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1. Introduction

Clifford algebras constitute an essential tool in the study of quadratic
forms. However, for infinite dimensional problems, it seems often

natural to ask for some extra topological structure on these algebras.
The present note studies such structures on an example which is the
analogue for Hilbert spaces of arbitrary dimension of the standard
algebras Clk for finite dimensional real vector spaces (the Ck’s of Atiyah-
Bott-Shapiro [2]). In particular, we give an explicit construction of the
covering group of the nuclear orthogonal group; the main result appears
in section 10. The present work relies heavily on a theorem due to Shale
and Stinespring [23] and on general results on Banach-Lie groups which
can be found in Lazard [19].

1 want to express my gratitude to J. Eells, who proposed this problem
to me; to K. D. Elworthy, P. Stefan and R. F. Streater, who have been
listening to me patiently when 1 was wrong as well as when 1 was (hope-
fully) right and who have pointed out to me several improvements; and
to the ’Fonds national suisse pour la recherche scientifique’, for its

financial support.

2. The Clifford algebra of a quadratic form

This section is only to fix notations. For a more detailed exposition,
see Atiyah-Bott-Shapiro [2], Bourbaki [5] or Chevalley [6].

Let H be a real vector space of arbitrary dimension and let Q : H - R
be a quadratic form on H. The Clifford algebra of Q, denoted by Cl(Q),
is a real algebra with unit eo, defined as a quotient of the tensor algebra
of H. There is a canonical injection iQ : H ~ Cl(Q) by which H can be
identified to a subspace of Cl(Q). The Z-graduation on the tensor algebra
of H induces a Z2-graduation on Cl (Q), and the corresponding decom-
position will be denoted by Cl(Q) = Cl+(Q)~+Cl-(Q). On Cl(Q), there
is defined the principal automorphism a and the principal antiautomorphism
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p. Both oc and p are involutions on Cl(Q); the restriction of a to Cl+(Q)
is the identity, the restriction of a to Cl-(Q) is minus the identity; the
restriction of 03B2 to H is the identity.

Let E be a subspace of H and let QE be the restriction of Q to E. The
injection E - H induces an injection Cl(QE) ~ Cl(Q) by which Cl(QE)
can be identified to a subalgebra of Cl(Q). Let (ei)ieI be a basis of H,
and suppose I is given a total order. Let S(I) be the set of strictly increas-
ing finite sequences of elements of I; for s = (i1,···, ik) E S(I ), let es
be the product ei1··· eik in Cl(Q); then (eS)seS(I) is a basis of the vector
space Cl(Q); the identity eo of Cl(Q) corresponds to the empty sequence.
We will write S(k), or even S when there is no risk of confusion, instead
of S({1,··· k}) for any strictly positive integer k.
The rest of this note is concerned with the case in which H is a real

prehilbert space where the scalar product is denoted by (,), and in which
Q is the form x F-+ 81xlz (03B5 = ± 1). We will denote by X H X* the com-
position of 03B2 and oc if 03B5=-1 (the involutions a and p commute) and
the antiautomorphism 03B2 if e = + 1.

PROPOSITION 1. Let H be a real prehilbert space of infinite dimension
.and let Q be the form x H 03B5|x|2 as above. Then Cl(Q) and Cl+(Q) are
simple and their centers both coincide with the scalar multiples of the identity.

PROOF. Let E be a finite even dimensional subspace of H ; it is a classical
result that Cl(QE) is simple. Hence Cl(Q) is locally simple, i.e. any two
of its elements are contained in some simple subalgebra of it. It follows
that Cl(Q) is simple. The other affirmations of the proposition are proved
the same way.

Proposition 1 is well-known: Doplicher-Powers [10], Stormer [26].

3. Hilbert algebra structure on the Clk’s and Cl’k’s

In this section, CI’,’ denotes the Clifford algebra of the quadratic form
Q : x ~ 03B5|x|2 defined on the euclidean space Rk (03B5 = ±1).

LEMMA 2. There exists a unique linear form Âe on Cl03B5,k such that

(i) 03BB03B5(e0) = 1

(ii) 2£(XY) = 2£(YX) for all X, YE Cl,,k

(iii) 03BB03B5(03B1(X)) = 03BB03B5(X) for all X E CI£,k.

PROOF. Existence: Let (ei)1~i~k be the canonical basis of Rk and let
(es)s~S be the associated basis of Cl£,k. Let X = ¿seS XseS be in Cl03B5,k;
set 03BB03B5(X) = Xo. Then Â’ enjoys properties (i) to (iii).
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Unicity: Let es = e il... eip be a basis element in Cl’,’. If p is odd,
03BB03B5(es) must be zero by (iii). If p is even and not zero,

by (ii), so that 03BB03B5(es) = 0. The unicity follows..
By lemma 2 and a canonical procedure (see e.g. Dieudonné [8],

chap. XV, § 6), one can define a scalar product on Cl’,’:

Equivalently, for any basis (e,,),cs of Cl03B5,k associated to an orthonormal
basis (ei)1~i~k of Rk, and if X = 03A3s~S Xses and Y = 03A3s~S YS es are two
elements of CIe, k, one can define (X, Y) = ¿seS Xs Ys.

PROPOSITION 3. The scalar product (,) and the involution X ~ X* turn
Cl03B5,k into a real Hilbert algebra.

PROOF. It sufhces to check the identities X*, Y*&#x3E; = Y, X) and
XZ, Y) = (X, YZ*&#x3E; for all X, Y, Z E Cl03B5,k, and they follow trivially
from lemma 2.

NOTATIONS. Instead of Cl03B5,k and Â’, one writes as well Clk and À when
03B5 =-1, and Cl’k and 03BB’ when e = + 1.

REMARKS.

1. The definition of a real Hilbert algebra is analogue to that of a
complex Hilbert algebra as given for example in Diximer [9], chap. 1, § 5.

2. Complete Hilbert algebras have been introduced by Ambrose [1]
under the name of H*-algebras. The finite dimensional CIe, k are clearly
H*-algebras (see however Ambrose’s remark following his condition 3
on page 366).

3. The canonical injection mentioned in section 2 is an isometry of
the euclidean space Rk into the Hilbert algebra Cl,, k, so that it is still safe
to identify Rk to a subspace of Cl03B5,k.

4. If j ~ k, the inclusion Cl,, ~ Cl03B5,k induced by the inclusion

Ri --+ Rk is an isometry and the involution in CIe, j is the restriction of the
involution in CIe, k, so that one can still identify Cl’,j to a subalgebra of
Cl03B5, k.

5. If (ei)1~i~k is an orthonormal basis of Rk, then (es)s~S(k) is an

orthonormal basis of CIe, k.

4. Hilbert algebra structure on CI(H) and Cl’(H)

In this section, H is an infinite dimensional real prehilbert space and
Cl’(H) is the Clifford algebra of the form Q : x Ho 03B5lxlx (g = + 1).
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Define the linear form Â’ on Cl’(H) as follows: Let X E Cl’(H); let E
be a finite dimensional subspace of H such that X ~ Cl (QE); define

03BB03B5(X) to be the value of Â’ on X as calculated in Cl(QE)’ which clearly
does not depend on E. Then lemma 2 holds when Cl’,’ is replaced by
Cl’(H). For X, Y E Cl’(H), define as in section 3 (X, Y&#x3E;= Â’(XY*).
PROPOSITION 4. The scalar product (,) and the involution X H X* turn

Cl’(H) into a real Hilbert algebra.

PROOF. The only non-trivial point to check is the separate continuity
of the multiplication in Cl’(H). We will check that sup(XY, XY)  00

for all X E Cl’(H), where the supremum is taken over all Y’s inside the
unit ball of Cl03B5(H).
Let X be fixed, and let Y be an arbitrary element of Cl’(H). Let E

[resp. E (Y)] be a finite dimensional subspace of H such that X E Cl(QE)
[resp. YC- Cl(QE(Y))]. Let (e1,···, en) be an orthonormal basis of

E+E(Y) such that (e1,···, ek) is an orthonormal basis of E. Write
X = 03A3s~S(k) Xses and Y = 03A3s~S(n) YSes. The inequality

can now be easily proved by induction on the number of non zero co-
ordinates XS of X ; hence the map

PROPOSITION 5.

(i) The injection H - Cl£(H) is an isometry.
(ii) For any subspace E of H, the injection Cl(QE) ~ Cl£(H) is an

isometry (QE as in section 2).
(iii) E is dense in H if and only if C’(QE) is dense in Cl’(H).
The proofs are trivial.

NOTATIONS.

Let D be the completion of the prehilbert space Cl’(H); the norm on
D will be denoted by ~~2. When we shall want to emphasize the Hilbert
algebra structure of Cl’(H), we shall use the more complete notation
(lij, CI£(H), *). The involution a [resp. fi, X i-+ X*] extends uniquely to
an isometric involution on D which will again be denoted by the same
symbol. Note that as vector spaces S) =1= Cl03B5(H).
The maximal Hilbert algebra of bounded elements in (S), CIE(H), *)

will be denoted by (D, Cl03B52(H), *) (see Dixmier [9], chap I, § 5, no 3 for
the definition). For any A e Cl03B52(H), LA will denote the bounded operator
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on D which extends the left multiplication by A on Cl2(H); one has
(LA)* = L(A*). Similarly for the right multiplication RA. For any X E D,
Li will denote the (not necessarily continuous) operator on D with
domain Cl2(H) defined by Li(A) = RA(X) for all A E Cl2(H). Similarly
for the right multiplication R’X.

Instead of (D, Cl03B52(H), *), one writes as well (D, C12(H), *) when
8 = -1, and (D, Cl’2(H), 03B2) when 8 = + 1.

5. The involutive Lie algebras spin (H; Co) and spin H ; C2)

In this section, H is an infinite dimensional real Hilbert space and

Cl’(H) is the Clifford algebra of the form Q : x Ho EIX12 (g = + 1).
Let o(H ; Co) be the Lie algebra of all skew-adjoints finite rank opera-

tors on H. This Lie algebra is simple, and is the ’classical compact Lie
algebra of finite rank operators on H, of type BD’ as defined in [14].
Its completion with respect to the Hilbert-Schmidt norm Il 112 is the

compact L*-algebra denoted by o(H; C2). The purpose of this section is
to identify these two Lie algebras as sub Lie algebras of the ad hoc Clifford
algebras.

PROPOSITION 6. Let spin (H ; Co) be the subspace of Cl’(H) span by
the elements of the form [x, y] where x, y are in H. Then:

(i) spin (H; Co) is a sub Lie algebra of Cl03B5(H).
(ii) X+X* = 0 for all X ~ spin (H ; Co ).
(iii) If X E spin (H; Co ), then Xy - yX is in H for all y in H; the operator

defined in this way on H, denoted by Dpo(X), is in o(H; C0).
(iv) The map

is an isomorphism of involutive Lie algebras.

PROOF.

Step one. Suppose for convenience that 03B5 = - 1 and let x, y, z, t E H.

Then the two relations

can be proved as in finite dimensions (see Jacobson [16], chap. VII, § 6,
formulas (29) and (30)). The first one clearly implies the first half of (iii)
and the second one implies (i); statement (ii) can be readily checked.
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Step two. Let X E spin (H; Co); proposition 4 says in particular that the
adjoint of the operator Dpo(X) is Dpo(X*). It follows from (ii) that
Dpo(X) is skew-adjoint, hence that it is an element of o(H ; Co ), which
ends the proof of (iii).

Step three. The map Dpo of (iv) is clearly a homomorphism of
involutive Lie algebras. Let X E spin (H; Co ) and let (ei)ic-N* be an
orthonormal basis of H such that X can be expressed as a finite sum:

Considered as an element of D, the norm of X is given by

Now the matrix representation of D03C10(X) with respect to the basis
(ei)ieN* of H is

Hence the Hilbert-Schmidt norm of Dpo(X) is given by

It follows that Dp o is injective.

Step four. Let Y E o (H; C0). Again by writing Y as a matrix with
finitely many non zero entries, with respect to an ad hoc orthonormal
basis of H, one can easily find X E spin (H; Co ) such that D03C10(X) = Y.
This ends the proof of (iv)..
COROLLARY 7. Let spin (H; C2) be the closure of spin (H; Co ) in D. Then

spin (H ; C2 ) is a real L*-algebra, the map Dpo has a unique continuous
extension

which is an isomorphism of involutive Lie algebras, and the equality

holds for all X E spin (H; C2) -
The proof is immediate; for the notion of a real L*-algebra, see [14]

and the references given there.

REMARK.

Sections 2 to 5 (and sections 7 and 8 below) hold in the same way when
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H = Hp~+Hq is the orthogonal sum of two prehilbert spaces (Hilbert
,spaces in section 5) and when Q is the form

Then the Clifford algebra of Q, say Clp,q(H), is a Hilbert algebra for
the scalar product defined as above and for the involution defined by
X* = 03B3(03B2(X)) = f3(y(X)), where y is the automorphism of the Clifford
.algebra which extends

(the dimension of Hp is p, that of Hq is q, p and q are either positive
integers or ~). In proposition 6, the subspace generated by the [x, y]’s
is now a Lie algebra spin (H, p, q; C0), and Dp o is an isomorphism of
involutive Lie algebras

where the last Lie algebra is defined as in [14]. Corollary 7 holds with
the corresponding modification.

Clearly, the complexification of Clp,q(H) does not depend of the pair
(p, q) but only of the sum p + q = dim(H) ~ N~{~}. This suggests
that the consideration of the C1P’ q(H)’s in general is not essential from
a physical point of view (canonical anticommutation relations; see for
example Guichardet [11 ] and Slawny [24]). Moreover, the complexity in
sections 6 and 9-10 below would be very much increased if arbitrary
pairs (p, q) were to be dealt with.

Consequently, we restrict ourselves to the cases (p, q) = (dimH, O)
and (p, q) = (O, dimH). About the Clp,q(H)’s when p + q is finite, see
however Karoubi [17].

6. Bogoliubov automorphisms

In this section, H is a Hilbert space.

DEFINITION. Let (D, Cl03B52(H), *) be as in section 4. An automorphism
rof this Hilbert algebra is an orthogonal map ~ : D - D whose restriction
to Cl2(H) is an automorphism of involutive algebra which preserves
the identity; the group of all these ç’s is denoted by Aut(Cl03B52(H)). A
Bogoliubov automorphism of (D, Cl03B52(H), *) is an automorphism 9 such
.that ~(H) = H ; the corresponding group is denoted by Bog(Cl03B52(H)).

Let O(H) be the group of all orthogonal operators on H. Let U E O(H);
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by the universal property of Clifford algebras, U extends to an automor-
phism CI(U) of Cl03B5(H), which is clearly a *-automorphism. If ÀE: is defined
as in the beginning of section 4, then the linear form Â’ - Cl(U) still enjoys
properties (i) to (iii) of lemma 2; hence Â’ - Cl(U) = À8 and Cl(U)
defines an orthogonal operator on D, which will again be denoted by the
same symbol. It is moreover elementary to check that Cl(U) is a *-
automorphism of the algebra of bounded elements Cl03B52(H). In other
words, there is a canonical group-isomorphism

LEMMA 8. Let U be in O(H). Then the following are equivalent:
(i ) There exists an invertible element u E Cl03B52(H) such that Cl(U) =

Lu . Ru - 1 .
(ii) There exists a unique (up to multiplication by a scalar) invertible

element u E Cl03B52(H) such that Cl( U) - Lu - Ru-1, and one has either
u E Cl2 + (H), or u E Cl03B5-2 (H).

PROOF. It is easy to check that the center of Cl03B52(H) is the same as that
of ClE(H), namely that it consists of the multiples of the identity only
(proposition 1). Hence the only thing to prove is the second part of (ii).
But as U = (-I)U(-I), one has Cl(U) = a - Cl(U) . oc; if Cl(U) =
LuRu-,, then a. Cl(U). oc = L03B1(u)R03B1(u)-1 and a(u) must be a multiple
of u; as 03B1 is an involution, it follows that a(u) = + u.

DEFINITION. Let Cl(U) be a Bogoliubov automorphism of

(D, Cl2(H), *). Then Cl(U) is said to be inner if it satisfies conditions
(i) and (ii) of lemma 8, and outer if not. Notations being as in (ii),
Cl(U) is said to be even if u E Cl03B5+2 (H) and odd if u E C12’- (H).
COROLLARY 9. Let Spin(H; vN) be the set of all unitary even elements

u E Cl03B5+2(H) such that uHu-1 = H. Then Spin(H; vN) is a subgroup in
the (abstract) group of all invertible elements of Cl03B52(H).
For u E Spin(H; vN), let 03C103C5N(u) be the orthogonal operator

Then the image of PvN is a normal subgroup of O(H), and its kernel,
consisting of eo and - eo, is isomorphic to Z2 .
The proof is trivial.
Corollary 9 indicates that Spin(H; vN) must support the covering

group of some topological subgroup of O(H). As one would like to use
the general theory of Banach-Lie groups, the Hilbert space structure on

Cl03B52(H) is not convenient, because it is never complete in the infinite



253

dimensional case. In order to remove this impediment, we furnish

Cl03B52(H) with a C*-algebra structure in section 7; we consider an ad hoc
sub-C*-algebra and the ad hoc subgroup of Spin (H; vN); after having
proved a local result in section 8 and recalled a theorem in section 9,
we can establish the main result of this work in section 10.

7. C*-algebra structure on the Clifford algebra

In this section, H is a prehilbert space as in section 4.
Consider the Hilbert algebra (jj, Cl03B52(H), *), and for each X ~ Cl03B52(H)

let LX be the operator on D defined as in section 4. Define a new norm
on C12’(H) by

Let Ch (H) be the involutive algebra Cl03B52(H) furnished with the norm
~~~.

PROPOSITION 10. Cl03B5~(H) is a real C*-algebra.

PROOF. The only point to check is the completeness of Cl03B5~(H). Let
(Xn)n~N be a Cauchy sequence in Cl03B5~(H); it is a fortiori a Cauchy
sequence with respect to the norm ~~2, so that it converges with respect
to ~~2 towards an element X in S). Let M be a bound for (~Xn~~)n~N;
for any Y ~ Cl03B52(H) :

for every n E N. Hence

and X E Cl03B5~(H).
It must yet be shown that (Xn)neN converges towards X with respect

to /1 /100. Chose 03B4 &#x3E; 0 and let Y E Cl03B5~(H) with ~Y~ ~ 1. As (Xn)n ~ N
is a Cauchy sequence with respect to ~~~, there is an integer no inde-
pendent of Y such that ~(Xn-Xm)Y~2 ~ 03B4 for n, m &#x3E; no. As (Xn)neN
converges towards X with respect to ~~2 and as the multiplication is
separately continuous in Cl03B52(H), ~(X-Xm)Y~2~03B4 for m ~ no. As no.
is independent of Y:

for m ~ n0.
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Let Cl03B51(H) be the C*-algebra which is the closure of Cl’(H) in
Cl03B5~(H). It will be called the C*-algebra of the form x Ho 03B5|x|1 on H.

Sections 2 to 4 imply straightforwardly a certain number of properties
of Cl03B51(H) collected now for convenience in the case - = - l.

SCHOLIE 11. Let H be an infinite dimensional real prehilbert space and
let Ch (H) be the C*-Clifford algebra of the form x ~ |x|2 on H.
Then:

(i) Ch (H) is a Z2-graded real C*-algebra with unit eo.
(ii) Cl1(H) and Cl+1(H) are topologically simple and their common

center is equal to Reo.
(iii) The injection H - Cl1(H) is an isometry.
(iv) If (en)n~N* is an orthonormal basis of H and if Cl’ is the standard

Clifford algebra of the space Rk = span {e1, ···, ek} in H, then the
union Cl’ of the Clk,s is dense in Ch (H).

(v) If E is a dense subspace of H, then the inclusion E ~ H induces an
isomorphism onto the image Cfi (E) - Ch (H).

REMARK. Similar statements hold for the C*-Clifford algebras
Clp,q1(H), as indicated at the end of section 5.

8. The involutive Banach-Lie algebra spin (H ; C1 )
and the Banach-Lie group Spin (H ; C1 )

From now on, H is always a separable Hilbert space. The completion
of the Lie algebra o(H ; Co) defined in section 5 with respect to the
nuclear norm ~~1 is an involutive (compact) real Banach-Lie algebra
denoted by o(H; C1).

PROPOSITION 12. Let spin (H; C1 ) be the closure of spin (H; Co ) in

Cl’(H). Then spin (H; C1 ) is an involutive real Banach-Lie algebra, the
map Dp o (see proposition 6) has a unique continuous extention

which is an isomorphism of involutive Lie algebras, and the equality

holds for all X E spin (H; C1).

PROOF. It is clearly sufficient to show that ~D03C10(X)~1 = 4~X~~ for
all X e spin (H; C0). We consider the case E = -1.

.Step one. Let (en)n~N be an orthonormal basis of H and let X be an
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élément in spin(H; C0) of the form 03A3kn=1 03BBn[e2n-1, e2n]. From the proof
of proposition 4: ~X~~ ~ 203A3kn=1|03BBn|; from step three in the proof of
proposition 6: ~D03C10(X)~1 = 803A3kn=1|03BBn| · Hence ~D03C10(X)~1 ~ 4~X~~.

Consider now X as an element of the complexified C*-Clifford algebra
Cl1(H)c. For each n ~ {1,···, k}, define

(it is supposed that none of the Àn’s is zero), and let e be the product
03A0kn=1e03C3(n). An elementary computation then shows that Xe =

2i(03A3kn=1 |03BBn|)e. Hence 2i(03A3kn=1|03BBn|) is an eigenvalue for the operator of
left multiplication by X in the C*-algebra Cl1(H)c. It follows that the

norm of X in Ch (H)e is at least as large as the modulus of 2i(03A3|03BBn|),
hence that ~X~~ ~ 2 03A3kn=1 /Ànl, hence that ~D03C10(X)~1 = 4~X~~.

Step two. Let X be any element of spin (H; Co). Then there exists an
orthonormal basis of H with respect to which the operator D03C10(X) has
the matrix representation

where À1, ... , 03BBk are non zero real numbers. By proposition 6(iv), it

follows that the element X is equal to 03A3kn=1 03BBn[e2n-1, e2n], so that the
argument of step one applies. The case E = + 1 is similar.

Let Cl03B51(H) be the involutive real Banach-Lie algebra defined by
the C*-algebra Cl03B51(H), and let Cl03B51(H)inv be the group of invertible
elements in Cl03B51(H), which is a Banach-Lie group with Lie algebra
Cl03B51(H). Let Spin (H; C1) be the group of unitary even elements

u ~ Cl03B5+1(H) such that uHu-1 = H.

PROPOSITION 13. The group Spin(H; C1) defined above has a unique struc-
ture of sub Banach-Lie group of Cl03B51(H)inv, with Lie algebra spin (H; C1).
PROOF. It is evident that exp X E Spin (H ; Ci) for all X E spin (H ; Cl ).

On the other hand, the Lie algebra spin (H ; Ci) is stable by Ad(u) for
any uESpin(H;C1); indeed, for any XEspin(H;C1): Ad(u)(X) =
uXu-1; if X is of the particular form [y, z] with y, z E H, then uXu-1 =
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[uyu-1, uzu-1] ~ spin (H; C1); by linearity and by continuity of the
multiplication in Cl03B51(H), it follows that uXu-1 is in spin(H; C1) in
general. Proposition 13 follows now from general principles in the

theory of Banach-Lie groups (see Lazard [19], corollaire 21.10). e

9. A result of Shale and Stinespring

The group ofthose *-automorphisms cp of Cl03B51(H) such that ~(H) = H
is denoted by Bog(Cl03B51(H)) and is clearly isomorphic to the group

Bog(Cl03B52(H)) defined in section 6. The canonical group isomorphism

O(H) ~ Bog(Cl03B51(H))
is again denoted by Cl.
The group of those orthogonal operators on H of the form idH + T

where T is trace-class is a Banach-Lie group denoted by O(H; C1),
whose connected component is denoted by O+ (H; Cl ), and whose Lie
algebra is that o(H; Ci) defined in section 8 (see [14]).

PROPOSITION 14. Let U E O (H). Then Cl(U) is inner and even if and
only if U ~ O+ (H; Cl ).

INDICATIONS FOR THE PROOF.

Step one. Let U e O+ (H; Cl ). Then there exists Y E o (H; C1 ) such that
U = exp Y (it is an easy corollary of proposition II.15.B in [14], of which
the proof follows closely Putnam and Wintner [22]). Let Dpl be as in
proposition 12, let X = (D03C11)-1(Y) E spin (H; C1) and let u = exp X E
Spin(H; C1 ). Then, for any z E H:

where adX is as usually the map

It follows that Cl ( U ) = LuRu -1, so that Cl(U) is inner and even.

Remark. Let U E O(H) be such that Cl(U) is inner and even, and
suppose moreover that one can chose u in the connected component of
the Banach-Lie group Spin(H ; Ce) such that Cl(U) = LuRu-1. Then
there exists a finite number of elements X1,···, Xn in spin (H; C1) such
that u = exp(X1) ·· exp(Xn); hence, by a straighforward computation:
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for all z E H, so that U E O+ (H; Cl ). We will see later that the Banach-Lie
group Spin(H; C1 ) is indeed connected, but we do not know that at this
point of our argument. Hence we must call on:

Step two. Let U E O(H) be such that Cl(U) is inner and even; then
U ~ O+ (H; C1). We refer to Shale and Stinespring [23 ] or Slawny [24]
for the proof of step two, which is a consequence of results about those
canonical transformations which are implementable in all Fock represen-
tations of the complex C*-algebra Cl03B5~(H)c (terminology as in [24]).
Alternatively, it seems that a direct proof of step two could follow from
lemmas 1 and 2 in Blattner [4]. e

10. The universal covering pi : Spin(H; C1) ~ O+(H; C1 )
and the homotopy type of the Spin group

Corollary 9 and proposition 14 imply that the diagram

is commutative and that pl is onto. As Dpl is a continuous (hence
smooth) isomorphism by proposition 12, and as each of the exponential
maps is a local diffeomorphism whose derivative at the origin of the Lie
algebra is the identity, it follows that pi is smooth, that it is a local

diffeomorphism, and that the derivative of p 1 at the identity of

Spin(H; C1) is precisely Dpl.
LEMMA 15. The Banach-Lie group Spin(H; C1 ) is connected and simply

connected.

PROOF. Let K be the homomorphism of Z, in Spin (H ; Ce) whose
image consists of eo and - eo. As the sequence

is exact, as p 1 is smooth, and as the fundamental group of O+ (H; C1)
is precisely Z2 , it is sufficient to check that the two points eo and - eo
in the kernel of pl can be connected by an arc. But let x and y be two
orthogonal unit vectors in H; then xy = [1 2 (x - y), 1 2 (x + y) ] ~ spin (H; C1)
and the continuous arc in Spin(H; Ci) given by exp(txy) = (cos t)eo +
(sin t)xy connects eo (t = 0) to - eo (t = n). 8
We can now sum up the results obtained so far as follows, in the case

03B5=-1:
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THEOREM. Let Cl,,,, (H) be the C *- Clifford algebra of the quadratic form
x ~ -|x|2 on the real Hilbert space H, which is separable and infinite
dimensional. Let Spin(H; C1) be the subgroup of the group of invertible
elements Ch (Hynv consisting of those even unitary elements u E Cl’ (H)
such that uHu -1 - H. Let spin (H; C1 ) be the closed subalgebra of the
Banach-Lie algebra defined by Cl1(H) which is generated as a vector

space by the products [x, y] with x, y E H. Then there exists on Spin(H; C1 )
a unique structure of sub Banach-Lie group of Ch (Hynv with Lie algebra
spin (H; C1 ); this Banach-Lie group is connected in its own topology and
the map

is the universal covering of O+ (H; C1); moreover, if ~~1 is the nuclear

norm on operators on H and if 111100 is the norm defined on the C*-algebra
Ch (H), then ~D03C11 (X)~1 = 411Xll00 for all X E spin (H; C1).

Similar statements hold in the case 03B5 = + 1.

Let now (ek)keN* be an orthonormal basis of H. Let Clk be the Clifford
algebra of the form

For all k e N*, the inclusion Clk ~ Cl1(H) induces an inclusion

Spin (k) ~ Spin (H; C1 ). These define an inclusion j of the inductive
limit Spin (~) of the Spin (k)’s in Spin (H; C1).

PROPOSITION 16. The inclusion Spin (~) Spin (H; C1) is a homotopy
equivalence.

PROOF. Consider the commutative diagram

All vertical lines are Serre fibrations; as i is a homotopy equivalence (see
references in [14], section 11.6), the five lemma implies that j is a weak
homotopy equivalence. But Spin(~) and SO(~) have both the homotopy
type of an ANR (see Hansen [13], corollary 6.4), and Spin(H; C1 ) and
O+(H; C1 ) are ANR (see Palais [21], th. 4); hence Whitehead lemma
applies (see [21 ], lemma 6.6) and j is a homotopy equivalence.
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11. Hilbert spin manifolds

Let M be a smooth real manifold, locally diffeomorphic to a Banach
space B. (We suppose M paracompact, connected and without boundary;
and B separable and having smooth partitions of unity; it follows that M
is separable and has smooth partitions of unity.) Let 1 : E ~ M be a
vector bundle over M whose fiber is a separable real Hilbert space H. A
Riemannian nuclear structure on 03BE [resp. an oriented Riemannian nuclear
structure, a spin nuclear structure] is a reduction of the structural group
of Z to O(H; Ci) [resp. O+(H; Cl ), Spin(H ; Ci)], and the bundle with
such a structure will be denoted by 03BE [resp. 03BE+ , 03BESpin]. Any bundle such
as 03BE being trivialisable (Kuiper’s theorem), such a reduction of structure
is always possible. However, if 03BE has already been furnished with one of
these structures, it may not be possible to reduce the structural group
further. For example:

PROPOSITION 17. Let 03BE be a Riemannian nuclear vector bundle over M.
Then ç is orientable if and only if the first Stiefel Whitney class w1(03BE) E
H1(M; Z2) vanishes.

Proposition 17 is standard; in fact, much more complete results in this
direction have been proved by Koschorke [18] (his propositions 6.2. and
6.3). A possible method of proof is that used below for proposition 18.

PROPOSITION 18. Let 03BE+ be an oriented Riemannian nuclear vector
bundle over M. Then 03BE+ has (at least) one spin structure if and only if the
second Stiefel- Whitney class w2(03BE +) E H2(M; Z2 ) vanishes.

PROOF. The exact sequence of topological groups

induces an exact sequence of the cohomology sets (see Hirzebruch [15],
3.1 and 2.10.1)

and ç+ can be considered as an element of H1(M; O+(H; Ci)). Hence it
is sufficient to prove that v = w2. By naturality, it is sufficient to do so
when M is the classifying space Bo+ of the group O+(H; Cl ). As the
usual inclusions SO(~) ~ O+(H; C1 ) are homotopy equivalences,
H1(Bo+ ; Z2 ) = Z2 . Consequently, depending of its value on the classify-
ing bundle over Bo +, the map v is either identically zero, or is the class
w2. In order to exclude the first alternative, it is sufficient to make sure
that there exists at least one manifold M and one bundle 03BE + over M
which has no spin structure. Such examples being well known, it follows
that v = w2. This result, in finite dimensions, is due to Haefliger [12].
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Proposition 18 does not depend on the explicit construction of

Spin(H; C1 ), but only on its universal property as covering group of
O+(H; Cl ). In fact, this proposition is a preliminary step for the follow-
ing project, the carrying out of which will indeed depend on our explicit
construction: investigate the properties of the differential operator
defined over Spin(H; Cl )-manifolds as the Dirac operator is defined

over finite dimensional spin manifolds (see for example Milnor [20] and
Atiyah-Singer [3], section 5). Motivations for studying infinite dimensio-
nal elliptic operators can be found in Dalec’kii [7].
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