Cours de l'institut Fourier

JEAN-RENÉ JOLY

Chapitre 2 Polynômes et fonctions polynomiales à plusieurs variables sur un corps fini

Cours de l'institut Fourier, tome 4 (1971), p. 1-7 http://www.numdam.org/item?id=CIF_1971_4_A2_0

© Institut Fourier – Université de Grenoble, 1971, tous droits réservés.

L'accès aux archives de la collection « Cours de l'institut Fourier » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Chapitre 2

Polynômes et fonctions polynomiales à plusieurs variables sur un corps fini

Dans tout ce chapitre (et dans le suivant), K désignera un corps fini à $q = p^f$ éléments, n un entier strictement positif, $X = (X_1, \ldots, X_n)$ un système de n indéterminées sur K, et $K[X] = K[X_1, \ldots, X_n]$ l'anneau des polynômes en X_1, \ldots, X_n à coefficients dans K; les éléments $x = (x_1, \ldots, x_n)$ de K^n seront qualifiés éventuellement de points (ou de vecteurs ...); si $F \in K[X]$, on appellera fonction polynomiale associée à F l'application $x \mapsto F(x)$ (ou, plus explicitement, $(x_1, \ldots, x_n) \mapsto F(x_1, \ldots, x_n)$) de K^n dans K.

(2.1). Polynômes réduits et polynômes identiquement nuls.

<u>Définition 1.</u> - On notera \mathcal{U} l'idéal de l'anneau K[X] engendré par les n polynômes $X_{\mathbf{i}}^{\mathbf{q}} - X_{\mathbf{i}}$ ($\mathbf{i} = 1, 2, ..., n$).

<u>Définition 2.</u> - Etant donné $F \in K[X]$, on dira que F est

réduit si son degré par rapport à chacune des n variables X_i est inférieur ou égal à q-1;

identiquement nul si sa fonction polynomiale associée est nulle (autrement dit si F(x) = 0 pour tout $x \in K^n$); on notera respectivement R et I les sous-ensembles de K[X] formés des polynômes réduits et des polynômes identiquement nuls.

Il est clair que R est un <u>sous-espace vectoriel</u> de K[X], et que I est un <u>idéal</u> de K[X]; en outre, chaque polynôme $X_i^q - X_i$ étant identiquement nul, on a l'inclusion \mathcal{M} \subset I: nous verrons plus loin qu'il y a en fait égalité.

Lemme 1. - Pour tout $F \in K[X]$, il existe un polynôme <u>réduit</u> $G \in K[X]$ tel que l'on ait $F \equiv G \pmod{\mathfrak{N}}$.

<u>Démonstration</u>. Par linéarité, on peut se ramener au cas où F est un monôme $X_1^{d_1} X_2^{d_2} \dots X_n^{d_n}$; pour tout i , posons

 r_i = le reste de division par q de d_i' , où d_i' est défini par la double condition d_i = $q^h.d_i'$, (q,d_i') = 1.

Il est clair alors que

$$x_1^{d_1} x_2^{d_2} \dots x_n^{d_n} \equiv x_1^{r_1} x_2^{r_2} \dots x_n^{r_n} \pmod{n}$$

et que le monôme de droite est réduit: le lemme est donc démontré.

Lemme 2. - Sirun polynôme réduit F est en même temps identiquement nul, alors il est nul (c'est-à-dire "formellement nul": tous ses coefficients sont nuls).

Démonstration. On raisonne par récurrence sur n.

I) La propriété est vraie pour n=1. Soit en effet $F(X_1)$ un polynôme réduit et identiquement nul par rapport à l'unique variable X_1 : d'une part il est de degré $\leq q-1$, et d'autre part il admet pour racines les q éléments de K: le nombre de racines de $F(X_1)$ est donc strictement supérieur à son degré, d'où $F(X_1)=0$, c.q.f.d.

II) \$\frac{\sir \lambda}{\sir \lambda} \text{ pour n = 1 variables} (n ≥ 2), elle
est encore vraie pour n variables. Soit en effet F un polynôme réduit
à n variables; on peut écrire

$$F(X_1, X_2, ..., X_n) = F_0(X_2, ..., X_n) + F_1(X_2, ..., X_n) X_1 + ...$$

 $... + F_{q-1}(X_2, ..., X_n) X_1^{q-1},$

les F_j étant q polynômes <u>réduits</u> à n-1 variables X_2 , ..., X_n . Dire que F est <u>identiquement nul</u> équivaut alors à dire que, quel que soit $(x_2, \ldots, x_n) \in K^{n-1}$, le polynôme <u>réduit</u> et à <u>une seule variable</u> X_1 :

$$F_0(x_2, ..., x_n) + F_1(x_2, ..., x_n) X_1 + ... + F_{q-1}(x_2, ..., x_n) X_1^{q-1}$$

est <u>identiquement nul</u>; d'après la première partie de la démonstration, il est donc nul; autrement dit, on a (quel que soit $(x_2, \ldots, x_n) \in K^{n-1}$, rappelons-le)

 $F_0(x_2, \ldots, x_n) = F_1(x_2, \ldots, x_n) = \ldots = F_{q-1}(x_2, \ldots, x_n) = 0$; ceci signifie que les polynômes F_j (réduits) sont eux-mêmes <u>identiquement</u> nuls: comme ils ne contiennent que n-1 variables, l'hypothèse de récurrence donne alors $F_0 = F_1 = \ldots = F_{q-1} = 0$, donc F = 0, c.q.f.d.

Lemme 3. - En tant qu'espace vectoriel, K[X] est somme directe de ses sous-espaces R et \mathcal{O} , soit

$$K[X] = R \oplus \omega_{L}.$$

Démonstration. Le lemme 1 peut s'écrire

$$(2) K[X] = R + \iota \chi;$$

d'autre part, le lemme 2 peut s'écrire $R \cap I = \{0\}$, ce qui implique,

puisque VI (I , que

$$R \cap vr = \{0\};$$

(1) résulte alors immédiatement de (2) et de (3).

Théorème 1. - Soit $F \in K[X]$ un polynôme.

- (i) Il existe un polynôme réduit F^* et un seul tel que $F \not\equiv F^*$ (mod U). (Ceci servira de définition de la notation F^*).
- (ii) Les trois assertions suivantes sont équivalentes:
 - (a) F est identiquement nul (c'est-à-dire $F \in I$);
 - (b) $F^* = 0$:
- (c) F & VL.
- (iii) En particulier, Wt = I.

Démonstration. (i) C'est une simple reformulation du lemme 3.

- (ii) Ecrivons $F = F^* + H$, $F^* \in R$, $H \in \mathcal{U}$; comme $\mathcal{U} \subset I$, F est identiquement nul si et seulement si F^* est lui-même identiquement nul; l'implication de (a) vers (b) résulte alors du lemme 2; celle de (b) vers (c) résulte de la définition de H (donc en fait du lemme 3); enfin, celle de (c) vers (a) résulte de l'inclusion $\mathcal{U} \subset I$.
- (iii) D'après (ii), l'assertion (a): $F \in I$, équivant à l'assertion (c): $F \in \mathcal{U}$; d'où $\mathcal{U} = I$.

(2.3). Fonctions polynomiales sur Kⁿ.

Soient A l'ensemble (en fait, la K-algèbre) de toutes les applications de Kⁿ dans K, et ϕ : K[X] \longrightarrow A l'homomorphisme de K-algèbres qui, à tout polynôme F \in K[X], fait correspondre la fonction

polynomiale associée à F.

Lemme 4. - Le noyau de φ est l'idéal ω de K[X].

<u>Démonstration</u>. Par définition même, ce noyau est I, et nous venons de voir (théorème 1, (iii)) que I = u r.

Lemme 5. - L'homomorphisme φ est surjectif.

Démonstration. Les lemmes 3 et 4 montrent que $\Phi = \varphi(K[X])$ est un espace vectoriel isomorphe à R; comme R admet pour base sur K l'ensemble des monômes réduits, et qu'il y a exactement q^n tels monômes, on a $\dim_K (\Phi) = \dim_K (R) = q^n$, et par conséquent

$$\operatorname{card}(\Phi) = q^{q^n}$$
.

D'autre part, il est clair que

$$card(A) = card(K)^{card(K^n)} = q^n;$$

 $\Phi = \varphi(K[X])$ et A ont donc le même nombre d'éléments, d'où l'égalité de ces deux ensembles et le fait que φ est surjectif.

Remarque. - On peut donner du lemme 5 une autre démonstration, indépendante des résultats du $\S(2.1)$, et qui montre mieux ce qui se passe. Pour tout $a = (a_1, \ldots, a_n) \in K^n$, notons f_a la fonction caractéristique de a à valeurs dans K, définie par $f_a(x) = 1$ si x = a, et $f_a(x) = 0$ si $x \neq a$; la famille $(f_a)_{a \in K}$ n est visiblement une base de A sur K; il suffit donc, pour prouver le lemme 5, de montrer que chaque f_a est une fonction polynomiale: or, si on pose

(4)
$$F_a(x) = \prod_{i=1}^{n} (1 - (x_i - a_i)^{q-1})$$
,

on vérifie cans peine que $\varphi(F_a) = f_a$ (utiliser le théorème 2 du $\S(1.2)$, et plus précisément le fait que si $x \in K$, alors $x^{q-1} = 0$ ou 1 selon que x = 0 ou que $x \neq 0$).

Théorème 2. - Soit f une application (quelconque) de Kⁿ dans K: il existe <u>un polynôme réduit</u> F <u>et un seul</u> tel que f soit la fonction polynomiale associée à F.

Démonstration. Il suffit d'utiliser les lemmes 4 et 5, qui montrent que φ donne lieu à un isomorphisme $K[X]/vr \longrightarrow A$, et le lemme 3, selon lequel $K[X] = R \oplus vr$.

Remarque. - Ce polynôme réduit F est donné explicitement par la formule

(5)
$$F(X) = \sum_{a \in K^n} f(a) F_a(X) ,$$

 $(F_a$ étant défini en (4)): en effet, il est clair que la fonction polynomiale associée à ce polynôme est précisément f, et par ailleurs ce polynôme est réduit, puisque chaque F_a est visiblement réduit.

(2.3). Somme de toutes les valeurs prises par un polynôme.

Théorème 3. - Soit $F \in K[X] = K[X_1, ..., X_n]$ un polynôme de degré total d; alors, si d < n (q-1), on a

(6)
$$\sum_{\mathbf{x} \in \mathbb{K}^n} F(\mathbf{x}) = 0.$$

<u>Démonstration</u>. Par linéarité, on peut se ramener au cas où F est un monôme. disons

$$F(x) = x_1^{d_1} x_2^{d_2} \dots x_n^{d_n}$$
,

avec $d_1 + d_2 + \dots + d_n < n (q-1)$; on a alors

(7)
$$\sum_{\mathbf{x} \in K^{n}} F(\mathbf{x}) = \prod_{\mathbf{i}=1}^{n} \sum_{\mathbf{x}_{\mathbf{i}} \in K} \mathbf{x}_{\mathbf{i}}^{d_{\mathbf{i}}},$$

et l'inégalité relative au degré total de F montre que pour un i au moins, on a d < q - 1; il suffit évidemment de montrer que, dans (7), le facteur correspondant du produit, à droite, est nul, et on est ainsi ramené à prouver simplement le lemme suivant:

Lemme 6. - Soit d un entier tel que $0 \le d < q - 1$; alors $\sum_{x \in K} x^{d} = 0.$

<u>Démonstration</u>. Si d = 0, on a affaire à une somme de q termes tous égaux à 1, dans le corps K dont la caractéristique p divise $q = p^f$: cette somme est donc bien nulle. Considérons maintenant le cas général où 0 < d < q - 1; comme K contient q - 1 éléments, mais au plus d racines d^{ièmes} de l'unité, il existe au moins un $y \in K$ tel que

$$y^{d} \neq 1;$$

comme l'application $x \mapsto yx$ de K^* dans K^* est une bijection de ce groupe sur lui-même, on peut écrire

$$\sum_{\mathbf{x} \in K} \mathbf{x}^{d} = \sum_{\mathbf{x} \in K} (\mathbf{y}\mathbf{x})^{d} = \mathbf{y}^{d} \sum_{\mathbf{x} \in K} \mathbf{x}^{d},$$

et par conséquent

$$(y^{d} - 1) \sum_{x \in K} x^{d} = 0;$$

il suffit alors de simplifier par le facteur $(y^d - 1)$, comme l'inégalité (9) nous le permet, pour obtenir l'égalité (8) cherchée.