spaces are alge-
braic spaces and not just analytic spaces.
The key to the considerations is the following theorem on quotients

which will be proved in Section 1. (Compare theorem 1.4.)
THEOREM: Let X be a quasi projective C-scheme 1 and G an algebraic

group which operates on X. Assume that the operation is proper and that
all stabilizers are finite. Then the geometric quotient Y of X by G, in the
category of algebraic C-spaces, exists and Y is offinite type over C.
This is how one constructs Y locally, i.e., an open etale neighborhood of
a C-valued point P E Y.

Let P be a C-valued point of X which maps to the point P by the
(topological) quotient map. Let Op be the orbit of P with respect to G.
We show that there exists a locally closed subscheme Up of X such that
1. P E Up, Up is affine and UP is transversal to Op at P.

1 The assumption, X is quasi projective, is not necessary. X can be a separated alge-
braic C-space locally of finite type over C. (compare remark 1.5.)
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2. The stabilizer I of P (stabilizer with respect to the action of G on X)
operates on Up.

3. For any C-valued point Q E Up, UP is transversal to the orbit OQ of Q.
Furthermore if g E G and g(Q) = Q, then g e I.

Then the geometric quotient UIP of Up by I is an etale neighborhood of P e Y.
Unfortunately, our proof of the above stated theorem is not algebraic.

The theory of complex spaces is needed. However there should exist along
the same lines a purely algebraic proof which applies also in characteristic
&#x3E; 0.

The quotient theorem 1.4 leads, combined with the results of Deligne-
Mumford [5], to the existence of an algebraic C-space M,, which is

a coarse moduli space for stable curves of genus g defined over C. This

result is implicitly contained also in [5], 4.21. The space M, is of finite
type over C and contains the coarse moduli space Mg for smooth C-curves
of genus g as a dense subspace. Furthermore, M. is proper over C and
hence compact with respect to the complex topology. ’ To conclude the
last fact it is again essential to know that Mq is an algebraic space. We
explain this in more details at the end of Section 1.
As far as characteristic 0 is concerned the above stated quotient

theorem is stronger than the theorems on quotients proved in [22].
We would like to point out that some of the results on quotients in
Mumford’s book [20] and theorem 7.2 in the paper of Seshadri [24] are
related to our theorem 1.4. By Mumford and Seshadri the following holds.

THEOREM: Let X be a normal 3 projective variety over an algebraically
closed field k of arbitrary characteristic let G be a reductive group which
operates linearly on X with respect to an ample line bundle L on X, and with
finite stabilizers. Let Xs(L) be the subscheme of X consisting of stable
points. Then the induced operation on XS(L) by G is proper and the geo-
metric quotient of XS(L) by G exists and is a quasiprojective k-scheme of
finite type.

However there exist examples, compare [20], p. 83, which show that
the reductive group SL (n) can operate properly and with finite stabilizer
on a quasi projective scheme X which is simple over C, but there does
not exist an ample sheaf L on X such that G operates linearly with respect
to L and X = XS(L) = set of stable points with respect to L.

In such a situation the above stated theorem of Mumford and Seshadri

cannot be applied whereas theorem 1.4 leads to an algebraic C-space
which is a geometric quotient of X by G. An often very difficult analysis of
stability is not needed.

2 According to Mumford [21 ], p. 462, 1Y1g is even a projective variety.
3 In characteristic 0 normality is not needed.



53

Finally we would like to mention that the above stated theorem on
quotients and the considerations in [22], chapter II lead, for (smooth)
canonical polarized varieties to algebraic C-spaces of finite type which
are coarse moduli spaces for these varieties.

1 am grateful to the referee for pointing out an error in the proof of
proposition 2.3 and for valuable suggestions which helped to improve the
paper considerably.

1. Group actions and quotients
The coarse moduli space for stable C-curves of genus g

The notion of an algebraic space is that of [2] or [15]. All algebraic
spaces are C-spaces and assumed to be separated, unless stated otherwise,
where C is the complex number field. Also, all schemes are C-schemes.
To every algebraic space X over C of finite type a complex analytic

space xan is associated in a natural way, [2].
DEFINITION (1.1): A complex analytic space Z is called algebraic if

there exists an algebraic C-space X of finite type such that the associated
analytic space X’" is isomorphic to Z.

Every irreducible, reduced, analytic space Z which is algebraic has
many global meromorphic functions. More precisely, if m(Z) denotes the
field of meromorphic functions of such a space, the transcendence degree
of the field extensions m(Z)/C is ~ dim Z as Chow’s Lemma, [15], p.
192, applies, i.e. there exists a quasi projective scheme Z’ and a birational
proper map Z’ - Z.

If the analytic space Z is irreducible, reduced and compact the following
theorem holds.

THEOREM (1.2): Z is algebraic if and only if transcendence degree of
m(Z)/C is equal to dimension Z.
PROOF [2], p. 176 ff.
It is known, [2], that an algebraic space X of finite type over C is proper

over C if and only if the associated analytic space Xa" is compact.
This shows that proper is the correct equivalent to compact. For al-

gebraic spaces a good test for properness is the valuation criterion.

vALUATIVE CRITERION (1.3): Let X be a separated algebraic C-space.
X is proper over C if and only if for any discrete valuation ring R over
C with field of fractions K and any commutative diagram of morphisms
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there exists a finite field extension K’ of K such that f extends to Spec
(R’), where R’ is the integral closure of R in K’, via the commutative
diagram.

PROOF: Notice that Spec (K’) - Spec (K) is an open etale coveling
of Spec (K) in the sense of algebraic spaces and proceed as in the proof
of the valuation criterion for schemes.

We will use this criterion later to show that the coarse moduli space
for stable curves of genus g ~ 2, which are defined over C, is proper
over C.

Group actions and quotients will now be considered.
The notation is as in [22], Section 1. G shall be an algebraic group

defined over C. An algebraic space on which G acts, [22], p. 9, is called
a G-space.
Maps between G-spaces are defined as usual.
For a G-space X, the notions ’G-stable etale covering’ and ’geometric

quotient’ o f X by G with respect to the category of algebraic C-spaces,
are as in [22], 1.1, and [22], 1.5, respectively. We formulate the main
theorem of this section.
The situation is as follows.
Let X be a quasi projective C-scheme and G an algebraic group over C.

Assume that G operates on X in thc sense of schemes, [20], p. 3, and
that the operation is proper, i.e., the map

03A8 = (03A6 Id)G  X ~ X x X is proper,

where 0 : G  X ~ X defines the group operation of G on X and Id is
the identity map of X.

Ip = {03C3 E G(Spec (C)); 03C3(P) = P} is called the stabilizer of P, P a
C-valued point of X. We admit only those actions of G on X having finite
stabilizer Ip for all P E X. Clearly, if X is considered as an algebraic space,
G acts on X.

THEOREM (1.4): In the above situation the geometric quotient Y of X
by G exists in the category of algebraic C-spaces and is offinite type over C.
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REMARK (1.5): The assumption that X is a quasi projective C-scheme
is not necessary. Using the methods of Deligne for factoring a finite
group which operates on a separated algebraic space ([15], p. 183) the
considerations below give a proof of the following more general theorem.

THEOREM: Let X be a separated algebraic C-space locally offinite type
(respectively of finite type) over C. G shall be an algebraic group over C
which acts on X such that the action is proper and the stabilizers are finite.
Then the geometric quotient Y of X by G exists in the category of algebraic
C-spaces and is locally of finite type (respectively of finite type) over C.
We indicate briefly the main changes in the arguments of the proof

of theorem 1.4 which are necessary to obtain the above stated general
quotient theorem.

Let P E X be a point and Ip = I the stabilizer of P. Op shall be the
orbit of P with respect to G. Deligne has shown that there exists an affine
scheme Xp of finite type over C, an action of I on Xp and an etale map
Xp £ X which is I invariant and such that P E X(Xp). Furthermore for
an arbitrary point Q E Xp the stabilizers of Q and x(Q) with respect to I
are equal.

Consider the smooth I-invariant subspace ~-1(OP) of Xp and a point
P* E ~-1(GP) with ~(P*) = P. Applying lemma 1.8 we obtain a smooth
I-invariant subscheme Ûp* c Xp which is transversal to x-1 (OP) at P.
Now one proceeds with G x Ûp* and the map G x ÛP* ~ X, defined by
(g, u) ~ g(~(u)) instead of G x Ûp and the map G x Up f X as described
below.

A difhculty appears in the extension of proposition 1.11 to the general
situation. We proceed as follows. Let Xp and x : Xp - X be as above.
03A8* : G  XP ~ X x X shall be the map defined by 03A8*((g, Q)) = (g(X(Q»,
~(Q)) and 0394 : ÛP* ~ X  X the map determined by 0394(Q) = (X(Q), x(Q)).
We consider the diagram

U* is a subscheme of Op. x (G x Xp). Let U*1, ···, U*r be the irreducible
components of U* and 03A8*U(U*i) = Zi the image of U*i. Let Zl , - - -, Zs be
the subsets of Ûp. for which P e Z holds, 1 = 1, ..., s, (Z = Zariski
closure of Zi in 0;.) Taking pt instead of il’U the procedure is now almost
as on page 59. We have to use again the fact that P E Z io and the generaliz-
ed form of lemma 1.9, which states roughly as follows: Let Q E Ûp. and
g E G such that x(Q) and g(x(Q)) are near to P (with respect to the com-
plex topology). Then g(x(Q)) E X(Ûp.) implies g e I.
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As we only apply the quotient theorem if X is quasi projective and of
finite type over C we obmit the detailed proof of the general theorem.

REMARK (1.6): It will be proved in the following (compare corollary
1.10) that in the situation of theorem 1.4 the operation of G on X is separ-
able in the sense of Holmann [10], definition 15. Hence, by [10], Satz 12,
and [12], Satz IV, 9.6, the quotient of X by G exists as an analytic space.
More precisely, in the situation of theorem 1.4, G considered as a Lie
group, operates on X"’, and the geometric quotient as defined in [10]
and [12], exists. We will use this fact later for the construction of the quo-
tient of X by G as an algebraic space. Roughly speaking, we show that
the analytic quotient of X by G is an algebraic space in the sense of 1.1.
The proof of theorem 1.4 requires two lemmas.

LEMMA (1.7): Let Y be an affine C-scheme and H a finite group operating
on V. There exists an embedding f : V ~ cm of V into an affine space
Cm and a finite linear subgroup H* of GL (m, C) which is isomorphic to
H, such that f(V) is stable under the action of H* and the action induced
on f(V) by H* is the same as the action on f(V) induced by H.

PROOF: Let g : V - Cn be an arbitrary closed embedding of V into an
affine space C". For every h E H let Vh be a copy of V. Consider the
product variety W = llhc-H Yh . The group H operates then on W by
permutation of the factors. If h E H, the corresponding permutation is
(Vhl’ Vhlill) ~ (Vhil ···, v’h|H|) where vhi - Vh.hi’ and h1, ···, hiul
is a fixed ordering of the elements of H. W can be viewed as a subspace of
the affine space Clll*n = Cm via the mapping

where |H| = order of H.
Then, there exists a finite group H* of linear transformation of the space
Cm (namely certain permutations of the coordinate of Cm) which defines
the same operation on W as H. Suppose f : V - C|H|·n = Cm is the
morphism defined by

The image f(V) is, then, a closed affine subscheme of Cm which is stable
under the action of the group H*. Furthermore, f is an isomorphism from
V to f(V) (in the sense of schemes) and transforms the automorphisms
of V which are induced by the elements of H to automorphisms of f(V)
induced by elements of H*. Q.E.D.

LEMMA (1.8) : Let V be an affine C-scheme on which a finite group H
operates, and P be a point of V. Assume that P is kept fixed by all h E H.
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If E is a smooth subvariety of V, P E E and E is invariant under H, then,
there exists an H-invariant subvariety U of V which passes through P and
which is transversal 4 to E.

PROOF: We may assume, by Lemma 1.7, that V c Cm and that the
operation of H on V is induced by linear transformations of the Cm.
Let Tp(E) be the tangent space to the variety E at P, then Tp(E) is in-
variant with respect to the action of H.

CLAIM: There exists a linear subspace L c Cm which passes through
P such that

1. H operates on L.
2. Tp(E) and L span the space Cm and Tp(E) n L = {P}.
PROOF OF THE CLAIM: Let Q be a positive definite Hermitian form on

Cm. Then, Q(x, y) = LheHQ(h(x), h(y)) defines a positive definite Hermi-
tian form on Cm which is invariant by H. If we choose for L the linear sub-

space of Cm perpendicular to the space Tp(E) with respect to Q, L satis-
fies the statements of the claim.

U = L n Y fills the requirements of the lemma. Q.E.D.

We return to the proof of theorem 1.4. 
Let P E X be a point and I = Ip be the stabilizer of P by G. Then, I

operates on X and there exists an affine open subscheme V of X which
contains P and which is invariant under I. (Use that X is quasi projective
and I finite.) If Op is the orbit of P on X, with respect to G, and EP =
V r) Op, I operates on Ep.
Applying lemma 1.8 we find that we can choose a closed I-stable sub-

scheme ÛP of V which contains P and which is transversal to EP at P.

LEMMA (1.9): The morphism G x Ûp 4 X defined by (g, Q) ~ g(Q),
considered as an analytic map, is locally at (e, P) an analytic isomorphism
onto an open neighborhood of P in X, a = unity elements of G. There
exists furthermore a complex analytic neighbor hood Sp of P in Up such
that the following holds. Sp is stable with respect to the action of I and
if Q E Sp, g E G and g(Q) E Sp, then g e I.

PROOF: The first statement is proved along the lines of Hilfsatz 1 of

Holmann’s paper [10]. Compare also [12], Hilfsatz IV, 10.2. One shows
that there exists an open neighborhood Sp of P in UP and an open neigh-
borhood Vs of 8 in G such that the map V, x Sp - X is locally at (e, P)
an analytic isomorphism. The proof is obmitted here. For the proof of the

4 The subschemes W and E of V which pass through P ~ V are called transversal
at P if the Zariski tangent spaces t(W)p and t(E)p are linearly independent as subspaces
of t(V)P.
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second statement we assume that this statement is false. Then there exists

a sequence Qi of points in UP with limi~~(Qi) = P and a sequence of
points gi E G, gi ~ I, such that gi(Qi) = Qi E ÛP and limi~~ (Q’i) = P.
Consider in X x X the set A = {(Q’i, Qi), (P, P); i ~ 1}. This set is com-
pact with respect to the complex topology of X x X. By assumption the
map 03A8 : G  X ~ X  X is proper as a map of schemes. By [6], p. 323,
03A8 is then also proper as an analytic morphism. This implies that A* =
03A8-1({(Q’i, Qi), (P, P)}) is compact in G x X. Obviously the points
(gi, Qi) belong to A*.

Let (g, Q) E A* be a limit point of the set {(gi, Qi), i ~ 1} and (g i,,’
Qi,), 03BD ~ 1, a subsequence of (gi, Qi) which converges to (g, Q). Then
(g(Q), Q) = 03A8((g, Q)) = lim03BD~~ 03A8((gi03BD, Qi03BD)) = lim03BD~~(Q’i03BD, Qi,)
(P, P) and we obtain P = Q and g e I.
Take now a complex neighborhood SP of P in ÛP such that Ve x Sp f X

is an isomorphism onto an open set of X which contains P. (Fg is a
complex neighborhood of the unite element 03B5 of G. ) It is easy to see that
one can choose Sp in such a way that I operates on Sp. (Use that I operates
on Ûp and that g(P) = P if g ~ I. ) Clearly almost all elements giv are in
the neighborhood Ve. 9 of g. Let gin be choosen such that gin V, g,
gi. :0 g. Write gin = vin ’ g with vin E Ve, vin ~ E. Then Q’in = gin(Qin)
implies that Qin = vin(g(Qin)) where g(Qin) E Sp. This is a contradiction
that to the fact the map 0 : V x SP ~ X is 1-1. Q.E.D.

IMPORTANT COROLLARY (1.10): Under the assumption of theorem 1.4
the group G considered as a Lie group acts on xan such that the operation
is separable in the sense of Holman [10]. def. 13. Compare also [12].
Therefore by [10], Satz 12, and [12], IV, 9.6, the geometric quotient of
X by G exists as an analytic space. 5

PROOF: We have only to show that there exists for any two points
Q’, Q" E X, which are not equivalent with respect to G, neighborhoods
U’ and U" of Q’ respectively Q" such that g(U’) and U" are disjoint for
all g E G. But this follows at once from the assumption that IF : G x X -
X x X is proper and hence the graph of the operation of G on X closed in
XxX.

PROPOSITION (1.11): There exists an open subscheme Up of Ûp contain-
ing P, which is stable with respect to the action of the group I such that
g E G(Spec (C)) and g(Q) = Q for a C-valued point Q E UP implies gEl.

PROOF: Look at the maps Y : G x X - X  X and f : ÛP ~ X x X, f

5 The paper of Holmann deals with a reduced analytic space X. The paper of Kaup
extends Holmann’s methods to non reduced analytic spaces.
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defined by Ùp h X ~ X x X, where iu is the embedding of Ûp in X and
0394X : X ~ X x X the diagonal map.

Consider the diagram

Set theoretically U*(Spec (C)) = {(g, u); g(u) = u, u E ÛP(Spec (C)),
g E G (Spec (C))} holds.

Let ui , ..., U*r be the irreducible components of U* and 03A8U(U*i) = Zi
be the image of U*i. Then Zi is closed in Ûp, because Pu is proper.
Suppose Z1, ···, ZS are the subspaces which contain the point P

and let P ~ Zs+i, i ~ 1. Take Up’ = ÛP-~h~Ii=1,···,r-sh(Zs+i ~ Ûp). Then
UP is an open I-invariant subscheme of UP which contains the point P.
If Q EU;, 9 E G and g(Q) = Q, there exists by the construction of Up
a scheme Zio, 1 ~ io ~ s, such that (g, Q) E Zio. Let (g, Q) be a generic
point of Zio with respect to C in the sense of A. Weil. If we can show that
e has coordinates in C, we are done, because (g, Q) spezialises then to
(0, P) with (P) = P and this implies e E I.
Why is e C-valued?
We use a complex open neighborhood Sp of P in Up which satisfies

lemma 1.9 and get:
If g E G and g(Q) = Q for a point Q E SP then g e 7.
Using this fact we conclude that for all spezialisations (g, Q) of (g, Q)

such that Q E Sp, the element 9 belongs to I. The finiteness of I implies
that g = go for all such g, where (go, P) is a point in U*i0. From this
one concludes easily that e is C-valued. (Roughly speaking, the idea is
this. Assume we have chosen an affine embedding of the above situation,
i.e. of G x X, locally at (go, P). Then any coordinate function of g is a
polynomial function on U*i0 which obtains only finitely many values in a
complex neighborhood of the point (go, P) E U*i0. Such a function is
constant.)

COROLLARY (1.12): The subscheme U; in proposition 1.11 can be choosen
to be an affine scheme.
Look at the scheme G x Up, where Up is affine and as in corollary 1.12.

I acts on G x Up by the rule

The geometric quotient of G x Ui by I exists in the sense of schemes, as G
is an algebraic group and Up is afhne. (Use [23], p. 59.) We denote this
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quotient by (G x U’P)I and denote by

the quotient map.
The group G operates on (G x U,)’ in a natural way.
To obtain this operation, we note first that G operates on (G x Up)

by the rule

On G x (G x Up) the group I operates via the second factor. Furthermore
the geometric quotient of G x (G x UP) by I exists and is isomorphic to
G x (G x U’P)I.

This map is, obviously, an I-morphism, where I acts trivially on (G x U;),.
Hence, there exists a unique map

such that the diagram

is commutative. The map q, (G x U’P)I defines an operation of G on (G x Up),,
and this operation is proper. The last fact follows at once from the com-
mutative diagram

where the maps (03A6G  U’P, Id), (Id, ~G  U’P), (~G x U’p’ ~G x u,,) are proper,
and [7 ] 5.4.3.

CLAIM 1: The geometric quotient o, f’ (G x U;)I by G exists in the category
of schemes and is isomorphic to Up where U’P = U;I is the geometric quo-
tient of Up by I.
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PROOF oF CLAIM I: We have the commutative diagram

where G x U’P ~ (G X U;), and Up ~ Up are the quotient maps
with respect to I.

pr2 : G x U’P ~ Up is the quotient map with respect to the action of
G on G x U’P. (Obviously, UP is the geometric quotient of G x Up by G.)
The map 03BB(G U’P)I exists and is, uniquely, determined as ~U’P o pr2 :
G x Ui - UP is invariant with respect to I and G and ~G U’P : G x Ui -
(G  U’P)I is a G-map. One checks that Up together with Â(G x U’P)I : (G x Up),
~ UP is the geometric quotient of (G x U’P)I by G. Q.E.D.
There is a morphism f from G x U; to X defined by

If a E I, then

From this, it follows that f is an I-morphism if one views X together with
the trivial action of I.

As a result of the universal mapping property of the quotient (G x U’P)I,
f must factor through (G x Up)I. We obtain, therefore, a unique map
(G x U’P)I ~ X such that the diagram

is commutative.

On page 60 an operation of G on (G x U’P)I was defined through the
map

With this operation one finds that the map h : (G x U’P)I ~ X is a
G-morphism.

Consider now the point (PG x u,,(e, P) = Q E (G x U;)I on (G x U;)I.
CLAIM II: There is an open G-stable neighborhood W of Q on (G x Up)I

(open with respect to the Zariski topology) such that the map h : (G x U;)I
- X is etale for every point Q’ E W.
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PROOF OF CLAIM II: The map h is of finite type and locally at Q an ana-
lytic isomorphism. h is, therefore, etale at Q. By [6], Exposée I, proposi-
tion 4.5, we conclude that there exists an open subscheme of (G x Up)I
which contains Q and on which h is etale. If W is taken maximal, W is
G-stable and satisfies claim II. Q.E.D.

As the map h : W - X is open, [6], V = h( W ) is an open subscheme
of X. Furthermore, Vils G-invariant.

Let UP = UP n V. Then, Up is invariant under I and contains the point
P. By making Up smaller, if necessary, we may assume in addition that
UP is open on Ui , affine and I-invariant.
The group I operates, in this situation, on the affine scheme G x Up via

and the geometric quotient (G x Up), with respect to this action, exists.
The considerations above show that G, again, operates on (G x Up),,

as defined on page 60, that ( UP)I is the geometric quotient of (G x Up)I
by this operation of G and, also, that the G-map

is etale for every point Q e (G x Up )1.
Furthermore we obtain that for every point Q e Up, the scheme UP

is transversal to the orbit of Q with respect to G. To make this more pre-
cise, we consider the diagram of etale maps which are G-invariant

As the orbit of the point (e, Q) E G x Up, with respect to G, is transversal
to Up and the map h o (PG x Up is etale we conclude the above transversality
statement.

PROPOSITION (1.13): Denote by xan the analytic quotient of X by G, in
the sense of Holmann, existing by [ 10 and [12], compare corollary 1.10.
There is a natural analytic morphism (UIP)an ~ Xan which is a local iso-
morphism at every point Q E (UIP)an where (UIP)an is the analytic space which
is associated to the scheme ut.

PROOF: follows from lemma 1.14.

LEMMA (1.14): Let P E X, Op be the orbit of P by G, I be a finite subgroup
of G which contains the stabilizer Ip of the point P with respect to G, Up
be a locally closed affine subscheme of X containing P which is transversal
to Op at P and on which I operates, UP be the geometric quotient of Up by I
in the sense of schemes and, finally, ~U : Up - ut the quotient map.
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If P = qJu(P), then, (u;)an is locally at P isomorphic to xan at the point
P = Àx(P); where Àx : Xan ~ xan is the analytic quotient map.

PROOF OF THE LEMMA: Take the action of G on (G x Up)I as defined
on page 60. Then G, as a Lie group, operates on ((G x Up)I)an. The ana-
lytic quotient of this operation exists and is isomorphic to (UIP)an.

For the proof of this fact we consider the commutative diagram of
holomorphic maps

It is easily seen that ((G x UP)I)an, respectively, (UIP)an are the analytic
quotients of (G x UP)an, respectively, Upn by I. Also, one checks that Upn
is the quotient of (G x Up)an by G. Together this implies that (UIP)an is
the quotient of ((G x UP)I )an by G, in the analytic sense.
Looking back at page 62 we find that there is a G-morphism

By the universal mapping properties of the quotient, we obtain a map
h : (UIP)an ~ Xan such that the diagram

is commutative.

If (e, P) E ((G  UP)I)an, h((e, P)) = P. Lef 03BB(G  UP)I(e, P) = P’, P’ ~ ut
and 03BBX(P) = P. Then, h(P’) = P and h is, by [10], p. 421 ff., and [12],
locally an isomorphism. Holmann uses in the proof of this statement
the important fact that the finite group I contains the stabilizer of P with
respect to the action of G. Q.E.D.

REMARK (1.15): The main property of the G-stable etale map
h : (G x UP)I ~ X which is implicitely needed in the above consideration
is that for any C-valued point Q E (G x UP)I the stabilizer of Q and
h(Q) E Xwith respect to G are equal. Notice, this is not true for the G-map
G x Up - X.

So far our construction was local and related to the point P. We have
shown that, for every point P E X, there exists an affine locally closed sub-
scheme Up of X containing P on which the group I, the stabilizer of P,
operates, such that the diagram
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is commutative and the maps h and h are etale.
It is not difficult to check that for finitely many appropriate points

P1, ’ ’ ’, Pn of X and their corresponding schemes Upl , ’ ’ ’, Upn, X is
covered by the open sets hi((G  UPi)Ii), i = 1, ···, n, where h is the

stabilizer of the point Pi and hi : (G x Up,)Ii ~ X is the map introduced
on page 62.

Let W = ni=1(G  UPi)Ii be the direct sum of the schemes (G x UPi)Ii,
W = fl?= i (G X UPi)Ii ~ X the surjective etale map induced by the maps
hi, and U = ni=1(UIiPi) the direct sum of the scheme ut:. Then the ope-
rations of G on (G x Up,)Ii induce an operation of G on W. This operation
is proper and Ll is the geometric quotient of W in the sense of schemes.
The diagram

is commutative and h : Uan ~ Xan is a surjective etale map of analytic
spaces. If RanU = Uan Uan is the fibre product with respect to h, then, by

Xan

definition, RÜ is a closed analytic subspace of Van X Ua" which defines an
etale equivalence relation on Van with Xa" as quotient, i.e., the diagram

is a quotient diagram, and the maps 03C01, 03C02 are etale as h was etale.

CLAIM III: RanU is a scheme. More precisely, the set RU which belongs to
RÍt carries the structure of a scheme and the associated analytic space is
RanU. Furthermore Ru defines an etale equivalence relation on V.

PROOF OF CLAIM III: Assume first that the scheme X is reduced. Then

aiso V and Xan are reduced.

Consider the map uan x uan h h Xan  Xan and let 0394X be the diagonal
of Xan x Xan. By definition, RanU is the fibre over 0394X of the morphism h x h.
We want to show that the set Ru is closed in U x U with respect to the Za-
riski topology. For this purpose we look at the diagram
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where the objects appearing are viewed as topological spaces in the Za-
riski topology.
We need to say what the Zariski topology on the set X x X should be.
Suppose X x X is endowed with the Zariski topology 6. G x G acts on
X x X via the factors and X x X is set theoretically (with respect to the
C-valued points) the quotient by this action. X x X, in the above diagram,
is defined to be the topological quotient of X x X by G x G with respect
to the Zariski topology of X x X.
The maps which appear in the diagram (*) are continuous. Also,

the diagonal 0394X of X x X is closed in X x X, as the action of G on X is
proper and therefore the graph F c X x X of this action is closed in
X x X, all with respect to the Zariski topology. This implies that RU =
(h  h)-1(0394X) is a Zariski closed subset of U x U. As RU is closed in
tI x V, it is, in a canonical way a reduced C-scheme of finite type. This
C-scheme is denoted in the following by RU.

It remains to show that the analytic space associated to Ru is the ana-
lytic space Rif.

But this is a consequence of Hilberts Nullstellensatz and the fact that

Ri and RanU are reduced, have the same underlying sets, and are both sub-
spaces of (U  U)an = Uan  Van.
This settles the reduced case for it is clear that Ru (7 defines an

equivalence relation on V which is etale.
If X is not reduced we look to the diagram

and pass to the corresponding diagram of reduced spaces

By the above considerations we obtain that (RanU)red is a closed subscheme
of U,.ea X Ured. Denote this scheme by (RU)red and consider the diagram

6 In the proof of general quotient theorem stated in 1.9 one has to take the Zariski
topology of the algebraic space Xx X as defined in [15], p. 132.
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where the maps ni are etale and define an etale equivalence relation on
Ured. 

Using [7], IV, 18.1, we obtain a uniquely determined C-scheme R,

of finite type over C together with two etale maps R  V such that
«2

the associated diagram of reduced schemes

is the diagram

We show that the analytic space Ran associated to R is isomorphic
to the space Uan  XUan.
For this purpose we notice that the analytic maps h · ai : Ran ~ :Kan,

i = l, 2, are equal, as they are etale and the associated reduced maps are
equal. We obtain therefore a unique map Ran ~ Van x XUan which is easily
checked to be an isomorphism. (Use that the maps appearing in the
diagrams Ran  Uan and Uan  XUan ~ :Kan are étale.)

This fact allows to prove that the diagram R  LI defines an etale

equivalence relation on U as follows.
First, there exists a map R ~ U x U. As the associated map Uan x XUan

~ Ran ~ Van X Van is a closed embedding, also R - U X E7 is a closed

embedding by [6], XII, 3.2, and therefore R a closed subscheme of
LI X V. That the subscheme R of V x U defines an equivalence relation
on ÎJ is now easily checked by using again the fact that Ran ~ Van x XUan
and that Van x XUan defines an equivalence relation on Van in the analytic
sense.

This proves the claim.

Putting things together we see that Ri = (7 x XU is a closed subscheme
of U x U and that the projection maps

are etale and define an etale equivalence relation on U.
Hence, the diagram R-  U of schemes defines a separable algebraic

C-space Y of finite type for which the associated analytic space is iso-
morphic to Xan.
Let W be the scheme from page 64 and W ~ X the etale map. RW =

W X x W shall be the fibre product. Then, R.  W ~ X is the G-stable
X2

etale covering of X.
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We have the diagram

where Àw : W - U is the quotient morphism and Àw : RW ~ Ru the
morphism induced by Àw via RW  W  W 03BBW 03BBW U  U. (Rw is

mapped to Ri, because the analytic map (03BBW  03BBW)an maps RanW to Rvn.)
On Rw the group G acts in a natural way by the rule

and with this action the maps ni are G-maps.

CLAIM IV: The geometric quotient of Rw by G exists and is isomorphic
to Ru .

PROOF: Consider the diagram

Then the G-map pi : Rw - Ri x gw is surjective, etale and radical,
hence an isomorphism. Similar as in the proof of claim I one concludes
that Ru is the geometric quotient of RU UW by G. Q.E.D.

For the algebraic space Y, defined by RU  U ~ Y and the map 03BB,
X2

definition 1.5 in [22] must be verified.
Statement 1 is obviously true for the algebraic space Y. For the proof

of statement 2 of definition 1.5 in [22] assume, V ~ Y is an etale map
where V is a scheme. We must show (compare [15], p. 104) that for every
point P c V there exists an etale neighborhood g : V’ ~ V of P, where
V’ is a C-scheme, and a G-stable etale morphism V’ - X, where V’
is also a C-scheme on which G operates, such that Tj’ is the geometric
quotient of V’ modulo G in the sense of schemes. In that event, the struc-
ture sheaf of V’ is the fixed sheaf O00FF, of OV’.
The etale map V - Y can be described by a commutative diagram
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where V’ is an affine scheme, V’ ~ V is a representable etale covering of
V and f ’ is an etale map.
There is a commutative diagram

where W x UV’ is the scheme product.
The group G acts on W  U V’ in a natural way (the operation is induced by
the one on W ) and f’ is an etale G-map. Similar to the proof of claim 1
one concludes that V’ is the geometric quotient of W  UV’ by G in the
sense of schemes.

For the proof of statement 3 of [22] definition 1.5 we consider a separ-
ated C-space Z and a G-invariant morphism f : X ~ Z. Let RZ* Z*
Z be a representable etale covering of Z where Z* is affine. There is a com-
mutative diagram

where f’ and f " are maps of schemes.
The operation of G on X induces an operation of G on the schemes X*

and RX* such that the etale maps 03C0*i and y are G-maps. Furthermore, the
diagram Rx* X x zZ* determines X as an algebraic space. For every
point P* e X* the stabilizer of P* with respect to G is equal to the stabilizer
of the point y(P*) E X.

Let Up, i = 1, ···, n, be the locally closed subscheme of X constructed
on page 64 and Ii be the stabilizer of Pi. U*i = 03B3-1(UPi) shall be the
inverse image of Up,. Then h operates on U* and also on G x U*i as
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described on page 59. The arguments used in the proof of claim 1-111
yield:
1. There exists a surjective etale map W = U(G x U*i)Ii ~ X, where

(G x U*i)Ii denotes the quotient of G x U* by Ii. G operates in a na-
tural way on (G x U*i)Ii such that Â is a G-map.

2. The geometric quotient of (G x !7*/* by G exists and is isomorphie
to U*iIi.
We obtain the diagram

where the composite map y : U* ~ Y is etale as U*iIi ~ UIiPi is

etale. Let RU* = U* x Y U*. Then Ri* is a closed subscheme of U*  U*
the diagram

defines Y as an algebraic space. 
To prove the existence of a unique map Y 1 Z making the diagram

commute, we notice that there exists a unique map

such that

is commutative.
It follows from the considerations in claim IV that J* induces a unique
map f** : U* x yU* = RU* ~ Rz*.
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The maps and define a morphism f : Y ~ Z via

satisfying the commutative diagram

Obviously f is uniquely determined.
This completes the proof of theorem 1.4.

COROLLARY (1.16): If in the situation of theorem 1.4 the scheme X is
normal then also the quotient Y is normal.
The proof follows immediately from the fact that the Y is normal as

an analytic space, [10], Satz 12. The algebraic space Y has then also to be
normal.
We explain now how one can obtain an algebraic space Mg of finite

type and proper over C which is over the complex numbers a coarse
moduli space for stable curves of genus g.
The notion of a family of stable curves of genus g over a scheme S is

as defined in [5], 1.1.

For a noetherian C-scheme S we denote by 19(5) the set of classes
of families of stable curves of genus g over S up to isomorphism. The
collection of sets Mg(S) form a contravariant functor from the category
of noetherian C-schemes to the category of sets. Mg can be extended in
a natural way to a functor from the category of noetherian algebraic
C-spaces to the category of sets which is a sheaf (i.e., sheafify with respect
to the etale topology). This functor is called the functor of stable
curves of genus g and is denoted also by 1 9 . 
We want to show that1g has in the category of algebraic C-spaces a

coarse moduli space. (Compare [20] or [22] for the definition.) For this
purpose we notice that by [5], p. 78, for a family C - S the canonical
sheaf cocls of C - S is relatively ample and 03C9~3C/S is very ample. Using the
sheaf 03C9~3C/S we obtain locally a morphism 03A63 from C ~ S into the projective
space P59-6 x S which is an isomorphism on the fibres of C/S and has
the property that the fibres of the image have all the same Hilbert poly-
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nomial h(x) = (6x-1)(g-1). Let Hilbfip(5’,)- 6 be the Hilbert scheme over C
which parametrizes all closed subschemes of p5g-6 with h(x) as Hilbert
polynomial. One shows then by arguments to be used in the proof of pro-
position 2.2 that there exists a locally closed subscheme Hg c Hilbh(x)P
which parametrizes the 3-canonical stable curves of genus g. (The image
of a curve C/S under the map ~3 is called a 3-canonical stable curve.)
Let F - Hilbh(x)P5g-6 be the universal family over Hilbh(x)P5g-6 and 0393g ~ Hg
be the pullback of 0393 to Hg. On H, the group PGL (Sg - 6) operates in a
natural way. It follows from [5 ], lemma 1.12, that this operation is proper
and has finite stabilizers as for every C-valued point P E H. the stabilizer
is isomorphic to the automorphism group of the fibre over P in the family
0393g ~ Hg and this group is finite.
The geometric quotient M. of Hg by PGL (5g - 6) exists therefore by

theorem 1.4 and is according to the considerations in [22] ] the coarse
moduli space for stable curves.

Clearly, M, contains the coarse moduli space for smooth curves of
genus g as an open subspace.
By the stable reduction theorem for curves ([5], p. 87 ff) and the valua-

tion criterion for proper algebraic spaces (compare page 53) we obtain
that M,, is proper over C.

2. Moduli spaces for surfaces of general type

Let V be a minimal surface of general type defined over C, i.e., V is a
smooth projective surface of Kodaira ’ dimension 2 which is minimal.
KV denotes the canonical line bundle and Pa(V) the arithmetic genus of V.
Kj is the self-intersection number of the canonical bundle KV. By

[3], Kt is an integer ~ 1.

We will show, in this chapter, that over the complex numbers for mini-
mal surfaces V of general type with Kj = K2, Pa(V) = pa, where K2 and
pa are fixed integers, a coarse moduli space, in the sense of definition 2.6
exists.

See theorem 2.7 for a more precise formulation.
We must recall certain facts on algebraic surfaces of general type.
Let V be a minimal surface of general type. The m-genus pv(m) =

dimcHO(V, K~mV) of V satisfies the formula

for m ~ 2.

7 Compare [22], p. 2, for this notion.
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In [3], it is demonstrated that, for any surface V of général type, the
map

is a birational morphism.
Also, one finds in [3] that the image variety 03A6mK(V) = Wm is normal

and has only isolated singularities which are rational double points, pro-
vided m ~ 5. By an unpublished result of Kodaira Wm is even arithmeti-
cally normal, provided m ~ 8.

These facts imply that every minimal surface V over C of general type
with fixed K2V = K 2 and pa(V) = pa can be mapped into the same pro-
jective space PN/C by the map 03A65K, N = IOK 2 +pa-1, in such a way that
the image surface 05K(V) = W has Hilbert polynomial

We call such a surface W = 0 , (V) a 5-canonical surface in pN.
In the following we consider minimal surfaces V of general type de-

fined over C such that K2V = K2,Pa(V) =Pa.
PROPOSITION (2.1): Let V and V’ be minimal surfaces of general type

defined over C such that K2V = K2V, and pa(V) = pa(V’). Then, V and V’
are isomorphic if and only if the surfaces 03A65K(V) and 05K(V’) are pro-
jectively equivalent, i.e., there exists a projective transformation
uEPGL(N), N = 10.K;+Pa(V)-I, such that

PROOF: It is clear that an isomorphism 6 : V ~ V’ induces a projective
transformation 03C3 ~ PGL(N) which maps 03A65K(V) isomorphically onto
03A65K(V’). The converse is also obvious. As a matter of fact if the varieties
03A65K(V) and 03A65K(V’) are projectively equivalent, the varieties V and V’
are birationally equivalent. But Vand V’ are minimal models and, there-
fore, isomorphic.

Proposition 2.1 leads us to consider the Hilbert scheme Hh(x)PN which
parametrizes the surfaces in PN with h(x) as Hilbert polynomial. N =
10 · K2 + pa - 1, h(x) = 5 2x(5x - 1)K2 + pa, with K2 and Pa fixed. Let

0393 ~ Hh(x)PN be the universal family in PN x Hh(x)PN of surfaces belonging to
Hh(x)PN. If P is a C-valued point of Hh(x)PN, we denote by rp the fibre of r -
Hh(x)PN over the point P.

PROPOSITION (2.2): There exists a locally closed subscheme H of Hh(x)PN
such that a C-valued point P E Hh(x)PN belongs to H if and only if the sur
face r p is a 5-canonical surface in PN.
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The proof of proposition 2.2 and the construction of H will be ob-
tained in various steps.
We determine first an open subscheme H’ of Hh(x)PN such that a point

P e Hh(x)PN is in H’ if and only if the fibre Fp is an irreducible, normal sur-
face with only rational double points as singularities. By arguments si-
milar to those used in the proof of [22], proposition 2.12, we determine
a maximal open subscheme U1 of Hh(x)PN such that the induced family
03931 = F x HpN(hx) U1 ~ U1 is smooth with connected fibres. U1 will be
an open subscheme of the scheme H’ we are constructing first.
Suppose S is the complement of U1 with respect to Hh(x)PN, i.e., S =

Hh(x)PN-U1.
Let S1, ···, Sr. be the irreducible reduced components of S and

0393Si = F x HpN h(x) S’i ~ Si the pullbacks of the family 0393 ~ H;c;) to the
schemes Si . Furthermore let Tsi ~ S1, ···, rSr -+ Sr, r ~ r*, be those
families among the families 0393Si ~ Sb i = 1, ···, r*, which contain an
irreducible surface as fibre with only normal rational double points
as singularities.

CLAIM: The generic fibre of any of the families 0393 i ~ Si, i = 1, ..., r,
is a surface with only normal rational double points as singularities. To
prove this suppose P E Si is a C-valued point of Si such that the correspond
ing geometric fibre rp is a normal surface with rational double points as
singularities.

Let R be a complete discrete valuation ring of rank 1 and 03B2 : Spec (R)
~ Si be a morphism which maps the closed point of Spec (R) to P E Si,
and the général point of Spec (R) to the général point of Si.

Consider

The general fibre of 0393R ~ Spec (R) which is irreducible has at most iso-
lated singularities as the opposite would imply that the closed fibre of
FR --+ Spec (R) is singular along a curve, contrary to the assumption.
We must prove that the general fibre of TR has only rational double

points as singularities. We may assume that the singular points of the ge-
neral fibre of FR are all K-rational, where K is the quotient field of R.
Otherwise this situation can be arrived by taking a finite field extension
K’ of K and the integral closure R’ of R in K. If Q is a singular point of the
general fibre of FR and Q is the specialization of Q over R, then, Q is a
singular point of the closed fibre of FR and, therefore, a rational double
point of the closed fibre. In particular, the multiplicity and the embedding
dimension of the local ring of the closed fibre Of FR at Q are 2, respective-
ly, 3. Also, Q is an isolated double point of the closed fibre of TR in the
sense of Kirby [14] and [4].



74

One checks now that the embedding dimension of the general fibre
at Q is 3, and, by the arguments of Kirby [14], p. 601 ff, and the general
WeierstraB preparation theorem [1 ], p. 72, that Q is an isolated double
point of the general fibre of TR . The multiplicity of Q on the general
fibre of FR has to be ~ 2, because its specialization Q has multiplicity = 2
on the closed fibre. This yields, together with [4], Satz 1, the assertion
that Q is a rational double point of the general fibre of 0393R. The claim is
justified.

Let Fi be the general fibre of the family 0393Si ~ Si, i = 1, ···, r, and

Q(i)1, ···, Q(i)n be the K-rational singular points of i. We view i as a
subscheme of Fs, and the Q)i) as points of the scheme r Si. Suppose zii)
= Q(i)1&#x3E;, ···, Z(i)n = Q(i)n&#x3E; are the closed subschemes of Tsi having
Q(i)1, ···, Q(i)n, respectively, as generic points.
Blowing up the closed subvarieties Z(i)1, ···, Z(i)n of rs,, one creates

a family

of surfaces. By [ 17 ], theorem 4. l, the general fibre of 0393(1)Si ~ Si has, again,
only rational double points as singularities. The procedure described
above is applied again to the family 0393(1)Si ~ Si and a family 0393(2)Si ~ Si
results.

[17], theorem 4.1, implies that this process leads, after finitely many
steps, to a family 0393(m)Si ~ Si for which the general fibre is smooth.
Consider Si , the maximal open subscheme of Si where the family

0393(m)Si ~ Si is smooth and, moreover, the family Fs, x SiS’i ~ S’i. Then,
every fibre of the family Tsi x SiS’i ~ S’i is a surface of general type with
only rational double points as singularities. In this way we obtain locally
closed subschemes S’1, ···, S’r. The open subscheme of Hh(x)PN determined
by the Zariski open subset U1 ~ S’1 ~ ··· ~ S,.’, this scheme is denoted
also by U1 ~ S’1 ~ ··· ~ S’r, will be an open subscheme of H’.
We continue the construction of the scheme H’ by considering the sub-

scheme T = Hh(x)PN-(U1 ~ S’1 U ··· ~ S’r u Sr+1 ··· u Sr.).
Tl , ’ ’ ’, Ts* shall be the irreducible reduced components of T and

0393Ti ~ Ti the pullback families. Applying the method used for the families
0393Si ~ Si, i = 1, ···, r*, to the families rTj ~ Tj, j = 1,..., s*, we
find open subschemes Ti of Tj, j = 1, ’ ’ ’, s, such that Ul u Sl w ...
u Sr u Ti u ’ ’ ’ u T’s is an open subscheme of H’. The process comes to
an end after finitely many steps and leads to the scheme H’.
For the construction of the scheme H we proceed like in [22], propo-

sition 2.21 or [20], proposition 5.1. By these arguments we find a locally
closed subscheme H of H’ such that a C-valued point P E H’ is in H if
and only if the fibre Fp is a 5-canonical surface in PN. Q.E.D.
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The group PGL(N) operates on the scheme Hh(x) in a natural way
and H is stable by this operation, as the construction of H implies, hence
PGL(N) induces an action on H.

PROPOSITION (2.3): The induced action of PGL(N) on H is proper. More-
over, for any geometric point P E H the stabilizer with respect to this action
is finite.

For the proof of proposition 2.3 the following lemma is needed.

LEMMA (2.4): Let R be a complete discrete valuation ring over C with
quotient field K and residue field k. 0393i ~ Spec (R), i = 1, 2, shall be two

families of 5-canonical embedded surfaces of general type over R. 8 Assume
that the general fibres of r 1 and T2 are isomorphic. Then, there exists a
finite ramified extension Spec (R’) ~ Spec (R) such that the families
03931 x Spec (R’) and 03932 x Spec (R’) are isomorphic.

PROOF: By [19], p. 672, corollary 1, the lemma follows if the families
0393i ~ Spec (R) are smooth. In the general case we show that there exists
a finite ramified covering Spec (R’) ~ Spec (R), R’ again a complete dis-
crete valuation ring, and a commutative diagram of algebraic spaces

with the properties:
1. fi’is proper and smooth,
2. ll’ is proper and for the points t E Spec (R’) the induced morphisms

(0393’i)t ~ (0393i)~(t) are a minimal resolution of singularities.
We call diagram (*) a resolution of the morphismfi . Fi - Spec (R).

If this is proved, the R’-spaces 0393’i, i = 1, 2, will be isomorphic over R’
by arguments as in [19]. This implies that Fi x Spec (R’ ), i = 1, 2, are
projectively isomorphic as Fi x Spec (R’) is a 5-canonical embedding of
0393’i ~ Spec (R’).
Consider 0393i ~ Spec (R). There exists a unique map Spec (R) ~ H such
that

Let Ci be the closure of Ài(Spec (R)) in H. Then, Ci is an irreducible
curve over C.

In the families Qi = 0393H x HCi ~ Ci resolve the singularities of the
general fibre of 03A9i ~ Ci by the process described one page 74. Let i ~ Ci

1 0393i ~ Spec (R), i = 1, 2, are flat, proper families over Spec (R) with 5-canonical
surfaces as geometric fibres.
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be such a resolution which is minimal. i ~ Ci has only finitely many
singular fibres and these fibres have only rational double points as sin-
gularities.

Suppose now that Pi is the image of the closed point of Spec (R) by
the map Ai and consider the fibre (ài),, of ài 1 Ci over Pi. If these
fibres are smooth, we conclude that the pullbacks of Sz x Spec (R) -
0393i ~ Spec (R), i = 1, 2, are smooth and obtain the lemma.

If the surfaces (i)Pi have singularities they will be rational double
points. By Brieskorn, see [9], the resolution of the versal analytic defor-
mation of a rational double point exists. Using this result we conclude
that there exists an open neighborhood Ui of P on Ci and a ramified
covering U’i ~ Ui together with a smooth family ’i ~ U’i such that the
diagram

resolves the singularities of the morphism hi : Î2i x ciUi ~ Ui. This fact
follows first locally in a neighborhood of a singular point of (i)Pi by the
universal property of the versal deformation space and its resolution and
then also globally, because resolving the morphism i  CiUi ~ Ui is a
local problem. Look at [4], p. 90. One checks that the resolution ’i ~ U
of i  Ui ~ Ui is an algebraic space. 9

Let P’i E U’i be a point lying over Pi E Ui and let ÔP’i be the completion
of the local ring of P’i. One can theni find a complete local ring R’ ~ R
such that a commutative diagram of the following form exists

where Ûi and 0; stand for the germs of analytic spaces determined
by Ui (respectively, U’i) in the points Pi (respectively, p’i). 03BB’i maps the
closed point of Spec (R’) to the point PI of U’i. Taking the pullbacks
0’ x ê, Spec (R’), we obtain two smooth families of surfaces over Spec (R’)
which satisfy diagram (*). The lemma is proved.
Now to the proof of proposition 2.3.

9 This fact follows also from the forthcoming paper of M. Artin and M. Schles-
singer, Algebraic construction of Brieskorn’s resolutions.
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It has to be proved that the map PGL(N)  H ~ H  H, defined by
(’1’(g, h» = (g(h), h), is proper. Using the valuation’criterion for proper
morphism the following has to be shown.

Let R be a complete discrete valuation ring with a residue field con-
taining C and quotient field K. Let h : Spec (R) - H x H be a morphism
and g : Spec (R) ~ PGL(N) x H be a rational map such that ’![" o 9 = h
(as rational maps). Then there exists a morphism gR : Spec (R) ~
PGL(N) x H such that the diagram

is commutative and gR is equal to g as a rational map.
The map h determines two 5-canonical surfaces over R in PN/R which

shall be denoted by 03931 and 03932. The morphism g : Spec (K) PGL(N)
x H induces a morphism Spec (K) - PGL(N), i.e., a projective linear
transformation of PN/K which maps the general fibre of 03931 isomorphi-
cally onto the general fibre of 03932.
Also the rational map g : Spec (R) ~ PGL(N) induces a unique mor-

phism gR : Spec (R) ~ PGL(N), the projective closure of PGL(N). By
lemma 2.4 this morphism is a map from Spec (R) into PGL(N). With gR
as map the diagram (**) is commutative.

This proves the first statement of proposition 2.3. For the second
statement we notice that the stabilizer group of a geometric point P of H
(stabilizer with respect to the action of PGL(N)) is isomorphic to the
automorphism group of the geometric fibre Fp of the family F - Hh(x)PN
over the point P. But this group is by [18] finite. Q.E.D.

One expects that the geometric quotient of H by PGL(N) is a coarse
moduli space for the surfaces V of general type defined over C having
KV = K2, and Pa(V) = pa.

Introduce the following notions.

DEFINITION (2.5): A family V ~ S is called a family of normal minimal
surfaces of general type with K2 and pa as invariants if
1. The family V ~ S is flat and proper.
2. The geometric fibres Vp of V ~ S are irreducible, normal surfaces

without exceptional curves of the first kind and with only rational
double points as singularities.

3. For any geometric fibre Vp of V ~ S, K(VP)2 = K2 andPa(Vp) = pa.
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Furthermore, Vp is a surface of general type, i.e., a minimal desingular-
isation of Vp has Kodaira dimension 2.
Let K2 and pa be fixed integers and let M = MK2,Pa be the functor

from the category of noetherian C-schemes to the category of sets where,
for a C-Scheme S, M(S) is the set of isomorphy classes of families of
minimal surfaces of general type with K 2 and p,, as invariants. We normal
extend M to a functor from the category of noetherian algebraic C-spaces
to the category of sets and sheafify with respect to the etale topology. This
new functor is also denoted by-4Y and is considered in the following.

DEFINITION (2.6): An algebraic C-space of finite type M and a mor-
phism 4l from -Ô to the functor hM(S) = Hom (S, M), S a noetherian
C-scheme, is called a coarse moduli space for the functorjé if
1. for every algebraically closed field k which contains C, the map

4l(Spec (k)) :M(Spec (k)) ~ hM(Spec (k)) is an isomorphism.
2. Given an algebraic C-space of finite type N and a morphism l’ from
M to the functor hN, there exists a unique morphism 03BB : hm --+ hN
such that 03A8 = 03BB · 0.

Return to the scheme H.

Applying theorem 1.4 we conclude that there exists an algebraic C-
space of finite type which is a geometric quotient of H by PGL(N) in the
category of algebraic spaces.
Denote this quotient by MK2, pa .
THEOREM (2.7): The C-space MK2,Pa is a coarse moduli space for the

surface of general type with K2 and Pa as invariants.
The proof of theorem 2.7 requires certain facts on the canonical inver-

tible sheaf of a flat family V ~ S of normal minimal surfaces of general
type.

If V ~ S is such a family with K 2 and pa as invariants, the geometric
fibres of V ~ S are locally complete intersections. f is flat, and, therefore,
the morphism f is locally a complete intersection, i.e., locally V is iso-
morphic to an S-scheme V(f1, ···, fn-2) E An x U, where U c S is open
and fi,...,in-2 ~ 0393 (An  U) is a regular sequence. According to [8],
chapter III, there exists a canonical invertible sheaf mvjs on V with the
next properties:
1. For every T ~ S, COV x TIT is canonically isomorphic to 03B2* (03C9V/S). In

particular, the pullback of covls to a geometric fibre of the family
V :4 S is the canonical sheaf of the fibre.

2. co0 ’ defines a birational morphism 4Yvjs from VIS into a projective
space PN/S which induces on the fibres the 5-canonical mappings. This
is deduced from the vanishing theorems in [3] and from [20], p. 19.
We conclude :
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LEMMA (2.8): With the above notation the invertible sheaf C005 defines
a morphism 03A6V/S from V/S into PN/S with the following properties: For
every point P E S there exists an open subset U of ,S containing P such that
1. the map 03A6V/S induces a closed imersion of the family Vu = V  S U ~ U

into PN x U.,
2. the image family 03A6V/S(VU/U) is a family of 5-canonical surfaces in

PN x U, N = 10K2+pa-1.
Using Lemma 2.8 the proof of theorem 2.7 is on the same lines as the

proof of proposition 2.16 in [22].
We look at applications of theorem 2.7.
It is explained in [22] (see the introduction of this paper) that it is im-

portant for the classification theory of compact, complex manifolds to
study the structure of the Albanese mappings of such manifolds.
Theorem 2.7 and results of Kawai and Iitaka can be employed to

determine the structure of the Albanese mapping of a compact, complex
Kâhler manifold of dimension 4 which has only constant meromorphic
functions.

Suppose M is such a manifold and let a : M - T = Alb (M) be the
Albanese mapping, where T is the Albanese torus. The arguments in
[13], p. 611, prove that dim T = irregularity of M = q(M) ~ 4. Iitaka
has remarked in [11] that, by the arguments given in [13] the following
statements hold.

1. T has no effective divisors.

2. a is proper and surjective.
3. Any general fibre 03B1-1(t), t~T, is connected.
4. The case q(M) = 1 = dim T is not possible.
5. If q(M) = 3, the general fibre 03B1-1(t) is an elliptic or rational curve.

Hence, we have some understanding of the structure of the Albanese
mapping of M if q(M) = 4 or 3.

But what is the situation if q(M) = 2? Here, the general fibre is a
smooth connected surface. The question relates to the type of this
surface, type in connection with the classification table of Kodaira, [16].
One expects that the general fibres of the map a : M - T are surfaces

of Kodaira dimension ~ 0, i.e., are not surfaces of general type or el-
liptic surfaces of general type.
Now, Iitaka has shown in [11 ], theorem V, that a general fibre of

a : M - T cannot be an elliptic surface of general type.
It remains to exclude the possibility that a surface of general type

appears in a : M ~ T as a general fibre.
But this can be done with the same arguments that Kawai applied

in [13], theorem 2. There, Kawai shows that the general fibre of the
Albanese map
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of a 3-dimensional compact complex manifold with irregularity 2 is not
a curve of genus ~ 2.

In his discussion two facts about curves of genus 2 are important.
1. The curves of genus 2 have finite automorphism groups.
2. For curves of genus g, g ~ 2, the moduli space is an algebraic space,

i.e., a complex space with many meromorphic functions.
As a consequence of theorem 2.7 and its proof, these two statements are

also true for surfaces of general type and Kawai’s arguments can be ap-
plied. (Compare the forthcoming Springer Lecture Notes of K. Ueno
on classification theory).
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