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Introduction

The results of [7 ], [28 ], [13 ] combine to show that homotopy equiva-
lent separable metrisable infinite dimensional Coo Hilbert manifolds are
C°° diffeomorphic and suggest that the basic differential topology of
infinite dimensional manifolds can be reduced to the study of the homo-
topy theory of vector bundle maps between Banach space bundles over
C.W. complexes: in other words the classification problem for manifolds,
embeddings, and diffeomorphisms, depends on little more than the

tangential homotopy type of the manifold or smooth map. For C 0
manifolds it is essentially only the homotopy type that is involved and
there is ample evidence [1 ] to support this rather vaguely worded asser-
tion. In this paper we are concerned with separable metrisable different-
iable manifolds and will give further supporting evidence for the case of
parallelisable manifolds modelled on fairly general Banach spaces which
are COO -smooth (i.e. admit C°° partitions of unity). In fact our conclusions
and scope can be summed up in a rather crude and exaggerated way as
follows:

For separable metrisable manifolds modelled on a wide class of Banach
spaces E:

(i) If E is C~-smooth the differential topology of parallelisable Coo
E-manifolds is trivial in the sense above (the problem at the end of § G
indicates how much this remains an exaggerated statement).

(ii) If E is C 00 -smooth it seems likely that our methods can be extended
to give (i) for the case of non-parallelisable manifolds and in particular
to show that such manifolds are diffeomorphic to the total space of a
vector bundle over some open subset of a Banach space. However, we

hardly consider this case at all.
(iii) If E is C’ smooth, r ~ 1 and has an infinite dimensional smooth

factor space then the C" diffeomorphism classes of open subsets of E
are determined by their homotopy types.
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(iv) the cases (a) C" classification of C" manifolds with C’-smooth
model, (b) C" classification with Cr-smooth model, (c) e 00 classification
with Cr-smooth model, get steadily more intractable and we have little
or nothing to say about these cases. For example, I do not know whether
every smooth manifold modelled on C(0, 1), or h , even admits a dif-
ferentiable real valued function which is not constant. An exception to
this is case (a) when E = 12n, n = 1, 2, ... or E = co : the work of

Nicole Moulis [29] implies that a Cr-manifold with one of these spaces
as model admits a compatiable C ~-structure and so (i) applies. We have
only one, isolated and rather weak, result, Theorem 27 of § H, which
comes under the heading (c).

Initially the paper is in two parts. The first part is concerned with
closed embeddings; their existence, extension, and ambient isotopy clas-
sification. The main results here are in Theorem 12 and 14. The second

part which occurs at the beginning of § F, is centered around a proof of
the Palais stability of open subsets of certain Banach spaces, Proposition
16. In the Hilbert space case this reduces to Kuiper and Burghelea’s
theorem [7] but the proof which does not use Morse theory is much
simpler than the original one. After this the two parts are combined to
discuss the existence and isotopy classification of diffeomorphisms
(Theorem 19) and the classification of manifolds with boundary, and
manifold pairs, (Theorem 22 and 33). In § G we give another version of
the isotopy theorem and then prove some results on open embeddings,
including manifolds with boundary and manifold pairs. We attack open
subsets of some non-smooth spaces in § H: this leads to (iii) above and
in particular to a diffeomorphism classification of open subsets of Lp
spaces, 2 ~ p  oo.

Finally, in an appendix, we discuss manifolds modelled on certain
Banach spaces which are not isomorphic to their squares, and give an
example of a separable metrisable manifold which has no C’ immersion
into any finite direct sum of its model space. Some aspects of this are
considered in more detail in [21 ].
The section on embeddings and isotopy gives a strengthened version

of the embedding theorem announced without proof in [15], and uses
the technique of layer manifolds and maps. This was also one of the
basic tools in the paper by J. Eells and the author: ’Open Embeddings
of Certain Banach Manifolds’ [13], henceforth denoted by OECBM. In
fact, we have to use the layer version of the main theorem of that paper
(our Theorem 00 § C). The basic theory of layer structures can be found
in [15], [16]. However, it turned out that we needed a more refined
version of the existence theorem for layer structures, and this led to a



177

better proof of their existence and classification (Theorem 10) than the
ones previously given. This means that this paper taken together with
OECBM forms a fairly self-contained exposition. The main exception to
this lies in the use of Kuiper and Burghelea’s tubular neighbourhood
theorem which is stated without proof.
Many of the results given here were announced at the SMS, Montreal

1969, and the proofs are sketched in the lecture notes [30]. The main

improvement since then is that for stability results we no longer need
assume that our model spaces have a split subspace isomorphic to l2.
In particular, the differential topology of co-manifolds can be included.
This is a worthwhile gain in view of the fact that it covers the case of
many function space manifolds modelled on spaces of functions which

satisfy Hôlder type conditions [4]. On the other hand the attempt at as
much generality as possible has led to an annoying plethora of side
conditions on the model spaces. The reader who does not want to get
involved in this could restrict himself to considering only the Hilbert
manifold case, and would then find that the proofs from § F onwards
become extremely simple.
Some of the developments in the theory of differentiable Banach

manifolds since Eells’ survey [12] are described in the Montreal notes
[20 ], [30] and also in [21 ].

1 would like to thank J. Eells for a lot of help: in particular for suggest-
ing the approach that is used in the basic stability theorem (Proposition
16). 1 am also very grateful to N. H. Kuiper for many helpful discussions.

Unless the contrary is specifically stated, from now on all manifolds
considered will be assumed to be separable, metrisable, and modelled on
Banach spaces.

A. Preliminaries

We first recall some of the basic definitions concerning layer manifolds
[15], [16].
A map k : X ~ E of a topological space into a linear space is called

locally finite dimensional (l.f.d.) if each point x of X has a neighbourhood
Nx with k(Nx) contained in some finite dimensional subspace of E. If T
lies in the space L(E, F) of bounded linear operators between the Banach
spaces E and F and if U is open in E then f : U - F is an L(T)-map if
f- T : U ~ F is l.f.d. When E = F and T is the identity map, I, of E we
obtain a group GLF(E) consisting of the invertible linear L(I)-maps.
This is a subgroup of the group of units GL(E) of L(E, E).
A CP layer structure, modelled on E, Ml, on a CP manifold M, is a

maximal CP atlas {(Ui, ~i)}i for M, ~i : Ui ~ E, such that when defined
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~i o ~-1j is an L(I)-map. A layer manifold is a manifold together with a
preferred layer structure. It then has a tangent layer bundle, TM1, which
for our purposes may simply be taken to be TM together with its induced
reduction to GLF(E): although this is not the definition in [16] nor the
one needed for OECBM. A map between layer manifolds M and N is
an L(T )-map if it is represented as an L(T)-map by the layer charts of
M and N.

We shall need a slight strengthening of this last notion. Recall that a
sequence {e }~i= 1 in a Banach space is a basic sequence if it is a Schauder

base for its closed linear span. Suppose we have a direct sum El x E2 of
Banach spaces with natural injection T : E1 ~ E1 x E2 and projection
03C0 : El x E2 ~ E2, together with an L(T )-map f : M1 ~ E1 x E2. Then
f will be called a ’strong L(T)-map’ if there is a basic sequence

{e1, e2, ···} of E2 with an open cover {Ui}~i=1 of M such that, for each
i, 03C0f (Ui) lies in the span of {e1, ···, ei} for some i. When E2 is a Hilbert
space this is no extra restriction on f; I do not know if the same is true
for more general E2. We shall often wish to specify {ei}~i=1 in advance
and say that f is strong with respect to a given basic sequence.

Manifolds of class CP are called CP-smooth if they admit CP partitions
of unity. In the separable metrisable case under consideration this is

ensured if the model E is CP-smooth, and this will follow if E has a CP
norm, i.e. an admissible norm which is of class CP on E-{0}, [3].
Since it is unknown whether every CP-smooth E admits such a norm

(p &#x3E; 1) we will often have recourse to the referee’s method in OECBM
lemma 6 which gives the existence of smooth functions which behave
sufficiently like norms for our purposes. The version of this which we
will use is given below as a lemma, in a form that will also be needed in
the proof of stability, even for some spaces, like co, which are known to
have smooth norms. A subset D of E is radial if whenever x is in D and
0 ~ t ~ 1 then tx is in D.

LEMMA A. Let D and D’ be closed bounded radial subsets of the CP-
smooth Banach space E, p ~ 1, with

for some k &#x3E; 1. Then there exists a Cp map Il : E - [0, 1] and a con-
tinuous p : E ~ R (~ 0) satisfying:

(i) Supp Il c int D’, MID ~ 1, and for each x in E- {0} Jl(tx) decreases
strictly in t except when its value is 0 or 1;

(ii) 03C1|E-(0) is CP and for each x in E-{0} the map t - p (tx) is a
submersion of R (&#x3E; 0) onto itself. Further 03C1(tx) ~ 00 as t - oo uniformly
in x, in any subset of E which is bounded away from 0, and the family
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{03C1-1 [(0, 1/n)]}~n=1 forms a base for the neighbourhood system of E at 0;
(iii) D ~ 03C1-1[(0,1)] c 03C1-1[(0,2)] - int D’.

PROOF. Choose oc with 1  oc  03B13  k. As in OECBM for any

continuous : E - R with bounded support set

Take a CP map A : E - [0, 1 ] with supp À c D’ and Àla3D == 1.

Then s03BB : E- {0} ~ R is CP and decreases strictly to zero along each ray.
Also, if x E a2D, 

Let ç : R(&#x3E; 0) - [0, 1] be Coo with ~(0) = 0, ~(t) = 1 for t ~ a -1,
and with ~ strictly increasing in (o, a -1 ). Set y(x) = ~ o s03BB(x) for
x ~ E- {0}, p(0) = 1. Then y satisfies (i) and even has 03BC|03B12D ~ 1. It

follows, as above, that s03BC(x) ~ a -1 for x ~ 03B1D. Since the interval

(0, 1) contains only regular values of the map t 1-+ sy(tx) for each x
in E the set S = (s03BC)-1((03B1-1)/2) is a CP submanifold of E and if

0 : 9 x R( &#x3E; 0) ~ E- (0) is defined by 0(v, t) = tv then 0 is a CP diffeo-
morphism. Now take a C °° diffeomorphism pl R(~ 0) - R(~ 0) with
03C11(1/03B1) = 1 and 03C11(1) = 2 and define po :   R( &#x3E; 0) ~ R(&#x3E; 0) by
03C10(v, t) = pl(t). Now set p(x) = po e-1(x) for x ~ E- {0} and p(O) = 0.
This is seen to satisfy our conditions.//
Any continuous p : E ~ R(~ 0) satisfying (ii) will be called norm-

like. For t &#x3E; 0, the subset 03C1-1[0, t] is then a closed bounded radial

domain, containing 0 in its interior, whose boundary is a CP submanifold
of E which is transverse to each ray through 0. Such subsets, and their
translates will be referred to as pseudo discs and pseudo spheres.

REMARKS. (i) Suppose that D, D’ are closed subsets of the total space
B of a C--smooth vector bundle rc : B ~ X, having the zero section
S(X) c int D c kD c int D’ for some k &#x3E; 1. Assume also that D’ is

bounded with respect to some Finsler on B and that the intersections of
D and D’ with the fibres of B are radial. Then a straightforward modifica-
tion of the proof of lemma A shows that there is a continuous

p : B - R(~ 0), CP on B - S(X), which restricts to a norm-like function
on each fibre and has D c 03C1-1[0, 1 C 03C1-1[0, 2] c int D’. Such a

function will be called Finsler-like.

(ii) Even though co admits a Coo norm there exists no norm-like
function on it which is COO on the whole space. This is because such a
function would have bounded first and second derivatives in a closed
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neighbourhood N of 0 but would also have to be bounded away from
zero on ôN; according to J. Wells [36] this is impossible.
Next we collect some fairly well known results which will enable us to

avoid drops in differentiability class in our constructions.

LEMMA. Any vector bundle over a CP-smooth manifold is equivalent to
a vector bundle of class CP, 0 ~ p ~ 00.

PROOF. Let 03C0 : B ~ M be an E-vector bundle over the CP-smooth

manifold M. The Grassmanian of all those split subspaces of a Banach
space F which are isomorphic to E and have co-space isomorphic to a
space H will be denoted by GE(F, H). According to Douady, [9], this
has the structure of a real analytic manifold modelled on L(E, H), in
general non-separable. As in the finite dimensional case, consider the
subset YE(F, H) of Fx GE(F, H) consisting of those pairs (x, V) with
x E V. This is easily seen to have the structure of a C °° (even real analytic)
E-vector bundle over GE(F, H).
Now take F = H = co(E). Then 03C0 can be considered a sub-bundle of

the trivial co(E)-bundle over M (see I(iii) § D below). This induces a
continuous map f : M ~ GE(F, F) with f*(03B3E(F, F)) equivalent to 03C0.

Approximating f by a homotopic CP map f we obtain a CP bundle
f*(03B3E(F, F)) as required.//

LEMMA. Let f : M ~ N be a closed CP embedding into a manifold of
class Cp+2. If both manifolds are CP-smooth and p ~ 1 there exists a CP

tubular neighbourhood of f(M) in N.
PROOF. To use Lang’s proof [23] we need a CP spray on N and a

CP transverse bundle to Tf(TM) in TN. There is no problem about the
spray but the standard method only gives a Cp-1 transverse bundle,
03C0 : B ~ f(M) say. However, by the lemma above, the bundle 03C0 is C °

equivalent to a CP bundle 03C0’ over f(M). It is a straightforward exercise in
partitions of unity to approximate the induced C ° bundle injection of 03C0’
into TN|f(M) by a CP injection which gives the required normal bundle.//
A proof of the following is given by Kuiper and Burghelea in [7] for

the case of manifolds whose models admit Coo norms. The modifications

of that proof needed for our statement are immediate using our lemma
and Remark (i) above:

HIRSCH’S LEMMA. Let f:M R~N R be a CP isotopy of closed
embeddings, p ~ 1, f(m, t) = (h(m, t), t) = (ht(m), t), such that h|M 
[-03B5, 1+ 03B5 ] is a closed embedding into N for some 8 &#x3E; 0. Assume also

that N is of class Cp+2 and is CP-smooth. Then there is a CP isotopy
03A6 : N x R ~ N x R with 4lo = id and 03A61 o ho = hl. The support of 0
can be chosen to lie in any given neighbourhood of h(M x [-8,1 +8])./1
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B. Layer embeddings and isotopy

PROPOSITION 1. Let M be a CP-smooth layer manifold over E, p ~ 1.

Suppose that T : E ~ F is a continuous linear injection of E onto a closed,
infinite co-dimensional, complemented subspace of a Banach space F and
that f : M - F is a CPL(T)-map.

Then for any continuous ô : M - R(&#x3E; 0) there is a Cp map k : M - F
satisfying:

(i) k is compact and locally finite dimensional
(ii) Ilk(x)11  03B4(x) for all x in M
(iii) f+k : M ~ E is a 1-1 immersion.

Moreover if Xl is an open neighbourhood of a closed subset X of M
and if f is an embedding on a neighbourhood of X1, which is closed on
X1, such that f(M) does not reintersect f(X1), we may choose k to
vanish on X. Also if f is a strong L(T)-map with respect to some basic
sequence in E’ for some splitting of F into T(E) x E’ we may arrange k
so that f + k remains strong with respect to the same basic sequence.

PROOF. Take open subsets Xo, X2, X3 of M so thatflXo is an embed-
ding and X ce X3,X3 C X2,X2 C X1,X1 c Xo. Identify T(E) with E
and write F = Ex E’ where E’ is infinite dimensional and T(x) = (x, 0).
Choose a star-finite open cover {Ui}~i= 1 of M together with positive

numbers m(i) and finite dimensional subspaces Ai of F to satisfy:

(a) ô is bounded below by m(i) on Ui, and m(i)  1;

(b) there is a layer chart ~i : Ui ~ E with

having bounded range in A i;
(c) for these gi, each gi(Ui) is contained in the unit ball of E;
(d) if Ui ~ Xr ~ Ø then Ui c Xr -1, r = 1, 2, 3.

For each x in M choose an integer i(x) with x E Ui(x). If Ui(x) c Xi
take a neighbourhood V’x of x and an rx &#x3E; 0 with V’x c Ui(x) and
f-1(Brx(f(y)) ~ Ui(x) for all y c- Vx; otherwise take rx = 1 and Vx’ to be
an arbitrary neighbourhood of x with Vx c Ui(x). If Ui(x) n X2 = 0 take
a neighbourhood Yx’ of x and an sx &#x3E; 0 with V’’x c Ui(x) and

Bsx(f(y)) ~ f(X2) = Ø for y E Yx’ ; otherwise choose Yx’ so that

!7x" c-- Ui(x) and take sx = 1.
Set Yx = Vi n Yx’ and take a star-finite open refinement {Vj}~j=1 of

the cover {Vx}. Make the following further definitions for each j:

rj = r.,, sj = sx, i(j) = i(x), for some x with Vj c Yx;
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taken over all a with Va n Vi ~ 0;

03B5j = 0 if Ui(j) n X3 ~ Ø and ej = 1 otherwise;

Since E’ is infinite dimensional we can find by induction a sequence
{Bj}~j=1 of subspaces of E’ with dim Bj = dj together with a sequence
{Zi}~j= 1 of elements of E’ with ~Zj~ = 1 such that for each n = 1, 2, ...
the subspaces Bn, RZn are linearly independent of each other, and of the
span of the other with

Let pj : F ~ Bj be the composition of a projection of F onto Ai(j)
with a linear isomorphism of Ai(j) onto Bj, having ~pj~ ~ 1.

Take a shrunk refinement (VJ) of {Vj}: i.e. an open cover with

Vi c Vj for each j. Set No = Xo and Nn = Xo U ~nj=1 Vj. Define

ko : M - F by k0(M) = 0, and assume inductively that we have a set
{kj}n-1j=0 of CP functions kj : M ~ F satisfying:
(1) kj(X1) = {0}

i

(2) kj(M - U Va) = 0
a=l

(3) kj|(M-Vj) = kj-1|(M-Vj)
(4) kj(M) lies in the linear span of ~ja=1 Ba

(6) if hj = f + kj : M ~ F then hj 1 Nj is an immersion.

If Ui(n) ~ X1 ~ 0 set kn = kn-1. If not, take a CP map t/I n : M ~ [0, 1 ]
with support in hn and with 03C8n| hri == 1. Define kn : M ~ F by

for XE Vn and by kn(x) = kn-1(x) otherwise.
Certainly kn satisfies ( 1 )-(4). For condition (5) suppose x ~ Va. If

Va n Vn = 0 there is no problem since kn(x) = kn-1(x). When

Va n Vn ~ 0 and 03B5a = 0 then Ui(a) n X3 ~ Ø so that Ui(a) oe Xl and
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again kn(x) = kn-1(x). Finally when Va ~ Vn ~ Ø and Ea = 1 we have

giving (5).
For condition (6), if Ui(n) ~ X1 ~ 0 there is no problem. When

Ui(n) ~ X1 = 0 first note that hn|Nn-1 is an immersion since hn-1|Nn-1
was an immersion and (kn-kn-1)Nn-1 is linearly independent of

hn-1(Nn-1). Suppose therefore that x E V’n. By (b) and (4)

Since

is the sum of

with the ma p v 1-+ (1 2)n+103C1npnTv which is injective on Ai(n) n E, we see
that it is injective. Also hn splits since it is an L(T)-map, and so (6) is
satisfied.

Taking the limit of {kj}~j=1 1 we obtain a CP map k’ : M ~ F satisfying:

(1)’ k’(X1) = 0

(3)’ k’ has finite dimensional range on each V,,,

(5)’ if h’ = f + k’ then h’ : M ~ F is an immersion.

In particular, by (4)’, ~k’(x)~  1/2a for x ~ Va. Hence (3)’ gives:

(6)’ k’ is compact.
Since h’ is an immersion, there is a star-finite open cover {Wb}~b=1 of
M with h’ injective on each Wb. We may choose Wb c Vj(b) for some
j(b), and also (taking Wb = 0 when necessary) we may assume j(b) ~ b.
Set
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taken over all j with Vj n Wb ~ 0 and all a with Wa n Wb ~ 0. Take a
Cp partition of unity {03BCb} subordinate to {Wb} and define k" : M ~ F by

Then

(2)" k" has finite dimensional range on each Wb

(3)" if x ~ Wb then 2~k"(x)~ ~ min {1 2b, rj(b)’ Sj(b)’ 03B4(x)}.
By (2)" and (3)" we see that k" is also compact.
Now set k = k’ + k" and h = f+k. By linear independence h is an

immersion. To show that it is injective suppose x, y ~ M with h (x) =
h( y). Let a, b be the largest integers with p(a)J1a(x) =F 0 and P(b)J1b(Y)
~ 0, or zero when no such integers exist.

and

By linear independence we see a = b. Hence x, y E Wa . Since f+k’ was
injective on Wa we have x = y, again by the linear independence.

CASE (ii): a = 0, b ~ 0. For some 03B1, 03BC03B1(x) ~ 0. Then (1)" gives
Ui(j(03B1)) n X 3 :f. 0. Hence x ~ X2 and h(x) = f(x). Since y E Wb,
~k(y)~  rj(b), sj(b). It follows that Ui(j(b)) nX2:f. Ø: otherwise we
would have Bsj(b)(f(y)) ~ f(X2) = Ø. Hence Ui(j(b)) c Xl, and so

f-1(Brj(b) (f(y))) ~ Ui(j(b)), giving XE Ui(j(b)). But then h(y) = h(x) =
f(x) lies in the span of E ~ Ai(j(b)) and so k(y) = 0, showing that this
case is impossible.

CASE (iii) : a = 0, b = 0. Here both x and y lie in X 2 and so f(x) =
h(x) = h( y) = f(y), giving x = y.
Thus h is a 1-1 immersion.

In the case where f is a strong L(T)-map we may choose the splitting
F = E x E’ so that f is strong with respect to a basic sequence {ei}~i=1
of E’ and then choose the Z. from among this sequence and the subspaces
Bn so that each Bn is spanned by finitely many ei. The resulting 1-1
immersion h will then be strong with respect to {ei}. This ccmpletes the
proof of proposition 1.//
Next consider an open subset X of a Banach space E together with a
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commuting family of projections {pn}~n=1 on E. Set Pn(E) = Hn ,
Hn ~ X = Xn, pn = 1-Pn, and pn(E) = Hn. Assume that Hn ~ Hn+1,
each n. If rn : Xn ~ R(&#x3E; 0) the standard open tube about Xn in X of
radius rn is

LEMMA 2. Suppose that rn = rlXnfor some continuous r : X ~ R(&#x3E; 0),
and that {pn} converges strongly to the identity. Then for any compact
set K in X there is an integer N with K c Zn for all n ~ N. In particular
X = Un Zn .

PROOF. Set b = inf ~r(x) : x ~ Ki. Suppose U is a neighbourhood of a
point x in X. By the uniform boundedness theorem, since {pn} converges
strongly to the identity, there is a neighbourhood V of X with pn(V) c U
for all sufficiently large n. Hence, by compactness of K, there is an integer
N1 with r(pnx) &#x3E; b/2 for all x ~ K and all n ~ Ni. Similarly, there is
also an N2 with Ilpnxll  b/2 for n ~ N2 and all x ~ K. Set N = max
(NI, N2).Il
The next proposition is the basis of our method of obtaining approxi-

mations by proper maps and hence by closed embeddings.

PROPOSITION 3. Let X be an open subset of the direct sum E = El x E2
of two Banach spaces, and M a CP layer manifold over E1, p ~ 1. Suppose
that f : M - X is a strong L(T)-map of class CP, where T : E1 ~ El x E2
is the natural inclusion, and that r : X ~ R( &#x3E; 0) is Lontinuous. Assume
that El is CP-smooth and E2 is infinite dimensional. Then there is a proper,
CP, L(T)-map f : M - X with ~f(x)-f(x)~  r(f(x)) for all x in M,
which is strong with respect to the same basic sequence as f.

Moreover, there is an open cover {Uj}~j= 1 of M, indcpendent of r,
with each f|Uj proper as a map into E, such that f may be chosen with
each (f-f)|Uj having bounded finite dimensional range. In particular
f|Uj is also proper as a map into E.

PROOF. Since f is a strong L( T)-map there is a basic sequence

{e1, e2, ···} for E2, a star-finite open cover {Uj}~j= 1 of M with layer
chart maps {~j} defined over each Uj, and a strictly increasing sequence
of positive integers {mj}~j=1 such that each f o ~-1j|~j(Uj) has the form
x F-+ Tx+03B1j(x) where 03B1j is bounded and has range in El x Sp{e1,···, e.il.
Note that this implies thatf 1 Ui is proper, even as a map into E. 
We may assume that {e1, e2, ···} is a basis for all of E2. Define the

closed subspaces Fn, Hn, and Hn of E by

Fn - Sp {e1, ···, emn}, Ho = E1, Hn = El x F.,
Ho= E2, Hn = Sp{emn+1,emn+2,···}
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and let Pn : E -» Hn , pn : E - Hn be the corresponding, complementary,
projections. We can inductively define a strictly increasing sequence
{j}~j=1 of integers such that ej does not lie in Fn whenever Un intersects
Uj.
As in [8; Chapt. IV, § 3 Theorem 1 ], if necessary, we may take a new

equivalent norm on E to en sure that ~pn~ = 1 and hence ~pn~ ~ 2, for
each n.

Set Xn = X ~ Hn and let Zn, Z’n be the standard open tubes about Xn
of radius r|Xn, 1 2r|Xn. We may assume that r is so small that Br(x)(x) c X
for all x in X, and hence

Take a shrunk refinement {Vj}~j=1 of {Uj} and set Vo = Uo - 0.
We shall inductively construct a sequence of CP functions ~n : M -

R(~ 0) and define kn : M - E by

to satisfy:

From these follow

4) knl(M-Un) = kn-lI(M-Un),
5) k.(M) = Sp {e1,···, e,1
6) (f+kn)(M) c X.

To do this define ~0 - 0 and assume that ~0,···, ~n-1 have been

constructed. Note that f(Un) c Xn , that

(f + kn - 1)(Un) ~ Hn-f-Sp {e1, ···, en-1} = G,

say, and that kn - 1 ( Un) c Hn by construction of the j.
Set A = {z E G s.t. Ilpnzll  3 4r(pnz)} and for each z E A define

K(z) = {t E R(~ 0) s.t. 2 3r(pnz) ~ ~ten+pnz~ ~ 3 4r(pnz)}.

Suppose 0 ~ t1  t2 and z E A. Then

and so
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It follows that each K(z) is a non-empty closed interval, and so by a
straightforward exercise in partitions of unity (or alternatively by appeal
to Michael’s theory of continuous selections [24]) we may construct a
CP function j : G - R(~ 0) with 03BE(z) E K(z) for z in A and 03BE(z) = 0
elsewhere.

Now take a CP function 03BB : M ~ [o, 1 ] with supp A c Un and

ÀI V, = 1, and define 9,, : M ~ R by

Then

a) supp ~n C Un
b) (f+ k. - 1)(x) + qJn(X)en E zn if ~n(x) ~ 0

c) (f+kn-1)(x)+~n(x)en ~ Z’n if x ~ 17.
Certainly 1) is satisfied, as is 2) by b). Also c) says that (f + kn)( Vn) c
X - Z’n, and by adding qJn(x )en to f(x) + kn-1(x) we have if anything
increased the distances of points in the image of Vm, m  n, from Hm,
by the same argument as that used in the discussion of the K(z). Hence
3) is true.

Define k : M ~ E by k(x) = 0 qJj(x)ej. For each x, k(x) = km(x)
for any m greater than or equal to the largest n with x E Un . Consequently,
if f = f+k,f(Vn) ~ X - Z’n for all n, f is a strong L(T)-map as required,
~f(x)-f(x)~  r(f(x)) and (f - f)|Un has bounded finite dimensional
range.

It remains to show that f : M ~ X is proper. Suppose therefore that
K is a compact subset of X. By lemma 2 there is an integer N with
K ~ Z’ for all n &#x3E; N. Then f-1(K) c UN 1 Vj. Since f|Vj is proper
for each j it follows that f-1(K) is compact.//

In the above we used the fact that the sum of a proper map into E

with a compact map is still proper, as a map into E. More care seems
needed in the case of maps which are proper into open subsets of E.

Hence the next lemma.

LEMMA 4. Given a countable locally finite open cover {Ui}i=1 of a metric
space M and an open subset X of Banach space E, there is a continuous
03B4 : M ~ R(&#x3E; 0) such that for all continuous proper maps f : M - X with
f|Ui proper as a map into E for each i, and for all compact k : M - E with
Ilk(x)II  à(x), all x E M, if (f+k)(M) c X then f+k : M - X is

proper.

PROOF. Choose a continuous b : M - R(&#x3E; 0) with à(x)  1/2i for all
x E Ui. Suppose we have f and k as stated, with a sequence {xi} c M
such that f(xi) + k(xi) = Yi ~ y in X. We may assume {k(xi)} converges
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to a point z in E. If the x, belong to an infinite number of distinct Ui
then z = 0 and f(xi) ~ y. Since f is proper this implies that {xi} has a
convergent subsequence. Otherwise there is an n with {xi}~i=1 ~ ~nj=1 Uj
and since (f+k)| ~nj=1 Vj is proper as a map into E we can again con-
clude that {xi} is subconvergent.//
LEMMA 5. Suppose E, T, M are as in proposition 3 and that E2 has a

basis {e1,e2,···}. Then given continuous maps ô : M - R(&#x3E; 0) and
h : M ~ E there is a CP, L(T)-map h : M - E which is a 03B4-approximation
to h and is strong with respect to {ei}.
Moreover, if A is a closed subset of M, V is a neighbourhood of A

in M, and ho : V ~ E a CPL(T)-map, strong with respect to {ei}, and
a 03B4-approximation to hl V, we may choose h equal to ho on A.

PROOF. Let F be the linear subspace of E2 consisting of the finite
linear combinations of the ei. Since F is dense in E2 there is a continuous

approximation to h with image in E, x F, equal to ho near A. The lemma
now follows from the standard L(T) approximation result [15], [16] by
considering the range of our maps to be El x F.//
We now come to the main result of this section. As for proposition 1

the main complications in the proof arise in obtaining an extension
rather than an approximation. In fact, essentially, we first obtain an

approximation, making it sufficiently close so that it may then be modified
to give an extension.

THEOREM 6. Suppose E, T, M, and X are as in proposition 3, and that

E2 has a basis {e1, e2, ···}. Given continuous maps r : X - R(&#x3E; 0) and
h : M ~ X there is a closed CP, L(T)-embedding 1ï: M - X with

~h(x)-h(x)~  r(h(x)), for all x in M, which is strong with respect
to {ei}.
Furthermore if hl is an open neighbourhood of a closed subset A of
M and h is a CP L(T )-embedding on a neighbourhood of VI, strong
with respect to {ei} and closed on V1, with h(M) not reintersecting
!l( Vl), we may choose fi equal to h on A.

PROOF. There is a continuous p : X ~ R(&#x3E; 0) such that, for each
y E X, Bp(y)(Y) c X and p(x)  -ir(y) for all x E Bp(y)(Y). Take a family
h2 , V3, ... of open neighbourhoods of A in M with Vi+1 ~ Vi, i ? 1.

By lemma 5, choosing a suitable 03B4, we obtain a CP L(T)-map f : M - X,
strong with respect to {ei}, with f|V2 = hl V2 and with f(M) not re-
intersecting f(V2), such that ~h(x)-f(x)~  03C1(h(x)).
Take a locally finite open cover {Uj}~j=1 of M as in the statement of

proposition 3. For this cover take a 03B4 : M ~ R( &#x3E; 0) as given by lemma
4, with à(x)  1/2i for x in Ui. The restriction f | V2 is a homeomorphism
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of V2 onto the closed subset f(V2) of X. Using the inverse function we
obtain a continuous rI f(V2) ~ R(&#x3E; 0) with rl o ( fi V2) = 03B4| V2; this
extends to a continuous map r2 : X ~ R(&#x3E; 0).

Since f(M- V4) ~ f(V5) = 0 there is an ’3 : X ~ R(&#x3E; 0) satisfying
Br3(x) ~ f(V5) = 0 for x ~ f(M - V4).

Define r : X ~ R(&#x3E; 0) by r(x) = 1 3 min {03C1(x), r2(x), r3(x)}. By
proposition 3 there is a proper CP L(T )-map f : M - X, strong with
respect to {ei}, with ~f(x)-f(x)~  r(f(x)) and with each (f-J)IUj
having bounded finite dimensional range.

Set kl - (f-f)| V2. By the construction of r2 we see that kl is compact.
Take a CP function A : M ~ [0, 1] with supp A ~ V2 and AI V3 - 1.

Define hl : M ~ X by h1(x) = f(x) - 03BB(x)k1(x). By lemma 4, h 1 is

proper. Since h1|V3 = f|V3 = h|V3 this restriction is an embedding,
and so, by construction of r3 , h1(M) does not reintersect h1(V5).

Finally apply proposition 1 to hl to obtain a compact, CP map,
k : M ~ E with IIk(x)1I  min {r(f(x)), 03B4(x)}, having k|V6 ~ 0, and
such that if h = hl +k then h is a 1-1 immersion, strong with respect
to {ei}. Then h(M) c X and using lemma 4 again we see that h : M ~ X
is proper and hence a closed embedding. Also, for all x in M,

and

Since ~h(x)-f(x)~  03C1(h(x)), by construction of p, 03C1(f(x))  1 2r(h(x)),
and we see that h satisfies the required conditions.//

COROLLARY 6.1. Any proper continuous map h : M - X may be ap-
proximated in C?ine(M, X) by a closed embedding 1ï : M ~ X which is a
CP L(T)-map.

PROOF. It sufhces to show that for any such h and any continuous

£5 : M ~ R(&#x3E; 0) there is a continuous r : X ~ R(&#x3E; 0) with r(h(x)) ~
£5(x) for each x in M.
For each y in the closed subset h(M) of X set R(y) = inf {03B4(x) :

x ~ h-1(y)}. We need only show that R(y) is locally bounded away
from zero on h(M ) to obtain an rl : h(M) ~ R(&#x3E; 0) with r1(y)  R( y)
which will then extend to a suitable map r.

Suppose R( y) is not bounded away from zero on any neighbourhood
of the point z of h(M). Then there is a sequence {zi} in h(M) with
zi - z and R(zi) ~ 0. This means there is a sequence {xi} in M with
h(xi) = zi and 03B4(xi) ~ 0. Since h was proper {xi} is subconvergent,
contradicting the fact that 03B4(xi) ~ 0. //
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REMARK. We cannot deduce from 6.1 that h is properly homotopic to
a closed embedding, unless M is finite dimensional: in contrast with the
finite dimensional situation for infinite dimensional M and X the proper

maps do not foi m an open subset of C0fine(M, X). However, the theorem
of [la] shows that such a homotopy exists.

COROLLARY 6.2. Suppose E, T, M and X are as in proposition 3 (E2 is
not assumed to have a basis), then there is a closed, CP, strong L(T)-
embedding f : M - E with f(M) c X.

PROOF. Every infinite dimensional Banach space contains a closed
infinite dimensional subspace with a basis [8a]. Take such a subspace
E2 of E2. Then by the theorem we obtain a closed embedding f : M -
El x E2 c E with f(M) c X n (El x E2) c X as required.//
COROLLARY 6.3. Suppose that E2 has a basis {ei}~i= 1, that E is CP

smooth, and that T, M and X are as above. Then given homotopic CP,
L(T), closed embeddings ho, hl : M - X, both strong with respect to

{ei}, there is a CP isotopy 03A6 : R x X ~ R x X sending ho to hl: i.e. a level
preserving diffeomorphism 0 with 03A60 = idx and 03A61 o ho = hl. If there
is a closed subset Y of X containing h1(M) and ho(M) with ho homotopic
to hl as maps into Y the isotopy may be chosen to have support in an
arbitrary neighbourhood of Y.

PROOF. Let U1, U2 be open neighbourhoods of Y with U1 c U2.
Since ho(M) u hl(M) is homotopy negligible in U1 (i.e. the inclusion
M - (ho(M) U h1(M)) ~ M is a homotopy equivalence [14]), the map
ho is homotopic in U1 to an h with heM) contained in Ul but disjoint
from both ho(M) and hl (M). By the theorem this map can be taken to
be a closed CP L(T)-embedding, strong with respect to {ei}. Thus we
may assume that h0(M) and h1(M) are disjoint.
By lemma 7, below, there is a continuous h : R x M - U1 with

h|{0} x M = ho and h|{1} x M = hl which satisfies the conditions of

the orem 6 with A = {0, 11 x M. The theorem then gives a closed L(T)-
embedding fi. R x M - X with h (R x M) c U2. We can now apply
Hirsch’s lemma as stated at the end of § A, and obtain 0 as required.//

REMARK. By taking a layer tubular neighbourhood of h (R x M) (see
[16]) in 6.3 we could arrange for each 0, to also be an L(T)-map.
LEMMA 7. Suppose f: {0} x M - U is closed CP L(T)-embedding,

p ~ 1, into an open set U of E = El x E2, which is strong with respect
to a basic sequence {e1, e2, ···} of E2. Then if El is CP smooth, f extends
to a CP L(T)-map f : M x R ~ E strong with respect to {ei}, which is a
closed embedding into U on some neighbourhood of {0} x M in R x M.
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PROOF. There is a star-finite open cover {Ui}~i=1 of M, a CP partition
of unity {03BCi} on M subordinate to it, and a sequence {i}~i= 1 of integers
such that if

k(x) = 03A303BC(x)ei
then the subsets k(Ui) and f(Ui) are linearly independent.

Define f(t, x) = f(x) + tk(x). By linear independence f is an immersion.
Since it is a closed embedding on {0} x M and is locally proper standard
results show that it behaves as required.//

C. Reduction to the layer case

We will recall two known results. The first concerns the relationship
between Fredholm maps and layer structures.

THEOREM 0 [15] [16]. For a CP manifold M, p ~ 1, and a Banach space
E, a CP 03A60-map f : M - E induces a unique CP layer structure {M,f}
on M, modelled on E, with respect to which f becomes an L(I)-map into E.

If r : M x E ~ TM is a trivialization, the layer tangent bundle of {M,f}
is trivial iff the lnap t(f) : M - 03A60(E), defined by Tf o 03C4, is homotopic
to a map into GL(E).Il
A COO manifold X over the infinite dimensional Banach space E will

be said to satisfy the conditions of OECBM if X is parallelizable and E
is C ’ -smooth and has a Schauder base. The following apparent strength-
ening of the basic result of OECBM is in fact evident from the construc-
tion in lemma SA of that paper and from the ’strong layer’ construction
of the tubular neighbourhoods there:

THEOREM 00. Suppose that X and E satisfy the conditions of OECBM
and that Xl is a Coo layer structure on X, with TX1 trivial. Assume that
there exists a proper bounded C~L(I)-map f : X1 ~ E. Then for any
basis {e1, e2, ···} for E there is a C~L(I)-map f : M - E such that

(i) f is an open embedding,
(ii) f-f : M ~ E has range in the subspace consisting of allfinite linear

combinations of the ei.//
Next we have an extension lemma for Fredholm maps and proper

Fredholm maps (c. f. lemma 4.2 of [16]).
LEMMA 8. Suppose that X is an open subset of a CP-smooth Banach

space E, p ~ 1, and that G, G1, Go are open subsets of X with G c G1,
61 c Go. Let f : Go - E be a CP 03A60-map such that Df|G1 ~ 03A60(E)
extends to a map h : X - 03A60(E’). Then f 1 G extends to a CP 00-map
f: X ~ E having Df : X - cPo(E) homotopic to h.
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If f|G1 was proper but not surjective then f may be chosen to be proper,
and if f|G1 was bounded we may choose f to be bounded as well.

PROOF. Take an open set G2 of X with G c G2, G2 C G1. By the local
convexity of 03A60(E) there are points {xi}~i=1 in X and a CP partition of
unity {03BCi}~i=0 on X with supp 03BC0 c G1 and supp ,ui c X- G2 for i &#x3E; 0,
such that if

g(x) = 03BC0(x)Df(x)+03A303BCi(x)h(xi)
i’n

then g(x) E 4lo(E) and g : X - 03A60(E) is homotopic to h.
Define f1 : X ~ E by

fl(x) = 03BC0(x)f(x)+ l 03BCi(x)h(xi)x.

For each x in X, Dfl (x) - g(x) is an operator of finite rank. Hence fl is
03A60 and Dfi : X - Wo(E ) is homotopic to h. For the simplest case we may
now take f = fl .

In thé case where f|G1 is proper and not surjective take a CP involution
J, : E ~ E such that Jl 0111G2 is bounded. This is possible by addendum
2C of OECBM. If f|G1 was bounded take J, to be the identity.

Using § A, there is a closed pseudo-disc 15 in E, with centre 0 and CP
boundary S, containing Jl fl(G2) in its interior. Take a CP map À : X ~
[0, oo ) with Â 1 G = 0 such that f2 : X - E’ x R given by x H (Jl f, (x),
03BB(x)) is proper. This is possible by the local properness of Jlfl.

Construct a closed, bounded, CP hypersurface E contained in

E x [-1,0] c E x R having D c En (E x {0}) and so that every 1 2-ray
in E  R emanating from the point Z = (0, --!-) has a unique inter-
section with it. For example 1 could be a hypersurface of ’révolution’.
’revolved’ around S about {0} x R, with a section looking like:

The argument at the end of OECBM gives a CP involution J2 on
E x R, with J2|03A3 = id03A3, which turns 1 inside out (there is a CP diffeo-
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morphism with support inside 1 removing Z, and a CP automorphism
of E  R - {Z} defined by ’reflection’ in 1). The composition J2 f2 has
image inside and on I. If Q : E R ~ E is the projection, the map
f3 : X - E defined by f3 = QJ2f2 will be a proper map.

Finally define f byf = J1 0 f3. Then

7M = JI QJ2f2(x) = J1 QJ2(J1f1(x), 2(x»

givingDJ(x)v = DJ1(y3) 0 Q o DJ2(y2)(DJ1(y1)Df1(x)v, D2(x)v) where
Yi = fi(x), i = 1, 2, 3. Since there are homotopies of DJ1 and DJ2 , in the
space of linear isomorphisms, to constant maps A1, A2 with Ai - I and
QA2 = Q, it follows that Df is homotopic in CPo(E) to Dfl. The remain-
ing requirements for f are easily seen to be satisfied./j

It is a straightforward exercise to globalise the first part of lemma 8
to the case when X is an E-manifold. This can be done by inductively
extending f over a countable, locally finite, atlas of X using the lemma,
and yields:

LEMMA 9. Suppose that X is a CP manifold over a CP-smooth Banach
space E, p ~ 1, and that V is a neighbourhood of a closed subset A of X.
Let f : V ~ E be a CP 03A60-map such that (Tf)* : TV - V x E extends to
a 03A60 bundle map h : TM ~ M x E. Then fiA extends to a CP 03A60-map
f : M ~ E with (Tf)* : TM - M x E homotopic to h through 03A60 bundle
maps.//
The following version of the main integrability result in [15], [16] is

now immediate:

THEOREM 10. Let X be a CP manifold modelled on the CP-smooth Banach
space E, p ~ 1. Then the map f 1-+ Tf induces a bijection between the
homotopy classes of CP 03A60-maps f : M - E and the homotopy classes

(through eo bundle maps) of 03A60 bundle maps h : TM - M x E.11
REMARK. The integrability and concordance classification results in

[15], [16] for layer structures on X follows directly, via theorem 0. Note
that this method does not require the condition p ~ 3, nor the assump-
tion that TX is parallelisable.
The next proposition shows that a wide class of embeddings can be

considered as layer embeddings into an open subset of a Banach space.

PROPOSITION 11. Let E be the direct sum of Banach spaces El and E2,
with T : E1 ~ E the natural injection. Suppose that the El-manifold M
and the E-manifold X satisfy the conditions of OECBM and that j : M - X
is the inclusion of M as a COO closed submanifold of X with co-space E2.
Let {e1, e2, ···} be a basis for E2.

Then, if we are given any C 00 layer structure Ml on M which admits
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a proper bounded, Coo, L(IE1)-map into El and has a layer trivialisation
of its tangent bundle which extends to a trivialisation of TX, there is a
COO open embedding q : X ~ E such that q o j : M1 ~ E is an L(T)-map,
strong with respect to {e1, e2, ···}.

PROOF. Taking an open embedding we may assume that X is an open
subset of E. A trivialisation r : TX ~ X x E, say, which restricts to a
trivialisation ofTM1, is then an automorphism of X x E and has the form:

Since it restricts to a trivialisation of TM, we can write E = El x E2 in
such a way that 03C4-1(M  {0} x E2) is a transverse bundle to TM in TX.
Thus there is an r : M ~ R(&#x3E; 0) such that the map

determines a tubular neighbourhood of M in X, with image Go, say.
Consider M as an open subset of El and take a Coo proper bounded

L(IE1)-map g : M1 ~ El. Since i gives a layer trivialisation of TM, the
maps M ~ 03A60(E1) given by m r+ A(m) o Dj(m) and by Dg differ only
by a map into the operators of finite rank and are therefore homotopic.
It follows that if we define ~ : M  E2 ~ El x E2 by il(m, v) = (g(m), v)
and f : Go - Eby 1 = il o 03BE-1 we obtain a 03A60-map with Df : Go - 03A60(E)
homotopic to A|G0.
Next take rl, r2 : M ~ R(&#x3E; 0) with Y2  ri  r and r1 bounded, so

that if G = 03BE(M  r2E2) and G 1 = ç(Mx rlE2) then G and G 1 are

closed tubular neighbourhoods of M in X. Then f|G1 is proper and

bounded and, by the H.E.P., Df|G1 extends to a map h : X ~ 03A60(E)
whlch is homotopic to A.
By lemma 8, f|G extends to a C~ proper bounded 03A60-map f:X ~ E

with Df : X - To(E) homotopic to h and hence to A. Combine the
given basis for E2 with one for El to obtain a basis {a1, 03B12,···} for E.
Then theorems 0 and 00, together give a Coo open embedding q : X ~ E
such that f - q is locally finite dimensional and has image spanned by
the finite linear combinations of the ai. Since JIM = T o g it follows

that q 0 j is a strong L(T )-map as required.//

D. Existence and approximation of embeddings

Let E and F be Banach spaces and X a topological space. Then an
E-vector bundle 03C0 over X is said to have an inverse modelled on F if

there is an F-vector bundle 03C0’ over X with 03C0 (B 03C0’ trivial.

An obvious necessary condition for the existence of an immersion of
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an E-manifold, into a Banach space, with co-space F is that TM has an
inverse modelled on F. The next theorem, which is a strengthened version
of the result announced in [15], shows that this is often sufficient.

THEOREM 12. Let M be a separable metrisable manifold of class CP,
p ~ 1, modelled on a Banach space E, and let F be an arbitrary infinite
dimensional Banach space. Then if TM has an inverse modelled on a separ-
able Banach space G, with E x G admitting CP partitions of unity, there is
a bounded closed Cp embedding of M into E x G x F with co-space G x F.

Furthermore:

(i) any continuous map of’ M into E x G x F can be CO approximated
by a 1-1 immersion with co-space G x F;

(ii) if F has a basis and X is an open subset of E x G x F, then for any
continuous f : M - X and r : M - R(&#x3E; 0) there is a closed CP embedding
i : M ~ X with co-space G x F having ~f(x)-f(x)~  r(f(x)) for all
x in M;

(iii) if F has a basis and X is open in E x G x F then any proper map of
M into X has a C0fine-approximation by a CP closed embedding in X
with co-space G x F.

PROOF. Since E x G is CP-smooth so is E, and hence so is M. According
to § A this means that there is a G-vector bundle of class CP, 03C0 : B - M,
with TM ~ B trivial. The tangent bundle TB is equivalent to

03C0*(TM) Et) 03C0*(B) and is therefore trivial. Also B, being modelled on
E  G, is CP-smooth. Hence, by theorems 0 and 10, B has a CP layer
structure, Bl , modelled on E x G. By corollary 6.2 there is a closed,
bounded, CP L(T)-embedding f : Bi ~ E x G x F, where T : E x G -

E x G x F is the injection. Then f restricted to the zero section of 03C0 gives
the required embedding of M.
Any continuous f : M ~ E x G x F can be extended to h : B - E x G x F

by setting h = f o n. Hence (i) and (ii) follow respectively from proposi-
tion 1 and theorem 6, by taking restrictions to the zero section. Part (iii)
follows from (ii) as in the proof of corollary 6.1.//
Much work has been done recently on the homotopy type of the general

linear groups of the well known Banach spaces, and although there is
no general theory yet we can nevertheless make some useful remarks
about the existence of inverses to vector bundles:

I(i). Any E-vector bundle 7r, over a paracompact space X, which is of
finite type has an inverse modelled on a finite direct sum of copies of E.
A proof is given by Lang [23: Proposition III 9]. This will be true for
any vector bundle n if X has finite covering dimension [25: 6.6], [32: 2.4],
and hence if X has the homotopy type of such a space. In particular it
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will be true if X has the homotopy type of a finite dimensional CW
complex.

l(ii). If the Banach space E has a split subspace linearly isomorphic
to E  E then any E-vector bundle 03C0 with paracompact base X admits
an inverse modelled on a space F with E x F linearly isomorphic to E.
This follows from the method of Kuiper and Terpstra-Keppler in [22],
after observing that there is a countable locally finite open cover {Ui}
of X with each 03C0| Ui trivial, (by a theorem of E. Michael, or A. H. Stone
for X pseudo-metrisable, any open cover of X has a u-discrete open
refinement, [37: 5.28, 4.21] or [32: lemma 2.4]).
An important special case of this is that if E is linearly isomorphic to

its square E x E’ then any E-vector bundle with paracompact base has
an inverse modelled on E, (add the trivial E-bundle to the inverse

F-bundle already mentioned).
I(iii). Any E-vector bundle 03C0 with paracompact base admits an

inverse n’ modelled on any of the infinite direct sums lp(E), 1 ~ p  oo,
or co(E). This follows by the same proof as I(i), by taking a countable
trivialising cover as in I(ii). In fact by considering the infinite Whitney
sum ~lp (03C0 0 03C0’) or ~c0(03C0 p x’) we see that the trivial lp(E) an d c0(E)
bundles fumish inverses.

Note that according to Bonic and Frampton [3: page 881 ], if E is
Cr-smooth then so is co (E ).

I(iv). If E is the quasi-reflexive space of R. C. James [19] whose
natural embedding in its second dual space has codimension one then
E does not satisfy the conditions of I(ii). This is discussed in detail in
the Appendix where an example of a C1-smooth manifold is given which
admits no C 1 embedding into any finite direct sum of its model space.

I(v). Kuiper’s proof that the general linear groups of infinite dimens-
ional Hilbert spaces are contractible has been extended to more general
séquence spaces, including l p , 1 ~ p  oo, and co, by Arlt and Neubauer
(see [31 ]). More recently it has been extended to some function spaces,
including C [0, 1 ], and Lp, 1 ~ p ~ oo , [11], [26], [27].

From these considerations: by I(iii):
COROLLARY 12.1. Every CP separable metrisable manifolds M, modelled

on a CP-smooth Banach space has a closed bounded CP embedding into a
Cp smooth Banach space, p ~ 1.//

By I(ii):
COROLLARY 12.2. Suppose that E is a CP-smooth Banach space, p ~ 1,

linearly isomorphic to its square and that M is a separable metrisable CP
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E-manifold. Then M has a closed bounded CP embedding into E, with
co-space E.

If also E has a split subspace with a basis then any continuous map
f : M ~ X, of M into an open subset X of E, is homotopic to a CP closed
embedding into X, with co-space E. If f is proper then it can be cgne-
approximated by such an embedding.11

By I(i) :
COROLLARY 12.3. Any separable metrisable CP-smooth E-manifold which

has the homotopy type of a finite dimensional CW complex has a closed
bounded CP embedding into a finite direct sum of copies of E, p ~ 1.1/
A consequence of the existence of a closed CP embedding of a manifold
M into a space with a CP norm is that there exists a complete CP Finsler
structure on M. A question which arises in this context is: which mani-
folds admit a CP Finsler structure whose induced metric is both complete
and bounded?

Before closing the discussion of the existence of embeddings we quote
the main result of [22] since it has a much more straightforward proof
than that of theorem 12 1:

THEOREM (N. Kuiper and Besseline Terpstra-Keppler). If there exists
a closed linear split injection, for the Ck-smooth Banach space E, of E x E
into E, then any Ck E-manifold M, k ~ 1, has a closed embedding into E.

E. Ambient isotopy of embeddings

Suppose that E is the direct sum of the Banach spaces El and E2, and
that M is an El-manifold and X a parallelisable E-manifold. We will say
that two immersions fi : M ~ X, i = 0, 1, are tangentially homotopic if
for some trivialisation of TX the induced maps (Tfi)* : TM - M x E are
homotopic through split vector bundle injections. This condition, to-
gether with the existence of a homotopy of fo with fl , is the obvious
necessary condition for the existence of a regular homotopy between
fo and fl . We shall also use another condition: if fo is an embedding it
will be called a flat embedding provided there is a trivialisation 03C4 of TX
which restricts to a trivialisation of the tangent bundle of f0(M) i.e. :

is an isomorphism onto f0(M)  E1. This is a necessary condition for
the existence of an open embedding f: X --+ E with f(X) ~ E1 =
f(f0(M)), (see Corollary 25.2 below).

1 J. P. Penot also has a general embedding theorem in his thesis, Paris 1970.
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THEOREM 14. Suppose that E is the direct sum of two Banach spaces
El and E2 which are infinite dimensional, C~-smooth, and possess Schauder
bases. Let M be a Coo parallelisable El-manifold and X a Coo E-manifold,
both separable and metrisable. Suppose that Xo and Xl are open subsets of
X with X1 c Xo and that fo and fl are closed COO embeddings of M into
X having co-space E2 and image in Xl. Then if:

(i) fo and fl are homotopic as maps into Xl,
(ii)fo and fl are tangentially homotopic,
(iii)/o(M) is a flat submanifold of Xo,

there is a COO isotopy 03A6 : R x X ~ R x X with support in Xo such that
03A60 = idx and 03A61 o fo = fi.

PROOF. The method of proof will be to reduce to the layer situation
and obtain an isotopy from Corollary 6.3. This will be done using proposi-
tion 11. We will therefore start by arranging for the conditions of this
proposition to be satisfied.
Assume first that f0(M) and f1(M) are disjoint. Throughout the proof

we will confuse trivialisations of trivial bundles with the corresponding
maps into the general linear groups. Condition (iii) ensures that TXo is
trivial and so M and Xo satisfy the conditions of OECBM and may
therefore be considered as open subsets of their models.

Since fo : M ~ Xo is flat there is a trivialisation i of TXO, 03C4 : Xo x
E ~ Xo x E such that i o Tfo maps TM isomorphically onto f0(M) x El.
This gives a trivialisation io : TM - M x El.
By theorem 0 and lemma 8 there is a C~ layer structure MI on M

induced by a proper bounded 03A60-map g : M ~ E1, with Dg : M ~

03A60(E1) homotopic toro. Then, it follows (e.g. from [16]) that there is a
t : M - GL(El ), with each Dg(m) - t(m) of finite rank, and with t

homotopic in GL(EL) to ro. The map t induces a layer trivialisation of
TMl .

Set Mi = fi(M), i = 0, 1, with the layer structures determined by MI.
We next construct a trivialisation ’t’ of TXo which restricts to the triviali-
sation of M0 ~ Ml determined by t. To do this take a homotopy f : I x
M - X between fo and fl . Then r induces a trivialisation

Since fo and fl are tangentially homotopic there is a vector bundle

injection a : I x TM ~ f*(TX0) with ao, al induced by Tfo and Tfl .
The composition

is an injection whose image has a transverse E2-bundle. Since /30 is



199

isotopic to the identity we may therefore take an extension of 03B2 to an
automorphism 03B2 of I  M  E which has 03B20 isotopic to the identity.
Then 03B21 is also isotopic to the identity and so, by the H.E.P., there is
an h : Xo - GL(E) with each hfi(m) = 03B2i(m)-1. Taking 03C4’ : TX0 ~
X x E to be the composite trivialisation hi we can see that i’ o Tfi is

the trivialisation t of TMI, i = 0, 1, as required.
The conditions of proposition 11 are now satisfied in order to have a

C °° open embedding q : Xo - E such that q o fi : Ml ~ E is an L(T)-
map, strong with respect to a basis {e1, e2, ···} of E2, for each i, where
T : E1 ~ El x E2 is the inclusion. Thus we may apply the layer isotopy
result, corollary 6.3, to obtain a C~ isotopy 03A6’ of Xo sending f° to fl ,
with support in a suitable neighbourhood of X1. This extends to the
required isotopy 0 of X.
Iffo(M) ~ f1(M) ~ Ø we first obtain an open embedding q of Xo as

above but with only q 0 fo : Ml ~ E a strong L(T)-map. Using Theorem
6 we obtain a third C °° closed embedding f2 : M ~ Xo with f2 (M) c X1,
and f2 homotopic in Xi to f°, which is disjoint from fl(M) and f2(M)
and has q o f2 an L(T)-map of Ml, strong for the fixed basis of E2. Then
there is an isotopy sending fo to f2 . Hence f2 is tangentially homotopic
to f°, and therefore to fl . Also f2(M) must be flat in Xo so we may apply
the proof above to get an isotopy sending/2 to fl .//
The weakest point in theorem 14 appears to be the insistence that

fo(M) is flat in Xo. This implies that f° and f1 have trival normal bundles,
which is necessary in order to apply the layer theory. We will however
successively modify theorem 14, in 14B, 14B.1 and theorem 24, below,
in an attempt to avoid the dependence on flatness. Unfortunately we
can say nothing about the Cr case for 1 ~ r  oo.

THEOREM 14B. The conclusion of theorem 14 remains true when condition
(iii) is replaced by:

(iii)B: f0(M) has trivial normal bundle
together with one of

(iii)l: GL(E) is contractible,
(iii)2: f0(M) is a retract of Xo and TXO is trivial,
(iii)3: there exists a closed C ° embedding of I x M in X extending fo

and fl , (with the obvious modification for some extra embedding of M if
f° andf, do not have disjoint images).

When GL(E) is contractible we may also replace (ii) by the condition
that f1(M) has trivial normal bundle.

PROOF. The statements for GL(E) contractible are immediate. Also
(iii)B together with (iii)2 implies (iii), since (iii)2 ensures that any



200

trivialisation of TXolfo(M) extends to a trivialisation of TXO.
In the remaining case let f : I  M ~ X be such an embedding of I x M.

Then TX|f(I M) is trivial, since TX|f0(M) is trivial by (iii)B. Since
f(I  M) is closed in X there is an open neighbourhood Xo of f(I  M)
in X with TXo trivial. Since I x M is an ANR we may choose Xo so that

f (I x M) is a retract of it. But then, since fo(M) is a retract of f(I  M),
we are in the situation covered by (iii)2.//
CCROLLARY 14B.1. The conclusion of theorem 14 remains true when

condition (iii) is merely replaced by the assumption that f0(M) has trivial
normal bundle.

PROOF. This is because results on C0 Fréchet manifolds show that

(iii)3 of 14B is always satisfied. One way of seeing this is to use the
homeomorphism extension theorem of Anderson and McCharen [2].
Assume that fo (M ) and f i (M ) are disjoint and set Y = f0(M) ~ f1(M).
Using Corollary 12.2 we can construct C~ Hilbert manifolds X’, M’

homotopy equivalent to X, M with closed C~, homotopic, infinite co-
dimensional embeddings f’0, f’1 : M’ ~ X’ having disjoint images and
such that there is a homotopy equivalence of pairs h : X, Y ~ X’,
f’0(M’) ~ f’1(M’). According to Anderson and McCharen this can be
assumed to be a homeomorphism of pairs. Because we are dealing with
Hilbert manifolds f¿ and /Ï are flat embeddings and so the proof of
theorem 14 gives an extension of f’0 ~ f’1 to a closed embedding
f’ : M  I ~ X’. Then f’ o h-1 gives the required C0 extension of

f0 ~ f1.//

REMARKS (i). Since the proof of corollary 14B.1 uses deep theorems on
C ° topology the proofs of which require a completely different approach
from the C °° theory we shall not use the corollary in the sequel. However
when it can be applied to avoid the assumption of flatness we shall write
this assumption in parentheses.

(ii). The proof of the corollary suggests a method for proving ambient
isotopy theorems in the C ° category.

ADDENDUM 14B.2. The conclusions of theorems 14B, 14, and 14B.1
remain true without the assumption that M is infinite dimensional.

PROOF. It is only necessary to modify the proof of theorem 14; and
this also requires a modification of Proposition 11.
We can assume f0(M) and f1(M) are disjoint and set Y equal to their

union. As in the proof of 14 there is a trivialisation 7:’ : TXO X x E
which restricts to a trivialisation of TY. For a basis {e1, e2, ···} for E
take a closed bounded strong layer embedding fl of Y into E. This extends
to a proper bounded 00-map, f : G - E taking a closed tubular neigh-
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bourhood G of Y in X to a closed tubular neighbourhood of fl (Y), and
which is tangentially isotopic through 03A60-bundle maps to 03C4’|TG. We can
therefore apply lemma 8 and obtain a proper bounded 03A60-map f : X ~ E
which restricts to f1 on Y and is tangentially isotopic to i’. This allows
us to apply theorem 00 and Corollary 6.3 as before.//
Even when both X and M are parallelisable and M has infinite co-

dimension in X, we cannot assume that f0(M) automatically has a
trivial normal bundle, as the following example shows.

EXAMPLE. An infinite co-dimensional embedding of S 1 x Lp into Lp,
1  p ~ 2  cc, with non-trivial normal bundle.

CONSTRUCTION. Pelcynski’s extension of Douady’s example [10] shows
that GL(l2 x lp) is not connected if p ~ 2. It follows that there is a

non-trivial C °° 12 x lp-bundle, ç, over S1. Since lp(Lp) is isomorphic to
Lp, and Lp x 12 x lp ~ Lp, p &#x3E; 1, [33], remark I(iii) in section D above
implies that the Whitney sum E ~ 03BE of 03BE with the trivial Lp bundle is
trivial. Thus the total space of E ~ 03BE is diffeomorphic to S1 x Lp and so
has a closed co-dimension one embedding in R2  Lp ~ Lp. The induced
embedding of the total space 81 x Lp of E has co-space 12 x lp but non-
trivial normal bundle.//

F. Stability and diffeomorphisms

We shall use the following form of Kuiper and Burghelea’s ambient
uniqueness theorem for tubular neighbourhoods:

THEOREM (Kuiper and Burghelea). Let X be a C~ closed submanifold
of the C~-smooth manifold M and p : X x F ~ R(~ 0) a Finsler-like
function on a product Banach space bundle over X, which is C~ except
on the zero section. Let Dt = p -1 [0, t) and, for 0  a  f3  y suppose

that fi : D03B3 ~ M, i = 0, 1, are C°° open tubular neighbourhoods of X in
M such that each fi(D03B2) is closed in M. Assume that the compositions with
the tangent maps along the fibres, over X x {0},

are isotopic through vector bundle isomorphisms.
Then there is a Coo isotopy 0 : M  R ~ M x R, 0(x, t) = (03A6t(x), t),

with 0. = idM and 03A61 o fo 1 D,, = f1|D03B1. This isotopy may be chosen to
have support in an arbitrary neighbourhood of’fo(D,) u fI (Dy).
REMARKS ON THE PROOF. When p is a genuine Finsler this is proved for

Hilbert manifolds in [7], or in more detail in [20], and this proof applies
for any F with a C ’ -norm. When p is only Finsler-like then D03B1, Do Dy
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can nevertheless be separated sufficiently by a radial multiplication,
using p, to reduce to the case of disc neighbourhoods again. The assump-
tion of a smooth norm can be avoided as usual by the substitution of
norm-like functions.//
Our proof of stability will require yet another version of Bessaga’s

theorem:

LEMMA 15. Let p : Xx E - R(~ 0) be a Finsler-like function on the
product of the CP-smooth manifold X with the Banach space E; p is

assumed CP except on the zero section. Let D, D’ denote 03C1-1[0, 1),
p -1 [0, 2) and S, S’ their boundaries; H will be a maximal hyperplane of E.
Then:

(i) S is CP diffeomorphic to X x H by a fibre preserving map,
(ii) given a linear isomorphism s of E onto the product of E with a Banach

space F there is a Cp, fibre preserving, diffeomorphism h : X x E, D’,
D ~ X x E x F, D’ x F, D x F such that the map of X into Lis (E, E x F),
determined by the tangent map to h at X x {0} along the fibres, is homo-
topic to the constant map into s.

PROOF. Let q : E ~ R  H be a splitting, so that q|H is the natural
inclusion, and set Hl = q -l(R x 0). There is a continuous linear injec-
tion io : H ~ l2 onto a dense subspace of 12 (e.g. see OECBM § 6A), and
so there is a similar injection i : E ~ 12 which has i(H1) orthogonal to
i(H). Set j = idX  i : X  E ~ X x l2 . Since p was Finsler-like and

S = 03C1-1(1) there is a CP map r : X - R(&#x3E; 0) such that j(S ) c X  rl2.
Let 1 c X x E be the inverse image under j of the boundary of X x rl2 .
Since both 1 and S are transverse to every ray from 0 in the fibres of
X x E we can project S radially onto E to get a CP diffeomorphism. We
will compose this with radial multiplication by r -1 which gives a diffeo-
morphism of 1 onto Eo, where 10 is the inverse image under i of the unit
sphere in l2 .
Note that the existence of the Finsler-like map p on X x E implies

that E is CP-smooth. Hence if P is one point of Hl n 10 we may apply
Bessaga’s theorem [OECBM § 6A] to delete P from Eo, and then project
stereographically onto H from P to obtain a CP diffeomorphism of 10
onto H. Thus, by composition, we obtain the diffeomorphism required
for (i).
For part (ii), observe that there is a linear isomorphism s1 : H ~ H x F

such that the composition

is linearly isotopic to s. We define h as the composition
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where:

fl is a diffeomorphism obtained via Bessaga’s theorem, with support
in e-1[0, 1 2);
ç is defined by ~(x, v) = (p(x, v), D) where 13 is the ’projection’ of v

onto S’;
0 is the diffeomorphism of part (i).
Noting that the tangent map at X x {0} to 03B2 along the fibres is homo-

topic to 1 in GL(E) and that the corresponding map for (idR 03B8) o ç
at any X x {v}, for v in E- {0}, is homotopic to q in Lis (E, R x H), we
find that h satisfies our requirements, Il

If E and F are Banach spaces we will say that E is F-stable if E is

linearly isomorphic to E x F, and that E is strongly F-stable if also the
natural inclusion GL(E) - GL(E x F), T H T x idF , is a homotopy
equivalence. In most of what follows we will require our model spaces
to be F-stable for some infinite dimensional space F, and often they
will have to be strongly F-stable for the same F; so here are some

examples:
SI: Each space Lp is Lp, l2, and lp-stable, 1  p  oo [33];
S2: C [0, 1 and co are both co-stable;
S3: When GL(E) is contractible F-stability trivially implies strong

F-stability, therefore, using the references in 1(v) § E, there is also strong
stability in the examples of SI, S2;

S4: 1 know of no example where F-stability does not imply strong
F-stability. This seems to be one of the basic problems involved in
studying the homotopy type of general linear groups, particularly in
the special case of the strong E-stability of a space E which is isomorphic
to its square.

S5: Douady’s results [10] show that c0  l2 is strongly co , l2 , and
co x l2-stable. Edelstein and Mitjagin’s [27] show that James’ space J
is strongly 12-stable (see the Appendix).
The use of filtrations as in the proof of the next proposition, in order

to prove stability, was suggested to me by J. Eells.

PROPOSITION 16. Let E be a C~-smooth Banach space with a basis,
which is F-stable for some Banach space F. Then for any open subset X
of E there is a C ’ diffeomorphism of X onto X x F.
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PROOF. Take a basis {ei}~i=1 for E and a norm on E which makes it
monotone [8]. Set

Then E = En x En and we have corresponding projections pn : E ~ En’
pn : E ~ En. Using lemma 2 there is a continuous bounded map
r : X ~ R(&#x3E; 0) such that if Z-, Zn are the standard open tubes about
Xn in E of radius r|Xn, 2r IXn then 4 c X and X = un Zn .
For positive integers n and m let Zn(m) be the standard open tube

about Xn of radius (2 -1/m)r|Xn, and set Vn(m) = ~j~nZj(m). Then

and

The sets Yn(rn) will be considered as neighbourhoods of Xn in the bundle
Xn x En ~ Xn, and we show next that their fibres are radial subsets of En.
To do this note that x ~ Vn(m) iff ~pkx~  (2 -1 /m)r( pk x) for some

k ~ n. Suppose xt = (xn, txn) E En x En, t &#x3E; 0. Then xt = txl +
(1-t)pnx1, whence, for j  n:

and

Thus if xl E Vn(m) so does xt for 0  t  1, as required.
The above arguement also shows that, in the sense of fibrewise multi-

plication, 

By remark (i) of § A there is a Finsler-like function Pn : Xn x En ~ R(~ 0)
which is C~ except on the zero section and has

Set Dn = 03C1-1n[0, 1) and D’n = 03C1-1n[0, 2). We shall inductively construct
a sequence of diffeomorphisms dn : D’n, Dn ~ D’n x F, Dn x F which are
homotopic to the inclusions and make the following diagram commute:
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Here, and hereafter, i denotes an inclusion.

Since i(Dn) c Dn+1 for each n, and X = U n Dn , the sequence {dn}
induces a C ’ diffeomorphism d~ : X ~ X x F, as required.
To obtain {dn} first use induction to obtain a sequence of linear iso-

morphisms {sn}~n= 1, sn : En ~ En x F, for which the following diagram
commutes up to isotopy:

Next, using the Sn’ take fibre preserving diffeomorphisms

as in lemma 15. Set dl = hl and assume dl, ..., dN constructed with the
additional property that they are isotopic to h1, ···, hN. We have two
homotopic closed embeddings of the finite dimensional manifold XN in
D’N+1 x F given by the compositions

Since D’rv c VN(N+1) c VN+1(N+1) c DN+1 and dN(DN) = DN  F,
and hN+1(DN+1) = DN+1  F, the images of jo and j1 lie in DN+1  F.
Therefore, by applying addendum 14B.2, there is a C~ isotopy
03A6t : D’N+1  F ~ D’N+1 x F, having support in DN+1 x F, with fPo = id
and 03A61 o j0 = j1.
We now have two tubular neighbourhoods of j1(XN) in D’N+1 F,

namely the compositions :

and

The closures of the images of fo and fl lie in DN+ 1 x F, and both
fi(p; 1 [0, 2 3]) are closed in D’N+ 1 x F, i = 0, 1. The tangent maps along
the fibres to f0,f1 over X x {0} are isotopic because of the construction
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of the hn and the relationships between the Sn’ both tangent maps being
isotopic, loosely speaking, to id x sN : XN x EN ~ XN x EN x F. We can
therefore apply the tubular neighbourhood theorem to obtain an isotopy
0398t : D’N+1  F ~ D’N+1  F with 03980 = id and O1 o f|DN = f1|DN, and
also having support in DN+1 x F.

If we set dN+1 = 03981o03A61ohN+1 : D’N+1 x F - D’N+1 x F, since both
03981 and 03A61 have support in DN+1 x F, we see that it sends DN+1 x F onto
itself. It certainly satisfies the other requirement, and so the induction
is complete.//

REMARKS. (i) It seems essential here to be working in the COO category.
This is because the proof of Kuiper and Burghelea’s tubular neighbour-
hood theorem for the C" case, r  oo, would give a drop in the differen-
tiability class of the isotopy 0, and we have to apply this theorem an
infinite number of times.

The finite dimensional approach to this would be to use theorems on
the approximation of CP diffeomorphisms by Cp+k diffeomorphisms,
and these seem to require a good theory of C1 approximation. Some
work has been done on this for infinite dimensional spaces, particularly
by Nicole Moulis in her thesis [29] where she obtains good theorems
for lp spaces and for co; however the results of J. Wells in [36] suggest
that there may be fundamental difhculties in extending these.

(ii) For open subsets of 12 each neighbourhood Vn(m) is a standard
tube about Xn and the use of Finsler-like functions is not needed. This
means that the proof for this case can be considerably simplified. How-
ever this does not seem to be true for subsets of co.

(iii) We only used the ambient isotopy theorem for finite dimensional
submanifolds and so it should be possible to make this proof independent
of the main discussion in §§ A-F.

We next give another extension of Mazur’s tangential equivalence
theorem, proved for C~ Hilbert manifolds in [7]. In order to avoid a
drop in differentiability class, as mentioned in Remark (i) above, we
will use an infinite dimensional version of the Lemma 2 in Hirsch’s

paper [18]:

LEMMA 17. For a CP-smooth vector bundle 03C0 : B - X, let p : B ~ R

(~ 0) be a Finsler-like function which is Cp off the zero section 03B6(X),
p &#x3E; 1. Suppose 0  a  03B2  y and let f : 03C1-1 [0, 03B2] - 03C1-1 [0, y] be a
CP closed interior embedding as a tubular neighbourhood of 03B6(X) c
P’’[0,7]. 
Assume either: (i) p = oo or: (ii) B is a trivial bundle whose fibre
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admits a CP norm. Then f 1 p [0, 03B1] extends to a CP diffeomorphism of
03C1-1[0, y] onto itself.

PROOF. The proof outlined by Hirsch is easily seen to still apply for
the case of trivial bundles with CP normed fibres. Since the differentials

of a norm-like function on a space F may not be bounded in F* (although
the differentials of a smooth norm would lie on the unit sphere) it is not
clear that this method applies more generally. When p = oo we can
simply apply Kuiper and Burghelea’s tubular neighbourhood theorem
(§ F).//

PROPOSITION 18. Let M and N be parallelisable CP-smooth E-manifolds,
p ~ 1, and F an infinite dimensional Banach space. Suppose either p = 00
or F has a CP-norm. Then, given a homotopy equivalence h : M - N,
there is a CP diffeomorphism h : M x F - N x F homotopic to h x idF .

PROOF (c.f. [7], [18]). Using theorems 0 and 10 of § C there are CP
layer structures Ml, N1 on M, N modelled on E, with trivial layer tangent
bundles. Let H be a maximal hyperplane in F, and T : E - E x H the
inclusion. By proposition 1 there are closed CP L(T)-embeddings of Ml
and Ni into E x H. Using the trivial spray on E x H these extend to open
layer tubular neighbourhood embeddings of neighbourhoods of the zero
sections in Ml x H, N1 x H. These can be taken to be of class CP by
using the existence of a CP normal bundle proved in § A. By remark (i)
in § A there are Finsler-like functions po : M  F ~ R(~ 0), Pi : N  F

~ R(~ 0), which are CP off the zero sections, such that these embeddings
restrict to closed embeddings of (M  H) ~ 03C1-10[0, 2] and (N  H) ~
03C1-11 [0, 2]. Set U(n) = (M  H) ~ 03C1-10 [0, 2-1/n), V(n)=(N H) ~
03C1-11 [0, 2- lin). These are layer manifolds which are layer diffeomorphic
to open subsets of E x H.

Since H contains an infinite dimensional closed subspace with a basis
[8a], according to lemma 5 there is a closed CP L(T)-embedding f : M ~
V(1) homotopic to h and with image contained in V(2 3). For each natural
number n take a layer tubular neighbourhood of f(M), and after a radial
compression, if necessary, obtain an extension of f to a closed CP embed-
ding fn : U(n+1) ~ V(n+2) with image in V(n). Using a homotopy
inverse to h obtain similar embeddings gn : V(n+1) ~ U(n + 2), n =
1, 2, ... .
We now have homotopic embeddings of M into U(n+1) namely the

inclusion 03B6 : M ~ U(n+1) as zero section and the restriction gn+1 o
fn|03B6(M). These are both closed L(T)-embeddings: assume their images
are disjoint. The method in Corollary 6.3 together with proposition 1

gives us a 1-1 CP immersion ç : M  R ~ U(n+1) with ~|M {0} =



208

gn+1 o fn o 03B6 and ~|M {1} = 03B6. This can be modified in a standard

way to give a closed embedding ~ : M x R ~ U(n + 3) x R with image in
U(n + 2)  R which restricts to ç on M {0,1}. We can now apply
Hirsch’s (first) lemma (see § A) to obtain a CP isotopy 0" : U(n + 3 ) 
R - U(n + 3)  R, with support in U(n + 2) x R, which satisfies 03A6n0 = id
and Wi o gn+1 o fn o 03B6 = 03B6. If the embeddings did not have disjoint
images we can take a third embedding as usual and still obtain the

isotopy Ot".
Write fn = f , x idR restricted to give a map fn : U(n) x R - V(n + 1) x R,

and similarly for gn : V(n) x R - U(n + 1) x R. Then 03A6n1 o gn o fn : U(n)
 R ~ U(n + 2) x R is a CP tubular neighbourhood of 03B6(M) which

extends to a closed interior embedding of U(n+1) x R into U(n + 2) x R.
The method of lemma 15 shows that there is a Cp diffeomorphism over
M, sending the pair U(n+1) R, U(n) x R onto the pair 03C1-1[0,n+1],
03C1-1[0, n]. We can therefore apply Hirsch’s second lemma, lemma 17,
to extend 03A6n1 o gn o fn to a CP diffeomorphism ~n : U(n + 2)  R ~
U(n + 2) x R.
We can now use the usual arguments: the sequence of open embeddings

embeds in the commutative diagram

and its limit is therefore CP diffeomorphic by Jim ~-1n 0 03A6n1 to M x H x R
~ M  F. Similarly it is diffeomorphic to N x Fil
Recall that a tangential equivalence ( f, 03B1) between manifolds M and N

is a homotopy equivalence f : M - N together with a C0 vector bundle
isomorphism 03B1 : TM - f*(TN) over N. This notion allows us a version
of proposition 18 for non-parallelisable manifolds:

COROLLARY 18.1. Let E be a Banach space, which is isomorphic to its
square, E x E. Then, if either p = oo and E is C~-smooth or p ~ 1 and E

has a CP norm:

(i) Every CP E-manifold M has M x E CP-diffeomorphic to the total
space of a CP E-vector bundle over an open subset of E.

(ii) If M, N are tangentially equivalent CP E-manifolds there is a CP
diffeomorphism of M x E onto N x E.
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PROOF. (i) By corollary 12.2 there is a CP closed embedding of M into
E with co-space E and by § A this has a CP tubular neighbourhood. Thus
there is a CP E-vector bundle VM : v(M) ~ M over M whose total space
is CP diffeomorphic to an open subset of E. It is easy to see that the total
space of the Whitney sum v(M) ~ TM is diffeomorphic to the total
space of the pull back vÁt(TM) of TM over v(M). Since v(M) ~ TM ~
M x E result (i) follows.

(ii) With the corresponding notation we have also N x E diffeomorphic
to the total space vN(TN) of the pull back of TN over a bundle VN : v(N)
~ N. The tangential equivalence is seen to induce a homotopy equival-
ence f : v(M) ~ v(N) together with a bundle equivalence 03B1 : v*M(TM) ~
f*v*N(TN). According to the proposition f  idE is homotopic to a CP
diffeomorphism of v(M) x E onto v(N) x E. It follows that v*M(TM) x E
is CP diffeomorphic to vN(TN)  E, giving (ii), since E ~ E x E.//
We next have one of our main results. When E is a Hilbert space,

part (i) was first proved using the combined results of [7], [28], [13], and
a proof of part (ii) for this case has been given independently by
D. Burghelea, [6], using handle decompositions.
THEOREM 19. Let M and N be separable metrisable C~ EE-manifolds,

with trivial tangent bundles. Assume that E is Coo-smooth, possesses a
Schauder base, and is F-stable for some infinite dimensional Banach space
F. Then :

(i) Any homotopy equivalence f : M - N is homotopic to a COO diffeo-
morphism ;

(ii) If E is also strongly F-stable and Fhas a basis, then for any tangential
equivalence ( f, 03B1) : M - N there is a C °° diffeomorphism d : M - N
tangentially homotopic to ( f, 03B1).

(iii) If F has a basis any two COO diffeomorphisms do , dl : M ~ N which
induce homotopic tangential equivalences are COO isotopic.

PROOF. Both M and N satisfy the conditions of OECBM and so can
be considered as open subsets of E. By proposition 16 there are Coo
diffeomorphisms M ~ M  F, N ~ N F. Part (i) follows by proposi-
tion 18.

For part (iii), by considering d-11 o do : M - M, we may assume that
M = N and dl = idM . Also, by part (i), we may assume M has the form
X x F where X is a parallelisable C~ E-manifold. Then we have two
embeddings of X in X x F, namely i : X ~ X  F, i(x) = (x, 0) and
do o i : X - X x F. These satisfy the conditions of Theorem 14, since
do is tangentially homotopic to idM. There is therefore an isotopy
,pt : X x F - X x F with ,po = id and 03A61 o do o i = i. The diffeomor-
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phism 03A61 o d0 : X  F ~ X  F is then a tubular neighbourhood of X x {0}
in X x F. The standard tubular neighbourhood uniqueness theorem, as in
Lang [23], shows that this is isotopic to a diffeomorphism of the form
(x, v) H (x, T(x)v) where T : X ~ GL(F). Since do was tangentially
homotopic to the identity the map 1’: X ~ GL(E x F) given by
x ~ idE x T(x) is homotopic to the identity.

There is an open subset U of F which is homotopy equivalent to X.
Part (i) shows that X is C~ diffeomorphic to U x E. The map 03A61 o do
can therefore be represented as the map U  E  F ~ U x (E x F) given
by (x, v, w) ~ (x, (x)(v, w)) which is isotopic to the identity.
To prove (ii) first observe, by (i), that M is diffeomorphic to N and

that this diffeomorphism may be taken to be homotopic to any homotopy
equivalence. It therefore suffices to consider the case where M = N and
f - idM . We may also represent M as U x E where U is open in F, and
oc as a map U  E ~ GL(F E) with 03B1(x, v) = 03B1(x, 0). By hypothesis
x H a (x, 0) is homotopic to a map 03B2 : U - GL(F  E ) with the form
P(x) = idF x 03B2(x). The map 03B2 : U - GL(E) can be chosen to be COO and
we obtain the required diffeomorphism d : U  E ~ U x E by defining
d(x, V) = (x, 03B2(x)v).//

Let xo Diffr[M, N ] denote the set of Cr isotopy classes of Cr diffeo-
morphisms between manifolds M and N, and [M, N]* the set of homo-
topy classes of homotopy equivalences. The following examples follow
from the theorem using the smoothness results of Bonic and Frampton
[3], and the properties of the general linear groups mentioned in I(v),
§ D, and in Douady’s paper [10] and also remarks SI-S5 above. Here
KO denotes the representable functor of real K-theory.

EXAMPLES. a) Let E be isomorphic to one of the spaces L2n,l2n, for
n = 1, 2, ···, or to co. Then if M and N are C~ metrisable E-manifolds
the natural map gives a bijection:

b) Let M and N be parallelisable C°° metrisable (co x 12)-manifolds.
Then the tangential homotopy class induces a bijection (depending on
parallelisations of M and N)

Our next result will be strengthened later, and partially superceded by
Theorem 23 below. If Ni is a submanifold of Mi, i = 1, 2, a tangential
equivalence of pairs ( f, oc) : Ml, N1 ~ M2 , N2 is a homotopy equivalence
of pairs f : Ml, N 1 -+ M2, N2 together with a vector bundle isomorphism
a : TM1 ~ f*(TM2) which restricts to an isomorphism TN1 -+ f*(TN2).
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LEMMA 20. For i = 1, 2, let Mi be an E-manifold and Ni an H-manifold
embedded as a closed C 00 , (flat), submanifold of Mi with infinite dimensional
co-space H’. Assume that each Mi, Ni satisfies the conditions of OECBM
and that H’ has a base, and also that the following holds for some infinite
dimensional Banach space F:

(0) H is F-stable
and either

(i) H and E are strongly F-stable and F has a basis
or

(ii) the natural inclusion GL(H) ~ GL(H  H’), T ~ T  idH’, is

nullhomotopic.

Then, if ( f, a) : Ml, N1 ~ M2, N2 is a tangential equivalence of pairs,
f is homotopic to a C~ diffeomorphism h : M1 ~ M2 which restricts to
a diffeomorphism of NI onto N2 homotopic to flN1 : N1 ~ N2. If case (i)
holds then h may be chosen so that it is tangentially homotopic to (f, a)
and hlN1 is tangentially homotopic to (f|N1, (lITN1). If fiNI is already
a C~ diffeomorphism onto N2 and (lITNl = T(fIN1)* we may choose
hlNl = fiNI. In this case we only require E to be F-stable in (0) and do
not need the condition on H in (i).

PROOF. According to theorem 19 there are Coo diffeomorphisms ho :
M1 ~ M2 and hl : N1 ~ N2 homotopic respectively to f and f1N1.
These give rise to two homotopic embeddings of N1 into M2, namely
holNl and hl.

In case (i) we may take ho and hl to be tangentially homotopic to
( f, 03B1) and (f1N1, (lITN1). The two embeddings will then be tangentially
homotopic and we can apply theorem 14 to obtain a C~ isotopy
03A6t : M2 ~ M2 with 03A60 = id and 03A61 o holN1 = hl. We may then set
h = 03A61 o ho. In case (ii) the two embeddings are necessarily tangentially
homotopic and so the same procedure works.
Next we consider manifolds with boundary. First note the observation

of D. Burghelea that for any infinite dimensional Banach space E the
natural map GL(E) - GL(E x R) is a homotopy equivalence (see [21 ]).
It follows that if M and N are infinite dimensional manifolds with

boundaries DM, DN then a homotopy equivalence of pairs f : M, ~M ~
N, DN together with a vector bundle isomorphism 03B1 : TM - f*(TN)
induces an isomorphism T~M ~ f*(T~N) which is uniquely determined
up to isotopy. Such a pair ( f, a) can therefore be called a tangential
equivalence of manifolds with boundary, ( f, 03B1) : M, ôM - N, DN.
Another consequence is that if TM is trivial then so is TDM.

LEMMA 21. Suppose that M is an E-manifold with boundary DM, satisfy-
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ing the conditions of OECBM. Assume that E is strongly F-stable for some
infinite dimensional Banach space F which has a base, and let D be a closed
Coo pseudo-disc about 0 in F. Then there is a manifold M, diffeomorphic
to int M, which contains a copy of DM as a COO, closed, flat submanifold
having a closed tubular neighbourhood i : X x D - M for which

M - i(X x int D) is diffeomorphic to M.

PROOF. Take any copy X of DM. Then X x D is diffeomorphic to DM
by theorem 19. We may therefore glue X x D to M along the boundaries
to obtain a Coo manifold M having X x D as a closed tubular neighbour-
hood of X and M diffeomorphic to M - (X x int D). By the theorem 19
(ii) the strong F-stability of E enables this to be done in such a way that
NI is parallelisable and X is flat in M. Since X x aD is a deformation
retract of X x D, M is a deformation retract of M and int M is homotopy
equivalent to M. Thus M is diffeomorphic to int M.//

In [7], Kuiper and Burghelea give an extension of Mazur’s tangential
equivalence theorem which proves our next result for the case of stable
Hilbert manifolds with boundary M x E, DM x E (see also [6]).
THEOREM 22. Consider two COO manifolds with boundary, M, DM and

N, DN, which are separable, metrisable, and parallelisable. Assume:

(i) E is Coo smooth;
(ii) E is strongly F-stable for some infinite dimensional space F;
(iii) E and F have Schauder bases.
Then if ( f, 03B1) : M, ôM - N, DN is a tangential equivalence there is a

Coo diffeormorphism d : M, ôM - N, DN which is tangentially homotopic
to ( f, a) and has d|~M homotopic to fi ôM.

PROOF. Apply lemma 21, together with its notation, to obtain manifold
pairs M, X and correspondignly , Y. The equivalence ( f, a) induces an
equivalence of M - (X x int D) with FV - (Y x int D) which extends, by (ii),
to a tangential equivalence of pairs (1, a) : M, X ~ , Y. Applying
lemma 20 we get a diffeomorphism h : M, X ~ , Y which is tangentially
homotopic to (l, ) and has hlX tangentially homotopic to (|X, al TX) :
X ~ Y. By composing with an isotopy of  obtained from the tubular

neighbourhood theorem, if necessary, we may assume there is a C~ map
k : X ~ (0, 1) such that h(X x kD) is contained in Y x int D and is radial
there. The map h restricts to a diffeomorphism of M - int (X x kD) with
Ñ -h[int (X x kD)]. Taking collars of DM and DN and deforming them
in M, 9 we see that this induces the required diffeomorphism d.//
We can now return and give the promised strengthening of lemma 20:

THEOREM 23. For i = 1, 2, consider pairs Mi, Ni where Ni is a C’
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H-manifold embedded as a closed infinite co-dimensional C~ submanifold
of the E-manifold Mi. Assume that each Mi, and Ni, is separable, metri-
sable, and parallelisable and that:

(i) E is C’-smooth

(ii) H and E are strongly F-stable for the same infinite dimensional
space F

(iii) E, H, and F have Schauder bases.

Then if ( f, 03B1) : Ml, Ni - M2, N2 is a tangential equivalence of pairs,
there is a C~ diffeomorphism of pairs d : Ml, N1 ~ M2, N2 with ( f, a)
tangentially homotopic to d and (fiNI, 03B1|TN1) tangentially homotopic
to dIN1. If f|N1 is already a diffeom orphism tangentially homotopic to
(fiNI, 03B1|TN1) we may choose d with d|N1 = fiNI, and in this case the
condition on H in (ii) is unnecessary.

PROOF. Use theorem 19 to obtain a diffeomorphism h : N1 ~ N2 in
the required tangential homotopy class and construct tubular neighbour-
hoods gi : Bi ~ Mi of Ni, i = 1, 2, where ni : Bi ~ Ni is a vector bundle.
The equivalence 03B1|N1 induces a C~ vector bundle isomorphism
h : B1 ~ B2 over h. For a C~ Finsler-like function on B1 there is a

closed pseudo-disc neighbourhood Dl of N1 in B, such that both gl (D1 )
and g2(D1) are closed tubular neighbourhoods Zl and Z2, say, of

Nl, N2 in Ml, M2. The composition g2g-11 restricts to a d iffeo-

morphism h : Z1, ~Z1 ~ Z2, ôZ2 af manifolds with boundary. Since Ni
is homotopy negligible in Mi, ( f, a) induces a tangential equivalence of
manifolds with boundary ( f’, oc’) : Ml - int Z1, ~Z1 ~ M2 - int Z2, DZ2
This is homotopic to a diffeomorphism h’ as in Theorem 22.
We now have two diffeomorphisms ~Z1 ~ ôZ2 given by the restric-

tions of h’ and h. These are easily seen to be tangentially homotopic,
and hence isotopic by theorem 19. After a modification in tubular neigh-
bourhoods of DZ, and ôZ2 they can therefore be combined to give the
required diffeomorphism d.~

REMARKS. (i) So far, in the discussion of manifolds with boundary and
of manifold pairs the diffeomorphisms d we have obtained have not been
shown to be homotopic to the original homotopy equivalences f through
maps of pairs. In order to get a diffeomorphism tangentially homotopic
through equivalences of pairs to ( f, a) we could proceed as follows:
First use Theorem 22 to show that any M, ôM which satisfies the condi-
tions of that theorem is diffeomrophic to some N x E, ôN x E where
N, ôN is an F-manifold with boundary. Next use the extension of Mazur’s
theorem for stable F-manifolds with boundary following Kuiper and
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Burghelea in [7], mentioned above. This will give a diffeomorphism
Ni x F, ôNl x F ~ N2 x F, DN2 x F homotopic to any given homotopy
equivalence, as maps of pairs. Then use the method of theorem 19 (ii)
to get the required result for manifolds with boundary. This in turn gives
enough information about the map h’ in the proof of theorem 23 to give
the strengthened result for manifold pairs.

(ii) The case of finite co-dimensional submanifolds (with Hilbert space
models) is considered by Kuiper in [21 ] using the same method as in our
proof of theorem 23. In this situation there are extra homotopy invariants
to consider (since Mi - Ni need no longer be homotopy equivalent to Mi):
for example Kuiper shows that not all closed embeddings of the Hilbert
sphere into Hilbert space with co-dimension 2 give diffeomorphic pairs.
Nevertheless these invariants still determine the diffeomorphism type.

G. More on isotopy and embeddings

The first result in this section follows immediately from Theorem 23
and 19 (iii). It is a version of the isotopy theorem, Theorem 14, with the
assumption of trivial normal bundles (in particular of flatness) replaced
by mild conditions on the Banach spaces and loss of information about
the support of the isotopy. The remarks after Theorem 23 show that we
could obtain similar, but more complicated, isotopy theorems for finite
co-dimensional submanifolds using essentially the same methods.

THEOREM 24. Let M and X be C~ manifolds modelled on Banach spaces
H and E, both manifolds being separable, metrisable, and parallelisable,
and both model spaces being C~-smooth and having Schauder bases.
Suppose that fi : M ~ X, i = 0, 1 are closed Coo embeddings with the
same infinite dimensional co-space and assume:

(i) fo and fl are homotopic;
(ii) f0 and fl are tangentially homotopic;

(iii) E is strongly F-stable for some infinite dimensional space F which
has a base.

Then there is a Coo isotopy 0 : R x X ~ R x X with 03A60 = idx and
03A61 o f0 = fl./1
Next we have some results on open embeddings. The theorem gives a

strengthening of the main result in OECBM and the first part is similar
to theorem 8.4 of [7]. From it we go on to deduce corollaries concerning
manifolds with boundary and relative open embeddings of manifold pairs.

THEOREM 25. Let M and N be C~ E-manifolds which satisfy the condi-
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tions of OECBM and let F be an infinite dimensional Banach space with
a base.

(i) If E is F-stable then any map f : M - N is homotopic to an open
embedding. This embedding may be chosen to lie in an arbitrary given
neighbourhood of f(M). Furthermore if E is strongly F-stable it may be
also chosen to be tangentially homotopic to a given equivalence a : TM -
f *TN.

(ii) Let W be a closed parallelisable Coo submanifold of M, modelled on
El and with co-space E2. Suppose that f : M - N is continuous and
restricts to a closed Coo embedding of W in N with co-space E2 and that
03B1 : TM ~ f*TN is an isomorphism extending t(f|N). Assume that El and
E2 have bases and that E2 is F-stable and also that either E is strongly
F-stable or that the inclusion GL(E1) ~ GL(EL x E2 ) is nullhomotopic.
Moreover suppose that W and f(W) are flat in M and N. Then fi W
extends to a COO open embedding of M into N which is homotopic
to f.

PROOF. The proof of (i) follows easily from the open embedding
theorem in OECBM together with our proposition 16 and theorems 12
and 19 (ii), suing the existence of tubular neighbourhoods.
To prove (ii) first take diffeomorphisms of pairs ho : M, W - M x F,

W {0} and h1 : N,f(W) ~ N F,f(W) {0}. This is possible by
lemma 20 (it is only here that we use the unnecessarily restrictive assump-
tion that W and f(W) are flat submanifolds). Set f’ = hl fhÕ 1. Then
using a, extend f ’l W x {0} to a diffeomorphism f " of an open tubular
neighbourhood U of W x {0} in M x {0} onto a tubular neighbourhood
f"(U) of f(W) {0} in N {0}. We may take N to be an open subset
of E and choose an open neighbourhood U1 of W in M x {0} with
U1 c U. According to lemma 8, f"|U1 extends to a Coo 03A60-map f "’ :
Mx {0} - E whose tangent map is isotopic to a through 4lo bundle
maps. By theorem 0 of § C this induces a parallelisable Coo layer structure
{M, f’’’} on M modelled on E such that f"|U1 is a closed L(T)-embedding
into N x F, T : E ~ E x F being the inclusion.
Next take a basic sequence {f1,f2···} in F and also an extension of

f’’|U1, f4 : M {0} ~ N x F, which is homotopic to f’ and has

f4(M  {0}-U1) ~ N x (F-{0}). By Theorem 6, f4 is homotopic to a
closed L(T)-embedding f5 : M {0} ~ N x F which agrees with f " on W.
Since T{Mf’’’} was trivial this embedding has trivial normal bundle
and therefore extends to an open embedding f 6 of M x F as a tubular
neighbourhood. The composition h¡ lf6 ho is the required open embedding
of M i n N.//
The first corollary follows immediately from part (i):
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COROLLARY 25.1. Let M be a separable metrisable C~ E-manifold,
where E is Coo-smooth, has a Schauder base, and is strongly F-stable for
some infinite dimensional Banach space F. Then any trivialisation of TM
is isotopic to an integrable one (in , fact to one which may be realised by a
single chart )./1

REMARK. In Corollary 25.1 the condition that E be F-stable may be

replaced by assuming that GLc(E) is contractible in GL(E). The proof
in this case comes directly from OECBM (see theorems 0, 00 and 10 in
§ C of this paper) using the exactness at GL(E) of the homotopy sequence
[X, GL,(E)] - [X, GL(E)] - [X, 03A60(E)] for paracompact X, [15], [16].

COROLLARY 25.2. Let W be a closed flat infinite dimensional Coo sub-
manifold of M, modelled on El and with infinite dimensional co-space E2.
Assume that W and M satisfy the conditions of OECBM and that El and
E2 satisfy the conditions of part (ii) of the theorem. Moreover, suppose
that either El is strongly H-stable for some infinite dimensional H with a
basis or that GLc(E1) is contractible in GL(E1). Then there exists a C~
open embedding h : M - El x E2 such that h(W) = h(M) n (El x {0}).

PROOF. Since W is flat in M there is a trivialisation oc : TM - M x E

sending TN to N x El. According to 25.1 or the remark above there is
an open embedding ho : W ~ El with Tho isotopic to oci TN. Set Z =

E1-ho(W) and N = E1  E2 - Z {0}. Then h0(W) is a closed flat

submanifold of N and ho extends to a continuous map hl : M ~ N.
Moreover a is isotopic to an isomrophism of TM with h*1(TN) which
extends Tho. Part (ii) of the theorem therefore gives an open embedding
of M into N extending ho and hence an open embedding into El x E2
extending ho, as required.//

COROLLARY 25.3. Let M be a separable metrisable Coo parallisable
E-manifold with boundary DM. Assume that E is C~-smooth, that E is
strongly F-stable for some infinite dimensional space F, and that both E
and F have bases. Then there is an open subset U of E such that the union
of U together with certain of its boundary components is a Coo submanifold
with boundary of E which is diffeomorphic to M.

PROOF. We use lemma 21 and its notation. There is an open embedding
h of M into E which restricts to a closed embedding of X. This can be
seen, for example, from tbe proof of 25.2 since there N is diffeomorphic
to El x E2 because Z is homotopy negligible in El x E2, [14]. Take a
closed pseudo-disc neighbourhood V of h(x) in E contained in heM)
and set U = h(M ) - V. It is easy to see that M is diffeomorphic to U u a V
as required.//
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REMARKS. (i) The conclusion of 25.3 is true for any separable metrisable
Coo submanifold with boundary modelled on one of the spaces L2n, l2n ,
n = 1, 2, ···, or co; the conclusion of 25.2 is true for any C°° sub-

manifold with infinite dimension and codimension of a separable metris-
able C~ manifold modelled on l2n , n = 1, 2, ···, or co. This is because
of the contractibility of the general linear groups of these spaces and the
fact that all infinite dimensional split subspaces of 12n and co are iso-
morphic to their ambient space, [33].

(ii) Corollary 25.3 begs the question as to when M, ôM is diffeomorphic
to an open subset U of E together with all of its bcundary. There are
homotopy considerations involved in this: for example a necessary
condition is that it must be possible to glue a space with the homotopy
type of a CW complex to M along ôM and obtain a ccntractible space.
This sort of problem is discussed by Burghelea in [5].

Corollary 25.2 shows that the differential structure of a wide class of
flatly embedded submanifolds can be realised by a single chart. We next
prove the corresponding result for manifolds with boundary:

THEOREM 26. Suppose that the Banach space E satisfies the following
conditions:

(i) E is C’-smooth.
(ii) E is strongly F-stable for some infinite dimensional space F.

(iii) E and F have Schauder bases.
Let E+03BB be a closed half-space of E, i.e. À E E* and E+03BB = {x E E :

03BB(x) ~ 0}. Then any parallelisable, separable metrisable, Coo E-manifold
with boundary, M, DM is Coo diffeomorphic to an open subset of E+03BB.

PROOF. According to theorem 22, M, DM is C~ diffeomorphic to
M x F, DM x F. There is also a diffeomorphism of E+03BB with [0, oo ) x ~E+03BB,
and a linear isomorphism of aE; with DE,+ x F. Let T : ~E+03BB ~ ~E+03BB x F
be the natural embedding.

Give M a Coo parallelisable layer structure modelled on E (for example
let M be the double of M and give M such a structure using theorems 0
and 10, DM then has the naturally induced structure of a layer submani-
fold since it has finite co-dimension in M, [16]). According to theorem 6
there is a cicsed, C 00, L(T)-embedding f : ôM - ~E+03BB x F. This can be
extended trivially to a closed L(T)-embedding of a closed collar of DM
into ~E+03BB x F x [0, ~). Theorem 6 then shows that a restriction of this
to a smaller collar can be extended to a closed L(T)-embedding of M
into DE,’ x F x [0, oo ) = E+03BB x F. This has trivial normal bundle and so
extends to a tubular neighbourhood embedding of M x F in E+03BB x F, the
diffeomorphisms then give the required embedding of M in E; .1/
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After the results of this section one would expect a positive solution
to the following problem. It is stated in terms of Hilbert manifolds for
simplicity.

PROBLEM. Let f : M - N be a C °° submersion of 12-manifolds with
infinite dimensional fibres. Does there exist a commutative diagram:

with d, do diffeomorphisms onto cpen sets W, U of 12 and n : 12 ~ 12 a
bounded linear surjection?

H. Open subsets of Banach spaces with smooth factors

We will first consider some facts about direct sums of Banach spaces
with respect to a base, introduced by Pelczynski in. [33]. Let W be a
Banach space with a fixed normalized orthogonal base {wi}~i=1: i.e. {wi} is
a Schauder base with 1 lwl 1. = 1 such that if {03B1i}, {03B2i} are real sequences
with ~03B2i~ ~ ~03B1i~ for each i and ~03A303B1iw~w  oo then ~03A303B2iwi~w ~
~03A3103B1iwi~w. Then for any sequence {Hi,~~i}i of Banach spaces we can
form the direct sum, 1:wHi’ of this sequence with respect to W. It is
defined to be the set of those sequences {xi} with xi e Hi such that
03A3i~xi~wi  oo. Given the norm ~{xi}~ = ~03A3i~xi~iwi~w it becomes a
Banach space under coordinate-wise addition and scalar multiplication.
The examples lp(E) = 03A3lp(E) and c0(E) = 1:co(E) have already been
used in § D. Set H = 1:WHi and define 03C0n : H ~ H by 03C0n({xi}) =
(x1, ···, Xn, 0, 0, ...); the proof of the following lemma is straight-
forward :

LEMMA 26. For each n, Hl x... x Hn can be considered as a closed
subspace of H and nn is a continuous projection onto this subspace. Further-
more Ilnnll = 1 and {03C0n} converges strongly to idH. In particular
~~n=1 Hl x ... x Hn is dense in H.11
The basic result of this section concerns the stability of open subsets

of certain Banach spaces which are not assumed to admit differentiable

partitions of unity:

THEOREM 27. Let E be a separable Banach space and F an infinite
dimensional split subspace of E. Assume that E is the direct sum H x G of
two infinite dimensional subspaces which satisfy the following conditions:
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(i ) F and G have Schauder bases;
(ii) H is C’-smooth;
(iii) H is an infinite direct sum with respect to a basis, H = 03A3wHi,

where each Hi is infinite dimensional and has a base, and

(iv) for each n, Hl x... x Hn is strongly F-stable.
Then if X is any open subset of E, X is COO diffeomorphic to X x F.

PROOF. Let {g1, g2, ···} be a basis for G. We shall be considering
the following subspaces of E:

Let 03C0’n be the projection of G onto Gn determined by the basis. Then E
splits into En x En with corresponding projections pn : E ~ En, p" : E - En
where pn = n. x n’ : H x G - (Hl x ... x Hn) x Gn . We may renorm G
if necessary so that {g1, g2, ···} is a monotone base and then take the
norm ~~H+~~G on H x G. This will ensure that ~pn~ = 1 for each n.
Note also that {pn}~n=1 converges strongly to idE .

Set Xn = X n En. Because of these properties of {pn} we can use the
proof of proposition 16 to obtain a sequence of open tubular neighbour-
hoods {Vn(m)}~m=1 of Xn in X, for each n, such that:

Take a splitting s, : E1 ~ El x F and extend it by the identity to
obtain splittings sn : En ~ En x F for each n. We shall inductively con-
struct a sequence of C~ diffeomorphisms {dn}~n+1, dn : Xn ~ Xn x F,
which are in the tangential homotopic class determined by sn and the
natural inclusion of Xn in Xn x F. These extend trivially by the identity
map on the fibres, to diffeomorphisms dn : Vn(n) - v"(n) x F, and we
further require that these make the following ladder commutative:
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Here in : Vn(n) ~ Vn + 1(n + 1) denotes the inclusion. In the limit this
will give the diffeomorphism d~ : X ~ X x F which we seek.
To construct {dn} first note that Xn is modelled on Hl  ··· x Hn x Rn

and is therefore Coo smooth. Also En is strongly F-stable by the discussion
before lemma 2.1. Thus theorem 19 gives us dl. Assume therefore that
d1, ···, dn have been constructed as required. Set U = Vn(n) n (Xn x
Enn+1) and V = Vn(n+1) n (Xn Enn+1). These are open tubular neigh-
bourhoods of Xn in Xn+1, bounded and radial about Xn in XnxE:+1;
also an U e V for some an &#x3E; 1. It follows from § 0 that there is a smooth
Finsler-like function p on Xn Enn+1 with U c p - 1 [0, 1] c V. Write
D = 03C1-1[0, 1] and X = Xn+1- int D. Then ax = DD.
The diffeomorphism dn : Xn ~ Xn x F extends by the identity on the

fibres of D to a diffeomorphism d : D, ~D ~ D x F, ôD x F. This is

homotopic to the inclusion and tangentially homotopic to sn, 1. By theo-
rem 22 there is also a diffeomorphism d’ : 1, ÔD , X x F, DD x F in
the corresponding tangential homotopy class. According to theorem 19,
d and d’ are isotopic. They may therefore be glued together near ôD to
give a diffeomorphism dn+1 : Xn+1 ~ Xn+1 x F with dn+1|U = dlU =
dn|U. Clearly dn+1 is in the right tangential homotopy class. Also, by
condition d), we see that dn+1 fits into the commutative diagram as
required.//
The spaces l2, co are isomorphic to tbe infinite sums Eh 12, 03A3coc0 and

are C °° smocth. Also C [0, 1 ] is co-stable and Lp is l2-stable, p &#x3E; 1, [33 ].
Thus the following examples, where ’~’ denotes C °° diffeomorphism are
direct applications of the theorem (using a repeated application for (iii)).

EXAMPLES 27.1.Let X be an open subset of E. Then if:

Unfortunately the theorem gives no information about open subsets
of spaces which do not have infinite dimensional C’-smooth factors,
for example lp when p is not an even integer [3]. However the method
can be extended to a non-separable space and used to show that any
open subset X of non-separable Hilbert space of dimension aleph one
.is C~ diffeomorphic to X x l2 . This is done by considering an uncountable
filtration of X by separable Hilbert submanifolds Xn, and the proof beco-
mes a simple exercise in transfinite induction. Hardly anything is known
about the differential topology of non-separable Banach spaces, basically
because it is not known whether any of them admit differentiable parti-
tions of unity. (Added in proof: Hilbert spaces do, see [36a].)
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Our final theorem comes directly from theorem 27 and proposition 18:

THEOREM 2.8. Let f : X ~ Y be a homotopy equivalence between open
subsets of a separable Cr-smooth Banach space E, r ~ 1. If E satisfies
the conditions of theorem 27, then f is homotopic to a Cr diffeomorphism
f : X ~ Y./j

COROLLARY 28.1. The proof of theorem 19 (ii) yields: If also E is
strongly B-stable for an infinite dimensional Banach space B then f may be
chosen in any given tangential homotopy class.11
For positive p denote by p the largest integer strictly less than p

except when p is an even integer in which case set p = 00. Then, accord-
ing to Bonic and Frampton [3], if 2 ~ p  oo, Lp is CP-smooth. Thus,
using 27.1, theorem 28 gives :

EXAMPLES 28.2. Suppose E = Lp, 2 ~ p  00. Then homotopy
equivalent open subsets of E are CP diffeomorphic. In particular any
open subset of E is Ce diffeomorphic to U x E where U is some open
subset of 12.//
We can now generalise Nicole Moulis’ theorem [28] on the existence

of an m-function on open subsets of L2 to the case of open subsets of Lp:
COROLLARY 28.3. Let X be an open subset of Lp, 2 ~ p  oo. Then

there is a complete Finsler metric Il on X together with a CP function
f : X ~ R which satisfies the following conditions:

(i) f is bounded below;
(ii) f° satisfies condition C of Palais and Smale with respect to Il;
(iii) All the critical points of f are weakly non-degenerate in the sense

of Karen Uhlenbeck [35] and have finite index. In particular they
are isolated.

PROOF. We can write X = U x Lp where U is open in l2, by 28.2. The
theorem of Nicole Moulis shows that there is a complete Riemannian
metric on U together with a Coo function fl : U - R(&#x3E; 1) which satisfies
(i), (ii), (iii). On the other hand if f2 : Lp ~ R is defined by f2(y) =
(II yll Lp Y the computation in [3] shows that f2 is CP and satisfies (i), (ii),
(iii) with respect to the natural Finsler on Lp . If we take Il to be the

product of these two metrics on U x E and set f(x, y) = f1(x)(1 +f2 (y»
for (x, y) E U x E we obtain a function as required.i/

Corollary 28.3 is best possible in the sense that there can exist no Cr
function f : X ~ R which satisfies (i) and (ii) and has isolated critical
points when r &#x3E; p. To see this assume that X is connected. Then such

an f would attain its minimum on X at some point xo in X. Say f(x0) = m.
If W is a closed bounded neighbourhood of xo in Lp contained in X it is
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shown in [3] that inf {f(x) : x ~ ~W} = m. Condition C would then
imply that f has a critical point on ô W, which shows that xo is not an
isolated critical point. A similar argument using the results of J. Wells,
[36], shows that if X is open in co there is no e2 function on X satisfying
(i) and (ii) which has isolated critical points (c.f. § A Remark (ii)).

APPENDIX

Manifolds with quasi-reflexive models

Let j : E ~ E * * denote the canonical embedding of the Banach space
E into its second dual space. Recall that E is said to be quasi-reflexive if
E**/j(E) is finite dimensional. The dimension of E**/j(E) is then called
the order of E. Recall also tbat a bounded linear map T : E ~ F of

Banach spaces is weakly compact if and only if the second adjoint T**
of T sends F** into j(F) i.e. T**(E**) ~j(F), [34, page 250 ]. The space
of such maps will be denoted by W(E, F), or W(E) if E = F. Then W(E)
is a closed ideal of L(E). We will write GLW(E) for the subset of GL(E)
consisting of those elements of the form 1 + w where w e W(E). This is
a closed invariant subgroup of GL(E).

Write Ê=E**/j(E). If T~L(E), since T**(j(E))~j(E), T**

induces an element f’eL(jÊ). In this way we get a continuous algebra
homomorphism Q : L(E) ~ L(Ê ) by defining Q(T) = T. The kernel of
this map is easily seen to be precisely W(E). Restricting Q to GL(E) we
obtain a group homomorphism Qo : GL(E) ~ GL(Ê) with kernel

GLW(E).
Suppose that E is quasi-reflexive of order one. Let En denote the direct

sum of n-copies of E, En = E  ··· x E. Then En is quasi-reflexive of
order n. Elements of L(En) may be regarded as n x n-matrices witb
coefficients in L(E). The map L(Rn) -+ L(En) given by (aij) H (aijIE)
defines a continuous algebra homomorphism gl : L(Ên) ~ L(En) which
restricts to a group homomorphism 03C80 : GL(Ên) = GL(n) ~ GL(E n).
These are sections of Q, Qo respectively. It follows that Q and Qo are
trivial bundles over L(Rn), GL(n) and therefore L(En) is linearly iso-
morphic to W(E") x L(Rn) and GL(En) is analytically diffeomorphic to
GLw( En) X GL(n). In particular GL(E n) is not connected.

Let F be some infiaite dimensional separable C°°-smooth Banach
space. There is an open subset B of F which is homotopy equivalent to
real infinite dimensional projective space, RP(~), and over B there is
a universal line bundle 03BE : U ~ B say, of class C~. If E is quasi-reflexive
of order one let 03BE(E) : U(E) - B be the C °° E-bundle over B associated
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to 1 by the section 03C80. The bundle 03BE(E) is canonical embedded in its
second dual bundle 03BE(E)** and the corresponding quotient bundle 03BE(E)
is just 03BE again. Since 1 has not got a finite dimensional inverse bundle (for
example by looking at the Stiefel-Whitney classes), it follows that 1(E)
has not got an inverse modelled on E nfor any finite n: for if il were such
an inverse, ~ = ~**/~ would be a finite dimensional inverse for 03BE.
The C°° manifold U(E) is modelled on the quasi-reflexive space E x F

and bas tangent bundle isomorphic to the Whitney sum of the trivial
F-bundle with the pull back of 03BE(E) over itself. Since F is reflexive the
above method shows that T(U(E)) has not got an inverse modelled on a
finite direct sum of copies of E x F. In fact, since any closed subspace of
a quasi-reflexive space of order n is quasi-reflexive of order at most n,
the method shows that T(U(E)) cannot be embedded as a subbundle of
a trivial (E x F)" bundle for any finite n.

If E is separable then so is E** and hence E* is also. It follows that
E is C 1-smooth, [3]. Thus in this case, U(E) is a separable, Coo, E x F-
manifold which is C1-smooth but admits no Cl immersion into any finite
direct sum of copies of E x F.
The standard quasi-reflexive space was constructed by R. C. James [19].

It ie of order one, and will be denoted by J. It consists of those real
sequences x = (al , a2, ... ) for which lim an = 0 and

is finite, where the supremum is over all finite increasing sequences of
integers {p1, p2, ···,p2n+1}, n = 0, 1, 2, ···.
James showed that the subspace Jo of J consisting of those sequences

(ai , a2, ... ) of J with a2i = 0 for each i, is linearly isomorphic to l2 .
1 am grateful to G. Jameson for pointing out to me that this subspace
splits in J: the mapping (a1, a2, ... ) H (al - a2 , 0, a3 - a4, 0, ... ) being
a projection of J onto Jo. It follows that J is isomorphic to J x l2 . There-
fore if we take F = 12 the manifold U(J) defined above is modelled on J.
Our discussion yields the following:

There is a separable Banach space J which is e1-smooth and a C~
separable metrisable J-manifold which admits no Cl immersion into any
finite direct sum of copies of J.

REMARKS.

(i) I do not know whether J is Cr-smooth for r &#x3E; 1. However, appa-
rently V. Meshkov has shown that it does not admit a compatible e2
norm.

(ii) Mitjagin and Edelstein [27] have shown that Qo : GL(Jn) ~ GL(n)
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is a homotopy equivalence for each n. In particular each GLw(Jn) is
contractible. This is not true for general GLW(E) when E is an arbitrary
Banach space: for example if E is reflexive GLW(E) = GL(E), on the
other hand if E contains no infinite dimensional closed reflexive subspaces
e.g. E = h , it is easy to see that every element of W(E) is strictly singular
(‘semi-compact’ in the terminology of [34]) and therefore GLW(E) is
homotopy equivalent to GL(oo), [16]. The same holds when E = C [0, 1 ]
by Theorem C II 8.5 of [34]. The result of Herman and Whitley [17] that
every infinite dimensional closed subspace of J contains a subspace iso-
morphic to l2 means that each element in L(lp, J) and L(J, lp) is strictly
singular, p ~ 2. Hence Pelcynski’s extension of Douady’s method in [10]
shows that for p ~ 2 and 1  p  oo, the quasi-reflexive space J x lp
does not have GLW(J x lp) connected. A quasi-reflexive space E with an
even more complicated general linear group constructed by Mitjagin and
Edelstein is described in [21 ]. For this E the map ~0 : GL(E) ~ GL(Ê )
is not surjective.

(iii) For any Banach space E, an immersion of an E-manifold M into
a Banach space F with reflexive co-space induces a reduction of TM to

GLW(E). In the separable Cr-smooth case, r &#x3E; 1, the methods of § C
can be used to show that any such reduction is équivalent to an integrable
reduction. The only essential change needed in the proof is that operators
in GL(E) + W(E) must be used instead of 03A60-operators.

It follows that a necessary condition for a manifold modelled on a

quasi-reflexive space E to immerse in E is that it admits an integrable
GLW(E)-structure.

(iv) Since J is isomorphic to J x l2, theorem 28 shows that every open
subset of J" is Ci diffeomorphic to the product of J" with some open
subset of l2 . One would expect that every J-manifold is diffeomorphic to
a J-vector bundle over some such open subset. Remark (ii) shows that
J is strongly l2-stable, so there is no obstruction in the tangential homo-
topy type.
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