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3 §1 COMPLEX AND PROJECTIVE MANIFOLDS 

Chapter 1. The basic notions 

1. Generalities on complex and projective manifolds 

I recall the basic objects and maps one works with in (complex) algebraic geometry: complex 
manifolds and holomorphic maps between them, projective and affine varieties and rational and 
regular maps between them. 

First, some NOTATION. 

Points in C n are denoted by z = ( 2 1 , . . . , z n ) where Zj = Xj + ij/j is the standard 
decomposition of Zj into real and imaginary parts. Introduce 

d__ _ 1 td_ _ .d_\ 1 / d , d \ 
dzj 2 V dxj dyj J' dzj 2 V dxj dyj J 

and either consider these as a differential operators acting on complex valued functions or 
as elements in the complex tangent space to any point in C n . They give a real basis for this 
complex tangent space. For the dual space, the cotangent space, the dual basis is given by 

dzj = dxj + idyj, dzj = dxj — idyj. 

With this notation one has 

Definition 1. A C°° function / = u + iv on an open set U € Cn is called holomorphic if 
one of the following equivalent conditions hold: 

1 The Cauchy-Riemann equations hold on U: 

du dv du dv 
dxj dyj' dyj dxj' 

2 df = 0 on U. 

3 / admits an absolutely convergent powerseries expansion around every point of U. 

For the equivalence of these definitions, see e.g. [G-H], p.2. 

Remark 2 . A continuous function is called analytic if it admits a convergent powerseries 
around each point. By Osgood's lemma [Gu-Ro, p2.] such a function is holomorphic in 
each variable separately and conversely. Hence a continuous function which is analytic 
automatically satisfies the properties 1) and 2) . 
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Definition 3 . A Hausdorff topological space M with countable basis for the topology is 

an n-dimensional complex manifold if it has a covering Ui, i G / by open sets which admit 

homeomorphisms <p¿ : U¡ - » V¿ C C n with V¿ open and such that for all i G / and j G J the 

map (¿>¿ o (^J1 is a holomorphic map on the open set <¿>J(UÍ PiUj) C C n where it is defined. 

A function / on an open set U C M is called holomorphic, if for all i £ I the function 

/ o y>~1 is holomorphic on the open set <pi(U fl U¡) C C n . Also, a collection of functions 

z = ( 2 1 , . . . , z n ) on an open subset U of M is called a holomorphic coordinate system if 

z o y)]" 1 is a holomorphic bijection from fl Í7,) to 2r(Z7 fl U{) with holomorphic inverse. 

The open set on which a coordinate system can be given is then called a chart Finally, a 

map f : M N between complex manifolds is called holomorphic if it is given in terms 

of local holomorphic coordinates on N by holomorphic functions. 

Let me give some examples. The first three generalize the examples in the introduction. 

The fourth example is a very important basic example: complex projective space. 

Examples 1. Any open subset in C n is a complex manifold. More generally any open 

subset of a complex manifold is a complex manifold. 

2. Let r be a discrete lattice in C n , i.e. the set of points Z71 + Z72 + . . . Z 7 m where 

7i? • • • -> 7m are m independent points (over the reals). Then the quotient C n / T is a complex 

manifold. If m = 2n, i.e. if the points 7 1 , . . . , 7 m form a real basis, the manifold C n / T is 

compact and is called a complex torus. 

3. The Hopf manifolds are defined as the quotient of C n \ { 0 } by the infinite cyclic 

group generated by the homothety z i-> 2z. As an exercise one may show that any Hopf 

manifold is homeomorphic to S1 x S2n~~l. If n = 2 this is the Hopf surface. 

4. The set of complex lines through the origin in C n + 1 forms complex projective space P n 

and is a compact n-dimensional complex manifold in a natural way with Z o , . . . , Zn as ho­

mogeneous coordinates. A natural collection of coordinate charts is obtained by taking Uj = 

{ (Zo, • • . , Zn) G P n I Zj / 0 } with coordinates z^ = (Z0/Zj,..., ZJ-JZJ, Zj+JZj,..., 

Zn/Zj). These are called affine coordinates in Uj. 

As with differentiate manifolds an important tool to produce new manifolds is the 
implicit function theorem, which is stated now together with the inverse function the­
orem. But first I recall the notion of the jacobian matrix J(f) of a holomorphic map 

_ / = ( / 1 , . . . , fm) defined on some open set U G C n : 

dz\ dz2 dzn 

d/2 df2 df2 

J(f)= dzx dz2 '•• dzn . 

dfm dfm dfm 

\ dzi dz2 dzn ' 

The jacobian matrix J(f) is non-singular at a G U if m = n and the matrix J(f)(a) is 

invertible. 
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Theorem 4 . (Inverse Function Theorem) Let U and V be open sets in Cn with 0 € U and 
let f : U —> V be a holomorphic map whose jacobian is non-singular at the origin. Then f 
is one-to-one in a neighbourhood of the origin and the inverse is holomorphic near / ( 0 ) . 

Theorem 5. (Implicit Function Theorem) Given an open neighbourhood U C C 7 1 o f 
the origin and / : £ / - » C m holomorphic and vanishing at the origin. Assume that the 
m x m-matrix 

dzi dz2 dzm 

df2 df2 df2 

dz\ dz2 '"" dzm 

dfm dfm dfm 

\ dzi dz2 "' dzm ' 

is non-singular at the origin. Then there exist open neighbourhoods of V of Q € Cm 

and W of 0 € C n _ m with V x W C U, and a holomorphic map g : W Cm such 
that f{zu... , 2 m , z m + i , . . . ,zn) = 0 if and only if (zu.. .,zm) = g(zm+i,.. .,zn) for z = 
(*!,...,*„)€ Vx W. 

For a proof of these theorems see Problem 2. 

Note that the Inverse Function Theorem shows that the map (g, I ) : W —> V x Wf)V(f) 
has a holomorphic inverse in a neighbourhood of 0 and hence gives a local chart on 

V(f) :=rH0)-

If the rank of the jacobian J(f) is ra everywhere on points of V ( / ) , one can always 
reorder the coordinates and shift the origin in such a way that one can apply the implicit 
function theorem at any point of J(f) and produce a coordinate patch at that point. Also, 
in the overlap the transition functions are clearly holomorphic so that V(f) is a complex 
manifold of dimension n — ra in its own right. 

More generally, if M is a complex manifold and a closed subset N of M is locally in 
coordinate patches given by a function / which always has the same rank ra on V ( / ) , the 
set N inherits the structure of a complex manifold of dimension n — ra which by definition 
is a complex submanifold of M. If one drops the condition about the jacobian one has an 
analytic subset of M. It is called irreducible if it is not the union of non-empty smaller 
analytic subsets. An irreducible analytic subset is also called an analytic subvariety and 
the terms smooth subvariety and non-singular subvariety mean the same as "submanifold". 

Each analytic subset is the finite irredundant union of analytic subvarieties. This is by no means 
trivial but it won't be made use of in these notes. The interested reader can find a proof in [Gu-Ro, 
Chapter HE], The essential ingredients are the Weierstrass Preparation Theorem and Weierstrass 
Division Theorem. 

In the algebraic setting there is the concept of (affine or projective) algebraic variety, 
to be introduced now. If in the preceding set-up U = C n and / = ( / i , . . . , / m ) is a 
polynomial mapping defined on C n , the zero set V(f) is called an affine algebraic set. This 
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set actually only depends on the ideal 3 = ( / i , . . . , fm) in C[z\,..., zn] generated by the 
fj and therefore usually is denoted by V(3). If V(3) is irreducible, i.e it is not the union 
of non-empty smaller affine sets it is called an affine variety. This is for instance the case 
if 3 is a prime ideal. 

It is well known that each affine algebraic set is the finite irredundant union of affine varieties in 
a unique way. This fact won't be made use of, but for the interested reader, I remark that this 
follows from the fact that the ring C [ Z o , . . . , ZN] is Noetherian; see [Reid, section 3 ] . 

Now, instead of holomorphic maps between affine varieties V C C n and W C C m one 
may consider rational maps i.e maps / = ( / i , . . . , / m ) whose coordinates fj are rational 

P 
functions in the affine coordinates of the source space: fj = -pp, j = 1 , . . . , m with P j , Qj 
polynomials such that Qj does not vanish identically on V. The rational map is not defined 
on the locus where some coordinate function fj has a pole. If this is not the case, i.e. if all 
the fj are polynomials one has a regular map. 

A Zariski-open subset U C C n by definition is the complement of an affine algebraic set. 
The Zariski-open sets form the Zariski-topology on C n . The induced topology on any affine 

1 variety V is called the Zariski-topology on V. One says that a rational function is regular 
on a Zariski-open subset U of an affine variety if it has no poles on U. For example, if / is 
any irreducible polynomial there is the basic Zariski-open set 

tf/:=c»\v(/), /eqxi,...,*„] 
P 

and any regular function on Uf is of the form w i t h P some polynomial and k > 0. 

The regular functions on U form a ring, denoted 0(U). For instance 0(Uf) is the 
localisation of the ring C[zi,..., zn] in the multiplicative system / n , n > 0. See Appendix 
A l for this notion. 

The rational functions give the same function on V = V(3) if their difference is of the 
P 

form — with P G 3. An equivalence class of such functions is called a rational function on 
V. The set of rational functions on V form the function field C(V) of V. It is the field of 
fractions of <C[zi,..., zn]/3 and in fact of any of the rings 0(U), U Zariski-open in V. 

Next, if there is given a homogeneous polynomial F in the variables ( Z o , . . . , Zn) its 
: zero-set in a natural way defines a subset of P n denoted V(F). The zero locus of a set 

of homogeneous polynomials F \ , . . . , FN only depends on the ideal 3 they generate and is 
denoted by V(3). These loci are called projective algebraic sets. 

If the ideal 3 is a prime ideal, V(3) is a projective algebraic variety. This is for instance 
the case, if F is irreducible. 

P 
In the projective case, rational functions on V are functions / = — where P and Q 

are homogeneous polynomials of the same degree (otherwise / is not well defined) with Q 
not identically vanishing on V. These form the function field C(V) of V. A rational map 
f : V—+Pn is defined by demanding that the homogeneous coordinates of / be rational 
functions. If the map / can be given by polynomials, it is a morphism or regular map and 
these are examples of holomorphic maps. 
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Of course, on projective varieties one can introduce the Zariski-topology as well and 

as before one can speak of the ring of regular functions on any Zariski-open subset of a 

projective variety. Its field of fractions again coincides with the function field of the variety. 

Also, each projective algebraic set is the finite irredundant union of projective varieties 
in a unique way. This follows from the corresponding assertion for affine varieties. See 
[Mu, section 2A] for details. 

A projective variety is a complex subvariety of P n but in general not a submanifold 
because of the jacobian condition. If it is, it is a projective manifold. So by definition an 
algebraic surface is a projective manifold of dimension two. 

Example 6. A hypersurface V(F) where F is a homogeneous polynomial of degree d. 

Consider the open set UQ and for simplicity set = z. The inhomogeneous polynomial 

f ( Z u . . . , Z n ) = F(l,^-,...,^) = (±-)dF(Z0,...,Zn) 
ZJQ ¿ 0 V ^ O ' 

vanishes in UQ precisely where F vanishes and if at a point of V(f) some partial, say —— 
dz\ 

is non-zero, the implicit function theorem implies that 2 2 , . . . , z n can be taken as local 
coordinates on V(F) and hence that V(F) is a manifold locally at that point. The locus 

df 
where all the partials ——, j = 1, . . . ,n vanish on V(f) is the set of non-manifold points, 

OZj 

the so-called singular set S(V(f)). 
To treat all coordinate patches simultaneously, recall Euler's formula 

, „ „ dF „ dF 
d F = z°W0

 + - + z»aT„-
dF dF 

It follows that the singular set S(V(F)) of V(F) is nothing but V r ( - ^ = - , . . . , 75^7-) and is 
0Z0 uZn 

a proper algebraic subset of V(F). The Zariski-open complement V(F) \ S(V(F)) is a 

manifold of dimension n — 1. 

For the general case see Problem 3. 

Observe that there is no reason why a compact complex manifold should be projective 

. or why a submanifold of P n or more generally an irreducible subvariety would be projective, 

i.e. can be given as the zero locus of finitely many polynomials. For dimension one one has 

the basic 

F A C T Any compact Riemann surface is projective. 

The proof uses Hodge Theory in some form. See Appendix 3.3. 

In higher dimensions this is not true. The easiest example perhaps is the Hopf surface. 

Again see Appendix 3 for details, more particularly, see Example A3.6. 

As to subvaxieties of projective space, astonishingly enough, they are always projective: 

Theorem 7. (Chow's Theorem) Any subvariety o f P n is a projective variety 
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A rather self contained proof of Chow's Theorem can be found in [Mu], For a con­
siderably shorter proof see p. 167 in [G-H]. This proof however uses the so called Proper 
Mapping Theorem, a partial proof of which is supplied in [G-H, p.395-400]. 

In the same vein one can show that holomorphic maps between complex projective 
manifolds are in fact morphisms, i.e given by rational functions. See problem 5. 

Problems. 

1.1. Let U be an open subset of C 7 1 and let / = ( / i , . . . , / m ) be a holomorphic map defined on 
U. Write fj = Uj + ivj with uj the real part and Vj the imaginary part of fj. Recall that 
z = ( z i , . . . , z n ) G C 7 1 with ZJ = Xj + iyj. The differentiate map fa = (u,v) : U —• R 2 m 

has a jacobian </(/K) of size 2n X 2m. If n = m show that det </(/R) = | det J(f)\2 and hence 
is positive if and only / is invertible. Deduce that any complex manifold is oriented in a 
natural way. 

1.2. Prove the inverse and the the implicit function theorem. 
Hint: Use the previous problem to see that one can use the ordinary inverse function theorem 
to find a differentiable inverse g for / and then prove that this map is in fact holomorphic 

•v by differentiating the relation g(f(z)) = z. See [G-H], p.18. The argument for the implicit 
" function theorem is similar. Loc. cit. p.19. 

1.3. Let F,-, j = 1,..., N be homogeneous polynomials in ( Z o , . . . , Zn) defining the algebraic set 
V ™ V(F\,..., FN) in P N . Consider the jacobian matrix J(F\,..., F N ) . Prove: 
(i) The locus where the rank of the Jacobian is k or less is an algebraic set. It is denoted by 
Jk(V). 
(ii) There is a minimal number m such that Jm{V) fl V = V. If Jm-i(V) fl V = 0, the 
variety V is a manifold of dimension n — m. (In general, the m X m subdeterminants vanish 
in a proper subset of V, the singularity set of V and the complement is a manifold.) 

1.4. Prove that the product of two projective varieties is projective. 
Hint: use the Segre embedding P n X P m -> P™+™+». One may consult [Mu, section 2B] 
for details. 

1.5. Prove that holomorphic maps between projective manifolds are morphisms (Consider the 
graph of the holomorphic map and apply the previous problem). 

2. Vector bundles 

Vector bundles live on manifolds, varieties etc I recall their basic properties, discuss the principal 
examples such as the canonical bundle, line bundles related to divisors and the notion of an ample 
line bundle. Important results are the canonical bundle formula and the Bertini theorem on 
hyperplane sections. The first tells you how to compute the canonical bundle of a subvariety in 
terms of the canonical bundle of the variety and the normal bundle of the subvariety and will be 
used a lot to say something about the genus of curves on surfaces. Bertini's theorem will be used 
to construct smooth subvarieties of a given projective manifold. 

Let M be a differentiable manifold. Let me recall the notion of a differentiable vector 
bundle on M. It consists of a collection of vector spaces ^ m , m € M parametrized by M 
such that their union 25, the total space, is a manifold and such that 
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1. The natural projection p : E —• M which maps Em to m is differentiable, 

2. Every point m € M has an open neighbourhood U and a diffeomorphism 

<pu :p~lU -+U x T, 

where T is some fixed vector space and where tpu maps Em linearly and isomorphically 
onto m x T. If T is a complex vector space of dimension d the manifold E is called a 
complex vector bundle of rank d. For d = 1 it is called line bundle. 

The vector space Em is called the fibre over m and the maps <pu are called trivializations 
and over non-empty intersections U D V they can be compared: 

<PyX(m,t) = ^ ( m j O / w f m ) ) ^ ) ) , 

where <£>t/v • ^ H V —> GL(T) is differentiable and is called the transition function. These 
transition functions satisfy a certain compatibility rule 

<puv 0 V^vw o y>wi/ = 1> (Cocycle relation). 

Conversely, given some covering of M by open sets U{, i £ I and a collection of transition 
functions ifij for subsets Ui and Uj having a non-empty intersection, define a set E by taking 
the disjoint union of the U x T and identify (m, t ) and (m, ((^^(m))^) whenever m € UiOUj. 
This yields a vector bundle precisely if the above compatibility rule is valid as one can easily 
verify. 

A vector bundle homomorphism between two vector bundles p : E —± M and p' : F —» M 
consists of a differentiable map f : E F such that 

1. p = pf o f so that fibres go to fibres, 

2. f\Em is linear. 

If / is an diffeomorphism you have a vector bundle isomorphism. 

For any vector bundle homomorphism / : E —» F you can form the kernel ker ( / ) , which 
consists of the union of the kernels of f\Em. One can easily see that the kernel forms a 
vector bundle. Similarly one can form im ( / ) = [ J m € M im ( / | JS m ) , the image bundle. Often 
exact sequences of vector bundles arise. A sequence of vector bundle homomorphisms 

E'-U E-2+ E" 

is called exact at E if ker (g) = i m ( / ) . A sequence of vector bundles 

... Ei-i -&=H Ei ... 

of arbitrary length, it is called exact if it is exact at all Ei. Especially, a sequence 

0 -+ E9 -U E -*> E" -> 0 

is exact if and only if / is injective, g is surjective and ker (g) = im ( / ) . 

A section s of a vector bundle p : E —> M is a differentiable map s : M —> E such 
that p o s = idM. Sections of a vector bundle E form a vector space denoted by T(E) or 
H°(M,E). 
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Examples 

1. The trivial bundle M x T , 

2. If E is a bundle, a subbundle consists of a subset F C E such that the projection and 
trivialisation of E gives F the structure of a bundle. For a subbundle F c £ , the fibres 
Fm are subspaces of Em and one can form U m € M Em/Fm which inherits the structure of 
a bundle E/F, the quotient bundle. If 

0 Ef -U E-2* - » 0, 

is an exact sequence, / identifies E' with a subbundle of E and g induces an isomorphism 
of E/E' with E". 

3. The tangent bundle T(M)~. Sections are vector fields. 

4. If E is a vector bundle, any linear algebra construction done with the fibres yields 
a vector bundle. You already saw the examples of subbundles and quotient bundles. One 
can also form J5V, the dual bundle by taking UmGM o r ^ e exterior powers f\k E by 
forming UmeM A* Ern- The highest wedge with k = dim T is also called the determinant 
line bundle 

rank E 

d e t ( £ ) = [\ E. 

Combining these operations and applying them to the previous example you get the 
cotangent bundle or bundle of one-forms and its fc-fold exterior power, the bundle of k-
forms: 

K 
£k(M) = / \ T ( M ) V . 

Sections in the bundle of A:-forms are precisely the A:-forms. 

5. Likewise, if E and F are two bundles, one can form their direct sum E © F and 
their tensor product E ® F by taking it fibre wise. The collection of line bundles on a fixed 
manifold form a group under the operation of tensor product provided you identify isomor­

p h i c bundles. This group plays an important role for complex manifolds and holomorphic 
bundles. See below. 

6. The tangent bundle T(N) of a submanifold iV of a manifold M is a subbundle of 
the restriction T(M)\N of the tangent bundle of M to N. The quotient (T(M)\N)/T(N) 
is called the normal bundle and denoted by N(N/M). 

7. If (f : M -» N is a differentiate map and p' : F —> N a vector bundle, there 
is the pull-back bundle <p*F. Its total space consists of the pairs ( m , / ) € M x F with 
ip(m) = Projection comes from projection onto the first factor. One may verify that 
the trivialization of N induces one on <p*F. 

8. Consider the subbundle of the trivial bundle with fibre C n + 1 on projective space P n 

consisting of pairs z) € P n x C n + 1 with z belonging to the line defined by [w]. This is 
a line bundle, the tautological line bundle and denoted by 0( — 1). 
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9. Given an exact sequence 

0 -> E' - 4 E E" -> 0, 

there is an isomorphism 
det El ® det E" det E 

(see Problem 1). 

Over a complex manifold you have holomorphic vector bundles. In the preceding defini­
tion of a complex vector bundle one demands that E be a complex manifold and that the 
differentiate maps involved are actually holomorphic. All of the constructions of the pre­
vious examples do produce holomorphic bundles out of holomorphic bundles. In particular, 
since for any complex manifold M the tangent spaces admit a natural complex structure so 
does the tangent bundle. Let me denote this complex bundle by Tc(M) = UmeM Tm(M). 
It is in fact a holomorphic bundle. This is likewise true for the cotangent bundle and 
exterior wedges which now are denoted as follows: 

K 
ft*(M) = / \ T £ ( M ) . 

The line bundle det fi1(M) is called the canonical line bundle and is sometimes denoted by 
KM* If N is a submanifold of M the complex normal bundle N(N/M) of N in M is the 
quotient of TQ(M)\N by Tc(N). Applying the remark about determinant bundles from 
Example 9 to the exact sequence defining the normal bundle, you arrive at an important 
formula: 

KN = KM I N ® det N(N/M) (Canonical Bundle Formula). 

As already said before, the collection of holomorphic line bundles on a complex manifold 
M modulo isomorphism form a group under the tensor product. It is called the Picard group 
and denoted by P i c M . 

An important line bundle related to a codimension one subvariety J? of a manifold M 
is the bundle O(D) on M defined by means of transition functions as follows. Choose a 
coordinate covering Ui, i £ I of M in which D is given by the equation fi = 0. In Uj PI Uj 
the relations / , = ( a non-zero function <pij) • fj enables one to form the line bundle given 
by the transition functions ifij = / t / / j . (Note that the functions <pij obviously satisfy 
the co-cycle relation.) Observe that the bundle O(D) always has a section sp canonically 
defined by D. Indeed, over Ui the bundle is trivial and the function fi defines a section 
over it. These patch to a section of 0(D) because /,• = (/,-/fj)fj in Ui f) Uj. Restricting 
the bundle O(D) to D itself in case D is a submanifold, you get back the normal bundle 
N(D/M). See Problem 2. The Canonical Bundle Formula in this case reads therefore 

KD*L(KM®0(D))\D. 

By definition a divisor is a formal linear combination YJILI n i ^ i with n 2 € Z and Di 
a codimension one subvariety. If the numbers n, are non-negative the divisor is called 
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effective. Divisors on M form an abelian group Div M. The line bundle 0(D) is defined by 
setting O(D) = 0{Dl)^ni ®...® 0{Dm)®n™ so that it yields a homomorphism D i v M -> 
P i c M . 

Let me next describe how divisors behave under surjective holomorphic maps / : Mf —> 
M. Let g be a local defining equation for D. If the image of / avoids the support of D , 
the function g o f is nowhere zero, but if / is surjective it defines a divisor on Mf which 
is independent of the choice of the local defining equation for D. It is called the pull-back 
f*D. It is related to the pull-back of the line bundle OM(D) by means of the relation 
0M>(rD) = f*(0(D)). 

In the framework of holomorphic bundles E —> M , the group of holomorphic sections 
is now denoted by T(E) or H°(M, E). It is true, but by no means trivial, that for compact 
complex manifolds the space of sections is finite dimensional. See Appendix A3 for a 
treatment using Hodge theory. For projective manifolds it is easier. See Theorem 4.13 

Now let me turn to projective manifolds. Note that one could have defined algebraic 
vector bundles using morphisms instead of holomorphic maps. Algebraic vector bundles 
are holomorphic. The converse is true over a projective manifold. This GAGA-principle 
(named after the first letters of the words in the title of the article [Se]) is considerably 
harder to prove than Chow's theorem and uses a lot of sheaf theory and the Kodaira 

. embedding theorem. Let me refer to [G-H], Chapter 1 section 5 for a proof of this assertion. 
In a similar vein, regular sections of an algebraic bundle, i.e. sections which are morphisms, 
are holomorphic and over a projective manifold the converse is true. In Appendix A4 I 
collected the main results from [Se]. 

Since a projective manifold is compact, the space of sections of any algebraic bundle on 
it is finite dimensional as we have seen before. If L is a line bundle on a projective manifold 
M , and its space of sections is not zero, say n + 1-dimensional with basis x o , . . . , x n , one 
can define a rational map 

V? L :M * P n 

by associating to m G M the point in P n with homogeneous coordinates ( x o ( m ) , . . . , 
#n(wi))« This map is not defined on the locus where all sections of L vanish. This locus is 
called the base locus and any point in it is called a base point. If <PL is an embedding, the 
line bundle L is called very ample. If for some integer k the fc-th tensor power L®k is very 
ample, L is said to be ample. 

Two numbers, generalizing the genus of a projective curve, play an important role in 
higher dimensions: 

The dimension of the space of holomorphic m-forms is called the geometric genus of 
M and denoted by pg(M). 

The dimension of the space of holomorphic 1-forms is called the irregularity q(M) 
of M. 

Finally, the definition of divisors and of the Picard group for projective manifolds can 
be modified in the obvious way by using projective codimension one subvarieties instead. 
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Again there is a suitable GAGA-principle. 

Examples 

1. The hyperplane in P n defines an algebraic line bundle, the hyperplane bundle 0 ( 1 ) . 
The tautological bundle is the dual of this bundle which explains the notation O(-l) for the 
tautological bundle. The line bundle 0(d) is defined as 0(l)®d for d > 0 and as 0(-l)®~d 

if d < 0. The line bundle associated to a hypersurface of degree d is (isomorphic to) O(d), 
see Problem 5. 

2. The canonical line bundle of projective space P n is isomorphic to (D(—n — 1). See 
Problem 4. Using the Canonical Bundle Formula you find that the canonical bundle for a 
smooth degree d hypersurface D in P n is the restriction to D of 0(d — n — 1). 

Any polynomial P which does not vanish identically on V defines a divisor (P) on V 
P 

by taking V(P) fl V. Any rational function / = — on a projective manifold V defines the 
divisor ( / ) = (P) — (Q) . Since one can represent rational functions on V in different ways, 
it is not a priori clear that this definition make sense. To see this, one has to use the fact 
that the ring of holomorphic functions near the origin in C 7 1 ^ 1 is a unique factorization 
domain. This is a corollary of the Weierstrass preparation theorem and I won't give a proof 
but refer to [G-H, p. 10]. One now argues as follows. 

Let / G C ( M ) be a rational function on M and D be an irreducible hypersurface. Let 
p G M and let fo = 0 be a local equation for D at p. Since the ring OM,P of germs of 
holomorphic functions at p is a unique factorization domain one can write 

/ = is • («/«) 
with u and v not identically zero along D. It is easily verified that m does not depend 
on fo and the chosen point p G M so that one can now unambiguously define m to be 
the order of vanishing of f along D denoted o r d ^ ( / ) and one introduces the divisor of the 
rational function f by 

(/)= E ordD(f)D. 
D an irreducible hypersurface 

One checks easily that this definition is the same as the previous one. 

Divisors of rational functions form the subgroup of principal divisors of Div M. Two 
divisors D and DF are said to be linearly equivalent, notation D = DF if their difference is 
the divisor of a rational function. Equivalent divisors define isomorphic line bundles and 
hence there is a well defined map 

DivM/principal divisors —> P i c M . 

This is in fact is an isomorphism. That it is injective is not so difficult. See Problem 3. 
The surjectivity is not entirely trivial. See Corollary 4.21 
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Rational functions / with the property that ( / ) + D is effective form a vector space 
traditionally denoted by C(D). The resulting effective divisors ( / ) + D linearly equivalent 
to D form a projective space |JD|, which is nothing but FC(D). Any projective subspace 
of \D\ is called a linear system of divisors, whereas \D\ itself is called a complete linear 
system. Let me come back to the rational map defined by the line bundle O(D) associated 
to D. This can be generalised by taking a basis { S Q , . . . , sn } for any linear subspace W of 
T(0(D)) and the rational map (so(p)> • • • > sn(p)) then is said to be given by the linear 
system P ( W ) . A fixed component of the linear system F(W) is any divisor F which occurs 
as a component of all divisors in P ( W ) . The map defined by taking away this fixed part 
then is the same. The resulting divisors form the moving part of F(W) and now there still 
can be fixed points which however form at most a codimension 2 subspace. 

The notion of ampleness has been introduced in connection with line bundles. A divisor 
D is called ample if the corresponding line bundle O(D) is ample. 

If D is a hypersurface, the line bundle O(D) has a section s vanishing along D and if 
/ £ C(D) the product / • s is in a natural way a section of O(D) and every section can be 
obtained in this way (see Problem 8). So 

C{D) H0(O(D)) is an isomorphism. 

Let me finish this chapter with an important theorem. 

Theorem 1. (Bertini) A generic hyperplane section of a smooth projective variety is 
smooth. 

Proof: Let X C P n be a smooth projective variety and let ( P n ) v be the dual projective 
space of hyperplanes of P n . Inside X x ( P n ) v let me consider the set B consisting of 
pairs (x,H) such that the projectivized tangent space TX(X) to X at x and H are NOT 
transversal, i.e. such that TX(X) C H. If dim X = k the possible hyperplanes with this 
"bad" behaviour form a projective space parametrized by the F>N~K~1 disjoint from TX(X). 
So the projection B -» X realises B as a projective bundle over X and hence is a variety 
of dimension fc + ra — 1 — fc = n — 1. Consequently, the projection of B into ( P n ) v is not 
surjective. The complement of this variety parametrizes the "good" hyperplanes. • 

Problems. 

2.1. Let 
0 -> E' E -*> E" -* 0 

be an exact sequence of vector bundles over a manifold M. Introduce the subbundle Fr 

of f\k E whose fibre over m £ M is the subspace generated by the wedges of the form 
ei A e2 . . . A ek with r of the €j in f(E')m. Prove that F r + 1 is a subbundle of Fr and that g 
induces an isomorphism 

r k — r 

Fr/Fr+1 ^ / \ E' ® / \ E". 

In particular, one has an isomorphism 

det E' (g> det E" det E. 
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2.2. Prove that the normal bundle for a smooth hypersurface D of M is isomorphic to the 
restriction of O(D) to D. 

2.3. Prove that two divisors D and D' on a projective manifold give isomorphic line bundles if 
and only if the divisors are linearly equivalent. 

2.4. Prove that the canonical bundle of P n is isomorphic to 0(—n — 1). 

2.5. Prove that any hypersurface in P n is linearly equivalent to dH, where d is the degree of the 
hypersurface and H is a hyperplane. Deduce that P i c P n = Z . 

2.6. Prove that for a smooth hypersurface D of degree d in P n the normal bundle is given by 
N{D/Fn) = 0(d)\D . 

2.7. Let M = Mi X M 2 and let pi : M —• Mi and P2 : M —• M 2 be the projections onto the 
factors. 
i) Let Vi be a vector bundle on Mi and V 2 a vector bundle on M 2 . There is a natural 
homomorphism 

ff°(Mi,Vi) ® ff°(M2, v 2 ) - » i f 0 ( M i x m 2 , p ! V I ® p 5 v 2 ) . 

Show that this is an isomorphism. Hint: restrict a section s of p*Vi <S) P2V2 to the fibre 
Pil(x). This yields a section s(x) € if°(Af 2 , V 2 ) ® (Vi ) x depending holomorphically on a:. 
ii) Prove that QX(M) = plti1 (Mi) 0 P 2 ^ 1 ( M 2 ) and that KM =P*KML ®PIKM2* 

iii) Prove that q(M) = ?(Mi) + q{M2) and that p9(M) = p t f (Mi) - p p ( M 2 ) . 

Specialize this to products of compact Riemann surfaces. 

2.8. Let D be a projective hypersurface of the projective manifold M and let SD be a regular 
section of O(D) vanishing along D. Let / 6 £(D). Prove that / • s is a regular section of 
(9(D) and that any regular section of O(D) is obtained in this way. 


