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1. Introduction

It is well known [16] that there are paracompact (in fact, hereditarily
Lindelöf) spaces X for which X2 is not even normal 2. The purpose of
this paper is to refute some plausible conjectures by showing that, in
these respects, the higher powers X" and X" of X can also behave quite
unpredictably. (Here X03C9 denotes the product of countably many copies
of X.) This emphasizes the significance of certain special classes of para-
compact spaces which have been studied in recent years, and whose
relevant properties are summarized in section 2.
Most of our examples assume the Continuum Hypothesis, which is

indicated by the symbol (CH).

EXAMPLE 1. l. There exists a space Y such that Y" is paracompact for all
n E N, but Y" is not normal.

EXAMPLE 1.2. (CH). There exists a regular space Y such that Y" is
Lindelôf for all n E N, but Y" is not normal.

EXAMPLE 1.3. (CH). There exist semi-metrizable, regular spaces Yl and
Y2 such that Yl and Y2’ are both hereditarily Lindelôf, but Yi x Y2 is not
normal (and hence neither Yl nor Y2 is cosmic) 3.

EXAMPLE 1.4. (CH). For all n E N, there exists a regular space Y such
that Y" is Lindelôf and Yn+ 1 is paracompact, but Yn+1 is not Lindelôf 4.

1 Partially supported by an N.S.F. grant.
2 The reader should recall that paracompact spaces are normal [4; p. 163], and that

regular Lindelôf spaces are paracompact [4; p. 174]. A Lindelôf space X with all open
subsets F,, is hereditarily Lindelôf, and conversely if X is regular.

3 Semi-metrizable spaces are defined, for instance, in [5 ]. Cosmic spaces are defined
in section 2. All first-countable cosmic spaces are semi-metrizable.

4 This example is new for n = 1. In contrast to this example, S. Willard has shown
that, if X x Y is paracompact with X Lindelôf and Y separable, then X  Y must be
Lindelôf.
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EXAMPLE 1.5. (CH). For all n E N, there exists a regular space Y such
that Y" is hereditarily Lindelôf but Yn+1 is not normal 5.

Example 1.1 is the space obtained from the reals by making the irra-
tionals discrete (for a precise description, see Example 3.2). This space,
which was studied in [10], is hereditarily paracompact and its product
with the space P of irrationals is not normal. Examples 1.2 and 1.4 are
subspaces of this space. The spaces of Example 1.3 are both subspaces of
the plane with the ‘bow-tie neighborhood’ topology which was defined by
R. W. Heath in [5]; for a precise description, see Example 3.6. Example
1.5, finally, is a subspace of the real line with the half-open interval topo-
logy which was introduced by R. Sorgenfrey in [16]; for a precise descrip-
tion, see Example 3.4. It follows that all five examples are first-countable
and hereditarily paracompact, that Examples 1.1, 1.2, and 1.4 have a

point-countable base, and that Examples 1.3 and 1.5 are hereditarily
separable.
The paper is arranged as follows. Section 2 contains a summary of

some known positive results, which may help to place our examples in
proper perspective. Section 3 is devoted to some preliminary examples
which form the building blocks for Examples 1.1-1.5, as well as some
related lemmas and corollaries. Corollary 3.3 is an easy analogue of
Examples 1.1 and 1.2 in which the factors are not all the same, while
Corollary 3.7 provides a new proof of a recent result of E. S. Berney [2].
Example 1.1 is constructed in section 4, Examples 1.2 and 1.3 in section
5, and Examples 1.4 and 1.5 in section 6. The proofs become progressively
more complicated. The paper concludes in section 7 with some open
questions.
The reader may find that the proof of Lemma 3.1 serves as a helpful

introduction to the proof of the more general Theorem 5.3, while the
proof of Theorem 5.3 provides an introduction to the more complicated
proof of Theorem 6.2.
The symbols R, Q, P, and N will always denote, respectively, the reals,

the rationals, the irrationals, and the positive integers, all with their usual
topologies; the symbols R, Q, P, and N will always denote the underlying
sets of these spaces. The symbol 03A9 denotes the first uncountable ordinal.

Finally, the weight of a topological space (or a topology) is the smallest
cardinality of a base.

S This example is new for n = 2. For n = 1, it is the classical example of Sorgen-
frey [16].
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2. A summary of positive results

In order to place our examples in proper perspective, let us summarize
here some relevant positive results.
The following diagram lists some important classes of paracompact

spaces which are preserved by countable products. Those classes whose
elements are all Lindelôf (resp. hereditarily Lindelôf) are indicated by
a star (resp. two stars). All these classes are preserved by closed subsets;
the four classes in the upper right diamond are preserved by arbitrary
subsets, and all their elements are perfectly normal.

Let us briefly explain the terms used. Call a collection éX of subsets of
X a network for X [1 ] if, whenever U is a neighborhood of x in X, then
x ~ S’ c U for some S E 9. A regular space is called cosmic [11 ] (resp.
a o--space [15]) if it has a countable (resp. 03C3-locally finite) network. For
the definition of 1-spaces, see [12]. The class of regular Lindelôf 1-spaces
coincides with the class of spaces defined in [7; Lemma 2.2].

All regular Lindelôf a-spaces are cosmic, and so are all regular 1-spaces
X for which X2 is hereditarily Lindelôf [12; Theorem 3.15].

In a somewhat different direction, N. Noble recently proved [13; Corol-
lary 4.2] that a countable product of Lindelôf spaces, in each of which
every G()-subset is open is again a Lindelôf space.
We conclude this section with the following result. Parts (a) and (b)

are known (see below). Part (c) appears to be new, and is used to establish
Example 1.3.

PROPOSITION 2.1. Let Xl, X2,··· be topological spaces.
(a) If, for all n E N, 03A0ni=1 Xi is a normal space in which every open subset

is an Fa, then so is 03A0~i= 1 Xi .
(b) If, for all n E N, 03A0ni=1 Xi is a paracompact space in which every open

subset is an Fa, then so is 03A0~i=1 Xi.
(c) If, for all n E N, 03A0ni=1 Xi is a Lindelôf space in which every open sub-

set is an Fa, then so is 03A0~i=1 Xi.
PROOF. Part (a) was proved by M. Katêtov [9; Theorem 2], and (b)

by A. Okuyama in [14; Theorem 4.9] (where the result is credited to
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K. Morita). The following proof of (c) is a simple adaptation of the proof
of (b) in [14].

Suppose that, for all n E N, 03A0ni=1 Xi is Lindelôf with every open subset
an Fa . Then every open subset of 03A0~i=1 Xi is an Fa by [6; Proposition 2.1].
It remains to show that 03A0~i=1 Xi is Lindelôf. So let 4% be an open cover of
03A0~i=1 Xi. For each U e 4%,

where U(n) is open in 03A0ni=1 Xi. Let V(n) = U {U(n) : UE u). Then
{U(n) : Ue u} is an open cover of V(n), and hence, since 03A0ni=1 Xi is
hereditarily Lindelôf (see footnote 2), there exists a countable subcollec-
tion Oltn of Où such that V(n) = ~ {U(n) : U E un}. But then

is a countable subcover of 4%, and that completes the proof.

3. Some preliminary lemmas and examples

Examples 3.2, 3.4, and 3.6 in this section provide the foundation for the
construction of Examples 1.1-1.5. Lemma 3.1 and the more general
Lemma 3.5 are needed for Examples 3.2 and 3.6, respectively; they are
special cases of Theorems 5.3 and 5.4, respectively.

LEMMA 3.1. (CH). Let X be a Tl-space of weight ~ 2’°, and A a count-
able non-GlJ subset of X. Then there exists an uncountable Lindelôf subset
Y of X containing A.

PROOF. Let e be a base for X with card u ~ 2R0; we may suppose that
Où is closed under countable unions. Let u* = {U ~ u: U ~ A}. Then
(CH) implies that card u* ~ R1, so we may write u* = {U03B1 : ce  QI -
By transfinite induction, pick points x03B1 ~ X - A for all a  Q such that

This can always be done, because A is not a Ga in X. Let

Clearly Y- U03B1 is countable for all a  Q.

To see that Y is Lindelôf, let ny be covering of Y by open subsets of X,
and let us find a countable subcovering. We may suppose that ny c u.
Let if/" be a countable subcollection of ny covering A, and let W = U W.
’Then W E u*, so W = U03B1 for some r:1  03A9. But then Y- W is countable,
and can therefore be covered by a countable subcollection 3i" of ny.
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Hence iF u W’ is a countable subcollection of V which covers Y, and
that completes the proof.
The following example, which is used to establish Examples 1.1, 1.2,

and 1.4, deals with a space which was studied in [10]. Part (c) was as-
serted without proof in [10; footnote 4], and is proved here with the aid
of Lemma 3.1.

EXAMPLE 3.2. Let R* be the space obtained from R by making the
subset P discrete. In other words, R* is the set R, topologized by taking
as open sets all subsets of the form U ~ T, with U open in R and T c P.

(a) R* is hereditarily paracompact and has a point-countable base.
(b) R* x P is not normal. More generally, X x P is not normal if X is

any subspace of R* which contains Q as a non-G,, subset.

(c) X x P is not normal if X is any uncountable Lindelôf subspace of
R* containing Q.

(d) (CH). There exists an uncountable Lindelôf subspace of R* con-
taining Q.

PROOF. (a) It is known, and easy to verify, that any space obtained
from a metric (or merely hereditarily paracompact) space by making a
subset discrete is hereditarily paracompact. That R* has a point-countable
base is clear.

(b) That R* x P is not normal is proved in [10]. The same proof shows
that X x P is not normal for any X c R* which contains Q as a non-Gâ
subset.

(c) If X is an uncountable Lindelôf subspace of R* containing Q,
then every neighborhood of Q in X has a countable complement in X, so
that Q is not a 6j in X, and hence X x P is not normal by (b).

(d) This was asserted without proof in [10; footnote 4]. To prove it,
note that Q is not a Ga in R, so it cannot be a Ga in R*. Hence our asser-
tion follows from Lemma 3.1, with X = R* and A = Q.

That completes the proof.
We now apply Example 3.2 to give an elementary analogue of Examples

1.1 and 1.2 in which the factors are not all the same, but all except one
are metrizable. The part dealing with Lindelôf spaces answers a question
first raised by W. W. Comfort.

COROLLARY 3.3. There exists a sequence of spaces Xl, X2, ··· (with
Xi = N for i &#x3E; 1) such that 03A0ni=1 Xi is hereditarily paracompact for all
n E N, but 03A0~i=1 Xi is not normal. If (CH) is assumed, then we can also
make 03A0ni=1 Xi Lindelôffor all n E N.

PROOF. It was shown in Example 3.2 that there exists a hereditarily
paracompact space X such that X x P is not normal, and that X can be
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chosen Lindelôf if (CH) is assumed. Let X1 = X and = N for i &#x3E; 1.

This works because N°’ is homeomorphic to P. That completes the proof.
Our next example deals with a space which was studied by R. Sorgen-

frey in [16].

EXAMPLE 3.4. Let S be the Sorgenfrey line; that is, S is the set R,
topologized by a base consisting of all half-open intervals [a, b) with
a  b.

(a) S’ is regular, first countable, hereditarily separable, and hereditarily
Lindelôf.

(b) S x S is not normal.
(c) In S03C9, every open subset is an Fa.
(d) If n E N and r E R, then D = {x E S" : 03A3ni=1 xi = r} is closed and

discrete in S".

(e) If Y c S and Y is uncoutable, then Y is not cosmic.

PROOF. (a) That S is regular, first countable, and hereditarily separable
is clear. That S is hereditarily Lindelôf is proved in [4; p. 164, Ex. 6].

(b) This is proved in [16] and, more simply, in [4; p. 144, Ex. 3].
(c) This is proved in [6].
(d) Clearly D is closed in R" and hence in S’n. To see that D is discrete,

note that, if x ~ D, then {y E D : yi ~ xi for i ~ nl is a neighborhood of
x in D whose only element is x.

(e) To show that Y is not cosmic, we must show that every network A
for S is uncountable: For each y E Y, pick Ay E A such that y E Ay and
Ay c [y, y + 1). Then A,, :0 Ay if x ~ y, and hence A is uncountable.

Before giving the final example of this section, we need the following
generalization of Lemma 3.1. (Actually, we need the lemma only with
card A = 2, but the general case is no harder to prove).

LEMMA 3.5. (CH). Let {P03BB : 03BB E 039B} be a family of Tl-topologies of
weight ~ 2’° on a set X, with card A  2e’. Let A be a countable subset
of X which is not the intersection of a countable subcollection of ~ 03BB~A P03BB.
Then there exists an uncountable subset Y of X containing A which is

Lindelôf with respect to every JÂ-.

PROOF. For each e A, let u03BB be a base for (X, P03BB) of cardinality
~ 2No; we may suppose that each u03BB is closed under countable unions.
Let 4Y = U03BB~039B u03BB, so that card u ~ 2e". Starting with this 4Y, we can
now construct the required Y precisely as in the proof of Lemma 3.1.
That completes the proof.
The following example was introduced by R. W. Heath [5; Remark 1,

p. 105 ].
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EXAMPLE 3.6. Let R2 be the plane, and let P1 be the topology on R2
generated by the base consisting of all ’horizontal bow-tie neighborhoods’

with x E R2 and 8 &#x3E; 0, where m(x, y) denotes the slope of the line through
x and y. Let P2 be the topology generated by the analogously defined
’vertical bow-tie neighborhoods’.

(a) (R2, P1) and (R2, P2) are homeomorphic, and they are completely
regular and semi-metrizable.

(b) If Q2 ~ Z c R2 and card Z = 2e’, then (Z, P1) x (Z, P2) is not
normal.

(c) Q2 is not the intersection of a countable subcollection of P1 ~ P2.
(d) (CH). There exists an uncountable subset Z of R2 containing Q2

such that (Z, P1) and (Z, P2) are homeomorphic and hereditarily
Lindelôf.

PROOF. (a) The map (xl , x2) ~ (x2 , xl ) is a homeomorphism from
(X, P1) into (X, g- 2). That (X, P1) is completely regular is easily
verified, and it is semi-metrizable by [5; Remark 1, p. 105].

(b) Let E = (Z, P1)  (Z, P2). Then Q2 x Q2 is a countable dense
subset of E, while {(x, x) : x E ZI is a closed, discrete subset of E of

cardinality 2R0. Hence E is not normal by a theorem of F. B. Jones ([8] or
[4; p. 144, Ex. 3 ]).

(c) If U is a P1-neighborhood of Q in R2, then the R2-interior of U
is dense in R2. Our assertion therefore follows from the Baire category
theorem for R2.

(d) By (c) and Lemma 3.5, there exists an uncountable subset Y
of R2 containing Q2 which is Lindelôf with respect to both P1 and
g-2. Let Z = Yu Y*, where Y* denotes {(x2, x1) : (x1 , x2) E YI.
Then Z = Z*, so (Z, P1) is homeomorphic to (Z, g- 2). Now Y and Y*
are both 5-1-Lindelôf (the latter because Y is P2-Lindelöf), and hence
so is Z. Since every open subset of a semi-metrizable space is an F,,-subset,
Z is hereditarily Lindelôf. That completes the proof.
The following result, which was recently obtained by E. S. Berney [2]

by a somewhat different approach, follows immediately from Example
3.6 (b) and (d). (It also follows from Example 1.3.)
COROLLARY 3.7. (CH). There exists a regular, hereditarily Lindelôf,

semi-metrizable space Z such that Z2 is not normal (and hence Z is not
cosmic).
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4. Construction of Example 1.1

Let Y be the space R* constructed in Example 3.2. Then Y is regular,
Yx P is not normal, and the set of non-isolated points of Yis Q and there-
fore is countable. That Y satisfies the requirements of Example 1.1 now
follows immediately from Theorem 4.2 and Proposition 4.3 below. Before
proving Theorem 4.2, we need a lemma which will also be used in the
proof of Lemma 5.1.

LEMMA 4.1. Let X be any topological space, and let B c X with X - B
countable. If n E N, then Xn - Bn is the union of countably many subsets,
each of which is a retract of xn and homeomorphic to Xn-1.

PROOF. For each i ~ n and each a ~ X - B, let

There are countably many such Zi,a, and they clearly have all the re-
quired properties. That completes the proof.

THEOREM 4.2. If X is a regular space with at most countably many non-
isolated points, then Xn is paracompact for all n E N.

PROOF. By induction. For convenience, we let X° be a one-point set,
so that the assertion is clear for n = 0. Now assume that Xn-1 is para-
compact and let us prove that Xn is paracompact. We denote the set of
isolated points of X by B.

Let {U03BB : 03BB E 039B} be an open cover of Xn. By Lemma 4. l, there are re-
tracts Zj (j ~ N) of Xn which are homeomorphic to Xn-l such that

By our inductive hypothesis, each Zj is paracompact, so for each j there
exists a locally finite relatively open (with respect to Zi) refinement
{V03BB,j : A E 039B} of {U03BB n Zj : A E 039B}. Let rj : Xn --+ Zj be a retraction for
cach.i E N, and let

Then W = {W03BB,j : 03BB ~ 039B, j ~ N} is a u-locally finite collection of open
subsets of Xn which covers Xn - Bn. But then W’, together with all {x}
with x ~ (X" - U W), is a J-locally finite open refinement of {U03BB : 03BB E 039B}.
Since X is regular, this implies that X is paracompact [4; p. 163, Theorem
2.3], and that completes the proof.

PROPOSITION 4.3. If X is a space for which X03C9 is normal, then X x P is
normal.
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PROOF. If X is countably compact, then X x P is normal by a result,
announced by A. H. Stone in [17; Footnote 2] and proved by J. Dieudon-
né in [3 ], which asserts that the product ofi a countably compact normal
space and a metric space is normal 6.

If X is not countably compact, then X has a closed subset homeo-
morphic to N. Hence X°’ has a closed subset which is homeomorphic to
N°’ and hence to P. But X03C9 is homeomorphic to X  X03C9, so X03C9 has a

closed subset homeomorphic to X x P, which implies that X x P is normal.
That completes the proof.

5. Construction of Examples 1.2 and 1.3

We begin with some preliminary results, the first of which will also be
used in the next section. Example 1.2 is constructed after Theorem 5.3,
and Example 1.3 after Theorem 5.4.

LEMMA 5.1. Let Y be a topological space, and let BeY with Y- B
countable. Suppose that n E N and that, for each m ~ n, the space Y’
has a base 1// m which is closed under countable unions and has the property
that Ym - W is countable whenever W E 1// m and W =’ Y’ - Bm. Then Y"
is Lindelöf.

PROOF. We will prove by induction that Ym is Lindelôf for all m ~ n.
This is clear for m = 0, where we define Y° to be a one-point space. We
therefore assume that Ym-1 is Lindelôf, and will prove that Ym is Lindelôf.

Let 4% be an open covering of Ym, and let us find a countable subcover-
ing. Without loss of generality, we may suppose that u ~ 1//m. Now
Ym-Bm is Lindelôf by our inductive hypothesis and Lemma 4.1, so 4Y
has a countable subcollection Y- which covers Ym - Bm. Let W = U V.
Then W ~ Wm and W =’ Ym - Bm, so Ym - W is countable. Let V’ be a
countable subcollection of 4Y which covers Ym - W. Then nf/’ u nf/" is a
countable subcover of u, and that completes the proof.

LEMMA 5.2. Let X be a Tl-space, let A be a non-Gâ subset of X, and
for each m E N let 011 m be a collection of open subsets of xm with
card um ~ R1. Then there exists an uncountable subset B of X - A
such that, if Y = A ~ B, then Ym - U is countable whenever m E N and
U ~ um with U ~ Ym - Bm.

PROOF. Let 0?/ = ~~m=1 um. Then card u ~ R1, so we can write
u = {U03B1 : 03B1  03A9}. By transfinite induction, we will construct the

6 This argument, which is needed to prove the proposition without superfluous
hypotheses, was suggested by N. Noble. If X is assumed paracompact, which would suf-
fice for our applications, the use of Stone’s theorem in the proof can be avoided.



208

subset B = {y(03B1) : a  03A9} of X-A, with all y(a) distinct, so that,
if m ~ N, U03B2 ~ um , U03B2 ~ Ym - Bm, and if 03B11, ··, 03B1m  03A9 with

03B2 ~ max lai , ..., 03B1m}, then (y(03B11),···, y(03B1m)) ~ Up. It is easily checked
that this will suffice.

Let us suppose, as we may, that Uo = X, and start the induction by
letting y(O) be any element of X- A. Now let a &#x3E; 0, and suppose that
distinct y03B2 with fl  a have been chosen so that our requirement is satis-
fied whenever max {(03B11,···, a.1  a. We must choose y(a) so that it is
also satisfied whenever max {03B11,···, oc.1 = a, and so that y(03B1) ~ y(03B2)
for all 13  a. Clearly g(03B1) ~ Y(P) if fi  a.

Let B03B1 = {y(03B2) : 03B2  al and Y03B1 = A u B03B1. For each m E N, let

Then r m is surely countable.
For each m E N, let Pm be the set of all functions 0 from {1, ···, ml to

{03B2 : 03B2 ~ 03B1} such that 0(i) = oc for at least one i ~ m. For each 0 E P.,
define g~: X ~ Xm by

Let

Then W is a Ga-subset of X containing A, and hence contains an element
of X-A which we take to be y(a).

It remains to show that our requirements are now satisfied when-
ever max {03B11, ···, 03B1m} = oc. So suppose that 03B2 ~ 03B1 and that U03B2 E um
and U03B2 ~ ym-Bm. Then U03B2 ~ (Y7-87), so 03B2 ~ 0393m. To show that
(y(03B11), ···, y(03B1m)) ~ Up, define 0 E 0. by ~(i) = ai for 1 ~ i ~ m. Then

Hence (y(03B11), ···, y(am)) E U03B2, and that completes the proof.
The following theorem strengthens Lemma 3.1.

THEOREM 5.3. (CH). Let X be a Tl-space of weight ~ 2No, and A a
countable, non-Ga subset of X. Then X has an uncountable subset Y ~ A
such that Y" is Lindelôf for all n E N.
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PROOF. For each m E N, the space Xm also has a base um of cardinality
~ 2No, and we may suppose that um is closed under countable unions.
By (CH), card um ~ R1. Now apply Lemma 5.2 to pick an uncountable
subset B of X - A such that, if Y = A u B, then Ym - U is countable
whenever m E N, U E um, and U ~ Ym - Bm. Let if/ m = {U ~ Ym :
U E um}. Then Y, B, and the Wm satisfy the assumptions of Lemma 5.1
for all n E N, so Y" is Lindelôf for all n E N. That completes the proof.

PROOF OF EXAMPLE 1.2. Let X be the space R* of Example 3.2, and let
A = Q. Then X and A satisfy the hypotheses of Theorem 5.3, so X has
an uncountable subset Y ~ A such that Y" is Lindelôf for all n E N. By
Example 3.2, Y x P is not normal, and hence Y03C9 is not normal by Proposi-
tion 4.3. That completes the proof.

Before establishing Example 1.3, we need the following generalization
of Theorem 5.3, which also strengthens Lemma 3.5. (As in Lemma 3.5,
all we really need is the case where card li = 2).
THEOREM 5.4. (CH). Let {P03BB : 03BB E AI be a family of Tl-topologies of

weight ~ 2R0 on a set X, with card 039B ~ 2R0. Let A be a countable subset of
X which is not the intersection of a countable subcollection of ~03BB~039B P039B.
Then X has an uncountable subset Y containing A such that Y" is Lindelôf
with respect to every JÂ- for all Il E N.

PROOF. The proof is the same as for Theorem 5.3, with only minor
verbal changes. In fact, Lemma 5.2 remains true (with unchanged proof)
under the more general hypotheses of our theorem, provided 0/1 m is a col-
lection of subsets of Xm, each of which is P03BB-open in X"‘ for some
03BB e A. This generalization of Lemma 5.2 is then used to prove Theorem
5.4 in precisely the same way that Lemma 5.2 is used to prove Theorem
5.3. That completes the proof.

PROOF OF EXAMPLE 1.3. Let X = R2, and let P1 and Y 2 be the two
completely regular, semi-metrizable topologies on X defined in Example
3.6. Let A = Q2. By Example 3.6(c), the assumptions of Theorem 5.4
are then satisfied, so X has an uncountable subset Y ~ Q2 such that Y"
is Lindelôf with respect to both P1 and Y 2 for all n E N.

Let Yi = (Y, P1) and Y2 = ( Y, Y2). Then Y1 and Y2 are both semi-
metrizable, and hence so are Yi and Y2’ for all n E N. But every open subset
of a semi-metrizable space is an Fa, so that, by footnote 2, both Yi and
Yn2 are hereditarily Lindelôf for all n E N. Hence both Yi and Y2 are
hereditarily Lindelôf by Proposition 2.1(c).
That Yi x Y2 is not normal follows from Example 3.6(b). Hence

neither Y1 nor Y2 is cosmic because, by [14; Theorem 4.6], the product
of a cosmic space and an hereditarily Lindelôf space must be normal.
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REMARK. In a similar way, the following special case of Example 1.3
can be obtained by applying Theorem 5.3 (which is simpler than Theorem
5.4) to Example 3.4: If (CH) is assumed, there exists a regular, non-cosmic
space Y such that Y03C9 is hereditarily Lindelôf. Unlike the space in Example
1.3, the space Y thus obtained is not semi-metrizable.

6. Construction of Examples 1.4 and 1.5

Throughout this section, X will denote the set R, equipped with a Tl-
topology of weight ~ 2R0 such that, if x E Q and U is a neighborhood of
x in X, then x is in the R-closure of the R-interior of U. Examples of such
X are the space R* of Example 3.2 and the space S of Example 3.4. We
define

and we call a subset of E of xn simple if y, y’ E E with y :0 y’ implies
that yi i :0 y’ for all i  n.

LEMMA 6.1. Let n E N, and for each m ~ n let um be a collection of open
subsets of X’ with card um ~ R1. Then there exists a simple, uncountable
subset E of Dn+ 1 n pn+ 1 satisfting the following condition, with B =

{yi : y ~ E, i ~ n+1} and Y = Q ~ B.
(a) If m ~ n, and if U E um and U ~ Ym - Bm, then Y’ - U is countable.

PROOF. Let e = ~nm=1 um. Then card u ~ R1, so we can write

u = {U03B1 : a  QI. By transfinite induction, we will construct a simple
subset E = (y(03B1) : oc  03A9} of Dn+1 ~ pn+1, with y(a) :0 y(a’) whenever
oc :0 03B1’, to satisfy (with B and Y as above) the following condition (b)
which is easily seen to imply (a):

(b) Suppose that m ~ n, that 03B11,···, 03B1m  0, that 13 ~ max {03B11, ···,
03B1m}, and that Un E um and U03B2 ~ Ym- Bm. Then

for all i1, ···, im ~ n + 1.
To start our induction, we may suppose that Uo = Xn, and we pick

y(0) to be any element of Dn+1 ~ pn+1. Now suppose that oc &#x3E; 0, and
that the y(03B2) have been chosen for 13  a to satisfy (b) whenever max
{03B11, ···, 03B1m}  oc. We must choose y(a) so that yi(03B1) ~ yi(03B2) whenever
fl  a and 1 ~ n+ 1, and such that (b) is satisfied for max {03B11, ···, 03B1n}
= oc.

Let B03B1 = {yi(03B2) : 03B2  oc, i ~ n+1} and Y03B1 = Q u Ba.. For all m ~ n,
let

0393m = {03B2 ~ 03B1 : U03B2 ~ um, U03B2 ~ Ym03B1 - Bm03B1}.
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Then F. is surely countable.
For each m ~ n, let 0. be the family of all functions 0 from {1,···, ml

to {03B2 : 03B2  03B1} such that the set S(~) = ~-1(03B1) is non-empty, and let tp m
be the family of all functions 03C8 from {1, ···, ml to {1, ···, n+1}.
For each 0 E Om and each 03C8 E Il’., define ’

g q,t/! : XS(~) ~ X-

by

Clearly each g~03C8 is continuous.
For each m ~ n, fi E 0393m, ~ E 0. and V1 E IF., let

Then U03B2~03C8, is open in XS(~), and our definitions imply that U03B2~03C8 ~ QS(~).
Let V03B2~03C8 be the interior of U03B2~03C8 with respect to RS(~); our assumption
about X at the beginning of this section implies that V03B2~03C8 is dense in
RS(~).

Let T = P- B03B1. Then T is a dense Gâ in R, so TS(~) is a dense G03B4 in
RS(~).
Now consider Dn+1 as a subspace of Rn+1. Since Dn+1 is closed in

Rn+1, it is a Baire space. For each m ~ n and 0 E 03A6m, let np be the pro-
jection from Dn+1 onto RS(~). Then each nb is an open map, for if S is
chosen so that S( c/J) c S ~ (1, ···, n+1} and card S = n, then 03C0~ =
p o q, where q is a homeomorphism from Dn+1 onto RS and p is the open
projection from RS onto RS(~) 8. Hence if

then each W03B2~03C8 is a dense G03B4 in Dn+, , and hence so is

In particular, W is non-empty, and we take y(ot) to be any element of W.
It is clear that y(ot) E Dn+1 n Pn+1 and that Yi(l/,) =1 yi(03B2) for all 13  oc

and i ~ n + 1. We therefore only have to verify that (b) is now satisfied
whenever max {03B11, ···, 03B1m} = oc. So suppose that 03B2 ~ oc, that m ~ n,
and that Up E OlIm and U03B2 ~ Ym - Bm. Then surely U03B2 ~ Ym03B1 - Bm03B1, so
fl E 0393m. Now let i1, ···, im ~ n + 1 be given. Define ~ E 03A6m by ~(j) = 03B1j

7 Following the usual convention, XA denotes Hj~A Xj with Xj = X for all j E A.
Thus Xn is shorthand for X {1, ···, n},

8 1 am grateful to V. L. Klee for this observation.
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for all j ~ m, and define 03C8 E IF. by 03C8(j) = ij for all j ~ m. Let x =

03C0~(y(03B1)). Then x E XS(~), and

On the other hand,

so

and hence

By (1) and (2) it follows that

and that completes the proof.
Retaining the hypotheses at the beginning of this section, we now have

the following theorem.

THEOREM 6.2. (CH). Let n E N. Then X has a subspace Y such that Yn
is Lindelôf and such that yn+ 1 n Dn+ 1 contains an uncountable, simple
subset E.

PROOF. For each m ~ n, the space X m has a base um of cardinality
~ 2R0, and we may suppose that each W. is closed under countable
unions. By (CH), card um ~ N1 for all m ~ n. Now apply Lemma 6.1
to pick Y, B c Y, and E c Yn+1. We need only show that Yn is Lindelôf.
To do that, let iF m = {U n Y : U E um} for all m ~ n. Then Y, B, and
the iF m satisfy the hypothesis of Lemma 5.1, so Y" is Lindelôf. That
completes the proof.

PROOF oF EXAMPLE 1.4. Let X be the space R* of Example 3.2. Then all
the hypotheses of Theorem 6.2 apply, so we can pick Y and E as in that
theorem. That Y" is Lindelôf is asserted in the theorem.
To show that Yn+1 is not Lindelôf, we will show that the uncountable

subset E of Yn+1 is closed and discrete. Now Dn+1 is closed in Rn+ 1, and
hence surely in Xn+1. We therefore need only show that, if x ~ Dn+1,
then x has a neighborhood in Xn+1 containing at most one element of E.
Now clearly Dn+1 Qn+1 = 0, so Xi E P for some i ~ n + 1, and hence,
remembering that E is simple, {x’ E Xn+1 : x’i = X il is precisely such a
neighborhood of x.
The paracompactness Of Xn+1 (in fact, of X for all i E N ) follows from

Theorem 4.2, and that completes the proof.
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PROOF oF EXAMPLE 1.5. Let X be the space S of Example 3.4. Then all
the hypotheses of Theorem 6.2 apply, so we can pick Y and E as in that
theorem. That Y" is Lindelôf is asserted in the theorem. Since open sub-

sets of Xn - and hence of Y" - are Fa by Example 3.4(c), it follows that Y"
is hereditarily Lindelôf (see footnote 2).
To see that Yn+1 is not normal, observe first that Y is separable by

3.4(a), so Y" + 1 is also separable. Since we are assuming (CH), card E =
2R0. By a result of F. B. Jones (see [8] or [4, p. 144, Ex. 3]), it therefore
suffices to show that E is discrete and closed in Yn+1. But Dn+ 1 is discrete
and closed in Xn+1 by Example 3.4(d), and hence surely its subset E is
discrete and closed in Yn+1. That completes the proof.

7. Some open questions

7.1. Is (CH) essential in Examples 1.2-1.5 and elsewhere in this paper
where it is assumed?

7.2. (M. Maurice). If X and Y are paracompact, and if X x Y is normal,
must X x Y be paracompact? What if X or Y is metrizable?

7.3. The spaces Y which we chose for Examples 1.1, 1.2, and 1.4 are

hereditarily paracompact, but Y2 is not hereditarily normal (= complete-
ly normal) in any of those examples by [9; Corollary 1 ]. Can the spaces Y
in these examples be chosen so that Y" is hereditarily paracompact for all
n E N? (Note that, by Proposition 2.1 (c) and footnote 2, the spaces yn
can hot all be chosen hereditarily Lindelôf in Example 1.2.)

7.4. Can the space Y in Example 1.5 be chosen semi-metrizable?

Added in proofs. O. T. Alas has shown that Lemma 3.1 is equivalent
to (CH). It remains unknown, however, whether (CH) is needed in

Examples 1.2-1.5 or in the modification of Lemma 3.1 obtained when
2Ro is replaced by X 1. 1 am also grateful to O. T. Alas for pointing
out that the second question in 7.2 was asked by H. Tamano on p. 351
of [Normality and product spaces, General topology and its relations
to modern analysis and algebra. II. Academic Press (1967)].
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