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Consider the following data:

a noetherian scheme S,
a morphism of finite type f: X ~ S,
a coherent sheaf of Ox-modules vit.

If x is a point of X and s = f(x), recall that M is flat over S at the
point x, if the stalk Mx is a flat OS, s-module; M is flat over S, or is S-flat,
if vit is flat over S at every point of X.

Grothendieck has investigated, in great details, the properties of the
morphism f when -4Y is S-flat (EGA IV, 11 12 ... ), and some of its
results are now classical. For instance we have:

a) the set of points x of X where JI is flat over S is open (EGA IV
11.1.1).
b) Suppose -6 is S-flat and supp (M) = X. Then the morphism f

is open (EGA 2.4.6). Further, if S is a domain and if the generic fibre is
equidimensional of dimension n, then each fibre of f is equidimensional
of dimension n (EGA IV 12.1.1.5).

In this lecture, we want to give a new approach to the problem of
flatness and get structure theorems for flat modules. Much of the follow-

ing theory is local on S and on X and we may assume S and X are

affine schemes. Then the data (*) are equivalent to
a noetherian ring A,
an A-algebra B of finite type,
a B-module M of finite type.

Chapter 1

Flat modules and free finite modules on smooth schemes

1. A criterion of flatness

Consider the data (*). Let x be a point of X and s = f(x). We denote
by dimx(M/S) the Krull-dimension of JI ~Sk(s) at the point x. So, if
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Supp (M) = X, dimx(M/S) is the maximum of the dimensions of the
irreducible components of X ~S k(s) containing x. We set

If M = OX, we write also dimx(X/S) and dim (X/S).
Letf : X - S be a smooth morphism of affine schemes with irreducible

fibres, s a point of S, q the generic point of the fibre XS = X Os k(s), x
a point of X,. Let M be a coherent sheaf on X and Ms = JI Q9s k(s).
Then (Ms)~ is a k(~)-vectorspace of some finite dimension r. So there

exists an Xs-morphism

which is bijective at the generic point 17. If we restrict S to some suitable
neighbourhood of s, we can extend ù to an Y-morphism

where

Note that (Ms)~ ~ M~ ~S k(s); so the morphism

is surjective, and by Nakayama’s lemma,

is surjective.

LEMMA 1. Suppose S to be local with closed point s; if x is any point of
X above s, then

u~ injective ~ u,, injective ~ u injective

PROOF: Denote by Ass( 2) the set of associated primes of the Ox-
module 2. Because 2 is free, and X is S-flat we have (EGA IV 3.3.1 )

Now, X being smooth over S with irreducible fibres, the fibres Y, are
reduced, thus integral. Hence

where 1, is the generic point of Xt.
Because 0X,~ is faithfully flat over 0S,s, the morphism Spec (0X,~) ~ S

is surjective. This implies that each 1, is a generisation of il. And then
Ass (2) c Ass (L~).
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The inclusion Ass(2,,) c Ass(2x) being trivial, we conclude

that Ass( 2,,) = Ass( 2 x) = Ass( 2). Hence the canonical morphism
0393(X, L) ~ F(X,, 2,,) is injective. Let R be Ker(u). Then the canonical
morphism F(X, à) - F(X,, R~) is injective, so Ass(R~) = Ass(Rx) =
Ass(,W). And the lemma follows.

THEOREM 1. Let X - S be a smooth morphism of affine schemes with
irreducible fibres, x a point of X above s in S, M a coherent sheaf on X,

an exact sequence of Ox-modules, such that If is free and u 0 k(s) is

bijective at the generic point 11 of the fibre XS = X Os k(s). Then the
following conditions are equivalent:

PROOF: The equivalence of 2) and 3) is supplied by lemma 1 (the
restriction to local S being no loss of generality). Let 9 = Ker(u). By
Nakayama’s lemma, u, is surjective, so we have the exact sequence

If fllfl = 0, M~ ~ L~ is S-flat. Conversely, if vit fi is S-flat, the exact

sequence above remains exact after tensoring with k(~). But u~ ~ k(~)
is bijective and so fllfl 0 k(il) = 0 and, by Nakayama’s lemma again,
0.

1) =&#x3E; 3). If vit x is flat over S, then vit fi is flat over S, and by the pre-
ceeding remark, u. is injective and therefore u,, is injective (lemma 1).
Now the proof of injectivity of u., remains valid if we replace S by any
closed sub-scheme and so 9,, is 5-flat.

3) ~ 1), because a flat by flat extension is flat.

COROLLARY. The module vit is S-flat at the point x, if and only if dn
is a free 0X,~-module and f!jJ x is g-flat.

2. The main theorem of Zariski

Let f : X - S be a morphism of finite type, s a point of S, x an
isolated point of the fibre X Os k(s). Then, the main theorem of Zariski,
in its classical form, asserts that there is an open neighbourhood U of x in
X which is an open sub-scheme of afinite S-scheme y (EGA III 4.4.5). Of
course it is a good thing to have a finite morphism; but, in counterpart,
we have to add extra points: those of Y- U and, on these new points, we
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have very few informations. For instance, if vit is a coherent sheaf on U,
S-flat, we cannot expect to extend vit into a coherent sheaf JV on Y
which is still S-flat. So, we shall give another formulation of the main
theorem, a little more sophisticated, which avoids to add bad extra
points.

a) Suppose first that S is local, henselian, with closed point s. Then, the
finite S-scheme Y splits into its local components. The local component
(V, x), which contains x is clearly included in U. So, if we replace U by
V, we get an open neighbourhood of x in X, which is already finite over S.
b) In the general case, we introduce the henselisation (S, s) of S at

the point s. Then, if U = U S, we can find (case a)) an open and
closed sub-scheme F of Û, which contains the inverse image x of x and
is finite over S. Then Fis defined by an idempotent é of reu, Où).

It is convenient to set the following definition:

DEFINITION 1. Let (X, x) be a pointed scheme. An étale neighbourhood
of x in X (or of (X, x)) is a pointed scheme (X’, x’) with an étale pointed
morphism (X’, x’) ~ (X, x) such that the residual extension k(x’)/
k(x) is trivial.
We know that (S, s) is the inverse limit of affine étale neighbourhoods

(Si, Si)ieI of (S, s) (EGA IV 18). Let xi be the point of U x S Si which
has respective projections x and si . For i large enough, the idempotent é
comes from an idempotent ei of r(Ui, OUi). Let Vi be the corresponding
component of Ui which contains xi . Then F = Vi x SiS is finite on S and
consequently, VI is finite on Si for a suitable i. Suppose now Th is finite
on Si and set (S’, s’) = (Si’ si), (X’, x’) = (Vi, xi); we get:
PROPOSITION 1. Let f : X ~ S be a morphism of finite type, s a point of

S and x an isolated point of X ~S k(s). Then there exists an étale neigh-
bourhood (S’, s’) of (S, s), an étale neighbourhood (X’, x’) of (X, x) and
a commutative diagram of pointed schemes

such that X’ is finite on S’ and x’ is the only point of X’ above s’.

3. Reduction to the smooth case

Consider the data (*).
As we are interested in the flatness of vit over S, the structure of vit

as an Ox-module is not essential. We shall use this remark and the main
theorem of Zariski, to change X into a smooth S-scheme.
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First, we may replace X by the closed sub-scheme defined by the
annihilator of M, and so assume that

Let x be a point of X above s in S and let

Choose a closed specialisation z of x in Xs = X ~S k(s). Then
dim (0Xs, z) = n. If we replace X by a suitable affine neighbourhood of z,
we may use a system of parameters of the local ring 0Xs, z to find an
S-morphism

such that z is an isolated point of its fibre v-1(v(z)). Thus the generisation
x of z is also an isolated point of v-1(v(x)). Now apply proposition 1:

we can find a commutative diagram of pointed schemes

such that g and h are étale neighbourhoods, w is finite and x’ is the only
point of X’ above y.
The composed morphism

is smooth of relative dimension n.

Let -4X’ be the inverse image of -4X over X’ and vit = w*(M’); X is
a coherent sheaf because w is finite.

Note the following equivalences:

JI x flat over S ~ M’x’ flat over S (because X’ is flat over X);
-4Y’§, flat over S ~ Ny flat over S (because w is finite and x’ is the only

point of X’ above y, M’x’ and X define the same 0S, s-module).

Hence, in order to study the flatness of vit at the point x, we may
replace X by Y, -4X by X and x by y, and we are reduced to the case
where X is smooth over S of relative dimension n = dimx(M/S).

4. Relative presentation

If we are a bit more cautious in the constructions given above, we can
choose Y such that the fibre Y ~S k(s) is irreducible. Then we can find
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an étale affine neighbourhood (S’’, s’) of (S, s) and an open affine sub-
scheme Y’ of Y ~S S’, which contains the inverse image of y and
such that the fibres of the morphism Y’ - S’ are irreducible. Let X’
be the inverse image of X on Y’. After a slight change on X’ we get the
following diagram

where (X’, x’) is an étale affine neighbourhood of (X, x), (S’, s’) is an
étale neighbourhood of (S, s), w’ is finite and x’ is the only point above
y’, M is a coherent sheaf on X with Supp (M) = X, M’ = ~*(M), N’ =
w’*(M’), g is smooth affine with irreducible fibres of dimension n =
dimx(M/S).

DEFINITION 2. Consider the data (*), and let x be a point of X above s
in s. Suppose Supp (-6) = X. Then a relative presentation of JI at the
point x, consists of the data (***) above, together with an exact sequence
of OY,-modules

such that 2’ is free and

is bijective at the generic point of Y’ Os, k(s’).
The introductory remarks of no 1 show, that -4X always admits a

relative presentation at the point x.

5. Amplifications

1) Consider the initial data (**) and suppose M is A-flat at a point x
of Spec (B). We can use a relative presentation of M at x and then apply
theorem 1. In fact, by an easy induction on n = dimx(M/Spec(A) we can
prove that locally on Spec(A) and Spec (B), for the étale topology, the
A-module M has a ’composition series’
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such that Mi/Mi+1 is the A-module defined by a free finite module over
some algebra Bi smooth over A, with geometrically irreducible fibers
of dimension i.

2) Let A be any ring, B an A-algebra of finite presentation and M a
B-module. The structure theorem for flat modules, proved in the noe-
therian case, remains valid if M is a B-module of finite presentation and
even if M is a B-module of finite type. In fact, if Mis a B-module of finite

type, such that Mq is A-flat for some prime ideal q of B, then necessarily,
MI is a Bq-module of finite presentation. Moreover, if the ring A is not
too bad, for instance if A is a domain, then, the set of points q where the
B-module M of finite type is A-flat, is an open subset of Spec (B) and if
M is A-flat, M is a B-module of finite presentation. As a corollary we get:
let A be a domain and B an A-algebra of finite type which is A-flat, then
B is an algebra of finite presentation.

Chapter 2

Flat and projective modules

1. Introduction

Let A be a noetherian ring, B an A-algebra of finite type, M a B-module
of finite type. If M is a projective A-module, then Mis A-flat. The converse
is not true in general: For instance, let A be a (discrete) valuation ring
with quotient field K and take for B a K-algebra of finite type. Then M
is K-free and hence A-flat. But, if M ~ 0, M is not projective as an
A-module; because a submodule of a free A-module is free (Bourbaki,
Alg. VII § 3 th. 1) it cannot be a K-vectorspace ~ 0.

In this example, Spec (B) lies entirely above the generic point 17 of
Spec (A); consequently, an associated prime x of M cannot specialize into
a point of the special fibre: and this happens to be the main obstruction
for a flat A-module to be projective.

DEFINITION 1. Consider the initial data (*). For SES we denote by
Ass (1 0, k(s)) the set of associated primes of a6 QS k(s). We set

DEFINITION 2. The Ox-module M is S-pure if the following condition
holds :

For every s in S, if (,S, s) denotes the henselisation of S at the point s,
X = X x S,S,  = M S, then every x in Ass(/) specializes into a
point of the fibre Xs.
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EXAMPLES

1) If X ~ S is proper, then every coherent sheaf vit on X is S-pure.
2) If dim(X/S) = 0 and X is separated over S, then Ox is S-pure if and

only if X is finite over S.
3) If X ~ S’ is flat with geometrically irreducible and reduced fibres,

then Ox is S-pure.

THEOREM 1. Consider the initial data (**); then, the flat A-module M
is projective if and only if it is A-pure.

In fact we can be more precise:
a) If dim(M/A) = 0, and if M is A-projective, then M certainly is a

finite type A-module and so is locally free on Spec (A).
b) If 9 = Spec (A) is connected and dim(M/A) ~ 1, then M cannot

be an A-module of finite type and we can apply a result of H. Bass which
asserts that the projective A-module M is in fact free. Thus we get the
following corollary:

COROLLARY 1. If M is A-flat and A-pure, M is locally ( for the Zariski-
topology on Spec (A)) a free module.

PROOF OF THEOREM 1 (necessity). We suppose M to be a projective
A-module and we want to show that M is A-pure. The hypothesis of
projectivity is preserved by any base change A ~ A’; hence, taking into
account definition 2, it is sufficient to prove the following assertion: If
moreover A is a local ring with maximal ideal m and q is any associated
prime of M, then V(q) n V(mB) :0 1J. Now if this assertion were false,
we should have q + mB = B and so 1 = q + h for some q E q and h E mB.
As q is an associated prime of M, there exists 0 ~ a in M such that
(1-h)a = qa = 0. Consequently, by [Bourkaki, Alg. Comm. III § 3
prop. 5] M is not separated in the mB-adic topology. Hence the A-module
M is not separated in the m-adic topology and M cannot be a direct factor
of a free A-module.

In order to prove the sufhciency part of the theorem, we shall use a
small part of new results of L. Gruson on projective modules ([3]).

2. Mittag-Leflier and projective modules

Daniel Lazard proved in [4] that every flat A-module M is the direct
limit of free finite A-modules. Conversely, a direct limit of free finite
modules is flat. So, without restrictive hypothesis on the flat module M,
we cannot expect to have restrictive conditions on the direct system.
Following Gruson, we shall introduce a restrictive condition on the

direct system (Mi)ieI. 
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DEFINITION 3. An A-module P is a Mittag-Leffler module (shorter:
M.L. module) if P is the direct limit of free finite A-modules (Pi)ieI such
that the inverse system (Hom (Pi, A))i~I satisfies the usual Mittag-
Leffler condition.

N.B. An inverse system (Qi)ieI of A-module satisfies the (usual)
Mittag-Leffler condition, if Vi E I, 3j ~ I, j ~ i such that for k ~ j we
have Im(Qk ~ Qi) = Im(Qj ~ Qi).

REMARKS

1) The fact that the inverse system Hom (Pi, A) satisfies the Mittag-
Leffler condition, does not depend on the choice of the family of free
finite modules Pi, with lim Pi = P.

2) For any A-module Q and any free finite A-module Pi we have a
canonical isomorphism

So if P = lim Pi is an M.L. module, then for every A-module Q, the
inverse system Hom (Pi, Q) satisfies the Mittag-Lefler condition.

EXAMPLES. a) Every free module is an M.L. module.
b) A direct factor of an M.L. module is an M.L. module.
c) A projective A-module is an M.L. module.

The last assertion admits a partial converse:

PROPOSITION 1. Suppose A is a noetherian ring and M is of countable
type (i.e. M is generated by countably many elements); then, if M is an
M.L. module, M is projective.

PROOF. We can write M as a direct limit of free finite A-modules

(Mi)i~I. As M is of coutable type and A is noetherian, we easily see that
we can take I equal to the set N of natural numbers. We have to show
that for every exact sequence of A-modules

the sequence

is also exact. But we have Hom (M, ·) = lim Hom (Mn, ·) and because
Mn is a free module, we get for every n an exact sequence

By hypothesis, the inverse countable system (Hom (Mn, P))n~N
satisfies the Mittag-Lefler condition; hence, taking the inverse limit on
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the exact sequences (1), we still get an exact sequence (cf. EGA 0111
13.2.2).

PROPOSITION 2. Let A be a noetherian ring, A’ afaithfully,flat A-algebra
M and A-module of countable type. If M’ = M OA A’ is a projective
A’-module, M is a projective A-module.

PROOF. It is sufficient to prove that M is an M.L. module (prop. 1). Of
course, M is A-flat, so M is the direct limit of free finite A-modules

(Mi)i,,,. Now observe that the property of being an M.L. module
clearly is invariant under faithfully flat extension.

PROPOSITION 3. Let M be a flat A-module. Suppose that for every free
finite A-module Q and every x ~ M OA Q, there exists a smallest sub-
module R of Q such that x E M ~A R. Then M is an M.L. module.

PROOF. Because M is A-flat, M is a direct limit of free finite modules

(MJieI. Denote by ui : Mi ~ M the canonical morphism and by
U ij : Mi -+ Mi the ’transition’ morphism for j ~ i. Thcn uij E Hom(Mi,
Mj) which is canonically identified with Hcm(Mi, A) ~A Mj. We fix i.

It is easy to see that the image of the morphism

for j ~ i is the smallest submodule Rj of Hom(M,, A) such that

uij ~ Rj ~A Mj. The morphism ui is an element of Hom(Mi, M), which
is canonically identified with Hom(Mi, A) QA M. By hypothesis, there
exists a smallest submodule R of Hom(Mi, A) such that ui E R OA M.
Now we look at the following commutative diagram of isomorphisms :

Here ui = lim Uij (j ~ i) is an element of R OA M = lim (R pA Mj).
So we can choose j ~ i such that uik E R ~A Mk for every k ~ j. Hence
R ~ Rk for k ~ j. But clearly R ~ Rk (for k ~ i), thus R = Rk for k ~ j
and the inverse system Hom (Mj, A) satisfies the Mittag-Lefler condition.

COROLLARY 1. Let A be a noetherian ring and n a natural number. Then
the ring B = A[[T1, ···, Tn]] of formal series is an M.L. module.

PROOF. Since A is noetherian, B is A-flat. If Q is a free finite A-module,
then B OA Q is the A-module of formal power series Q[[T]] with co-
efhcients in Q. If x = 03A3qiTi is an element of Q[[T]], the submodule Q’
of Q generated by the qi is the smallest submodule of Q such that
x E Q’[[T]], and we may apply proposition 3.



21

DEFINITION 4. Let u : M’ ~ M be a morphism of A-modules. We say
that u is universally injective if, for every A-module P of finite type, the
morphism u ~A iP : M’ ~A P ~ M ~A P is injective.

REMARKS.

If u : M’ ~ M is universally injective, u ~A 1P is injective for every
A-module P; moreover, if M is A-flat, M/M’ and M’ are A-flat.

COROLLARY 2 (of proposition 3). Let u : M’ ~ M be a universally
injective morphism. If M satisfies the condition of proposition 3, then M’
satisfies the same condition and hence is an M.L. module.

PROOF. Firstly, we deduce from the preceding remarks that M’ is

A-flat. Then, let Q be a free finite A-module, x an element of M’ ~A Q
and R the smallest submodule of Q such that u(x) E M ~A R. It is suffi-
cient to prove that x E M’ QA R. Consider the following commutative
diagram:

Because M’ is A-flat the upper row is exact, because u is universally
injective the right vertical arrow is injective, and so x E M’ QA R.

AMPLIFICATIONS. Gruson proved that the condition of proposition 3 is
fulfilled by every M.L. module and hence in fact characterises M.L.
modules. He also proved that the projectivity of an A-module can be
checked after any faithfully flat ring extension A ~ A’.

3. End of the proof of theorem 1 (sufhciency)
For sake of brevity, we shall prove the theorem only in the case where

B is a smooth A-algebra with geometrically irreducible and reduced fibres,
and M = B. In fact this is the fundamental case: the general case is an
easy consequence by using the technique below and the structure theorem
for flat modules proved in chapter I.

1) The A-Algebra B is a quotient of some polynomial algebra
A[T1, ···, Tn] and therefore, the A-module B is of countable type.

2) To prove that B is a projective A-module, we may then make a
faithfully flat base change A ~ A’ (prop. 2). Take A’ = B ; then we are
reduced to the case where the morphism Spec(B) ~ Spec(A) has a section
(i.e. there is an A-morphism u : B ~ A). Let I be the kernel of u. Because
B is smooth over A the A-module J = III’ is a projective module of
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finite type (EGA 0w 19.5.4); hence J is locally free on Spec(A). Using
proposition 2 again, we may suppose J to be free. Then the I-adic
completion Ê of B is isomorphic to some A-algebra A[[T1, ···, Tm]] of
formal power series (EGA OIV 19.5.4); and by prop. 3, cor. 1 Ê is an
M.L. module.

3) LEMMA. The canonical morphism B ~  is universally injective.

PROOF. Let M be an A-module of finite type. We have to prove that
the morphism M ~A B ~ M ~A Ê is injective. But Ê is B-flat and it will
be sufficient to prove that Ass(M ~ AB) is contained in the image of
Spec(Ê), ([4], Ch. Il prop. 3.3). Since B is A-flat with irreducible and
reduced fibres, we have (EGA IV 3.3.1)

and pB is contained in the image of Spec(B) since Ê is faithfully flat over
A.

4) From the above lemma we deduce that B is an M.L. module

(prop. 3, cor. 2). Thus B is a projective A-module indeed (prop. 1).

4. Proposition

Let S be a noetherian scheme, X an S-scheme offinite type, vii a coherent
sheaf on X which is S-flat and S-pure, u : M ~ JV a surjective morphism
of coherent shesfs. Let F be the subfunctor of S defined as follows:
For any S-scheme T, T factors through F if and only if the morphism

UT : MT ~ NT, deduced from u by the base change T - S, is an isomor-
phism.

Then is represented by a closed subscheme of S.

PROOF. For the sake of simplicity, we suppose X to be affine over S.
The assertion to be proved is local on S. So we can suppose S = Spec(A),
X = Spec(B ) and M a free A-module (th. 1 cor. 1). Let (ei)ïEr be a basis
for the A-module M and (a03BB)03BB~039B a system of generators of R = Ker u.
Then each a03BB has coordinates a03BBi with respect to the basis (ei)i~I. Now
it is clear, that F is represented by the closed subscheme h(J ) of Spec(A ),
where J is the ideal generated by the family {a03BBi|03BB E A, i ~ I}.

Chapter 3

Universal flattening functor

1. The local case

Let S be a local, noetherian scheme with closed point s, X an S-scheme
of finite type, vii a coherent sheaf on X, and x a point of X lying over s.
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THEOREM 1. Suppose further that S is henselian. Then there exists a
greatest closed subscheme S of S, such that ,ê = Jé x s S is S-fl’at at the
point x. Further, the subscheme S is universal in the following sence:

Let T be a local S-scheme with closed point t over s; set XT = X  S T

and JI T = JI x s T. Then JI T is T-flat at any point of Xt which lies over
x if and only if the morphism T ~ S factors through S.

PROOF: We proceed by induction on n = dimx(M/S).
a) If n  0, we have Mx = 0, and we can take S = S.
b) Assume n ~ 0, and that the theorem holds for modules of relative

dimension smaller than n. If we replace X by a suitable subscheme, we are
reduced to the case where Supp (M) = X. Then dimx(XIS) = n.
Proceeding as in ch. 1, § 3, we see that we may suppose that X is smooth
over S, of relative dimension n, and also, since S is henselian, that X has
geometrically irreducible fibres. (Chap. 1, § 4). Let 11 be the generic point
of the closed fibre. We have exact sequence of coherent sheaves on X:

where Y is a free Ox-module of finite rank, and u 0 k(~) is bijective. We
now apply theorem 1 of ch. I: Let (T, t) be a local (noetherian) scheme
over (S, s), and denote by 1’/t the generic point of Xt . Then the inverse
image vit T of -4X on XT is T-flat at a point z of Xt , if and only if uT :
LT ~ MT is bijective at the point ~t and YT is T-flat at the point z.
We have dimx(P/S) ~ n - 1 ; hence, by the induction hypothesis, there

exists a greatest closed subscheme S’ of S such that P x S,S’ becomes
S’-flat at the point x. We may thus replace S by ,S’ and assume that P
is S-flat at x.

Now, set S = Spec(A), X = Spec(B), fi? = L, M = M, and let 9
be the prime ideal of B corresponding to x. The A-module L is free (ch.
II, th. 1, cor. 1); let {ei}i~I be a basis of L over A. Choose a system of
generators {a03BB}03BB~039B of R = Ker(u), and let {a03BB, i}i~I be the coordinates
of a03BB in L. Then I claim that S is the closed subscheme V(J), where J is
the ideal of A generated by the family {a03BB, i)03BB~039B. In fact, let J’ be an
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ideal of A, set A’ = A/J; then we have the following equivalences:
(MjJIM)!l is A’-flat ~ (u ~A A’),: (L/J’L)~ ~ (M/J’M)~ is injective
~ u OA A’ : L/J’L ~ M/J’M is injective (ch. I, th. 1, lemma 1) ~ the
images of the a03BB in L/J’L are zero =&#x3E; J c J’. That proves the existence of

S; to see that S is universal, we proceed in the same manner.

COROLLARY 1. (Valuative criterion of flatness (cf. EGA IV, Il.8.1)).
Let S be a reduced noetherian scheme, X ~ S a morphism of finite

type, -4Y an Ox-coherent sheaf. Then M is S-fiat if and only if, for any
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S-scheme T, which is the spectrum of a discrete valuation ring, vit x sT
is T-flat.

PROOF: Of course the necessity is clear. To prove the suinciency, we
may assume that s is local, with closed point s, and we may replace S by
its henselisation which is also reduced. Choose a point x of the closed
fibre Xs, and let S be the greatest closed subscheme of S such that t
vit x sS is S-flat at the point x (th.1 ). We must prove that S = s.

Set 9 = Spec(A), S = Spec (A/J), and consider the set Pi of minimal
primes of A. Because A is reduced, the canonical morphism

is injective. We know that each of the local domains A/Pi is dominated
by some discrete valuation ring Ri (EGA II, 7.1.7), consequently we get
an injective morphism A ~ 03A0iRi. But, the universality of S (th. 1) and
the assumption imply that each of the local morphisms A -+ Ri factors
through A/J, and hence J = 0.

2. The global case

Consider the initial data (*). The universalflatteningfunctor F of the
S-module -4X is the subfunctor of the final object S defined as follows:
An S-scheme T factors through F if and only if MT = M  ST is

T-flat.

THEOREM 2. Suppose M is S-pure (ch. II, def. 2). Then the morphism of
functors F ~ S is represented by a surjective monomorphism of finite type.

For the sake of simplicity, we shall only give the details of the funda-
mental step of the proof, which is contained in Proposition 1 belcw.

Suppose X ~ S is a smooth morphism with geometrically irreducible
fibres, and let -4lf be a coherent sheaf on X. Then, if JI is S-flat, M is a
locally free Ox-module at the generic point of each fibre of X over S
(ch. I, th. 1). Let r be an integer, and define subfunctors F (resp. Fr) of S
as follows: An S-scheme T factors through F (resp. Fr) if and only if the
inverse image MT = M x sT of M on XT = X  ST is locally free (resp.
locally free of rank r) at the generic point of each fibre of XT over T.

PROPOSITION 1. i) The functor F is the disjoint sum of the functors
Fr,rEN.

ii) The monomorphism Fr ~ S is an immersion.

PROOF: i) Let T ~ S be a morphism which factors through F.
Then vit T is locally free on an open set U of XT which covers T. But the
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smooth morphism XT --+ T is open, and hence we get a canonical splitting
of T:

such that vit Tris locally free of fixed rank r on U n XTr. The assertion i)
says nothing else.

ii) We have to prove that F, is represented by a subscheme of S. Let s
be a point of S, ~s the generic point of the fibre X ~S k(s), and n an
integer. If we have dimk(~s)(M Q k(~s)) ~ n, there exists a neighbour-
hood U of I1s and a surjective morphism 01 - M| U. The image V of U
is open in S. Of course, if r &#x3E; n, we have F, n V = ~. Hence, to prove
that F, is represented by a subscheme of S, we can first replace S by a
suitable open subscheme, in such a way that for any point s of S, we have

dimk(~s)(M 0 k(~s)) ~ r. We shall show that in this case, Fr is a closed
subscheme of S. Such an assertion is local on S. Let s be a point of S.
We can find an open neighbourhood U of 1, and a surjective morphism
u : 0rU ~ M|U.
Then, after a restriction to suitable open subschemes of S (resp. U),

we are reduced to the case S = Spec(A), X = Spec(B), M = M, and
we may assume that there exists a surjective morphism u : Br -i M. But
lemma 1 of th. 1, ch.I implies that M is locally free of rank r at the generic
point of a fibre of X over S if and only if u is bijective. Hence Fr is re-
presented by a closed subscheme of S (ch. 11, prop. 4).

Chapter 4

Flattening by blowing up
1.

Let S be a noetherian scheme, X an S-scheme of finite type, 1 a
coherent sheaf on X. Consider a blowing up S’ ~ S of an ideal of 0S, and
let Z be the closed subscheme of S defined by this ideal (i.e. Z is the center
of the blowing up). Set

Then Z’ is a divisor of S’ (i.e. Z’ is locally equal to V(f’), where f’ is not
a zero divisor of 0S’).
We now introduce the coherent subsheaf X’ of M’ defined as follows:

for any affine open subscheme U’ of X’, r(U’, X’) is the submodule of
0393(U’, M’) of sections with support in Y’ n U’.
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DEFINITION 1: The pure transform M0394 of M, by the blowing up
S’ ~ S, is the coherent sheaf M’/N’.
So the pure transform M039B is characterized by the following properties:
a) M0394 is a coherent quotient of the usual inverse image M’.

b) The canonical morphism vit’ ~ M0394 is an isomorphism on X’ - Y’
~ X - Y.

c) Ass(M0394) c X’ - Y’ (EGA IV, 3.1.8).
Now, if M is S-flat, then M’ is s’-flat. But, since Z’ is a divisor of S’,

we have Ass(S’ ) c S’ - Z’, and so Ass(-6’ ) c X’ - Y’ (EGA IV, 3.3.1 );
hence M’ = M0394, and the pure transform of M coincides with the ordina-
ry inverse image.
We shall prove the following result:

THEOREM 1. Let (S, X, M) be as before, and suppose that U is an open
subscheme of S such that M|X x S U is U-flat. Then we can find a blowing
up S’ ~ S, with center in S - U, such that the pure transform M0394 of vit
becomes S’-flat.

2. Proof of the theorem in the projective case

Suppose further that X is projective over S. Then we shall see that we
can find a canonical, projective morphism S’ ~ S, which is an iso-

morphism over U, in such a way that the pure transform M0394 of -4Y by
the morphism S’ ~ S becomes S’-flat. The morphism S’ - 9 is not
necessarily isomorphic to any blowing up with center in S - U, but we
can find a blowing up S" - ,S’’, such that the composite morphism
S" ~ S is a blowing up with center in S- U; hence we get theorem 1 in
that case.

For any S-scheme T, set XT = X  ST, MT = M  ST, and consider
the set Q(T) of isomorphism classes of coherent quotients X of vit T
which are T-flat. We get, in a natural way, a contravariant functor

Grothendieck has proved that the functor Q is represented by an S-
scheme, which is a disjoint sum of projective S-schemes Qi ([2]).
By hypothesis, e4/Xx sU is U-flat, hence defines a canonical point

of Q(U), i.e. an S-morphism s : U - Q. Let S’ be the schematic
closure of s( U) in Q. Then the projection S’ - S is a projective morphism
which induces an isomorphism over U. Let X’ = X x SS’, vit’ = vit x SS’.
The S-morphism S’ - Q corresponds to a point of Q(S’), hence to a
coherent quotient -d’ of M’ which is S’-flat. Of course, the canonical
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morphism vit’ - -4X’ is an isomorphism over U. Moreover, since S’ is
the schematic closure of s(U), we have Ass(S’ ) c U, and the flatness of
M’ implies Ass(M’) c X’ x S, U. Therefore, M’ is the pure transform of
M, and we are through.

3. Some indications on the proof of theorem 1

The proof proceeds by induction on dim(M/S).
DEFINITION 2. Let (S, X, M) be as before. Let n be an integer, and F

the closed set of points x E X such that -d is not S-flat at x. We say that
JI is S-flat in dimension ~ n if dim(F/S)  n. In fact, we shall prove
the following refinement of theorem 1:

THEOREM 1 bis. Let (S, X, M) be as before, U an open set of S, n an
integer. Suppose that M|X  SU is U-flat in dimension ~ n. Then we can
find a blowing up S’ ~ S, with center in S - U, such that the pure transform
M0394 of -4X becomes S’-flat in dimension &#x3E; n.

PRELIMINARY REMARKS: 1) Let S be a noetherian scheme, U an open
set of S, f : S’ -+ Sa blowing up with center in S - U, g : S’’ ~ S’ a blowing
up with center in S’-f-1(U). Then fg : S" - S is a blowing up with center
in S - U. Hence, to prove theorem 1 bis, we may proceed in several steps.

2) Let S be a noetherian scheme, U and V two open sets of S, V’ ~ V
a blowing up with center in V - U n V. Then there exists a blowing up
S’ ~ S, with center in S - U, which extends V’ - V (cf. EGA 1, 9.4).

3) Let I and J be two ideals of a noetherian scheme S. Let S’ ~ S
be the blowing up of I, and S" - S’ the blowing up of J0s, . Then
S" - S is the blowing up of the ideal IJ.
From these remarks we easily deduce that theorem 1 bis is of local

nature on S and on X; hence we may assume S and X to be affine.
Then, after some technical reductions, and a suitable use of theorem 1,

ch. I, we come to the most important step of the proof:

PROPOSITION 1. Let S be a noetherian, affine scheme, X ~ S a smooth
morphism with geometrically irreducible fibres, JI a coherent sheaf on X,
U an open subscheme of S. Suppose that M is S-flat at the generic point
of each fibre of X over U. Then, there exists a blowing up S’ -+ S, with
center in S- U, such that the pure transform M0394 of M becomes S’-flat
at the generic point of each fibre of the morphism X’ = X x SS’ ~ S’.

PROOF: Let s be a point of S and q, the generic point of X OS k(s).
Then we know (th.l, ch.I) that -6 is S-flat at the point 11s’ if and only if
the Ox-module M is free at the point 11s. Hence, the hypothesis implies
that there exists an open set V of X, which covers U, such that M|V is
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locally free. But the rank of the stalks of a locally free module, is locally
constant, and the smooth morphism V - U is open; therefore we get a
canonical splitting of U = LI Ui, i E N such that -d is free of fixed rank
ion Vx uui-

Then, it is not difficult to see that we can find a blowing up h : S’ ~ S,
with center in S-U, such that S’ = UÙJ, where U’i is the schematic

closure of h-1(Ui) in S’. Hence, we are reduced to the case where M
is of fixed rank r on V.

To conclude the proof, we shall use some elementary facts about
Fitting ideals.

Fitting ideals of a module.
Let A be a noetherian ring, M and A-module of finite type, r an integer.

Consider a presentation of M:

and the corresponding morphism of exterior powers

DEFINITION 3. The r-th Fitting ideal, Fr(M), of M, is the ideal of A
generated by the coordinates of the image of 039Bn-r(u) (l.e. if the vectors
(ai) = (ai, j) j = 1, ···, n, i = 1, ···, m are the images, by u, of the

canonical basis of Am, then F,(M) is generated by the minors of order
n - r of the matrix (ai, j)).

In fact, the definition of F,(M) does not depend on the presentation
of M, and consequently extends to the case of a coherent sheaf vit on a
noetherian scheme S. It is clear that the formation of the Fitting ideal,
commutes with a base change S’ - S. Furthermore, we have

LEMMA 1. Let M be an A-module of finite type, r an integer. Suppose
that F,.(M) is generated by an element, a, which is not a zero divisor in A,
and suppose also that M is locally free of rank r on Spec(A) - V(a). Let
N be the submodule of M annihilated by a. Then MIN is locally free of
rank r.

PROOF. Choose a presentation of M, as in definition 3. Then the minors
of order n-r of the matrix (ai, j), generate the Fitting ideal (a).
Hence, locally for the Zariski topology on Spec(A), and after a suitable
permutation, we may assume that there exists a unit, h, of A, such that
det(aij) = ah (r+1 ~ i, j ~ n). Moreover, the other minors of order
n - r are multiples of a. Let {ei}i=1,...,n be the image in M of the canonical
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basis of An. Then, applying Cramer’s rule, we get

Hence, locally, M/N is generated by r elements, and we can find an
exact sequence

Since M is locally free of rank r on Spec(A) - V(a), K is killed by some
power of a; as a is not a zero divisor, this implies = 0.
We now return to the proof of proposition 1.
Let s be a point of S. We can find an open affine neighbourhood

U = Spec (A) of s, and an affine open subscheme W = Spec (B ) of
X, which covers U, and such that B is a free A-module (ch. II, th. 1,
cor. 1). We have noted that the proof of theorem 1 bis is of local nature on
S; the same holds for proposition 1. Hence we may replace S by U, and
X by W.
So assume that B is a free A-module, and choose a basis {ei}i~I for B

over A. Consider the r-th Fitting ideal F of M; let a03BB = Zi aiâei, À E A,
be a family of generators of F, and K the ideal of A generated by the
family {ai03BB}i~I. We shall see that we can take for S’ the blowing up of

K in Spec (A).
a) By assumption, M is locally free of rank r at the generic point of

each fibre over U ; thus V(F) does not contain any fibre over U, and so
V(K) is contained in S - U. Hence S’ ~ S is a blowing up with center in
S - U.

b) Set X’ = X x SS’, M’ = M  SS’, F’ = FOX’; K’ = KOS’. Then K’
is an invertible ideal. More precisely, let S’i03BB be the greatest open sub-
scheme of S’ where the inverse image a’i03BB of ai03BB generates K’. Then S;;. is
affine, and the open sets S’i03BB cover S’. Further, on S’i03BB we have a’j03BC =
a’i03BB03B1j03BC, and the ocj, generate the unit ideal. Let a’03BB (resp. e’j) be the inverse
image of aÂ (resp. ej) om X’. Then, over S’i03BB, we have a’03BC = a’i03BB(03A303B1j03BCe’j) =
a’i03BBh’03BC.

Hence, over S’i03BB, the r-th Fitting ideal of M’, F’, is generated by
the family a’Ah’. But, by construction, we have ocia = 1; therefore, h’03BB
cannot be identically zero on any fibre over S’i03BB, and, consequently, h’03BB is
invertible on an open set V’ of X’ which covers S’i03BB. Thus, on V’, F’ is
generated by a’A. Applying lemma 1, we conclude that Md is locally free,
of rank r, on V’.

4. Applications

Let S be a noetherian scheme, and X - S’ a morphism of finite type.
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PROPOSITION 2. Let r be an integer, and U an open set of S, such that

dim(X x SU/U) ~ r. Then there exists a blowing up S’ - S, with center in
S- U, such that 

PROOF: Apply theorem 1 bis, with JI = Ox and n = r + 1.

PROPOSITION 3. Suppose that X ~ S is separated and is an open immersion
over an open subscheme U of S. Then there is a blowing up S’ - S with
center in S- U, such that the pure transform Xd of X is an open subscheme
of s’.

PROOF: We first apply proposition 2 to reduce the case dim (X/S) = 0.
Moreover, X is separated over S, and Ass (X) c U. We then apply the
Main Theorem of Zariski to prove that X is an open subscheme of S.

PROPOSITION 4. Suppose that X - S is proper and is an isomorphism
over U. Then we can find a commutative diagram

where u (resp. h) is a blowing up with center in X-f-1(U) (resp. S- U).
PROPOSITION 5 (CHOW’S LEMMA). Suppose that X ~ S is separated,

and let U be an open subscheme of X which is quasi-projective over S’. Then
we can find a blowing up X’ ~ X; with center in X - U, such that X’ is
quasi-projective over S.

PROOF: By assumption, U is an open subscheme of a projective
S-scheme Z. Let r be the schematic schematic closure in X x sZ of the

graph of the open immersion U ~ Z. We get a commutative diagram

where p is a projective morphism which is an isomorphism over U, and
q is separated and is an isomorphism over U. We now apply proposition
3 to the morphism q: we can find a blowing up Z’ ~ Z with center in
Z- U, such that the pure transform Y = FA is an open subscheme of Z’,
and so is quasi-projective over S. Then the composite morphism
Y ~ 0393 ~ X is projective and is an isomorphism over U. We then apply
proposition 4 to get a blowing up of X with center in X - U.
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