COMPOSITIO MATHEMATICA

D. W. CURTIS

Simplicial maps which stabilize to near-
homeomorphisms

Compositio Mathematica, tome 25,1n°2 (1972), p. 117-122
<http://www.numdam.org/item?id=CM_1972__ 25 2 117_0>

© Foundation Compositio Mathematica, 1972, tous droits réservés.

L’acces aux archives de la revue « Compositio Mathematica » (http:
/http://www.compositio.nl/) implique 1’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=CM_1972__25_2_117_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

COMPOSITIO MATHEMATICA, Vol. 25, Fasc. 2, 1972, pag. 117-122
Wolters-Noordhoff Publishing
Printed in the Netherlands

SIMPLICIAL MAPS WHICH STABILIZE
TO NEAR-HOMEOMORPHISMS

by

D. W. Curtis

1. Introduction

Let % be an open cover of a space Y. Maps f, g : X — Y are %-close
if for each x in X, f(x) and g(x) lie in some member of %. A map f:
X — Y is a near-homeomorphism if it can be uniformly approximated by
homeomorphisms ~ i.e., for every open cover % of Y there exists a
homeomorphism % : X — Y such that f and h are %-close. If fxid :
XxQ — YxQ is a near-homeomorphism, where Q = H‘f [0, 1]; is the
Hilbert cube, then f stabilizes to a near-homeomorphism.

The recognition of (stable) near-homeomorphisms, and their applica-
tion in inverse limit calculations (see below), play an important role in
the recent proof by Schori and West [7] that 2! is homeomorphic to Q.
It seems likely that techniques involving near-homeomorphisms will be
useful in further investigations of hyperspaces.

Our main theorem (3.2) characterizes the stable near-homeomorphisms
in the simplicial category as the surjections with compact and contractible
point-inverses. The proof is by means of Q-factor decompositions, dis-
cussed in § 2.

Brown showed in [3] that if (X, f;) is an inverse sequence such that
each X; is a copy of a compact metric space X and each f; is a near-
homeomorphism, then Lim (X}, f;) is homeomorphic to X. In § 4 we note
some immediate applications using (3.2), and extend Brown’s theorem to
complete metric spaces.

2. Q-factor decompositions

A space X is a Q-factor if Xx Q ~ Q. Note that if Xx Y ~ Q, then
XxQ = Xx(XxY)* ~ (XxY)° ~Q, and X is a Q-factor. Every
QO-factor is a compact metric 4R; it is not known whether the converse is
true. West [8] has shown that every compact contractible polyhedron is
a Q-factor.

A closed subset 4 of X is a Z-set in X if for every nonempty open
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homotopically trivial (n-connected for all n = 0) subset U of X, U\ A is
nonempty and homotopically trivial. Z-sets were introduced by Anderson
[2], who showed that every homeomorphism between Z-sets in Q extends
to a homeomorphism of Q. The endslice W = {0} x[[3 [0, 1]; = Q is
a Z-set; in general, boundaries and collared sets are Z-sets. One useful
technique for verifying the Z-set property is the following:

2.1. LeMMA (cf. [8], Lemma 2.2). A closed subset A of a metric ANR,
X is a Z-set in X if for each ¢ > 0 there exists a map f: X - X\ 4
with d(f,id) < e.

ProoF. Clearly 4 is nowhere dense. Let U be open and homotopically
trivial, and g : S" — U\ A a map of the n-sphere. There exists an exten-
sion g : C"*! > U of g to the (n+1)-cell. As a metric ANR, X is locally
equiconnected, and therefore has the property that for every open cover
" there exists an open cover #” such that maps into X which are # -close
are ¥ -homotopic (paths of the homotopy lie in members of ¥”) [6]. By
the compactness of C"*! there exists ¢ > 0 such that for any map f:
X - X\ 4 with d(f; id) < ¢, fG(C"*') € U\A and g is homotopic to
fog in UNA. This homotopy together with the map fo g provides
an extension § : C"*! — U\ A4 of g.

2.2. DEerFINITION. {X,} is a Q-factor decomposition of a Hausdorff space

X if:
i) {X,} is a locally finite cover of X by Q-factors,

ii) X;, X, e{X,} and X; n X, # ¢ imply X; n X, e {X,},

iii) X1, X, e {X,} and X; & X, imply X, is a Z-set in X,.

The spaces admitting Q-factor decompositions comprise a proper sub-
class of the class of locally compact metrizable 4ANR’s, and include the
locally compact polyhedra.

2.3. DEFINITION. Q-factor decompositions {X,} and {Y,} indexed by
the same set are similar if X; n X, # ¢ is equivalent to Y, N Y, # ¢.
{X,} and {Y,} are isomorphic if X; = X, is equivalent to ¥; < Y,.

Isomorphic decompositions are similar: if X; n X, # ¢, then X; n X,
= X;e{X,}, X3 = X, and X5 < X,, therefore Y; c Y, and Y; < ¥,
and Y, nY, o Y; # ¢.

For any space X, 7" : Xx Q — I" will denote the projection onto the
first n factors of Q.

2.4. THEOREM. Let {X,} and {Y,} be isomorphic Q-factor decomposi-
tions of X and Y, respectively, and let a function p: A - Z* from the
indexing set into the positive integers be given. Then there exists a homeo-
morphism H : Xx Q — Yx Q such that H(X,x Q) = Y,x Q and 7*?/X,
xQ = "D H/X,x Q for each a.
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PROOF. Since X, = X, is equivalent to Y, = Y,, and since {X,|X, =
X,} is a finite collection for each X, there is no loss of generality in
assuming that the isomorphic decompositions {X,} and {Y,} are faith-
fully indexed - i.e., X, = X, only if « = f. For any subcollection
{Xae B = A4} of {X,}, let Min {X,|a € B} = {X,|Ja € B; f € Bwith X;
X, implies « = B}, the collection of minimal elements. Inductively define
X® = X6=D § Min {X,|X, ¢ XU D}, i 20, with XD = ¢. Then
{X,} = X9; similarly {Y,} = |J Y®. It is easily seen that X, e X®
is equivalent to ¥, e Y®. Since the indicator function p: 4 > Z* can
be redefined by setting p'(a) = max {p(B)|X, = X,}, we may assume that
X, c X, implies p(B) < p(«).

For each «, let £, denote the non-empty collection of homeomorph-
isms of X,xQ onto Y,x Q of the form h, = h,xid,, where h, : X, x
[T{%li > p(a)} = Y, x[]{Lli > p(«)} and id, is the identity map on
I*® = TT4® I,. Suppose inductively that there exists a homeomorphism
H;: | {XJX,e XD} xQ » | {Y,]Y,e Y} x Q such that H,/X,x Q is
in o, for each X,e X®. Consider X; e X“*'""\X® = Min {X,|X, ¢
X®}, and set X; = | {X,|X, € X;}. Then X, as a finite union of Z-
sets, is a Z-set in X}, (it may be empty), and X, = X; n (| {X,I1X, e XD}).
Similarly for Y,; note that H,(X,x Q) = Y,x Q. Since p(B) < p(«) for
each X, c X,, an application of Anderson’s homeomorphism extension
theorem to X x [] {Zli > p(B)} and Y, x[] {Lli > p(B)} shows there
exists hy € #4 such that hy/X,x Q = H,/X,;x Q. For distinct elements
X, and X of XU*UNX®, either X, n X; = ¢ or X, n Xz e X, Since
{X,} is a locally finite closed cover of X, we may define H;,, : | {X,l
X, e XD x0 - (J{Y,|Y,e Y** D} x QO by requiring that H,,, ex-
tend H; and H;,,/X;x Q = h; for each X, e X¢*"N\X®. Then H :
XxQ — YxQ defined by H/X,xQ = H;/X,xQ for X,e X®,i >0, is
the desired homeomorphism.

In [5] we obtain an extension of (2.4) to similar Q-factor decomposi-
tions, in which the requirement H(X,x Q)= Y,x Q is replaced by
H(X,x Q) = St (Y,)x Q. This result promises to be useful in recognizing
stable near-homeomorphisms in situations where Theorem 3.2 (see below)
does not apply.

3. Stable near-homeomorphisms

In this section we shall be dealing with simplicial maps between locally
finite complexes. A map f: K — L is compact or contractible if f ~(x) is
compact or contractible for each x in L.

3.1. LemMA. Let f: K — L be a compact contractible simplicial sur-
iection, and let U be an open cover of L. Then there exist isomorphic Q-
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factor decompositions {K,} of K and {L,} of L such that {L,} refines U
and K, = f~1(L,) for each a.

ProoF. It is well-known that there exist subdivisions K, of K and L, of
L such that f': K, — L, is simplicial and the cover by vertex stars of L,
refines %. For notational convenience assume that K = K, and L = L,.
We show that the dual structures on K and L described by Cohen [4] are
the desired Q-factor decompositions.

Let L’ be the standard barycentric subdivision of L, and let K’ be a
barycentric subdivision of K chosen so that f: K’ — L' is simplicial. The
barycenter of a simplex ¢ is denoted by 6. If ¢, < - - < o,, then
6o+ * 6,is the simplex spanned by the barycenters. If o is a simplex of L,
then D(a, L), the dual to « in L, and its subcomplex D(«, L) are defined
by D(o,L) ={6o " Glacoo = - ca,}, Do, L) = {66,
® E 0y < <) D(a,f), the dual to o with respect to f, is a sub-
complex of K’ defined by D(a,f) = {f, -t la = f(70), To = -+ * <
t,}; similarly for D(a, f). Each dual D(a, L) is a finite subcomplex of L',
and since f'is a compact surjection each D(, f) is also finite and non-
empty. Clearly D(a, L) is the join &D(a, L). It is known [4] that D(a, f)
=f"'D(a, L), D(a, /) =f"'D(a, L), and D(a, f) collapses to f~1(&).

Set {K,} = {D(a,f)} and {L,} = {D(«, L)}, where « runs through all

the simplexes of L. Then {K,} and {L,} are isomorphic locally finite covers
of K and L, and {L,} refines %. Each dual D(«, L) is contractible, and
since f is contractible each dual D(a, f) is contractible. It follows from
West’s theorem (see § 2) that each dual is a Q-factor. If D(a, L) n
D(B, L) # ¢, then « and B span a simplex y and D(a, L) " D(B, L) =
D(y, L). In this case D(a, /) D(B,f) =f 'D(a, L)Ynf DB, L) =
SN L) A D(B, L)) = ~D(3, L) = D(3,/). ¥ DB, L) § D(a, L),
thena & B, D(B,L) = D(a, L), and D(B, f) = D(«, f). Since D(a, L) =
@D(a, L) there exists for each ¢ > 0 a map r: D(x, L) = D(x, L)\,
D(a, L) with d(r, id) < &, and such that x and r(x) have the same carrier
in L. Since f: K — L is simplicial, the map r can be lifted to a map
7 : D(a, f) = D(o, f)N\D(a,f) such that foF =rof on D(x f) and
d(F, id) < &. It follows from (2.1) that D(«, L) and D(a, f), and therefore
D(B, L) and D(B, f), are Z-sets in D(a, L) and D(a, f), respectively. This
completes the proof that {K,} and {L,} are Q-factor decompositions.

3.2. THEOREM. A simplicial map f: K — L stabilizes to a near-homeo-
morphism if and only if f is a compact contractible surjection.

ProoF. Suppose f is a compact contractible surjection. Let #~ be an
open cover of L x Q. There exists an open cover % of L and a function m :
% — Z* such that for (x,,q,) and (x,,q,) in Lx Q with {x,, x,} =
Ue % and t"(q,) = 7(q,), {(*1, 41), (x2,92)} = WeW . By (3.1)
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there exist isomorphic Q-factor decompositions {K,} of K and {L,} of L
such that {L,} refines % and K, =f"'(L,). Define p: 4 > Z* by
p(2) = min {m(U)|L, = U e %}. By (2.4) there exists a homeomorphism
H:KxQ — LxQ such that H(K,xQ) = L,xQ and ?@/K,xQ =
P@H|K, x Q for each «. Clearly H and fxid are #<close.

Conversely, suppose that fxid is a near-homeomorphism. Since the
image of fxid must be dense in L x Q, f'is surjective. Consider a point x
in L and the inverse f ~!(x) = K. Since there exists a homeomorphism of
Kx Q onto Lx Q taking f ~“'(x)x Q into a compact neighborhood of
{x} x Q, f ~1(x) is compact. (The same argument shows that the inverse
image of every compact set is compact.) Since f is simplicial £ ~!(x) is
polyhedral and therefore a retract of some neighborhood U in K. Using
compactness of the inverse image of a compact neighborhood of x, we
obtain a neighborhood ¥ of x such that f ~!(V) = U. Then there exists a
contractible neighborhood W of x and a homeomorphism H : Kx Q —
Lx Q such that H(f ~'(x)x Q)= WxQ < H({Ux Q). Thus f ~!(x)x Q
is contractible in the neighborhood Ux Q which retracts onto it, and
therefore f ~!(x) is contractible.

A non-piecewise linear map f : K — L which stabilizes to a near-homeo-
morphism may not be contractible (although it follows from the proof
above that point-inverses must have the shape of a point). For example,
it is easily seen that there exists a map f: I? — I such that f () is an
arcif t # 1, f ~1(%) is a topologist’s sine curve containing 7% {0, 1}, and
f is the uniform limit of piecewise-linear maps satisfying the conditions
of (3.2). Hence f itself stabilizes to a near-homeomorphism.

4. Inverse limit applications

Brown’s theorem (see § 1) and Theorem (3.2) imply that if (K}, f;) is an
inverse sequence of finite complexes with simplicial contractible surjec-
tions as bonding maps, then Lim (Kj, f;) % Q is homeomorphic to K; x Q.
Since a dendron is an inverse limit of finite trees with elementary collapses
as bonding maps, this technique provides a quick proof of the fact, an-
nounced in [1] and demonstrated in [8], that every dendron is a Q-factor.
Let J* =[] [—1, 1];, and let J*/R be the quotient space obtained by
identifying (x;) with (—x;). Schori and Barit have recently used the same
technique to show that J®/R is a Q-factor.

The following extension of Brown’s theorem to complete metric spaces
permits the application of (3.2) in the non-compact case.

4.1. THEOREM. If (X, f;) is an inverse sequence of copies of a com-
plete metric space X with near-homeomorphisms as bonding maps, then
Lim (X, f;) is homeomorphic to X.
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Proor. We inductively choose homeomorphisms #; : X;,., = X;,i = 1,
such that Lim (X;, f;) is homeomorphic to Lim (X;, h;). For i < j let
fij=fio -ofj_yand h;; = h;o- -+ oh;_, becompositions of the bond-
ing maps, and let f;, : Lim (X;,f;) = X; and h;, : Lim (X}, h;) - X;
be the projections. Suppose that Ay, - -, £;_; have been chosen. Then
there exists an open cover %; of X; such that mesh f;;(%;) < 27/ and
mesh h;;(%;) <279 for 1 £i<j. Choose a homeomorphism #; :
X;+1 — X; such that f; and h; are % ;-close.

A straight-forward verification shows there exists a map F : Lim (X, f;)
— Lim (X;, ;) such that h;, F(x) = lim,_, , /;, f,(x) for each i. Like-
wise there exists a map H :Lim (X;, #;) > Lim (X;, f;) such that
JiwH(x) = lim,_, o, finh,e(x). We show that Ho F and Fo H are the
identity maps. Let 1 <i<n and xeLim (X;,f;) be given. Then
A(fio HF(X), finhyo F(x)) < 27"*1, and for each m > n, d(f,(x),
FinPum fino (X)) < 27"*1. Since A, F(x) = lim,,, o, App frneo (%), there exists
m > 1 such that d(fi ke FCEY finham fuo (%)) < 27" Thus d(fio, HF(x),
fio(x)) < 3-27"*1 and since n was arbitrary H o F = id. Similarly
FoH =id.
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