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Introduction.

1. In the theory of vector spaces two important general
operations on such spaces are these: Formation of direct sums
and formation of direct products. It is convenient to recall the
definitions of these notions.

A (complex) vector space B is a set of elements f, g,..., in
which the operations f 4 g and (for every complex number a)
af are defined, and possess the usual properties (commutativity
and associativity for f -+ g, associativity for af, both distribu-
tivities, the existence of 0, and 1f = f, 0f = 0)1). If a finite
subset f;, ..., f, of ¥ is such, that every element f of LB can be
written as

f=afi+...+a,f, (ap-.., a, complex numbers)

in one and only one way, then f,, ..., f, form a finite basis of B.

If B,, B, are two vector spaces with finite bases f1,..., f1
and f%,...,f2, then it is well known, how two vector spaces
B and W'’ can be defined, which have — if proper notations
are used — bases formed by the elements f1,..., fL, f3,... /3
resp., by the symbolic expressions f} @ f3, i=1,...,n,j=1,...,m.
B’ is the direct sum B, D B,, W'’ is the direct product By Q B,.

B, BB, can be formed without reference to finite bases of
By, BVy: As the set of all pairs {f1, f3}, f1in B, f2 in B,, with
the definitions

{Lrey+ies e ={rr+en P+
a{f*, f?} = {af*, af*}.
For 8B, ® B, such a general procedure would be hampered by

(\T HEQU £
') In the abstract-algebraical terminology: B, is an Abelian group‘(ﬁ modu]us)( G S Ly
with the complex numbers as operators. At LoLe Lo o
< LN

*J:‘Hv;:wj"\‘
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many difficulties; for Hilbert-spaces a ,,basisless’ procedure has
been given in (7), pp. 127 —183 (cf. particularly § 2.2, loc. cit.).

Returning to the original B; ® B, and B, K B, it is clear,
that these operations are both commutative and associative, so
they permit us to define arbitrary finite direct sums B,P...PB,
and direct products L, K ... 8B, (k=1,2,...). -

2. These operations may be studied for Hilbert spaces
B, - - ., By in particular, or somewhat more generally, for unitary
spaces (cf. § 1.1). Now the application of the operation @ has
turned out to be a powerful tool in dealing with Hilbert spaces.
Two examples may be quoted: The theory of closed and adjoint
operators, as dealt with in (10) 2); and the theory of operator
rings, (9), where the fundamental Theorem 5 (pp. 898—396, loc.
cit.) is established with its help 3). Indications of similar possi-
bilities for ® exist. It seems reasonable, therefore, to study the
effects of @ and ® on unitary spaces. By restricting ourselves
to unitary spaces, we avoid all difficulties connected with the
possible non-existence of bases, which are extremely serious
in general vector spaces.

But if such a detailed study is undertaken, then the generali-
zation to infinite direct sums and products, B, G BLLz, D ... and
B, QX VB, ® ..., seems to be desirable, too.

3. Wesay first a few words about infinite direct sums, although
they will not be the subject of this paper ¢). It turns out, that
B, PV, D ... is not the widest possible generalization. If
is a parameter which varies over a space S in which a Lebesgue-
measure u(T) is defined ®), and if for every z of S a unitary

space 9, is given, then a direct integral f@ 9.dx can be defined,
S

which is a unitary space again. (The first example of %) leads
then back to H; P H.D....)

2) The space 7 defined on p. 299, loc. cit., which is the basis of the entire
investigation, is clearly our $ @ 9.
3) The Hilbert space 5 used there is clearly our @ ... 9 (k addends).

1) They will be dealt with exhaustively in another publication, which is to
appear soon.

5) For instance: S the set of all positive integers, u(T)= Number of elements
of T. Or: S the set of all real numbers, u(T) some Lebesgue-Stieltjes-measure

fd(p(a:) (p(x) a monotonous function).
T
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And this generalization seems to be a very natural and con-
venient one, because it permits various interesting applications.
Thus, with its help, the author succeeded in characterising all
operator rings by means of those, which F. J. Murray and the
author called ,,factors”, and for which an extensive quantitative
theory exists. (Cf. (7) concerning the ,factors”.) These investi-
gations permit us to extend the reduction theory of unitary
group-representations to all unitary spaces (including Hilbert
spaces), and to connect it with the above mentioned theory of
,,factors”. (This will be carried out in the publication mentioned
in footnote %) above.)

4. Let us now return to direct products. As mentioned in
§ 2, finite direct products H; ® ... ® 9, (for unitary spaces
D15+ H,) have been defined in (7), as a tool for the theory
of ., factors”. We will extend this to infinite ones, $; ® H. Q.. .,
and it will appear, that again a further generalisation is possible,
but in a totally different sense than for the infinite direct sums
(resp. direct integrals) discussed in § 3.

This generalisation consists in permitting direct products
with any number of factors: If I is an arbitrary set, and if for
every ael a unitary space §, is given, then the direct product
I1®4 ¢ ; Ho can be formed ¢). Our main reason for considering all
these Il®ye; Dy i, that while the theory of the enumerably in-
finite direct products ; ® 9, ® ... presents essentially new
features, when compared with that of the finite $; @ ... ® 9,
the passage from ; ® 9, & ... to the general II®y; D, presents
no further difficulties.

It seems worth pointing out, that while the generalisations of
the direct sum point toward the theory of Lebesgue-Stieltjes-
measure, the generalisations of the direct product lead to higher
set-theoretical powers (G. Cantor’s ,,Alephs”), and to no measure-
problems at all.

5. The discussion of infinite direct products Il®,¢; 9, neces-
sitates a careful analysis of infinite numerical products Il,¢;2,
(the z, are complex numbers). As this is done in Chapter 2 in
considerable detail, we mneed not speak about it now. Three
remarks, however, seem to be appropriate (all of which will be
discussed more fully in the paper):

¢) In this notation $; ® P, ® . .. would be IIQ,eq,2,..)0n
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First: Infinite direct products II®ye; 9, differ essentially from
the finite ones in this, that they ,,split up” into ,,incompletc”
direct products H®§€ 19« The importance of this phenomenon is
particularly put in evidence by Theorems I, V, VI, and X.

Second: The generalised notion of convergence (,,quasi-con-
vergence’”) of Il,¢;z,, as described in § 2.5, could be avoided
if we restricted ourselves ab initio to the ,,incomplete’ direct
products H®S€ 19D« (cf. § 4.1). This would have another advantage,
too: If all §, are separable, and I finite or enumerably infinite,
then the [I®ge; ey are again separable, while [1®, ¢, 9, is not. (Cf.
Theorem V and Lemma 6.4.1.) Thus H@%E 1 9 would permit us
to restrict ourselves to (finite dimensional) Euclidean and to
Hilbert spaces, while Il®,.; $, necessitates the use of general
unitary spaces. -~

But since no real new difficulties arise, and since II®4¢; Do
seems to be a more natural basis for our considerations than

H@%€ 1 Do, particularly in the light of the results of Part IV, we
choose the first alternative. And once Il®ye; Dy is used, there
seems to be no reason to insist on I’s enumerability.

Third: As I may be unenumerable, we must define unenumera-
bly infinite products Il,¢;z, (and sums Zye; 24, too). This is
done in Chapter 2, and causes no difficulties. In particular,
the complication of ,,quasi-convergence” (cf. § 2.5) arises already
for enumerably infinite I’s.

6. An essential result of our theory is, that the ring B of all
those bounded operators of I1®,¢; $, which are generated (alge-
braically or by limiting-processes) by operators of the £,, xel,
does not contain all bounded operators of I1®4¢; Dy Its structure
is exactly determined in Theorems IX and X.

What happens could be described in the quantum-mechanical
terminology as a ,,splitting up” of Il®y¢; Hy into ,,non-intercom-
bining systems of states’, corresponding to the ,,incomplete”
direct products H®S€ 194 This viewpoint, as well as its connec-
tion with the theory of ,,hyperquantisation’ will be discussed
elsewhere.

Another application of our theory could be made to the theory
of measure in infinite products of spaces, which is the basis for
the modern theory of probabilities. (Cf. (2), (8), (5).) Here a

certain ,,incomplete’ direct product H®ge 19y is fundamental.
This application too, will be discussed in another publication.
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7. Part IV shows in a very characteristic way, how differently
the various parts of a simply defined subring of B may behave,

when the H@%s 1 Do-decomposition of [I®,¢; 9, is applied to them.

A special example of particular interest is discussed in detail.
(Cf. in particular §§ 7.3—7.5.) It seems to be essentially con-
nected with the theory of ,,factors” of F. J. Murray and of the
author, (7), and provides particularly simple examples of various
sorts of such ,factors”, particularly of the important type
(I1). (,,Finite-continuous”, cf. (7) pp. 172, 209—229.)

8. A detailed table of contents has been given, to facilitate
orientation in the paper. All quotations refer to the bibliography,
(1)—(15). The notations to be used are fully explained in § 1.1.

The reader is supposed to be familiar with the general theory
of Hilbert space, as contained in (8), (12) or (14) and its generali-
sation to unitary spaces, as given in (4), (12), (18), or (15) (cf.
1.1, (b)). For Part III at least familiarity with the general ideas
of (7) or (9) is desirable. In § 7.5 only will results of (7) be used.
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Part I: Preparatory considerations.
Chapter 1: Notations.

1.1. We will use the notations of (8), (9) in about the same
way as in (7). It will be necessary, however, to include non- .
separable hyper-Hilbert-spaces ab initio in our discussions,
thereby diverging from loc. cit. above. For this reason it seems
appropriate to give an independent account of the notions and
symbols to be used. v

(a) «eS means that o is an element of the set S, SCT or
T DS that S is a subset of T (including the possibility of S = T').
The set-theoretical sum of all sets S, « running over all clements
possessing a certain property &(«), will be denoted by &(S,; &(«)) 7).
If these S, may be written as a finite or (enumerably) infinite
sequence S;, S, . .., we will write S(Sy, S,, . ..) too. If S has a
unique element  we may write  for S. The empty set will be
denoted by 6.

(b) A complex linear space with a (Hermitean and definite)

7) In particular: If « runs over all elements of a given set I, we write
& (Sy; a€l). In (7) the letter S was omitted.
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linear inner product, which is complete, will be denoted by 9.
(We will make free use of affixes and suffixes, as many such
spaces will occur.) In other words: § is a space in which oper-
ations af, f 4+ g, (f, g) satisfying the conditions A, B, E of (8)
p- 64—66, are given. Conditions G and D (loc. cit.) are explicitly
excepted. (They express the separability and the infinite-dimen-
sionality of $.) It is known, that in spite of these omissions
$ can be treated almost precisely along the same lines as in
(8), (12) and (14) (where all conditions A — E are used). In
particular: A system of elements ¢, e, where « runs over an
arbitrarily given set of indices I, is a complete normalised or-
thogonal set, if

@) (o #p){ =g for 2 5
(IT) if feH and (f, ¢) =0 for all ael, then f=0.

Such systems @,, xel do exist, and for all of them I has the
same power N = N(9), the dimension of $. (Cf. (15), also (4),
(18) or (12).) Correspondingly $ will belong to one of the
three following types:

(1) N(9)<N,. Then R(9H) is finite; N(H)=N=1,2,...
and 9 is an N-dimensional (complex, unitary) Euclidean space.
(C fails, D holds.)

(2) N(9)=1¥,. Then 8(9) is enumerably infinite, and 9 is
a Hilbert space. (Both G, D hold.)

(8) N(9)>N,. Then N(H) is unenumerably infinite, and H
is a (non-separable) hyper-Hilbert space. (G holds, D fails.)
We exclude explicitly the case ¥(9) =N =0, where $ = (0).

Any such $ will be called, for the sake of brevity, a unitary

space.
(c) Closed linear subsets of $ are denoted by I, N. As they
are again unitary spaces ‘(except when = (0)), their symbols

sometimes replace 9.

The smallest linear or the smallest closed linear set containing
certain sets and elements are denoted by &{...} resp. €[...].
(The details of this notation are as in (a), where the smallest
set containing them — that is their set-theoretical sum — was
denoted by &(...).) 8) The set of all elements of I which are
orthogonal to % is a closed linear set, to be denoted by It — N.

(d) For operators, rings of operators, etc., we use the same
notations as in (7), p. 127.

8) In (7) the letter © was omitted in all these symbols.
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(e) The topologies to be used in $ and in the space B = B(9)
of all bounded operators of §, are those discussed in (7), p. 127.
Considering the cases (1)—(3) in (b) above, we see: In cases
(1), (2) (Euclidean spaces and Hilbert space) these topologies
behave as described loc. cit., and (9), (11). In case (3) (hyper-
Hilbert spaces) one verifies easily, that the conditions are iden-
tical with those of case (2), with one exception: The second
countability axiom of Hausdorff holds for none of our topologies,
not even in the unit-sphere of  or B (defined by llel| =1
resp. J|4]| £1).

Chapter 2: Convergence.

2.1. Let I be a set of indices of arbitrary size, and let for
each ael a unitary space 9, be given. We wish to define a
direct product of these 9,, ael, which will be denoted by
I®,e;r Hu» under the guidance of the following heuristic prin-
ciples:

We desire that Il®,¢; 9, be again a unitary space. For
any given sequence of elements f, e¢$,, « runs over I, this
II®ye; Dy shall contain a (symbolic) element Il®,¢;f,. For
these elements we require

(*) (H®aelfou H®:x€1 ga) = chel (fou goc)g) .

The I1ye; (fx 8x) on the right side of (*) is a numerical product,
which may have infinitely, perhaps even unenumerably in-
finitely, many factors. Therefore its convergence is a serious
question, which must be dealt with by appropriate definitions,
before a notion of Il®,e; O, fulfilling our heuristic requirements
can be satisfactorily described.

Specialise (*) with f, = g,, then this results:

(**) ” Neyer fa ” = Iyer |l full-

This formula shows, that we cannot insist on forming [I®,¢;f,
for all sequences f, € O, xel:

(1) Only sequences f,, « €I, with a convergent Il ¢/l fxil can
be permitted ).

%) We denote the inner product and the absolute value by (P, ¥) and ||® ||
if &, Yell®@qerHy and also by (fu, &) and || fo || if fur 8u € Do -

10)  For a finite I the problem does not arise; for an unenumerably infinite one
Il er has not yet been defined. But if I is enumerably infinite, it is obvious,
that Iy er can diverge in the usual sense.



10 J. v. Neumann [10]

Another observation:

(2) In the definition of convergence to be given, convergence
of Il ezllfx]l to 011) may be considered as convergence. But
sequences fo, a €I, with Ilye; |l fy]| = 0 are of no importance for
our purpose, because (**) forces us to define for them II®¢;fx = 0.

(*) is a relation between two sequences f,, ael and g,, xel
and not a property of one. This is apt to be a source of compli-
cations, except if we manage to secure this:

(8) If Ilye;llfoll and Ilye,llgxll converge, then Meer (for &)
converges too.

Finally we wish, that our direct products II®y¢; Dy fulfill the
commutative rule of multiplication unrestrictedly. This makes it
plausible to require:

(4) The definitions of convergence for Il e;[lfy|l and for
Il,e; (fo gx) shall depend on no ordering of the set I.

2.2. We proceed now to define the notion of convergence
for Ilye; 2y, the z, being arbitrary complex numbers, so that the
desiderata (1)—(4) of § 2.1 are fulfilled as far as possible. It is
convenient, to define at the same time X,¢;2, too.

(4) forbids us to introduce any ordering of I. Therefore the
following definition seems natural 12):

DEFINITION 2.2.1. 2, ;2 resp. 11y ¢; 2y is convergent, and ais its
value (the z, as well as a are complex numbers), if there exists
for every 6 > 0 a finite set I, =14(d) CI, such that for every

finite set J = &(ay,..., «,) (the a4, ..., «, being mutually
different) with I,CJ CI
|2, + oo 2y, —a] =0 resp. |2y c... 2%, —a| = 0.

CoroLLARY: The value a of Xye;z, resp. Iy, 2, is unique,
if it exists at all (that is: if we have convergence).

Proof: Let a/, a”’ be two values. If § > 0, choose the corres-
ponding finite sets Iy = I;(3), I, = Iy (9). Put J = &SIy, Iy) =
S(tygs « « - &y). J 1s finite, I,CJCI, I/ CJCI so

|20, -+ 2q, — @' | =9, |2, + ...+ 2y —a’|=0resp.
| 2 v e v e 22, — @' | =9, [ 2, e et %g, —a" | =0
and thus |a' —a” | =25. As 6 >0 was arbitrary, we have
a=a'.

11)  Which, if all ||fy|| # 0, is usually called ,divergence to 0”.
12) Tt is a special case of a notion of limit in ,,directed sets’’, due to E.H. MOORE,
H. L. SmitH, and G. Birgnorr. Cf. (1), (6).
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2.3. We now derive the basic properties of Xy, 2.

LEmMMA 2.3.1. If all 5, are real and = 0, then X, ¢; 2, converges
if and only if the set ©(zy + ...+ 243 ... %, mutually
different, and all € I) is bounded. Its value is then the l.u.b. 13)
of this set.

Proof: Necessity: If Xy¢;2, converges, then let a be its value,
and put Iy = Iy(1). If ay, ..., a, are mutually different and all
eI, then let «,,q, . . ., a, be the different elements of I,, which
are £ oy, ..., oa,. Now J = S(oy, . .., a,,) satisfies [, CJ CI and
so (as all z, =0)

0 §zal+...+zaﬂ gzal—{—...—l—zaméa—FI.
Thus the set in question is bounded.

Sufficiency and value: If the set C%(zocl otz o,
mutually different and all € I') is bounded, then let a be its Lu.b.
For every 6 >0 choose &, ..., &, mutually different and €1,
with 2z +...4zz =a—9. Put I,=1y(0) = S(&, ..., &)
Now if J =&(ay, ..., «,)is finite and I, C J CI (the «, ..
mutually different), then the &,, ..., &, occur among the «;, .
and so (as all z, = 0)

o Uy

s Oy

a—5§2&1—}—...~{—2&”§2&1+... z&méa,
[21+ .. F2, —a| =0
As 6 >0 was arbitrary, X, z, is convergent, and its value is a.

Lemma 2.8.2. If all z, are real and = 0, then X, ¢, 2, converges
if and only if .

(I) =4 %0 occurs for a finite or enumerably infinite number
of «el only, say for the (mutually different) oy, a, ... 1%),

(II) 2y + 2, + - .. (in the usual sense) is finite. Its value
is then the z; + 24, + ... of (II).

Proof: Necessity: Denote the Lub. of &(z + ...+ 233
B1s .- ., B, mutually different and eI) by a. If we had
Rgs e e R, = 0 for some fixed 6 >0, then a = gt + 25 = nd,

n < %would ensue. So only a finite number of o€l with g, =6
exists. Put 6 =1, %, —;T, ...
Form the o, o, ... of (I). Then z, + ...+ 2 =a and as

all LI R = 0; this implies the finiteness of 24 + 2, + .. .-

successively; this proves (I).

13) l.u.b. = least upper bound.
14) The length of this sequence may be 0,1, 2,...or co.
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Sufficiency and value: If (I), (IT) hold, then z, +z, + ...
is clearly the lu.b. described in Lemma 2.3.1.

LEMMma 2.3.3. If the z, are arbitrary complex numbers, then
2 yer 2 converges if and only if 2y e; |2, converges.

Proof: The convergence of X,¢;%, is clearly equivalent to
the combined convergences of Zyer Ry, Lyes Jx 2*). The same
is true for X, ¢;|2,| and Z,e;|R2a|, yes |2y owing to

| Rzo| and [Jzu| =2 | = Rea| + Iz -

(Use Lemma 2.3.1.) So we may consider Rz,, Jz, instead of z,.
That is: We may assume that z, is real.

Necessity: If X,¢;2, converges, then let a be its value, and
I, =1,(1)=6&(ay ... a,), the a;, ..., &, mutually different. If
oy .« . o, are mutually different and # &, ..., a, then

|2z, T 2z, —al =1, |25 + oot rg b R, —a| =1

SO

IA

|2, oo 2, | =2.

Now denote the oy, . . ., «,, with z, >0 by «, ..., o; and those

with 2, <0 by «;,..., a,_,. Then we have similarly

m—s*
|2, + oo A2y | and |2+ .. 4z, | 2. But
[2a1+~--‘|‘za;I::a;+--- 2o = 2| e 20

LN SO Ny — — ~ 0 e~ :l,,,| | |
i R e Ty — e — 2 = |2 2o,

o [ e A2, | = 4

Now if 8,,..., B, are mutually different, but otherwise ar-
bitrary, then let «,...,2, be those By, ..., 8, which are
# &, .. . &,. Then

A N AT C-A R LA PP o E
e Slmlteetlunl+i=a
(say). So Z,c;|24| converges by Lemma 2.3.1.
Sufficiency: Let I’ be the set of all a el with z, > 0; then
I — I’ consists of those with 2, < 0. If Zy¢;| 2, | converges, then

2oer | %als Zyer—r | 24| converge too, by Lemma 2.3.1. But for all
wel',2y=|2,], and for all wel —1I', 2, = — |24 |- So Zyer 2

13) If z=u-+1iv, u, v real, then Rz=u, Jz=z.
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2yer—11 % converge too, and this clearly implies the conver-
gence of X .;z,.

LEmma 2.8.4. If the z, are arbitrary complex numbers, then
Yner Ry converges if and only if )

(I) =2, 7 0 occurs for a finite or enumerably infinite number
of a el only, say for the (mutually different) o, oy, ... 13).

(II) |2y |+ |2, | +-.. (in the usual sense) is finite. Its
value is then 2z, +2, + ... (in the usual sense).

Proof: Necessity. and sufficiency: Immediate by Lemmata
2.8.2 and 2.3.3.

Value: As we may consider X, ¢; Rzy, Zine; 2y Instead of Xy ¢ 2,
we may assume that all z, are real. Let I’ again be the set of
all o e I with 2z, > 0, so that I — I’ consists of those with z, < 0.
Our statement holds for X, 2, because here z, =|z,|, as well
as for Xyc; . 2, because there z, = — | 2, |. (In both cases use the
last statement of Lemma 2.3.2.) So it holds for X, 2, too.

CoroLrLary: If I is finite, that is I = &(ay, ..., a,) (the
O, - « - %, Mmutually different), then 2, ¢;z, is always convergent
and its value is 2, +...+42,. If I is enumerably infinite,
that is I = &(«y, oy, ...) (the ay, oy, ... mutually different),
then Xy e;2, is convergent if and only if R, Ry, +ee 18 absolutely
convergent in the usual sense, and then its value is z, + 2, + - - .

Proof: Clear by Lemma 2.8.4.

Our notion of convergence is thus an extension of the usual
notion of absolute convergence. At any rate X, z, conserves its
usual meaning for finite sets I.

2.4. We next discuss Ily¢; 24, again beginning with the special
case, where all z, are real and = 0.

Lemma 2.4.1. If all 2z, are real and = 0, then

(I) Il e; 2, converges if and only if either X, ; Max (z, —1, 0)
converges, or some g, =0,

(II) Il,¢;2, converges and is 5 0 if and only if Zye;| 2, — 1|
converges and all z, # 0.

Proof: If any z5 =0, then II, e 24 is convergent and has the
value 0: I,=1Iy(6) = &(f) will do for any 6 > 0. So z3=0
has the desired effect in both (I), (II), and therefore we may
assume that all z; 7 0, and discuss (I), (IT) under this assumption.

Necessity of (I): Assume that I, ¢;2, converges, and that its
value is a. Put [,=Iy(1)=6E(a,...,a,), the &,... &,
mutually different. Let «, ..., o, be mutually different and
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el. Some &, . .., &, may occur among the «;, . . ., &, say &, . . ., G-
Now J = &(0g, « « +y &y Apyys - - -5 &,) is finite and I, CJ C 1, so

we have 2 +....2y -2z  -...-3g =a-+ 1. Therefore
a—+1 a+1
R * = — + - =
%o - "%, Min (z&pﬂ,l)-..ﬁ;-Mm (23,5 1)
< a+1 . '
Min (25, 1)-...-Min (25, 1)

But if z,, — 1> 0 for all z,, then

2, = (14 (24, — 1)) e (U (2, — 1) =
gl"‘]"(zal_l)“’_"'_’_(zdm_l)»

R, *
and so
< a-+1 .
~ Min (25 ,1)-...-Min (23, 1)

(2, — 1) + ...+ (20, — 1)

Now denote the a;, ... «, with g, —1>0 by o,..., o.
Then the above evaluation does hold for (z,; —1)4 ... + (2, —1).
In other words:

Max (24, —1,0) + ... +

< a+1 ‘

~ Min (23, 1)-...-Min (33

+ Max (2, —1, 0) 1)
By Lemma 2.8.1 this establishes the convergence of
Yoe; Max (2,—1, 0).

Sufficiency of (I): We will prove below that 114, z, converges,
if X, er]/24—1| converges. So we need only consider the case
where X, ¢; Max (2,—1, 0) converges and X2, ¢, |2,—1| does not,
that is ) X, Max (1—z,, 0) does not.

By Lemma 2.3.1 the first statement implies

Max (2%2,—1, 0) + ...+ Max (2, —1,0) =aq,

for some fixed a,, whenever the «,, .. ., o, are mutually different.
Hence

e * 2y M GO Max (e, m1 00 pay
1 m =

For the same reason the second statement implies the existence
of a set of mutually different &, ..., &, for any given 4 >0
such that Max (1—=zz,0)+ ... + Max (1—z3,,0) > 4. Clearly

16) Observe that |u|= Max (u, 0) + Max(—u, 0) for all real u.
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every &; with zz =1 could be omitted from this set, so we may
assume that all 23 <<1. Now we have

By, *e .3y é C_Max(l_zil’ 0 LIRS -e‘M“ (l_z&n, 0 < E‘A.
1 n

Any 8>0 being given, choose 4 with e%~* <4, and put
I,=1,0)=&(&,..., &,). Then any finite J with I,CJ CI
has the form J = &(ay, ..., &y, og5 « o o %) theay, ..o, &, 0, -0 05 o,
being mutually different, and

a, —A
0 =25 -...°%z "B *--- "%, <€ " =0.

Thus Il,¢;2, converges (its value is 0).

Necessity and sufficiency of (II): That Il ¢;2, be convergent
with the value a, all 2, 20 and a # 0 is clearly equivalent to
2, erInz, being convergent with the value In a. By Lemma 2.3.1
this means, that X,¢;|Inz,| be convergent.

Compare this with the convergence of X,¢,|2,—1|. If either
expression converges, Lemma 2.3.2 requires, that |Inz,| > %

resp. |z,—1| >—;— occur only a finite number of times. The
second inequality implies the first one, so we have |z, —1]| §%,
with a finite number of exceptions. Now |z,—1| g% implies
%[za-ll < |Inzy| =2[2—1]|"), and so the two convergences
are equivalent by Lemma 2.8.1.

CororLary: Explicit criteria for the convergence of Il,¢; 2y
resp. for its convergence with a value # 0 (all 2z, real and =0)
can now be obtained by applying Lemmata 2.8.1 and 2.8.2.

Lemma 2.4.2. If the 2, are arbitrary complex numbers, then
IT,¢; 2, converges if and only if

(I) either Il,¢; |2 converges and its value is 0,

(IT) or Il,e;|2,| converges and its value is 0, and

2 yes|arcus z,| 8) converges.

In case (I) the value of Il ¢;2, is 0, in case (II) it is
I, |2y | - € Lo ey arcus %« and thus == 0.

Proof: Necessity: As

2, ooz, | — lal| S 12, 24, —
d(1
) d_(ni“)=l lies between in and i: 2,
(Ra—1) 2, 1+ 3 1-3

1) Is 3520, z=|z|e® with — 7 < 6 < 7, then arcus z = 0.
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the convergence of II,, 2, clearly implies the convergence of
e, |2]- It remains to be shown, that when Il er |2 #0,
then it implies the convergence of X, |arcus z,| too.
As Iyerzq, I, |zo| converge, the latter with a value 0 so
2 )
Haellz;:l: e e-ameusza (3]] 2 —£0 necessarily!) converges

too. Let the limit be g, and put Iozlo(ﬁ) = &(&y, .- &)

(for I, et areus %), the &, ..., &, mutually different. Consider
any mutually different «,,..., «,, all #&,...,&,. Then we
have

Iez-arcus R e, , ., .plrarcuszy

el<—=
24/2
) , . i, . 1
|ez-arcus z&1 o ez-arcus z&q . gt -arcus 20‘1 A 6,1 arcus S, _Ql < _
24/2
and so
1 -arcus 2z 1 -arcus 2z (e arcus g, . ef-arcus z 1
|e SR I an(e oy Te e e “m-——1)|< —
V2
As |¢'*8T8 %% | —= 1, this means
7 +arcus 2, 1 -arcus g, 1
|€ A1 .., € “m’—‘1|<‘__
V2
and therefore excludes

44 37

< |arcus %, + ... 4 arcus Zq,| < 5

=

. . . T 37
Considering o«; alone instead of «,, . . ., o, €Xcludes - = o] = >

and considering |o;| =&, we obtain |oy] <?. Consider now

%, ..., instead of e« ... «, for all 1—=0,1,2, ..., m
|arcusz, + ...+ arcusz,| is 0 for =0, it changes by

7
= |arcus zam| §-2— when [ is replaced by 141, and it never

. T 37 . . T
enters the interval Y Su< > Therefore 1t remains always <--

p

In particular I =m gives:
7
|arcus zy + ... 4 arcusz, | < 5

Denote now those «,,...,a, for which arcusz, >0 by
t)
1"

7 . "
ay, . . ., &, and the others, for which arcus B, =0, by oy, .0 o
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Then again
|areus 24| + . .. + [arcus 24| = arcus 2, + - - - + arcusz, =
7
— |arcus z,, + . . . + arcus Ze| < <
arcus Zoc'{l + ...+ ]arcus zd;;_s| = —arcus 2y, — -:. — arcus Ryrr =
G/
— |arcus 2y + . .. +-arcus 2ar | < 7
Adding gives
]arcuszall +... 4+ ]arcuszaml <z
and so |
|arcus zgz,| + ... + |arcusz;”| + |arcuszall 4o+ larcuszaMI <
<|arcuszz,| +--- + |arcus zz,| + 7 = b,
(say). .
Thus if By, ..., B, are mutually different, but otherwise ar-

bitrary, then
|arcus 25 | + - - - + |arcus 25, <b,.

Thus Lemma 2.3.1 secures the convergence of ¥, |arcus 2] .
Sufficiency and value: Case (I): As

Izall -Izanl = |2+ - - %,

the convergence of Il ¢;|%,| with the value 0 implies the same
for Il er2y-

Case (IT): X, ¢, |arcus z,| converges, so X, ¢, arcus z, converges
too (by Lemma 2.3.8), and with it Il ;€2 % The latter’s

P .
value is ", where 0 is the value of X,¢;arcusz,. Now IT 1 2]

converges and its value is an @ #0 so Il ye; 2, =TT 4 e |2, | €271 %
converges too, and its value is ae®® 0.

CoroLLARY: Explicit criteria for the convergence of Il ¢, 2y,
resp. for its convergence with a value # 0 (the z, are arbitrary
complex numbers), can again be obtained by applying Lemmata
2.3.1 and 2.8.2. For a finite set [ = &(ay, ..., «,) (the ay, ..., «,
mutually different) in particular, Ily¢; 2, is always convergent
and its value is 2y +. .. 2y .

2.5. We see (from Lemma 2.8.3 resp. 2.4.2): While the
convergence of Yy, | 24| is necessary and sufficient for that one of
2 we1 % the convergence of I1,¢; | 24| is necessary but not sufficient

2
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for that of II,¢; 2, This is very inconvenient, because it violates
our desideratum (3) in 2.1: Choose for each axel a @, € Dy With

lgall =1 and put fo = lzalgei'am“sza Qs Lo = |za|’}¢pa. Then
Hae] ”foc”:Hocel l!gaii:rlaezlzal%COHVCTgC (along with HaellztxD’
but Ilae; (fur o) = lger 25 does not converge. .

We remove this difficulty by defining:

DerFiNiTION 2.5.1. Il,e; 2, is quasi-convergent, if and only if
Il ;|2 is convergent. Its value is

(I) the value of Il,e;2, (in the sense of Definition 2.2.1),
if it is even convergent,

(IT) o, if it is not convergent.

CororLrLarY: The value of Il,.;z, is again unique, if it
exists at all (that is: if we have quasi-convergence).

For 2, =0 we have z, = |2,|, and so convergence and quasi-
convergence are then identical.

Thus we have introduced this convention: If I1,¢; |2,4| converges,
but if Il e;2, does not, owing to a too vehement oscillation of
the arcus z, (cf. Lemma 2.4.2, (IT)), then we attribute to 11, ¢ 2,
the value 0. This convention is somewhat arbitrary, but probably
simpler and more plausible than any alternative one would be.
Besides it secures (3) in § 2.1 (cf. Lemma 2.5.2), and leads to
a workable theory of direct products II®q¢; 9y, as will appear
in the subsequent parts of this paper.

LeMMA 2.5.1. Quasi-convergence of Ily¢; 2, with a value #0
is equivalent to convergence with such a value. It holds if and
only if all z, #0, and X ¢;|2,—1| converges.

Proof: The first statement is immediate by Definition 2.5.1.
Now Lemmata 2.4.2 and 2.4.1, (II), give this necessary and
sufficient condition: All z, # 0, and e, ||2a| —1|, Myer|arcus 2,
converge. But clearly

1
Hza|~ll and ?larcusza| = |2 —1] S_Hzal—l[ + Iarcuszm|

and so these convergences are equivalent to that one of
2yer|2—1| (use Lemma 2.8.1).

CoroLLARY: Explicit criteria can again be obtained by applying
Lemmata 2.8.1 and 2.3.2.

In what follows, the values of expressions I, 2, will always
be understood in the sense of quasi-convergence, except where
the opposite is stated.

We are now able to prove (8) in 2.1¢
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LEMMA 2.5.2. If f,, gye Dy for all ael, and if I I/l
I, c;llgell are (quasi-)convergent, then I, e; (fxs> 82) is quasi-
convergent too.

Proof: 11, (||fan)2, I ye; (]]gc,‘H)2 converge along with I, ¢/ I/,
I e;llgyll- From these we wish to derive the convergence of
Hael'(fw goc)‘- Since an || fyll = 0 or [|gl| =0 implies (fx, gx)=0,
Lemma 2.4.1, (I), shows that we need only to derive the
convergence of Xye;Max ([(fu> g)|—1,0) from those of
ZaeIMaX ((”ftx”)z—l’ O)a ZocéINIa'X ((”gau)z_la O)'

Now |(fur )| = = (Ifl)* + 5 (lgal) s so
|(Fa )] — 1 = (12 —1) + 5 ((lgalP—1)

and hence

Max (|(fy» ga)| — 1, 0) =5 Max (I f2l)? — 1, 0) +
+ 5 Max ((|gall)*— 1, 0).

So Lemma 2.3.1 gives the desired result.

Part II: The direct product.
Chapter 3: Construction of the complete direct product.

3.1. Asin 2.1, let I be a set of indices of arbitrary size, and
let for each ael a unitary space , be given.

We are now able to live up to (1) in § 2.1, and define those
sequences f,, ael, for which II® ¢, f, will be later on (in Defi-
nition 38.1.8) defined.

After having obtained these II®y¢;f, we will form all their
finite linear aggregates (in Definition 8.1.8) and then ,,complete”
their space. This could be done entirely abstractly, in the manner
of G. Cantor, but we prefer to use a specific representation
by means of ,,conjugate-linear functionals” (cf. below, and later
in Definition 8.5.1 and Theorem III).

DerFINITION 8.1.1. A sequence f,, ael, is a C-sequence if and
only if fye 9, for all ael, and Ilye;]|fyll converges.

Lemma 38.1.1. If f,, wel, and g, xel, are two C-sequences,
then Ilge; (fy, gx) is quasi-convergent.

Proof: Immediate by Lemma 2.5.2.

Now we define the conjugate-linear functionals, on which our
construction of I1®,¢; H, will be based.

We will consider functionals @, which have complex numerical
values, and an argument f, for each ael, the domain of f, being
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Da. We will denote such functionals by @(fy; ael). Another
possible aspect would be this: The argument of @ is the sequence
Jo> x€l, as a whole. The @ we shall consider, will however, be
defined for C-sequences only.

Whenever it is necessary to consider a particular argument f,
(for some fixed aye I) separately, we will write @ (fy | fos ae L, a7
instead of @( fy; ael).

DEerFiNiTION 38.1.2. Consider those functionals @D(fy; ael)
which have complex numerical values, are defined for all C-
sequences f,, ael and for those only and which are conjugate-
linear in each fy , «gel:

(I) ¢(Zfa0|fa§ ael, a #og) = E'p(f:xolfoc; ael, a # ay),
(L) D(foy+ 8ay | fus e, o 5 09) =
= Q(faolfﬁ wel, o 7 ay) + (p(got.,lfa; wel, o £ o).

Denote the set of these @ by II®qe; Do-

I1®ye; o is a set of complex-valued functionals, therefore the
operations u® (u any complex number) and @ + ¥ have an
immediate meaning for its elements @, ¥. Clearly u®, ® + ¥
belong to Il®,¢; D, again (that is, they are conjugate-linear),
as well as the identically vanishing functional 0. So we see:
H®ye; D« is a linear space with complex coefficients.

We will now define certain special elements I1®y¢; f2.

DErFiNITION 3.1.8. Given a C-sequence f2, ael, Lemma 2.5.2
permits us to form the functional

P(fos 2 el) =Iloer (f3: fa) s

where f,, a eI, runs over all C-sequences, and those only. Clearly
Dell®ye; Dy Define i

D= H‘g’aufg .

DEerFintTION 3.1.4. Consider all finite linear aggregates of the
above elements: .

¢ = 211;1 II@aEIfa(c),v

where p=0,1,2,... and f7 ,, ael, is a C-sequence for each
»=1,...,p"). Denote the set of these @ by II'®,¢; Dy -

19) Observe that z [IQqe Ifao (z any complex number) is again a [I®q¢; gg:
Tt suffices to put ggo =g fgn and g} = f0if « 5~ «, for some o, € I. Thus it was

unnecessary to include complex numerical coefficients in the above formula.
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Clearly I1'®yc; 9o C lI®ye; Da» and both sets are linear spaces
with complex coefficients.

32. In II'®4e; Oy (but not in [I®ye; Hy!), an inner product
can be defined.
Levma 3.2.1. If &, Well @y Oy, that is if

@ =2, ey /2, V= z;i:l H®ye; gg,,u
then Lemma 2.5.2 permits us to form

(¢: lP) :211;):1 Z=1Hael (fc?c,v’ ggc,y,) .

This expression depends on @, ¥ only, but not on the particular
decompositions used for @, V.

Proof: It suffices to prove that (@, ¥) is unchanged, if only
@’s decomposition is changed, or if only ¥’s is changed. As
(D, W)= (¥, D) (for the same decompositions!), we need to
consider the first case only. Instead of comparing two decom-
positions of @, we might as well compare their (formal) difference
with 0. In other words: We must only prove (@, ¥) = 0 for
@ =0 (that is, identically @(f,; xeI)=0), for every possible
decomposition of this @.

Now in this case

(@, %) =2 1 {21 Maer (S0 80,0} =
=2l A2 (Meuer £2,)(8, s e )} =
=301 (S, 5 el)=0.
LemMma 8.2.2. (@, ¥) is linear in @, conjugate-linear in ¥,
and of Hermitean symmetry in @, ¥:
(1) (u®@, ¥) =u(®D, ¥) (2) (D1+Pp, V) = (Py, ¥) + (P, ¥)
(3) (D, u¥) =u(D, V) (4) (D, ¥, +¥;) = (D, ¥)) + (D, ¥3)
(5) (2, %)= (¥, 9).
Proof: The uniqueness of (@, ¥) being established, all these
formulae are obvious.

LemMA 8.2.8. (D010, e f2) = ([ ael).
Proof: Immediately by our definition of (..., ...).

3.3. Before we can continue the discussion of (@, ¥) we must
introduce and analyse a notion of equivalence for C-sequences.

DEFINITION 3.8.1. A sequence fy, ael, is a Cy-sequence, if and
only if f,eD, for all ael, and Tye;|llfull — 1| converges.
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LeMMmA 3.3.1. Every Cy-sequence is a C-sequence, too; every
C-sequence with II®q¢,fy #0 is a Cysequence, too.

Proof: The first statement follows from Lemma 2.4.1, (I), the
second one from Lemma 2.4.1, (I1), if we replace II®,.; f, #0 by
I, c;lIf<ll # 0. But the first inequality implies the second one.
We argue a contrario: Ily¢; | f«l| = 0 implies for every C-sequence
8o “Ela that Hoce] ”foc“ ‘ ”ga” =0. Now l(fou goc)l = ”foc” ‘ ”got”
hence Il ¢, ’(fa, ga)l =0 and Il,c;(fs g«) = 0. But this means
(N®yerfr)(@a; xeI) =0 for all C-sequences g, ael, hence
N®gerfa =0.

Lemma 3.3.2. X,|llfxll— 1| converges if and only if
Zoer|(ful)?— 1| converges.

Proof: In either case, |||fyl— 1| resp. |(||fm||)2 —1| being
bounded, ||f,]| must be bounded, say = C. So

[Ifall = 1] = [(1£al)* — 1 = A+ O I full = 1]
and thus the two convergences are equivalent. (Use Lemma,
2.3.1.)

DeriniTION 8.8.2. Two C,-sequences f,, ael and gy, ael
are equivalent, in symbols (fy; cel) &~ (gy; el), if and only if
Zger|(fowr €2) — 1| converges.

LemmMa 8.8.3. The equivalence ~ for Cj-sequences is reflexive,
symmetric, and transitive:

(D) (Jws wel)~ (fo; 2el),
(IT) (fus axel)~ (gy; ael) implies (8y; ael) r (fy; el),
(L) (faiael)n (g 2el)s (i ael)~ (hy ael)
imply (fy; cel)a (hy; ael).
Proof: Ad (I): Obvious by Lemma 3.3.2.
Ad (II): Obvious as

|(goufoc) _ll = l(fou ) —ll = |(fou gx) ‘1| = ‘(fou gx) _1] .
Ad (III): We know that
Zoer|Ilfall =1}, Baer|llgall =1, Zaer|libal —1],
EOCEII(focs goc) —1i, Zaell(gou hoc) _ll

are convergent, we must prove, that Zae,[( fa,ha)—1| con-
verges too.

Thus [[|foi—1], [llgal—1], [liall=1], |[(fur &) —1], [(gx> o) —1]
are all bounded, say = C. We have reached our goal, if we can
prove

b 2
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{(foc’ hoc)_ll § D{“lfoc”_li + l”ga”_ll + l”hoc”_ll +
+ I(fw ga)_ll + I(gw ha)_ll}

for some constant D, a finite number of exceptions « being
permissible. (Use Lemma 2.3.1.)

Put ||full =14, gl =146, |lhell =1+,
(far 8x) =1+ 2%, (8> hg) =1+ 4.
So [n], 6], 12, |#], |A] =C, and except for a finite number of
s, 10| = (that is |llgall — 1| g%) (Use Lemma 2.3.2.)
,,Orthogonalise” g, fo, hy (in this order):

. Ba = 011 P>
fo = a1 Qo + Gy Py
hy = @31 o + sy P+ gy ‘P;”
ool = llgall = gzl =1, (@as Po) = (P P) = (P2 P) = O
Then
lay |® = (lgal)?® = (1+0)2,
| @z |* + | @ge? = (Hfoc”)2 = (L+9)%
|ag, |2 + | age|® + | ass]® = (1hel)® = (1+C)?
g1 1y = (fas 8u) = 142,
g1 @y = (8o» he) = 144
Now
I(fou hy) — 1| = |ay a3 + ay a3, — 1| =
= '{021“_11“111“—31 . Ianl—z_ 1} + azza_:;;l =
= “1215:;; ‘G Oy ¢ I“nl_z - 1l + |a22a-3;| .
We will now evaluate this expression, using |0 = %, and
[nl, ... |4 =C.

D,, D, will be constants which depend on C. The first term
is clearly

< (L] ]) (LAl (1= 0]) * — 1 = Dy(|6] 4 [#| +14]) -
As to the second term, observe that

0% = 2 2] __ |"21‘i:|2 < (1+ 2_ (1'“[’4)2
la ] {l“ml +[a22| } !aulz = ( |77|) (1+|0|2) ’

2 < 2 2 2y |allaTll2 < 2_ (1—-|1[)2
| @ —{1“31[ +|ass| +| @] } 'la_nlz— = (1+[C|) (1+10|)2’
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and both expressions are

» = Dy(Inl + 0] +[C] 4= +12])-
Thus

lags ags| < Dy(|n] + 0] + [2] + [] + [4]).
Combining, we obtain that
|(fos o) = 1| = D(In] +10] + 2] + %] + 1))
with a finite number of exceptions «. But this is the desired
inequality, and so the proof is completed.

DeriniTION 8.8.8. The equivalence ~ decomposes the set of
all Cg-sequences into mutually disjoint equivalence-classes.
(Cf. Lemma 3.3.3.) Denote the set formed by these equivalence
classes by I', and the equivalence-class of a given C,-sequence
Jor 0el, by C(fy; ael).

Theorem I. If two Cj-sequences f,, a eI, and gy, « €I, belong to
two different equivalence-classes, then (I1®y¢;fxs II®gergy) =0.
If they Dbelong to the same equivalence-class, then
(I®yer for [I®qer gx) =0 if and only if some (fy, gu) = 0.

Proof: Clearly (Il®ge;fus N®ger 80) = Huer (fus ) (in the
sence of quasi-convergence), and so our statement coincides with
that of Lemma 2.5.1.

Some additional information about a:

LemMA 8.8.4. (fy; ael)~ (gy; xel) if and only if both
20{.61 (”foc_goc“) 2, 2ger IS(fow goc)l converge.

Proof: Inother words: These convergences are equivalent to that

one of Zyer|(fur g) — 1] As Zoes [(1ful)? — 1]y Zes|(lgall)*— 1]

are convergent by Lemma 38.3.2, we may as well compare with

Soer|(far &) — 5 (1ful)*— 5 (el -

Now

R (S g0)— 5 (IFalP— 5 (1all)?} =
— — 2L 4 (gall)? — 2R(fas g2)} = — o (] fa—tal)

S{(fs 2a) — 5 (1fall)? — 5 (12212} = $(fus €a)

and the convergence of X,¢;%, is always equivalent to the
combined ones of Xger| R, Liger|J2e| (cf. the beginning of
the proof of Lemma 2.8.8). This completes the proof.

LEMMA 8.8.5. (fy; ael)m (8y; ael) if f, # g4 occurs for a
finite number of «’s only.

Proof: Clear by Lemma 3.3.4, as f,=g, implies

(1 fe—gal)® = 0 = (f> &x)-
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The Lemma which follows deserves some attention, as it is
a very characteristic consequence of our conventions attributing
values to quasi-convergent (but not convergent) expressions
Hocel Zae

LEMMmA 8.8.6. Let the z, be arbitrary complex numbers, and
Il ;20 quasi-convergent.

(I) If f,, ael is a C-sequence, so is 2, fy, xel.
(I1) If Xye;||2o]—1| converges ), then if fy, ael, is a Cq
sequence, SO IS 2y fy, oel.
(IIT) We have always

(1) Heyer2afe = HOLEI B * H®a€1fa

except when [Il,e 2, is (quasi-convergent but) not
convergent, and I1®,¢;f, # 0. In this case 2y, f, fulfill
the assumptions of (II), and all z, # 0.

" (IV) If z,, f, fulfill the assumptions of (II), then the
Cy-sequences f,, ael, and z,f,, xel, are equivalent
if and only if Xyer|2,—1] converges. If all z, 0,
then this is equivalent to the convergence of Il ¢,z
(beyond mere quasi-convergence).

Remark: Combining (III), (IV) with Theorem I shows, that
whenever (1) fails to hold, we have
(H®aelfow H®oc€1 zafoc) =0.
Proof: Ad (I): As Il e |2]s Il yesllfull converges, so does

Myeriizafull = ye; | 2] * Hocel”foc” .

Ad (II): ZM,I[ZOJ—I, Zaellllfal[—~1| converge, therefore
|l2¢|— 1| is bounded, and with it |2,], say |z, =< C. Now

zafull = 1| = 12| - I full— 1] = [(|2a] = 1) + |2 (1 fu —1)] <
= [l — 1| + C|lIfall— 1]
and thus Zae,lnzafaﬂ— 1] converges. (Use Lemma 2.3.1.)
Ad (III): (1) means, that (II®ye;2afs) (8u;xel) =

= e 20 I®gerfu)(gas; 2 €I) for all C-sequences gy, ael, that
is Iye; Gufous 8a) = Uuerza s Haer(fus 82)-  Put 2y = (fy, o)s

then this formula becomes

’ ’
IMye, Ry By = Myerza- Mye; B

20) By Lemma 2.4.1, (II), this is certainly so, if Mger|zo] # 0. A fortiori,
if IT yer 2o does not converge or is 7 0.
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Now it is easy to verify, that this formula holds, if one of the
two factors on the right side is convergent, while the other need
only be quasi-convergent 2!). (Use Lemma 2.4.2.) Thus in case
(f) fails, both Il ;2, and II,,%, are not convergent. This
excludes (by Lemma 2.4.2, (I)) I,/ |2,] =0. As |z|=
= |(fow goc)l = ”foc” ”ga” and as Hacsl”foc“9 HoceI”gcx” converge,
it excludes Ilge;l|fyll =0 too, and I, ([|fxl)2 =0 too. Now
(H®aelfoc)(foc; “fl):HaeI(fwfa):Hael(”fa“)z;éOs H®oc€1foc7£0-

So Il er2, is not convergent, and @y e fe 7% 0 if (1) fails.
This implies 2ye;[2,] #0 (cf. Lemma 2.4.2, (I)), and so the
convergence of EM,HzaI—l[ (cf. 20)), together with =z, #0;
and further the Cg-sequence character of fy, xel (cf. Lemma
8.8.1). Thus z,, f, fulfill the assumptions of (II).

Ad (IV): Zger|lzal— 1|, Zoeslllfil— 1| converge by assump-
tion. Equivalence of f,, ael, and z,f,, ®xel, means that
Zocel l(zafoufoc)—ll = 2ocel Izoc(”fa”)z_ 1| converges. Now“zal— ll
is bounded, so |2,| is too, say = C. Thus

12— 1] = [ (1full = 1| = |(za— 1) — Gl falP— 1) =
= |z ((Ifall— 1) = ClUfal P~ 1],

therefore Zyer|l2a— 1| — |25 (|l f«l)*— 1]| converges (use Lemma
2.8.1), and with it Xy ¢;(|3— 1| — |[24(fol)*— 1])). (Use Lemma
2.3.8.) Thus the convergence of Zae,lza(llfa||)2—1| is equivalent
to the one of Xye;|2¢— 1|. This proves the first part of (IV).

Make now the additional assumption that all z, #0. The
convergence of ﬁa“ z, is equivalent to the one of X, |arcus z,|
(use Lemma 2.4.2, (II), we have Il ¢;|2,| # 0 by Lemma 2.4.1,
(IT)), and this is equivalent to the convergence of Xye;|2,—1],
because of

% |arcus z,| < |2 —1| = ||2¢| —1| + |arcus /.

We have Il ¢;|24] #0 (by Lemma 2.4.1, (II)), and so if
IT, ¢, 2, converges, it is necessarily # 0 too (by Lemma 2.4.2)22).
Thus the convergence of Il,¢; %, can be characterised by Lemma
2.5.1: It is equivalent (as all z, 20) to the convergence of
2 yer]%— 1|. This proves the second part of (IV).

We will see the effect of this Lemma later in § 6.2. This is

an inference, which could have been obtained directly, too:
#1) If both are quasi-convergent, it may not hold: Put z, = eie“‘, z&:e_ie"‘:
where — 7 <0y < @, and Xy ey |0y| does not converge.

22) Mere quasi-convergence would not imply this!
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LemMA 8.8.7. Each equivalence-class € contains a (Cy-)sequence
Jfus xel, with || fe]l=1 for all ael.

Proof: Choose (fi; ael)e@. As Zge;|lfall—1| converges,
therefore we have, except for a finite number of os,

|Ilfa|]— 1| —, Ifall >——. For these exceptional o’s 'we may,

however, replace fa by any f, with || f;’] >—— (Use Lemma
8.8.5.) So we may assume, that all || f,]| ,2_—2—
1

Now Al ' <2|lfall = 1], so Xy, A 1| converges,

(Use Lemma 2.8.1.) Therefore Lemma 38.3.6, (II) and (IV)
apply to 2z, = | 2, | = — and our fy: The fo = Hf |

Cy-sequence too, and one which is equivalent to fa» xel, thus
belonging to €. |fy|l=1 is obvious, therefore the proof is
completed.

‘ f, form a

3.4. Lemma 3.4.1. (D, D) = 0.
Proof: We have @ ell'®,¢; Doy 5O
®=3,_ M ®gerfy -
Every sequence fy,, ael is a C-sequence. For each one which
is not a Cy-sequence, Lemma 3.3.1 gives [l®y¢, /5, =0, so we
can omit all such terms. We may therefore assume, that all
fuv» 2el, are Cysequences. Denote the equivalence-class of
f2 5 ael, by €, Denote the different ones among the €y, ..., €,
by @y, ... D, (clearly ¢ =1, ..., p). Let N, be the set of those
v=1,...,p, for which €, =9, (i=1,...,9q).
Now put
@; = EveNz. H®oc€lfc2,v )

then ® = X7 1 D;. If @ £4, then ®; # D;, soveN;, ueN;imply
€, # €, (fo”,, ael) s (fa ; ael). Theorem I gives there-
fore ( H®aﬂfa v U®gerfl 'u) =0, and thus (@;, ;) = 0. So we
have ((p Q) - (Zz= ¢1 Ef: ) 23] 1( 3) 2:1(¢1,3 ¢l)
Therefore (P, &) = 0 would follow if we proved (D;, ;) =0
for all 1 =1,...,q. Writing again @ for @, p for ¢, 1,...,p
for the elements of N;, and € for €;, we see: We need to prove
(P, @) =0 only for the case where all sequences f? ,, a el belong
to the same equivalence-class €. That is: For all g, v =1,...,p
(foc vioel)~ (f) w wel), ae,l(fa 1,,fmlu 1|convergent Thus

Myer( Sy fo u) 1s convergent (by Lemma 2.4.1, and not merely
quasi-convergent).
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But
(¢3 (D) = 1}?,”:1 Hocel (fogvafo?,y) .

Each term is convergent, therefore this will certainly be =0
if we can show

z“11;0,,u=1 (fcgl,v’ gl,u)""' ( c?cs,wfo?,,y)go
for every set of mutually different o, ..., a,.
Put (f7,,fs ) = ay,. Then for any (complex) @y, ..., &

1 D =
v, U= lav,u wvw,u = 2v,,u=1 (fcg,wfg,p)wvmy -

» 2
- (2§=1 mvfgv’ 2p=1‘ ufg,;t) == (sz-—-l wvftg,vn) =
So the matrix (aj,), u_q,.,, is semi-definite for each ael. )
Therefore it is the sum of p semi-definite matrices of rank 1 22),
that is of p terms of the form u§ u“ Thus

P D o a
2:'v,,u=1 (fgl,v’focl,u)“'-'(focs,v’ g, ) 7 ;

vou=1yp t et Ayy

is a sum of p* terms of the form

D Oy, 0 ocs » %y, L7 %
y = Uy Ut e e U E,,’u 1 Uy U Uty =
_ P 0y 0'-3 p 051 13 1. . 0|2
=2, uyt D —|Z,, LURte g =

Therefore it is =0 1tself, and the proof is completed.
DerFINITION 3.4.1. Define [|@| =V (D, D) =0 ((&,D) =0
by Lemma 38.4.1).
Lemma 8.4.2. |(@, V)| < ||®|| - [|¥]. (Schwarz’s inequality.)
Proof: Use Lemmata 3.2.2, 3.4.1: For any two real z, y
*

0= (2 + y¥,2® + y¥) =

= 2%(®, D) + 12V, ¥) + ay((D, P) + (¥, D)) =
= 2P| +-y2|¥|* + 20y R(D, ¥),

therefore this polynomial in @, y has a non-negative discriminant:
|R(®, )| < D] - |¥|. Replace @ by e ¥, 6 real. Then
|®| = V/(®, @) is unchanged, while |R(®, ¥)| becomes
|R{e~®(@, ¥)}|. (Use Lemma 3.2.2.) Put 6 = arcus (P, ¥),
then |(@, ¥)| <D - || ¥]| results.

23) This statement is orthogonal-invariant; therefore it suffices to verify it
when a“ has the diagonal form: a“ =ajé v—u (0p=1 or 0 if p=0 resp.0). The
semi- deflmteness implies af = 0. Now a“__ z_ 1% o the a; - =a3%d,_ s
being the desired matrices.
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LEMMA 3.4.3. @ 40 implies |[@|?2 = (D, @) > O.

Proof: By Lemma 3.4.1 always | ®||2 = (P, §) = 0, so we must
only infer @ =0 from ||®|| = 0.

Now |[|@||=0 implies (@, P) <[P [P]=0, (D,¥)=0
for all ¥ by Lemma 38.4.2. Put ¥ = [1®y¢,fy, then this becomes
D(fy; xel)=0 by Lemma 3.2.8. As f,, ael, was an arbitrary
C-sequence, necessarily @ = 0.

Theorem II. With the (@, ¥) of Lemma 8.2.1, II'®4¢; Dy is a
(complex) linear space with a (Hermitean and definite) linear
inner product, that is, it satisfies the conditions A, B of (8),
p. 64.

Thus it can be metrised by defining:

Distance (@, V)= ||® — V|, where ||®| =V (D, D) =0

(cf. Definition 38.4.1).

Proof: This follows from Lemmata 3.2.2, 8.4.3, remembering
(8), pp. 64—65.

II®y¢; 9y is not necessarily complete (condition E of (8), p. 66),
and this prescribes the course of our further constructions.

3.5. LEmma 38.5.1. We have || [I®q¢, 2l = Il ¢, || /ol and for
every @ (e H®:xel Da)

|9(fo; weD)| <] Tyesll f31-
Proof: By definition '

“H‘g’aelfa()“z:(n®a61f3, H®aelfg) :Hael(fao’foco) =Hael (”foco”) 22
= (Maell/20)%
” H®oc€1f£“ = Ho:ez”fgc”-

Now Lemmata 8.2.3 and 3.4.2 (Schwarz’s inequality) give

|2(f3s 2 e )| =|(®, TI®qerfo)| = 1Pl [ T@ne, foll=| DIl Ty, 12l

DeriNiTION 8.5.1. Consider those functions @ e [1®y ¢, §, for
which a sequence @;, P, ...ell'®, ¢; O, exists, such that
(1) ®(fy; ael)=lim®, (fu; ael)
e for all C-sequences f,, ael,
(II) lim ||®, — D4 = 0.
r,s—>®
The set they form is the complete direct product of the $,, oel,
to be denoted by II®y ¢ ; Do The relations (I), (IT) will be denoted
by &= L &,
r—>o
LEMMA 3.5.2. If a sequence @,, @,, ... Il'®, ¢, 9, satisfies
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condition (IT) in Definition 8.5.1, then there exists exactly one
Pello,e; Dy With &= L @,.

r—>
If ®= L &,, then all sequences ¥,, ¥,,.. cell®y 1 D, with
7—> 0 N
® = L ¥, are characterised by lim ||®, — ¥,|| = 0.
r—>0 r—>%

Proof: We have (by Lemma 8.5.1)
P (fus wel) — Py (for weD)| =P, — Dl - Maer [ fol

for every C-sequence f,. So (II) gives
lim |¢1‘(f0(; ael) — D (fus oteI)l =0,

r,8—>®

and thus the (numerical) lim @,(f,; xel) exists. Denote it by
r—>®

@(f,; ael). Clearly @ is a functional ell®,¢; Dy By con-
struction (I), (II) hold, so ®= L @_. Thus @Pell®,c; Dy
and @ is unique by (I). e

As to the second statement, we may replace @, @,, ¥, by 0,
&, — ¥, 0. So we may assume ® =¥ =0. Thus we must
prove, that

(1) lim @,(fy; wel) =0 for all C-sequences f,, ael,

r—> %
(1) lim | @, — @, =0
r, 8—> 0
are equivalent to lim ||@,|| = 0.

r—>®©
Sufficiency: Iflim || @,] =0, then | @, (fus o ¢ I)] = [ B,] - e/ 12l

r—>
(use Lemma 38.5.1) gives (I)’, and |®, — D < ||D,|| + || Dy
gives (II)".
Necessity: Assume (I)’, (II)’, and the invalidity of lim ||®,|| = 0.

r—>®

Then there would be ||®,|| = a for a fixed a > 0 and infinitely

many 7’s. Now (I)’ means lim (@,, lI® ¢;fx) =0 (use Lemma
rT—>®

3.2.3), and so lim (®,, 2) =0 for all Q¢ Il'®,¢; Hy- Now choose

r—>® -
an 7, with [|®, || = a so great, that 7, s = ro imply || D, — @] = ;a—

(use (II)’), and put 2 = ®,. Then we have for r = r,
(@, 0,)| =@, ¢,) — @, —,.0,)| =

=2, =P, — &, Il P, || =

= 12,1 (1@, | — 1@, — D, ) Za(a—F) =5 >0
contradicting lim (®,, @, ) = 0. :

r—>®
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LemMMA 8.5.8. If @, Pell®, ¢; Dy that is
=1L 9o, Y=L ¥, 9, yerII,@ocel @ou

r—>® r—> 0
then lim (@, ¥,) exists. Denote it by (@, ¥). This quantity
>0
depends on @, ¥ only, and not on the particular representation
used. If @, Pell'®y¢; Do then it agrees with the previous
definition.
Proof: We have lim ||@®,— @ ||=0, lim |¥,— ¥, =0,

7, 8—>® r, §—>®
these imply by Schwarz’s inequality lim ‘((DT, v,)— (D, lps)[ =0,
T, §S—>®
hence iim (®,, ¥,) exists. If further ® = L &,, ¥ = L ¥, then
r—> r—>® r—> 0
we have lim ||®, — ®)|| =0, lim |¥, —¥,|=0 (use Lemma

T7—> 0 r—>®

3.5.2), and Schwarz’s inequality gives lim I(QDT, ¥)—(D., ¥))
r—>o

:O,

hence lim (®,, ¥,) = lim (@, ¥}). Thus lim (®,,¥,) depends on

r—> 0 r—> r—>®
@, ¥ only.
If ®,Pell ©yer Dor then we may put all @, = @, ¥, = ¥ which
makes it clear, that the new (@, ¥) agrees with the old one.
Lemma 8.5.4. In Il®ye; Dy (@, W) is linear in @, conjugate-
linear in ¥, of Hermitean symmetry in @, ¥, and definite. Together

with ||@]| = V/(®, @) = 0 it fulfills Schwarz’s inequality. (Cf.
Lemmata 3.2.2, 8.4.8, 8.4.2, where the corresponding statements
are made for II'®,¢; Do)

Proof: All these properties, except definiteness, follow by
continuity from Lemmata 38.2.2, 3.4.2.

(D, ) =0 follows by continuity from Lemma 8.4.1. If
(@, D) = 0, then choose @,, D, . ..eIl'®y¢; D, With @ = L @,.

r—>®
Then lim ||®,|?2 = lim (®,, ?,) = (D, ) =0, lim ||@,]| = 0. Thus
r—> 0 r—> 0 r—> 00
Lemma 8.5.2 gives ® = L 0=0. So @ = 0 implies (P, ®) > 0,
r—>o

proving the definiteness.

Lemma 38.5.5. With the (@, ¥) of Lemma 8.5.8 [I®,¢; Dy is a
(complex) linear space with a (Hermitean and definite) linear inner
product, that is, it satisfies the conditions A, B of (8), p. 64.

Thus it can be metrised by defining:

Distance (@, ¥) =|® — ¥|, where ||®| = V (D, ®) =0 (cf.
Lemma 8.5.4).

II'®ye; Ho» as described in Theorem II, is a linear subset of
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I®ye; Do With the same definitions of u®, @ - ¥, (D, ¥), | P|.

Proof: The first and the second part follow from Lemma
3.5.4, remembering (8), pp. 64—65; the last part follows from
Lemma 8.5.8.

Lemma 3.5.6. Lemmata 8.2.8 and 8.5.1 hold for all
De H®a£1 Da-

Proof: They hold for all elements of II'®y¢; Dy S0 if @ = L &,,

r—>®

D, D, . ..eIl'®ye; Da» then they hold for all D,. Now Definition
8.5.1, (I), Lemma 3.5.3, and ||®|| = V/(®, ®) = Vlim (®,, B,) =

r—> 0

= lim V/(®,, @,) =lim ||®,|| extend them by continuity to @.

r—>® r—>®

Lemma 8.5.7. If @ell®ye; Oy and Dy, Dy, ... e I'®ue;r Do
then @ = L &, is equivalent to lim |® — @,|| = 0.

r—>o r—>®
Proof: Necessity: @= L @, implies||®—®,| =V (P—D,,d—D,) =
r—>®
:\/hm (¢r—@s’ d)riq)s) = lim \/(@ridjsﬁ Qr—qjs):hm ”(Dr_@s”’
r—>® r—>® r—> 0
hence lim |® — @|| = lim || D, — D,||=0 (by Definition 8.5.1, (IT)).
r—>® T,8—>
Sufficiency: lim ||® — @,|| =0 implies Definition 38.5.1, (I),
r—>®

by Lemma 8.5.6 (8.5.1), and (II) eod. by

12, =Dl =1— (2= D)+ (P~ P,| =[P — D, + [P — Dyl

3

Lemma 8.5.8. II'®ye; Dy is everywhere dense in Il®qe; Dy
Proof: It @ell®ye Oy then @ = L @, @, e Il'®4e; 9o By

r—>®

Lemma 8.5.7 lim ||® — @, =0, so & is a limit-point of
r—>®
II'®yer Do

Lemma 3.5.9. II®ye; Dy is topologically complete, that is, it
satisfies condition E of (8), p. 65.
Proof: Assume that @MW, @@ ¢ [1®4¢; Dy, lim || @ —D®||=0.
r,8—> 0
For each @ choose a @, € [1'®,¢; Do, With @ — &, || < % (Use
Lemma 8.5.8.) Then |[®, — &, <" —ow)1+t 1 o
T S
lim ||®, — @D,|| = 0. Thus Lemma 8.5.2 secures the existence of
r,8—>®©

a Pelleye; Oy with @ = L @, that is lim ||[@ — &, || = 0. (Use
r—>w r—>

Lemma 8.5.7.) Since | @ — 3| <[|6 — &, | + -1, lim || @ — || —o,

this completes the proof. >
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Theorem III. With the (@, ¥) of Lemma 3.5.3 II®,¢; Do is
a unitary space, that is, it satisfies conditions A, B, E of (8),
pp. 64—66. It is metrised as described in Lemma 8.5.5.

IT' ® ger Da» as described in Theorem I1, is a linear and everywhere
dense subset of I1®4¢; Dys With the same definition of u®, ® + ¥,
(@, ¥), || 2].

Further essential properties are given in Lemma 3.5.6.

Proof: This follows immediately from Lemmata 3.5.5, 3.5.9,
3.5.8.

3.6. The importance of this unitary space II®yc; 9y becomes
clear in the light of the following Theorem:

Theorem IV. Consider a unitary space £ with the following
properties:

(I) For every C-sequence (or alternatively: for every C,-
sequence) fy, acl, an element 1@} ¢, fx of § is defined.

(II) (H®;elfw H®;€1 o) = Hocel(fw 8o)-

(II1) The finite linear aggregates of the II®y¢; fy form a set §’
which is everywhere dense in 9.

This is equivalent to the existence of an isomorphism of $
and Il®ye; Dy under which each Il®g¢,f, corresponds to
II®yerfo- This isomorphism is unique.

Proof: Sufficiency: § = &y c; Do 1105 1 fu = 1@y 1 fx POssess
the properties (I)— (III) by Theorem III. (As to (III), in the
case of Cj-sequence, observe that the non-Cg-sequences fy, ael,
do not matter: Their Il®,¢;f, =0, by Lemma 8.3.1.) And
this is unaffected by isomorphisms.

Necessity: Assume, that § and Il®%e;fy possess the properties
(I)—(III) (either for all C-sequences, or for all C,-sequences).
Let IIoyc, f, in © correspond to Il®ye;fy in II'®ye; Ho This
correspondence leaves (@, ¥) invariant, as (II) holds both in $ and
in IT'®,¢; Oy Therefore we can extend it (in a unique way) to a
linear correspondence between $’ and I1'®y¢; Dy (In the case of
Cy-sequences remember the remark in the sufficiency-proof.) This
still leaves (@, ¥) invariant, and with it ||@| = V(®, @) and
Distance (@, ¥) = ||® — ¥|. Thus it is one-to-one and isometric.
Therefore this correspondence extends by continuity (in a unique
way) to a one-to-one and isometric correspondence between
the closures of $’ and of Il'®,¢; Dy, that is between H and
[M®ye; oo By continuity this correspondence is again lineair,
and leaves (@, ¥) invariant. Thus it is an isomorphism. And we
have already observed, that it maps Il@jye;fx on I®yerfy-

3
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Uniqueness: Obvious by the above construction of the iso-
morphism.

We see in particular, that if I has only one element, say a,,
then = 9, with ®yerfoy = fa, fulfills the requirements of
Theorem IV. So II®,¢; 9y is isomorphic to Hq . But 9, is simply
the set of all TI®%e;fx> 50 I®yer Dy is the set of all II®ye; fo
and so a fortiori equal to IT'®ye; HDy- It is easy to verify, that
this is not generally true, if I has two or more elements.

We make use of this isomorphism to identify the elements
which correspond under it. So we have II®ye; 4= Doy
&yerfo =fx, if % is the only element of I.

For every finite set I our construction of II®q¢; Hy coincides
with that one of (7), pp. 127 —181. (There I is the set &(1, ..., n)

and II®qe; 9 is written II® §,.) The discussion of these I can
be found there, too. =1

If I is finite, then our Definitions 8.8.1, 8.8.2 show, that every
sequence fy, xel is a C- and even a Cj-sequence, and that any
two such sequences are equivalent. So I' (cf. Definition 3.3.8)
consists of one equivalence class only. As we will see in Lemma
6.4.1, I" consists of infinitely many equivalence classes, whenever
I is infinite.

If a closed, linear subset M, 7 (0) of each H, is given, we
can form II®,¢; M. The ll®ye;fu (fxeMy, and fy,axel, a
C-sequence) which we need for this construction, may be denoted
by II®ye; fy in order to distinguish them from the [1®,¢; f, of
M®ye; Dy Consider finally the Il®ye;fyx (in [®ye; Do) With
fo€ My, and denote the closed, linear set, which they determine,
by H®qe; My (CII®ye; Ho)- Now apply Theorem IV (to II@ge; My,
II®ge; fx in place of [I®ye; Du> I ®qer fo)s putting H=I1845e; My,
eye; fx=®4erfy (here fye My). Then an isomorphism of
Mo, e; My, with [e,e; My, results, which carries [I®ger fx into
U®yer fa

We make use of this isomorphism, to identify the elements
Yhich correspond under it. Thus II®yc; My = H®ge; My,

H®¢€Ifa :H®a51fa- So we have now H®O€EI macn®a€] @a if
all M, CH,, and their [Ie, ¢, f, agree if all f, e M.
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Chapter 4: Decomposition of the complete direct
product into incomplete ones.

4.1. DerFiniTIiON 4.1.1. If €€ I is an equivalence-class, then
let H@fel H« be the closed linear set determined by all
II®yerfr where f,,ael, is any Cg-sequence from €. Clearly

H@o@gez De C H®cxel Da-

This TS, Do is an incomplete direct product of the 9y, acl,
more specifically: It is the €-adic incomplete direct product.

LemMa 4.1.1. The II&$, 9> for all Ge I, are mutually
orthogonal, and the closed linear set they determine is
H®wer Do

Proof: Assume @, DeI, € #D. Consider two Cg-sequences
(fos 2el)e@®, (g ael)eD. Then (fy; ael) # (gy; ael), so
by Theorem I Il®,,f, is orthogonal to Il®y¢; g,. Therefore
M®ye;fy is orthogonal to all o2, 9y, and again all [TeSe;
are orthogonal to all TI®>., Hy-

II®,e; Do is the closed, linear set determined by all I1®q¢; fy
where f,, «ael, runs over all C-sequences. By Lemma 8.8.1. it
suffices to let it run over all Cy-sequences. But each C;-sequence
belongs to some e I', so II®,e; Dy is a fortiori determined by
all ITeSe, Oy, €I

LEMMA 4.1.2. Consider an € e I', and a Cy-sequence (f5; ael)e €
with [|f2| = 1. (Cf. Lemma 8.3.7.) Then H®Se, e is the closed,
linear set determined by all Cy-sequences f,, ael, for which
fu #f2 occurs for a finite number of «’s only.

Progf: Let * be the closed, linear set which these [I®yesfx
determine. Lemma 8.8.5 secures $* C H@f{E 1 Do If we can prove,
that [I®yc;fye OF whenever (f,; wel)e€, then necessarily
H®S€I He C 9% and so H* = H®§e, $y, completing the proof.

Assume therefore (fy; wel)e @, thatis (fy; ael) ~ (f9; ael)-
That is: Zye;|(f,, f3) — 1| converges.

If | H®a€1fcx” = Hocel If«ll =0, then II®yer fa=0e H*. We may

1
assume therefore, that Il ¢; | fxll % 0. So || fll 7 0, and Haelm

converges and is # 0. So for g, = HTIH > 0, Zyes|2, — 1| converges
by Lemma 2.4.1, (II). Now Lemma 3.3.6, (III), (IV), apply:
(2afus xel) €€ too, and H®ue;24fy = Huerze - N®gerfa =

1
= m ®gesfur 5O Hewerfo = Hyerll fall - I®yer 20 for So
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we may consider the Cj-sequence z,fy, x€l, instead of fy, ael.
But |2, fxll = 2|l fall = 1. So we see: We may assume || foll =1
for all ael.

Choose a 6 with 0 << § << 1, and then a finite set J=S(oy,..., &),
the oy, . . ., ®, mutually different, so that |(f,,, 12) — 1+...+
l(foc,,9foot,.)—1l 220(51 l(fw fo(:)&ll “6’ that is ZOCEI“JI(fwfg)_llga’
Clearly Il e; (fy f) is convergent (not only quasi-convergent).
For any mutually different 8, ..., ,, €I —J we have ?*)

0 0
el(fﬁl’fpl)_ll+“'+|(fﬂmsfﬂm)—l| . 1

A

| (fop ) - fon fB,) — 1] =

Byer s |01

<e —1<ed—1=<es.

Therefore |Iye;—; (fu fa) — 1| <ed.

. =f foroes
Define now g,y _ _fo‘(’ for aer
3 =

Then clearly [1®,¢; gy € ). And

” H®aelfoc - H®oc61 goc”2 = ” H®oc€lfoc ”2 +
+ H H®q51go¢”2 - 29% (H®aelfocs II@oceI goc) =
= (Hael ”fa||)2 + (Hael ”goc”)2 — 29{(1_[«51 (far goc)) =
=141 —2R([ye; (fo 8x) Haez—] (for &) =
=2 —2R (HocEI (foufoc) . Hocel—] (faafg)) =
=2—2R (Haez—] (fa’fo(z))§:
= 2§R(1"“Ha51—1 (fowfg)) = 2|Ha51—] (fwfg)‘” é 266’ !
IlH®oc€Ifoc - H®ocel goc” = \/%
As our 4, 0 << 6 <1, was otherwise arbitrary, this means that
e, fy is a limit-point of $*, and therefore belongs to H*.

Thus the proof is completed.

LEMMA 4.1.8. If fo, is a fixed element of §, , and if the
Jus @ # g, are held fixed, so as to form a C- (or even a C;-)
sequence ») then II®y¢;f, is a linear and continuous function
of fu,-

Proof: We have clearly 26)

%) Due to the easily verifiable inequality

|2 ovneotm— 1] < elzl-1|+...+|zm~—1| _

*%) Clearly neither fact depends on the choice of f .
0

1.

28) 1In order to be able to handle the factor & = o, separately, we shall write
Do, @ lIQger, azto, Da and fo, ® H®oc€1,ot:,ﬁa,,fa for IIQqes Ho and
TII®yezfo respectively.
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(zfoco) 02 H®oc€1,oc;ﬁocofa =z (fao ® Hae[,a#oc,,fa)a

(fozo + goco) o2y H®a€1,a;ﬁaofa =
= fao d H®ocel,oc7£aofoc + 8 ® H®a€1,a;&aofaa

Hfoc(, X H®ael,oc;éa0fa — 8o, ® H®a€1,a¢aofoc” =
- H(foto_goz.,) & H®oc€1,oc;éocofoc|[ =

= “foco - goc,,” ‘ HoaeI,oc;ﬁoco”foc” .

These formulae prove all statements of our Lemma.

LeEmMMa 4.1.4. Consider an €eI". Select from € a sequence
12, ael, with ||foll =1. (Cf. Lemma 38.8.7.)

Let %, be the dimensionality of $,. Use a set of indices K,
of power ¥,, and form a complete normalised orthogonal set
Po,p> BeKy, in 9y. Make these choices in such a manner, that
0¢K,, and <pa’0:f§.

Let F be the set of all functions f(«), which are defined for
all «el and for those only, such that «ael implies B(«)eK,,
and such that f(a) %0 occurs for a finite number of o’s only.
Then, if f(«) runs over all F, all I®4e; ®a, piw €xist, and they
form a complete, normalised orthogonal set in H®g’€ 1 Do

Proof: As Zaezl”(l’oc,ﬁ(a)i{—— 1| = Zyes|l—1] = 2y ;0 conver-
ges, all sequences @y g, xel are Cgysequences, and so all
H®ge; Poc, Blor) exist.  As Pa, pla) 7 P, 0 =fa occurs only if
B(x)#0, that is for a finite number of «’s, we have
(Pu, prays xel )~ (fgs xel) (use Lemma 8.8.5) and 50 (g, gie; xel)e €,

(tY
H®ael Pa, Bla) € H®a€1 Do

(H®ael P, Blo) » H®cx€1 ‘Poc,y(a)) = Hocel(‘Poc,ﬁ(oc)s (Poc,y(cx))- If
B(x) =y(a) for all ael, then all factors on the right side are

=1, and so this expression is = 1. If f(a) #y(«) ever occurs,
then the corresponding factor on the right side is 0, and so the
expression is 0.

Thus the [I1®y¢; @x, giw» B(«) € F, form a normalised, orthogonal
set in H®§€ 1 Da- It remains to prove, that it is complete. Let H*
be the closed, linear set determined by the I1®y¢; @y, g B(e) € F.
Then we must prove, that $* contains H@%e 1 9o Owing to Lemma
4.1.2 it suffices to prove, that it contains all those [I®y¢;fy € H*
for which f, # f3 occurs for a finite number of «’s only.

Consider this statement S, (n=0,1,2,...): If

(I), the number of those a’s for which f, # ¢, g (for all fe K,)
is = n, and if
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(IT) the number of those «’s for which f, # ¢, o = f2 is finite,
then II®,e;foe H*.

S, is true: If f,, o e I, satisfies (1),, (IT), then fy =4, g.f(x) € F,
50 Hegerfu = H®uer Pa, pa € D*. Assume now, that S, ; holds
for some n —1, n=1,2,..., and consider S,. Let f,, ael,

fulfill (I),, (II). Denote the o for which fy # @u, g by a4, ..., «,.
We ask: For which g, €9, is & ® I®uer, aa, fuc O*? These
gy, form a closed, linear set N in 9, , considering that $* is
one, by Lemma 4.1.3. Every ¢, ge, as we assumed the
validity of S,_;. So R = 9, , and in particular f, €. That is,
Meuer fo =fu, ® U®uer, asea, fu € H*, proving S,. Thus all state-
ments S, are true.

Now let f,, ael, fulfill (II) only. The number of the o’s with
fo 7 Sa, g (being a subsct of those with f, # ¢4 o = f2) is neces-
sarily finite, =0,1,2,... Let n be this number. Then (I),
holds, too, and so we have II®y¢;fy € H* by S,. But this is
exactly what we needed in order to complete our proof.

Theorem V. Using the notations of Lemma 4.1.4 for €, f2,
Ny, Ko, @« g, and the set F of functions f(«), there exists a one-
to-one correspondence between the @ ¢ H®S6 19« and the coef-
ficient-systems a[f(«); el] such that

(I) a[B(«); ael] is defined for the functions f(x)eF and for
those only, its values ) being complex numbers,

(IX) Zgwer|a[f(2); x eI converges.

This correspondence is established by the following equations:
(1) a[B(x); wel] = (D, ey, Pa, pior) = P(@o, i 2 €l).

If @, ¥ correspond to a[f(a); ael], b[B(a); wel] respectively,
then
(2) (P, ¥) = Zﬂ(a)wa[ﬁ(a); awel] -b[B(a); wel].

(This X ep is convergent.)

Proof: The 1I®ye; @4, g B(a) € F, form a complete, normalised,
orthogonal set in H@a(%e, Dy» by Lemma 4.1.4. Therefore the
first equation of (I) creates a one-to-one correspondence of the
@ I1el., 9y with the a[f(x); wel] as described in (I), (II).
And equation 2) holds. (Cf. the respective theorems of (4), (12),
(18) or (15)). The second equation of (1) coincides with
Lemma 3.2.8.

?7) a[B(x);a<I] does not depend on o, the argument is the function P(a)!
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Theorem V (or Lemma 4.1.4, to which it is practically equi-
valent) clarifies the structure of the H@Se 1 Da, while Lemma
4.1.1, describes how [1®4¢; Dy is built up from the H®S€1 Do CelI.
We see in particular, that each H®S€ 1 o has the same dimension:
The power of F. It is easy to determine this power with the help
of the %y, xel; we shall do this in some special cases (cf. § 7.2).
The dimension of [I®ye; Dy is clearly = power of I'- power of F.
We shall reconsider this in Lemma 6.4.1 and immediately after it.

4.2. The associative law holds for our products in a restricted
form only: It is particularly noteworthy, that it applies to the
incomplete direct products H®§€ 1 9« only, and not to the com-
plete direct product II®,¢; Dy There are no restrictions,
however, as to the number (power) of factors ). The Theorem
which follows, describes the situation exhaustively. '

Theorem VI. Let I be a set of indices «, L a set of indices y,
and let for each yeL a set I, of indices o be given. Assume,
that the I,,, y e L, are mutually disjoint, and that their sum is 1.
Let for each ael a unitary space 9, be given.

(I) If fy, xel, is a C- or a Cy-sequence, then every sequence
Jar» aely, as well as the sequence H®d€,yfa,yeL, is a C- or a
C,-sequence respectively. In the case of Cy-sequences form the
equivalence-classes €=C(fy; xel) (in [I®0ye; Da)s € =C(fos € 1y)
(in H®a€[y D), €= @(H®a51yfm3 yeL) (in H®y€L (H®a61yfcx)) .

(IT) The classes €, @€° depend on € only (and not on the
particular choice of the fy, «el).

(III) There exists a unique isomorphism of H@SE 1 D«
(CIM8uer Ha) and Moyer Mok, 9y) (CI0yer (Moges, 9a))
where Il®,¢;f, corresponds to Il®,¢p (H®aez,/fa) for all
C,-sequences f,, ael, of C.

Proof: Ad (I): If Ilge; |l foll converges, then all Haﬂyﬂfa[l do
so by Lemma 2.4.1, (I), and if X, ]Hfa||— ll converges, then all
Zyez, | full—1| do so by Lemma 2.3.1 (owing to I, CI). So the
fu» 2€l, are C- resp. Cy-sequences along with fy, «ael. Thus

only the C- resp. C,-sequence-character of [1®,¢ 1, fos ¥ €L, must
be established.

28) Tt is evident from our constructions, in which no ordering of I occurs, that
the commutative law holds unrestrictedly.
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For any mutually different f,, ..., §,, eI, we have*®)

Max (|| f3. I Ifs.|I—1, 0) <eMaX(Hfﬂ1”—1, 0) + .+ Max (||f3,[I-1,0) .
Bylit e TISBIIT =

_ FwerMox(lfall-10) ¢Zyer, Max (/2] —1,0)

if Ty Max (| full—1,0) = 1. Thus Max (IM®aer, full— 1, 0? =
= Max (Haelyllfa”’_‘ 1, O) =e- Zocelylwax (I]fa“' 1, 0)' Now it is
clear, for every C-sequence fy, xel, that
Z:yeL (zaelyhiax (I fell— 15 O)) = Xy Max (”foc”‘_ 1, 0)

converges (use Lemma 2.8.1), so Xyes Max ([ fxll—1,0) =1,
except for a finite number of »’s. Our above inequality esta-
blishes therefore the convergence of Zy e Max (IT1®qe 1, fall—1, 0).
(Use Lemma 2.5.1.) So H@aayfa, yeL is a C-sequence, too.

Next

Wl ooyl —1] = a2y

(use the inequality in %) on page [36] 36)

S T I
if Zyer|llfull —1] = 1. Thus
IM®ger, full — 1] =| Maer, I full — 1] < eZaer, |1 full = 1]
Again for every Cg-sequence f,, ael,

Zyer (Baer | Ifall = 1)) = Zger| I1faull — 1]
converges. (Use Lemma 2.8.1.) So Eaﬂy[]jfmll — 1| <1 except
for a finite number of y’s. Our inequality now establishes the
convergence of X, || H®m€lyfa!| —1]|. (Use Lemma 2.3.1.) So
H®a€,yfa, yeL, is a Cy-sequence too.

Ad (II): We must prove: If (f,;ael)~ (g, ael), then
(fus 2el,) ~ (g4 wel),) and (H®a€,yj'a; yel) m(H@aayga; yeL).
That is: If Zme,l(fw gy) — 1| converges, then Zocelyl(fw ga)—1|
and Xy er, I(H®a€,yfw H®a€,y gx)—1| converge. The first statement
is obvious. As to the second one observe that we have (just as

29) Due to the easily verifiable inequality (z;,...,2, real and =0)

Max (zl—l,O) +...+ Max (zm—l, 0)__

Max (2, ¢...° 2n— 1,0) < e 1.
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in the last part of the proof of (I)) for any mutually different
151? ¢ oo ﬂm <

s —-1|+... . -1
o) o s gp) — 1] < &0 8Tty

E as Sa -1
< ety 203 (£ ) — 1
if Eaelvl(fw goc)_ 1[ é 1. Thus I(H®o¢61yfow H®ocelyga)"_ 1| =
= |Hoc€1.y (fov ga) - 1‘ §62a61y|(fa’ ga) - 1|~ As
Z;/eL (Zocel./l(fow 2)— 1)) = Ecxell(fua 8a) — 1|
converges, SO 2y ¢ 1, |( Sos 8u) — 1| =1 except for a finite number
of p’s. Our inequality now establishes the convergence of

Zj/GL I(H®a€1yfoca H®oc61,/ gu) — 1| .
Ad (III): Consider the equation

(*) Hocel(fou S) :HyeL(Haelv(fow goc))

for two Cgy-sequences (f,; ael) and (g ael)eC. By (I), (II)
all these II are convergent (and not merely quasi-convergent;
use Lemma 2.4.1). Therefore (*) holds, as one verifies easily 3°).

Let now correspond to each Il® ¢, f, in H®§€, Do ((fus el )eC),
the element [l®,¢; (H®a€1yfa) in H@%ZL (H@%Z,y D«) (we have
(fas 2ely) ey, (H@ae,yfa; y € L) € €°). This correspondence leaves
(D, ¥) invariant by (*). Therefore it extends in a unique way,
literally as in the proof of necessity in the proof of Theorem
IV, to an isomorphism of the closed, linear sets determined by
the Il®,¢;fx resp. the H®y€L(H®aE,yfa). The former set is

H@S’e, $ by definition, denote the latter by 9. So we must

only prove § = H®$ZL (H®g’€',y 9.)- But Cis obvious, so we need
only show D.

By (II) we can use any sequence (fy,; ael)e€, so we may
assume that all ||f,]| =1 (use Lemma 8.8.7). Choose a complete,
normalised, orthogonal set ¢, g, feK,, in each 9,, with
0eKy, 9,0 =fy- Let F), be the set of all functions f(y, ) which
are defined for the aely, f(y, )e K, and which are 40 for a
finite number of o’s («ef,) only — all this for a fixed yeL.
(Po,05 2€ly) = (fy; x€ly)eCy. So Lemma 4.1.4 applies to

30) It would not be so in case of quasi-convergence. Thus II,¢,(,2,..) (—1)=0

(quasi-convergence), while I, ¢,0.2,..) (I, y@v—1,29) (—1)) = I, e y,2,..91=1.
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H®oc61 «: The ¢y, By, a) — H®oce'1y P, By, a)s By, @) er, form
a comp]ete normalised orthogonal set there. Denote the function
B(y, ) =0 (forall « €l,)by0, then @, 0:H®aﬂy Po, 0———H®a51yf;x.
Let F° be the set of all functions B°(y), which are defined for
all yeL, ﬂo(y)ef'y, and which are # 0 for a finite number of
?’s (yeL) only. As f%y) is really a function of o, a eI, we prefer
to write f%y, a) for it. ((py,o; yel)= (H®OLEI), Po, 037 €Li) =

(H®a€, fusveLl)e®. So Lemma 4.1.4 may be applied
again, now to H®/€L (H@mel 9s): The II®yer Py gy, 0 =
=II®, . (Il®yes, Pa, gy, ) form a complete, normalised, or-

thogonal set in H®$Z,(H®§Z,y@a).

Now we have, except for a finite number of »’s, g°%y)=0
that is f°(y, ) =0 for all ael,. And for the remaining p’s
B(y)eF, so %y, x) =0 again, except for a finite number of
o’s (y being fixed). Thus f°(y, «) = 0 holds always, except for
a finite number of «’s (y is free). As the domain of « in g%y, o)
is I,,, and as the I,,yeL, are mutually exclusive, we may
write %y, «) as a function of « only: f°(«), ael. So the
H®y L (H®oc €1, P, ﬁo(a)) form a complete, normalised, orthogonal

set in H®§ZL(H®§§,y ), where fo(a) =0 except for a finite
number of «’s. Thus @q g = @, =fx With these exceptions,
and therefore (¢, g x€l)~(fy; ael)e € (by Lemma 3.8.5).
Therefore H®y€L (H®a€1 Pe, ,3(00) $ and as 9 is a closed, linear

set, this implies SQDH®)}€L (H®a€, «)- This completes the

proof of § = H®y€L (H®M, o) -

We know already that our isomorphism maps [I®ye;f, on
e, (H@ae,y Ju)- Its uniqueness (with this restriction) is
obvious by its construction.

This associative law cannot be extended to the complete
direct products Il®,¢; . and H®,,€L(H®a€1 ), when L is
infinite, for two reasons.

First, different €’s may give rise to the same €, and €°: Put
L=6(1,2,...), I=6(1,2,...), I,=6(2y—1, 2y) (cf.%)).
Choose in each §,, x €I, an fy € O, with || fo || = 1, and put g, = —f,-
Then fy, el, and g,, ael, are clearly two inequivalent C,-
sequences for II®,¢; 9., but they are equivalent for each
H®a€17 9o (I, is finite), and as H&waoc = fay-1® foys
H®ael,, 8x = &oy-1 O 8oy = (*fzy—l) & (—fap) = fap-1 ® foy sO
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H®ocelyfow"y€L’ and H@ae,y 8.,y €L, are equivalent, too (for
e, e (H®u€,y $«)). Thus € #D, but €, =9, and €= D".
(It must be admitted, however, that this phenomenon is due
to our way of disposing of quasi-convergence in Definition
2.5.1 (II).)

Second, H®7,€L(H®M,y 9«) may possess such equivalence-
classes €° = €°(®,; y ¢ L) too, for which &, ¢ H®ae,y D« cannot

be chosen of the form Il®,. 1, fx- This phenomenon will be
decisive in § 7.8.

These complications cannot arise, however, if L is finite (the
I, may be arbitrary).

Theorem VII. If L is finite, then the isomorphisms mentioned
in Theorem VI, (III) can be extended simultaneously to a
unique isomorphism of Il®,¢; 9, and H®y€L(H®a“y Do)

Proof: As L is finite, only one equivalence-class €° exists
for Il®,¢; (H®a€,y ) (cf. the second remark at the end of 8.6).
Thus Theorem VI, (III) establishes an isomorphism between
Hege 9o and Hoper (Megh, 9u) = Moy (Mogl, 92).

As L is finite, Xy e;|(fys gx)— 1| converges if and only if all
Zaavl(fa,ga)— 1|,yeL, converge (use Lemma 2.8.1). Thus a

change of € changes at least one €,,yeL. On the other hand
any prescribed combination €, y €L, belongs to an €: Choose
all representatives f, with ||f,| =1 (use Lemma 38.8.7). Thus €
and all combinations §,, y € L, are in a one-to-one correspondence.

The H®S’€ D« are mutually orthogonal, and so are the
H®§§,y 9o (use Lemma 4.1.1). Thus the Il®,¢ (H®S”€’Iy@a)
are mutually orthogonal too. Therefore the isomorphisms of the
various 1185, §, with their H®,,€L(H®S’;,y Dy) extend in a
unique way to an isomorphism of the closed, linear sets deter-
mined by the IIo%,; §, resp. the Moy (H@Sﬁly o). The former
set is II®ye; Do (by Lemma 4.1.1), denote the latter by 55 So
we must only prove $ = e, (H®a€,y Da)- But C is obvious,
so we need only show D. This is established if we prove
H®‘/€L ¢y€§ for any &, ¢ H®oc€ly Der -

Lisafiniteset, put L =& (y5, .. ., ), the y,, ..., y,, mutually

different. Consider now this statement, R, (n=0,1,2,..., m):
If ¢ H®aez,, Do for yeL, but for py=yp,.., ..., Ym €ven

D, ¢ H@f’é,y Do (@y arbitrary), then H®y€L D, e ?g
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R, is true: H®7,GL D, e H®;,€L (H®§§z,y $) C 9. Assume now,
that R,_, holds for some n—1, n=1,2,...,m, and consider
R,. Choose some d?yeH@ae,y 9y for yeL, with diyel_[@g“’é,v D
for Y ="Yn+l1> * Yme We ask: FOI' which Tyn€H®a€Iy Sf,jd is
v, ® H@,,GLJ,#,," (I)yesg? Theje T?’,. form a closed, linear set
N in H®ocely O«» considering £ is one, by Lemma 4.1.83. Every
H®SZ';Y 9. CN, as we assumed the validity of R, ;. So
RN = H®“€,y 9« (by Lemma 4.1.1), and in particular @, «%.

That is I8y @, =@, QIl®,er 2y Dy, proving R,.
Thus all statements R, are true.
But R, states this: If @, H®a€1y 9, for yeL, then

[I®,e1 @ 635, and this completes the proof.
yeL Py p p

Part III: Operator-rings and the direct product.

Chapter 5: Extension of operators and the
direct product.

5.1. We now wish to study the relationship of operators in
the various §,, ael, to those in II®y¢; Dy. We shall denote the
ring of all bounded (everywhere defined, linear, and closed)
operators in §, by B,, and the ring of those in Il®y¢; Hy by

Bg (cf. (7), p. 135).

Lemma 5.1.1. If an operator 4, B, Is given, then there
exists a unique operator Za05$®9 such that for all C-sequences
Jo» wel,

Z%(H®aelfoc) = Zoco(foc,, & H®a61,a;ﬁaofoc) =
= (Aocofoco) & H®ocel,oc;éoc,,foc-

Proof: A,’s values are prescribed for every Il®qerfy, so if
A «, € Bg exists at all, then its values are uniquely determined
in the entire closed, linear set determined by the II®4¢; fy, Which
is Il e $y. Thus Ay, e Bg is unique, if it exists.

If f,, ael, is a C-sequence, but not a C,-sequence, then A, fo(o
and f,,axel, a#0y Iis such, too. So II®yerf.=0 and
(Ao, fx,) ® 1®ger,02a,/a =0 and our requirement for ‘_4%

becomes vacuous in this case.
Thus we must only prove the existence of Ay, Bg, and we

need to consider Cy-sequences f,, axel, only.
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Apply Theorem VII, with L = &(1, 2,), I; = &(ag), [, =1 — (o).
We have an isomorphism between 11847 Do = Da, ® Neyer, sty Do
and H®ye®(1,2) (H®O(€Iy Do) = Do, ® H®ae1—@(ao) Do ®), which
makes correspond Il®qe; fu = fr, @ U®uer,azza,/u to

H®ye@(1,2) (H®ocelyfa) :fao &® H®aez—@(ao) Jo (cf. 1))
for all Cy-sequences fy, xel. Thus if our Lemma holds for
H®ye@(1,2) SQ)H where ®; = Sboco’ O, = H®u€1—@(ao) Dy (1 repla-
cing the «,), then it holds for [I®ye; Dy too. In other words:
We may assume I = &(1, 2), «5=1.

Let P> © eK, Ee a complete, normalised orthogonal set in
.- We want an 4, e By with

(*) T A(AQR) = (A1/)Qfs

for all f, € 9y, fo € D, Now it suffices to secure (*) for f, = ¢, 0€K,
only: For any fixed f;, the f, for which (*) holds, form a closed,
linear set in 9, (by Lemma 4.1.3), and as it contains all ¢,, ¢ € K,
it must be = 9,.

Consider now the set ' of all finite linear aggregates
.f1(1)® Po, + ... +f1(n)® Po, ( 1(1)’ e '3f1(n) €9y, the op,...,0,¢K
are mutually different). The closed, linear set determined by
9’ contains all f; ® ¢p, and so (by Lemma 4.1.3) all f; ® f,
therefore it is 9;Q 9. But 9’ is a linear set, therefore it must
be dense in ; ® H,.

Define now an operator 4; in ' by

(%) A0 @ g, + -+ @ p) =
= (A1) @@ + -+ . + (A1) @ g -
A is clearly linear. As A€ B;, there is a C, such that always
141 fill; = Cllfill;- Now (**) gives, as the addends on both sides
are mutually orthogonal (the gy, .. ., ,, being mutually different),
AR @ gy + -+ @ )| =
= (A1) @ gp + -+ - + (A M) @ g, | =
=A@ g "+ - - - F(ALf) @ o, [P =
=14 SO Nl gg I + - - - + 1AL A1 -l IIF =
=14 SO 4 AP = CAPIE + A1),

31)  Observe, that .i)ao R IRqe I, 0£a, Do is just another way to write

II®uerHo (cf. 26)), while '@“o (4] H®a€1—@(ao) Do denotes a different object.
But Theorem VII establishes their isomorphic character.
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1D @ @, + - + 1 @ g P = A" @ I+ . + @, | =

= UFPIP - Ngg I+ o A IAMIE g, I* = 1A + - A
that is

|410|F < C?|2|P, [4,9] = Cl 2|
for all @9’ o

This relation, together with the linearity of 4; and the fact,
that ©’ is dense in $; ® D, secure the existence of a closure
A, eBg, of A;. (Cf. (10), top of p. 296.) Now

1T1(f1®999) = H;(f1®¢g) =(41/1) ® Po
which is the desired special case of (*). Thus the proof is com-
pleted. _

DEeFiniTION 5.1.1. Denote the set of all 4, , Ay €By,, by
B, (CBg). We will call 4, the extension of 4, .

LeEmma 5.1.2. The correspondence A, A, is a one-to-one
mapping of B, on By, isomorphic for the operations ud (u
any complex number), A* (adjoint), A + B, AB. It carries the
operators 0, , 1, (null and unit in §, ) into Og, 1g (null and
unit in II®qe; HDy)- L

Proof: One-to-one character: 4, = B, implies clearly A, = B, .
Assume conversely A, = B, . Choose an fye 9y, | foll =1 for
each ael, « #ay. Then for any fy €9y, fus xel, is a Co-
sequence, and

0= Hgao(l_[@)ayfa) — an(H@’uelfa)H =
= [[(Ag,fay) @ U®uer, wtapfu — (Bayfu,) @ UOuer, aszagful =
(A Sy — Baofo) © Mner, o nfol =
= 1Ay fo, — Bayfugll * Waer, azs, I full =

*

= HAocofoto - Bocoftxo” .

So Aoco fo(0 = Boco f% and as f% € Sg% was arbitrary, therefore
Ay, = By, -

Isomorphism for ud, A + B, AB, 0,1: Obvious.

Isomorphism for A*: For any two C-sequences f,, ael, and
gy, oI, we have

((Aoto)* H®<x€1fa’ H®a61ga) =
= ((Aoco)*.foco (Y H®ael, oc;éocofow gxo®H®a61, txiocoga) =
= ((Aaﬂ)*foco’ gao) : Hacei,oc;éao (fos 8a) =
= (foco’ Aao goco) : Hocel, o0, (fo> 8a)s
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((ITac-o)* egerfus Heyer 82) = (Il®ger fu> A—ao I®gerga) =
= (f“o &® H®a61,u¢a.,fou Aaogao & H®a61,a;éocogac) =
= (fuy,> Aoy 8at,) M®ges, w oy (Sous 8a)-

Thus ((4e)*®, ¥) = ((dy,)* @, ¥) whenever @, ¥ have both
the form Il®@yerfx- Now this equation extends by continuity to
all @, ¥ell®yer Do- Hence always (—A;‘)T*/CD = (171:0)*@ and thus
(o)* = (Ag,)*

5.2. Our next objective is the study of the isomorphism
A%ZA—O; , the extension, on operator-rings. We will have to use

therefore the notions which were introduced and the properties
which were established in (9) and (11). These papers dealt with
separable spaces, but in most cases no use was made of the
separability. It is necessary to discuss therefore, how they apply
to arbitrary unitary spaces.

We will use the various operator-topologies: The ,,weak”, the
»strong™ (cf. (9), pp. 878—3888) and the ,,strongest” (cf. (11),
pp- 111—112) topology, cf. our discussion in 1.1, (e). The notion
of a ring will be used in the same sense as in (9), p. 388, Definition
1: A ring is a subset ACof B (that is a set of bounded operators
in the unitary space ), which contains w4, A*, A + B, A B along
with 4, B and which is ,,weakly’ closed. The last condition can
be replaced equivalently by ,strongly’” closed or even by
,»strongest” closed (assuming the preceding algebraic condition):
The proofs given in (9), pp. 83983—396, and (11), pp. 112—113,
hold verbatim for every unitary $.

For any subset <5’ of B we again define 5 as the.set of those
A e B, which commute with B, B* for all Bec5. The considera-
tions of (9), pp. 388—398, apply verbatim, while those on pp.
398 —404 (on Abelian rings) make use of the separability of 9,
and are therefore invalid 32).

Thus <§” is always a ring and contains 1, and S’ = <§ holds
if and only if <§is a ring containing 1.

I is again an arbitrary set of indices, each $,, a€l, a unitary
space, «, a fixed element of I.

LEMma 5.2.1. B, is a ring containing 1.

32) This seems to be the only part of the general theory, where separability
of § is essential.
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Proof: 33) Proceed as in the proof of Lemma 5.1.1: Apply
Theorem VII, with L = &(1, 2), I, = ©(ay), [y =1 — S(«p). We
have an isomorphism between [18,¢; 9u = 94, @ [I®y 7, o £, Dar
and [1®yce 1, 9 (H®a€,y Do) = Do, @@ e1-g(a,) Do Which makes
correspond

®yerfo =Jfo, ® H®a€l,oc;£cxofcx to

Meyeen,» (H®a61yfa) == fo, ® H®ael—€(ao)fa
for all Cy-sequences f,, ael (cf.3!)). Thus if our Lemma holds
for H®ye®(1, 2 ®, where ©&; = 9y, G, = leyes, atoy Do (1
replacing the «,), it holds for II®,¢; O, too. In other words:
We may assume [ = &(1, 2), oy =1.

If A,eB,, A,eB, then 4,4,®=A4,4,® for d=f,Qf,
(both are = A,f;, ® A,f,), so for every ®eH Q H,. Thus
Ay, A, commute, that is EC(F)'

Assume now conversely A4 e (B,)'. Consider anv 0y fo€ Dy, 1 foll =1,
and the operator P[le €B,3). Then E = [f 1€ ‘Bz, and for
every ® =g,R®g,, ED :méﬁ@gz =g1®PU2] G=8Q (g f2) o=
= (8o, f2) &1 ® fa, so E® has the form h; & f,. Thus this holds for
every D e H; @ 9,. Conversely, if @ =h; @ f,, then the above
formula gives E® =k, ® f, = @. So E is the projection of the
closed, linear set of the A, ®f2, hye 91- Now A commutes with
this E ¢ B, by assumption, so A(k; @ f;) has again this form,
say h; ® fp; By could depend on both hy, f,. R

Consider next any otherf2 @2, ,[fg |=1, then 4 (h1®fz) 1®f2
Choose a Uye B, with U, fs = f2 UyeB,, s0 A commutes with
U, by assumption. But Up(h®fs) =h@Usfo=M ®f2,

Uy(hy @ f2)=h @ Usfo=hy ®f2 50 h1®f2—h ®f2s (hy —h; )®fz—

and thus (form the [|...[}) by — h, =0. So k, does not depend
on f,. Therefore an operator A, can be defined b) A.hy = hy. Thus
(*) A(h ®f:) = (Aih) @ [

for || foll = 1. But (*) extends immediately to all f, e 9,.
A, is clearly linear. As AeBg, so a C with [|AP| = C[| D]

exists. Choose again || f,]| =1, then

33) ,:B_% contains ud, A*, A+ B, AB along with 4, B as well as 1, by Lemma
5.1.2. The essential point is to prove, that it is weakly closed.

3¢) The projection of the closed, linear set [f,]:

P[fz]gz = (&x [2) * J2-



[49] On infinite direct products. 49

Akl = 1Akl - foll = [[(A12y) @ fof| = | A (R ® f)]| <
= C”h1®f2” = C”h1” ”fz” = C”hIH'

Thus 4,eB;. Now (*) makes clear, that 4 = 4, ¢ B,. Therefore
(B CBr B
So B; = (B:)', and (B,)’ is clearly a ring containing 1.
LEmMmaA 5.2.2. Every @e;,® D, can be written as a finite
or enumerably infinite (strongly convergent) sum

. P=fiQuw; +[Qwy+ ...

where fi, fo, . . - € D1, @, @y, ... €D, and the latter form a nor-
malised, orthogonal set.

Proof: Let ¢4, ¢eK,, be a complete, normalised, orthogonal
set in 9y, and y;, 6 e K,, one in O,. Then ¢, ® 5, 0 Ky, 0Ky,
is one in §; ® H, (by Lemma 4.1.6, remembering the second
remark at the end of 3.6). Thus

¢:u1¢gl®'/’61+“2‘p92®1/’02+"'

where |u, |2 + |u,]% 4 . . . is finite, and the pairs (0;, 01), (02 02)s---
are mutually different. Let 7, 7,, . . . be the different ones among
the ¢4, 03, ..., and v, v, ... the different ones among the
01, Ogy . - -, then

D= 2z'c1,2,... Ej:l,2,... Vi P, @ Py,

9 . .. = if (73, 1) = (01> O)
it Zj_1s,.. |vs]? being finite. (Putvﬁ{:0 ol vj);éall(gk,ak)')

. o+ g . )
So Zi=1,2,...|vij| is finite for every 4, and we can form
Ji= Zi:1,2,... Vij P, € 1 -

Then Zi=1,2,,,,vij(pt,~ & Yo, = ( 2i=1,2,...vij(pr,~) ® Ve, :f.’i ® Yy, (use
Lemma 4.1.8), and so

¢:f1®’l’vl+f2®%2+ SRRD
Thus w; =y, have the desired properties.

LEmMA 5.2.8. Let 5, be a set CB, and o, its image under
the isomorphism A%ZA%. Then cS’ao is a ring if and only if
?“o is one. *

Proof: Just as in the proof of Lemma 5.2.1, we may assume
I=8(1,2), gp=1.

A ring can be defined as follows: It contains u4, A*, A + B,
AB along with 4, B and it is closed in the strongest topology.
(Cf. the discussion at the beginning of 5.2.) The first four pro-

4
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perties hold for ¢, if and only if they hold for c§;, owing to Lemma
5.1.2. And for the last one, closure in the strongest topology,
this follows from (11), p. 114 (§ 4). In fact: The separability
of §, ® 9, was not used there, the symbols {f,0,0,...>
(for a given fe ;) which occur there, may be replaced by f ® ¢
(with any @e9,, gl =1), and the symbols @ ={f, f ...>
(for a given PeH; ® Hy) by the fiRQw; +f Qw,+ ... of
Lemma 5.2.2.

Theorem VIII. The correspondence A%ZZ;_O , as defined in

Lemma 5.1.1, is a one-to-one mapping of B, on a certain subset
By, of Bg, which is a ring containing 1. It is an isomorphism
for the operations ud, A*, A + B, AB and for 0, 1. If it maps
a set & CB,, on the set Sy, CBy,» then cS’% is a ring if and
only if ¢, is one.

Proof: This follows immediately from Lemmata 5.1.2, 5.2.1,
5.2.8.

Chapter 6: The ring of all extended operators.

6.1. We saw in Lemma 3.8.6, that the intuitively plausible
equation I1®qe; 2 fu = Maeru - I®y e, fo holds only, if yer 2y
is convergent (or [1®,¢;f, = 0). Otherwise the sequence 2, fo, x €I,
and f,, ael, are not even equivalent, that is the II®y¢; 2y fy
and II®,¢,f, belong to two different incomplete direct products

H®§€ 19y This situation provides the motive for the defini-
tion which follows:

DeriniTION 6.1.1. Two Cj-sequences f,, ael, and gy, ael,
are weakly equivalent, in symbols (fy; ael) ﬁ(ga; axel), if

complex numbers 2,, ael, can be found, such that z,fy, ael,
is a Cy-sequence, and equivalent to g,, ael.

LeEMMA 6.1.1. Without modifying the meaning of Definition
6.1.1, we may require that all |z,| = 1.

Proof: In other words: If f,, a € I, and 2, fy, € I, are Cy-sequences
we can find such z, with |z} | = 1, that (z,f,; xel)~ (2. fo; xel).

As Zyer|lzfxll— 1| converges, therefore z,f, =0 (which im-
plies |!|zafa||—- 1{ =1) can occur for a finite number of «’s only.
For these we may replace z, by 1 and f, by some fg # 0 (use
Lemma 8.8.5). So we may assume, that always 2, f, 7 0.

As Zyer|Ifall = 1), Zae; |zl — 1| converge, and all |if,|,
|2 full #0 so Lemma 2.4.1, (II), secures the convergence of
Huerllfells Hyerll 2o fxll and that their values are = 0. Thus
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fall 1

[2afall ™ T2

converges by Lemma 2.4.1, (IT). Now

1
Mye; ol converges too, and has a value # 0, because
2o

1
Therefore X, ¢;

— 1
|2

Lemma 38.8.6, (II), (IV), give (replace their z, by I—:—I) that

2, . , 2
Zofu ®€l, and == f,, ael, are equivalent. Thus z, = — has

Iza| ,zal
all the desired properties.
Lemma 6.1.2. The weak equivalence a~ for Cy-sequences is
w

reflexive, symmetrie, and transitive:

() (fous 2el) ~ (fas ael),
(IT) (fy; xel) ~ (8y; 2 el) implies (gy; oel) A (fys xel),
(II1)  (fps cel) ~ (8y; o el), (8y; ael) ~ (hy; ael)
imply (f; 0el)n (hys wel)
Proof: Obvious, sincew we may restrict ourselves to z, with

|24] =1 by Lemma 6.1.1.

DerinrrioNn 6.1.2. The weak equivalence%decomposes the
set of all C,-sequences into mutually disjoint weak equivalence
classes. (Cf. Lemma 6.1.2.) Denote the set formed by these
equivalence classes by I',, and the equivalence class of a given
Cy-sequence f,, ael, by €, (fy; xel).

Since equivalence implies weak equivalence, therefore every
Cel' is €CE, for exactly one €,C I, and every €,CI,
is the sum of all €C I with €CG,.

DeriTioN 6.1.8. If C,el, is a weak equivalence class,
then let H% gg 1 9« be the closed, linear set determined by all

®ye; fxs Where fy,ael, is any Cy-sequence from €,. Clearly
€,
H%uel ‘i)oc C H®a€1 ‘i)oc'
Our previous remarks show, that [I® S’ 2 Dy is the closed, linear

set determined by all H®g€1 Oy with eI, €CGE,.

An explicit criterium of 7:

LEMMA 8.1.8. (fyi; 2l ) ~(gys 2el) if and only if X ¢ || (£ )| —1]
converges %), v

Proof: (fy; ael)~ (g,; xel) means by Lemma 6.1.1 (and

Definition 8.8.2), that we can find such numbers z, with |z, |=1

) I |foll = |lg«|| =1, then [(f,,£,)|=1, and so we may write
Zoer (1—|(fu» &2)|) instead.
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that Xye Il(za Jos 8a) — 1| converges. Now for every given ael
|(zafwgcx)— 1‘ depends on z, only, and possesses (and assumes)
a minimum: (2 fu, 8¢) = 24(fyx, g¢) Vvaries over a circle of center
0 and of radius l( fas ga)l when 2, varies over the circle |z,| =1,
the nearest point to 1 on which is I( S gu)l. Thus the minimum
of '(zafa, gy) — 1] is “(fa, gx)|— 1|. Thus our condition becomes
this: Zger||(fas )| — 1| must converge.

6.2. LeMMA 6.2.1. Assume that a 2, with |z,| =1 is given for
each ael. Then there exists one and only one closed, linear
operator U, such that

U H®aelfcx = H®ocel zafoc

for every Cy-sequence fy, wel. This U is unitary.

Proof: Existence and unitary character: Apply Theorem IV
to ©=I®ye; Dus 1187 1 fou = I®4y s 24 fu (use Cy-sequences only).
Its conditions are fulfilled: (I) obviously, (III) because every
Meye fy is a IIeF e gy (with g, =%, fy), and (II) owing to

(H®§:€Ifa’ 8%er8x) = (1®ger 20 fos ®ger 24 €y) =
= Hoce[ (zocfw R goc) = Hocel (fw goz) = (H®aelfw H®tx€1goc)-

Thus an isomorphism of [1&,¢; 9, on itself exists, which carries
every Il®y ¢, fy into its HoF ¢, fy = 11®4 ¢; 24 fx - This isomorphism
may be looked at as a unitary (and therefore closed, linear)
operator U, and it possesses the desired properties.

Uniqueness: If U is the above defined unitary operator, and
U’ another closed, linear operator which meets our require-
ments, then U, U’ agree for all Il®,¢;fy, and so for the finite
linear aggregates of these, too. Thus they agree on an every-
where dense set, but U is continuous and U’ is closed, therefore
they agree everywhere.

DEeFINITION 6.2.1. Denote the U of Lemma 6.2.1 by U(z,; ael).

Denote the projection operator of H®§’€, Da» €I, by P[C]

and that one of H‘,% gg, Dus Cpe Iy, by PL[E,].

LEMMA 6.2.2. U(z,; ael) maps Hg g’é; D« on itself, that is,
it commutes with P,[C,].

Proof: U(zy; aeI) maps I®y ¢, fo on H®ueq 25 fos if (fi; ael)eC,,
then (2, fy; ael)e®, too, so U(zy; ael) maps [Te e, Do on part
of itself. As the same is true for the inverse of (}0 (25 a€el), that

is U(Z,; ael), therefore it maps Il® Sz, Da exactly on itself.
w
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LeuMa 6.2.3. (I) Ul(zy; ael) maps IS¢, 9y on itself, that is
it commutes with P[€], if and only if Il ¢;z, converges ¥).
Then U(zy; wel) = (Il,¢,2,) - 1.

(IT) If this is not the case, then U(z,; ael) maps H@%el D
on a MloPc, 9, with € = D.

Proof: We proceed in a somewhat changed order:

Ad (II): Assume that Il ¢;z, does not converge. Then
(fos xel) e € implies (2, fy; xel) e D # € owing to Lemma 3.3.6,
(IV). ® depends on € only (and not on the choice of f,, ael),
because (f,; ael) ~ (g,; ael) implies (3, fy; xel) ~v (2, 8y x€l),
as (2 fus 2x 8u) = (fus 8x) (use Definition 8.8.2). Thus U(zy; zel)
maps H@%6 19Dy on part of H®?€ 1 9Dy Similarly its inverse,
U(Zy; ael), maps Il@2., §, on part of IIeS., ©,. Therefore
H®§€, 9, has exactly the image H@?e 7 9%, and we know that
€ #D.

Ad (I): Sufficiency: If II,¢; 2, converges, then Lemma 3.3.6,
(IIT), secures U(zy; wel) = (Il4¢,24) -1, and the remainder is
immediate. .

Necessity: Obvious by (II).

LemMA 6.2.4. For any operator A, By, #yel, the extended
operator /—1_; commutes with every P[€], P,[€,] and U(zy; ael).

Proof: P[6] and P,[G,): A, (®yerfa) = Meqe g, where

= f, for o 7o
ga{ . So (fy; wel)~ (gy; xel)(by Lemma 3.3.5),

=Aaof% for a =0,

and a fortiori (fus ®€l) A (g @<l). Thus 4, maps el 9y |

on part of itself, and H‘f gg 1 9o on part of itself, too. The same

is true for (4, )* = (4y,)*. Therefore 4, commutes with both
P[€] and P,[C,]*). .

Ul(zy; ael): U=y ozeI)*lA% U(zy; «€l) obviously possesess
the definitory properties of 4, , as given in Lemma 5.1.1.
Therefore U(zy; 2el)™ A, U(zys ael) = A, , A, U(zy; ael) =
=Ulzy; xel) Ay,

36) This is equivalent to the convergence of Xy¢y|arcusz,|, or to that
one of Xyer|2y — 1| (Use Lemma 2.4.1, (II), and Lemma 3.8.6, (IV), remem-
bering that |z,| = 1.)

37) Let E be the projection of I, and 4, 4* both map I on parts of itself.
This means EAE = AE and EA*E = A*E Apply * to the second equation,
then EAE = EA ensues, and so AE = EA.
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6.3. DeFINITION 6.3.1. Denote the ring generated by all z—‘l—;o
with arbitrary A, ¢B,, and all ayel, by B*. Clearly B* C Bg-

Obviously B* might have just as well been defined as the
ring generated by all By, ¢gel. (Cf. Definition 5.1.1 and Lemma
5.2.1.) That is:

B =R (By,; %<)-

If I is finite, then B* = Bg (cf. (7), p. 185), and we will prove
(Theorem IX or X), that this holds only if I is finite. Now B*
is in a way more important than Bg: The elements of B
arise from those of the B, , agel, by extension (cf. Definition
5.1.1) and algebraical and topological processes. In other words:
They are the only operators in I1®,¢; 9y, Which are based directly
on operators in the 9,, «el. Therefore it is of importance to
determine the structure of B¥, as B* may no longer be identical
with Bg.

LeEmMa 6.8.1. Every A e®B* commutes with all P[], (Ce I,
P,[C,], (C,eIy), and Ul(zy; ael) (|2 =1).

Proof: Put X=P[€] or P,[C,] or U(zy; ael). If Ay € By, xgel,
then 4, commutes with X, by Lemma 6.2.4, that is 4, (X)".
As (X)' is a ring, this implies B*C(X). So every 4eB*
commutes with X.

DEFINITION 6.83.2. Given a @ e ll®,¢; 9y, denote by IM[D] the
closed, linear set determined by all U(zy; ael)®@, (|24 =1).
Denote by E[®] the projection of IM[P].

Levva 6.3.2. (I) If ®ello%¢; Dy then E[@] commutes with
P[€] and their product is P4 %).

(I1) If delle S &, then E[®] < P,[G,].

(III) E[®] commutes with every U(zy; ael).

Proof: Ad (I): Denote the closed, linear sets determined by
the U(zy; €al)® (|34] =1) with a convergent resp. divergent
Il e 2, by M, resp. M,. Clearly M[DP] = S[M;, M,].

If Ilyer2x converges, then U(zy; ael)® = (Il e;2,)@ by
Lemma 6.2.3, (I). So M, = [®]CIIe$,, ©,.

38) The projection of the closed, linear set [P]:

(¥, D)

=——@ for ® #0,
Pla1¥1 = ol =

=0 for @ = 0.
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If I, 2, diverges, then ®ellofe, 9, gives
Ulzgs wel) D e lloge, 9, for some D#GC, so Ulzy ael) P is

orthogonal to el 9a-
Thus M,, M, are orthogonal, and therefore E[@] = P,
= Py + Pgmz. Besides

E[®] P[€] = Py, P[C] 4 Py, P[C]=
= Prg1 Prig€, 0, T P Prisl,, 0, = Fio1 T 0 = Pigy-

Mp] —

This is a projection, so E[®], P[€] commute (cf. (8), p. 76)
and their product is P[ o)

Ad (I): Uz oel) maps 11® %, 9, on itself by Lemma
6.2.2. Sodell® o $, implies U(zy; ael)@ello % &, and
WE[@]CH% s &,. Passing to the projections gives EzEQD] < P,[C,]

Ad (III): Owing to Ulzys ael)U(zy; ael) = Uz, 2y ael)
application of U(z,; ael) merely permutes the U(z); ael)®,

|2,| = 1. Therefore U(z,; xeI) maps M[P] on itself, that is it
commutes with E[®].

Lemma 6.83.3. For any Cy-sequence f2, wael, with [If2]| =1
we have E[II®,¢, /2]« B

Proof: The proof will be carried out in several successive stages.

(I) It suffices to show, that E[[I®,¢,f,] is a strongest (and
thus a fortiori a strong, cf. § 1.1, (e), and particularly (11),
pp. 111—112) condensation point of B*. And this is certainly
the case, if we can find for an (enumerably infinite) sequence
@, D,,... of elements of Il®,c; 9, an FeB* such that
F®, = E[ll®yer f2] P, for n=1,2,...

Each @, is the limit of a sequence of (finite) linear aggregates
of elements [1®,¢, 8, (g, xel a Cysequence, cf. Theorem VI,
(II1)). All Il®,¢;€x which arise in connection with a given @,
form again a sequence: [l®, ¢, g%% i=1,2,.... F(ll®,e, %) =
= E[I®qe, fol(II®ye ) for i=1,2,... implies clearly
Fo, = E[lI®y4e /2] P, Now we may write the Ilg,¢;g%?,
n,t=1,2,..., as a simple sequence, and replace the @,
n=1,2,..., by them. In other words: We may as well assume
@, =Il®, e h2 (b, ael, a Cysequence) for each n = 1,2, .. ..

If any A" =0, then its @, = [I®y¢;h% = 0 may be omitted.
So we may assume, that all A} + 0.

Every U(zy; «€l) commutes with E[II®,¢; f2] and F by Lem-
mata 6.8.2, (IIT), and 6.8.1. Thus we may replace our @, =I1®, ¢, A"
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by any U(z% ael) P, = lI®ye 2%k, n=1,2,... We can use
this freedom to obtain for every n=1,2,... for which
(B2 ael) ~ (f2 ael), even (h%; awel) ~ (f2; wel). So we may
assume: Let &, be the set of all n with (A%; ael) ~ (f2; ael)
and &, the set of all n with (k%; ael) not ~ (f2; «el), then

every n =1, 2, ... belongs either to &, or to &,.

If ne®,, then X,¢| (k% f2) — 1| converges (by Definition
3.3.2), and so we have (A%, f2) = 1, except for a finite or enume-
rably infinite set of o’s, J, (by Lemma 2.3.2, (I)). If ne&,,
then X, ||(h2, f2)| — 1| diverges (by Lemma 6.1.3), and there-
fore an enumerably infinite set of o’s, K, exists, such that
ek, || (B2 f3)] — 1| diverges ®). Finally X, || k]| —1| converges
for each n (C,-sequences), so we have ||h%|| =1 except for a
finite or enumerably infinite set of «’s, L,,. Now let I be the sum
of all J,(ne©,),K,(ne®,),L, (n=1,2,...). I® is finite or
enumerably infinite, and we have:

For ne®; a¢l® implies (B2, f9) =|A%|| = |Ifoll = 1.

For ne®, Zaez"“(hgafocoﬂ_ll diverges. But IL, ¢/ || Ayl L. e/l /3]l
converge, so Il e B2 )] does too, and with it
SerMax(||R2]|I f2l— 1,0) (by Lemma 2.4.1, (I)). As
|(hgs S| = NG 1 fall,

0 < Max (|(h2, f2)] —1, 0) = Max (2] /2] — 1, 0),
this implies the convergence of X, Max (|(k%,f3)] —1,0)
(by Lemma 2.8.1).

Combining these facts, Lemma 2.4.1 permits us to conclude:
I, ero|(h, f2)| converges and its value is 0.

(I1) Let us compute |E[II®ye, f3]9,| -

If ne®;, then (AY; ael)~ (f3 ael)e@, (hY; ael)eC, so
D, = Il®y¢; hgeﬂgge, 9«>» and thus by Lemma 6.3.2, (I),
U8 er 21 00| = | E Mo er 81 PIE1D, | =[P g, ey Poll =

= “P[H@,aafgt] (Hoger hg)|| = [(®ges b, Mewerfs) =
= |Huer (B £3)] -
But Ilye; (B2, f2) is convergent (not merely quasi-conver-
gent) as (h; ael)~ (f3 ael), therefore this expression is

= Hocel |(hg,f“°)l = Haelol(hg’fao)l‘

39) If Xy e Uy (U, =0) diverges, then the Uy, + oo+ Uy, (%5 - - o oy Mutually
different) are not bounded (use Lemma 2.8.1). Choose ocllv sy cxllv with
uai\l—}— —|—uaiv >N for N=1,2,... and let K be the set of all oﬂ;’,

N

N=12..,k=1,...,1ly, then Xycxu, is clearly divergent.
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If neS,, then (hY; ael) not _m (f2 ael), soif (f); ael)e@,,
(2 0el)eD,, where €, D, . , then €, £ D, . So H® S 9y
and H® &1 9o are orthogonal. As W[H@aelf"] C H® 2 Dy (by
Lemma 6.3.2, (II)) and &, = H®a€1h$eH§M, Si)u, so @, is
orthogonal to M[I1®ye;f2]. Thus E[[I®4¢, fo] P, = 0. At the
same time II,, I(hg,fao)l =0.

So
(*) | EM e, 2] Pall = Maer |z, 13)]

holds for all n =1,2,....

(IIT) Write I° as a (finite or enumerably infinite) sequence
10 = S(0y, otgy - . .) (g, %y, - . . mutually different). For every «,
form the pro]ectlon of [f°] in 9o, : P[f ]e$a, P[f ]h

= (o fo,) [, So
P[fo‘:,] (Meges hy) = (ha, ) o, @ Heges, w0, ha-
This equation exhibits two facts: First, that all P[fo],
%

1=1,2,..., commute. All P[f;:] are projections e By , so all

Py are projections ¢ B, C B, and as they commute, all

Q,= P_[EI_] e PE‘E
too are projections ¢ B*. And clearly
=0 ...
Thus lim Q, exists 90), and is again a projection e BY,

Seconld, it shows, that % (Iege; 2 f2) = @ yes 20 Sy, and
SO P—[ij Y= for all ¥e M[II®4¢,f2]. This implies Q¥ =¥
and lirln Q¥ =V¥. So

lim @, = E[®qer fol-
Thus
(**) | tim @)@, | = || E[Meae, 2] 2

40)  'We mean lhm Q, if I° is infinite, and Q, if 19 = S(otyy « « - alo).
e e}



58 J. v. Neumann. [58]

implies (lim Q,)®, = E[lI®ye fy)] @, *') and so it suffices to
1

prove (**) for all n=1,2,... Then F =lim Q, meets all
1
requirements.
(IV) We have:

1021 = (Pl -+ Ppgz) (M@ge, 72| =

:” (he, 9.](31 te. '(hal fo)'fgl@"' ®f£l®ﬂ®ael u#al,...,a,hz” =
_| hotl fa1)| l hoc, fotl)l H(xel O£ 0y 4o ocl”h | -
_I hgzl fal l |(hoc, foc )‘ aﬂ",oc;éocl,...,ot,”ha”-

(Remember, that ||h%[ =1 for «¢I°) If we form lim, then
l

the second factor on the right side converges to 1, because
IIyepol| B2 || converges. Therefore

| (im Q) @, | =Tim Qs @l = Taere| (oo )]

Thus (**) follows from (*).

The proof is now completed

LEMMA 6.8.4. Assume (f2; ael)e @, [f2] =1 and @eH@aUS:Da
Then there exists an A e@g with A(1l®ye, f2) =

Proof: We proceed again in several successive steps.

(I) Introduce, together with our fJ, the corresponding w,,
Ko, 905> F (f2 = @y, o) of Lemma 4.1.4 and Theorem V. Apply
Theorem V to @, and let f;(«), f5(), . . . be those f(«)eF (finite
or enumerably infinite in number) for which a[f(a); ael] 0.

(Cf. Theorem V, (II).) Write a; = a[ 8;(«); « € I], then the situation
described in Theorem V entails:

D= 2;a; l®ue; ¢o, Biows  2;|a;|? converges.
(ITI) For every awel and feK, define

Pﬁfa = (fwfo(:) * Pa, g
Clearly P8 e B, and NPEN <.

Each f;(a) (¢ =1,2,...) differs from 0 for a finite number

4) If E, F are two projections, E < F, then ||E® | = | F®| implies
E® = F®. Indeed, since E, F are projections, so (F®, ®) = ||ED|* = || FD |2 =
(F®, ®) and since F—E is a projection, so ||(F— E)®|]2= ((F—E)®, D) =
— (F®, D) — (E®, ®)=0. So (F — E)y =0, F®— E® —0, Fb — EP.
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of «’s only, say for of, ..., «; . Define

R,=PEt). P () B[ TTe ., f0).

o,
As P8 e B, PP ¢ B, C B* and E[[I®,¢, /3] € B* (by Lemma 6.3.3),

so R;eB*. Asall || PL|| <1, || PL[| =1 and || E[Moqe, fo] [ =1
(it is a projection), so || R; || = 1.

(III) Assume 7 # 5. We wish to prove, that R;¥Y’ and R;¥"
are orthogonal for all ¥/, ¥ (e [I®y¢; Do)- 1t is clearly sufficient

to consider the ¥’ e H@S;, Doy Ve H@f;', Dy forall €, € e I
Form the G, with € C G, e I',. Consider firsta ¥ e [o%:, $,
where €' CG, eI,, but €, #€, Then [I® g;", 9o and

H% $e &, are orthogonal, and T’eH% S, w Moy f2]C

Clle g:l 9« (by Lemma 6.3.2, (II)), so ¥’ is orthogonal to

M [I®ne; f2]. Thus E[lleye; fo] P =0, RY¥Y' =0. We may

therefore assume €' C €,. Similarly we may assume € C G,
Consider next the case, where € 5= €”. R, R; e B* so they

commute with P[€'], P[€"”] (by Lemma 6.8.1). Thus

(R;¥', Rj¥V") = (R;P[C']¥, R,P[C"]¥P") =

= (P[C']R¥, P[C"]R¥Y") = (R,¥', P[C']P[C"]R;¥"') =0
disposing of this case.

We may assume therefore, that €' =€"” CC,. As R, Rje:Bﬁ
they commute with U(z,; «€l) (by Lemma 6.8.1), so we may
replace W', V"' by U(3y; o eI) ', U(zy; ael)¥P". Now €, €' CGE,,
so we can choose U(z,; xel) so as to map ' =€ on €. In

other words: We may even assume ¢ = ¢’ = @.
Thus we must prove the orthogonality of R ¥’ and R;¥" for

Y Y e H®§‘ e1 Do only. It is clearly sufficient, to consider instead
the V' = II®ue; fos P = U@y, fo, With (fo; ael), (fy;0el)e@,
only.

Now under these conditions

E[ll®ger fa] (H®a61fo,() = E[ll®ye, f2] P[6](H®a€1fa’c) =
(use Lemma 6.3.2, (I))

= P[H@,“If;] (Ieger fou) = (@uer frs NOner f3) NOuer fo =

= yer (far fo) - H®aelfg = Iye, (fo’ufo(:) I®qer P, 05

and so
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Ri (H®otelfo,c) = H:xe] (fo’ufg) 'Piii(mi) MR 'Piii(aii) (H®rxel ‘Po:,o) -

* ’
(*) = Hocel (fos fg) : H®oc€1 Do, B e *

Similarly
Ri(Mege fr) = Hoer (f2s 13) - ®qer Pa, Bl «

Combining these equations we obtain
(R (Moge; f), Ry (H@ger fy)) =
- HaeI (f(;! fg) ¢ Hov.el (f(;',fg) ° Hocel (‘poc,ﬁ,-(oc)a ‘pa,ﬂj(ot))'

As 1 £7, so an ael with B;(a) # Bi(a), (Pu, p)> Pa, ﬂ,(a)) =0
exists, and so the third factor on the right side is 0. Thus the
left side is 0 too, and our statement is proved.

(IV) For any ¥ (e [I®y¢; Do) the RyWP, R,P, . .. are mutually
orthogonal, as was shown above. Besides X,[a;R¥|?=
= 3| PIRPIE = ;| a2 PI? = (2] a;]?) IP|? converges, and
so the sum X, a;R;¥ is (strongly) convergent (in H®uer Ha)-
So we may define an operator 4 (in 1I®qe; Do) PY

AV =X, a;R;P.

As AP =120, R PP = 2, la; R ¥P|? = (Zzlai‘z) 1%
JAP] <V a2 P], so AeBg.

A is the strong limit of all a;R, + ...+ a;R;, 7 =12,...,
and so A belongs to B along with Ry, R,, ... Finally (*) gives

Ri(H®u€1 fg) = H®£X.€1 P B (2)>
and therefore

A(H®ae1f§) = Eiain®ael Po,B (o) = P.
Thus 4 meets all our requirements.

LemMMA 6.8.5. For any ®e H@%a $, we have E[(b]eng 2),

Proof: Choose (f2;ael)e@, | f2] =1, then E[loyer 3] e B
by Lemma 6.8.8. Choose an A e B* with A (II®ye, fa) =@ by

42)  This isanextension of Lemma 6.3.3. Observe, that the condition P € H@S er Do
cannot be omitted: If E [@]535 held for all @, then we could omit in Lemma 6.3.6.
and in Theorem IX the condition, that F resp. 4 must commute with all P(E).
Then this fact, together with Theorem IX (or Lemma 6.3.1), would give: If A4
commutes with every U(zy; o € I), then it commutes with every P[] too. But
(if I is infinite) 4 = U(z%; a € I) with a non-convergent Ilye;z}, commutes with
all U(z,;xel), and (use Lemma 6.2.3, (I)) with no P[C].
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Lemma 6.3.4. As A commutes with every U(zy; 2 €l) (by Lemma
6.3.1), so

AU(2y; ae )@ ger f2) = Ulzgs ael) A(Il@ger f) = Ul2y; 2el) D.
Thus A maps IM[[I®ye; fx] on a set which determines the closed,
linear set IM[@]. That is: The range of A E[[1®,¢; f2] determines
the closed, linear set IM[PD].

Let us use the symbol 5 (ef. (7), p. 141): 4 and E[I1®4¢; f2]
are both 53%, therefore 7 B and thus the characterisation of
M[D] given above gives M[P]y BE. So its projection is E[D] 1y B
too. But this means E[®]eB*. (Cf. loc. cit. above.)

LemMA 6.8.6. If a projection F commutes with all P[€] (€ e I')
and U(zy; ael) (|z] =1), then F e B

Proof: Let M be the closed, linear set of F. Assume ®PeR.
@ is a limit of a sequence of (finite) linear aggregates of elements

of the form ¥ =II®, fx, and so a fortiori of elements Pe H®gu Des
Cel. So ®= F® is a limit of a sequence of (finite) linear
aggregates of elements FW, Well®ye; Do € I As F and P[]

commute, and their closed, linear sets are I resp. H®S’EI Dews

therefore such an F¥ ¢ N and at the same time ¢ H®§f'€, Do
This makes it clear, that 9 is the closed, linear set determined

by those ¥ e N, for which Ve H®S’El De» € e I', holds too.

As F commutes with U(zy; a«el), therefore U(z,; ael) maps
N on itself. We have therefore for the above WeR, U(zy; ael)¥Pe N
too, and thus M[P]C N. Therefore the following statement holds
too: N is the closed linear set determined by the IM[¥] of all

those ¥e N, for which ¥e H@SE, Dy, €e ', holds too.

Now these IM(¥) are all yB* by Lemma 6.3.5 (1 as above,
cef. (7), p. 141). Thus N5 B* too, and therefore its projection
FyB* that is Fe B

We are now in the position to prove:

Theorem IX. A ¢ B* if and only if 4 commutes with all
PIE] (CeI') and Uz ael) (|2, =1).

Proof: Denote the set of these P[€] and U(zy; ael) by o,
Then we must prove (ef. (9), p. 388)

B =5
As we have rings on both sides, it suffices to show that both
sides contain the same projections. (Cf. (9), p. 892.)
Every projection of B* belongs to <§' by Lemma 6.3.1, and

every projection of <’ belongs to B* by Lemma 6.3.6. Thus
the proof is completed. »
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6.4. Theorem IX gives a complete characterisation of B¥,
but it is desirable to have a more constructive one, as contained
in the Theorem which follows.

Theorem X. (I) If AcB then @ecllobe; D, implies
AD e H@Sz€ 1 Do so that 4 may be considered as an operator in
e, 9 (instead of II®4e; Hy), for every € e I. We will denote

A, when thus restricted to IIe%¢; $,, by 4%

(IT) Select for each €, ¢ I, an € C ¢, € I', say € = €(C,).

If a bounded operator Ay is given in each H®§§§w) Do € Iy,

then an 4 ¢ B* with A%C) _ Ag , for all ¢, € I, exists if and
only if the set (of real and = O numbers) &[4, Il Cue )
is bounded. And this A4 eB* is unique, if it exists.

(1) |4 =1ub. & (| 4%]|; €)=

=Lub. & ([| 4A%C||; €, € ) ).

Proof: Ad (I): As A commutes with the projection of H®§€, Do
P(Q), all statements are immediate.

Ad (II): Necessity: Obviously || A% = || 4|, so under our
assumptions || Ag, [| = | A% [ < | 4 [l and 4[] is an
upper bound for the set in question.

Sufficiency: Consider an arbitrary €e I. There is a unique
C,el’, with 6CC,. Now €, C(C,)CEC, so a Uz ael)
(|232] =1) exists, which maps H®§‘£’w’ Do On H®g’€, De. Thus
Ag = Ulzys aeI) Ag_(Ulzs wel)) ™ is an operator in oS, e

A does not depend on the particular choice of the z, if €

is fixed: If U(z,; ael) and Uz ;; xeI) both map Tl &,

on Ile%, o> then (U(zy; oceI)) U(zas xel) = Ul(zyzl; ael)
maps H®a‘§w’ 9, on itself, and so Ilyeszy %z, must be conver-
gent (by Lemma 6.2.3, (I)). Thus (U (2y; 1)) " Uzy; xel) =
= Uz 2 ael) =l e; 2,20 - 1=1c-1 (cf. as above), U(zy; ael) =
=cU(z,; ael). So

Ulzys wel)Ag (Ul xel)) ™ = Uz me ) Ag (Uzs wel)) ™

proving our statement.
If € =C¢(€,) then we may choose 2y, =1, U(zy; ael)=1
and so Ay coincides with our original 4 .

43) Lu.b. = least upper bound.
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Finally, if U(2q; ael) maps II8%¢, 9 on @3, Hu» then
ECC,e T, implies DCC,, and if U(z,; ael) maps I050 §,
on I8, 4, then U(zzl; ael) = U(zys ael) U(z,; ael) maps

Mel®) g, on oD, Hu So
Ag = Uz ael) Ay (U(zazs 2e)) " =
(*) = U(zys 2 1)U (& we 1) Ay (Ul e 1)) 7 (Ulzgs e 1))
= Ulzys 2 e 1) Ag(U(zy; e I)) .

Define now an operator 49 as follows: A°® is defined if and only
it =¥, 4+ ...+ ¥, where 7,08, 9,, ..., ¥, cat, o,
the €, ..., €, ¢ " being mutually different, and then
AP = AW+ ... +¥)) =Ag ¥ + ... + Ag V).

A® is clearly linear and commutes with every P(€). Owing
to (*) it commutes with every U(zy; ael) too. The domain of
A® is everywhere dense.

Put C =1lub. &(||4g |I; €,€I,). Then each

4l = Il 4ge,ll <€

and so

”AO@“Z: ”A(glgﬁ +.o+ A@:lY’,”z = []A@1W1||2 + ...+ ||A@l¥/l”2 =
SCPP+ ... + CIP P =C2(| PP + ... +I1PP) =
=C?P, + ... + W, = C2|| D7,

(**) lA°P|| < C| D].

Thus A° extends by continuity to an everywhere defined operator

A (in [I®ye; Do) This A4 is linear, along with A°. (**) gives, by

continuity, [|A®|| = C||®|| so 4eBg and [|A]| = C. Finally 4

commutes with all P[€] and U(z,; xeI), along with A° So

Theorem IX gives A4 ¢ B*.

Finally @ellogly” §, gives A®— A0 =Ag &. Thus
A%C) A@ . Therefore this 4 meets all our requirements.

Uniqueness: Assume, that 4’, A" ¢ B, and A'CC) _ 4"C(C)
for all €,el,. If €CE,, then a U(zy; ael) which maps
elC Dy On H®g’€, Do exists. As this U(zy; ael) c?mmult,es
with 4’, A”'. the assumption 4 CCu) _ 4"C(Cw) implies 4 ¢=4"¢,
As G, eI, was arbitrary, this holds for all el

Thus A'® — A"® if ®l1e%,, H,, Cel. Therefore it holds
for all @(ell®ye; Do), that is A’ = A"
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Ad (I11): |48 < ||4]l is obvious, and so
Lub. &([|4%|; €eI) < [[4]]-
We saw in the sufficiency-proof of (II), that if we put
Ay = A%C<), then ‘

0

4] = € =1lub. &(|[4g,l; CpeI'y) =
' —1ub. S(JA%C |5 €, e Iy).

Finally Lub. &([|A%C||; 6, eT,) = Lub. &([14%|[; €I is
obvious. The three inequalities give together

4[] =Lub. &([| A% €eT) = Lub. &(| A5 ||; €, e L)

as desired.
Theorems IX, X make it clear, that the elements of B* are
characterised by two restrictions:

(I) An A4eB* is reduced by each II® gz, Do Cpel’,. (CL.
Lemma 6.3.1, ,,Reduction” is defined in (8), pp. 78—80.)
(II) Within each Il S’z, De> Cpel',, the AeB* is reduced

by each H®g€, Ouw €CE,, €cl', and its behaviour in any one
of these H@%€ 1 9« determines it in the remaining ones (for a
given €, and the €CE,, Cel).

Now (II), as indeed the entire difference between the sub-
divisions of I&ge; Oy into II85; Hu’s resp. e e, DS, 1s
ultimately due to our way of handling the non—cozvergent but
quasi-convergent case in 2.5. (The U(zy; aw€l) which map an
CCE,, €I, on other DCE,, Del’, have non-convergent but
quasi-convergent Il,.;z’s, c¢f. Lemma 6.2.3.) A more compli-
cated procedure in dealing with such infinite products, using
generalised-Banach-limits, would have permitted us to avoid this.
Compared with our present method, however, it would have
been highly artificial and arbitrary, and would have implied
serious difficulties in the formulation of an associative law.

Having clarified the resp. roles of the €el and €,el, we
proceed to determine their numbers.

LEmma 6.4.1. (I) If I is finite, then I" and I', both possess
exactly one element, which is the same for both: the set €, of
all sequences (fy; ael)4).

4)  So H®g’°€1 Do = H% SOEI Do = Ry 1 Hus PICo]l = P,[Cy]=1. Every

Ilyerzy converges, so U(zy; ®€l) = (Ilgerzy)+1. Thus Theorem IX gives
@é = ,fB®, in accordance with (7), p. 135.
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(II) If I is infinite, its power being x*, then for each €, e,
the number of the €CG,, CeT, is 2X",

(III) If the number of el with a = 2-dimensional §, is
finite, then I, possesses exactly one element, if this number is
infinite, then power of I, is = x %).

Proof: Ad (I): Obvious by Lemma 8.8.5.

Ad (II): Given an €, e I',, the number of all EC G, Ce I
is obviously = the number of all combinations of z,, a eI (|2,|=1),
that is x&* — oNoN* _ oN,

As nNoN* = N*, decompose I into mutually disjoint sets
Jy.y €L, each J, having the power ¥, and L having the power

, =1 if a€eJ,,,peL’
v*. For any set L’ CL form 2t { ) v
N y “ | =—1if aeJ,,y¢L’

sequence (f% ael)e €, |fyl] =1. Then all (3% aeL)eC,.
If I” #L"”, then a y exists, for which yeL’ but ¢L"”, or

. Choose a

conversely. At any rate aeJ, gives z/z = —1, so
that 252" = —1 occurs infinitely many times. Thus
Doer |2 o 2y fO) — 1] = Zyeq|2y 2, — 1| contains infinite.ly
many terms |—1 — 1| =2, and is therefore divergent. That is,

(25 f% ael) not & (25 fe; xel) by Definition 3.3.2.

Summing up: All €z f% «el) with L'’ CL are C€,, e[,
and mutually different. Their number is 2¥*. So the number of
the § C€,, €eI"is = 2%, Thus it must be = 2N*,

Ad (III): Finite number of xel with = 2-dimensional ,:
We want to prove (fy; ael) ~ (gy; axel) for all Cj-sequences.
By Lemma 38.3.7, we may asswume [ fell =1l gxll = 1.

If , is 1-dimensional, then f, = cugy, |cy| =1, so
|(far 8| =1 || (fos €a)| — 1| = 0. Thus  Zyer||(for )| — 1|

converges, and so (fy; ael) ~ (gy; «el) by Lemma 6.1.3.

Infinite number of ael with = 2-dimensional £, : Let
®; 4»%7=1,2,... be an enumerably infinite double-sequence
of such «’s, and ¢, ;, ¥, , two normalised orthogonal elements
of 9,,,. For each a #alla; ; select an f2e 9, with [If2] =1.
For any set NCS (1, 2,...) form

= Qq,,; I a=0o;; el
gl;’ = Yu,,; if «=a;,; i¢N,
=12 if o #alla; ;.

Clearly every (gy; ael) is a Cysequence. If N’ 5 N, then an i

%) N = power of the continuum, )\, = power of any enumerably infinite set.

5
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E)

and gg,,} coincide with g,  andy, in some order, (g} ; g )=0
] 1y 7 53 1y iy 2

exists, for which ¢ e N but ¢ N’ or conversely. At any rate gi

so that (g, g)") =0 occurs infinitely many times. Thus
Ser|l(8Y g5 )| — 1| contains infinitely many terms = |0 —1|=1,
and is therefore divergent. That is, (g); ael) not ~ (g)"; ael)
by Lemma 6.1.8. “

Summing up: All €, (gY; xel) with NC&S(1,2,...) are e I',
and mutually different. Their number is 2% = x. So the number
of all €, eI, is =N.

We forego an exact determination of the power of I',, which

would present no difficulties. Clearly power (I") — " - power
(I'y)-

Part IV: Discussion of a special case.
Chapter 7: Discussion of a special case.

7.1. The unitary spaces H@%a 9. are isomorphic to each
other by Theorem V, and each [l® g"g 1 Do contains the same
w

number of H@ﬁf’e 19y by Lemma 6.4.1, (II). Therefore the struc-
ture of [l®ye; Hy (and of its subspaces el 9y, Mo e, Da)

can only be investigated further, by considering other objects in
II®yer Ho: Operators and rings of operators. This was done in
Chapter 6 for the ring B, the next things to discuss are there-
fore subrings of B*. Considering the restricted form in which
the associative law for 1I®,¢; Do had to be formulated in Theorem
VI (cf. also the remarks after this Theorem), structural questions
of some interest will necessarily arise in connection with the
associative law.

We know from Theorems IX, X, that every 4 e B* behavesy

in the same way in each H®§€ 1 Do within one given II® Sg, Da-
w

Therefore we can only expect interesting phenomena, if more
than one €,erl’, exists. This means, by Lemma 6.4.1, (III): If
infinitely many ael with = 2-dimensional §, exist. Further-
more we know by Theorem VII, that complications in connection
with the associative law will only arise, if L (that is, the number
of pieces I,,, yeL of I) is infinite. And as I,’s with one element
o are clearly irrelevant, therefore each I y must have = 2 elements.

Thus the simplest possible example, on which the essential
features of an infinite direct product [I®y¢; o may already be
observed, is this one:
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Let I be enumerably infinite, each 94, « €I, 2-dimensional, let
each I,, y e L, have exactly 2 elements, and thus L be enumerably
infinite.

Specifically:

Let I be the set of all pairs (n,7),n=1,2,...,7=1,2,
L be the set ofalln=1,2,..., I, the set consisting of (n, 1)
and (n, 2) ((n, 7), n replace o, p), P,z 1S 2-dimensional.

B is the ring generated by all By, - A subring of B* which
is essentially affected by an application of the associative law
(in the sense of Theorem VI) to the above I, L and I, is the
ring generated by all B, which we will denote by C*.
So we have:

B :R@—‘(n,ﬂ; n=1,2..., t=1,2),
C*=R(Bpyn=12--.)

7.2. We now wish to see the effect of the ,,associative trans-
formation” of our II®4e; 9, into H@,,GL(H@MIV $«) on these

B* and (O*. That is: Besides IIoye; 90 = 1€, 15 Dn,r)» We

T=12

wish to form H®yeL(H®aez Da) = e, - 12 (Dmn @ Dm,2)
too, and see what happens to B* and C*. #

Let us first consider the situation in I1®ye; Ho = I1®,_1 5. Da-

T=1,2
Each H®n 12... Dm,n has 8, dimensions, because the F of
T=12
Theorem V is clearly enumerably infinite. So each H®n L2.. D07
T=12

is a Hilbert space, and as B* coincides in it by Theorem X
with the ring of all its bounded operators, we may say, using
the terminology of (7), p.172: B* is a factor of class (I, ) %) in
each H®§=1,2,... O+

7=1,2
As to (P%, observe first, that the associative law may be

applied to Il®ue; Dy =118, 1, .. Dmn With L' = (1,2),
7=1,2
I =&((n,7);n=1,2,...), establishing its isomorphism with

eyer (H®ocsl; 9s) = (I1®, 1z, D) @ (HI&y o100, Diny)

(cf. Theorem VIL.) In particular, we may form for every €
of H®n=1,2,...'@(n,1) the @1 of H®n=1,2,... ‘@(n,l) and the @2 Of

T=1,2

II®,_1 s, .. Dz Wwhich correspond to it by Theorem VI, (I);

s

46) That is: A direct factor cf. (7), pp. 139 and 178.
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¢ ¢ G,
then Ile,_,, 9, and (Meytys .. sQ(-n,l))®(H®n'=1,2,... gc)(n,z))

T=1,2
will correspond to each other under the above isomorphism
(by Theorem VI, (III), and Theorem VII).
It is evident, that instead of forming a B, ,, directly in

e, 1. 9un> we might as well form it indirectly: First in
T=1,2

H®n 1.2.... D(n,1) and then extending again in (H@n 1e,. @(n,n)@
® e, _ L. Dmy) Thus O = R(B,,, 1),n_l 2,...) (in the

e, ;.. S)(n p-sence) obtains from the B of H®n 12, D1y
T=1,2

by extending it in (H®n=1,2,... 59(11,1))®(H®n=1,2,... sg(n,2))' Thus

it is isomorphic to this B* and in H®S’=L2’“_Sg(n,,) it is isomor-
T=1,2

phic to this B¥in [Ie%, ,  $.p- But the BEof T, ;5 Oy
in H®%‘=1’2,“_ D,y 1s again a factor of class (I, ) (by the same

argument as above for Ile,_;, 9. 4), therefore the same is
T=1,2

true for our &% in H® L. Do
1,2

7.3. Let us now investxgate the situation in 11, ¢ (11®©ge; Da, )=
=, 10, Dy ® Den,g)- For B¥ (we write B* 1nstead of
B, to emphasize the difference) the argument of 7.2 applies
again (using now the 4-dimensional 9, ;) ® D, In place of
the 2-dimensional $, 7)- B* is a factor of class (I, ) in each
H®§=1’2“‘_ (Dn1) @ Din,2) Which are all Hilbert spaces.

As to % (in place of (%), we must, of course, modify the
definition of (®* somewhat: For each B, ; (in $,) we
first extend in 9, ;) @ D, to B(n,y, and then we extend

this in 1,1, (Dp1y @ Du.e) to B,y And now we may
form (as at the end of § 7.1)

C¥"=R(Bpy; n=12...)

While until now the rings B¥, *, B* behaved isomorphic-
ally in all incomplete direct products, this need not be (and as
we will soon see, is not) the case for (®* in the various
H®§:1’2’_._ (D1 @ Din,)- We proceed now to discuss this in
detail.

Let @, 7.0 #=1,2, be a complete normalised orthogonal
set in Dy Then @ 4 @ P2, %4 =1,2, is one in

Sj(n,l) & Sg(n,z)‘
Thus the general element of £, . is

2
Son = X1 L, 1),% P(n,7),%>
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while that one of 9, ;) ® 9, 4 is

2
(*) g(n) = 2%,1:1 y(n),kl (p(n,l),x ® (p(n,z)}.a
We will treat the z, . ,, as vectors:

S(n,‘r) = ((w(n,r),P m(n,r),z)) ¢

and the ¥, ) as matrices:
H. . — ((y(n),u y(n)’lz)).
@ Ay, Yo,
Consider mnow an incomplete direct product

H@S,%?:l,z,m (Dm,1) ® Din.z)- It is characterised by any Cy-sequence
(€ysn=12,...)eD, g0, €Dn,1) @ D - Use the expansion (*)-

0 0
for each g, then the matrices H?,) = ((yﬁ")’u Yim, “)), n=12,...,
Y(n),21 Y(n), 22

obtain. Thus H®%=1,z,... (Dtn1) @ D(n,2)) is characterised by this
sequence of matrices HY,, n=1,2,....

Observe now the following points:

(a) We can choose the g,,n=1,2,..., with [ g, [|=1
(by Lemma 38.8.7), that is: We may assume, that ’

2
a1 Yl P =1

(b) From the point of view of isomorphism of the parts of
¥ in the various H@%:l,z,... (D(n,1) ® O(n,2)) @ permutation of the :
factors 9, 1) ® D, 9> =1,2,..., does not matter — all our
constructions being entirely independent of any ordering of the
factors #7). Therefore any permutation of the H{,, n=1,2,...,
is immaterial for our isomorphism-problem of (¥ in

D
Hey 1s,.. (D, ® Din, 2)?'

(¢) From the same point of view any change of the complete,
normalised, orthogonal sets in the various 9, ; is immaterial.
This is rather obvious, or else it may be proved with the help
of Theorem IV.

Replace therefore @, 5% # = 1,2, by @(, 74> * = 1,2, where

2 ’
Pn,1)x = Bamg Win, )20 Pln,7), 20 x=12

the matrices U, ;) = ((u("”)’ " u‘"”)’”)) being unitary, but other-

%(n,7), 20 %(n,7), 22

wise arbitrary. It is clear, that this replaces each H{, by
(t) H(();L) =V H?n) Wy

(n)

47)  But not from splitting up and recombining factors! We have an unrestricted
commutative law, but a very restricted associative one. (Cf. Theorem VI.)
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where V,, = transposed matrix of U, W, = U ,. Thus
Vs> W, are again arbitrary unitary matrices.

Now it is well-known, that every matrix can be carried by
() into the diagonal form, with diagonal elements = 0 ).

0
we may assume that Hf, has this form: ((y(()”) 2?0 ))) Youys 2y = 0.
By another application of (f) we may interchange y,, 2{,
01
(V(n, =W, = ((1 0))), so we may assume, that y{,, =20, =0.
By (a) we may assume, that (y{,)®+(2,)*=1. So we

1+,
have: ?, :VT“ 2y = And by (b) no
permutation of the «,, n =1, 2, ... matters.

(d) We have obtained the normal form

1+ o,
(§) g(()n) :V Pin,1),19Pw, 2,1 "rl/ ‘P(n 1,2Q8Pm,2),2-

For two such g?,,, g"n) with «,, &, respectively (0 <a,, @, < 1),
we see that (g, g(n))ﬁf,(\/l—f—a Vit +Vi—a, \/1 %)

So they determine the same equivalence-class © and the same
l—[®Snb=1,2, o (D0, O Din ) if

Sne | MV oy VITE 4 Visa Vicm) —1]
converges (by Definition 2.8.2). This has the majorant

() S ([ ) 2E) ),

therefore the convergence of (§§) suffices.

48) Given any H, H*H is Hermitean, so a unitary W exists, so that W*H*HW
is diagonal, say with the diagonal d,, d,. As it is semi-definite, so d,, d, = 0. Let
K be the diagonal matrix with the diagonal 4/ E;, VvV ;2; then K*K = K? =
W*H*HW, so always ||Kf| = ||[HWf||. Therefore a unitary V with K = VHW
exists.

49)  Clearly
(V14 e V147, + \/1~an\/1—a—n))2+
+ (HVI— VIT G — Vit Vieg,)) =1,
so _%( V1fo, V1t + Vi—a, \/ﬁ) <1, and consecutively
o<1__(\/1+a,,\/1+a,.+x/1 -0, V1-a,) <
<1—(1(\/1+a,.v/1+a..+\/l—a..\/1~a..))2=

(1('\/1~a,, \/1+a ——'\/l—i-a,, \/l~—oc,,))

(e (14T,) ‘/l—anﬁl/lﬂn)z (Vl——oc,, l/1~cxn)
B 4 1+, 1+, = \F 1+« 1+)/)
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We repeat:

LemMmA 7.8.1. From the point of view of isomorphism of the
parts of ¥ in the various H®?=1’2,__, (D)@ Din.9) it suffices to
consider the equivalence classes D of sequences (g{,; » =1, 2, ...)
of the form (§), with0 =<«, =1, n=1,2,.... Any permutation
of these «,, m=1,2,... or any replacement by other &,
n=1,2, ... for which (§§) converges, is immaterial.

7.4. We will now discuss two extreme special cases. Consider
first the case a; =ay=...=1.

LemMma 7.4.1. (I) The sequence a, mn=1,2,..., which
characterises a given H@?:sz_ (D(n,1®Dm,») can be chosen
as a;=0op=...=1 if and only if ® is the equivalence
class of a sequence (g),;n=1,2,...) with g, =f0 ., ®f ,
(f(n 7) € *@(n,r))

(II) In any such e 12, D1y ®Din,2)) the ring GV i
a factor of class (I, ). (Cf. § 72)

Proof: Ad (I): Nece551ty If oy =0a,= =1, then (§) in
§ 7.3 gives

8 = P, 1) © P, 2

Sufficiency: We have g, = f0, 1, &0, 5+ AS 2oy |12l 1—1]
converges, so gp, =0, i”g?n)ll—ll =1 can occur for a finite
number of n=1,2,... only. With these exceptions g{, #
fou1ys fin,2) 7 0. For the exceptional n’s we may change f7, ;), f(n 2)
(use Lemma 8.8.5), so as to have always f(n,l)’ Son,2y #0. Now
Lemma 3.8.7 permits us to replace these g,y =0, 1) @ fin. o b

I o 1 0 o y_ L o 1 o
Bl = [l W] ) © i) =z 0 @ Ilf?n,e)llf o

In other words: We may assume !lf(on,l)ll = Hf(on,z)[[ =1.
We now could choose the ¢, 4 , with

—_ f0 __ f0
P, =fonn> Pmz1 =Fm2-

Then clearly «, =1, that is ¢y =ay=...=1.

Character of (O¥: Assume o =oy=...=1, that is
B =L @ s 118 3l = [ fonll =1 (cf. above). Apply the
associative law (as described in 7.1) in the formulation of
Theorem VI.

(foorsmn=1,2,...,7=1,2) is clearly a Cysequence for
Din )3 let € be its equivalence-class. Then (the €,

®n=1,2
T=1,2,..

being inessential, as all I, = &((n, 1), (n, 2)) are finite) €, = D.
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¢ ~ .. . [0}
So H®:7LD=1,2,.,. (S;)(n,l)®'sg(7t,2)) 1S 1somorphlc to H®ﬂ=l,2,...‘€3(n,‘()’

7T=1,2
(¥ being the ring generated by all B, n=1,2,..., con-
sidered in H®E’LD=1,2,.--('i)(n,l)®®(n,2))’ this isomorphism carri.es
it into the ring generated by all B, n=12,..., In
Me®_ v2... Oz — which is the OF of 7.2.

T=1,2

So our (®¥ is isomorphic to the (®* of 7.2, and therefore it
is a factor of class (I, ).

7.5. Consider next thecase a; = ay=...=0.

Lemma 7.5.1. In any H®Z?=1,2,... (D1 ® Dm,») With
oty =ty =...=0, the ring ¥ is a factor of class (II,). (Cf. (7),
p. 172.)

Proof: We proceed in the inverse direction: We will analyse
one of the examples of factors of class (II;), given in (7),
pp. 192—209, and show that it is isomorphic to (¥ in the said
H®;D=1,2,... (D, 1@ D, 2)-

(I) Let S be the set of all (enumerably infinite) sequences
= (ot,,;m=1,2,...) where each «, =0,1. Let & be the set
of those ¢ = (a,,, m=1,2,...)eS for which «,, 7% 0 occurs for
a finite number of m’s only.

Define in S: Ife = (¢,ym=1,2,...), y=Bum=1,2,...)
+ then 2@ y=(y,sm=1,2,...) where

Ym = m + fr (mod 2) (Ym=0,1).
Under this definition of ,,composition” 2y, S is clearly a
(commutative) group, with the ,,unit” 0=(0;m=1,2,...),
and & is an (enumerably infinite) subgroup of S.
For S (but not for &!) we use the mapping

m

E: r=(apym=12,...)>&a)= 20_ ="

: m=1gm

of S on the numerical interval 0 <& < 1. Except for the &
image of &, the set of all dyadically rational numbers, which
is a set of Lebesgue-measure 0, this mapping is one-to-one.
So the common (exterior) Lebesgue-measure in 0 <& <1 is
mapped by the inverse of 5 on a Lebesgue-measure in S, in
the sense of (7), Definition 12.1.2 on p. 192. We will denote it
by u* (and for ,,measurable’ sets by pu, cf. loc. cit. above).
We will now consider & (with the ,,composition” aﬂ}b for
a, be®) as the ,,group” and S (with the ,,mappings” z—a-®
for ae®, x€S) as the ,,space’ described in (7), pp. 192—195. In
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the sense of Definition 12.1.5, p. 195, eod. (we replace the notations
ab, ax used there by a - b, a4 ) ® is an m-group and ergodic
in S. m-group character: Ad (I) loc. cit.: If a = (a3 m =1, 2, ...)
and «, =0 for all m = m, then the mapping 2 —+ a4 @ of

—
=

S corresponds by Z to a mapping of 0 < £ <1 of this nature:
. k kE+1

Every interval — < & < %— (k=0,1,...,2™m — 1) undergoes
2™ o

a translation as a whole. So the common Lebesgue-measure is
left invariant in 0 < £ < 1, and corresponding p* in S. Ad (II):
Obvious. Ad (III): If a £ 0, then clearly every a4« = «. The
ergodicity will be established in (IV) below.

(IT) Form for these S, & the spaces g and 9 of all (complex-

valued) functions f(a) resp. F(z,a) (2eS, ae®) which are

u-measurable in @ for each ae¢®, and with a finite J.l f@)|?de
§

resp. 2, eq _“F(w, a) |>dx (f ..dz in the ,u~sense), so that
5 $
(fs8) = ff(w)z@ da resp. (F,G)= Zyeq fF(m, a) G(z, a) da.
5 5

(Cf. (7), p. 194.) Form the bounded operators

Uy, F(z, a) = F(x-® ay, a-d ay) (age ®),
Lypw F(z, a) = ¢(¢)F (2, a) (¢(z) bounded and u-measurable)

(pp. 198—199, loc. cit.) and the ring AC which they generate
(p. 200, loc. cit.).

In forming AT we need not to use all these ¢(z) and ae®.
We may obviously restrict ourselves, in forming A, to (bounded)
Baire-functions ¢(z), then by continuity to continuous functions
p(x) of &(x), and then again by continuity to functions ¢(z)
of this form:

k E+1
=c, for— S &) << —— —=0,1,...,2"0—1
p(@) = ¢ for—- < E@)<— = (k=0 )
for any my=1,2,.... But ¢(z) = Zii"o—l ¢, ¥po(z) where
k
=1if—=<&f<— . .
() 2™ 2™ otherwise so we may even restrict

ourselves to the gj'(z).
k o
Iszo = Zz"zlg, then ¢fo(z) =1 ifinz=(B,;m=1,2,...)
B =¥, for all m < m, otherwise it is =0. Put

p,(x) = (—1)%, where 2 = (B,; m=1,2,...),
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1
then we have gjo(z) = 7:’1?(1+(~1)V' y,(z)). Thus the
further restriction to the y(z), 1=1,2,..., is legitimate.
Put

=1forl=m
alz(alm; m=1, 2,...) (6lm{:0forl_7_’—m)’

clearly a,¢e®, and if a=(x,; m=1,2,...)e®, then
a=a, ... ¢a; where l;,.. .1, are thosem for which «,, # 0.
So it suffices to use the Ual, l1=1,2,..., only (instead of
all U, ,a,e®).

So we have proved:

m: R(Uat$ r‘wl(z); l= 1, 2, .o .).
(IIT) For each @y = (ap; m=1,2,...)e® form

g, () = Py (@) -+« y, ()
where the [, ..., 1, are those m for which «, 7#0. Define, if
bye ® too,
' = if a = by,
Fyp,(as w){ - :;)a"(w) i Z;éb::.
One verifies immediately, that the F,, (a,2), a, bye®, are
mutually orthogonal, and as ”Faobo(a, m)” = “w%(w)n =1, they
are normalised, too.
If a G(a, x) € O is orthogonal to all F, ,, (@, z), ay, bye ®, then

we have fG(bo, @) f(x)dz = 0 for all f(z) = w, (). The conside-
S

rations of (II) extend this to all bounded, u-measurable f(z). Put

' G(by @)
= if G(bo, ) # 0,
f(a) = sgn G(by, @)y _ 16Co

if G(by, ) = 0,
then flG(bo, z)|dz =0 obtains. So G(by, &) =0, except for an
5

z-set of y-measure 0, for each bye ®. So the normalised, ortho-
gonal set F, , (a, ), ag, bye ®, is complete, too.
If ag=(a,; m=1,2,...), then one verifies easily, that
ﬁa,Faobo(a’ x) = Faobo(a $’als w$'a'l) = (_1)(11 Fao(b0$-a,) (a, z),
Lyy,(x)Faobo(a’? z) = wl(w)Faobo (a, ) = F(a‘,Q}a,)bo (a, ).

(IV) Literally the same argument as above shows, that the
w,,(2), age @ form a normalised, orthogonal, and complete set
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of functions in the space $g and that for the operator
U, f(@) = fla e c)
we have (g = (apsm=1,2,...))
Us, @, (@) = g, (2 - a;) = (—1)" ooy, (@) .

If the p-measurable set TC S differs for each cye ® from its
image by x—> a4 ¢, by a set of u-measure 0 only (depending

on ¢,), then form f; (w){ _ (1) iz: z:; Then fre s and U, fr=fr

in 5. Now write (in 9g)
fr= Z%e@ Uy, Do, (the w, are complex numbers),

SO
Ua,fT = zaoeﬁi uao(—l )atwa

So (—1)™u, = u,, and therefore u, =0 if ever «; # 0 occurs
for ay= (¢, ;m=1,2,...), that is if a;#%0. So fr=uyw,,
fr(@) =uwy(z) =ug, and thus uyg=0o0r 1, u(T)=00r u(S—T)=0
Thus & is ergodic in S.

(V) Let us now return to (III). As @y = (¢,,; m=1,2,...),
bp=(Bmsm=1,2,...) we prefer to denote the F,, by
Fy 8,a,8,...- S0 we have:

The Fyp ... (5, B1s &3 fos ... =0,1, but only a finite
number of them is 4 0) form a complete, normalised, orthogonal
set in . Besides

o
Uoz, Falﬁloczﬁz... By (—1) LFoclﬂlozzﬁz...a,(l—ﬁl)... s
L’lpl(a:) F“lﬂl%ﬁz - By = F, 03By %gBs .. (1=0) Byunn®
(We write 1 — « in all places, where we should write o 41, since
these numbers are to be reduced mod 2.)

(VI) Consider next I®Y_., (91 ® Dmy)» Where D is
the equivalence class of g?, g3, ... with

v§¢(n 1,1 Pn,2,1 T —‘P(n 0,2 P, 2,2+
Apply Lemma 4.1.4 and Theorem V: For every n=1,2,..
the space 9, ,) @ 9, 4 has 4 dimensions, so let every K, be
the 4-element set of all pairs («, §), o, 8 =0,1, and let the
pair (0, 0) play the role assigned to 0 loc. cit. above.

gO
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Put

1
Pn, (0,00 = T/—Q_ (99(71,,1),1 X Pin,2,1 T Pin,,2 ® ‘P(n,z),z),

1
Pn,0,1) :ﬁ((p(n,l),l ® Pn,2),1 — Pn,1),2 ® ‘P(n,z),z)’

1
Pn,(1,0) :75 (‘P(n,l),z Q Prn1+ P @ ‘P(n,z),z)a

1
Pn,(1,1) = 75 (<P(n,1),z ® Pn,2),1 — Pr,1),1 @ <P(n,z),z);

one verifies easily, that this is a complete, normalised, ortho-
gonal set in 9, ) ® 9,4, and has ¢, o, = g5, asrequired. So

the H®n=1,2,... Pn,B(n) (/3(77’) = (am ﬂn)ﬂ %ns ﬁ’n =0,1 for every
n=1,2,... and g(n)= (0, 0), that is «, =g, =0, except for
a finite number of n’s) form a complete, normalised, orthogonal

. D .
set In H®n=1,2,... (@(n,l)®®(n,2))' We write

Do a,B,... = &1, Pupo = ®,_q 0, .. P, (e, 8,) *

Consider now the two operators U”, L™ in §,, ), defined by

U n,0,1= Pia,0,1> L@, = P20
U@im,,2 = — P20 L' P2 = Pinnre
One verifies easily, that the operators Un, L in 9, 1) ® 9,5 map

Pn,(0,00> Pn, (0,1 P, 1,0 P, (1,1) O1 P, (0,2)> P, (0,00 — P, (1,12 — P, (1,0)
YeSP.  @p 00 Pn,,10 Po, 0,00 Pn0n0  that 1S @, g on
(—=1) %@y (x,1-p) TeSP. @y (1-ap- Lherefore we have for Ur, L» in

D
H®n=1, 2, ... (‘b(n,l) ® S?(n,z) )
Und)oclﬁl...oc,,ﬂ,, =1 )an(poclﬂl...ocn(l—ﬂ,,)...’
ﬁdjoc,ﬁl...unﬁn...: ®a131...(1—aﬂ)ﬁ" v

Observe finally, that in 9, , the 4 operators 1, U", L", UL"
are linearly independent, and as £, is 2-dimensional, this
is the maximum number of linearly independent operators in
Dw,1- So all of them are linear aggregates of these; therefore
B,y = R(U™, L"). Consequently

Bn,1y = R(Un> Ln) m H®n=1, ... ( Din,ny ® @(n, 2)-
Now we have in H®;?=1,2’_“ (Dn,1) @ D, ))

é)%l :(R(E(n,l); n=1, 2,.. .) Zﬂ(—U—-—;L, L='n/; n = 1, 2, . .).
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D .
(VII) Compare 9 and II®; 1, . (D1 @ Duma)- The
Fopap,... Tesp- the @y g4 (With the same restrictions on

the oy, B1s % P - - -) are complete, normalised, orthogonal sets
in these two spaces. So an isomorphism of $gs and

H®E¢D=1,2,...(5§)(n,1)®5§(n,2)) exists, which carries each Fygqp, ...
into the corresponding Dy 4, ... (V) and (VII) establish
therefore, that it carries U, into U' and Ly () into L'. There-

fore it carries A = R (U, Lyw: l=L2...) (cf. end of (IT))

into .
C¥=R(T, L5 1=1,2,...) (cf. end of (VI)).

Now C is a factor of class (II;) by (7), p. 206. (This is Lemma
13.1.2 loc. cit.: Every one-point set has the common Lebesgue-
measure 0.) As (O¥ is (spatially) isomorphic to AT, the same
is true for (®¥. This completes the proof.

7.6. Lemmata 7.4.1 and 7.5.1 show, how essentially different
the ring

C¥ = R(:—_@(n,l); n=12,...)

is in the various incomplete direct products

H®§=1,2, (D1 @D, 9)-

The two cases considered, a;=oay,=...=1 and «; =0y=...=0
are only two extremes, and Lemma 7.8.1 describes, how other

sequences oy, &y, ... (all =0, =1) could be used. We wish

= 1forneven . ‘hich case a
= 0 for n odd m-w as

factor of class (II,) (cf. (7) p.172) results, as can be shown
without much trouble.

We surmise, that (% is a factor in every H®C;?=L2,_"8:)(n,1)
(that is: for every choice of oy, o, .. .). Its class can never be
(I,), n=1,2,..., because (Z has clearly no finite linear bases.
We know, that it may be (I, ), (II;) and, as observed above,
(IT, ) too. Thus the only question which remains is this: Does
class (III, ) occur for any choice of the oy, ay, .. .7

The question, whether factors of class (III, ) exist at all, is
as yet unsolved (cf. (7), p- 208), and we do not wish to formulate
any hypothesis concerning it. But we are rather inclined to
surmise, that the above (®¥ will not be a factor of class (III, ),
whatever the choice of the oy, o, - . ..

only to mention the choise a,b{

(Received October 8th, 1937.)



