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On some non-Archimedean normed linear spaces
VI

by

Pierre Robert

Introduction

This paper is the sixth of a series published under the same
title and numbered I, II, .... The reader is assumed to be familiar
with most of the definitions, notations and results of the first four

papers.
This Part VI is devoted to the study of continuous linear func-

tionals on V-spaces.

1. Dual space,

In this Part, X is a V-space over the field of scalars F. F is a
V-space over itself and is given the discrete topology induced by
its trivial valuation. 1
The term "functional on X" will be used to denote an operator

from X to F.

DEFINITION 1.1. The space X* = (X, F) of bounded linear
functionals on X is called the dual space of X.

THEOREM 1.2. (i) X* is a V-space.
(ii) Every continuous linear functional on X is bounded and

belongs to X*.
(iii) For each x e X and f E X* there exists r &#x3E; 0 such that

f(S(x, r)) - f(x).
PROOF: (i) and (ii) are special cases of Theorem IV-3.1 and

Theorem IV-3.5, respectively. (iii) follows from the continuity of
f and the discreteness of F.
A direct proof of the validity of the Hahn-Banach Theorem

(Th. 1.3(i) below; [36], p. 186) in V-spaces has been given by

1 Since [0] = {0}, the symbols " -" and "=" have the same meaning in the
space F.
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A. F. Monna ([24], Part III, pp. 1137-1138). A. W. Ingleton
j17] constructed a proof based on the notion of spherical com-
pleteness (see 11-5, (ii)). Another proof is due to I. S. Cohen [13],
p. 696. Monna has also proved (same reference) the existence of
the linear functionals referred to in (ii) of the following theorem.

THEOREM 1.3. (i) Let Z be a subspace of X. To each linear
functional fi e Z* there corresponds at least one linear functional
f2 e X* such that

(ii) For x0 ~ X, |x0| ~ 0 and every scalar a E F, 03B1 ~ 0, there
exists f E X* such that

PROOF: See the references quoted above.
We give a new proof of (i), using Theorem 4-4.1. Let H’ be a

distinguished basis of Z and H be an arbitrary extension of H’
to all of X (see Definition II-4.3 ). On H, define

It follows from Theorem IV-4.1 that f2 is determined on X by its
values on H and that (VI.1 ) is satisfied.
To prove (ix), define fl(xo) ~ « and extend Il by linearity to the

subspace [xo]. Then |f1|[x0] = |x0|-1. The conclusion follows from
(i).

THEOREM 1.4. One of X and X* is a bounded space if and only
if the other one is a discrete space.

PROOF. It follows from Theorem 1.3(ii) that if X is not discrete,
i.e. if there are points in X with arbitrarily small non-zero norms,
then X* is unbounded. The same theorem implies that if X is
unbounded there exist linear functionals of arbitrarily small non-
zero norms.

Suppose that X* is unbounded. Then, for any integer K &#x3E; 0
there exists f e X* with |f| &#x3E; K. Since there must be a point
x e X for which

there must be non-trivial points of X with norms less than IWl.
Hence, X is not discrete.
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Finally, suppose that X is bounded, i.e. for some M &#x3E; 0,

|x| ~ M  oo for all x e X. For all f ~ X*, III ~ 0, we have

|f(x)| = 1 ~ |f| · |x| for all x such that f(x) ~ 0.

Thus, |f| ~ (1/M) and X* is discrete.

2. The * norm on (H)

Let H = {hi : i e J}, where J is some index set, be a distin-
guished basis of X. (H) denotes the set of all finite linear combina-
tions of elements of H.

In this section we shall define a new norm on the elements of

(H). In the next section we shall use this new norm to establish
the relationship between X* and (H).
The symbol "(x, h)H" was introduced in 1-5 (after Th. 5.6).

DEFINITION 2.1. For az e X,
(i) J(x) = {i ~ J : (x, hi)H ~ 0};
(ii) 03C9(x) is defined by the relation: |x| = 03C1-03C9(x);
(iii) l(x) = supi~J(x) {03C9(hi)}, l(03B8) = (-00).
For x ~ X, J(x) is countable and x = 03A3i~J(x) (x, hi)Hhi.
For y e (H), J(y) is finite. It is easily verified that for all y,

z E (H):

The two sets of integers {03C9(hi) : hi ~ H} and {l(hi) : hi E H} are
identical since for each hi e H, co (hi) = l(hi). The set {03C9(hi) : hi ~ H}
is bounded above if and only if X is a discrete space; it is bounded
below if and only if X is bounded in its norm.

DEFINITION 2.2. The function which assigns to each point y of
(H) the non-negative real number

will be called the * norm on (H).
THEOREM 2.3. (i) Under the *norm, (H) has all the defining

properties of a V-space, except possibly when X is unbounded,
in which case (H) may not be complete.

(ii) One of the spaces X and (H), under the *norm, is bounded
if and only if the other is discrete.
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(iii) The set H is a distinguished Hamel basis of (H) under the
*norm.

PROOF: Except for the completeness requirement, (i) is easily
proved from (VI.2) and (VI.3).

(ii) follows from the remark preceding Definition 2.2, and the
fact that the set {l(hi) : hi e H} is bounded above if and only if
(H) is bounded under the *norm; - is bounded below if and

only if (H) is a discrete space under the *norm.
If X is bounded, the completeness of (H) follows from its

discreteness.

(iii) follows from the fact that for all y e (H) such that 1 y ~ 0:

3. H-inner product and représentation theorems

To the notations, definitions and hypotheses of the previous
section, we add the assumption that the field of scalars, F, is the
field of the real or complex numbers.

DEFINITION 3.1. (i) J(x, y) = J(x) ~ J(y)° ’
(ii) The scalar valued function, defined on X X (H) by

x E X, y E (H), will be called the H-inner product on X.
The following properties of the H-inner product are easily

verified: For all u, v E X, all y, z E (H) and all (x, f3 E F:

The analogy with the usual inner product is evident. An important
difference is that the H-inner product depends on H. Indeed,
given two distinct distinguished bases H1 and H2 of X, if y E (H1)
and Y 0 (H2), then, for all x E X, x, y&#x3E;H1 is defined but (r, y&#x3E;H2
is not; if y E (H1 ) n (H2 ), then there may exist x e X such that
x, y&#x3E;H1 ~ x, y&#x3E;H2. To pursue the analogy, we shall establish
a relationship between the H-inner product and the bounded
linear functionals on X.
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THEOREM 3.2. There exists an isometric isomorphism 99H between
(H) with its *norm and a subspace of X*; for all y E (H),
~H(y) ~ fy is such that

Furthermore, the set 99H(H) is a distinguished Hamel basis for
the subspace ’PH((H)) of X* ; for fy e ~H((H)),

in the norm of X*. 

PROOF: For each fixed y e (H) it is easy to verify that the
mapping defined by (VI.4) is a linear functional on X. Let 99H
be the operator on (H) defined by ~H(y) ~ fy. 99H is linear since
the H-inner product is linear in y.

a) If J(x, y) == 0, then |fy(x)| = 0.
b) If J(x, y) =A 0, then

Therefore, 03C9(x)  l(y) and

c) Since 1(y) is finite, there exists i e J such that l(y) = l(hi) =
w (hi), and

d) If y, z e (H) and y ~ z, there exists i e j such that

(y, hj)H ~ (z, hj)H and, hence hj, y&#x3E;H ~ hj, z).

Thus, ~H(y) ~ ~H(z).
a), b), c) show that 99H is an isometric, and therefore continuous,

operator from (H) with its *norm to X*. d) shows that CfJH is
one-to-one.

The latter part of the theorem follows from the linearity of
pH and Theorem 2.3 (iii).
DEFINITION 3.3. A subset A of a V-space is called locally finite

if for every integer n, there is at most a finite number of elements
of A with norms equal to p’".
LEMMA 3.4. Let f e X*. If the subset H’ of H on which f is

non-zero is bounded and locally finite, then
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(i) H’ is a finite set;
(ii) there exists yr e (H) such that 99H(y.) - f.
PROOF: (i) Since f is a continuous linear mapping into the

discrete space F, there exists an integer m such that f(x) ~ 0
implies |x| &#x3E; pm. Thus, H’ is bounded below, bounded above and

locally finite; hence it is finite.
(ii) Let

For all h E H,

From Theorem VI-4.1, it follows that ~H(yf) ~ f.

THEOREM 3.5. The operator 9’H is an isometric isomorphism
between (H) with its *norm and X* if and only if X is bounded
and H is locally finite.

PROOF: If X is bounded and H is locally finite, every subset
H’ of H satisfies the hypotheses of Lemma 3.4. Therefore, 9’H

maps (H) onto X*.
For the converse, suppose that X is unbounded or that H is not

locally finite. Then, for some integer n there exists an infinite
subset H’ of H such that for all h’ E H’ :

l h’l ~ 03C1n, when X is unbounded, _

or |h’| - 03C1n, when H is not locally finite.

From Theorem IV-4.1, there exists f E X* such that

f (h’) = 1 for all h’ E H’, f(h) = 0 for all h E H’H’.
Should there exist yf E (H) such that ~H(yf) ~ f, yf would have
to have the infinite expansion (VI.6). This is impossible.
CORdLLARY 3.6. If X is unbounded and H is locally finite, then

9’H is an isometric isomorphism between (H) with its *norm and
the subspace of X* formed by the continuous linear functionals
which vanish outside of a bounded subset of X.

COROLLARY 3.7. If X is bounded and admits a locally finite
distinguished basis, then X and X* have the same dimension.
The proof follows from Theorems 3.2 and 3.5.

EXAMPLES : The spaces 9k of III-4 and Qk of III-5 are bounded
and admit locally finite distinguished bases. Thus, the spaces
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p*k and Q*k are equivalent t6 the spaces of polynomials (VI.7)
and (VI.8) respectively:

According to (VI.5), a continuous linear functional on 9., is a
finite linear combination of the functionals f~n:

f~n(x) == coefficient of À" in the expansion of x(03BB)
in powers of A.

This result was proved directly by H. F. Davis [4], p. 91, for the
space p0.

It was shown in 111-4 that &#x26;0 admits as distinguished bases
the sets 03A60 and J of (111.16), Part III. Consider the continuous
linear functional f defined on 03A60 by

The isometric isomorphism 1JI g, o between (03A60) and 9* is such
that

The isometric isomorphism 1JfJ between (J) and 9* is such that

where the coefficients 03B2n, determined from the power series ex-
pansions of the J,,’s ([8]), are the solutions of the system:

Clearly, in go, 03A8-103A60(f) ~ 03A8-1J(f). This inequality reflects the

dependence of the H-inner product on the distinguished basis H.

(Oblatum 18-3-66)


