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On infinite direct products
by

J. v. Neumann

Princeton, N.J.

Introduction.

1. In the theory of vector spaces two important general
operations on such spaces are these: Formation of direct sums
and formation of direct products. It is convenient to recall the

definitions of these notions.

A (complex) vector space * is a set of elements f, g, ..., in

which the operations f + g and (for every complex number a)
af are defined, and possess the usual properties (commutativity
and associativity for f + g, associativity for af, both distribu-
tivities, the existence of 0, and 1f = f, of= 0)1). If a finite
subset f1, ..., f,n of B is such, that every element f of B can be
written as

in one and only one way, then fi, ..., fn form a finite basis of B.
If B1, B2 are two vector spaces with finite bases 1 ..., f1n

and f i, ..., f., then it is well known, how two vector spaces
S8 and 38 can be defined, yvhich have - if proper notations

M’ is the direct sum B1 E9 B2, U" is the direct product B1 Q9 B2.
B1 Q9 B2 can be formed without reference to finite bases of

the definitions

For such a general procedure would be hampered by

1) In the abstract-algebraical terminology: B is an Abelian group (à modulus)
with the complex num bers as operators. 
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many difficulties; for Hilbert-spaces a ,,basisless" procedure has
been given in (7), pp. 127-133 (cf. particularly § 2.2, loc. cit. ).

that these operations are both commutative and associative, so

2. These opérations may be studied for Hilbert spaces

B1, ..., Bk in particular, or somewhat more generally, for unitary
spaces (cf. § 1.1). Now the application of the operation Q) has
turned out to be a powerful tool in dealing with Hilbert spaces.
Two examples may be quoted: The theory of closed and adjoint
operators, as dealt with in (10)2); and the theory of operator
rings, (9), where the fundamental Theorem 5 (pp. 393-396, loc.
cit.) is established with its help 3). Indications of similar possi-
bilities for 0 exist. It seems reasonable, therefore, to study the
effects of Q) and Q9 on unitary spaces. By restricting ourselves
to unitary spaces, we avoid all difficulties connected with the
possible non-existence of bases, which are extremely serious
in general vector spaces.
But if such a detailed study is undertaken, then the generali-

zation to infinite direct sums and products, B1 (D B2 OE) ... and
?1 0 B2 0 ..., seems to be desirable, too.

3. We say first a few words about infinite direct sums, although
they will not be the subject of this paper 4). It turns out, that
?1 EB B2 - - . is not the widest possible generalization. If x

is a parameter which varies over a space S in which a Lebesgue-
measure u(T) is defined 5), and if for every x of S a unitary

which is a unitary space again. (The first example of 5) leads

2) The space sfdefined on p. 299, loc. cit., which is the basis of the entire

investigation, is clearly our &#x26;J EB &#x26;J.
3) The Hilbert space S5 used there is clearly our &#x26;J EB ... 0153 Sj (k addends).

4) They will be dealt with exhaustively in another publication, which is to

appear soon.

5) For instance : S the set of all positive integers, f1(T) = Number of elements
of T. Or: S the set of all real numbers, 1.l(T) some Lebesgue-Stieltjes-measure
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And this generalization seems to be a very natural and con-
venient one, because it permits various interesting applications.
Thus, with its help, the author succeeded in characterising all
operator rings by means of those, whieh F. J. Murray and the
author called "factors", and for which an extensive quantitative
theory exists. (Cf. (7) concerning the ,factors.".) These investi-

gations permit us to extend the réduction theory of unitary
group-representations to all unitary spaces (including Hilbert
spaces), and to connect it with the above mentioned theory of
,,factors". (This will be carried out in the publication mentioned
in footnote 4) above.)

4. Let us now return to direct products. As mentioned in
§ 2, finite direct products i 0 ... @ &#x26;)n (for unitary spaces
Sj1, ..., S)n) have been defined in (7), as a tool for the theory
of ,,factors". we will extend this to infinite ones, jji @ jj © ..., 
and it will appear, that again a further generalisation is possible,
but in a totally different sense than for the infinite direct sums
(resp. direct integrals) discussed in § 3.

This generalisation consists in permitting direct products
with any number of factors: If I is an arbitrary set, and if for
every aEI a unitary space S)(t is given, then the direct product
n0(t El S)cx can be formed 6). Our main reason for considering all
these TI0(tEI S)(t is, that while the theory of the enumerably in-
finite direct products &#x26;)1 (D &#x26;)2 0 ... presents essentially new
features, when compared with that of the finite &#x26;)1 @ ... 0 S)n,
the passage from H1 0 H2 0 ... to the general fl©oeei Ha presents
no further difficulties.

It seems worth pointing out, that while the generalisations of
the direct sum point toward the theory of Lebesgue-Stieltjes-
measure, the generalisations of the direct product lead to higher
set-theoretical powers (G. Cantor’s "Alephs" ), and to no measure-
problems at all.

5. The discussion of infinité direct products H©oee Ha neces-
sitates a careful analysis of infinite numerical products llocEIZOC
(the za are complex numbers). As this is done in Chapter 2 in
considerable detail, we need not speak about it now. Three

remarks, however, seem to be appropriate (all of which will be
discussed more fully in the paper):
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First: Infinite direct products IIQ9EI Sjcx differ essentially from
the finite ones in this, that they "split up" into "incomplete"
direct products II ® â E r «. The importance of this phenomenon is
particularly put in evidence by Theorems I, V, VI, and X.

Second: The generalised notion of convergence ( "quasi-con-
vergence") of TIcx£Izcx, as described in § 2.5, could be avoided
if we restricted ourselves ab initio to the "incomplete" direct

products II (cf. § 4.1 ). This would have another advantage,
too: If all SJcx are separable, and I finite or enumerably infinite,
then the IIQ9EI cx are again separable, while II0cxEI S)cx is not. (Cf.
Theorem V and Lemma 6.4.1.) Thus II0EI S)cx would permit us
to restrict ourselves to (finite dimensional) Euclidean and to
Hilbert spaces, while II® « E r« nécessitâtes the use of general
unitary spaces. 
But since no real new difficulties arise, and since II0cxE l CX

seems to be a more natural basis for our considerations than

li®«Er CX, particularly in the light of the results of Part IV, we
choose the first alternative. And once II0cxEI S)cx is used, there
seems to be no reason to insist on l’s enumerability.

Third: As I may be unenumerable, we must define unenumera-

bly infinité products iZ« E r « (and sums EAEI zag too). This is

done in Chapter 2, and causes no difficulties. In particular,
the complication of "quasi-con-vergence" (cf. § 2.5) arises already
for enumerably infinite l’s.

6. An essential result of our theory is, that the ring B# of all
those bounded operators of II«EI Ha which are generated (alge-
braically or by limiting-processes) by operators of the Ha, rJ..EI,
does not contain all bounded operators of II®« E r Sjoc. Its structure
is exactly determined in Theorems IX and X.
What happens could be described in the quantum-mechanical

terminology as a "splitting up" of II ® « E r cx into "non-intercom-
bining systems of states", corresponding to the "incomplete"
direct products II0EISj(X. This viewpoint, as well as its connec-
tion with the theory of "hyperquantisation" will be discussed
elsewhere.

Another application of our theory could be made to the theory
of measure in infinite products of spaces, which is the basis for
the modern theory of probabilities. (Cf. (2), (3), (5).) Here a
certain "incomplete" direct product 110EI Sjcx is fundamental.
This application too, will be discussed in another publication.
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7. Part IV shows in a very characteristic way, how differently
the various parts of a simply defined subring of B# may behave,
when the II(DOE,, cx Scx-decomposition of TIQ9acI Sja is applied to them.
A special example of particular interest is discussed in detail.

(Cf. in particular §§ 7.3-7.5.) It seems to be essentially con-
nected with the theory of "factors" of F. J. Murray and of the
author, (7), and provides particularly simple examples of various
sorts of such "factors", particularly of the important type
(II1). ( "Finite-continuous", cf. (7) pp. 172, 209-229.)

8. A detailed table of contents has been given, to facilitate
orientation in the paper. AIJ quotations refer to the bibliography,
(1)2013(15). The notations to be used are fully explained in § 1.1.
The reader is supposed to be familiar with the general theory

of Hilbert space, as contained in (8), (12) or (14) and its generali-
sation to unitary spaces, as given in (4), (12), (13), or (15) (cf.
1.1, (b)). For Part III at least familiarity with the general ideas
of (7) or (9) is desirable. In § 7.5 only will results of (7) be used.

Contents.
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Chapter 4. Decomposition of the complete direct product into
incomplete direct products. 

Part III. Operator-rings in direct products.
Chapter 5. Extension of operators and the direct product.

Chapter 6. The ring of all extended operators.

Part IV. Discussion of a special case.

Chapter 7. Discussion of a special case.
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Part I : Preparatory considerations.

Chapter 1: Notations.

1.1. We will use the notations of (8), (9) in about the same
way as in (7). It will be necessary, however, to include non-
separable hyper-Hilbert-spaces ab initio in our discussions,
thereby diverging from loc. cit. above. For this reason it seems
appropriate to give an independent account of the notions and
symbols to be used.

(a) oc E S means that oc is an element of the set S, 5 C T or
T D S that S is a subset of T (including the possibility of S = T).
The set-theoretical sum of all sets Sa’ oc running over all clements
possessing a certain property e(lJ), will be denoted by 6( Sa; e(oc» 7) .
If these Sa may be written as a finite or (enumerably) infinite
sequence S1, S2, ..., we will write 6(51, S2, ... ) too. If S has a
unique element x we may write x for S. The empty set will be
denoted by O.

(b) A complex linear space with a (Hermitean and definite)

7) In particular: If oc runs over all elements of a given set I, we write

BS (SC(; oc EI). In (7) the letter 25 was omitted.
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linear inner product, which is complete, will be denoted by Sj.
(We will make free use of affixes and suffixes, as many such
spaces will occur.) In other words: Sj is a space in which oper-
ations af, f + g, ( f, g) satisfying the conditions A, B, E of (8)
p. 64-66, are given. Conditions C and D (loc. cit. ) are explicitly
excepted. (They express the separability and the inf inite-dimen=
sionality of Sj.) It is known, that in spite of these omissions
S can be treated almost precisely along the same lines as in
(8), (12) and (14) (where all conditions A - E are used). In

particular: A system of elements pa E S, where a runs over an
arbitrarily given set of indices I, is a complete normalised or-

thogonal set, if

Such systems cpa, oc E I do exist, and for ail of them I has the
same power N = N(S), the dimension of S. (Cf. (15), also (4),
(13) or (12).) Correspondingly S) will belong to one of the

three following types:

is a (non-separable) hyper-Hilbert space. (C holds, D fails.)
We exclude explicitly the case -- N -- 0, where S = (0).
Any such S) will be called, for the sake of brevity, a unitary

space.

(c) Closed linear subsets of § are denoted by 8R, 91. As they
are again unitary spaces (except when = (0)), their symbols
sometimes replace Sj. 
The smallest linear or the smallest closed linear set containing

certain sets and elements are denoted by @{...} resp. 5[...].
(The details of this notation are as in (a), where the smallestx
set containing them - that is their set-theoretical sum - was
denoted by 6(...).) 8) The set of all elements of 8R which are
orthogonal to 91 is a closed linear set, to be denoted by 8R - 9l.

(d) For operators, rings of operators, etc., we use the same
notations as in (7), p. 127.

8) In (7) the letter @ was omitted in all thèse symbols.
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(e ) The topologies to be used in § and in the space B = tB ( S) ) .1
of ail bounded operators of S), are those discussed in (7), p. 127.
Considering the cases (1)2013(3) in (b) above, we see: In cases

(1), (2) (Euclidean spaces and Hilbert space) these topologies
behave as described loc. cit., and (9), (11). In case (3) (hyper-
Hilbert spaces) one verifies easily, that the conditions are iden-
tical with those of case (2), with one exception: The second 
countability axiom of Hausdorff holds for none of our topologies,
not even in the unit-sphere of Sj or 0 (defined by Il cp!1  1
resp. III A III  1).

Chapter 2: Convergence.

2.1. Let I be a set of indices of arbitrary size, and let for
each oc E I a unitary space S)et be given. We wish to define a
direct product of these Sx, oce I, whieh will be denoted by
TI0aEI et, under the guidance of the following heuristic prin-
ciples :
We desire that II0etEI Sjet be again a unitary space. For

any given sequence of elemellts f et E Sjet, K runs over I, this

IT0etEI Sjet shall contain a (symbolic) élément II0etE 1 iet. For

these elements we require

The Il , (fa, ga) on the right side of (*) is a numerical product,
which may have infinitely, perhaps even unenumerably in-

finitely, many factors. Therefore its convergence is a serious

question, which must be dealt with by appropriate definitions,
before a notion of I1Q9aEI S)rx fulfilling our heuristic requirements
can be satisfactorily described.

Specialise (*) with fa = ga, then this results:

This formula shows, that we cannot insist on forming II0aElfa
for all sequences f« E S)a, oc e 1 :

(1) Only séquences, rx E l, with a convergent IIaEI Ilfe; Ii I can

be permitted 10).

1) We denote the inner product and the absolute value by (rp, w) and Il cp Il I
if qJ, PE I10aEI5;?et and also by (Jet,get) and Il Jet Il if Jet’ get E5;?et.

lo) For a finite I the problem does not arise; for an unenumerably infinite one

IIa El has not yet been defined. But if I is enumerably infinite, it is obvious,
that HocE, can diverge in the usual sense. 
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Another observation:

(2) In the définition of convergence to be given, convergence
of ITaEllifali to 011) may be considered as convergence. But
sequences fa, cx E I, with ITaEI Il fa Il = 0 are of no importance for
our purpose, because (**) forces us to define for them IIQ9aE l fa = 0.

(*) is a relation between two sequences fa, ocE I and ga, oecZ

and not a property of one. This is apt to be a source of compli-
cations, except if we manage to secure this:

(3) If Il.,,E , 11 f. 11 and ITaEI Il ga!! I, converge, then ITaEI (fa’ ga)
converges too.

Finally we wish, that our direct products IT@aEI S)a fulfill the
commutative rule of multiplication unrestrictedly. This makes it
plausible to require:

(4) The definitions of convergence for TIa E 111 f ex; /1 and for
TIaEI (fa’ ga) shall dépend on no ordering of the set I.

2.2. We proceed now to define the notion of convergence
for ITaE l za, the Zex; being arbitrary complex numbers, so that the
desiderata (1)2013(4) of § 2.1 are fulfilled as far as possible. It is
convenient, to define at thé same time aEI Za too.

(4) forbids us to introduce any ordering of I. Therefore the
following définition seems natural 12):
DEFINITION 2.2.1. aEI Zex; resp. IIEI Za is convergent, and a is its

value (the Za as well as a are complex numbers), if there exists
for every ô &#x3E; 0 a finite set Io = Io(ô) C I, such that for every
finite set J = @(Xi, ..., 1 oc) (the ocl, ..., oc. being mutually
différent) with 10 C J C I

COR,OLLARY: The value a of CXEl Zcx resp. IICXEI Zcx is unique,
if it exists at all (that is: if we have convergence).

Proof : Let a’, a" be two values. If à &#x3E; 0, choose the corres-

ponding finite sets I’0 = Io (d ), I’’0 = I’’0 (à ). Put J = C5(I¿, I’’0) =
@(oe, ..., «n ). J is finite, I¿ C Je 1, I§ C J CI so

and thus was arbitrary, we have

11) Which, if all Il f X Il # 0, is usually called "divergence to 0".
12) It is a special case of a notion of limit in "directed sets", due to E. H. MOORE,

H. L. SlBlITH, and G. BIRKHOFF. Cf. (1), (6).
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2.3. We now derive the basic properties of So 1 za.
LEMMA 2.3.1. If all Zx are real and &#x3E; 0, then z,,, converges

if and only if the set @( +... + ZOE,.; a1, ..., cc. mutually
different, and all e I) is bounded. Its value is then the l.u.b. 13)
of this set.

Proof : Necessity: If lote i Za converges, then let a be its value,
and put .Io = 10(1). If oc1, - - ., (Xn are mutually different and all
E I, then let (Xn+l’ ..., oc. be the different elements of Io, which

Thus the set in question is bounded.

Sufficiency and value: If the set 6(za +... + Za ; ocl, ..., an

mutually different and all E 1) is bounded, then let a be its l.u.b.
For every ô &#x3E; 0 choose al’...’ an mutuall y different and e I,
with zZX1 + ... + zan &#x3E; a - à. Put 10 = Io(ô) = Éb(&#x26;, ..., cn).
Now if J = 6(OCl’ ..., ocm) is finite and Jo C Je I (the a1, ..., ocm
mutually différent), then the ¿Xl’ ..., ân occur among the ocl, ..., ocm
and so (as all Za &#x3E; 0)

As 0 &#x3E; 0 was arbitrary, ZOCEL ZOC is convergent, and its value is a.
LEMMA 2.3.2. If all Zac are real and &#x3E; 0, then LacEI Zoc converges

if and only if 

( I ) Zac =1= 0 occurs for a finite or enumerably infinite number
of (xe7 only, say for the (mutually different) (Xl’ (X2’ ... 14),

(II) Zac + za2 + ... (in the usual sensé) is finite. Its value

is then the Zacl + ZOC2 + ... of (II ).
Proof: Necessity: Denote the l.u.b. of 6(ZPl + ... + ZPn;

Pl, ..., Pn mutually different and E I) by a. If we had

ZP1’ ..., zPn &#x3E; 0 for some fixed 6 &#x3E; 0, then a &#x3E; zp +... + z.8. &#x3E; no,

n  :; would ensue. So only a finite number of a. E I with Zoc &#x3E; 0
exists. Put Ô =: 1 5 2&#x3E; 3 , ... successively ; this proves (I ).
Form the Xi, «2, ... of (I ). Then zac1 + .... + zacm  a and as

all z a,, ZCX2’ ... &#x3E;0; this implies the finiteness of zac + ZCt2 + .... 

13) l.u.b. = least upper bound. 

14) The length of this sequence may be 0, 1, 2, ... or co.
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Sufficiency and value: If (1), (II) hold, thell Za + za2+ ...
is clearly the l.u.b. described in Lemma 2.3.1.
LEMMA 2.3.3. If the z,, are arbitrary complex numbers, tben

EOCEIZOC converges if and only if 2:aEI 1 Za converges.
Proof: The convergence of aEl Za is clearly equivalent to

thé combined convergences of EocE, Rza, E oc E , 3z/X 1,I). The same
is true for aEll Za and XEI 1 ffiza 1, c(EI 13za owing to 

(Use Lemma 2.3.1. ) So we may consider 9îz,,, zx instead of z,,.
That is: We may assume that z,, is real.

Necessity: If 1,,,,z,,, converges, then let a be its value, and

10 = Io ( 1 ) = @(Yi, ..., 0152n), the a1..., eXn mutuall y different. If

oc,, ..., ara are mutually different and eX1’ ..., eXn then

so

Now dénote the oci, ..., xm with z,, &#x3E; 0 by a1, ..., xs and those
with ZXi  0 by v.", 1 ..., x,?2-s . Then we have similarly

and so

Now if {JI’ ..., {Jp are mutually different, but otherwise ar-

bitrary, then let xl, ..., am be those 03B21, ..., Pp which are

(say). So Li.EI z,,, eonv erges by Lemma 2.3.1.
Sufficiency: Let l’ be the set of all ocE I with z, &#x3E; 0; then

I - I’ consists of those with Zcx  0. If l:cxEII Zcx converges, then
zoc,E 1, 1 z. 1, , lac 1 - 1, 11 converge too, by Lemma 2.3.1. But for all
oc E]’, Zcx = 1 Zex 1, 1, and for ail oc E] - ]’, z,, = - 1 z,, 1. So CXE l’ Zex’

15 ) If z = u + iv, u, v real, then Rz = u, T z = v.
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loc Ei -il z converge too, and this clearly implies the conver-
gence of Eaeizot.
LEMMA 2.3.4. If the Zex are arbitrary complex numbers, then

exE 1 Zex converges if and only if 

( I ) Zex =F 0 occurs for a finite or enumerably infinite number
of oc E I only, say for the (mutually different) OC1, lf..2’ ... 13).

( II ) 1 zexJ | + 1 zex2| + ... (in the usual sense) is f inite. Its

value is then Zx1 + Za2 + ... (in the usual sense).
Proof : Necessity and sufficiency: Immediate by Lemmata

2.3.2 and 2.3.3.
Value : As ,ve may consider c(E[ Rza, exEl SZex instead of exEIZex’

we may assume that all z. are real. Let I’ again be the set of
éàll ce E I with za &#x3E; 0, so that I - I’ consists of those with Za  0.
Our statement holds for exEI’ ZlJ. because here za = | 1 Zao 1, , as well
as for lJ.E [-1’ ZlJ. because there za = 2013 1 Zex 1. (In both cases use the
last statement of Lemma 2.3.2.) So it holds for aoEl Zao too.
COROLLARY: If I is finite, that is I = @(Xi, ..., an ) (the

a1, ..., an mutually different), then exE[ ZlJ. is alwTays convergent
and its value is Zao +... + Zan. If I is enumerably infinite,

1 n

that is I = ( «1, oc2, ... ) (the X1, C(2’ ... mutually différent),
then Scxez Zcx is convergent if and oniy if Zaol + z«2 + ... is absolutely
convergent in the usual sense, and then its value is z,, + Za2 + ...

Proof: Clear by Lemma 2.3.4.
Our notion of convergence is thus an extension of the usual

notion of absolute convergence. At any rate exEI Zcx conserves its
usual meaning for finite sets I.

2.4. We next discuss Il ex El Zcx, again beginning with the special
case, where all Zex are real and &#x3E; 0.

LEMMA 2.4.1. If all Za are real and &#x3E; 0, then

( ) IIcxE[ Zao converges if and only if either c(E[ Max (za -1, 0 )
converges, or some z. = 0,

( II ) llCXEI Zao converges and is # 0 if and only if laE, 1 Zex - 11
converges and all Zcx =F 0.

Proof : If any zp = 0, then nCXEI ZOC is convergent and has the
value 0: Io = io(b) = @(fl) will do for any ô &#x3E; 0. So zfl = 0
has the desired effect in both (1), (II), and therefore we may
assume that all z{3 =1=- 0, and diseuss (1), (II ) under this assumption.

Necessity of (1): Assume that I1exEIZex converges, and that its
value is a. Put I o = I0(1) = @(ai, ..., cxn)’ the cl, ..., CXn
mutually different. Let C(1,...’ am. be mutually different and
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But if Zao - 1 &#x3E; 0 for all Za., then

and so

Now denote the ocl, ..., anz with zai 2013 1 &#x3E; 0 by x’j, ..., ocs.
Then the above evaluation does hold for (za’1 - 1 ) + ... + (zas -1).
In other word s :

By Lemma 2.3.1 this establishes the convergence of

LOCEl Max (za- 1, 0).
Sufficiency of (I): We will prove below that TICtEIZCt converges,

if LCtEIlza-II ] converges. So we need only consider the case
where CtEI Max (zoc-l, 0) converges and CtEIIZCt-11 | does not,
that is 16 ) CtEI Max (1-z, 0 ) does not.
By Lemma 2.3.1 the first statement implies

for some fixed ao, whenever the ocl, ..., Am are mutually different.
Hence 

For the same reason the second statement implies the existence
of a set of mutually différent a1, ..., am for any given A &#x3E; 0

such that Max (1 - zîl, 0 ) )+...+ Max (1 - z-,., 0) &#x3E; 4. Clearly

16) Observe that ) 1 u 1 = Max (u, 0) + i%lax (- u, 0) for all real 2c.
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every &#x26;i with zai &#x3E; 1 could be omitted from this set, so we may

assume that all z£  1. Now we have

Any à &#x3E; 0 being given, choose A with eao-A , and put
Jo = I0(à) = @(c1 ..., cin). Then any finite J with 10 C J C I
has the form J = @(&#x26;, ..., cin, oe1, ..., (Xm) the âl, ..., an, ocl, ..., (Xm
being mutually different, and

Thus n(,£EI Z(’£ converges (its value is 0).
Necessity and sufficiency of (II): That IIcxElzcx be convergent

with the value a, all Zcx #- 0 and a :A 0 is clearly equivalent to
 « EI lnzcx being convergent with the value In a. By Lemma 2.3.1
this means, that CXEI lIn Zcx 1 be convergent.
Compare this with the convergence of cxEllzcx-I/. If either

expression converges, Lemma 2.3.2 requires, that 1 ln Z,, 1 &#x3E; 1/3
resp. 1 z,,, - 11 &#x3E; 1 occur only a finite number of times. The

2

second inequality implies the first one, so we have 1 Zo -11 | - 2
with a finite number of exceptions. Now 1 Zcx -11 |  1 implies
2 

2

3/ Zcx -11 |1  /]n Zcx |  21 Z(’£ _1/17), and so the two convergences

are equivalent by Lemma 2.3.1.
COR,OLLARY : Explicit criteria for the convergence of II CXE 1 Zcx

resp. for its convergence with a value "* 0 (all Zcx real and &#x3E; 0)
can now be obtained by applying Lemmata 2.3.1 and 2.3.2.
LEMMA 2.4.2. If the Zrx are arbitrary complex numbers, then

IIOCEIZOC converges if and only if 

( I ) either TIaEllzal | converges and its value is 0,

(II) or TIaEI/Zxl converges and its value is *0, and

£ oe ei ) 1 arcus Za |18) converges.
In case (I ) the value of TI cx El Zcx is 0, in case (II) it is

ITaEI 1 Za 1  ei lo,,E , arcus zoe, and thus * 0.
Proo, f : Necessity: As
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the convergence of TI rxEI Zrx clearly implies the convergence of
n rx El 1 Zrx 1. It remains to be shown, that when II rx El 1 Zrx | 0,
then it implies the convergence of 1 ocE , 1 arcus z., | too.
As IIrxEI Zcx., TICXEllzcx.1 | converge, the Jatter with a value *- 0 so
za Zex. = H j ei areus zoe (all z # 0 necessarily!) converges]zoe] 
too. Let the limit be e, and put Io = Io( 2B/2 7, 0152n)
(for II ex.E 1 ei .arcus Za;), the cil, .... 0152n mutually different. Consider
any mutually different xl, .. (lnp all # &#x26;1, ..., 0152n. Then we
have 

aiid so

and therefore excludes

Considering oci alone instead of a1, ..., am, excludes

and considering we obtain 1 Consider now

oe1 , ..., 9 Y-1 instead of a1, ..., am for all 1 = 0, 1, 2, ..., m.

1 arcus ZCX1 + ... + arcus Zcxll | is 0 for / = 0, it changes by
n

 arcus ZOtzJ | "2 when 1 is replaced by 1 + 1, and it never
2 
n 3n n

enters the Interval -  u  2013. Therefore it remains always  n2 - 2 2 
.

In particular 1 = m gives:

Denote now those a1, ..., x. for which arcus za, &#x3E; 0 by
oc 1 ..., a’s, and the others, for which arcus zaj ç 0, by a’’1 , ..., ocm -.g.,
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Then again

Adding gives

and so

(say).
Thus if fll, ..., f3p are mutually different, but otherwise ar-

bitrary, then

Thus Lemma 2.3.1 secures the convergence of 1,,,,Ej 1 arcus z, 1.
Sufficiency and value: Case (1): As

the convergence of IICXEI Izcxl | with the value 0 implies the same
for II /XE 1 Zcx .

Case ( II ) : CXEI arcus zcxl converges, so /XEI arcus Z/X converges
too (by Lemma 2.3.3), and with it IICXEIei.arcuszoe. The latter’s
value is eie, where 0 is the value of CXEIarcus z/X. Now nCXEI 1 z. |
converges and its value is an a zA 0 so TI /XEI Zcx === II /XEI z., |ei .arcus z.
converges too, and its value is aeio :A 0.
COROLLARY: Explicit criteria for the convergence of IIoc,

resp. for its convergence with a value "* 0 (the z,,, are arbitrary
complex numbers), can again be obtained by applying Lemmata
2.3.1 and 2.3.2. For a finite set I = @(Xi, ..., (Xn) (the (Xl’ ..., (Xn
mutually different) in particular, IIef is always convergent
and its value is Zoc ..... Zcx .

2.5. We see (from Lemma 2.3.3 resp. 2.4.2): While the

convergence of £oeei 1 zocl is necessary and sufficient for that one of
la IE , zcx, the convergence of fl oe e i 1 z,,, is necessary but not sufficient
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for that of H oe ei zoe. This is very inconvenient, because it violates
our desideratum (3) in 2.1: Choose for each oc e I a qJcxES)cxwith

We remove this difficulty by defining:
DEFINITION 2.5.1. I1ocElzoc is quasi-convergent, if and only if

II OCEll Zcx |1 is convergent. Its value is

( I ) the value of nOCEIZOC (in the sense of Definition 2.2.1),
if it is even convergent,

(II) 0, if it is not convergent.
COROLLARY : The value of II « E r « is again unique, if it

exists at all (that is: if we have quasi-convergence).
For Zoc &#x3E; 0 we have za = 1 Zoc 1, and so convergence and quasi-

convergence are then identical.
Thus we have introduced this convention: If TIocEllz(X1 converges,

but if Il,,,, Zoc does not, owing to a too vehement oscillation of
the arcus z,,, (cf. Lemma 2.4.2, (II )) , then we attribute to nOCEl Zoc
the value o. This convention is somewhat arbitrary, but probably
simpler and more plausible than any alternative one would be.
Besides it secures (3) in § 2.1 (cf. Lemma 2.5.2), and leads to
a workable theory of direct products fl© oeej lijoe, as will appear
in the subsequent parts of this paper.
LEMMA 2.5.1. Quasi-convergence of TIocEl Z(’L. with a value =1=- 0

is equivalent to convergence with such a value. It holds if and
only if all zoc=l=-O, and OCEIIZCt-II | converges.

Proof : The first statement is immediate by Definition 2.5.1.
Now Lemmata 2.4.2 and 2.4.1, (II), give this necessary and
sufficient condition: Allz,:AO, and :LrxEI Il zrxl-II, II« E r arcus Zetl |
converge. But clearly

and so these convergences are equivalent to that one of

(xEllz(X-11 (use Lemma 2.3.1).
COR,OLLARY: Explicit criteria can again be obtained by applying

Lemmata 2.3.1 and 2.3.2.

In what follows, the values of expressions nE l Z(X will always
be understood in the sense of quasi-convergence, except where
the opposite is stated.

We are now able to prove (3) in 2.1:
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LEMMA 2.5.2. If fa’ ga. E Sja. for all oc E I, and if lIa. El Il fa. Il , ,
nx~7!!gK!! are ( quasi- )convergent, then na.EI (fa.’ ga.) is quasi-
convergent too.

Proof: TIa.EI (1Ifa.11) 2, TIa.EI (i ig«1 1) converge along with H oe e&#x3E; ’ if« i i ,
na.E11Iga.ll. . From these we wish to derive the convergence of

TIa.EI B(fa., ga.)B. . Since an 11 f,, 11 = 0 or !gJ! = 0 implies (fa, ga.)= 0,
Lemma 2.4.1, (1), shows that we need only to derive the

convergence of loc-EiMax(l(f.,g.)1-1,0) from those of

Xl oeei Max (lIfa.II)2-1, 0), L-’aEf Max «Ilg.!1)2_1@ 0).
New ( foe , g« ) )  é (l l foe ’ l) + É (1 1 g« 1 1) , SONow (fa’ ga)  2 (Ilfall) + 2 Iigall) , so

and hence

So Lemma 2.3.1 gives the desired result.

Part II: The direct product.

Chapter 3: Construction of the complète direct product.

3.1. As in 2.1, let I be a set of indices of arbitrary size, and
let for each aE I a unitary space jjoe be given.
We are now able to live up to (1) in § 2.1, and define those

sequences fa’ ocE I, for whieh II® will be later on (in Defi-
nition 3.1.3) defined.

After having obtained these n0aElfa we will form all their
finite linear aggregates (in Definition 3.1.3) and then ,,complete"
their space. This could be done entirely abstractly, in the manner
of G. Cantor, but we prefer to use a specific representation
by means of "conjugate-linear functionals" (cf. below, and later
in Definition 3.5.1 and Theorem III).
DEFINITION 3.1.1. A sequence fa’ oc E I, is a C-sequence if and

only if frx E a for all aEI, and IIaE! IIfall converges.
LEMMA 3.1.1. If fa’ a E I, and ga, rx E l, are two C-sequences,

then TI aE! (fr/..’ gx) is quasi-convergent.
Proof : Immediate by Lemma 2.5.2.
Now we define the conjugate-linear functionals, on which our

construction of II0 aE! Sja will be based.
We will consider functionals 0, which have complex numerical

values, and an argument fx for each rx E l, the domain of Ja being
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. We will denote such functionals by (j)(frx; rx El). Another

possible aspect would be this: The argument of (j) is the sequence
fa, , cxe I, as a whole. The 0 we shall consider, will however, be
defined for C-sequences only.
Whenever it is necessary to consider a particular argument frxo

(for some fixed oco E I ) separately, we will write 0 rxE 1, ce # oeo)
instead of (jJ ( f rx; ocei).

DEFINITION 3.1.2. Consider those functionals (j)(frx; rx El)
which have complex numerical values, are defined for all C-

sequences frx’ oce I and for those only and which are conjugate-
linear in each f a0 , rxo El:

Dénote the set of these 0 by II 0/X El Sj/X.
TI0/XEI Sj/X is a set of complex-valued functionals, therefore the

opérations u(/&#x3E; (u any complex number) and 0 + y have an
immediate meaning for its elements (P, IF. Clearly ul/J, l/J + P
belong to TI0/XEI /X again (that is, they are conjugate-linear),
as well as the identically vanishing functional 0. So we see:

n/XEI Sj/X is a linear space with complex coefficients.
We will now define certain special elements TI0/XEI f:
DEFINITION 3.1.3. Given a C-sequence f,’, a E I, Lemma 2.5.2

permits us to form the functional

where fx, ae I, runs over all C-sequences, and those only. Clearly
.f/J E IIOCE 1 Sj{X. Define 

DEFINITION 3.1.4. Consider all finite linear aggregates of the
above elements: 
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Clearly TI’ 0!XEl Sj(X C OO « E 1 SjC(, and both sets are linear spaces
with complex coefficients.

3.2. In II’ 0 C(El SjC( (but not in n(xE l C(!), an inner product
can be defined.
LEMMA 3.2.1. If 0, IFE II’ 0rJ..EI $/lce, that is if

then Lemma 2.5.2 permits us to form

This expression depends on rI&#x3E;, P only, but not on the particular
decompositions used for 0, P.

Proof: It suffices to prove that (rI&#x3E;, Y) is unchanged, if only
O’s decomposition is changed, or if only P’s is, changed. As
(rI&#x3E;, Y) = (W, l/J) (for the same decompositions ! ), we need to
consider the first case only. Instead of comparing two decom-
positions of 0, we might as well compare their (formal ) difference
with 0. In other words : We must only prove (0, P) = 0 for
0 = 0 (that is, identically 0(fa; a E I) = 0), for every possible
decomposition of this 0.
Now in this case

LEMMA 3.2.2. (0, P) is linear in 0, conjugate-linear in P,
and of Hermitean symmetry in 0, Y:

Proof : The uniqueness of (W, Y) being established, all these

formulae are obvious.

Proof : Immediately by our definition of (..., ... ).

3.3. Before we can continue the discussion of (tP, zl’) we must
introduce and analyse a notion of equivalence for C-sequences.
DEFINITION 3.3.1. A sequence foc’ ex E I, is a C0-sequence, if and
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LEMMA 3.3.1. Every Co-sequence is a C-sequence, too; every
C-sequence with IIQ9aEI fa =1= 0 is a Co-sequence, too.

Proof : The first statement follows from Lemma 2.4.1, (I), the
second one from Lemma 2.4.1, (II), if we replace II(D,,, f, zA 0 by
naEI Ifall =1= o. But the first inequality implies the second one.
We argue a contrario: naEI 11 f,,, 11 = 0 implies for every C-sequence

and thus the two convergences are équivalent. (Use Lemma
2.3.1.) 
DEFINITION 3.3.2. Two Co-sequences frx’ oeei and gx, oeel

are equivalent, in symbols (foe; a E I ) (gx; a e I ), if and only if

LrxEI 1 (frx’ grx) - 1B I converges.
LEMMA 3.3.3. The equivalence ~ for Co-sequences is reflexive,

symmetric, and transitive:

Proof: Ad (I): Obvious by Lemma 3.3.2.
Ad (II): Obvious as

are convergent, m-e must prove, that

verges too.

are all bounded, say  C. We hav e reached our goal, if we can

prove
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for some constant D, a finite number of exceptions oc being
permissible. (Use Lemma 2.3.1.)

and except for a finite number of

Then

Now

We will now evaluate this expression, using 1 01  1/2, and
2

Dl, D2 will be constants yvhich depend on C. The first term
is clearly

As to the second term, observe that
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and both expressions are

Thus

Combining, we obtain that

with a finite number of exceptions a. But this is the desired

inequality, and so the proof is completed.
DEFINITION 3.3.3. The equivalence ~ decomposes the set of

all Co-sequences into mutually disjoint equivalence-classes.
(Cf. Lemma 3.3.3. ) Denote the set formed by these equivalence
classes by F, and the equivalence-class of a given Co-sequence

Theorem I. If two Co-sequences fa’ a E I, and grx, a El, belong to
two different equivalence-classes, then (IT0aElfa’ II0rxEI ga) === o.
If they belong to the same equivalence-class, then

(II0aEI fa’ II0aEI goc) = 0 if and only if some ( fa, goe) = 0.
Proof: Clearly (IT0aElfa’ II0aEI ga) = TIaEI (fag ga) (in the

sence of quasi-convergence), and so our statement coincides with
that of Lemma 2.5.1.

Some additional information about ~:

Proof: In other words : These convergences are equivalent to that

are convergent by Lemma 3.3.2, we may as well compare with

Now

and the convergence of CXEIZtX is always equivalent to the

the proof of Lemma 2.3.3). This completes the proof.
LEMMA 3.3.5. (fa.; (J. El) R; (ga; a E I ) if f, e ga occurs for a

finite number of oc’s only.
Proof : Clear by Lemma 3.3.4, as fa. = ga implies
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The Lemma which follows deserves some attention, as it is

a very characteristic consequence of our conventions attributing
values to quasi-convergent (but not convergent) expressions
II ex. El ZCX.
LEMMA 3.3.6. Let the z,, be arbitrary complex numbers, and

TI CXE l Zcx quasi-convergent.

Remark : Combining (III), (IV) with Theorem 1 shows, that
whenever (t) fails to hold, we have

Proof : Ad (I): As IIetEIIZetl, IIetElllfetl1 Î converges, so does

and thus cxEllllzcxfcxll-11 I converges. (Use Lemma 2.3.1.)
Ad (III): (t) means, that (I1QSJCXEI zcxfcx) (ga.; rfw E I) ==

= TIa.EIZCX. (TIQSJa.Elfrx)(gcx; ocEI) for ail C-sequences goc, (XEI, that
is H oe ei (z«f« , g« ) = H «ei z« . H oeei( foe , goe). put zl = ( f« , g«),
then this formula becomes

20) By Lemma 2.4.1, (II), this is certainly so, if IICXEI zoc 1 # 0. A fortiori,
if floeel z,, does not converge or is #- 0.
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Now it is easy to verify, that this formula holds, if one of the
two factors on the right side is convergent, while the other need
only be quasi-convergent 21). (Use Lemma 2.4.2.) Thus in case
(t) fails, both TI rxEI za. and TI rxEI z are not convergent. This
excludes (by Lemma 2.4.2, (1)) llrxeI 1 z1 = 0. As 1 z1 =
= ) ( f« , g« ) )  1 1 f« 1 1 1 1 g« 1 ~ and as TI E 1 ilfrx Il, , TI a.E 1 Il ga. Il ~ converge,
it excludes TIa.EI Ilfa.11 == 0 too, and llrxEl (IIfrxll) 2 === 0 too. Now
(TIQ9rxe] fa.) (fa.; OCEf) = TIrx E](frx, frx)= TI a.E] (lif rxll) 2 #0, TIQ9a.E] fa. #0.
So llrxEIZrx is not convergent, and II@rxElfrx * 0 if (f) fails.

This implies rxEllzrxl*o (cf. Lemma 2.4.2, (1)), and so the
convergence of rxE/llzrxl-11 (cf. 20)), together with Za. #0;
and further the Co-sequence character of fa’ oe el (cf. Lemma
3.3.1). Thus Zrx’ fa fulfill the assumptions of (II).
Ad (IV): : rxElllzal-11, , rxEllllfa.II-11 converge by assump-

tion. Equivalence of fa’ oc E I, and zrxfrx’ r:t. El, means that

Sc 1 (Za.fa., frx) - 11 i = £ « e i 1 z«  , i ,f« 1 1 &#x3E;2 - i converges. Now Ilz(XI-II ~
is bounded, so 1 Za. | is too, say  C. Thus

Il Za. - 11 - 1 Za. (! 1 f rx Il )2 - 111  1 (zrx - 1) - (za. (II f rx Il )2 - 1) 1 ===

= ( z« ( ( 1 1 f« 1 1 ) - i ) Î  CÎ ( ’ ’ f« ’ Î l - i Î ,
therefore rxE]llzrx-II-lzrx(lIfrxI1)2-111 | converges (use Lemma
2.3.1), and with it Xl ce i ( ] z oe - i -lzrx(lIfrxll)2- 11)). (Use Lemma
2.3.3. ) Thus the convergence of c(EI Iza. (1lfrxll )2-11 I is equivalent
to the one of 1 oc E 1 1 zoc - 11. This proves the first part of (IV).
Make now the additional assumption that all Z,,, :A 0. The

convergence of exEI Zex is equivalent to the one of S(xe7 ! arcus Zex 1
(use Lemma 2.4.2, ( II ), we have TIcxEllzexl | =0 by Lemma 2.4.1,
(II)), and this is equivalent to the convergence of exEllzcx-II,
because of

We have TIO:Ezlzo:l 1 +/ 0 (by Lemma 2.4.1, (II)), and so if

TI O:E Z Zo: converges, it is necessarily ~ 0 too (by Lemma 2.4.2 22).
Thus the convergence of Il,,,, z,,, can be eharacterised by Lemma
2.5.1: It is equivalent (as all z,,, :A 0) to the convergence of

 Ci. El 1 Zo: - 11. This proves the second part of (IV).
We will see the effect of this Lemma later in § 6.2. This is

an infèrence, which could have been obtained directly, too:

21) If both are quasi-convergent, it may not hold: Put

where n  Ba  n, anci E 0,,E 11 1 Ba does not converge.
22) Mere quasi-convergence would not imply this ! 
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LEMMA 3.3.7. Each equivalence-class (S contains a (C0- ) sequence
fa, oe e I, with Il f B1.11 = 1 for all oc e I.

Proof : Choose ( f§ ; ce e I) e OE. As I:/XEI Illfll- 1B converges,
therefore we have, except for a finite number of cx’s,

Every sequence f0a,v, , alci is a C-sequence. For each one which
is not a Co-sequence, Lemma 3.3.1 gives 11®«EI fa,y = 0, so we
can omit all such terms. We may therefore assume, that all

fa,v, (J.. E l, are Co-sequences. Denote the equivalence-class of

fâ,v, xe7, by 0152v. Denote the different ones among the (Si, ..., 0152p
by D1, ..., Dq (clearly q = 1, ..., p). Let Ni be the set of those
v = 1, ..., p, for which 0152v = Di (i = 1, ..., q).
Now put
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But

Each term is convergent, therefore this will certainly be
if we can show

for every set of mutually different elle, ..., os.
Put (f,v’ f’J1J = a" . Then for any (complex) x1, ..., xp

So the matrix (af1)’V’fl=l,...,P is semi-definite for each a E I. 
Therefore it is the sum of p semi-definite matrices of rank 1 23),
that is of p terms of the form u’ u’ . Thus

is a sum of ps terms of the form

23 ) This statement is orthogonal-invariant; therefore it suffices to verify it

when a:jl has the diagonal form : a" = a:V-jl. (Q=l or 0 if e=0 resp. #0). The
semi-definiteness implies ai &#x3E; 0. Now a’ = Y-’. ace ,,, the a;vlt = a" Ô,_ ,ô
being the desired matrices.
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LEMMA 3.4.3. 0 :y,- 0 implies Ii (]J 112 = (0@ 0) &#x3E; 0.

Proof : By Lemma 3.4.1 always Il (])112 = (OE, 16) &#x3E; 0, so we must

only infer 0 = 0 from Ill/JII = 0.
Now il 0 Il = 0 implies (Pl Y))  Ip ]] Y]) = 0, (P, W) = 0

for all IF by Lemma 3.4.2. Put Y = II@cxElf, then this becomes
(/J( J’ex; a E I) = 0 by Lemma 3.2.3. As fcx’ « E I, was an arbitrary
C-sequence, necessarily 0 = 0.
Theorem 1I. With the (0, P) of Lernma 3.2.1, TI’ Ç?)CXEI S)cx is a

(complex) linear space with a (Hermitean and definite) linear
inner product, that is, it satisfies the conditions A, B of (8),
p. 64.

Thus it can be metrised by defining :

Proof : This follows from Lemmata 3.2.2, 3.4.3, remembering
(8), pp. 64-65.

II@(£EI is not necessarily complete (condition E of (8), p. 66),
and this prescribes the course of our further constructions.

3.5. LEMMA 3.5.1. We have Il fl©aei f%]) = Il,,,, , )] f%)] and for
every (]J (E II Q9EI (£)

Proof : By definition

Now Lemmata 3.2.3 and 3.4.2 (Schwarz’s inequality) give

DEFINITION 3.5.1. Consider those funetions (/) E I1@(X E l S)(X for
which a séquence 0,, (/)9.,... E II’ ©m , r SJrv exists, such that

’rhe set they form is the complete direct product of the s)cx, oe e I,
to be denoted by Ilo,,, , , SjC(. The relations (I ), (II) will be denoted

LEMMA 3.5.2. If a sequence 0,, (/J2’... E II ©oeei #ce satisfies
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condition (II) in Definition 3.5.1, then there exists exactly one
OE e TI0rJ; E l S)C( with 0 = L (P,. f 

r---&#x3E;, oo

If 0 = L Or, then all sequences Yi, P2,... E TI0C( E 1 SjC( with
r--&#x3E; oo 

(p = L IF, are characterised by lim 11 Or - IF, 11 = 0.
r--&#x3E;oo r--. 00

Proof: We have (by Lemma 3.5.1)

for every C-sequence fx. So (II) gives

and thus the (numerical) lim (j)r(flf.; r:J.. El) exists. Denote it by
r--&#x3E;oo

(j)(flf.; r:J.. El). Clearly 0 is a functional E nlf.EI Sjlf.. By ;on-
struction (I), (II) hold, so (j) === L or. Thus tP E II®«I SjIX’ 
and 0 is unique by (1). 

r-+ 00

As to the second statement, we may replace 0, tPr, Pr by 0,
- Pr, 0. So we may assume 0 = YJr = 0. Thus we must

prove, that

are équivalent to lim [ r [ [ = U.
r--&#x3E; oo

Sufficiency: If lim Il Pr:1 =0, then B Pr(fa; « El)  Or TIaEI ifa!1 ~
T-.¿. 00

(use Lemma 3.5.1 ) gives (I )’, and IIPr - PslB  Prll + IIà&#x3E;sl i
gives (II)’.

Necessity : Assume (1)’, (II)’, and the invalidity of lim Il Prll [ = 0.
r--&#x3E; -0

Then there would be Il Prll &#x3E; a for a f ixed a &#x3E; 0 and infinitely
many r’s. Now (1)’ means lim (Pr, II0aEI fa) = 0 (use Lemma

r-+ 00

3.2.3), and so lim (Pr, Q) = 0 for all Q E TI’ 0aEI S)a. Now choose
r-&#x3E; o0 

an ro with !11B1I &#x3E; a 50 great, that r, 8 &#x3E;ro imply lIPr - Psii  :
(use (II)’), and put Q =: Pro. Then we have for r 2 ro
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LEMMA 3.5.3. If (]J, 1Jf E TI00c E 1 SjOC’ that is

then lim (1&#x3E;r, Pr) exists. Denote it by (0, Y). This quantity
r-* 00

depends on W, Y only, and not on the particular representation
used. If fJJ, P E TI’ 0(J.,EI SJx’ then it agrees with the previous
definition.

Proo, f : We have lim 110,- 0,11 =0, lim IIPr-PsII==O,
r, s-ce r, S --&#x3E; c’O

these imply by Sehyvarz’s inequality lim 1 (1&#x3E;r, Pr) - (4)s, Ps)B = 0,
r, s-&#x3E; oo

hence iim (0,, Pr) exists. If fyrther P = L P’, Y’ = L Y’ then
r --&#x3E; -0 r--&#x3E; ao r--&#x3E; 00

we have lim Il Or - Çb’till =: 01 lim IF, - P,! 0 (use Lemma
r--&#x3E; oo r--&#x3E;oo

3.5.2), and Schwarz’s inequality gives lim B (1&#x3E;r, Pr)-(4);, P;)I ===0,
r-+ 00

hence lim (CPr, Pr) lim (0’, P;). Thus lim (or, Pr) depends on
r--&#x3E; -o r--&#x3E; -0 r--&#x3E; 00

OE, Y only.
If 1&#x3E;, P E II’ 0(J.,E 1 SJ(X’ then we may put all Or = 0, Pr = IF which

makes it clear, that the new (0, P) agrees with the old one.
LEMMA 3.5.4. In II0(J.,EI Sj(J.,’ (0, y) is linear in 0, conjugate-

linear in IF, of Hermitean symmetry in 0, IF, and definite. Together
with 114&#x3E;11 = y’ (1&#x3E;,4» &#x3E; 0 it fulfills Schwarz’s inequality. (Cf.
Lemmata 3.2.2, 3.4.3, 3.4.2, where the corresponding statements
are made for II’ 0(J.,E l Sj(J.,.)

Proof : All these properties, except definiteness, follow by
continuity from Lemmata 3.2.2, 3.4.2.

(0, P) &#x3E; 0 follows by continuity from Lemma 3.4.1. If

(0, 0) = 0, then choose 0,, 0,, ... e H’ ©aei with 0 = L (pr-
r-&#x3E;oo

Then lim Il 4&#x3E;r112 = lim (1&#x3E;r, Or) = (0, 0) = 0, lim lI1&#x3E;rll = 0. Thus
r--&#x3E; oo r--&#x3E;00 r--&#x3E; oo

Lemma 3.5.2 gives 0 - L 0 = 0. So 0 0 implies (0, 01 &#x3E; 0,
r--&#x3E;oo

proving the definiteness.
LEMMA 3.5.5. With the (0, Y) of Lemma 3.5.3 II0(J.,EI SJ(X is a

(complex) linear space with a (Hermitean and definite ) linear inner
product, that is, it satisfies the conditions A, B of (8), p. 64.

Thus it can be metrised by defining:
Distance (0, P) = Il fi&#x3E; - Pli, , where Il 1&#x3E; Il I = vi (fi&#x3E;, 1» &#x3E; 0 (cf.

Lemma 3.5.4).
il’ @(XEI S)0153, as described in Theorem II, is a linear subset of
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TI@C(EI C(’ with the same définitions of ufJJ, fJJ::!: YI, (0, YI), Il fl&#x3E;11. 
Proof: The first and the second part follow from Lemma

3.5.4, remembering (8), pp. 64 - 65; the last part follows from
Lemma 3.5.3.

Lemma 3.5.6. Lemmata 3.2.3 and 3.5.1 hold for ail

Proof: They hold for all elements of

, then they hold for all rpr. Now Definition

extend them by continuity to

Sufficiency:

by Lemma 3.5.6 (3.5.1), and (II) eod. by

LEMMA 3.5.9. is topologically complete, that is, it

For each

Thus Lemma 3.5.2 secures the existence of

this complètes the proof.
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Theorem III. With the (0, U) of Lemma 3.5.3 IIQ9cxEI lijoe is
a unitary space, that is, it satisfies conditions A, B, E of (8),
pp. 64-66. It is metrised as described in Lemma 3.5.5.

Il’ © oeej S)cx, as described in Theorem II, is a linear and everywhere
dense subset of IT0cxEI S)cx, "vith the same définition of uW, W + Y,
(01 U’), ll wll.
Further essential properties are given in Lemma 3.5.6.
Proof : This follows immediately from Lemmata 3.5.5, 3.5.9,

3.5.8.

3.6. The importance of this unitary space l1@cxEI Sj becomes
clear in the light of the following Theorem:
Theorem IV. Consider a unitary space H with the folloiving

properties:
(I) For every C-sequence (or alternatively: for every Co-

( III ) The finite linear aggregates of the IlQ9£l fa. form a set Sj’
whieh is everywhere dense in Sj.

This is equivalent to the existence of an isomorphism of jj
and II®« E r Ha, under which each 1Z® E r f « corresponds to

IIQ9cxElfcx. This isomorphism is unique.
Proof: Sufficiency: H = H©oeei Sjcx’ oc = H©oeeif« possess

the properties (I)-(III) by Theorem III. (As to (III), in the
case of Co-sequence, observe that the non-Co-sequences fcx’ ocEI,
do not matter: Their 05 by Lemma 3.3.1.) And
this is unaffected by isomorphisms.

Necessity: Assume, that Sj and IIQ9Elfcx possess the properties
(I ) - (III) (either for all C-sequences, or for all Co-sequences).
Let H©§ej foe in jj correspond to IIQ9cxEI fcx in II’ Q9cx£I cx. This
correspondence leaves (tP, P) invariant, as (II ) holds both in jj and
in II’ Q9CXEI Sjcx. Therefore we can extend it (in a unique way ) to a
linear correspondence between Sj’ and II’ Q9cxEI Sjcx. (In the case of
Co-sequences remember the remark in the sufficiency-proof. ) This
still leaves (W, Y) invariant, and with it ]]W]] = V (l/J, l/J) and
Distance (l/J, P) = 110 - 11111. . Thus it is one-to-one and isometric.

Therefore this correspondence extends by continuity (in a unique
way) to a one-to-one and isometric correspondence between
the closures of lij’ and of II’ Q9cxEI Sjcx’ that is between H and
fl©oeei #ce. By continuity this correspondence is again lineair,
and leaves (0, Il) invariant. Thus it is an isomorphism. And we
have already observed, that it maps IIQ9:Elfcx on TI0cxElfa..
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Uniqueness: Obvious by the above construction of the iso-

morphism.
We see in particular, that if I has only one element, say rxo,

then lij = jj with H©§ejfoe = foe fulfills the requirements of

Theorem IV. So IT00cEI Sjoc is isomorphic to Sjoco. But Sjoco is simply
the set of all Ho)ej foe, so Hooeej #ce is the set of all TI00cEI foc’
and so a fortiori equal to fl’ ooeei Joe. It is easy to verify, that
this is not generally true, if I has two or more elements.

We make use of this isomorphism to identify the elements
which correspond under it. So we have n0(x~/@x==@xo?
110xElfoc = fa0 if oc, is the only element of I.
For every finite set I our construction of Hooei coincide

with that one of (7), pp. 127-131. (There I is the set @(1, ..., n)
n

and H©oeei S)oc is written TI0 S)i.) The discussion of these I can
bd found there, too. i=1

If I is finite, then our Definitions 3.3.1, 3.3.2 show, that every
sequence fa, a E I is a C- and even a Co-sequence, and that any
two such sequences are equivalent. So h (cf. Definition 3.3.3)
consists of one equivalence class only. As we will see in Lemma
6.4.1, F consists of infinitely many equivalence classes, whenever
I is infinite.

If a closed, linear subset Ma A (0) of each s;,oc is given, we
can form 9NOt. The II(Do,,, f,,, (foc E SJJtoc, and foc’ rx E l, a
C-sequence) which vve need for this construction, may be denoted
by fi00cEI flX in order to distinguish them from the TI00cEI fa of
II00cEI S)oc. Consider finally the TI00cEI foc (in II00cEI CX) with
f « E SJJtoc, and denote the closed, linear set, which they determine,
by ÏÏ00CEI WCoc (C H©oe ei soc). Now apply TheoremIV (to TI00cEI moc,
iÍ0cxElfoc in place of Il §x. II0cxElfoc)’ putting Sj=fiQ9OCEI Ma,
TI0EI foc = IT0aEI foc (here f E moc). Then an isomorphism of

II00cEI IDCoc with n0o3Rx results, which carries lZ ® « E r f o into
II00cEI fa.
We make use of this isomorphism, to identify the elements

which correspond under it. Thus il©oeej imcx = ÏÏ00CEI imoc,
TI0aEI foc = II0aEI foc. So we have now II(DAE, ma C TI0aEI Sja ifH©«ei fa = H©aei fa. So we have now H©aei lJla C Hoej jj if
all Ma C S)oc, and their II00cE l fa agree if all fr/w E Ma.
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Chapter 4: Décomposition of the complète direct

product into incomplète ones.

4.1. DEFINITION 4.1.1. If (Se F is an equivalence-class, then
let TIQ9El Sja. be the closed linear set determined by all

TIQ9a.Elfa. where f,,,, ocEI, is any Co-sequence from OE. Clearly
Il®OGEI "c’« C -‘®OCEI ’c’«’

This n0(xe/@x is an incomplete direct product of the &#x26;ja.’ oe el,
more specifically: It is the 0152-adic incomplete direct product.
LEMMA 4.1.1. The TI0EI &#x26;ja.’ for all are mutually

orthogonal, and the closed linear set they determine is

TI0a.E l Ha.
Proof : Assume OE, ’ZE T, 0152 #-:). Consider two Co-sequences

(f,,,; oc E 1) e OE, (ga.; oc E 1) E:). Then (fa.; oc E I) j (ga; oc E I), so

by Theorem 1 TI0a.Elfa. is orthogonal to TI0a.EI ga.. Therefore
TIQ9a.Elfa. is orthogonal to all fl©lei #ce, and again all TI@EI Sja.
are orthogonal to all ll(S)Z Sja..

TI0a.EI Hx is the closed, linear set determined by all II0a.Elfoc
where fa., oc El, runs over all C-sequences. By Lemma 3.3.1. it

suffices to let it run over all Co-sequences. But each Co-sequence
belongs to some 0152 E r, so II@a.El a. is a fortiori determined by
all Il0EI Sja., 0152 E r.
LEMMA 4.1.2. Consider an 0152 Er, and a Co-sequence (fi; xe I),e OE

with ]] f£ ]] = 1. (Cf. Lemma 3.3.7.) Then II®EI « is the elosed,
linear set determined by all Co-sequences fa.’ oc E l, for which

fa. YS occurs for a finite number of oc’s only.
Proof: Let §2* be the closed, linear set which these I1@OCElfoc

determine. Lemma 3.3.5 secures H* Cn0EI Ha. If we can prove,
that TI@a.El fa. E Sj whenever (fa.; oc El) E 0152, then necessarily

fl©§Îei Ha. C H*, and so Sj* === oc Sjoc’ completing the proof.
Assume therefore (f,,; cc E I) E (S, that is (foc; oc E 1) (fg; oc El).

That is: a.EI I(fa.,f) -1B converges.
If 1 1 H©« e i f« 1 1 = H« e i l lf« i l = °, then H© « e i f« = 0 e #* . We maY

assume therefore, that TIa.Elllfa.11 =F 0.80 Il fa. Il 0, and TIa.EI /1 fa Il I
converges and is # 0. So for z = Ilfl! &#x3E; 0, !:acE[ 1 Zac ,- 11 converges
by Lemma 2.4.1, (II). Now Lemma 3.3.6, (III), (IV), apply:
(za.fa.; oc El) 6Ë too, and TI0a.EI za.fa. === Ila.El Za.. » -

= nacE:[[f", ° H©oeeifoe, S° II(DOCEifoc = TIacE! llfx l! ° H© oeel Zoefoe° S°
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we may consider the Co-sequence zafa, oc E I, instead of fa’ r:J.. El.

But IIZafal1= zallfall i 1. So ive see: We may assume Ilf,,,Il = 1
for all (X El.

Choose a Ô with 0  ô  1, and then a f inite set J = e;( (Xl’ ..., ocn ),

Clearly II(xEI (foc, f0a) is convergent (not only quasi-convergent).
For any mutually different Pl’...’ Pm E I - J we have 24)

Therefore

Define now

Then clearly

As our ô, 0  à  1, was otherwise arbitrary, this means that

nQ9Elf(X is a limit-point of Sj*, and therefore belongs to Sj*.
Thus the proof is completed.
LEMMA 4.1.3. If fao is a fixed element of §2, and if the

frx’ (X"* (Xo, are held fixed, so as to form a C- (or even a Co-)
sequence25) then nQ9EI fa is a linear and continuous function

of f « .0
Proof: We have clearly 26)

24, Due to the easily verifiable inequality

25) Clearly neither fact depends on the choice of f .
(a0

26) In order to be able to handle the factor cx = (Xo separately, we shall write

S)cxo 0 II0cx El, CX # CXo Sjcx and foe © H©« ei , « # «nfoe for II0cx El Sjcx and

ll0cxEI tcx respectively.



37

These formulae prove all statements of our Lemma.
LEMMA 4.1.4. Consider an (Se F. Select from E a sequence

fx, oc E I, with )) f£)] = 1. (Cf. Lemma 3.3.7.)
Let Ncx be the dimensionality of S)cx. Use a set of indices Krx

of power Ncx, and form a complète normalised orthogonal set
CPcx, {3’ fJ E K rx’ in S)cx. Make these choices in such a manner, that
0 E Krx, and oc , 0 - oc ° 
Let F be thé set of all functions 03B2(03B1), which are defined for

all oc E I and for those only, such that oc E I implies fJ( oc} E Kcx,
and such that #(ce) # o occurs for a finite number of oc’s only.
Then, if 03B2(x) runs over all F, all IIQ9cxEICPrx,{3((x) exist, and they
form a complète, normalised orthogonal set in II0EI §,.

Proof: As Àl ce e i ) ) ] qoe , fl ce&#x3E; ) ) - 1 ) = Àl ce e ] l - 1 [ = £ i o conver-
ges, all sequences CfJrx, [:J(rxh ocEl are Co-sequences, and so all

TI0rxEI CfJrx, f:Hrx) exist. As qJrx, (3(rx) iA cp«, o = f« occurs only if

{3( l/..) *- 0, that is for a finite number of oc’s, we have

(C{Jrx, (3(rx); oe eI ) sw ( f£; a E I) (use Lemma 3.3.5) and so (qJrx, (3(rx); l/..EI) E OE,
Il0rxEI CfJrx,{3(rx) E 11®x EI S)rx.

(TI0rxEI CfJrx,{3(rx)’ TI0rxEI qJrx,y(rx») = TIrxEI (CfJrx,{3(rxb qJrx, y(rx»). If

((x)=y((x) for all a E I, then all factors on the right side are
= 1, and so this expression is = 1. If fl(a) =Ay(oc) ever occurs,
then the corresponding factor on the right side is 0, and so the
expression is 0.

Thus the TI0rxEI CfJrx,{3(rxh {3(l/..) E F, form a normalised, orthogonal
set in IIâEI jjoe. It remains to prove, that it is complète. Let S)*
be the closed, linear set determined by the ll0rxEI qJrx,,8(rxh 03B2(03B1) E F.
Then we must prove, that S)* contains oc S)rx. Owing to Lemma
4.1.2 it suffices to prove,, that it contains all those II® « E I f« E ’
for which frx =F f occurs for a finite number of oc’s only.

Consider this statement S, (n = 0, 1, 2, ... ) : If

(I)n the number of those l/..’S for which fa gg,,, @,6 (for all fle Ka)
is - n, and if 
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( II ) the number of those ot’s for which fx =f= qJrx,o = f£ is finite,
then fI©«ei foe E @*- 

50 is true: If foe, oce I, satisfies (I)0, (II), then frx = Prx, (3(rx&#x3E;,fJ( x) E F,
so IIQ9rxEI frx = IIQ9rxEI qJa.,{3(rx&#x3E; E Sj*. Assume now, that S.-, holds
for some n - 1, n = 1, 2, ..., and consider Sn. Let frx, oce I,
fulfill (I)n, (II ). Denote the oc for which foe # çoe, # by a1, ..., an.
We ask: For which gan E Sjrxn is grxn 0 II®aEr, rx#rxn frx E Sj*? These
ga form a closed, linear set 9t in S)(Y.n’ considering that S)* is

one, by Lemma 4.1.3. Every qJrxn,{3 E 91, as we assumed the

validity of S.-,. So 91 = 5)rx , and in particular frx e in. That is,
n n

IIQ9rxElfrx ===fi/..n @ IIQ9rxEI, rx#rxnfrx E S)*, proving Sn. Thus all state-
ments Sn are true.
Now let frx’ « E I, fulfill (II) only. The number of the x’s with

fr:/. "* Srx, fJ (being a subsct of those with frx "* qoe, o = f£ ) is neces-
sarily finite, = 0, 1, 2, ... Let n be this number. Then (I)n
holds, too, and so we have IIQ9rxEI frx E 5)* by S,,. But this is

exactly what we needed in order to complete our proof.
Theorem V. Using the notations of Lemma 4.1.4 for OE, fx,

Nrx’ Ka, Prx,{3’ and the set F of functions P(x), there exists a one-
to-one correspondence between the Oe Il(&#x26; oc and the coef-
ficient-systems a [fJ( x); X El] such that

( I ) a[fl(oc); IX E 1] is defined for the ftinctions P(o,.),EF and for
those only, its values 27) being complex numbers,

This correspondence is established by the following équations :

If (/J, 1Jf correspond to
then

(This 1,6(,),EF is convergent.)
Proof : The IT0c(E 1 9?cx, @(q), fl (oc),E F, form a complete, normalised,

orthogonal set in IT0EI §ce, by Lemma 4.1.4. Therefore the
first equation of ( I ) creates a one-to-one correspondence of the

0 e with the a[fl(oc); oc EI as described in (I), (II).
And equation 2) holds. (Cf. the respective theorems of (4), (12),
(13) or (15)). The second équation of (1) coincides with
Lemma 3.2.3.

27) a [fl(ac); oc -E I] does not depend on oc, the argument is the function f3( ex) !
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Theorem V (or Lemma 4.1.4, to which it is practically equi-
valent) clarifies the structure of the oc while Lemma
4.1.1, describes how TIQ9CXEI ce is built up from the IU(&#x26;OE SJcx, 0152 Er
We see in particular, that each Holile i §ce has the same dimension:
The power of F. It is easy to determine this power with the help
of the Ncx, ccE I; we shall do this in some special cases (cf. § 7.2).
The dimension of IIQ9cxEI @x is clearly = power of h power of F.
We shall reconsider this in Lemma 6.4.1 and immediately after it.

4.2. The associative law holds for our products in a restricted
form only: It is particularly noteworthy, that it applies to the

incomplete direct products ll(&#x26;OE,j SJcx only, and not to the com-
plete direct product TIQ9CXEI a. There are no restrictions,
however, as to the number (power) of factors 28). The Theorem
which follows, describes the situation exhaustively. 
Theorem VI. Let I be a set of indices oc, L a set of indices y,

and let for each y E L a set I y of indices oc be given. Assume, 
that the I y , y E L, are mutually disjoint, and that their sum is I.
Let for each oc E I a unitary space Ha be given.

(I ) If fa’ rxEI, is a C- or a Co-sequence, then every sequence
fa’ rx Ely, as well as the sequence TI0aElyla, y EL, is a C- or a
Cn-seauence respectively. In the case of Co-sequences form the

(II) Thé classes 0152y, OE° dépend on 6 only (and not on the

particular choice of the fa.’ a E I ).
(III) There exists a unique isomorphism of I1@EI Sja.

(C I10cxEI Ha) and Ho§l (I10Iy Hx) (C I10YEL (II0cxEly cx))
where TI0a.Elfa. corresponds to ll0YEL (TI0a.Elyfa.) for all

Co-sequences fa.’ « E I, of 0152.

Proof : Ad (I): If lla.Elllfa.1I converges, then all TIa.EI y Ilfa.11 do
so by Lemma 2.4.1, ( I ), and if £ oe ei ) )) foe )) - i ) converges, then ail
Eoeei ( llfoe ll -i) do so by Lemma 2.3.1 (owing to IyCI). So the

fa.’ rJ..Ely are C- resp. Co-sequences along with fa.’ (xEI. Thus
only the C- resp. Co-sequence-character of TI0a.EI fa.’ y E L, must
be established. 

y

28) It is evident from our constructions, in which no ordering of I occurs, that
the commutative law holds unrestrictedly.
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For any mutually different

converges (use Lemma 2.3.1 ), so 1’:CCEl y Max (ii!ccl!- 1,0)  l,
except for a finite number of y’s. Our above inequality esta-

blishes therefore the convergence of E ye L Max (1ln0aElyfal/ -l, 0).
(Use Lemma 2.3.1.) So 110,,, yfo,, y, L is a C-sequence, too.
Next

(use the inequality in 24) on page [36] 36)

Again for every Co-sequence

converges. (Use Lemma 2.3.1.) So (xEly 1 Ilf,,,11 - 11 ç 1 except
for a finite number of y’s. Our inequality now establishes the
convergence of EVEL III llQ9(xElyf(X Il - 1 1. (Use Lemma 2.3.1.) So
IT0cxEI y fa.’ Y E L, is a Co-sequence too.
Ad (II): We must prove: If (f(X; rx E I) = (ga.; oe e l), then

(f(X; rx Ely)  x -E I.) and (TI0cxEI y j; ye L) (TIQ9(xEI y goc YEL).
That is : If M, ., , 1 (f,,,, g« ) - 11 converges, then g(X) -1B I
and lyEL 1 (II0cxElyfcx, TI@(XElyg(X)-IB converge. The f irst statement
is obvious. As to the second one observe that we have (just as

29) Due to the easily verifiable inequality (zl, ..., z. real and &#x3E; 0)
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in the last part of the proof of (I)) for any mutually different

converges, so except for a finite number
of y’s. Our inequality now establishes the convergence of

Ad (III) : Consider the équation

for two Co-sequences (fa; a E I ) and (ba; o,.,E I) e OE. By (1), (II)
all these H are convergent (and not merely quasi-convergent;
use Lemma 2.4.1). Therefore (*) holds, as one verifies easily 30).

(frx.; IH: l y) d£y, CrIl2irx.EI/rx.; Y’E L) E :O). This correspondence leaves
(0, Y) invariant by (*). Therefore it extends in a unique way,
literally as in the proof of necessity in the proof of Theorem
IV, to an isomorphism of the closed, linear sets determined by
the H©«eifoe resp. the TI0YEL (II®«EIY f«). The former set is

II®«Er « by definition, denote the latter by §. So we must

only prove H = H©§i ( H©ill SjaJ. But C is obvious, so we need
only show D.
By (II) we can use any séquence ( f«; I),c OE, so we may

assume that ail !!/oJ! = 1 (use Lemma 3.3.7). Choose a complète,
normalised, orthogonal set f{Jex, f3, f3 E K ex, ill each ex , with

O’EK,, gg,,,) =/x- Let Fy be the set of all functions P(y, oc) which,
are defined for the oc Ely, P(y, a) E Kex and which are = 0 for a
finite number of oe’s ( oe eI,,) only - all this for a fixed y E L.
(woe,o; aE IV) = ( f«; IL Ely) E 0152y. So Lemma 4.14 applies to

30) It would not be so in case of quasi-convergence. Thus 1Za E y (1, 2,...) (-1 )=0
(quasi-convergence), while ny E y(l, 2, ...) (II C( E y(2Y-l, 2y)  - i » = II y E y(1, 2, ...) 1 = 1.
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a complete, normalised orthogonal set there. Denote the function
f3(y, «) = 0 (for all el Ely) by 0, then Oy, o = H © ce e i Pex;, 0 =: TI0ex;Elyf.
Let po be the set of all functions PO(y), whieh are defined for
all y E L, P(y) E Fy, and which are * 0 for a finite number of
y’s (y EL) only. As PO(y) is really a function of if.., oc Ely, we prefer
to write flO(,y, oc) for it. (OEy , 0; y E L) _ (TI 0 ex; Ely P ex;, 0; Y E L) =
= (TI0ex;EI fex;; y EL) E ZO. So Lemma 4.1.4 may be applied
again, now to TI0YEL (TI0ex; Iy ex;): The TI0YEL OEy, P" (’Y, a) =
= Il 0,L (TI0ex;Ely Pex;, {3°ey, ex;») form a complete, normalised, or-

thogonal set in H©/$°ii (rloOE, Iv Ha).
Now we have, except for a finite number of y’s, PID(,y) = 0

that is O(y, x) =: 0 for all oeely. And for the remaining y’s
(JO (y ) E F y so fl"(,y, oc) = 0 again, except for a finite number of
rL.’S (y being fixed). Thus (JO(y, a) = 0 holds always, except for
a finite number of oc’s (y is free). As the domain of a in #°(y, a)
is 7.,, and as the I y, y E L, are mutually exclusive, we may
write (3°(y, a) as a function of ce only: #°(ce), a El. So the

II0YEL (II0CtEly ({JCt, /30(Ct») form a complete, normalised, orthogonal

We know already that our isomorphism maps TI0aElj on

TI0YEL (TI0aEly fa). Its uniqueness (with this restriction) is

obvious by its construction.
This associative law cannot be extended to the complete

direct products TI0aEI Sja and ll(&#x26;VEL @x)? when L is

infinite, for two reasons. 
y

First, different OE’s may give rise to the same OEy and OEO: Put

L=@(l,2,...), 1===6(1,2,...), Iy = @(2y- 1, 2y) (cf. 30)).
Choose in each Sja’ rx El, an fa Ewith 11 f,,, = 1, and put ga = - fa.
Then let, (xef, and ga, oc e I, are clearly two inequivalent Co-
sequences for TI0c£EI S)et, but they are equivalent for each

TI0etEly S)et (Iy is finite), and as H©oeeifoe =f2y-l 0 f2y,
IT0cxEly ga - 92y-l © g2Y = (- f2y- 1) 0 ( f2y) - f2y-1 © f2y So



43

are equivalent, too (for

(It must be admitted, however, that this phenomenon is due
to our way of disposing of quasi-convergence in Definition
2.5.1 (II ). )

Second, I10YEL (II0(xEly S)(X) may possess such equivalence-
classes (£0 == (£0 (OEy; YEL) too, for which lJ&#x3E;yE I10tlElyS)(X cannot
be chosen of the form I10tlEI y f(X. This phenomenon will be

decisive in § 7.3. 
These complications cannot arise, however, if L is finite (the

Iy may be arbitrary).
Theorem VII. If L is finite, then the isomorphisms mentioned

in Theorem VI, (III) can be extended simultaneously to a
unique isomorphism of II0tlEI tl and TI0YEL (TI0tlêly #a).

Proof: As L is finite, only one equivalence-class OE° exists

for 1-lo’YEL (TI0(xEly « ) (cf. the second remark at the end of 3.6).
Thus Theorem VI, (III) establishes an isomorphism between

As L is finite, ex El 1 (f ex’ 1 goc) - 1 1 converges if and only if all

oc,c 1, 1 (f,,, g,,,) - 1 1, y,,E L, converge (use Lemma 2.3.1 ). Thus a

change of 0152 changes at least one 0152y, y E L. On the other hand

any prescribed combination 0152y, y E L, belongs to an OE: Choose
all representatives fa with fa = 1 (use Lemma 3.3.7). Thugs 6
and all combinations 0152y, y E L, are in a one-to-one correspondence.
The ][IoOE,, §, are mutually orthogonal, and so are the

11 (use Lemma 4.1.1). Thus thé 110(11, )
are mutually orthogonal too. Therefore the isomorphisms of the
various H©lei #a with their RIOVEL (1-10 OEV Sjoc) extend in a
unique way to an isomorphism of the closed, linear sets deter-
mined by the H©§Îe Ha resp. the 110 ( H©1§ y Sjex). The former
set is II0tXEI Sj/X (by Lemma 4.1.1), denote the latter by h. So
we must only prove Ç, = II® y E L (ll0ocHy Sjoc). But C is obvious,
so we need only show -D. This is established if we prove

II0YEL (/JyE Sj for any 0 E
L is a finite set, put L = @ (yi, ..., Ym), the y,, ..., ym mutually

different. Consider now this statement, Rn (n =o, 1, 2, ..., m):
If (P E II®, Ejv S)/X for y E L, but for y = Yn+1, ..., Ym even
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Ro is true: Assume now,

that Rn-1 holds for some n - 1, n = 1, 2, ..., m, and consider

Rn. Choose some OEy E H©a ei ±a for y E L, with $y E n@ ly SjIX
for y = vz+i, ..., vn. We ask: For which p"J E TI0etEI et is

yi Yn © H©ye , y#y n OEy e #? These pYn form a closed, linear set
9l in II0etEI Yn &#x26;jet, considering § is one, by Lemma 4.1.3. Every

fl©ll’§) Yn &#x26;jet C 9l, as we assumed the validity of Rn-1 So

R = H©«ei %« (by Lemma 4.1.1), and in particular (/J"J E W.
That is TI0YEL f/Jy = C/JYn @ H©ye, Y#Yn rJ&#x3E;y E, proving R,2.
Thus all statements R,2 are true.
But Rm - states this: If ([&#x3E;y E n@0153EI y Sj0153 for y E L, then

n0YEL ([&#x3E;y E Sj, and this completes the proof.

Part III: Operator-rings and the direct product.
Chapter 5: Extension of operators and the

direct product.

5.1. We now wish to study the relationship of operators in
the various Sj(X’ (xe7, to those in llQ9aEI Sj0153. We shall denote the
ring of ail bounded (everywhere defined, linear, and closed)
operators in Sja by :B0153, and the ring of those in II ®« E 1 @x by
{JJ0 (cf. (7), p. 135).
LEMMA 5.1.1. If a.n operator Axo E {B0153o is given, then there

exists a unique operator Acxo E:B@, such that for all C-sequences
.fa, , OCE I, 

Proof: Aet’s values are prescribed for every H©oeei fm, so if

Aeto E:130 exists at all, then its values are uniquely determined
in the entire closed, linear set determined by the n0aI fet., which
is n0aEI S)et. Thus ACto E [J3@ is unique, if it exists.

If Ja, el El, is a C-sequence, but not a Co-sequence, then Aet.o!rxo
and Jet., el El, el #- (xo, is such, too. So TI0ccEI fcx === 0 alld

(Aet Jet ) 0 TI0cxEI ex -+-et fcx = 0 and our requirement for Aet
becomes vacuous in this case.
Thus we must only prove the existence of Aet.o E t’B0, and we

need to consider Co-sequences fx, x E I, only.
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Apply Theorem
We have an isomorphism between

makes correspond

for all Co-sequences fa.’ r.J. El. Thus if our Lemma holds for

II®yEc, &#x3E; SjY’ where @l = Sja.o’ ?2 = IT0a.EI-(5(a.o) Sja. (1 repla-
cing the oco ), then it holds for II0a.EI Sja.’ too. In other vvords :

We may assume l = @(1, 2), (xo = 1.

Let Pe’ e E K, be a complete, normalised orthogonal set in

S)2. We want an .If 1 E {fJrg; with

for all fl1E 51, f2,,E SJ2. Now it suffices to secure (*) for f2 = Pe’ QEK,
only : For any fixed fi, the f2 for which (*) holds, form a closed,
linear set in S)2 (by Lemma 4.1.3), and as it contains ah Pe’ e E K,
it must be - SJ2 .

Consider now the set Sj’ of all finite linear aggregates
,fÎ 0 PeI + ... + fin) @ CfJen (fil), ..., fin) E S), the oi, ..., on e K
are mutually différent). The closed, linear set determined by
Sj’ contains all fI 0 CfJe’ and so (by Lemma 4.1.3) all /i0/2,
therefore it is @i) §2. But S)’ is a linear set, therefore it must
be dense in §1 0 S)2.

Define now an operator Ai in S)’ by

Ã is clearly linear. As Al E :BI’ there is a C, such that always
 Î A-1 J 1 I I1 ç C)) fi))1 Now (**) gives, as the addends on both sides
are mutually orthogonal (the el, - - ., en being mutually différent),

31) Observe, that S)Clo (29 II0Cl El, Cl * Clo Cl is just another way to write

TIQ9C£EISjCl (cf. 26)), while SjClo (29 II0ClEI-@?(Clo) Cl denotes a different object.
But Theorem .VII establishes their isomorphic character.
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for all OE E Sj’ .
This relation, together with the linearity of A1 and the fact,

that Sj’ is dense in Sjl 0 Sj2’ secure the existence of a closure

AlE,Do of Ã1. (Cf. (10), top of p. 296.) Now

which is the desired special case of (*). Thus the proof is com-
pleted. 
DEFINITION 5.1.1. Denote the set of all a , Aa E:Ba , by

0,,. (C:BtOI). We will call A a the extension of A a .
LEMMA 5.1.2. The correspondence A,,,,-ÂOCO is a one-to-one

mapping of Sx on :Ba , isomorphic for the operations u A (u
any complex number), A * (adjoint), A + B, A B. It carries the

operators Oao, la (null and unit in Sja ) into OtOl, 1,&#x26; (null and
unit in TI0aE 1 S)a). 

Proof: One-to-one character : A «a = Ba 0 implies clearly Aa 0 === Ba . 0
Assume conversely A ao = B«o . Choose an fa E Sja’ Iifaii === 1 for
each ocE I, x uo . Then for any fa E Sja , oc E I, is a Co-
sequence, and 

Isomorphism for uA, A + B, A B, 0,1 : Obvious.

Isomorphism for A *: For any two C-sequences fa’ rx El, and

ga, m e I, we have
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5.2. Our next objective is the study of the isomorphism
AIX -A,., the extension, on operator-rings. We will have to useao -- 

therefore the notions which were introduced and the properties
which were established in (9) and (11). These papers dealt with
separable spaces, but in most cases no use was made of the

separability. It is necessary to discuss therefore, how they apply
to arbitrary unitary spaces.
We will use the various operator-topologies: The "weak", the

,,strong" (cf. (9), pp. 378-388) and the "strongest" (cf. (11),
pp. 111-112 ) topology, cf. our discussion in 1.1, (e). The notion
of a ring will be used in the same sense as in (9), p. 388, Definition
1: A ring is a subset M of JJ (that is a set of bounded operators
in the unitary space H), which contains uA, A *, A + B, A B along
with A, B and which is "weakly" closed. The last condition can
be replaced equivalently by "strongly" closed or even by
,,strongest" closed (assuming the preceding algebraic condition):
The proofs given in (9), pp. 393-396, and (11), pp. 112-113,
hold verbatim for every unitary Sj.
For any subset c5’ of ffl we again define cS’ as the- set of those

A E B, which commute with B, B* for all BEcS. The considera-
tions of (9), pp. 388-398, apply verbatim, while those on pp.
398 -404 (on Abelian rings) make use of the separability of Sj,
and are therefore invalid 32).
Thus cS’’ is always a ring and contains 1, and c5’" - cS holds

if and only if cS is a ring containing 1.

I is again an arbitrary set of indices, each IX’ lJ.. E l, a unitary
space, ao a fixed element of I.

LEMMA 5.2.1. 0,, is a ring containing 1.

32) This seems to be the only part of the general theory, where separability
of § is essential.
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Proqf: 33) Proceed as in the proof of Lemma 5.1.1: Apply
Theorem VII, with L = 6(1,2), Il = Éb(ceo), I, = I - @(a0). We
have an isomorphism between II0cxEl SjC(. = Hx0 II@cxEI, a =FCXo Ha
and II(DVEZ(1,2) (TI@NEI Ha) = S)C(. 0II@CXEI-(CX) &#x26;jcx which makes
correspond

for all Co-sequences fa, fX El (cf. 31)). Thus if our Lemma holds
for II®yE (1,2) My where Oj = Sj(f.o’ 01522 = II0(f. El, ce #oeo Sj(f. (1
replacing the oco), it holds for IT0(f.EI Sja too. In other words :
We may assume I = 6(1, 2), oco = 1. 

Assume noiv conversely A E (B2)’. Consider any f2E S)2’ Il f2 Il = 1,
and the operator Pu 2 ] E:B2 34). Then E = Pu 2 E B2, and for

every çp = g10g2, Eçb Pu 2 ]gl @g2 = g10 Pu 2 ] g2 = gl0 (g2’ f2) f2 =
- (g2, f2) g, (D f2, so EP has the forni hl 0 f2. Thus this holds for
every çp E S"jl 0 S)2. Conversely, if 0 = hl (D f2, then the above

formula gives E 0 = hl 0 f2 = 0. So E is the projection of the
closed, linear set of the hl 0 tf2’ hl E S)l. Now A commutes with
this E E :B2 by assumption, so A (h1 0 f2) has again this form,
say h1 @ 12; h’ could depend on both h1, f2.

Consider next any other h E 2, Î2 = 1 , then A (h10f2) = h 072.
Choose a U2’e DI with U2 f2 Î2 - u 2 E :B2’ so A commutes with

U2 by assumption. But U2(h10f2) = hl 0 U2 f2 = h1 @f2’

U2(hl 0f2)=h! 0 U2f2 -h’(&#x26;i2 1 sa h1 2-^hl 2, h1-h1)J2=0
and thus (form the 11 ... 111) h1 - h1 = o. So h1 does not depend
on f2. Therefore an operator A 1 can be defined by A1h1 = h1. Thus

for IIf211 = 1. But (*) extends immediately to all 12 E S)2.
Ai is clearly linear. As A E{[j0’ so a C with IIAOII  Cil Pli

exists. Choose again ilf2ll = 1, then

33) Bao contains uA, A *, A + B, A B along with A, B as w ell as 1, by, Lemma
5.1.2. The essential point is to prove, that it is weakly closed.

34) The projection of the closed, linear set [f2]:
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Thus Al E {BI. Now (*) makes clear, that A = A 1 E ‘‘ljl. Therefore

([82)’ C {BI. 
80 B1 = (:B2)’, and (B2)’ is clearly a ring containing 1.

LEMMA 5.2.2. Every l/J E Sjl Q9 Sj2 can be written as a finite
or enumerably infinite (strongly convergent) sum

where fl, f,, ... E H1, w1, w2, ... E Sj2 and the latter form a nor-
malised, orthogonal set.

Proof: Let CPr¿’ QEK,, be a complete, normalised, orthogonal
set in H!, and "Pa’ Ue K2, one in H2. Then Tp0 y,, QE Kl, or E K,,
is one in SjI Q9 5)2 (by Lemma 4.1.6, remembering the second
remark at the end of 3.6). Thus

where 1 Ull2 + 1 U212 + ... is f inite, and the pairs (e1, 61)’ (e2’ (12)’ ...
are mutually different. Let il’ i2’ ... be the different ones among
the Qll Q2, . - -1 and vl, V2, ... the different ones among the

or1, or2, ... , , then

Thus w, = y have the desired properties.
LEMMA 5.2.3. Let be a set Co,,,, and c5’ao its image under

the isomorphism A,,,  A «o . . Then cS’«Q is a ring if and only if

J,,,. is one. 

Proof : Just as in the proof of Lemma 5.2.1, we may assume
I = @(1, 2), oeo = 1.
A ring can be defined as follows : It contains uA, A*, A + B,

A B along with A, B and it is closed in the strongest topology.
(Cf. the discussion at the beginning of 5.2.) The first four pro-
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perties hold for S1 if and only if they hold for S1, owing to Lemma
5.1.2. And for the last one, closure in the strongest topology,
this follows from (11), p. 114 (§ 4). In fact: The separability
of l (8) 2 was not used there, the symbols f, 0, 0, ... &#x3E;
(for a given f E h1) which occur there, may be replaced by f (8) cp
(with any cp E 2’ Il cpll = 1 ), and the symbols f/J = f1’ f2’ ... &#x3E;
(for a given OE e §1 @ H2) by the fI (8) (01 + f2 8) (02 + ... of

Lemma 5.2.2.
Theorem VIII. The correspondence Acx  A(j. , as defined in

Lemma 5.1.1, is a one-to-one mapping of 0,,,. on a certain subset
:Bcxo of [B0’ which is a ring containing 1. It is an isomorphism
for the operations uA, A*, A + B, A B and for 0, 1. If it maps
a set cJcx C [Bcx on the set cS’«o C [B,., , then cS’ao is a ring if and

only if cJcxo is one.

Proof : This follows immediately from Lemmata 5.1.2, 5.2.1,
5.2.3.

Chapter 6: The ring of all extended operators.

6.1. We saw in Lemma 3.3.6, that the intuitively plausible
equation 11®aEI zcxfcx = TIcxElzcx . II0cxElfcx holds only, if IIcxEI Z{X
is convergent (or II0{XElfcx = 0 ). Otherwise the sequence zrxfrx’ oc El,
and f« , a E I, are not even equivalent, that is the II0cxElzcxfcx
and II0cxElfcx belong to two different incomplete direct products
II(D oc This situation provides the motive for the defini-

tion which follows:

DEFINITION 6.1.1. Two Co-sequences fcx’ ocEl, and gx, a E I,
are weakly equivalent, in symbols (fa; ceel) = (gx; oc El), if

w

complex numbers Zcx, oc E I, can be found, such that zcxfrx’ oc E I,
is a Co-sequence, and equivalent to ga, oc E I.
LEMMA 6.1.1. Without modifying the meaning of Definition

6.1.1, we may require that all 1 z,,, -- 1.
Proof: In other words: If fcx, oc E I, and zcxfcx, oce I, are Co-sequences

we can find such zi with 1 z" oc =1, that (zafa; oc E 1) ~ (z’ oc f,,,; oc E I)
As LrxEllllzcxfcxll-1B converges, therefore zcxf{X = 0 (yvhieh im-

plies za f. 11 - 1 1) can occur for a finite number of oc’s only.
For these we may replace z., by 1 and fcx by some f,,O, zA 0 (use
Lemma 3.3.5). So we may assume, that always zoe foe =F 0.
As LCXEI illfcxll- 11, cxEIIIJzcxfcxll- 1B I converge, and all f.

Il z{Xf(j., Il =1= 0 so Lemma 2.4.1, (II), secures the convergence of

ITcxE lllfrx !I, TIcxEI Il zcxfcx Il and that their values are :A 0. Thus
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converges too, and has a value "* 0, because

Therefore converges b3T Lemma 2.4.1, (II). Now

Lemma 3.3.6, (II), (IV), give

all the desired properties.
LEMMA 6.1.2. The weak equivalence ~ for Co-sequences is

w

reflexive, symmetric, and transitive:

Proof : Obvious, since we may restrict ourselves to Zr! with

IZa/ == 1 by Lemma 6.1.1.
DEFINITION 6.1.2. The weak equivalence ~ decomposes the

w

set of all Co-sequences into mutually disjoint weak équivalence
classes. (Cf. Lemma 6.1.2.) Denote the set formed by these
equivalence classes by Tw, and the équivalence class of a given
Co-sequence fa’ rJ.. E I, by 0152w (fa; rJ.. E I).

Since equivalence implies weak équivalence, therefore every
0152 E T is OE C OEw for exactly one OEw C Tw, and every OEzw C r w
is the sum of ail 6 C r with 0152 C 0152w.
DEFITION 6.1.3. If 0152w E r w is a weak equivalence class,

then let IT@ EI Sja be the closed, linear set determined by all
w

IT@aEI fa’ where fa’ rJ.. E I, is any Co-sequence from 0152w. Clearly

Hj /llI %ce C H©oe ei %ce.w

Our previous remarks show, that 110 1izi Sja is the closed, linear
w

set determined by all IT@EI S)a with 0152 e r, OE C 0152w.
An explicit criterium of ::
LEMMA 6.1.3. (fa; rt..EI)  (gr;(; (XEI) if and only if aElll (fa’ ga)I-I!

converges 35). 
w

Proof : (fr:J..; rJ.. E I) ~ (gr:J..; rJ.. E I) means by Lemma 6.1.1 (and
w

Definition 3.3.2), that we can find such numbers za with 1 za 1 = 1
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that cxEII(zcxJcx,gcx)-ll I converges. Now for every given a E I

1 (zexfco gex)- 11 l depends on Zex only, and possesses (and assumes)
a minimum: (zexfcx, gcx) = Z. (f. 1 g,,,) varies over a circle of center
0 and of radius 1 (f ex’ gcx) I when z« varies over the circle iz,,,l = 1,
the nearest point to 1 on which is 1 f«, gcx)l. Thus the minimum
of 1 (Zet f ex’ g.) - 1 is Il (f ex’ g,,,) 1 I . Thus our condition becomes
this: il I must converge.

6.2. LEMMA 6.2.1. Assume that a Zet with iz,,,l = 1 is given for
each a. E I. Then there exists one and only one closed, linear

operator U, such that 

for every Co-sequence f rx’ u e 7. This U is unitary.
Proof : Existence and unitary character : Apply Theorem IV

to # = H© i #ce , II0; Elfrx = II0aEI zrxfrx (use Co-sequences only).
Its conditions are fulfilled: ( I ) obviously, (III) because every
n0rxEIfcx is a n@EIgrx (with grx =zrxfrx)’ and (II) owing to

Thus an isomorphism of II0ClEI x on itself exists, whieh carries
every llQ9aElfx into its H©g foe = II0aElzxfCl. This isomorphism
may be looked at as a unitary (and therefore closed, linear)
operator U, and it possesses the desired properties.

Uniqueness: If U is the above defined unitary operator, and
U’ another closed, linear operator which meets our require-
ments, then U, U’ agree for all II0ClEI!Cl’ and so for the f inite
linear aggregates of these, too. Thus they agree on an every-
where dense set, but U is continuous and U’ is closed, therefore
they agree everywhere.
DEFINITION 6.2.1. Denote the U of Lemma 6.2.1 by U(zx; a E I ).
Denote the projection operator of 110 OE Ej ,, OE EI, by P[Ë]

LEMMA 6.2.2. U(za; lf.. El) maps HO §ÎIÎI li$ce on itself, that is,
it commutes with Pw[0152w]. 

W

Proof: U(ZC(; « EI) maps II0aElfa on ll0aEl zC(fC(; if (JC(; lf..EI)E0152w
then (zC(Ja; lf.. El) E 0152w tao, so U(zC(; rx El) maps H© jz % on part

w

of itself. As the same is true for the inverse of U(za; cxeZ), that
is U (zr:/.; lf.. El), therefore it maps H© iQI li$ce exactiy on itself.

w
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LEMMA 6.2.3. (I) U(za; (X El) maps H©le #oe Oll itself, that is
it commutes with P[0152], if and only if IIEl Za. converges 36).
Then U(Za; ce e I ) = (TIaEI za) .1.

(II ) If this is not the case, then U(za; (a E I) maps II@El Sja.
on a n@EI Sja. with OE # T).

Proof : We proceed in a somewhat changed order:
Ad (II): Assume that TIa.EIZa. does not converge. Then

(fa; a E I) e OE implies (Za.fa.; oc El) E SI) =F 0152 owing to Lemma 3.3.6,
(IV). D) depends on 0152 only (and not on the choice of fa.’ oc E I ),
because ( f«; (03B1 E I) ~ (gx; oc E I) implies (Z03B1f03B1; (xe) (Za. ga.; x E I ),
as (Za.fa., za. ga.) = (fa.’ ga) (use Définition 3.3.2). Thus U(za.; oc El)
maps TI@EI Sja. on part of iZ®xEI Sja.- Similarly its inverse,

- maps H©i J, on part of Hoj #. Therefore

II®EI a has exactly the image 110x67 Sjrt., and we know that
OE # %
Ad (I): Sufficiency : If necEI ZC( converges, then Lemma 3.3.6,

(III), secures U (za; a e I) = (TIec El Za) . 1, and the remainder is

immediate.

Necessity: Obvious by (II). 
LEMMA 6.2.4. For any operator Acxo E [JJa.o’ (Xo El, the extended

operator Aecn commutes with every P[0152], P w[0152w] and U(za.; a E I ).

36) This is equivalent to the convergence of Zoc CI 1 arcus Zcx 1, , or to that
one of S(x~z)(x " 1 . (Use Lemma 2.4.1, (II), and Lemma 3.3.6, (IV), remem-

bering that 1 Zcx = 1. )
3’) Let E be the projection of M, and A, A* both map 9R on parts of itself.

This means EA E = A E and EA*E = A*E Apply * to the second equation,
then EA E = EA ensues, and so A E = EA.
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6.3. DEFINITION 6.3.1. Denote the ring generated by all Acxo
with arbitrary Arxo E ;Bcxo and all (xo El, by B. Clearly B# C [!J(j9.

Obviously B* might have just as well been defined as the
ring generated by all :J3cxo’ (xo El. (Cf. Definition 5.1.1 and Lemma

5.2.1. ) That is:

,D* = ’R (00to; GCOE I).
If I is finite, then 0* =-,Do (cf. (7), p. 135), and we will prove

(Theorem IX or X), that this holds only if I is finite. Now ;Bi
is in a way more important than :B0: The elements of B#
arise from those of the Bxo’ (xo E l, by extension (cf. Definition

5.1.1) and algebraical and topological processes. In other words:
They are the only operators in IZ® « E r whieh are based directly
on operators in the S)cx, (X El. Therefore it is of importance to
determine the structure of mi, as e may no longer be identical
with :B@.
LEMMA 6.3.1. Every A E:Bi commutes with all P[0152], (Se F),

then Aao commutes with X, by Lemma 6.2.4, that is
As (X)’ is a ring, this implies
commutes with X.

DEFINITION 6.3.2. Given a 0,E denote by 9N[O] the
closed, linear set determined by all U (za; fY.. E I)f/J, (j z,,, 1 - 1).
Denote by E[O] the projection of M[01.
LEMMA 6.3.2. (I) If 0,E II(D OE,, @(x then E [OE] commutes with

P[OE] and their product is PFOI 38).

(III) E[O] commutes with every U(z«; « EI).
Proof : Ad (1): Denote the closed, linear sets determined by

the U(zoc; E oe I)OE ( Zoc - 1) with a convergent resp. divergent
nOCEI Zoc by M1 resp. m2. Clearly M[OE] = (25[9Xl, Wè2].

38) The projection of the closed, linear set [0]:
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If ITexEI Zex diverges, then

This is a projection, so E[O], P[OE] commute (cf. (8), p. 76)
and their product is p[q&#x3E;r 

LEMMA 6.3.3. For any Co-sequence f â , oc E I, with I!f Il = 1
we have E[ Hoff ] e $JÔ.

Proof : The proof will be carried out in several successive stages.
(I) It suffices to show, that E[II@0153Elf0153J is a strongest (and

thus a fortiori a strong, cf. § 1.1, (e), and particularly (11),
pp. 1112013112) condensation point of B#. And this is certainly
the case, if we can find for an (enumerably infinité) sequence
.. of elements of TI@0153EI 0153 an F E Bi, such that

F4i = E [TI@0153EI f£] OE,,z for n = 1, 2, ...
Each Wu is the limit of a séquence of (finite) linear aggregates

of elements II®« E g« (gr, oeeI a Co-sequence, cf. Theorem VI,

(III)). AU II@EI gx which arise in connection with a given Wn
form again a séquence : TI00153EI g’i, i=1, 2, .... F( II@0153EI g,i) =
=E[n0](ng’) for i = 1, 2, ... implies clearly
F=E[Il0JS] Now we may write the TI0ClEI g,i,
n, i = 1, 2, ..., as a simple sequence, and replace the f/Jn’
n = 1, 2, ..., by them. In other words : We may as well assume
f/Jn = TI@0153EI h (h«, oc E I, a Co-sequence) for each n = 1, 2, ....

If any hna=0, then its (/Jn === TI0ClEI h = 0 may be omitted.
So we may assume, that all hg # 0.
Every U(ZCl; ce e I) commutes with E[TI00153EI f] and F by Lem-

mata 6.3.2, (III), and 6.3.1. Thus we may replace our(/Jn =n0ClElh
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by any U(z; oc E 1) tPn = TIQ9ClEI z h n = 1, 2, ... We can use
this freedom to obtain for every n = 1, 2, ... for which

(hna; ce e I ) xw ( fâ; oc E 1), even (hna; oc E I) ~ (f003B1; oc E I). So we may
w

assume: Let (Bi be the set of all n with (hâ; oc E I) ~ ( fa; oc E I)
and G2 the set of all n with (hna; oc El) not ~ ( fâ; a E I ), then

w

every n = 1, 2, ... belongs either to @i or to G2.
If n E G1, then ClEI 1 (h, f) - 1/ f converges (by Definition

3.3.2), and so we have (hâ, fa) = 1, except for a finite or enume-
rably infinité set of oc’s, Jn (by Lemma 2.3.2, (1)). If n e @,
then (x’EI Il (h, f)1 20131) diverges (by Lemma 6.1.3), and there-
fore an enumerably infinite set of oc’s, Kn, exists, such that

L(xEKn /1 ) (h), fg ) ] - i diverges 39). Finally « E r I j j h j j -1 converges
for each n ( Co-sequences ), so we have ~hna~ = 1 except for a
finite or enumerably infinite set of oc’s, Ln. Now let 1° be the sum
of all Jn (n E l)’ Kn(n e @2), Ln (n = 1, 2, ... ). 1° is finite or

enumerably infinité, and we have :

this implies the convergence of E. E io Max ( 1 (honc 1 f.0) 1 - 1 1 0)
(by Lemma 2.3.1 ).
Combining these facts, Lemma 2.4.1 permits us to conclude:

39) If 2(x67 Ua (Uet &#x3E; 0) diverges, then the Uet1 + ... + ua (oei, ..., ai mutually
different) are not bounded (use Lemma 2.3.1). Choose (Xf,..., (Xl( N with1 ’N

uai + ... + U (XN &#x3E; N for N = 1, 2, ... and let K be the set of all x
N = 1, 2, ..., k = 1, ..., lN, then E OCE K U,x is clearly divergent.
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holds for all n = 1, 2, ....

(III) Write 1° as a (finite or enumerably infinite) sequence
I° = Qb(oe, Cl2’ ... ) ((X2’ (X2’ ... mutually different). For every oc l

This equation exhibits two facts : First, that all P [fJ ’oei

l = 1, 2, ..., commute. Ail P j jo j are projections E :J)(Xo’ so all

Pr.oi are projections E ioeo c i, and as they commune, all 

too are projections E :Bi. And clearly

Thus lim Q l exists 40), and is again a proj ection E Bi.

Second, it shows, that Pjjo j (Hooeei zoeik) = Hooeei zoefk, andL 
so P[!I] P = P for aH P E W([I10XEd]. This implies Qp = PLxj
and lim Q W = W. So

1

Thus

4°) We mean lim Qz if 10 is infinite, and Ql, if I° = 6(Ct1’ ...) (Xl ).
1= 00 
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implies (lim QJ)O,,= E[ TIQ9CXEI gJ tPn 41) and so it suffices to
1

prove (**) for all n = 1, 2, ... Then F = lim Q L meets all
1

requirements.
(IV) We have :

( Remember, that Ilhll=1 for oeql°.) If we form lim, then
1

the second factor on the right side converges to 1, because

nElo Il hna Il converges. Therefore

Thus (**) follows from (*).
The proof is now completed.
LEMMA 6.3.4. Assume (f.0; x,, I) E and 0 E

Then there exists an A E{fJi with A(IT0aElf) = (/J.
Proof: We proceed again in several successive steps.
( I ) Introduce, together with our f0a, the corresponding Na,

Ka, CPa,{3’ F ( f% = ggx, o) of Lemma 4.1.4 and Theorem V. Apply
Theorem V to 0, and let Pl (a), P2( rx), ... be those P( rx) E F (finite
or enumerably infinité in number) for which a[p(a); oc e I] *0.
(Cf. Theorem V, (II).) Write ai = a[3i(rx); rx E I], then the situation
described in Theorem V entails:

(II) For every ocE I and fl e K,,, define

Clearly

Each fJi( r:t.) (j = 1, 2, ...) differs from 0 for a finite number

41 ) If E, F are two projections, E  F, then Il EOE ) ) = I FID ~ implies
EO = FO. Indeed, since E, F are projections, so (F(P, -D) = Il E(P ~2 = I FID ~2 =
(FO, 0) and since F - E is a projection, so Il (F - E)rJ&#x3E; 112 = (F -E)rJ&#x3E;,) =
=- (FO, 0) - (EO, 0) = 0. So (F - E)O =: 0, FO - EO == 0, FOE = EOE.
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of (l’S only, say for

so RiE{fJ*. As aIl III P§ ) ))  1, III Pi ) ) [  1 and III E[II@LLElfJ III  1
( it is a projection), so III Ri III  1.

(III) Assume i # j. We wish to prove, that R/P’ and RjP"
are orthogonal for all Y", Y"’ (e TI@CtEI #ce ). It is clearly sufficient

Consider next the case, where OE’ - 6". Ri, Rj E Dl’ so they
commute with P[0152’], P[0152"] (by Lemma 6.3.1). Thus

disposing of this case.
We may assume therefore, that OE’ = OE" C 0152w. As R2, RJ E {Bi

they commute with U(z(X; occI) (by Lemma 6.3.1), so we may

replace P’, 111" by U(z(X; rx E I) P’, U(z(X; rx El) "P". Now OE, OE’ C 0152w,
so we can choose U(zcx; rx E I) so as to map OE’ = 0152" on 0152. In

other words: We may even assume 0152’ = 0152" = @.
Thus we must prove the orthogonality of RiP’ and RjP" for

P’, P" E ®«EI @(x only. It is clearly sufficient, to consider instead
the 1jf’ = IT0(xEI f, P" = II0(xEI f’ with ( f§; «EI), ( f§’ ; rx E I) E 0152,
only.
Now under these conditions

(use Lemma 6.3.2, (1))

and so
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Similarly

Combining these equations we obtain

As i =1= j, so an a E I 1;ith F« « ) # Fj ( « ), (Pa, {3i(a) , Pa, {3J(a») == 0
exists, and so the third factor on the right side is 0. Thus the

left side is 0 too, and our statement is proved.
(IV) For any W (E II0aEI a) the R1w, R2P, ... are mutually

orthogonal, as was shown above. Besides L IlaiR/P112 ===
= £, ] ai ) / j R Yj )  £, ] a, ) ) [ Yj ) = ( £, ] a, [ ) ] ) Y) [ converges, and
so the sum LiaiRiP is (strongly ) convergent ( in TI0aEI SjC().
So we may define an operator A (in TI0aEI Sja) by

A is the strong limit of all a,R, + ... + ajRj, i = 1, 2, ...,
and so .4 belongs to De along with Ri, R2, ... Finally (*) gives

and therefore

Thus A meets all our requirements.

42 ) This is an extension of Lemma 6.3.3. Observe, that the condition f/J E II0 E l §ce
cannot be omitted: If E[f/J]E [B14 held for all 0, then we could omit in Lemma 6.3.6.
and in Theorem IX the condition, that F resp. A must commute with all P(0152).
Then this fact, together with Theorem IX (or Lemma 6.3.1), would give: If A
commutes with every U(zC(; IY. El), then it commutes with every P[0152] too. But
(if I is infinite) A = U (zâ; oce I) with a non-convergent IIaEI z, commutes with
all U(zC(;’XEI), and (use Lemma 6.2.3, (I)) with no P[0152].
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Lemma 6.3.4. As A commutes with every U(Za; a E I ) (by Lemma

6.3.1), so
A (J(Z.; a Ils I) Il , flol) f"o,) U(z,,; OCCI) 0.
Thus A maps M[ II0f/..EI ff/..J on a set whieh determines the closed,
linear set M[(P]. That is : The range of AE[II@f/..ElfJ determines
the closed, linear set M[Ol.

Let us use the symbol q (cf. (7), p. 141): A and E[ I10f/..E l fJ
are both E De, therefore 17 B# and thus the characterisation of
M[O] given above gives M[O]î-i De. So its projection is E [W] &#x3E;1 B#
too. But this means E[OE] B#. (Cf. loc. cit. above.)
LEMMA 6.3.6. If a projection F commutes with all P[0152] (OE E T)

and U(zq; ocE I) (1 1 z 1 = 1), then F E 0.
Proof : Let in be the closed, linear set of F. Assume rI&#x3E;ESJè.

0 is a limit of a sequence of (f inite ) linear aggregates of elements
of the form P- and so a fortiori of elements 111,E TI 0El S)f/..’
OE e r. So 0 = FOE is a limit of a séquence of (finite) linear

aggregates of elements FP, P E II0f/..EI &#x26;je’ 0152 E T. As F and P[ OE]
commute, and their closed, linear sets are N resp. Ilo(, ’Ei @x?
therefore such an FP E n and at the same time e H©ie §q.
This makes it clear, that W is the closed, linear set determined

by those P E in, for whieh P E H©ie §q, OE e T, holds too.
As F commutes with U(Zf/..; rx E I), therefore U(N«; ac I) maps

in on itself. We have therefore for the above P E SJè, U(z,,,; cce I)P E 91
too, and thus M[P] C N. Therefore the following statement holds
too: N is the closed linear set determined by the W1[P] of all

those P E W, for which Ylc U(DOE,J I, holds too.
Now these M(F) are all nB by Lemma 6.3.5 (n as above,

cf. (7), p. 141). Thus N n B too, and therefore its projection
F ij 0 4, that is F E B#.
We are now in the position to prove:
Theorem IX. A e De if and only if A commutes with all

Proof: Denote the set of these P[0152] and U(za; oc E I ) by S:
Then we must prove (cf. (9), p. 388)

As we have rings on both sides, it suffices to show that both
sides contain the same projections. (Cf. (9), p. 392.)
Every projection of M4 belongs to cS’’ by Lemma 6.3.1, and

every projection of cS’’ belongs to e- by Lemma 6.3.6. Thus
the proof is completed. 
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6.4. Theorem IX gives a complete characterisation of B#,
but it is desirable to have a more constructive one, as contained

in the Theorem which follows.

Theorem X. (I ) If A E B#, then 0,E II(D OE,, implies
Ao E -11(&#x26;OE CC E I Sj(t so that A may be considered as an operator in
nQ9EI Sj(t (instead of IIQ9(tEI Ha), for every 0152 e F. We will denote

A, when thus restricted to

(II ) Select for each

If a bounded operator A0152w is given in each

Proof: Ad (I): As A commutes with the projection of fl©i Sj(X’
P(C£), all statements are immediate.

upper bound for the set in question.
Sufficiency: Consider an arbitrary OE e F. There is a unique

AQ: does not depend on the particular choice of the

proving our statement.
If OE = OE(OE.) then we may choose zoe = 1, U(z(X; oc E I ) = 1

and so A0152 coincides with our original A0152w.
43) l.u.b. = least upper bound.
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Define now an operator A° as follows: A of/&#x3E; is defined if and only
if 0 =- Wi + ... + Pl, where Wi E H©1&#x3E; Sjet, ..., Wl e Hoii xoe ,
the (fI’ ..., (fl E T being mutually different, and then

A° is clearly linear and commutes with every P(0152). Owing
to (*) it commutes with every [J (z(X; lt. El) too. The domain of

A0 is everywhere dense.

and so

Thus A° extends by continuity to an everywhere defined operator
A (in n0K~7 S)(X). This A is linear, along with A°. (**) gives, by
continuity, JIAOII  C Il tPll so A E 0152J0 and fil A III  C. Finally A
commutes with all P[0152] and U(z(X; fXEI), along with A0. So

Theorem IX gives A e B#.

A0152(0152w) = A0152w. Therefore this A meets all our requirements.
Uniqueness: Assume, that A’, A" E:J)lJ:, and A’[([w) == A"[([w)

for all 0152w E Fw. If 0152 C 0152w, then a U(z(X; rf.. El) which maps
Hoil/$/" jj on H©i jjoe exists. As this U(z(X; rf.. El) commutes
with A’, A". the assumption A ’[([w) = A"0152([w) implies A’0152 c=A"[.
As 0152w E r w was arbitrary, this holds for all 0152 E r.

Therefore it holds
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We saiir in the sufficiency-proof of (II), that if we put

A OE. =A (S-(C then OEm 

as desired.

Theorems IX, X make it clear, that the éléments of Me are
characterised by two restrictions:

(I) An Aeo’ 9 is reduced by each H© ÎII#ce, 0152zv E T’W. (Cf.
W

Lemma 6.3.1, "Reduction" is defined in (8), pp. 78-80.)
( II ) Within each I-I(D OE,,, , 0152wEFw, the AE;Bi is reduced

w

by each TI0EI Sja’ 0152 C 0152w, 0152 E F, and its behaviour in any one

of these H©ie #ce determines it in the remaining ones (for a
given 0152w and the 0152 C 0152w, 0152: ET).
Now (II), as indeed the entire difference between the sub-

divisions of TI h. into 110(l,,,,,’s resp. II(D OE"j e::’ is
w 

ultimately due to our way of handling the non-convergent but
quasi-convergent case in 2.5. (The U(Zlf..; (X El) which map an
0152 C 0152w, 0152: E T, on other SD C 0152w, DeT, have non-convergent but
quasi-convergent llx,j za’s, cf. Lemma 6.2.3.) A more compli-
cated procedure in dealing with such infinite products, using
generalised-Banach-limits, would have permitted us to avoid this.
Compared with our present method, however, it would have

been highly artificial and arbitrary, and would have impl ied
serious difficulties in the formulation of an associative law.

Having clarified the resp. roles of the OE E F and OEWE Fw we
proceed to determine their numbers.
LEMMA 6.4.1. (I ) If I is finite, then F and Fw both possess

exactly one element, which is the same for both: the set OEO of
all sequences (flf..; (xEI) 44).

44) So IIOOE,, = 110 = 1Z® « Er « -P(o] - Pw[S0] = 1. Every
II X El Z(X converges, so U(Z(X; XEl) = (ITXE l z(X). 1. Thus Theorern IX gives

B* = B in aecordanee with (7), p. 135.
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(II) If I is infinite, its power being N*, then for each 0152w E rw

(III) If the number of (xe7 with a &#x3E; 2-dimensional Sja is

finite, then r w possesses exactly one élément, if this number is

infinite, then power of r w is &#x3E; g 45).
Proof : Ad (I ): Obvious by Lemma 3.3.5.
Ad (II): Given an 0152w E rw, the number of all 6 C 0152w, 0152 E r.

is obviously  the number of al] combinations of Zex, oc e I (1 Zex == 1 ),
that is NN* = 2"° À* = 2B’ .
As N0N* = x*, decompose I into mutually disjoint sets

Jy,YEL, each Jy having the power N0 and L having the power
N*. For any set L’ CL form zL{ 

= 1 

1 
if aEJ’" yEL’ Choose a

sequence (f; lI..EI) E 0152w Ilfex!1 == 1. Then all (zf; lI..EL)E0152w.
If L’ *- L", then a y exists, for which y e L but 1. L", or

conversely. At any rate OE E J y gives Zex Zex === - 1, so

that zâ’ zL’’a = - 1 occurs infinitely many times. Thus

exEI [ (zk’ fg, zi’ f£ ) - 1 ) "= e7 ! zL’’a - 11 ] contains infinitely
many terms 1- 1 - 1 = 2, and is therefore divergent. That is,
(zl’ f%; ce e I) not = (zk" f%; lI.. El) by Definition 3.3.2.
Summing up : All OE(z§’ f£; OE e I) with L’ C L are C 0152w, Er,

and mutually different. Their number is 2"*. So the number of
the 0152 C 0152w, 0152 E r is &#x3E; 2n*. Thus it must be = 2N*.
Ad (III): Finite number of x~7 with &#x3E; 2-dimensiona Ha:

We want to prove (fex; oe eI) = (ga; oe eI) for all Co-sequences.
w

By Lemma 3.3.7, we may assume )) fx)) = )) gx )) = 1.
If S)ex is 1-dimensional, then fx = cexgex, 1 Cex 1 = 1, so

1 (fex’ gex) ( = 1,) (fx’ gex)| -1| - O. Thtls exEI l(fx, ga)1 - 1 
converges, and so (fx; oeeI) = (gx; (X El) by Lemma 6.1.3.

Infinite number of (1. E l with &#x3E; 2-dimensional Sja: Let

(Xi, j, i, i = l, 2, ... be an enumerably infinité double-sequence
of such (x’s, and Pa. ", 1jJa.. two normalised orthogonal elements
of S’JOCi,j" For each ce # all ce, , , sélect an lE S’joc with 1 f£ )) = i .
For any set N C E (1, 2, ...) form

Clearly every ( gâ ; ex El) is a Co-sequence. If N’ # A", then an i

45) N = power of the continuum, N0 = power of any enumerably infinite set.
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exists, for which i EN but eN" or conversely. At any rate

and is therefore divergent. That is,
by Lemma 6.1.3. 
Summing up: All 0152w (gNa; ex El) with N C (S (1, 2, ... ) are E T’a)

and mutually different. Their number is 2N0=N. So the number
of all 0152w E Tw is &#x3E;N.
We forego an exact determination of the power of Tw, which

would present no difficulties. Clearly power (T) = 2N*. power
(Tw).

Part IV : Discussion of a spécial case.

Chapter 7: Discussion of a spécial case.

7.1. The unitary spaces ll(&#x26;OE,j are isomorphic to each
other by Theorem V, and each IZ® â ÉI Sjcx contains the same

w

number of II0EI Sjcx by Lemma 6.4.1, (II). Therefore the struc-
ture of II0cxEI Sjcx (and of its subspaces H©§Îe #ce , II0 OEW #ce)

w

can only be investigated further, by considering other objects in
II0cxEI Sjcx: Operators and rings of operators. This was done in
Chapter 6 for the ring B#, the next things to discuss are there-
fore subrings of C. Considering the restricted form in which
the associative law for TI0 CXE l Sjcx had to be formulated in Theorem
VI (cf. also the remarks after this Theorem), structural questions
of some interest will necessarily arise in connection with the

associative law.

We know from Theorems IX, X, that every A E B# behaves4
in the same way in each II0EI Sjcx within one given TI0 QI; w Sjcx.

w

Therefore we can only expect interesting phenomena, if more

than one 0152wErw exists. This means, by Lemma 6.4.1, (III): If
infinitely many ex E 1; with &#x3E; 2-dimensional Sjcx exist. Further-

more we know by Theorem VII, that complications in connection
with the associative law will only arise, if L (that is, the number
of pieces I y, y E L of I ) is infinite. And as ly’s with one élément
a are clearly irrelevant, therefore each l y must have &#x3E; 2 elements.
Thus the simplest possible example, on which the essential

features of an infinite direct product TI@cxEI cx may already be
observed, is this one:
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Let I be enumerably infinite, each oc E I, 2-dimensional, let
each ly, y E L, have exactly 2 elements, and thus L be enumerably
infinite.

Specifically:
Let I be the set of all pairs (n, T),n = 1, 2, ..., T = l, 2,

L be the set of all n = 1, 2, ..., I n the set consisting of (n, 1)
and (n, 2) (n, T), n replace ce, y) , S)(nr) is 2-dimensional.
B# is the ring generated by all :J3(n, T). A subring of De which

is essentially affected by an application of the associative law
(in the sense of Theorem VI) to the above I, L and I,,, is the

ring generated by all B(n,1), which we will denote by ei.
So we have:

7.2. We now wish to see the effect of the "associative trans-
formation" of our fl© oeejjoe into II(DYEL on these

too, and see what happens to

Theorem V is clearly enumerably infinite. So each.

is a Hilbert space, and as B* coïncides in it by Theorems X
with the ring of all its bounded operators, we may say, using
the terminology of (7), p. 172: B# is a factor of class (Ioo ) 46) in

1% = @( (n, -r); n = 1, 2, ...), establishing its isomorphism with

OYE LI oc e ; D.) = (n, 2)
(cf. Theorem VII.) In particular, we may form for every 6
of n0i...,ï) the Si of rl0n=1,2,...,(n,j) and the OE2 of

Z=1,2

n=i,...@(n,2) which correspond to it by Theorem VI, (I );

46 That is: A direct factor cf. (7), pp. 139 and 173.
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will correspond to each other under the above isomorphism
(by Theorem VI, (III), and Theorem VII). 

It is evident, that instead of forming a {J3(n,l) directly in
ive might as well form it indirectly: First in

phic to this B# in II@1,2,... S)(n,l). But the B# of 11 n-1, 2, ... SJ(n,l)
in f1°/l/ii,2, ... Sj(n,l} is again a factor of class (Ioe ) ( by the same
argument as above for

true for our

7.3. Let us now investigate the situation in II@YEL( II0c(EI SjC(y) ===Y

=n,, (Sj(n,l) (g) S)(n,2)). For B#’ (we write B#’ instead of
, to emphasize the différence) the argument of 7.2 applies
again (using now the 4-dimensional H(n,1) 0 Sj(n,2) in place of
the 2-dimensional S)(n, T)). B# is a factor of class (I00) in each

II0=1,2,... (S)(n,l) 0 S)(n,2)) whieh are all Hilbert spaces. 
As to Éi°’ (in place of eâ), we must, of course, modify the

définition of 9*’ somewhat: For each $(n,l) (in Sj(n,2)) we
f irst extend in Sj (n, l) @ Sj (n, 2) to :B (n, l)’ and then we extend

While until now the rings B#, (?tt, S behaved isomorphic-
ally in all incomplète direct products, this need not be (and as
we will soon see, is not) the case for É9"’ in the various

nQ9=l, 2,... (S){n, 1) 0 S) {n, 2) ). We proceed now to discuss this in
detail.

Let flJ{n,T’" x = 1, 2, be a complète normalised orthogonal
set in S){n,T). Then flJ{n,l),u 0 flJ(n,2),).’ x, Â. == 1, 2, is one in

Thus the general element of
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while that one of

We will treat the x(n,T),x as vectors:

and the Y(n),uÂ as matrices:

Consider now an incomplète direct product
n@=1,2,... (Sj(n,l) 0 SJ(n,2)). It is characterised by any Co-sequence
(g?n); n =1, 2, ...) E iJ, g0(n) E S"j(n, 1) © H(n, 2): Use the expansion (*) 
for each 9’ then the matrices
obtain. Thus rlolz n=’1,2, ... (D (,,2» is characterised by this
sequence of matrices H0(n), n = 1, 2, ....

Observe now the following points:
(a) We can choose the 9 0 ), n = 1, 2,..., with Il 150

(by Lemma 3.3.7), that is: We may assume, that 

(b ) From the point of view of isomorphism of the parts of
(3*" in thé various II0=1,2,... (S)(n,l) 0 Sj(n, 2) ) a permutation of thé
factors S)(n,l) 0 S)(n,2)’ n = l, 2, ..., does not matter - all our

constructions being entirely independent of any ordering of the
factors 47). Therefore any permutation of the H0(n)’ n = 1, 2, ...,
is immaterial for our isomorphism-problem of (3*=’ in

II0=1, 2,... (SJ(n, 1) @ SJ (n, 2) ). 
(c) From the same point of view any change of the complète,

normalised, orthogonal sets in the various SJ(n,T) is immaterial.

This is rather obvious, or else it may be proved with the help
of Theorem IV. 

Replace therefore f/J(n, T),’" " = 1, 2, by lpn, T),X’ " = 1, 2, where

the matrices being unitary, but other-

wise arbitrary. It is clear, that this replaces each H’.) by

47) But not from splitting up and recombining factors! We have an unrestricted
commutative law, but a very restricted associative one. (Cf. Theorem VI.) 
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where V(n) = transposed matrix of U (n, 1) 1w(n) === U(n,2). Thus

V(n), W(n) are again arbitrary unitary matrices.
Now it is well-known, that every matrix can be carried by

(t) into the diagonal form, with diagonal elements &#x3E; 0 48). So

we may assume that H0(n) has this form:
By another application of (t) we may interchange

so we may assume, that

By (a) we may assume, that

permutation of the an, n = 1, 2, ... matters.

(d) We have obtained the normal form

For two such

we see that 1
So they determine the same equivalence-class 1 and the same

converges (by Definition 2.3.2). This has the majorant

therefore the convergence of (§§) suffices.

48) Given any H, H*H is Hermitean, so a unitary W exists, so that W*H*HW
is diagonal, say with the diagonal dl, d2. As it is semi-definite, so dl, d2&#x3E; 0. Let

K be the diagonal matrix with the diagonal V, 1 -111/ d2 then K*K = K2 =
W*H*HW, so always IIKIII = IIHW/II. Therefore a unitary V with K = VHW
exists.

49) Clearly
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We repeat :
LEMMA 7.3.1. From the point of view of isomorphism of the

parts of el’ in the various H©/_ (Sj(n, 1) 0 Sj(n.2) ) it suffices to
consider the équivalence classes T) of sequences (g?n); n = 1, 2, ...)
of the form (§), with 0  oen  1, n = l, 2, .... Any permutation
of these «n, n = 1, 2, ... or any replacement by other a.n,
n = 1, 2, ... for which (§§ ) converges, is immaterial.

7.4. We will now discuss two extreme special cases. Consider
first the case oe1 = C(2 == ... === 1.

LEMMA 7.4.1. (I ) The sequence «n, n = 1, 2, ..., which

characterises a given II0=1, 2,... (Sj(n, 1) Q9 Sj(n, 2») can be chosen

as C(l = a2 = ... = 1 if and only if D is the equivalence
class of a sequence (g0(n); n = 1, 2, ...) with g?n) = f0(n,1) (g) f?n,2)
(f(n,T) E Sj(n, T) ).

(II) In any such n0=1,2,...(Sj(n,1)@Sj(n,2») the ring ei’ is

a factor of class (I00). (Cf. § 7.2).
Proof : Ad (I): Necessity: If oei = oe = ... = l, then (§ ) in

§ 7.3 gives 

Sufficiency : We have g0(n) = f?n,l) 0f?n, 2). As n=1,2,...11I g?n) 11- 11
converges, so g?n) = 0, III g?n) 11- 11 =1 can occur for a finite

number of n = 1, 2, .. , only. With these exceptions g1n) =/:- 0,
f?n,l)’ f?n, 2) * o. For thé exceptional n’s we may change f?n,l)’ f?n, 2)
(use Lemma 3.3.5), so as to have always frn,l)’ f(,2) =F o. Now

Lemma 3.3.7 permits us to replace these g?n) =f?n,l) 0f?n,2) by

In other words: We may assume

We now could choose the

Then clearly an = 1, that is fXI = oc2 = ... - 1.

Character of ei’: Assume fXI = oc2 = ... = 1, that is

g0(n) = fÉn, i&#x3E; © fE, &#x3E; , Il 1&#x26;,1)11 == IIf&#x26;,2)1I = 1 ( cf. above ). Apply the
associative law (as described in 7.1) in the formulation of

Theorem VI.

(f&#x26;, T); n === l, 2, ..., 7: === l, 2) is clearly a Co-sequence for

IIQ9n=I,2 S)(n,T); let OE be its equivalence-class. Then (thé 0152n
T=l, 2, ... 

being inessential, as ail ln = @( (n, 1), (n, 2)) are finite) @o = S.
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So our ge’ is isomorphic to the e’4 of 7.2, and therefore it
is a factor of class (Ioo ).

7.5. Consider next thecase oc1 = oc2 = ... = 0.

LEMMA 7.5.1. In any n0=1,2,... (S)(n,l) 0 S)(n,2») With

03B11 =03B12 = ... = 0, the ring Ca#, is a factor of class (II1). (Cf. (7),
p. 172.)

Proof: We proceed in the inverse direction: We will analyse
one of the examples of factors of class (111), given in (7),
pp. 192 - 209, and show that it is isomorphic to ge’ in the said

n0=1, 2,... (S)(n, 1) @ S)(n, 2»).n=l, 2,... (‘’c(rt,1) ‘’ "c’(rz, 2) )·
( I ) Let S be the set of all ( enumerably infinite) sequences

x = (am; m = 1, 2, ... ) where each (Xm = 0,1. Let 0 be the set
of those x = (oc., m = 1, 2, ...) E S for which 03B1m # 0 occurs for
a finite number of m’s only.

Define in S: If x = (ccm; 1n = 1, 2, ...), y = (Bm; m = 1, 2, ... )
then x e y = (y,,,; m = 1, 2, ... ) where

Under this definition of "composition" x e y, S is clearly a
(commutative) group, with the "unit" 0=(0;m=l,2,...),
and 0152 is an (enumerably infinite) subgroup of S.
For S (but not for OE ! ) we use the mapping

of S on the numerical interval 0    1. Except for the ,
image of (S, the set of all dyadically rational numbers, which
is a set of Lebesgue-measure 0, this mapping is one-to-one.

So the common (exterior) Lebesgue-measure in 0    1 is

mapped by the inverse of E on a Lebesgue-measure in S, in

the sense of (7), Definition 12.1.2 on p. 192. We will denote it
by ft* (and for "measurable" sets by p, cf. loc. cit. above).
We will now consider @ (with the "composition" a -e b for

a, bE (âR) as the "group" and S (with the "mappings" x --&#x3E; a e x
for aE0152,xES) as the ,space" described in (7), pp. 1922013195. In
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the sense of Definition 12.1.5, p. 195, eod. (we replace the notations
ab, ax used there by a-$- b, a-$- x ) @ is an m-group and ergodic
in S. m-group character : Ad ( I ) loc. cit.: If a = (am; m = 1, 2, ... )
and ocm = 0 for all m &#x3E; mo, then the mapping x -&#x3E; a 4&#x3E; x of

S corresponds by E to a mapping of 0  e  1 of this nature:

a translation as a whole. So the common Lebesgue-measure is
left invariant in 0  e  1, and corresponding y* in S. Ad (II ) :
Obvious. Ad (III): If a # o, then clearly every a/+ r # r. The
ergodicity will be established in (IV) below.

(II ) Form for these S, OJ the spaces NS and lijg of all (complex-
valued) functions f(x) resp. F(x, a) (xc S, aEOJ) which are

,u-measurable in x for each a E OE, aid with a finite

resp.

Form the bounded operators

bounded and u-measurable)
(pp. 198-199, loc. cit.) and the ring 5W which they generate
(p. 200, loc. cit.).
In forming 5W we need not to use all these qJ(ae) and a E (M.

We may obviously restrict ourselves, in forming M, to (bounded)
Baire-functions cp(ae), then by continuity to continuous functions
cp(ae) of e(x), and then again by continuity to functions 99(x)
of this form:

for any mo = 1, 2, .... But

ourselves to the
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then we have

further restriction to the wl(x), l = 1, 2, ..., is legitimate.
Put 

F

clearly alE @, and if a = (cxm; m = 1, 2, ... ) E @, then

a = al-$- ... -$- al where 11, ... Lv are those m for which (Xm ::j=. o.
So it suffices to use the U,,,, 1 = 1, 2, ..., only (instead of

where the ll’ ..., l’V are those m for which ocm =F 0. Define, if

bOE oE too,

One verifies immediately, that the

mutually orthogonal, and as
are normalised, too.

rations of (II ) extend this to all bounded, fl-measurable f(x). Put

x-set of p-measure 0, for each bo E. So the normalised, ortho-
gonal set Fa o b 0 (a, x), ao, boE Q, is complete, too.

(IV) Literally the same argument as above shows, that the
Wa o (0153), a0 e Qj form a normalised, orthogonal, and complete set
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of functions in the space Sjs and that for the operator

we have (ao = (y-.; m == 1, 2, - - -»

If the p-measurable set T C S differs for each co E @ from its
image by x- r e co by a set of u-measure 0 only (depending

so

The Fa1{31(X2P2’" (al’ fll, a2’ P2, ...= 0, 11 but only a finite

number of them is # 0) form a complete, normalised, orthogonal
set in Sj@s. Besides

(We write 1 - oc in all places, where we should write oc + 1, since
these numbers are to be reduced mod 2.)

Apply Lemma 4.1.4 and Theorem V: For every n = 1, 2, ...
the space S){n,l) (g) S){n,2) has 4 dimensions, so let every Kn be
the 4-element set of all pairs (oc, P), ce, f3 = 0, 1, and let the

pair (0,0) play the role assigned to 0 loc. cit. above.
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Put

one verifies easily, that this is a complete, normalised, ortho-
gonal set in Sj(n,l) 0 Sj(n,2)’ and has CPn, (0,0) = gn, as required. So
thé TIQ9n=1,2,... wn,ù(n) (#(?1) === (an’ f3n)’ an’ fJn = 0,1 for every
n = 1, 2, ... and P(n ) = (0, 0), that is an = f3n = 0, except for
a finite number of n’s ) form a complète, normalised, orthogonal

Consider now the two operators Un, Ln in S)(n,l)’ defined by

One verifies easily, that the operators Un, Ln in S)(n,l) @ S)(n,2) map
9’n, (0,0)’ CPn, (0,1)’ 5 ’Tn, (1,0)’ f{Jn, (1,1) on (Pn, (0,1)’ f{Jn, (0,0)’ -f{Jn, (1,1)’ 5 -’Tn, (1, 0)
resp. f{Jn,(l,O)’ , f{Jn,(l,l)’ , 9n, (0, 0) , f{Jn,(O,l)’ , that is, f{Jn_,{3)- OIl

( -1 )C(f{Jn,(OC,l-{3) resp. f{Jn,(l-a,{3). Therefore we have for Un, Ln in

Observe finally, that in N(n,l) the 4 operators l, un, L7, UnLn
are linearly independent, and as (n,l) is 2-dimensional, this
is the maximum number of linearly independent operators in
S)(n,l). So all of them are linear aggregates of these; therefore

{B(n,l) = ’R.( un, Ln). Consequently 

Now we have in
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(VII) Compare Sj0152S and J-jol-, n=l, 2, ( % n, i&#x3E; © S)(n,2) ). The

F N R N R resp. the (/J,., R IV R (with the same restrictions on

the 17,1, fll, ’7,2, fl2g ... ) are complete, normalised, orthogonal sets
in these two spaces. So an isomorphism of Sj@s and

110=1,2,...(S)(n,1)0S)(n,2)) exists which carries each F(’f..1Pl(’f..2{32...
into the corresponding (/J(’f..1ffl(’f..2P2 .... . (V) and (VII) establish

therefore, that it carries Ual into ÜL and Ly,(x) into L . There-
fore it carries M=R(Ual, L1pl(X); l = 1, 2, ... ) (cf. end of (II))
into 

Now t7a’r is a factor of class (III) by (7), p. 206. (This is Lemma
13.1.2 loc. cit.: Every one-point set has the common Lebesgue-
measure 0.) As ge’ is (spatially) isomorphic to t7a’r, the same
is true for ee’. This completes the proof.

7.6. Lemmata 7.4.1 and 7.5.1 shows, how essentially different
the ring

is in the various incomplete direct products

The two cases considered, OCI = OC2 = ... = 1 and ell = oc2 = ... = 0

are only tivo extremes, and Lemma 7.3.1 describes, how other
sequences ell’ el2’ ... (all &#x3E; 0,  1) could be used. We wish

{ 
= 1 for n even .

only to mention the choise eln 
= 0 for n odd 

in whieh case a
0 for n odd

factor of class (II00) (cf. (7) p. 172) results, as can be shown,

without much trouble.

We surmise, that el’ is a factor in every n=l, 2, #(n,1)
(that is: for every choice of oc,, el2’ ...). Its class can never be

(ln)’ n = 1, 2, ..., because 9 has clearly no finite linear bases.
We know, that it may be (Ioo)’ (II1 ) and, as observed above,
(IIoo ) too. Thus the only question which remains is this: Does
class (11100) occur for any choice of the (Y.11 el2’ ... ?

The question, whether factors of class (11100) exist at all, is

as yet unsolved (cf. (7), p. 208), and we do not wish to formulate
any hypothesis concerning it. But we are rather inclined to

surmise, that the above É9" will not be a factor of class (IIIoo ),
whatever the choice of the ocl, OC2, ....

(Received October 8th, 1937.)


