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In this paper the distributively generated near rings generated, respec-
tively, by the inner automorphisms, automorphisms, and endomorphisms
of a dihedral group of order 2n, n even, are described. For near rings, a
theory of successive decompositions generated by idempotents is de-

veloped. This theory is used in determing the form of the endomorphism
near ring of the dihedral group. The order of the inner automorphism
near ring is found to be n3/4 and that of the automorphism near ring
to be n3/2. The order of the endomorphism near ring is n7/64 if 4|n but
8tn. Otherwise its order is 2n’l(nlgcd(n, 4»)4. The radicals of these mor-
phism near rings are also given and the near ring modulo its radical is
described.

1. Successive decompositions

In this section we extend Theorems 2.1, 2.2, and 2.3 of [6] to cover
successive decompositions generated by idempotents. Since the applica-
tion of this material is to endomorphism near rings, we assume that the
near ring R satisfies the condition that Or = 0 = rO, for each r E R.

THEOREM 1.1. Let e and f be idempotents in the near ring R such that
ef = 0. Then each r E R has a unique decomposition

Thus R = D+N+M, where

THEOREM 1.2. D is a right ideal in R. Each of N and M is an R-subgroup
(and subnear ring) of R.
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The two theorems just stated are proved in a manner similar to that
used in proving Theorems 2.1 and 2.2 of [6]. The following theorem is an
extension of Theorem 2.3 of [6].

THEOREM 1.3. Let R be a near ring such that (R, +) is generated by
{r03B3|03B3 Er, an index setl. Let e and f be idempotents in R such that ef = 0.
Then M is the subgroup generated by {er03B3|03B3 ~ 0393} and N = fAe(Ae is the
normal subgroup generated by {r03B3-er03B3|03B3~0393}, see [6]). Also, D is gen-
erated by elements of the form fa2 + al -fal -fa2’ with al and a2 in Ae .

PROOF. Let r E R and let r’ denote r - er and r" denote r’ -fr’. Note
that eg + r’ - eg = (eg + r - eg)’, g E R. Now r can be written as r = cl
+ c2 + ... + ck, with either ci or - ci in {r03B3|03B3 ~ 0393}, i = 1, ..., k. Since
the application of this theorem in the following sections is to finite

groups, the proof is presented for the case in which each ci is in {r03B3|03B3 ~ 0393}.
The proof can be adapted to the other cases by noting that

By Theorem 2.3 of [6], we may write

Then

Set

Thus

Specifically, Theorem 1.3 justifies the following procedure for working
successive decompositions. One decomposes the generators of R by e
to obtain elements of the form r03B3 -er03B3 and of the form ery . The elements
of the first form are conjugated by the elements of the group generated
by the elements of the second form. Then a second idempotent f is se-
lected from the elements which can be generated by the conjugates. Then
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each element in the set of conjugates (call a typical such conjugate
er + r’y - er) is decomposed as

[(er + r’03B3-er)- f(er+r’03B3- er)] + [f(er+r’03B3-er)].
Next the elements of the form given in the first term are conjugated by the
elements of the group generated by the forms given in the second term.
Then these second conjugates generate D, the f(er+r’03B3-er) elements
generate N, and then ery elements generate M. This procedure may be
iterated and extended to apply to a decomposition involving any finite
number of idempotents. The technique is applied to discover the prop-
erties of the endomorphism near ring discussed in Section 4.

2. Endomorphisms of D2"

The finite dihedral group of order 2n will be designated by D2n and will
be presented as (a, blan, b2, abab). Elements of D2n will be given in the
form aXhs, 0 ~ x ~ n -1, 0 ~ s ~ 1. For the remainder of this paper it

is assumed that n is even.

LEMMA 2.1. The proper normal subgroups of D2n are the subgroups of
(a), the normal subgroup S generated by b, and the normal subgroup T
generated by ab.

PROOF. It is immediate that the subgroups of (a) are normal. Since
aba-1 = a2b ~ S, it follows that (a2b)b = a2 ~ S and that

It is readily shown that the normal subgroup generated by any element of
the form a2xb is S. Since a(ab)a-1 = a3b e T, it follows that (a3b) (ab) =
a2 E T and that T = {a2x|0 ~ x ~ n/2-1} ~ {akb|k is odd} with |T| = n.

LEMMA 2.2. For n ~ 4, D2n has n · (n)cp automorphisms and n inner
auto-morphisms.

THEOREM 2.3. D2n has (n+2)2 endomorphisms.
PROOF. We allow n = 2 so that D4 is the Klein group. Note that the

Klein group has 6 automorphisms. For n = 2, the result is well-known
(see [2]).
Assume n ~ 4. As was shown in [7], if k &#x3E; 1, kin, then D2n contains

t = n/k copies of D2k. The number of ways D2n/(ak) may be mapped
onto any one of these is the same as the number of automorphisms of
D2k. For k &#x3E; 1 and k ~ 2 this number is k · (k)cp and for k = 2 the
number is 6. So there are exactly n - (k)cp endomorphisms with kernel
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(ak) for k &#x3E; 1 and k ~ 2. Also, there are 3n endomorphisms with kernel
(a2). For k = 1, D2n/(ak) ~ C2 and it follows that there are n + 1 endo-
morphisms with kernel (a). There are also n + 1 endomorphisms with
kernel S, n + 1 with kernel T, and the 0 map. Write 3n as 2n+n · (2)~ and
n + 1 as 1 +n · (1)~. Then the number of endomorphisms of D2n is

3. I(D2n) and A(D,2.)

As in [7] and [6], I(D2n)(A(D2n), E(D2n» designates the distributively
generated near ring generated additively by the inner automorphisms
(automorphisms, endomorphisms) of D2n . I or A or E will be used in
cases where no confusion would arise. The conventions used in [7] for
designating functions are followed here: the inner automorphism gener-
ated by axbs is denoted by [axbs]; the endomorphism a such that (a’b’)a
= axy+szbs, 0 ~ y, z ~ n-1, is presented in terms of the images of a
and b as [ay, aZb]; and the function on D2n which maps each power of a
to e and each element outside (a) to some fixed d E D2,, is given as (e, d).

Because the form of the needed idempotent function varies as n varies,
it is more convenient to present I and A as is done below rather than to
use the procedure of Section 1.

THEOREM 3.1. /I(D2n)/ = n3/4.
PROOF. The theorem is true for n = 2. Assume n ? 4. Note that

[ak] = [a, a-2kb] and [akb] = [a-’, S2’b]. Set ô = (ee... ela 2a 2 ... a2),
where the 2n-tuple is used to indicate, in order, the images of

The bar is inserted as a matter of convenience between the images of
an-1 and b. Since 03B4 = -[e]+[a], 03B4~I. Moreover, [ak] = k03B4 + [e],
k = 0, 1, ···, n/2 - 1. Now set

where the symbol 11 separates the image of a(n/2)-1b and the image of
ae/2h. Since a = [e]+ [b], a ~ I. Also,

Obviously, 03B1+03B4 = c5 + a and (a) n (03B4) = (e, e). Also, -[e]+03B4+[e]
= -c5 and - [e]+a+ [e] = -03B1. In total then, for some choice of inte-
gers u, v, and w, an arbitrary element of I can be given in the form
u[e]+va+wc5. Thus I(D2n) is the semidirect sum ([e])+ [(a) ~ (03B4)], (a) ~
(03B4) normal in (I, +) and III = n(n/2)(n/2) = n3/4.
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PROOF. Let fi = (ee ... e ) aa ... a). Since 03B2 = [a, b] + [a, a-1b],
fi E A. Obviously, 03B2 I(D2n). An arbitrary automorphism of D2n has the
form [ak, a-b], (k, n) = 1 (in particular, k is an odd integer). If x is even
set 03C8 = [a, axb] ~ ~ and if x is odd set 03C8 = 03B2[a, ax-1b], where
[a, ax-1b]~I. Then [ak, axb] = ((k-1)/2)03B1+k03C8, i. e. all automorphisms
are in the group generated by I and fi. Since 2p = 03B4 we have, in particular,
that 03B2+03B4 = b+f3. Also, Ct+b = 03B4+03B1 and -[e]+03B2+[e] = -03B2. Thus
(03B2) is a normal subgroup of (A, + ) and, in fact, A = (03B2)+I. Thus
|A(D2n)| = (n(n3/4))/(n/2) = n3/2. Note that if 4|n, we may state that

Also note that for some choice of integers u, v, and w, an arbitrary ele-
ment of A can be written in the form u[e]-v03B1+w03B2.

THEOREM 3.3. Let J(R) designate the radical of a near ring R. Then
J(I(D2n) = 03A6n + [(03B1) ~ (03B4)] and J(A(D2n)) = 03A6n + f(a) ~ (03B2)], where

03A6n is the subring whose additive group is the Frattini subgroup of the
group ([e]).

PROOF. Since (l, + ) is solvable, it follows from Lemma 2.1 of [1 ] that
each maximal right ideal of I contains the commutator subgroup of

(l, +), namely (2a) ~ (2ô).
Note that, if u is odd (u[e]+v03B1+w03B4)03B4 = 03B4 and

Thus, if K is a maximal right ideal which contains u[e]+v03B1+w03B4, then
c5 E K and a e K. It follows that K = (t[e])+ [(03B1) ~ (03B4)], where t is an

odd integer chosen so that (t[e]) is a maximal subgroup of ([e]). Lemma
2.1 of [1 ] assures us that a maximal right ideal of I is also a maximal
I-subgroup. If L is a right ideal which contains no element for which u
is odd, then L is contained in the maximal right ideal (2[e])+ [(03B1) ~ (03B2)].

If I is replaced by A and c5 is replaced by fl in the two paragraphs above,
the statements which result are correct. Since, in our case, the radical is
the intersection of the maximal right ideals, the theorem follows for both
I and A.

By direct observation or by Theorem 2.2 of [1 ] it can be seen that

J(I) and J(A) are nilpotent.
THEOREM 3.4. I/J(I) ~ A/J(I) ~ Z/(q), where q is the product of the

distinct prime factors of n.

PROOF. Note that e. is generated additively by q[e] (see 8.1 of p. 134
of [4]). From this and the theorems of this section it follows that IIIJ(I)J =
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JAIJ(A)J = q and that the additive groups of the quotient near rings
are cyclic. Since each of the two quotient near rings has a multiplicative
identity, each is isomorphic to the ring of integers modulo q (see the
Corollary of p. 147 of [3 ]).

4. E(D2n)

In this section the form of E(D2") is displayed. This is done thru the
use of the technique of successive decompositions which was developed
in the first section. We start by restating the results of Theorem 2.3 in
tabular form.

Endomorphisms of D2n

Form Kernel Number Comment

Let m be an integer such that 0 ~ m ~ n-1. If (m, n) = 1, then
[am, axb] is an automorphism included in form (2). If (m, n) = t, then
m = (mit). t with (m/t, nlt) = 1 and [am, axb] is an endomorphism in-
cluded in (9). If m = 0, then [am, axb] is a form which includes all endo-
morphisms of (5) except [e, an/2]. Thus [aY, axb], 0 ~ y, x ~ n -1,
gives n2 endomorphisms and includes all endomorphisms of (2), (5), (6),
and (9) with the exception of [e, an/2]. So there are six different forms for
the endomorphisms of D2n, i.e. for the generators of E. The idempotent
functions of E which will be used to generate the decompositions will be
designated by y’s. The generators themselves will be designated by a’s.
The procedure followed is that given in the last paragraph of Section 1.
If 03B31 is chosen to be [e, b], the following table is obtained.
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Now it is seen that M(03B31) = {(e, g)|g ~ D2n} and that as a group
M(yl ) is isomorphic to D2n . Among the 03B1-03B31 03B1 there are just two forms:

and

Since the case d = an/2 is included in the first of these forms we may as-
sume that the d of the second form can be given as a"b.
Now these two forms must be conjugated by the y, a’s. This conjugation

yields the generators of A(03B31):

For the second decomposition, set 03B32 = [ab, e] E A (y,). It follows that:

Thus, M(03B32) = {(egeg ··· | egeg···)}g ~ D2n} and as a group is

isomorphic to D2n . In A(03B32) we have:



256

These last five types are of three forms:

If n = 4, then (1) = (eea 2a2 eea2a2), (2) = (ea2a2e | eea2a2), and
(3) = (ea2ea21 eeee). Since (3) = (1)+(2) and each of (1) and (2)
is in the additive center of E(D$), it follows that A(72) = ((1)) 0 ((2))
and that E(Da) = A(y2)+M(y2)+M(yl) has order 256. Until the state-
ment of Theorem 4.1 it is assumed than n ~ 4.

For n ~ 4, we conjugate forms (1), (2), and (3) by the elements of
M(03B32) and obtain two additional forms:

These last five forms furnish the generators for A(72).
To begin the third decomposition let y3 be the element of form (1) for

which y = 1. Then:

So M(73) is generated additively by y3 and is a cyclic group of order n/2.
In A(y3) we have:

and

The conjugation of these five functions by the elements of M(y3) produces
no new forms so, omitting the identity map, we take the remaining forms
as giving the generators of A(73). However, the study of A(y.) is facili-
tated by introducing a new set of generating forms for A(y3). These are
defined by:
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Since (3)-Y3(3) = Al, (2)-03B33(2) = 03BB1-03BB2, (4)-Y3(4) = A4’ and

(5)-03B33(5) = Al -A2 -A3 -A4’ the Â’s do provide a set of generators for
A(y3). For each i the set of functions of the form A, constitute a cyclic
subgroup. Henceforth we identify Ai with the element of that form for
which y = 1, i.e. Âi generates that cyclic subgroup. Note that |03BB1| = n/2
and that |03BB2| = |03BB3| = IA41 = n/gcd(n, 4)).

Obviously, (03BB1) n (A2) = [e, e] so that the sum of (03BB1) and (03BB2) is

direct. Consider «Âl) ~ (03BB2)) ~ (A3). This intersection is the same as
(Âl) n (Â3)- If XÂ1 = y03BB3, then in particular nl2x - 4y and n12x-12y
so that n|8y. Thus an element in the intersection is the identity map or
has order 2. In the latter case a2x must be an/2. If 4n, this is impossible
and the intersection is trivial so that the sum (03BB1)+ (A2)+ (A3) is direct
and has order (n/2)3 = (n/gcd(n, 4))3. If 4|n but 8n, the intersection
is trivial since n1(4y-(n/2», i.e. y03BB3 cannot be of order 2. Thus the
sum is direct and has order n3/32. If 8|n, the intersection has order 2 and
the sum is a subgroup of order ((n/2) - (n/4)2)/2 = (n/gcd(n, 4))3. Since
(Â2) n (Â4) = [e, e], it follows that ((03BB1)+(03BB2)+(03BB3)) ~ (03BB4) = [e, e].
Hence A(03B33) = ((03BB1)+(03BB2)+(03BB3)) ~ (Â4) has order (nlgcd(n, 4»4 un-
less 4|n but 8n. In that case, JA(73)1 = n4/128.

Since E = [[[A(03B33)]+-M(03B33)]+M(03B32)]+M(03B31) and |E| = |A(03B33)|·
(nl2) - (2n)2 we have the following theorem. Note that the case n = 4 is
included in the statement of the theorem.

THEOREM 4.1. If 4|n but 81 n, the order of E(D2n) is n’/64. Otherwise
the order of E(D2n) is 2n3(nlgcd(n, 4»4.

5. The Radical of E(D2n)

PROOF. If, for c E D2n , cu ft (a2), then there is a function n of M(Y2)
or M(03B31) for which g = c so that cu7r = c. But then 03C303C0 E J(E) and 03C303C0

fixes c. This is a contradiction since J(E) must be nilpotent (see Theorem
2.2 of [1 ]).
Note that (a2 ) is a fully invariant abelian subgroup Of D2n and that each

element of E when restricted to (a2) is an endomorphism of (a2). Thus
the restriction is completely determined by its action on a2.

LEMMA 5.2. Let a E J(E). Then a2u = a2’’, where r is divisible by each
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prime factor of n if 41n and is divisible by each odd prime factor of n if
4fn.

PROOF. If a2 u = a2r, then a 2U2 = a2r·r, etc. In order for a to be

nilpotent, there must exist a k such that n12r’. Thus the condition on x
which was stated in the Lemma is a necessary and sufficient condition
for a to be nilpotent.

THEOREM 5.3. J(E) = {03C3 ~ E|(D2n)03C3 ~ (a2) and a2u = a2r, r as in

Lemma 5.2}.
PROOF. By the previous two lemmas, the given conditions on a are

necessary for 03C3 to be in J(E). Conversely, it is easily seen that the set of
elements which obey the given conditions is closed under addition. Let
x E E. Recall that (a2) is fully invariant so that there exists a k such that
a203C0 = a2k. But then, cun 9 (a2) for any c ~ D2n and a203C303C0 = a2rk, where
rk satisfies the conditions on r given in Lemma 5.2. Thus the given set
is an E-subgroup. By Theorem 2.7 of [5] this E-subgroup is nilpotent (the
nilpotence may also be noted by inspection) and by Theorem 2.5 of
[5] the set is contained in J(E).
We now use Theorem 5.3 to determine the size of J(E) and the nature of

the ring E/J(E). Theorem 2.2 of [1] assures us that the quotient near ring
is actually a ring. First we determine J(E) for D8 . From Theorem 5.3 we
have that

It is interesting to note that IJ(E(Ds»/ = 8, /J(A(Ds»)1 = 16, and

|J(I(D8))| = 8. In this case, EIJ(E) has order 32 and additively is the
direct sum of groups of order 2. In the discussion of J which follows it

is assumed that n ~ 6.
Let K = f o E J(E)/a2(J = e, i.e. r = n/2}. The set K is easily seen to

be a nilpotent E-subgroup and, in fact, K = A(03B33) ~ M’ % M", where

Thus K z J(E). Also, |M’| = IM"I = n/2. Note that K has the null
multiplication.
Now consider those elements of J for which a 2U :0 e. If such an ele-

ment is presented in the form for the decomposition of E given in Section
4, then the summand from M(73) cannot be [e, e]. This summand from
M(73) can have any element of K added to it. Of course, the summand
from M(03B33) must be nilpotent and so we define M"’ = (a E M(03B33)|a203C3 =
a2r, r as in Lemma 5.2}. Note that MI:l is analagous to the 03A6n which
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appears in the decomposition of J(I) or J(A) and that |M’’’| = n/2p2 ’ · 
pm if 41 n and |M’’’| = n/4p2 ··· pm if 4|n, the Pi being the distinct prime
factors on n. All told,

Let q = 2p2 ···pm.
The following table sums up the information on the order of J(E).

In the quotient structure E/J(E), M(yl) and M(y2) become rings of or-
der 4 and characteristic 2 and A(73) is reduced to order 1. M(y3) is re-
duced to a ring defined on a cyclic group of order ql2 if 41 n and to a
ring defined on a cyclic group of order q if 4|n. Overall, E/J(E) is a ring
with identity with order as given in the table above.
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