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Limit groups and spaces in regions and open
manifolds

by

B. Kaufmann

Cambridge

Introduction.

This paper is concerned with certain limit groups and spaces
in bounded open manifolds and regions. The theory of regions
and of open manifolds generally is one of the least developed
parts of topology, despite the fact that the notion of a region
is one of the simplest and most frequently used topological
notions in various mathematical subjects. In particular the

theory of prime ends, which is concerned with the structure of
the boundaries, has so far evaded modern topological methods 1).
This theory has remained an isolated subject depending on
"direet" (and often complicated) methods. We give now an
interprétation and am extension of its foundations in the light
of modern topology. 

§ 1 contains the definition of systems of boundary divisors
or ends. The notion of a divisor is quite elementary; a divisor
is essentially a decreasing sequence of part regions tending to
the boundary and represented by its limit set. Divisors are de-
noted by CG’ In particular the boundary T of a region G can be
considered as a divisor which is denoted by FG.

In § 2 we define the limit groups of a region. These are groups
of 0-dimensional infinité cycles tending to the boundary 2). The
most important of these is the group Z of pure cycles whieh is
defined as the direct sum A(rG) + B(rG) of the groups of "con-
vergent" (or ce-) and ,divergent" (or fl-) cycles. The former are

1) See my thesis in lklath. Annalen 103 (1930), also my papers in Math. Ann.
106 (1932) and Math. Zeitschrift 36 (1932). It is little known that this theory
is valid for all bounded open manifolds embedded in Euelidean spaces (and not

only for 3-dimensional regions). In this paper we can confine ourselves to (n-
dimensional) regions, as the extension of its results to bounded manifolds is obvious.

2) Limit cycles are denoted by zf = (Zk) = z1, Z2, ..., zk, ... or similarly.
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limit cycles lying on finite systems of paths with (accessible)
endpoints on the boundary, the latter are cycles of the opposite
type (which "carry" no oc-cycles). Similarly we define two funda-
mentally different types of boundary relations, the et- and {3-
homologies.

In § 3 we consider the group Z as an abstract space Z*. Closures
in this group are defined by means of local homologies. The
closure S of an aggregate S is defined as a sum of two aggregates
(S)1 and (S )2, which we call closures of the first and second kind.
While ( S )1 is essentially induced by the topology of the region,
it is the introduction of (S)2 which makes the whole theory
effective 3). The limit space l:* is a neighbourhood space (in the
sense of H. Weyl). It satisfies all axioms of a topological space,
except the distributive law of closures, which in our case however
can be replaced by an equivalent condition.

Similarly, the fact that the "points" are not closed and the
corresponding separation axiom is not fulfilled is practically
unimportant, since the closures of points are shown to be very
simple aggregates.

In § 4 we consider oc- and fl-homology groups. With the aid
of these groups we define the prime ends in the space F of all
x- and fJ-limit sequences of points, which forms a subspace of
the space E*. This definition is essentially on the lines of my
thcsis. We also state some theorems and mention some general
problems. But by far the most interesting problems arise in con-
nection with the theory of conformal representation (of regions
of arbitrary conneetivity ) and the theory of automorphic funetions,
which we shall consider elsewhere.

§ 1. Divisors of the boundary.

1. Let G be a region in the n-dimensional Euclidean space
Rn, and let r be its boundary. (We assume G to be bounded.)
Let pn be an arbitrary subdivision of Rn into n-dimensional
convex cells (simplices, cubes, etc.) forming a cell complex of
some arbitrary mesh. The sum of all cells in pn we call an n-dimen-
sional (infinite) polyedron, and denote it by 1 ’Fn ] The complex
of all (n - 1 )-dimensional faces of pn we call the (n - 1 )-dimen-

3) This shows that the topology of the limit space depends not merely on
"distances" between infinite chains (,,points") zf but also essentially on the
"distanees" between finite chains z and the infinite chains zf.
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sional skeleton of 1Jfn, and denote it by 1JIn-l. The sum of all
cells in Yn-1 we denote by 1 pn-l f.
A subset Q of Wn-1 [ we call a cut of G, if each point of Q is

a boundary point of at least two components of G - Q. A eut
Q of G is called irreducible if the boundaries F’ and T" of any
two components G’ and G" of G - Q coincide inside G, i.e. if

T’G = F"G. An irreducible eut Q is called regular, if G - Q
consists of precisely two components. If Q is a eut of G, and G’
is an arbitrary component of G - Q, we speak also of a cut Q
corresponding to G’, and of a region G’ defined by Q.

2. Let 

be a decreasing sequence of regions defined by a sequence

of cuts of G such that the closures Q land Q Jl of any two cuts
QÂ and Qp. of the sequence have no common points. The product

is obviously a continuum or a point. It is obvious that the set
6G is uniquely defined by the sequence of cuts (Qn). We call
6G a divisor of the boundary T or the end of the region G if 6G
is a part of T’. A divis or CG is called regular if all euts Qn of the
sequence (Qn) are regular.

It is easy to see that there exists a regular divisor

coirzciding with the boundary jr itself; in particular the divisor
TG can be defined by a sequence of regular cuts (Qn) such that
each eut Qn lies entirely in G.
A divisor 6 is said to be contained in a divisor 6G,

if C’ and CG are defined by sequences (Gm) and (Gn) such that
almost all regions Gm of the first sequence are contained in each
region G. of the second sequence. In particular the boundary T
of G, considered as a divisor, must obviously contain all divisors
of T.

If 61 and CG are two divisors such that the relations
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and

are fulfilled simultaneously, we say that 61 and CG" are equivalent
and we write

The set of points in a divisor 6 G considered independently from the
defining sequence 4) (G n) we denote by 1 6 G 1. Thus from 6 =6
it follows that

but not vice versa. 
4

Two divisors 61 and C"’ defined by the sequences (Gn) and
(Gm ) are said to be distinct if there exist two integers n = Â. and
m = p such that

It is obvious that 6# and G are distinct if, and only if, there
exists a pair of integers À, ,u such that

for each v = 1, 2, ....

3. Limit sequences in a divisor. A sequence of points of the
region G

such that each limit point of (PÂ) lies on the boundary F of G
we call a limit sequence of points in G. A limit sequence of points
with precisely one limit point we call a convergent sequence.
A divisor 6G defined by a sequence (Gn) contains a limit sequence
(PÂ) if each region Gn (n = 1, 2, ... ) contains almost all points
of the sequence (PA). The aggregate of all convergent limit

sequences (PA) contained in CG we denote by f(CG) 5 ).
It is easy to see that two divisors C’ and C" are equivalent if,

and only if, the aggregates f(C’ ) and f(6g ) are identical. In other
words, from C’ G = 6 it follows that

4) From the above definition it is clear that a divisor 6G is not merely a subset
of F, but a subset of T defined by and associated with a sequence (Gn). One could
indeed define the sequence (G n) itself as a divisor of .I’, but it is more convenient
to represent it by the product set 6’c- 

5) Instead of aggregates of convergent limit sequences in 6G we could consider
here the aggregates of arbitrary limit sequences in CG, but this is not essential
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Thus the aggregate f(GG) of convergent limit sequences in 6G is
independent of the séquences (Gn) defining CG’
On the other hand, two divisors C’ G and CG’ are distinct if, and

only if, there exists a convergent sequence of points contained
simultaneously in C’ and in 6§, i.e. from C’ C" = 0 it follows that

If C’ and CG"’ are arbitrary, then the aggregate

of all convergent limit sequences whieh are contained in both
C" and E’G is called the common part or the product of CI- and C"

4. Full systems of distinct divisoi-s. A system M(6G) of divisors
of r we call a system of distinct divisors if any two divisors

in M(GG) are distinct. A full systern of distinct divisors of the

boundary T is a system M(GG) of distinct divisors such that each
convergent limit sequence (P) contains at least one subsequence

contained in a divisor 6c of the system M(C.).
A system M(C.) consisting of a single divisor 6 G = r G is

obviously a full system. It is not difficult to show that in any

region G the totality of all full systems of distinct divisors is

infinite, and that it has virtually the power 2 N.

§ 2. Limit groups of the region.

5. The aggregate of all inner points of the région G can be
considered as a field of vertices in which abstract, geometrical
(,,flat") and topological complexes can be defined. Let [xl] be
the system of all closed topological 1-cells (arcs) lying entirely
in G. Each 1-cell of [x1] is defined as a topological transformation
of a segment 0  x  1. By [x"] we denote the aggregate of all
0-cells (points) in G.
A finite system K1 of 1-cells in G we call a 1-dimensional

complex (1-complex) in G. A 1-complex K1 we call regular if

any two 1-cells in K1 have at most their endpoints in common.
The set of all points contained in either of the 1-cells of K1 we
call the corresponding set of KI and denote it by 1 K1 [ . The corres-
ponding set of a regular complex in G consists obviously of a finite
System of (non-intersecting) arcs; the corresponding set of a
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regular geometrical (flat) 1-complex consists of a finite number
of connected polygon lines.
A 0-complex is by definition a finite set of 0-cells (points) in G.

6. Let I, be the group of integers reduced mod 2. Its elements
(classes) ive denote by 0 and 1, and we apply to these the usual
(algebraic) operations mod 2. We define now in G 0- and 1-dimen-
sional chains mod 2 with respect to the systems [x0] and [x1]
of all 0- and 1-cells as variables.

An r-chaim cr mod 2 (r = 0 or = 1) is a linear form in which,

each r-cell of [xr] is associated with a coefficient belonging to
the group I2 and such that at most a finite number of r-cells

in cr are taken with a coefficient =1=- 0. Thus, omitting terms with
the coefficient 0, we can write C’’ in the form

where i varies between 1 and somc integer. An r-chain with all
coefficients 0 we call an î»-ehaiii 0 or an empty chain. Since all
variables of dimension r occur im a chain, we can define the
summation of chains. The sum of two chains mod 2 is again a
chain mod 2. The r-chains mod 2 of the region G form thus an
additive group L’’ in yvhich each element coïncides with its

inverse, the element 0 being the empty r-chain 6). It is obvious
that r-chains mod 2 can also be considered as r -complexes for
which addition mod 2 is defined. The notion of a corresponding
set can thus be applied to a chain Cr mod 2; the corresponding
set of C’’ we denote by 1 Cr 1. 

7. The boundary (mod 2) of a 1-cell x1 = P0P1 with the end-

points Po, Pi is the linear form Po + Pi, and the boundary Cl
of a chain C1 is the sum of the boundaries of all 1-cells in C1.

The boundary C’ of a 0-chain CO is by definition 0.
An r-chain C’’ (r = 0, 1 ) such that Cr = 0 is called an r-cycle.

Thus all 0-chains are 0-cycles. If a 0-cycle- z" is the boundary
of a chain Cl, we write also Cl -&#x3E; -,0. The r-cycles mod 2 form
obviously a subgroup Z’’ of the group L’’.

6) The group of r-chains defined above forms obviously a special case of the
usual group of singular chains mod 2 on a generalized (infinité) polyedron. In the
case of a region it is usual to assume (as above ) that the corresponding sets of all

complexes are contained in the region.
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A cycle z" is called a boundary cycle and is said to be ho?no-
logous 0 mod 2,

if there exists a complex C1 such that Cl = z°. This relation can
also be written in the form Cl - z°. Two cycles zoo and zg are said
to be homologous to each other (mod 2), if there exists a chain

C1 such that

A 0-cycle 0 is by definition ~ 0. Thus each cycle z" is homologous
to itself,

Since any two 0-cells in G can be joined by a i-cell in G, it is

easy to see that a 0-cycle is ~ 0 if, and only if, the number of
its points (0-cells) is = 0 mod 2. The 0-cycles homologous 0 form
a subgroup of the group Z°, which we denote by H°. 
Throughout this paper all boundary and homology relations

are understood mod 2.

8. Let 6G be a divisor of h defined by a sequence

of decreasing regions. A sequence

of r-dimensional chains (r = 0 or = 1 ) we call an r-dimensional
limit chain in 6 G if for each m almost all corresponding sets
1 Cr 1, k = 1, 2, ..., are contained in G.. The sum

we call the corresponding set of the limit chain C’’. By t we denote
the topological limit of the set C’’. The set t which lies on F we
call the boundary limit ot’ the chain C’’.

If Cr is a limit chain in 6G, then any subsequence of chains

of (Cpk) forms a limit chain in 6G, which we call a subordinatek
chain of C’’ in 6 G. If cr’ is a subordinate chain of Cr we write
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The system of all subordinate chains of Cr we denote by {cr} 7).
The limit chains cr = (Ck) and CT’ = (Cr’k ) we consider as being
identical,

if almost all chains Crk and Cl’ are identical, i.e. if there exists

an integer k0 such that

for each k = 1, 2, ....
A 0-dimensional limit chain

in e G we call a Zimit 0-cycle 1) in e G, if for each in we can define
an integer krn such that

for each 1(; = 1, 2, .... A limit 0-cycle zt in e G is by définition 0
if almost all cycles are 0. The sum of two limit cycles zt = (zk)
and z’ = (z’) is by définition the limit 0-cycle

It is obvious that the sum of two limit cycles in CG is a limit
cycle in Cc,. Thus the limit 0-cycles in 6G form a group which we
denote by Z(6G).
A limit cycle Zj = (Zk) is homologous 0 in CG,

if there exists a limit chain Cl = (C1) in 6G such that

Two limit cycles and zf’ are homologous to each other,

if z’ + z"’ ~ 0 in EG. The limit cycle 0 is by definition ‘ 0 in 6 G.

7) More generally, if M(C) is an arbitrary aggregate of a limit chain, we denote

by (M(Cr)) the sum 1 (Cr) ; of all systems for all Cr ’s in M(cr).
CrEM (Cr)

8) Each chain zk of the limit chain zt is obviously a (0-dimensional) cycle.
We write z for z°, omitting the dimensional index number 0.

8) It is sufficient to assume this homology to be valid in G. In general, if
G’ C G and 1 z 1 CG’, then from z ~ 0 in G it follows that z r- 0 in G‘. If C’  -&#x3E; z
in G, we can easily construct a chain ’C1 isomorphic with C1 such that ’Cl--&#x3E;z in

G’. (This construction is obviously possible, because C is 1-dimensional.)
.
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We get thus

The limit 0-cycles homologous 0 in 6G form a subgroup H(CG)
of Z(CG). It is easy to see that the factor group Z(CG) - H(CG)
is isomorphic with the group of integers reduced mod 2.

9. The groups of oc- and fi-cycles. We define now subgroups
of "convergent" and "divergent" limit cycles in a region. The
following definition of a- and fl-cycles makes this distinction clear.
A topological transformation J of the interval 0  x  1

contained in G we call a path in G, if the closure J of J is a simple
arc consisting of J and (precisely) one single point t lying on the
boundary T.
A linear combination 

of a finite number of limit 0-eycles x’ = (x) we call an

oc-cycle if for each i the corresponding set 1 x f 1 of the cycle xif ,
lies on a path Ji in G.

Frorn this definition it follows easily that for each i there
exists a limit chain C1i lying entirely on J and such that

A limit 0-cycle Yt = ( yk ) we call a fl-cycle 10) in G if there

exists no oc-cycle lying on the corresponding set 1 YI 1 of yt-
If zi is an arbitrary limit cycle, then it can easily be proved

that there exists always an ce- or a P-cycle lying on the corres-
ponding set 1 Zj 1 of zt. A limit cycle zf , which is either an ce- or
a fl-cycle, we call briefly a pure cycle.
A limit 0-cycle 0 is by definition both an ce- and a fl-cycle. With

addition defined in the usual sense, the totality of all ce-cycles
in G forms a group which we denote by A (TG); this group obviously
cannot be empty. Similarly the system of all fl-cycles forms a
group whieh we denote by B(TG).

If 6 G is an arbitrary divisor of h, then the systems of all oc-
and fJ-cycles in 6G form also groups, which we denote by A (CG)
and B (CG) correspondingly. It is clear that for an arbitrary CG =A FG
either of these groups can be empty. The common part of the

10) We could define a- and fJ-cycles with respect to an arbitrary divisor 6G
of F. But this is not essential, as it can easily be shown that the definition of ce-
and fl-cyles is independent of the choice of divisors.
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groups A (C.) and B(6c) is 0. The totality of cycles which are
either in A(6G) or in B(6G) is a group whieh can be considered
as the direct sum

of the groups A(6G) and B(6G).
oe- and fl-homologies. We define iiow homology relations with

respect to the groups A(rG) and B(rG). These relations are
fundamental for our theory, and are very similar in both cases.
An oc-eycle x f is said to be oc-homolobous 0,

if xt bounds a limit chain C1 in G such that each pure cycle on
the corresponding set 1 C1 1 is an a-cyele.
Two ce-cycles ae; and x" are said to be et-homologous to each other

if the cycle xf + x f is oc-homologous 0 in G.
A P-cycle y f is said to be P-homologous -0,

if YI bounds a limit chain Cl such that each pure cycle on 1 CIl I
is a fl-cycle.
Two f3-cycles yf and y’’f are said to be f3-homologous to each

other in G, 

if the chain + y" is P-homologous 0 in G.
The limit 0-cycle 0 is by definition oc- and fl-homologous o.

If the limit cycles and zl’ are oc- or (3-homologous 0 in G, then
the sum zf + z’ is a- or P-homologous 0 as well. Thus the a-cycles
oc-homologous 0 and the fl-cycles p-homologous 0 form subgroups
of the groups A(rc) and B(T.), whieh we denote by H(J.(rc)
and Hp(rc).

It is obvious that the notions of oc- and p-homologies cals be
extended to an arbitrary divisor CG of T, and we can define
similarly the groups Hrx(6c) and HO(GG)’
We define further a simple but important subgroup of the

group Hrx(rc).
Let x, be an ce-cycle, and let t be the (finite) set of its limit

points on r. We say, xt is locally homologous 0 if xl bounds a
limit chain C1 such that the limit set of 1 C1 1 on h is contained
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in t. It is easy to see that in this case all pure cycles on 1 CI [
are ce-cycles.
Two oc-cycles x’ and x" are said to be locally homologous to

each other if ét) + x"f is locally ~ 0. The oc-cyeles 0 are locally
~ 0 by definition. Thus the oc-cycles locally ~ 0 form a subgroup
of the group Hrfw{rG), which we denote by Hl oc (FG).

Similarly we can define the subgroup H’(CG) of H(GG), where
CG is an arbitrary divisor of r. We shall be mainly concerned
with the groups Hp(rG), and Hl (P.), making no use of the

group Hrx(rG). 

§ 3. Limit spaces of the region.

10. We shall now consider the group 1 of all pure (ot- and
fi-) cycles as an abstract space 11). We shall define in Z a (general-
ized) topology, which is fundamental in the theory of prime ends.
Let S be an arbitrary aggregate of limit cycles of 27. The

closure S is defined as a set of limit cycles of 27 

consisting of two parts: the closure (S)1 of the first kind, and
the closure S2 of the second kind. If S is empty, we write S = 0
and set S = 0 = 0. If S :A 0, we define (5) and (S)2 as follows:

Let Z f = zi, Z2, - - " Zk, ... be a limit cycle of the group 27,
and let t be its boundary limit (§ 2, 8). Consider a spherical
neighbourhood 12) U(t, e) of t, i.e. the sum of all spherical regions
(with a diameter  s) containing points of t. The open set

which obviously contains almost all cycles zk9 we call an e-neigh-
bourhood of z, in G. If we omit a finite number of cycles Zk in zi,
the limit cycle zt will be replaced by an identical cycle, which
we denote again by zt. We can therefore assume that all cycles
Zk of zt lie in U(zt, e), E being arbitrarily small.
Now let C t = CI, C2, ..., Ck, ... be an arbitrary limit cycle of

the group Z. 

11) More generally we could consider the group Z(TG ) of all limit cycles as an
abstract space. The results of this paragraph can be extended to this group, which
is of some interest from the abstract point of view. In this paper we shall however
make no further use of this group.

12) This notion is purely auxiliary; the space defined by means of these neigh-
bourhoods is of no importance, and must not be confused with the abstract space
Z* defined below.
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The cycle f is called a closure cycle of the first kind with respect
to S if each (arbitrarily small ) neighbourhood U( f, £ ) of’,
contains a cycle z, = zi, z2, ..., Zk, ... such that

The aggregate of all closure cycles of S of thé first kind we
denote by (S )1, and call it the closure of the first kind of S.
We make use now of the following notation. Let U(zt) be a

neighbourhood of zt = Z1, Z2, ...1 Zk, ..., and let z be a cycle
(mod 2) of the group Z. If for each = 1, 2, ...

we write briefly

The cycle Cf = Çi, Ç, ..., Çj, is called fi closure cycle of the

second kind with respect to S, if each 8-neighbourhood U(Çj, 8).
contains a limit cycle z1 = Zl).’ Z2)v’ ..., zkÂ’ ... of S for each Â
such that

or, more precisely, if

À = l, 2, ....
Here, as always, we must bear in mind the convention by

which the limit cycles !; and zf can be replaced by identical13)
cycles with a finite number of cycles !;;. and zkÂ (Â = 1, 2, . 
omitted. The aggregate of all closures cycles of the second kind
we denote by (S )2, and call it the closure of the second kind of S.
The closure 5 = (S)1 + (S)2 of 5 is now defined. The group

Z can therefore be considered as a general topological space 14),
which we denote by £*.

13) See § 2, 7. The limit cycles zf = zi, Z2’ ..., zk, ... and Z; = zl, z2, ..., z k, ...
are identical if z k = zk for almost all k. In particular, if we omit in z f a finite number
of cycles z x ,we obtain a limit cycle identical with z f, ivhieh we denote again by z f.
We make use of this definition throughout this paper without special references.

14) A set E of elements (,,points") is called a general topological space if to each
S C E there corresponds an S C E (the closure of S). E is called a topological space
if the above correspondence satisfies the four axioms of KURATOWSKI. (See
ALEXANDROFF-HopF, Topologie I.) The equivalence of Kuratowski’s axioms
with the usual Hausdorff axioms of a topological neighbourhood space can easily
be proved. Sufficient and necessary conditions for E to be a neighbourhood space
(in the sense of H. WEYL) were given by A.. MARKOFF (ALEXA-NDROFF-HOPF,
p. 42).
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We introduce now the following notations: by L(S) we denote
the part of S which is not in S; correspondingly we denote by L1 ( S )
and L2(S) the parts of (S)1 and (S)2 not in S. Further we use
the notations L0153(S), LfJ(S), L’(S), LI(S) etc. to represent the

part of L, Ll(S), L2(S) etc. consisting of all a- and all P-cycles
of these aggregates respectively.

11. We shall establish now some elementary properties of
the space 2.’*.

I. If zt is an arbitrary limit cycle, then zt + Zf = 0, and
thus zf~‘ Zj in TG; obviously we can consider a limit cycle 0
to be ~ 0 in any arbitrarily small neighbourhood U(zf, e).
Thus

and by definition of the closure of the first kind we get

II. The group Z* is a neighbourhood space, i.e. the general
topological correspondence in I* can be induced by means of
a full system of neighbourhoods of all elements in .E*.

For if 0 is the empty set in £*, and S’ and S" are two arbitrary
sets in I*, then

2. from S’ C S" it follows that (S’ )1 C (S’ )2 C (5")2, and

therefore S’ C S".
Thus the necessary and sufficient (A. Markoff’s) conditions

for 1* to be a neighbourhood space 15) are fulfilled.

If z, is an arbitrary limit cycle, and E an arbitrary set of
limit cycles such that E DZj then the set

is defined as a neighbourhood of zj. The system of all sets such
as Z* - E forms the full system of neighbourhoods of zt.

III. 1:* satisfies the following relations, -

15) It may be noted here that the neighbourhoods in Z* are not necessarily open.
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According to I the set Scan be omitted in the first of these
two relations. It is sufficient to verify

The inverse relations follow at once from 1 and from Markoff’s
conditions in II.

Suppose (1) is not fulfilled. Then there exists a limit cycle
f = ’1’ C 2 ..., k, ...such that

We can therefore define an arbitrarily small neighbourhood
U(Cf, 8) such that each cycle ’k is  ~to a limit cycle  f of (S)1,
For a given k let U(1§i, à ) be an arbitrarily small neighbourhood
of C This neighbourhood must contain a cycle z of S’ such that

k being arbitrary, and e arbitrarily small. Thus (1) is proved.
Suppose now that (2) is not fulfilled. Then there exists a limit

cycle (, f = l, (,2’ ..., (,k’ ... such that’ 

There exists therefore a sufficiently small neighbourhood
U(1, s) in which no cycle of S is r-I ’f- Therefore we can choose
a neighbourhood U(Cf, is) in which a cycle Cf = li, ’2’ ..., !;k’. - .
satisfies the relations

where z§i denotes some cycle of S. Thus

and since 8 is arbitrarily small, we get f C (S )2 C S.
IV. The group Z* satisfies the axiom (c) of a topological space.

We have 16)

16) It is easy to see that the closures of the first kind satisfy the distributive
law (S’ + 5")1 = (S’)1 + (S")1 and also the relation [(S)111 = (S)1.
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But

and (according to III )

It is thus sufficient to consider the last term in the above

expression of ,S. If ’f = ’1’ ’2’ ..., k, ... is an arbitrary cycle of

[(S)l + (S)2]@ than in an (arbitrarily small ) 2013s-neighbourhood
of f we have for each k)

where , ek is a cycle of S, or of (S)1, or of (S )2. It is easy to see that
in each of these cases there exists a cycle zfk of S such that

where U(CI,8) is an e-neighbourhood of ’1. It follows that

V. We have seen above that the group 1* satisfies the axioms

of a topological space as well as Markoff’s conditions and the
relations in III, the latter referring to the twofold character of
closures. But the axiom

expressing the distributive law of closures is not fulfilled, since
the inverse of the relation

ts not valid. But this disadvantage is sufficiently outweighed
by the following property of the space L* :

If ’f is a cycle of the closure S’ + S" of the sum .S’ + S", then
there exists always a subordinate cycle Ç§  ’f of ’f contained in
the sum of closures S’ + S". 

VI. The elements (,,points") in Z* are not closed, and the
corresponding separation axiom is not fulfilled. But this again
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is not a serious disadvantage; the closures of the limit cycles
are very simple units, of which all aggregates to be considered
henceforth are built.

If Zt = Z15 Z2, - - " Zk5 ... is an arbitrary limit cycle, and t

its boundary limit on F, then the boundary limit of an arbitrary
cycle et of the closure z f of z f is contained in t.

If ael is an a-cycle ~ 0, then the following relations are valid:

and

Further, if xt is arbitrary, and ’x f - xI a subordinate cycle
of xl, then

and f inally,

The proof of these relations depends on the following property
of oc-cycles, which can easily be verified:

Â 
We represent xf in the form xf, = Àl x), where xj’ = (ek is

i=l

an oc-cycle lying on a path Ji. There exists then a limit chain
Cl(i) = (C(i» on Ji for each i such that

The proof of (1) is quite elementary; (2) follows easily from (1 ),
and the proofs of (3) and (4) are similar. The proof of (4) is as
follows:

Let U(xf, s) be an arbitrary s-neighbourhood of x f, and let

Pie ft2’ ..., flk’ ... be an arbitrary sequence of increasing integers
(Pk&#x3E; Pk-l). We can define a limit chain (C",),

such that almost all chains Cl kare in U(xf, e). The limit cycle
(x..) is obviously contained in (xt)’. If /;’f == /;’1’ /;’2’ ..., !;,k’ ...
is an arbitrary cycle of Xf, we have

17) If l;, is an arbitrary limit cycle of xf, then {l;,} denotes the system of an
subordinate cycles of (,. {x,} denotes then the sum il ((,).

’,C x,
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Any subordinate cycle i)  Ç, is obviously among the chains
(’tlk)’ and we get 

VII. From the definition of closures in 1* it jolloivs at once that

i.e. all subordinate cycles of a cycle of (S)2 are contained in (S )2.
With regard to the clostlre of the first kind, we have

le-neighbourhood of ’1’ then

where zf = Z 19 Z2’ ..., Zk!l ... is a cycle of S. But for any k = ko
we have

Thus we have

i.e

and therefore 

12. A slightly different, but practically equivalent, topolo-
gical relation in the group 1* can be obtained by a more restricted
definition of closures. For each aggregate S of limit cycles we set

thus omitting in the closure fl-cycles of the first kind and «-cycles
of the second kind not in S. The space obtained by means off
this definition we denote by 2:*. In ’L* each P-cycle ~- 0 locally
(i.e. in an arbitrary neighbourhood of its boundary limit)
is closed.

Let z f = zi, z2, zÂ, ... be a fl-cycle ~ 0 in the neigh-
bourhoods U(zt, ev); Ev - 0 with v -&#x3E; oc. Any cycle Cf = C‘1, T
C2, ..., Ck, ... of Zt must obviously be a P-cycle, and such that
the boundary sets of z, and Cf coincide. According to the above
definition of S it is sufficient to show that Cf is not in L 2(S).
Otherwise we have 
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Since Zf ’"i-’ 0 in U(zt, ev)’ there exists for each v a component
hv of U(zf’ Ev ) containing points of a set 1 zÂ 1 for arbitrarily large
values of Â. It is therefore possible to construct a decreasing
sequence of components

containing points of the set 1 Zj 1. It follows that a path J in G
meets points of 1 Zj 1 arbitrarily near r, and this contradicts the
definition of p-cycIes.

4 

§ 4. The prime ends.

13. oc- and p-homology groups. We consider now the factor

groups

and

If ’1 is an oc- or fl-cyele # 0 of the group A (TG ) or B ( rG ), we
denote by C (, f) the class of the group 9t or 113 containing Ç,.
By C (, f) we denote the closure of C(1) in 1*. The cyle Ç is
called soluble if any two subordinate cycles C;  Ç, and C;’ - CI
satisfy the relation 

If ’t is soluble, then aIl cycles of C(’t) are soluble. A class of
soluble cycles is called a soluble class.

A class C(’t) of U or 58 such that for any two cycles  f « (,
and ,’ « ’f f

we call an (oc- or P-) oscillator.

Let xf be an arbitrary ex-cycle. From the definition of local
homologies it follows that 

According to VI, § 3, we have

Thus we get the identities
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Again according to VI, § 3, we have

where x’  xt a-nd x"  xt are subordinate cycles of xi. Thus

whieh implies that x, is soluble, and that all elements of 9f are
oscillators.

14. The space of convergent limit sequences. Let

be a convergent limit sequence (see § 1) in IG. It is clear that
Pf can be considered as a limit cycle Zt = (Zk) mod 2, in which
each cycle zk = Pk consists of a single point Pk taken with the
coefficient 1. Sequences P f which are in this sense pure (oc- or P-)
cycles we call pure (oc- or P-) sequences. All subordinate sequences
P ; 1  Pt satisfy the relation P) + 0 in TG.

Let Fa and Fp be the a.ggregates of all oc- and fl-sequences
in TG. The aggregate

is contained in the group space 1:*. Therefore we can consider F

as a subspace of Z* in which a general topological correspondence
is induced by 27* ; if 5 C F and S is the closure of S in E*, then
the closure of S in F is SF. Obviously all topological relations
of § 3 apply also to the space F.

Let C(Pf) be the class of the factor group % or 113 containing
P f. The aggregate

we call a conjugale (oc- or fJ-) class in F. Since the conjugate classes
are contained in the classes of the groups 91 or ltJ, it is clear that
the classes L1 are distinct, i.e. if L1’ =F zf then J"A"’ 0.
A limit sequence P f is called soluble if for any two sub-ordinate

sequences P’f  P f and p"f  P f

In the case of conjugate a-classes all identities (oc) in section 13
are valid in the space F as well. In particular all oc-sequences are
soluble. In addition we can give a simple interpretation of all
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aggregates in (oc). For we can always construct 18) a divisor 6G=== PG
consisting of a single (accessible) point P such that-

15. Complexes of conjugate classes in F. Let P f be a soluble
sequence, and let LI be the conjugate class containing P f. As
usual we denote by {P f} the system of all subordinate sequences
of P f. Let {J} be the system of all conjugate classes which contain
at least one sequence in {Pf}. Let Cll be the system of all closures
of the classes LI in (A). The sum

of all classes LI in (4) we call a complex of the order 1 19 ).
We state now (without proof) the first fundamental theorem

in the theory of prime ends.
THEOREM I. Each limit sequence P f in G contains a soluble sub-

ordinate sequence P)  Pf. (Primendentheorie, § 10.) In particular,
there exists a subordinate sequence Pf  Pt such that the conjugate
class J D P) satisfies the relation L)(4 ) =1= 0 20).
We define now complexes L1 e in F of the order e, where é is

an arbitrary finite or transfinite ordinal number.
Let

be the ordered system of all ordinals  e. Assume all complexes
LIt] of all orders il  e to have been defined. Let M(Llt]) be a
system of complexes (q  e but otherwise arbitrary) and let

M(,J,î) be the system of closures of all complexes in M(31]). The
sum

of all closures A,, in M (2ï 1]) we call a complex of the order e if

18) We consider a sequence U( P, av) of decreasing spherical neighbourhoods
of P. It is easy to show that (for each v ) a component h. of U(P" e) contains Pt.
The decreasing sequence hl D h2 D ... D hp D ... defines the divisor P G, ,vhich
coincides with P and is, in general, not regular.

19) If .1 is a conjugate ce-class, the complex A, coincides with L1 and thus with
all aggregates in (oc) or (m’).

20 ) The second part of Theorem 1 is proved in my paper "Über die Struktur
der Komplexe beliebiger Ordnung in der Theorie der Primenden" [Math. Annalen
106 (1932)].



454

1. for each decomposition of the system M(J ) into two

proper parts

there exists a complex L1 E AI’ (L11]) and a complex 4)J e M"(A
such that

2. there exists no system N(A.) D M(A,,) of which 11(A.)
forms a proper part, i.e. if N(A) satisfies condition 1, then

N(4q) = M (4r).
A complex Ae of the order is said to be saturated if there

exists no complex of an order &#x3E; e containing A Q’
A regular divisor 6G is called a prime end of the order e if there

exists a complex A , of the order e such that
1. A C f(CG)
2. L1 e contains a subordinate sequence Pf  P f of each

séquence P f of f(6G).
We can now state the second and third fundamental theorems

in the theory of prime ends.

THEOREM II. There exists II full system of distinct regu1ar
divisors M(EG) in G such that each divisor EQ is a prime end
(of finite or transfinite ordei, e). (Primendentheorie, § il.)

THEOREM III. The order e of each prime end Ee is enunaer-
able, i.e. o is an ordinal of the second Cantor class. (Primenden-
theorie, § 12.)

16. Problems. We have considered above the groups of

0-dimensional cycles. There exists however no simple generali-
zation of these groups to higher dimensions, and it is clear that
our theory is essentially dependent on their 0-dimensionality.
Further, if we examine the définition of the ends we can make
an interesting observation:

This definition depends on the 0-dimensional Betti groups of
the region G. For a divisor 6G of G is defined by a decreasing
sequence G, D G2 1) - ... D Gk !:) ... of part regions (§ 1, 2). But
if Gk is a part region, its 0-dimensional Betti group B(Gk) is

isomorphic with the Betti group B(G). Now we can consider
decreasing sequences of part regions
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such that

where B’’ denotes the r-th Betti group. The sequence (G(r)k) defines
a divisor 6(") depending on the r-dimensional Betti group of G.
More generally we can define divisors of the type eo, 1,.. "r) .
If we consider now full systems of distinct ends (§ 1, 2) of the
type c(,r) or E’G°’ 1, ..., r) then certain of these systems, namely, the
full systems of indivisible ends 21) seem to have a special signi-
ficance 22) .

Another problem is that of decomposition of the group Z(6G)
of limit cycles. If M(Eé) is the system of prime ends, then

Z(Eg) is a subgroup of Z(.I’G) for each E$. In what sense can
the system of all Z(Eg) be considered as a decomposition of Z(rG)?

(Received December 7th, 1938.)

21 ) A full system of distinct ends M(6) we call indivisible if there exists no
full system N(6) *- M(6G) such that each C’ C CG.

22) Even in the case where the boundary I’ of G is a complex; the reader may
consider the example of a region G bounded by the sum of a sphere and a segment
in G with one endpoint on the boundary. From the point of view of connectivity
groups the region and its boundary are indistinguishable from a spherical region
and a sphere. But the segment is obviously an ideal element of the type G(r)


