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On Exceptional Values of Entire
and Meromorphic Functions

by

Mansoor Ahmad

1. Let f(z) be an entire function. A value ce is said to be an

exceptional value (e.v.) E, if

for some ~ C E.
It has been proved by Shah [1] that an entire function f(z)

of finite order can not have more than one v.e. E.

The purpose of this paper is to give more precise results of
this type for functions of finite order and for a class of functions
of infinite order.

2. Let k(r) denote a positive onn-decreasing function which
takes an integral value for every value of r. We say that an
entire function f(z) belongs to the k-class, if there exists a set
of fixed positive numbers oc, fl, H such that

for all r, where T(r, f ) is Nevanlinna’s characteristic function, A
is independent of r; and e1(x) = ex, e2(x) = ee" and so on.
On the otherhand, if for every set of fixed positive numbers

oc, 03B2, H there exists a value ro of r, such that

for all r&#x3E;ro, then we say that f(z) does not belong to the k-class.
THEOREM 1. If f(z) is an entire function of order , then

for every entire function fl(z), with one possible exception,
provided that any one of the following conditions is satisfied.

(i) e is finite and non-zero and fl(z) is of finite order less
than ;
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(ii) f(z) is of finite k-th order but of infinite (k-1 )-th lower
order; and fl(z) is of finite (k-1)-th order;

(iii) f(z) belongs to the k-class but not to the (k-1)-class;
and f1(z) belongs to the (k-l)-elass, where the k-th order and
the k-th lower order of f(z) are defined as

and

lkx being the k-th iterate of log x.

3. LEMMA. If X (x) is a positive function, continuous almost every
where in every interval (ro, r); and if

then

PROOF. The lemma is obviously true, if é is zero. Hence we
need consider the case when p is either finite and non-zero or
infinite. Let

and suppose that the lemma is false.
We have then E(r»px(r) for all r~03B4 = 03B4(p)&#x3E;rc, where

p &#x3E; 1/e is a constant. e’(r) exists and is equal to X(r)/r almost
every where. Hence

almost every where in every interval (03B4, r).
Therefore, we have

for all large r.
Consequently, we have
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Hence

which contradicts the hypothesis; and thus the lemma is proved.
PROOF OF THEOREM 1. Let us suppose that the condition (i) is

satisfied; and let

where F denotes each of the functions f, and f2, these functions
being of order less than p.

Consequently, we have

and

for all r &#x3E; r0.
By the second fundamental theorem of Nevanlinna [2, § 34],

we have

for all sufficiently large r. where c is a fixed number greater
than 1.

Putting 99(z) = f(z)-f1(z) f(z)-f1(z) in (3), we have

for all r&#x3E;rl, where N(r, f-fl) and N(r, f-f2) refer to the func-
tions n(r, f-f1) and n(r, f-f2) respectively; and a, b are certain
positive constants.

Let (r) be a proximate order of f(z). Then

Now, if r. = max (ro, rl, r2), (by (2), we have
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Therefore, combining (4) and (5), we have

This contradicts (1), and so the theorem is proved.
If the condition (ii) or (iii), is satisfied, it can be easily seen that

and

where F denotes each of the functions fi and f2.. ,

Also, if r2 is sufficiently large, by (2), and (4), we have

Consequently, we have

This contradicts the lemma; and so the theorem is proved.
THEOREM 2 (i) If f(z) is an entire functioh of order e for which

the deficiency sum (excluding a = ~)03A303B4(03B1) = 03C3&#x3E;0; and if

n’(r, a) denotes the number of simple zeros of the function

f(z)-03B1 in the region |z|~r, then
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for every finite value of oc, with one possible exception, provided
that f(z) satisfies any-one of the conditions of Theorem 1.

PROOF. If N’(r, oc) and N’(r, P) refer to n’(r, 03B1) and n’(r,03B2)
respectively, we have

Also, by the theorem of Nevanlinna (loc. cit.), we have

where Nl(r) has the same meaning as in [3, § 33, (16)].
Further, by the same theorem, we have

But, under the conditions of Theorem 1, we have

Therefore

The rest of the proof, now, follows the same lines as in the second
part of the proof of Theorem 1.

THEOREM 2(ii). If f(z) is an entire function of finite and non-
zero order p, for which the deficiency sum (excluding ce = oo)

03A303B4(03B1) = 03C3&#x3E;1-2- 3, then

for every finite value of a, with one possible exception.
The proof follows the same lines as in Theorem 2 (i ) and in

the first part of the proof of Theorem 1.

THEOREM 3(i). If f(z) is an entire function of finite and non-
zero order Q; and if (rm)m = 1, 2, 3, ... is any sequence of

positive numbers, tending to infinity, then
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for every entire function fl(z) of order less than p, with one

possible exception.
(ii) if f(z) is an entire function of finite and non-zero k-th

order ek; and if (rm)m = 1, 2, 3, ... is a séquence of positive
numbers tending to infinity, such that

then

for every entire function fl(z) of k-th order less than ek, with
one possible exception.

(iii) If f(z) is an entire function of finite k-th order but of
infinite (k-1)-th order; and if (rm)m = 1, 2, 3, ... is a sequence
of positive numbers, tending to infinity, such that

then

for every entire function fl(z) of finite (k-1)-th order, with one
possible exception.
THEOREM 4(i). If f(z) is an entire function of zero order (not a

polynomial), then

for every polynomial fl(z), with one possible exception.
PROOF. Let log M(r) = ru(r) and suppose that the theorem

does not hold. Then, we have

and

for all sufficiently large r, where f 1 and f2 are polynomials; and
L &#x3E; 6.
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Consequently, by (4), we have

Therefore, we have

or

Now, we prove that

If not, then we have

for all r ~ r0 &#x3E; 1.
By this inequality, we have

If we make n tend to infinity in this inequality, we reach a con-
tradiction.
Hence we have

Proving thereby that (6) does not hold, and thus the theorem
follows.
THEOREM 4 (ii) If f(z) is an entire function of zero order, for

which the deficiency sum (excluding a = oo ) 1 03B4(03B1) = a &#x3E; § , then

for every finite value of a, with one possible exception.
The proof follows the same lines as in the preceding theorem

and in Theorem 2 (i)

4. THEOREM 5. If f(z) is a meromorphic function of order e,
then

for every meromorphic function fl(z), with two possible excep-
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tions, provided that f(z) and fl(z) satisfy any-one of the con-
ditions of Theorem 1.

THEOREM 6. If f(z) is a meromorphic function of order p, for
which the deficiency sum (including oc = ~)03A303B4(03B1) = 03C3 &#x3E; 1, then

for every value of oc, with two possible exceptions, provided that
f(z) satisfies any-one of the conditions of Theorem 1.

PROOF OF THEOREM 5. lf fl, f2 and f3 are meromorphic functions
then putting

in (3), we have

for all sufficiently large r, where oc, P and y are certain positive
constants. The rest of the proof, now, follows the same lines as
that of Theorem 1. The proof of Theorem 6 is similar to that of
Theorem 2 (i ).

5. THEOREM 7(i). If f(z) is an entire function of order e, for

which the deficiency sum (excluding 03B1 = ~)03A303B4(03B1) = a, then

for every finite value of ce, with two possible exceptions, provided
that f(z) satisfies any-one of the conditions of Theorem 1.

(ii) If f(z) is an entire function of zero order, then

for every finite value of a, with two possible exceptions, where a
has the same meaning as before.
THEOREM 8(i) If f(z) is an entire function of order e, then

for every finite value of oc, with one possible exception, where
n"(r, oc) denotes the number of simple and double zeros of f(z)
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in the region |z|~r, provided that f(z) satisfies any-one of the
conditions of Theorem 1.

(ii) If f(z) is an entire function of zero order, then

fore every finite value of «, with one possible exception, where
N" (r, oc) refers to the function n" (r, a ); and a has the same meaning
as before.
The proof of Theorem 7 depends on the theorem of Nevanlinna

(loc. cit.), with q = 4, and follows the same lines as that of
Theorem 2 (i). For the proof of Theorem 8, it should be observed
that

Remarks (i) Theorem 3 generalises a theorem [4]; and it shows
that an e.f.B. (exceptional function in the sense of Borel) is also
an exceptional function in the sense of this theorem for the par-
ticular class of functions of infinite order.

(ii) Theorem 2 generalises Theorem 2 of Shah (loc. cit.) in a
number of ways.
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