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Remarks concerning group spaces and vector spaces
by

Einar Hille

New Haven, Conn.

1. Introduction. The present note is an outgrowth of an

attempt to present a discussion of abstract spaces of types (G)
and ( F ) in Banach’s terminology based upon a topology in which
closure rather than distance is the fundamental notion. In

(G)-spaces addition is the basic operation, in (F)-spaces we
also have the operation of scalar multiplication, and in both
cases it is desired to adjust the topology in such a manner that
the basic operations become continuous. This can be done in
various ways; in the present note we postulate that closure is

invariant under the basic operations. The resulting topology is

perhaps of some interest also in other connections. In order to
show the power of the method 1 restate and prove some of the

theorems in Chapters 1 and III of Banach’s treatise "Théorie
des Opérations Linéaires" on this new basis 1).

2. Group spaces. We are concerned with a space S of points
x, y, ... In the space is defined a single-valued binary operation
which associates with every ordered pair of points x, y a third
point z, their surrt. This operation of addiction is to satisfy the
usual postulâtes for additive groups, viz.

A2. There exists a zero element 0 such that

It is easily shown that the zero element is unique and the

1) My attention has been called to a paper by C. KURATOWSKI, Sur la propriété
de Baire dans les groupes métriques [Studia Math. 4 (1938), 38 - 40 ], a footnote
of whieh indieates that the author has considered similar ideas.
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same applies to the negative of x. Further, (-x) + x = 0.
Finally, x + y = x + z or y + x = z + x implies y = z.
We suppose that S is a topological space in the sense that with

every set X C S there is associated another set X, the closure of
X, satisfying the usual postulates: 

We can describe these postulates by saying that the forming of
closures is an operation on sets of S to sets of S which is additive,
idempotent, and reduces to the identity for finite sets.
With the space S we associate the group 6 of rigid motions

which leave S invariant. This group is generated by the reflection
R, the right-hand translations Tl and the left-hand translations
YT, yE S. R takes the set X = (x) into the set RX = - X = {- x}.
T’JI takes X into TYX = X + y = {x+y}, whereas T takes X
into T X = y + X = {y+x}.
We notice the following evident but useful relations:
x E X implies and is implied by either of the inclusions

-x,e-X, x + y E X + y, and y+xey+X.
We now bring in the continuity assumptions on addition by

assuming that the closure is invariant under the group 6, or,

explicitly,

We can also say that the closure operation shall commute
with the operations of 6.
Any abstract space satisfying postulates Ao - A3, C4 - C5

shall be called a group space. It should be noted, however, that

C,, is unnecessarily restrictive for most purposes. Thus in the
present note we shall use only the first half of C5, i.e., the in-
variance of closure under right-hand translations. Spaces for

which only the first half of C5 is postulated will be referred to
as right-hand group spaces. We shall give the proofs only for
right-hand group spaces, but it will be obvious that the same

considerations apply to left-hand group spaces for which the
second but not the first half of C5 is postulated.

This notion of a group space differs somewhat from the space
of type (G) of Banach. Such a space is supposed to be metric



377

and complete and continuity of addition is defined by the pos-
tulates :

In both cases, however, the continuity postulates express that
the topological properties of two sets X and Y are the same if
one set can be carried into the other by a transformation of
the group @.

3. Sub-groups. 51 is a sub-group space if x E S, and y E S,
imply that x E S, and x + y E S1. To Si corresponds the sub-
group (51 of (5 generated by R and by the translations Ty and
’liT with y E Sl. The following theorem is due to Banach 2).
THEOREM I. If a right-hand (left-hand) group space contains a

sub-group space which is of the second category and possesses
the Baire property, then the sub-group space is both open and

closed and if the space is connected the sub-space is the space itself.
Banach’s proof uses the properties of metric spaces. 1 shall

outline a proof valid for group spaces as here defined.
Let D (X) be the set of points in S where a given set X is of

the second category locally. In other words, p E D (X) if there
is no neighborhood of p in which X is of the first category. Among
the properties of D(X) we shall need the following. 3)

D (X ) = 0 if and only if X is of the first category. X - D(X)
is of the first category. If D(Y) = 0 then

Finally

Consider now a sub-group space H of the second category in
S, and the corresponding sub-group S), and form the set D(H).
This set is not void since H is of the second category, and, D(H)
being the closure of its own interior, Int [D(H)] is not void.
Since H is of the second category at every point of the open set
Int [D(H)], we conclude that H. Int [D(H)] *" 0.

Let us now consider how these sets are transformed by the
operations of S). Let h E H, then - H = H and H + h = H,

2) loc. cit., pp. 21-22.

3) See KURATOWSKI, Topologie I, pp. 43-49 for proofs of these properties.
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since H is invariant under y. But if the group space is right-
handed the two sets X and X + h have the same topological
properties, whence it follows that Int (X +h) = Int X + h.
Thus

or Int [D(H) ] and, a fortiori, D(H) itself are invariant under
the operations R and T h of 5). But this implies that if one point
of H belongs to Int [D(H)], so do all points of H. Hence

and the same conclusion is valid if the space is left-handed.

Suppose now that p E H. This implies that every neighborhood
of p contains éléments of H. Let h be such a point in the open
set Int [D(H)] + p which is clearly a neighborhood of p. It

follows that h - p E Int  D (H ) . Hence also p - h E Int [D(H)]
and f inally p E Int [D(H) ]. In other words, H C Int [D(H)], and
consequently ,

The set on the left is open, the one on the right is closed. Hence
H is both open and closed. If the space S is supposed to be
connected, i.e., not the union of two disjoint closed sets, we
conclude that H = S.

H having the Baire property, every open set contains a point
at which either H or S - H is of the first category. H = D (H)
is an open set and H is of the second category at all of its points.
Hence, S - H is of the first category at all points of H. Suppose
that p E H - H -::/= 0, and form the co-set H + p. It has no points
in common with H, i.e., H + p C S - H; it is of the second

category and has the Baire property since the topological
properties of H are unchanged by translations to the right. It
follows that H + p is of the second category at all points of
H + p = H + p. But p E H and H is clearly a sub-group space
of S. Hence H + p = H and H + p is of the second category
at all points of H. But we have just seen that H --E- p, being a
sub-set of ,S - H, is of the first category at all points of H. It
follows that H - H = 0, or H is both open and closed and if
S is connected H = S.

4. Continuous transformations. Let S, and S2 be two group
spaces. For the sake of simplicity we use the same notation for
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addition, the zero element, and the négative in both spaces. Let
y = U(x) be a transformation on SI to S2 whose domain is a

sub-group space of SI and whose range is a sub-group space of S2.
We suppose U(x) to be additive

It follows that U(O) = 0 and U( - x) = - U(x ).
U(X) is said to be continuous at X=X, if XEX implies

U(x0) E U (X). We have the following theorem. 4 )
THEOREM 2. If U(x) is an additive transformation on one group

space to another which is continuous at x = xo, then U(x) is con-
tinuous throughout its domain.
PROOF. Suppose that x E X. This inlplies that

Hence

and

Thus U(x) is continuous everywhere in its domain.

5. Continuous vector spaces. In his treatise Banach introduces
a topology in linear vector spaces in two different ways obtaining
the spaces of types ( F ) and ( B. ) These spaces are supposed to
be metric and complete. It is possible to introduce a weaker and
still useful topology using the methods of this note.
We assume that the space S satisfies all the postulates of § 2.

In addition a notion of scalar multiplication shall be defined in S.
Let 1 be a set of scalars oc which form a field. 5)
For every oe e Xl and every x E S the scalar produet rxae shall

have a meaning and be an élément of S. The operations are
subject to the following additional postulates.

4) Banach, loc. cit., p. 23 for spaces of type (G).
5) We can get along with weaker assumptions. E has to be a ring with unit

element and without divisors of zero, qpt it is not necessary that multiplication
be commutative.
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In the last postulate 1 dénotes the unit-element of E. We
note that (-1) x = - x and that 0 x = 0 where 0 is the zero

element of L.
The closure définition must no,v be so adjusted that scalar

multiplication becomes a continuous operation with respect to
both ce and x. We write Ax for the set of all elements {ax} where
oc E A and x E S is fixed. Similarly, oc X stands for the set (oex)
where S is fixed and x E X. We suppose that a notion of
closure is defined in S satisfying Ci, C2, and C3. Then the addi-
tional postulates are:

A space satisfying Ao - A4, M1 - M4, CI - C7 will be called
a continuous vector space. These spaces may be regarded as

generalizations of the (F)-spaces of Banach. An (F)-space is a

linear vector space, satisfying Az - A¢, M1 - M4, which is a

complete metric space, the distance between x and y being
subject to the condition (x, y) = (x-y, 0). Further 

Finally E is the field of real numbers.

THEOREM 3. If S is a continuous vector space and E is connected,
and if H C S is any linear vector space which is of the second
category and has the Baire property, then H = S.

PROOF. Since H obviously is a sub-group space of the group
space S, it is sufficient to prove that the connectedness of £
implies that of S.

Suppose that S = S, + S2 is a disjunction of S and let x E Si,
Y E S2, then the set of points fax +(l-(X)y}, where oc ranges
over H, is a subset L of S containing r and y. Put Li = S,L,
L2 = S2L. Then L = LI + L2 is a disjunction of L. To this

corresponds a disjunction of E == Il + E2 where Si contains the
values of a which give rise to points in L1 and L2 those of L2.
But S being connected, at least one of these sets is not closed.
Suppose Si is not closed. Then there exists an ocl E Il ’ S2, and
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the corresponding point xo = aox + (1 - a,)y is in L2. But if A
is any open set in E containing oco, then x = {ccx + (1 - OE)Y}, (X E A,
is a set containing xo and open relative to L. But this set contains
points both of L, and of L2, so that L, is not closed relative to
L and a fortiori not in S. In other words, L is a connected set
and consequently also S. This completes the proof of the theorem.
We shall finally consider an elementary theorem on con-

tinuous transformations from one continuous vector space S1 to
another S2. Additive and continuous transformations are defined
as in § 4. We say that U(x) is homogeneous if

for every oc E £ .
THEOREM 4. An additive and continuous transformation from

one continuous vector space to another, having the same scalar field
Àl, is homogeneous if the sub-field of rational numbers is dense in
Xl, and 1 is a regular space.

PROOF. It is easily seen that U(rx) = r U(x) for every rational r.
Let R denote the sub-field of rational numbers, and let ace 1 - R.

Every open set A in E which contains a contains points of R.
By assumption lX E A R. U(x) being continuous, we conclude that
U(ax) E U(A RX) . But U(A RX) = A R U(x), and the image
space S2 satisfies C7. Hence

Thus

for all open sets A containing a. But if 2 is a regular space
and fJ =1= a, we can find a neighborhood A of a such that f3 is not
in A. It follows that the only element of X which belongs to all
sets A such that ae A is a itself. Thus U(ax) = oc U(x).
Theorem 4 can be generalized further. We may assume, for

instance, that 1 is an algebra of finite order over the field of real
numbers and that the homogeneity relation holds for the basal
units of Xl. If the transformation is additive and continuous, it
will then also be homogeneous.

Yale University.
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