
Cahiers
enbergGUTGUTGUT

m THE NTS PROJECT
P Philip Taylor, Jiří Zlatuska, Karel Skoupy

Cahiers GUTenberg, n 35-36 (2000), p. 53-77.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_2000___35-36_53_0>

© Association GUTenberg, 2000, tous droits réservés.

L’accès aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),
implique l’accord avec les conditions générales
d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).
Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_2000___35-36_53_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html




Cahiers GUTenberg n�35-36 � Congrès GUTenberg 2000, Toulouse, mai 2000 53

The NTS project :

from conception to implementation�

Philip Taylor [1], Ji°í Zlatu²ka [2] and Karel Skoupý [3]

[1] Webmaster, RHBNC, University of London, United Kingdom ;
p.taylor@exch1.rhbnc.ac.uk

[2] Rector, Masaryk University, Brno, Czech Republic ;
zlatuska@muni.cz

[3] Independent programmer, Brno, Czech Republic ;
skoupy@informatics.muni.cz

Introduction

For today's talk, I had hoped that Karel Skoupý, the Czech implementor of

NTS, would be able to be here to present the results of his work and to answer

any questions that you might have. Sadly, that will not be the case : Karel is

working desperately hard to complete NTS before the commencement of the

TUG 2000 conference, and I therefore have to deputize for him and attempt to

answer any questions on his behalf.

Let me start by presenting an overview of today's talk and presentation ; I will

attempt to cover seven separate areas, including (of course) the mandatory

questions and answers at the end. The seven areas to be covered are :

� A brief history of NTS

� TEX, "-TEX & NTS compared

� The choice of Java as the language of implementation

� An overview of the classes, object and methods of NTS

� A summary of the status quo
� A demonstration of NTS, and comparison with TEX

� Questions & answers

and you will soon realize that my expertise lies very much in the earlier areas ;

the implementation details of NTS are very much Karel's area, and I apologize

in advance for any errors which I may make in presenting (in particular) the

overview of classes, objects and methods.

�. The present authors would like to record their grateful thanks to all members of the NTS

and "-TEX teams, past and present, without whom neither this paper nor NTS itself could

have ever come to fruition



54 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

1. A brief history of NTS

The NTS project is the result of the foresight of just one man : Joachim

Lammarsch, one of the founders � and for many years the President � of

DANTE e.V. During the period leading up to the DANTE meeting in Hamburg

of 1992, Joachim circulated a message to all potentially interested parties as-

king who would be interested in a project which was to continue where Knuth

had left o�. A number of us responded positively to this question, and those

who did were invited by Joachim to attend the DANTE meeting in Hamburg.

During the course of the meeting, one of the scheduled sessions was devoted

solely to �The Future of TEX�. Those present debated at great length whether

TEX should remain forever as intended by Knuth, or whether its future was too

important to be determined by just one man (even one of the intellect and status

of Knuth). The outcome of these deliberations was that TEX itself must remain

solely Knuth's responsibility, but that a TEX-like system or systems should be

created by an independent group, to continue developments whilst TEX itself

remained frozen forever. It was also agreed that the name of this proposed new

system should be NTS (an acronym for New Typesetting System) to indicate

that this new system was not TEX itself, but was instead a new system which

� whilst acknowledging unreservedly Knuth's rôle in its evolution � was free of

the constraints which Knuth had placed on the evolution of TEX itself.

Once the main decision had been taken, other decisions followed more or less au-

tomatically. It was agreed, for example, that whilst DANTE e.V. would provide

initial funding for the project, the project itself would be deemed to be trans-

national, transcending the arti�cial boundaries of any one TEX user Group and

drawing its membership from TEX users and other interested parties throughout

the world. Rainer Schöpf was invited to chair the group, and other members in-

cluded Joachim Lammarsch, Joachim (�Johnny�) Schrod, Bernd Raichle, Peter

Breitenlohner, Ji°í Zlatu²ka and myself (Philip Taylor).

Thereafter, the group met on a regular but occasional basis, almost invariably

at such a time as to co-incide with a DANTE conference. The membership did

not remain static, and Rainer stood down as Chairman after the �rst year, nee-

ding more time for other projects such as LATEX-3 and �real work� [tm]. I took

over as Chairman, and we agreed that within the group two separate projects

should be investigated, one evolutionary and one revolutionary. Peter Breiten-

lohner was to head the evolutionary (�"-TEX�) group, whilst Ji°í Zlatu²ka would

head the revolutionary group (�NTS� proper). Joachim Lammarsch, as fons et
origo, would remain as Managing Director, and Bernd Raichle, whose technical

skills and TEX expertise were invaluable, was 2nd-in-command of both projects.

Sadly we also said �farewell' to Joachim Schrod at about this time : Joachim's

input and advice has been greatly respected and appreciated, but he felt unable



The NTS project : from conception to implementation 55

to agree with all of the decisions taken within the group and preferred to resign

rather than be closely involved with a project with whose aims he could not

entirely agree.

2. TEX, "-TEX & NTS compared

2.1. TEX

There is surely little need in a talk addressed to members of GUTenberg to

de�ne what is, or is not TEX. TEX is, by de�nition, Knuth's program for perfor-

ming typesetting of the highest quality, and this program is his and his alone.

No-one other than Knuth himself may make any changes to the program (other

than in the area of so-called system dependencies), and it is Knuth's publically

stated intention that TEX should evolve no further : Don has made all the im-

provements to TEX that he deems necessary, and any further work which he

does on TEX (at ever-increasing intervals) is restricted to eliminating any ge-

nuine bugs which have been discovered since he last updated the source. TEX

is currently at V 3:14159, and Knuth wishes TEX to become absolutely frozen

at the moment of his death, at which point it will be deemed to be V�.

2.2. "-TEX

The "-TEX project, which is as portable as TEX itself and which uses exactly

the same tools and languages (Web, Pascal, Weave, Tangle, etc.), sought (and

seeks) to extend TEX in a manner which is both conservative and innovative at

the same time. It is conservative because it intentionally uses tex.web as the

master source, and implements all changes through the medium of a change �le,

yet is innovative because it adds much-needed functionality to TEX and extends

TEX in a way which is intended to meet the needs and demands of sophisticated

TEX users who �nd themselves working at the very limit of TEX's abilities.

The "-TEX project was conceived and (for some years) executed by members

of the NTS group, under the leadership of Peter Breitenlohner and under the

technical direction of myself. During this period, "-TEX evolved from �- and �-

releases via "-TEX V 1 to "-TEX V 2. By the time it had reached V 2:0, "-TEX

had added over thirty new primitives to the set already provided by TEX, and

had extended the functionality of a number of others. Despite these extensions,

"-TEX was (and remains) 100% TEX-compatible, and this, together with its

portability, is surely "-TEX's greatest strength.

Indeed, so important was compatibility considered when "-TEX was being de-

veloped that � if no special action is taken when launching "-TEX � it then



56 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

behaves identically to TEX itself, and with the sole exception of the banner line

cannot be distinguished from TEX. It goes without saying that, in this mode,

"-TEX passes the so-called trip test with �ying colours !

If access is required to "-TEX's many extensions, then at the point of launch it

is necessary to indicate this explicitly. This is accomplished (on command-line

based systems) by launching Ini-"-TEX with an asterisk where an ampersand

would otherwise be allowed by TEX, as in

e-initex *e-plain \dump

as compared to (for example)

initex &plain \dump

The presence of the ampersand triggers "-TEX into so-called extended mode,
and this information is then stored in any format �le which is dumped at the

end of that "-TEX instantiation. If such a format is then loaded into Vir-"-TEX,

the latter will then automatically start in extended mode, as in the following :

e-initex *e-plain \dump

e-virtex &e-plain <source file>

Once in extended mode, the user has access to all of "-TEX's many extensions,

yet � if none of these is used � "-TEX continues to behave in a manner identical

to that of TEX itself. Thus all legacy documents which do not, by accident,

attempt to invoke one of the new "-TEX primitives will behave and typeset

identically under both TEX and "-TEX.

But "-TEX has one further truc up its sleeve : as well as compatibility and exten-

ded modes, "-TEX o�ers a so-called enhanced mode in which strict compatibility

is sacri�ced in the interests of even greater functionality. As of V 2:0, "-TEX

possessed only a single enhancement : the implementation of TEX--XET, based

on Knuth and MacKay's original TEX-XET but completely integrated within

"-TEX (and thus requiring no special IDV driver). Since the implementation of

TEX--XET requires that maths nodes be overloaded, 100%-compatibility has
to be sacri�ced, yet the di�erences are so subtle that most "-TEX users who

chose to exploit its enhanced mode would still notice no di�erence in output of

their legacy (mono-directional) documents.

To enter enhanced mode, speci�c user action is required : the "-TEX document

being processed must speci�cally enable enhanced mode, either at the beginning

of the document or at a point at which access to enhanced mode is required.

For TEX--XET, this is accomplished by setting one of "-TEX's so-called state
variables, as in :

\TeXXeTstate = 1

In general, once "-TEX is operating in enhanced mode, it is not possible to force

it back into extended mode (enhanced mode can only be entered from extended



The NTS project : from conception to implementation 57

mode, never from compatibility mode). In certain circumstances, however, and

in documents carefully written to localize all side-e�ects, it may be possible to

cause "-TEX to revert to extended mode. For the example above, this would be

achieved by using :

\TeXXeTstate = 0

at a later point in the document, but users are cautioned that because of the

asynchronous nature of (e-)TEX's page-breaking operations, there may still be

some undesirable interactions if any modi�ed maths nodes are still on one of

"-TEX's internal lists having not (yet) been �ushed out. Thus for all practical

purposes the user should assume that, once in enhanced mode, "-TEX will

remain in enhanced mode for the remainder of the instantiation.

One last point remains to be discussed under the heading of "-TEX before

passing onto NTS proper : with e�ect from "-TEX V 2:1, Peter Breitenlohner

assumed sole responsibility for "-TEX. Peter has indicated that, while he still

wishes to develop "-TEX further, he no longer wishes to do so within the ægis

of the NTS group, and with some considerable sadness we have acquiesced to

his wishes. We wish Peter all the best with "-TEX, and are con�dent that he

will continue to maintain and support it with the same zeal and interest as he

has in the past.

2.3. NTS

For over �ve years, the NTS group were forced by circumstances to devote their

attention almost exclusively to the development of the evolutionary system

known as "-TEX. This situation was brought about by the very nature of the

group itself : it was composed entirely of volunteers, none of whom were in a

position to expend great tracts of time on a project (NTS) which was of little if

any interest to their real employers. Recognizing that NTS could never become

a reality if it was to be developed solely by volunteers working in their own

time, the group decided that NTS should be put on ice until such time as funds

could be found to allow a full-time programmer to be employed.

During 1997/98, that much-longed-for possibility became a reality.

DANTE e.V. agreed to contribute the magni�cent sum of DM 30 000 to the

project, su�cient to allow a programmer to be employed full-time to work on

the project. Ji°í Zlatu²ka, as Dean of the Faculty of Informatics at Masaryk

University (Brno, CZ), was in the fortunate position of not only being able

to recommend to the group a highly competent programmer (Karel Skoupý)

but also being able to arrange a tripartite contract to allow DANTE funds to

be routed via the University and thence to Karel himself. We met with Karel,

discussed the project with him, and despite the almost vertical learning curve

which he foresaw would be required, Karel agreed to take on the task.



58 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

For some time, Karel did little but read. He read The TEXbook, TEX-the-
program, a great deal about Java, and much else besides. Then, in the Spring

of 1998, Karel and Ji°í came to my home in England, and Karel outlined his

proposals for NTS. Ji°í & I were much impressed with the expertise which

Karel had clearly acquired, and with very few changes agreed that he should

continue to develop his ideas. By the time we next met, Karel was to be in a

position to demonstrate working code.

The next review took place in Brno, at the University, and on this occasion

Joachim Lammarsch also took part. Joachim had greater familiarity with, and

exposure to, Java than either Ji°í or myself, and his presence at that review

was invaluable. One of the most striking points which came out of the review

was that Karel had elected to program for e�ciency rather than for clarity, and

there were a number of places where we felt obliged to ask him to re-think his

approach (for example, we asked Karel to eschew the use of integers as general-

purpose variables, and instead to use them only where integer arithmetic was

required). Karel responded positively to our suggestions, although he clearly

retained his reservations, and agreed to adopt our rather more defensive and

didactic programming style.

When the contract with Karel was �rst discussed, all involved in the project

believed that we could get from theory to a full implementation in one calendar

year. As the end of the year approached, it became only too obvious that we

had been (typically, many would say, in the IT/software world) very naïve in

our analysis and far too con�dent in Karel's ability to complete the project

on schedule. Indeed, by the end of the �rst year, although TEX's �mouth� had

been re-programmed in Java,NTS was still unable to perform even the simplest

typesetting, and an enormous amount of work clearly remained to be carried

out.

Despite the obvious disappointment with which members of DANTE received

the news that NTS would not be delivered on schedule, their con�dence in the

project remained on the whole unshaken and they generously voted to continue

funding the project for a further period. During 1999, an anonymous benefactor

pledged a further DM 7 500 to support the project (this benefactor, to whom the

group are deeply indebted, is a private individual, not a user group or other

corporate body), and at the 1999 EuroTeX meeting other TEX user groups

also undertook to support the project �nancially. It is particularly pleasant to

be able to thank the members of GUTenberg personally, since GUTenberg

have pledged EU 3 000 for three years in support of the project. Thank you

GUTenberg !

So what is NTS, and why is it taking so long to reach completion ? Unlike

"-TEX, which is conservative and evolutionary, NTS is truly revolutionary in



The NTS project : from conception to implementation 59

that it attempts (for the �rst time, as far as we are aware) to re-implement

the algorithms and functionality of TEX-the-typesetting-system without in any

way copying the coding (or even the data structures, though to a far lesser

extent) of TEX-the-program. Whilst TEX is written in Pascal-Web, NTS is

written in Java. And whilst TEX-the-program is a deeply entangled (though

carefully structured) and highly daunting monolithic1 program, NTS is in-

tended to consist of a series of loosely coupled modules, any or all of which

can be replaced by functionally equivalent module(s) with the same interface

semantics.

The success of this latter approach was borne out fairly early on, since Karel wi-

sely decided to cut his NTS teeth on the far less daunting task of re-engineering

TFtoPL and PLtoTF in Java. The module which interprets the TFM �le for

the purposes of TFtoPL is exactly the same module as performs that func-

tion for NTS, and thus �software re-usability� � that much-vaunted modern

desideratum � has been achieved in practice.

Whilst the ultimate goal of NTS is to provide a complete and integrated, yet

functionally distinct, set of typesetting tools, the short-term aim is to provide a

complete re-implementation of TEX in a �exible and extensible manner. Early

experience suggests that we are well on our way to achieving that aim, and (des-

pite certain caveats that will appear later on) this has, in part, been achieved

by the careful choice � and use � of programming language.

3. The choice of Java

as the language of implementation

Right from its conception, the NTS project was not only a project which would

concentrate on providing a new, more powerful, successor to TEX, but was also

an e�ort to re-program TEX-the-program as such.

The reason for this was simple : TEX-the-program forms an example of a monoli-

thic Pascal program based heavily on optimized data structures which allowed

Knuth to cope with the memory limitations of computers in existence more

than twenty years ago. At that time, the reasons for choosing both the lan-

1. Knuth would almost certainly take great exception to the use of the word monolithic,

since he evidently took enormous care to divide the program into small and quasi-independent

modules. Unfortunately, whilst the logic, structure and orthogonality of those modules is

undeniable, the program as a whole is a masterpiece of e�ciency, re-using code and/or data

structures whenever possible, and as a result the program in totality is very di�cult for

others to modify or extend. Indeed, Peter Breitenlohner's ability to add functionality to TEX

via the medium of a change-�le is, as far as we know, the only signi�cant attempt to extend

TEX-the-program in any non-trivial way other than the equally signi�cant but in many ways

far more restricted changes made by Hàn Th�ê Thành in his PDF-generating variant pdfTEX.



60 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

guage and the programming techniques were understandable. Pascal developed

from the family of procedural languages based on a formal syntax and well-

de�ned semantics starting with Algol 58, Algol 60, and Algol 68, the latter

providing one of the brightest peaks of the development of programing lan-

guages but which was unfortunately too complex to survive. Pascal appeared

as a branch of development which combined the basic programming tools of

structured programming as a methodology for programming, motivated by pro-

gram correctness proof techniques and an approach to building large programs

from manageably smaller components, and the tools for using abstract data

structures instead of just the data types provided by the underlying computer

hardware. Using a deliberately restricted set of constructions, Pascal could be

seen as an abstract �machine code� for a general set of computers which also

allowed for its portability and universal adoption both as far as implementa-

tions for various types of computers were concerned, and its general use as a

language of choice for teaching programming.

For Knuth, Pascal was a language especially well-suited for expressing general-

purpose algorithms in a way suitable for publishing. In the decades of the 60's

and 70's, the issues associated with particular ways of expressing algorithms

and developing proper programming style using high-level programming lan-

guages were among the the topics which formed core problems for research in

Computer Science. Knuth added the concept of �literate programming� allo-

wing the expression of his algorithms as a stream of constructions which follow

the logic of the ideas needed for understanding a particular program construc-

tion, rather than the logic of the syntax of the programming language used � as

Knuth stated his goal, to write programs in such a way that �instead of imagi-

ning that our main task is to instruct a computer what to do, let us concentrate

rather on explaining to human beings what we want a computer to do�. Pascal

as such did not suit Knuth's needs su�ciently, but literate programming tools

based on macro generation allowed him to introduce an extension to Pascal's

programming constructs (the otherwise clause in the case statement), to break

the structure of declaration and code sections (using the �tangling� feature of

the WEB system), and also to provide tools for allowing very careful memory

optimization and implementation independence (using only integer data types

and using macro constructions to generate code fragments necessary for the

packing/unpacking of data used).

Within the two decades which followed the birth of TEX, the premises on which

these decisions were based have become questionable, and indeed formed an

obstacle to e�orts to provide a successor to TEX which could extend the latter's

capabilities su�ciently far. Pascal has been succeeded by a line of languages

or systems which gained much smaller practical acceptance, and similarly to

the fate of the Algol family, C and C++ have succeeded Pascal in its general



The NTS project : from conception to implementation 61

usage and/or implementation (and Knuth himself has moved to CWEB literate

programming based on C which ultimately yielded a language that provided

him with �indescribable joy� in programming). The need for careful packing of

data into as little space as possible was removed by the emergence of computer

architectures supporting much larger memory sizes and the practical availabi-

lity and a�ordability of installed memory sizes unthinkable twenty years ago in

any context other than perhaps secondary disk storage. Data structure opti-

mization has become an obstacle preventing program modi�cation and placing

a kind of time bomb into the code which explodes when seemingly small and

straightforward modi�cations need to be made. Similar problems with modi�a-

bility are caused by the monolithic structure of Pascal code as used by Knuth

within TEX-the-program. Particular algorithms used within its body are ex-

tremely hard to modify or extend because of the lack of narrow and clearly

de�ned interfaces between individual parts of the program code and because of

the general accessibility of shared global data structures from within any part

of the code.

The attempt to startNTS development has therefore been linked with a delibe-

rate decision to re-create TEX-the -program so that the programming language

and programming methodology allow for the removal of unnecessary data opti-

mization, the removal of explicit storage allocation and the use of mechanisms

already present in modern programming languages, and also to allow for a

modular code structure with clearly de�ned interfaces and data paths which

will allow for easier modi�cation and for experiments with the resulting code.

The idea of re-creating TEX using a more modern programming technique �rst

came from Joachim Schrod, one of the inaugural members of the NTS group

who also came with a prototype example of what he meant by such a re-

implementation e�ort, showing how to extract the macro-generation language

of TEX as a LISP program. The general work plan for NTS development e�ort

has since then consisted of assuming that NTS version 0 would be created

as a faithful 100% (or for any practical purpose as close as possible to that)

TEX-compatible program, and only from such code would further development

activities continue by modifying and/or extending this code.

The choice of a suitable programming language for the re-implementation ef-

forts had been a crucial unresolved problem until early 1998. Discussions oscil-

lated around three di�erent programming methodologies, each of which would

provide a di�erent set of advantages concerning the programming methodo-

logy, the availability of compatible implementations across a wide spectrum of

hardware platforms and operating systems, and the existence of a su�ciently

large base of programmers who would form the �brains trust� for future NTS

extensions and experiments with di�erent typesetting paradigms and user in-

terfaces.



62 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

Functional programming as represented by LISP or CLOS (the Common LISP

Object System) had been the language for Joachim Schrod's early attempts.

The principal motivation for using this language consisted in the fact that lists

of lists are the basic data structures manipulated within TEX, and hence the

basic internal programming paradigm should be easy to represent. Symbolic

data structures as used within LISP allow for easy meta-programming and

prototyping, two techniques very handy for experimental development. Within

university environment, LISP has traditionally been the language for imple-

mentation of experimental student projects with high programming produc-

tivity, and hence satisfying the essential requirements for viability of its use.

Even though CLOS systems do provide a su�ciently stable and compatible

implementation of this paradigm, the cross-platform compatibility is less than

ideal.

Logic programming as represented by PROLOG or constraint-satisfaction pro-

gramming languages based on expressing programs within a subset of symbolic

logic has been another prototype language family with a high level of abs-

traction and a high productivity rate. Symbolic data structures (terms) allow

for high �exibility in writing very easily modi�able code, and backtracking

mechanisms used for underlying implementation of state-space search could

provide interesting possibilities for searching for semi-optimal solutions of sets

of constraints through which very complex conditions on the resulting typeset

material could be expressed. Even though the programming structures are as

far from the underlying hardware data structures as possible, the actual imple-

mentations of this paradigm vary signi�cantly to such an extent that compati-

bility problems among the dialects make logic programming a very problematic

choice if eventual cross-platform and cross-system compatibility is sought.

Procedural languages, C and C++ in particular, present a group of languages

with considerable lower productivity in writing the program code and its re-

sulting size. Even though the languages as such can be well-de�ned, practical

di�erences as far as libraries included or operating systems interfaces make it a

real mess to produce universally usable code which would run across di�erent

platforms with compatibility comparable to that of TEX itself. Another poten-

tial problem was seen in notorious problems with non-trivial modi�cations of

programs employing access to general common shared structures, a common

programming technique used in connection with these languages.

Eventually, Java has emerged as a compromise satisfying many of the essential

requirements, o�ering interesting future opportunities, and being complicated

by relatively few drawbacks. As far as programming methodology is concerned,

Java combines C-based procedural programming with object based program-

ming style. Objects serve as the basic program components allowing for struc-

turing clean interfaces between separate components of the resulting program



The NTS project : from conception to implementation 63

and the development of future modi�cations by the substitution of certain ob-

jects of which the programs consist by other components. Objects also serve

as a consistent replacement of traditional data structures and thus remove the

traditional drawback of global shared data structures. Sun came up with Java

as a company-based standard providing uniform system interfaces and a high

level of security of Java applications. These claims remain to be demonstrated

in reality and not just as wishful thinking and bold P.R. statements, yet the

development of tested and certi�ed Java interpreters incorporated into ubiqui-

tous WWW browsers made it highly probable that the requirement of general

compatibility could be achieved and a signi�cant base of Java programmers

formed. Last but not least, Java as a WWW-based and Internet-aware lan-

guage make it possible to think of NTS as a network-based program which will

eventually allow the combination of elements downloaded from the network

and the standardization of interfaces and techniques used across huge groups

of geographically dispersed users.

The trend associated with the network as an important element of the future

computing environment has contributed to the choice of Java as the NTS im-

plementation language. Karel Skoupý joined the NTS team in early 1998 as

the programmer whose initial task has been to deconstruct TEX-the-program

into an object-based programming code preserving the essential functional fea-

tures of TEX as such but providing the grounds for future modi�cations and

extensions.

After some 18 months of (re-)design and programming, a functional proto-

type of core components of TEX has been developed and made accessible for

initial experimentation ; early results were presented at previous conferences

(e.g. EuroTeX 099) and it is hoped that the �nal code for NTS V0 will be de-

monstrated at TUG 2000. What you will see today is very close to that code !

4. An overview of the classes,

objects and methods of NTS

The implementation language of NTS is Java. It is strictly object oriented,

and all of the program code is encapsulated in object methods. The objects are

instances of certain classes, and cluster together to form packages, discussion

of which forms the majority of what follows. At the time of writing, not all pa-

ckages were complete ; in particular, mathematics remains to be implemented,

although the majority of the design work for this remaining task is virtually

complete.



64 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

4.1. Package base

The main purpose of this package is to de�ne the elementary data types used

in the rest of the system. It is a minimal element of the NTS package hierar-

chy, meaning that no class here is dependent on any classes from other NTS

packages.

The most important classes are as follows :

Dimen represents a dimension measured in printers' points (or mu units). The

fact that the internal representation is the same as that of dimensions in TEX

ensures the strict compatibility needed. The public interface of this class tries

to be completely independent of its internal representation. To the outside

world, a Dimen looks like a fraction of points. There are methods for conversion

from integer, from fraction (given by its integral numerator and denominator),

from �oating point number, and vice versa. It also provides basic arithmetic

operations. In the case of binary operations, versions for combination with other

convertible numeric types are supported too. The general public interface allows

for a complete change of the precision or even the internal unit of representation

without a�ecting the other code.

Glue re�ects another type familiar from TEX. It has its natural dimension and

the amount and order of stretchability and shrinkability. It provides arithmetic

methods such as adding two Glues, multiplying by a scalar number and also

versions for other convertible types.

Num represents an integral number. It is just an integer, but wrapped into an

object so it can be stored directly in the table of equivalents and can be distin-

guished from ordinary integers in the code. It serves mainly as the representa-

tion of the value of numeric registers (\count) (and is somewhat symmetric to

Dimen and Glue for \dimen and \skip registers).

All the basic classes above provide methods for obtaining character string re-

presentations which can be displayed on screen, in the log �le or used by the

\the primitive.

LevelEqTable is the last important and relatively complex class. It is used to

implement TEX's table of equivalents and the hash table. Whilst TEX uses an

associative hash table only for the meanings of control sequences, NTS stores

many other kinds of equivalents in an associative manner. Any object can be

associated with a particular combination of kind and key. Di�erent kinds are

de�ned for di�erent types of equivalents : one is for control sequence meanings,

another is for each class of register, still another for catcodes, etc. The key is

(according to the kind of equivalent) either an object (e.g. a control sequence

name) or a number (most others). This associative approach for storing register

values naturally avoids the limitation on any particular number of registers.



The NTS project : from conception to implementation 65

Although NTS is compatible with TEX in providing only 256 registers of each

sort, this limitation is arti�cially added and can be easily removed in the future.

As the name suggests, besides storing equivalents, the LevelEqTable also main-

tains pushing and popping of levels which are result from grouping in the input

language and the corresponding saving and restoring of associated values.

Although the registers were moved from a static array to an associative table,

there is still another type of value which is not associative but which is subject

to saving and restoring. These are parameters (such as \tolerance, \hsize,

. . . ) � the current value of a parameter is stored in one concrete place. The

LevelEqTable provides an interface for these external equivalents too, and main-

tains saving and restoring for them.

4.2. Package io

This package contains classes and interfaces for reading characters from an

input �le and writing to the log �le. Either or both of those �les may equally

well represent the user's console. The package is independent of the other NTS

packages as well as of the package base.

CharCode is an interface and is very interesting (at least, we think so ! ). There

had been considerable discussion as to whether or not to represent character

codes by some Java primitive type or by a class. It was decided that a class

should be used do as to clearly distinguish it from other usages of primitive

types. Eventually (during development), it turned out that an even more abs-

tract representation (as an interface) best matches its purpose. It declares me-

thods for getting the corresponding character or numeric value, comparing with

another CharCode, character or number for matching, making the correspon-

ding uppercase or lowercase CharCode, writing on a character-oriented output

�le and several predicates. Most of the methods are there because the TEX lan-

guage uses characters heavily not only for typesetting but also as numeric values

and as parts of keywords ; in addition, certain characters have an in�uence on

scanning and on log output (\endlinechar, \escapechar, \newlinechar).

Currently the implementation of CharCode used in NTS is just a class contai-

ning an ordinary character. But there exists the possibility to use very di�erent

representations (e.g. named characters) without changing any NTS code. Such

objects can pass through the whole system provided that at the end there exists

an output object which recognizes them and handles them properly. Even se-

veral independent implementations of CharCode could co-exist in some future

application.



66 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

Name has the same relation to CharCode as String does to char. It is used to

represent the names of control sequences, \jobname, fontnames and �le-names

scanned from the input.

InputLine represents one line from the input �le or from the user's console.

There are methods for getting the next CharCode or just peeking to see what

the next code is without altering the current reading position. It interprets

extended character codes (such as ^^M), ignores trailing blanks and appends

\endlinechar if needed. Another class, LineInput, serves as an input sequence

of InputLines from a �le or console.

Log is an important interface for printing information on a log �le or on the

user's console. It declares methods for printing values of primitive types, Strings,

CharCodes and Loggables (see below). Several methods are declared to control

output line breaking. Class StandardLog implements the Log interface in the

standard TEX way.

Loggable is a very simple interface which declares one method for printing on a

Log. It is very handy because most of the important classes in NTS implement

this interface and so their logging is conveniently handled.

4.3. Package command

Classes in the package command form the interpreter for the TEX input lan-

guage. Although it is a large package, it has nothing to do with typesetting

per se. In fact, at least one third of the TEX source is not about typesetting at

all. It is responsible for the process of scanning input tokens, expanding them

and for most of the mode-independent processing such as macro de�nitions and

register assignments.

Token is an abstract class. It declares methods for getting the meaning of a

Token, assigning a new meaning (if allowed), matching another Token, and a

number of predicates which tell if it is rede�nable, is a brace, a letter, and so

on. There are several kinds of Tokens, and they form a small hierarchy of sub-

classes. Typical examples include CtrlSeqToken, ActiveCharToken, SpaceToken,

LetterToken, LeftBraceToken, . . .

Tokenizer is able to provide a sequence of Tokens. There are various sub-

classes of Tokenizer such as : LineInputTokenizer for tokenization of the input �le,

MacroExpansion for macro bodies with supplied parameters, InsertedTokenList

for a token list from a token register inserted into the input stream, or

BackedToken for just one backed-up token. Tokenizers are pushed onto a

TokenizerStack � the analogue of TEX's input stack.

Command is an abstract class which represents each TEX command. Mostly

the commands are primitives, each of which is registered under its name in the



The NTS project : from conception to implementation 67

table of equivalents, but there are important exceptions such as Macro or the

meaning of a character. In TEX, tokens and command codes are represented

by the same type and they are often interpreted in both ways which may lead

to confusion. NTS strictly separates the concept of token and command. As

outlined above, a Token is a piece of input which can have some meaning. The

type of this meaning is the Command discussed here.

A Command has methods for execution and expansion. Only some Commands

can be expanded, and this property is indicated by another predicate method.

The heart of NTS is a cycle very similar to TEX's main_control. In one step,

a token is fetched from the input and its meaning is examined. If it is expan-

dable, the appropriate method for expansion is called. If there is some result

of expansion, the method is responsible for pushing it onto the input stack. If

it is not expandable, the method for executing the command is called.

There is one curious fact about expandable commands : they are executed if

their expansion is suppressed by \noexpand. In this case they behave exactly

like \relax (they do not do anything apart from re-setting TEX's internal

state and terminating any active look-ahead) and they even pretend that they

are \relax when examined by \show. For that reason, the whole subtree of

expandable commands is derived from the Relax command.

Another important part of the Commands interface are the methods used for

indicating availability and getting some value of a certain type. It is useful when

the command occurs on the right-hand side of an assignment, for example,

and therefore the registers, parameters and a few others can provide numeric,

dimension, glue or token list values.

CommandBase is a superclass of Command. It de�nes only static methods which

are related to scanning various elements of input (such as numbers, dimensions,

�le names, keywords, . . . ), maintaining the table of equivalents, input stack

and several instances of Log output. As we will see later, there are more objects

than just Commands which require such services and so are derived from this

abstract class for convenience.

4.4. Package node

Now at last we are getting to typesetting ! The classes in this package represent

material to be typeset. There are also general interfaces to font metrics and

output generators. The package is relatively low in the hierarchy, the classes

are dependent only on the base and io packages. That gives them a good chance

to be re-used in a di�erent typesetting system which may provide a completely

di�erent input language or user interface.



68 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

Node is an interface which de�nes the elementary building block of typesetting

material. It has methods to get its sizes (even when a�ected by some stret-

ching or shrinking), to describe itself on a log�le and to be typeset. There

is a hierarchy of classes which implement the Node interface. Some of these

are elementary, for example : RuleNode, HKernNode, VKernNode, HSkipNode,

VSkipNode, PenaltyNode ; other objects are complex and can contain lists of

subsidiary nodes : HBoxNode, VBoxNode.

Packer is used when we need to compute the sizes of complex boxes which are

built out of lists of nodes. This process is called packaging in TEX. The algo-

rithm is essentially the same for horizontal and vertical lists of boxes, only the

horizontal and vertical dimensions are �ipped for di�erent cases. The abstract

class Packer de�nes an abstract algorithm and provides a placeholder to get the

appropriate box dimensions. There are then special subclasses for horizontal

and vertical boxes which are in turn sub-classed outside this package to give

the right kind of warnings if something is not decent.

FontMetric is an abstract interface for font metric information objects. At the

moment, there are only the familiar tfm �les but that is not a restriction of

NTS � it is prepared for any kind of font metric which can be adapted to this

interface. There are methods for getting an identi�cation and various numeric or

dimension parameters for TEX compatibility. But �rst of all there are methods

to get a Node for a particular CharCode, to get a normal inter-word space and

to get a special object which is able to produce the representation of characters,

ligatures and kerns for a given sequence of CharCodes.

TypeSetter has similar characteristics to FontMetric. It de�nes an interface for

general typesetting output. There are methods for typesetting a character or a

rule at the current position and adjusting this position.

4.5. Package builder

This package takes care of the areas concerned with TEX's horizontal, vertical

and maths modes. Whilst in TEX there is just one global integer variable which

indicates one of the seven possible modes (the three mentioned above are each

internal or external, and there is one �no mode�) on the top of the semantic

stack, NTS uses objects which build typesetting material for di�erent modes.

The package is more dependent on the TEX paradigm than is node but is

still independent of the TEX language. It is relatively simple and small. Some

amount of complexity must be solved when typesetting commands and di�erent

modes interact but that issue is addressed in another package.

Builder is the root of the hierarchy of classes for di�erent modes. It declares

some predicate methods for getting certain characteristics of a given mode and



The NTS project : from conception to implementation 69

methods for adding a node, kern or skip to the list of nodes which is currently

being built. It makes the appropriate versions (horizontal or vertical) of kerns

and skips and performs other adjustments if needed. Currently only the modes

known from TEX are supported but there is provision for other types of mode

(chemical, picture, . . . ).

4.6. Package typo

The package typo is a superstructure of the package command. It contains all

the Command subclasses which deal with typesetting currently developed (there

will be a package maths for mathematical typesetting commands but it did not

exist when this text was written). It utilizes the packages builder and node as

well.

TypoCommand is similar to CommandBase but is intended for typesetting com-

mands. It is an intermediate abstract Command class which de�nes several

useful static methods. It maintains a stack of Builders and the current font

metric. There are methods for scanning a font metric or box speci�cation from

the input, and adding a character or space to the current Builder.

Many classes in this package are derived directly from classes in the command

package because they can inherit some useful behaviour from them. They can-

not be included in the command package because they need some information

which is available only in the typo package (usually by calling some static me-

thod of TypoCommand). There are basically two kinds of these : one is \if pri-

mitives such as \ifhmode or \ifvbox which just need some information about

the current Builder or a certain box register ; another is the commands which

are mode independent but typographic such as \setbox, \wd and \chardef.

BuilderCommand is an abstract superclass for commands which are mode de-

pendent. In an open system such as NTS we want new features to be capable of

being easily added. There is, for example, a superclass Command which de�nes

a particular set of methods which can be implemented by the new commands

in any sensible way. This kind of polymorphism is directly supported by the

chosen programming language.

But what to do if in future we want to add a new mode by developing a Builder

which o�ers some new functionality not declared in the Builder interface and

some specialized commands which can utilize this new functionality ? If we

do not want to extend the basic interface (at least until a new version) or

even perhaps cannot do it (we are developing a plug-in), the only chance is to

examine the type of the current Builder and to use the infamous cast operator

if it is our new Builder.



70 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

But there is another problem with existing mode-dependent commands. How

should they behave in the new mode ? For this purpose, the BuilderCommand

maintains a hash table which associates an Action with each combination of

Builder class and Command instance. The association is de�ned at the level

of the NTS con�guration and it automatically follows the class hierarchy of

Builders. Thanks to this versatility, it is very easy to specify the behaviour of

commands in di�erent modes for modi�ed systems.

Action is a subclass of CommandBase so it inherits many methods for scan-

ning the input, dealing with log �les and error messages. Actions are usually

implemented as inner classes of the corresponding BuilderCommand.

A fragment of the NTS con�guration data looks like :

RulePrim hrule = new RulePrim

("hrule", default_rule, Dimen.NULL, Dimen.ZERO,

Dimen.ZERO);

RulePrim vrule = new RulePrim

("vrule", Dimen.NULL, default_rule, Dimen.NULL,

Dimen.ZERO);

hrule.defineAction(VertBuilder.class, hrule.NORMAL);

hrule.defineAction(ParBuilder.class, hrule.FINISH_PAR);

hrule.defineAction(HBoxBuilder.class, hrule.BAD_HRULE);

vrule.defineAction(HorizBuilder.class, vrule.NORMAL);

vrule.defineAction(VertBuilder.class, vrule.START_PAR);

The BuilderCommand corresponding to the TEX primitive \hrule de�nes three

actions : it performs the normal operation in vertical mode, �nishes the current

paragraph (if any) in horizontal mode and complains inside an \hbox. The

\vrule performs normally in any horizontal mode and enters a new paragraph

in vertical mode. There is in fact only one class (RulePrim) which has two

instances with names hrule and vrule and di�erent parameters ; they are assigned

di�erent Actions for the same modes. All the Actions NORMAL, START_PAR,

FINISH_PAR and BAD_HRULE are instances of inner classes inside RulePrim or

its superclass.

Other examples of BuilderCommand are : HBoxPrim, VBoxPrim, VTopPrim,

LowerPrim, MoveLeftPrim, BoxPrim, KernPrim, CharPrim, ExSpacePrim,

AccentPrim, AnySkipPrim.

Group is another subclass of CommandBase. Its subclasses cover the various

types of group in TEX. There are groups such as SimpleGroup for a pair of braces,

SemiSimpleGroup for the \begingroup and \endgroup, HBoxGroup, VBoxGroup

or VTopGroup. Group itself is de�ned and the stack of Groups is maintained in

CommandBase but most of the subclasses belong to the package typo.



The NTS project : from conception to implementation 71

Groups have one problem in common with Builder. Their closing commands

behave di�erently in combination with certain type of Group. The right brace

cannot match \begingroup and \endgroup cannot match the left brace. The

problem is solved in exactly the same way as for combinations of commands

and Builders.

4.7. Package tfm

The package tfm implements a particular type of font metric information �

the TEX font metric �le � for use in NTS . It can be used as an example for

implementing other types of font metric.

TeXFm is a class which represents the low-level � almost raw � format of a TEX

font metric �le. Some complications are hidden but its public interface re�ects

just the information which is available in the �le. It uses several auxiliary classes

because the tfm format is too complex to be captured by only one program

�le. As an example, the whole process of reading a tfm �le is done by the class

TeXFmLoader which creates an instance of TeXFm. TeXFm itself has methods

for getting information concerning the characters, ligatures and kernings for

pairs of characters, extensible recipes and sequences of enlarging characters.

Another method is provided for printing its representation as a property list.

This is used by a small Java application tftopl which � thanks to TeXFm �

shares most of the code with NTS.

TeXFontMetric is an adaptation of TeXFm which implements the FontMetric

interface from the node package. It is a wrapper which uses the natural me-

thods of TeXFm and provides the methods required by the rest of NTS . This

approach is probably useful for future implementations of other types of font

metric. We cannot expect that some third party will provide the exact interface

even if a Java class is supplied for access.

4.8. Package dvi

This package implements the dvi format as one of the possible output formats

for NTS . In many aspects it will be similar to the package tfm but it was too

early to say more as development of this part had just started when this text

was written.

4.9. Package tex

This package is an umbrella for the other NTS packages, and it is by far the

messiest part of the system. All the classes and packages so far are designed

to provide a clear and elegant interface and to be as independent of other



72 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

classes and packages as possible. But in TEX itself, there are so many unclear

dependencies. That was one reason for starting the whole NTS project in the

�rst place. The classes in this package join all the independent units together,

and in addition all the weird cases were exported from the clean design of other

packages to here if this was possible. That is the main reason that the code

sometimes looks rather messy here.

Besides this, there are classes for maintaining the error pool so that commands

are not dependent on the way in which the error messages are given.

The most interesting part of this package is the class Primitives which contains

the con�guration of the whole system. There was already an example in package

typo.

4.10. Modularity and con�gurability

To develop a system which is as modular as possible was one of the main

desiderata. In the current TEX implementation, there are a lot of dependencies.

Experience shows that it is very di�cult and dangerous to make some non-

trivial changes since these can lead to a number of possibly unclear side-e�ects.

The approach taken in developing NTS has been to make all dependencies

explicit and clear. All classes have a well-de�ned interface of public methods

which is used for all communication. There are no uncontrolled changes of

global variables. This manner of programming is greatly supported by the Java

object-oriented language.

Another motivation for making code units independent is to allow substitutions

of some modules by other modules with the same interface but a di�erent

underlying implementation. Independent classes or packages can also be used

as building blocks for another system. TheNTS packages are therefore designed

rather as class libraries with a strict hierarchy.

An interesting problem concerned with the decomposition of TEX into inde-

pendent units is the problem of cyclic dependencies. There are many of them.

A simple example is the relation between TEX's �eyes� and �stomach�. The sto-

mach is fed by commands which originate at the eyes, but the action of the

eyes depends on \catcode settings which originate from the stomach.

This makes it particularly di�cult to maintain a non-cyclic hierarchy of pa-

ckages. On the other hand, it is very desirable if we want to use only some

of them in another application. The method that NTS uses to avoid such cy-

clic dependencies is via abstract interfaces. If some class needs information or

an action which is not available at the current level of hierarchy, it de�nes

an interface and accepts an object which implements it as a parameter (of its



The NTS project : from conception to implementation 73

constructor or of some method). The parameterisation is then made at some

higher level, usually in the umbrella (or maybe NTS's brain) � the package tex.

5. A summary of the status quo

NTS was envisaged (more than a little naïvely, as has already been suggested)

as taking one year from commencement to full implementation. It is now two

years since formal commencement, and work is not yet complete. How far have

we got, and what were the reasons for the delays ?

The good news is that work is very nearly complete : Karel has tackled the task

in a very logical order, starting with TEX's �eyes� and �mouth� (the scanner and

tokeniser), then macro expansion, then command execution where this did not
involve typesetting, through to list creation, and page-building. NTS is now

able to process and typeset (that is, generate DVI) for any document which

does not involve mathematics or alignments, although it cannot (at the time

of writing) yet hyphenate words. In fact, only three real challenges remain :

mathematics (mathematical typesetting, of course, rather than mathematics

per se), alignments and hyphenation. Karel has already completed a large part

of the research and design phase for these.

However, there is another area in which some work remains to be carried out,

and that is the area of system interactions. Of course, TEX itself does not

interact with the system in any potentially dangerous way (with the notable

exception of being able to open an arbitrary �le for writing, provided that the

user running TEX has appropriate permissions). But TEX does interact with

the environment in rather more subtle ways, for example to ascertain the path

or paths which it will search for each class of �le (\input �les, .tfm �les, and

so forth).

Most implementations of TEX perform this interaction through the medium

of so-called environment variables (e.g. TeX_Inputs, TeX_Fonts and so forth).

These environment variables are typically set by the installer of TEX for a given

system, and can usually be modi�ed by individual users to suit their particular

needs. Whether these environment variables are actually variables, or logical

names, or part of (e.g.) a Windows NT environment settings is irrelevant to

the user : all that matters is that there is a standard way (standard, that is,

for each platform and implementation of TEX) of informing TEX where the

relevant �les are to be found.

The problem is that Java is a portable language. And truly portable languages

must behave identically no matter on which platform they are installed. And

so the designers of Java have decreed that, since environment variables are



74 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

not standardised across platforms, Java shall have no access to environment

variables. Disaster !

It therefore looks at the moment as if NTS's environment will have to be

con�gured independently to that of TEX, using a Java-speci�c con�guration

system, and there will be no way of allowing NTS to inherit TEX's run-time

environment settings. But this area is still under review, and it is still possible

that some satisfactory compromise will be found. Recent improvements to the

Java system have acknowledged the need for a so-called policy �le, which by

default is ignored but which � if permitted by the security settings � can be

read by the Java run-time system during initialisation. Such a �le could be

generated in a very straightforward way from existing environment variables,

although (for obvious, bootstrapping, reasons) the program to generate it could

not be written in pure Java !

So mathematics, alignments, hyphenation and environmental enquiries remain

to be implemented, virtually all else is complete ; how satis�ed are we with the

work done so far ?

In general, we are extremely satis�ed ; Karel has done an excellent job of re-

engineering and re-implementing a TEX-compatible system in a modular and

open way. Compatibility remains uncompromised : the DVI �les and log �les

(and even the console output) of NTS and TEX are identical (obviously modulo

such necessary di�erences as the NTS banner reading "This is NTS" rather than

"This is TeX").

But there is also one area about which we are deeply concerned, and it is only

fair that we should reveal our concerns to the sponsors of the project (such as

GUTenberg). That area is performance. And the performance is abysmal.

When we �rst went to Knuth with our plans for NTS, we said that we intended

to perform the re-implementation in two phases : phase-1 would use a modern,

rapid-prototyping, language to validate the design ; the second phase would

involve a further re-implementation using a language selected for e�ciency.

Don reassured us that this second phase would never prove necessary : �by the

time you are ready to perform the second re-implementation, technology will

have advanced so much that a second re-implementation will not be needed.

Computer performance continues to rocket, year after year, and shews no signs

of starting to reach a plateau� is a paraphrase (from memory) of Don's words.

Well, in one sense, Don was right : computer performance does continues to

rocket, and still shews no signs of starting to reach a plateau. Yet, despite

this, NTS is, on large benchmarks, over 100 times slower than TEX, even using

the much-vaunted �just-in-time� compiler. And so, we are faced with a crucial

decision : do we continue to use Java, and just wait for the hardware to speed up

by a further factor of 100 ? (Remember, the �rst IBM PC ran at 4.7MHz ; the



The NTS project : from conception to implementation 75

�rst 1GHz pentium-class machine should ship this year � a factor of 200 : 1).

Or do we use the Java implementation just for test purposes, but re-implement

Karel's design in a radically more e�cient language ? Or do we simply admit

defeat, say �we tried�, and leave it to others to see if they can be more successful

than we ?

These are hard questions, and there will be considerable soul-searching before

we can decide on the answer ; all I can say at the moment is that GUTenberg,

as one of our major sponsors, will also be one of the �rst to know.

6. Epilogue

Although my talk has ended on a rather downbeat note, I'd like to try to lift

your spirits by asking (and answering) one vital question : what lesson(s) can

be learned from our experience(s) ?

The �rst mistake was surely to under-estimate the time necessary for the initial

re-implementation. Had we followed Knuth's (? apocryphal ?) algorithm for es-

timating the time needed to develop a major software system, we would have

added 1 and then gone up to the next order of magnitude. Thus Knuth's al-

gorithm would have suggested (had we heeded it) that we would need not one

year but two decades !

In fact, we probably need about three years to complete fully what we thought

could be completed in one. Is it possible to explain why ?

Rather interestingly, I think the answer is �yes� (which may suggest that I am

still as naïve as I was when I started the project ! ). According to Karel, almost

all of the extra time has been spent making NTS 100% TEX-compatible. Note,

100%, not 99:9%. It was this last 0:1% that ate up so much of the lost time.

Little things, like making sure that the console output was identical, even if

console output is ephemeral and can never be compared other than by memory.

Little things, like making sure that NTS's behaviour at boundary conditions is

identical to that of TEX, even if TEX's behaviour in such conditions is sometimes

�awed and at worst completely insane. Little things, like making sure that DVI

�les produced by NTS are binary-identical with those produced by TEX, not

just syntactic- and semantic-compatible.

What made this situation worse was that Karel's brief was not to write a TEX-
simulator ; had that been his task, he could probably have completed the work

in eight months or less. His brief was, in fact, to write a �exible, extensible,
modular TEX simulator, which meant that every time he discovered somewhere

that TEX behaved less than ideally, he had to implement two routines : (1) the

base routine, which behaved exactly as a logical person would expect in the



76 Philip Taylor, Ji°í Zlatu²ka and Karel Skoupý

circumstances, and (2) a TEX-compatible routine, that introduced whatever

anomalous behaviour TEX itself would exhibit in those circumstances. Thus

someone taking the NTS source in the future will �nd that all the necessary

logical, predictable, behaviour has already been implemented ; it has simply

been �sub-classed� out of sight in the interests of TEX-compatibility.

What other lessons can be learned ? Well, it is certainly worth re-visiting the

question of implementation language. Was Java the right choice ? In hindsight,

the answer appears to be �no�, much as it hurts to admit it. There are three

primary reasons for this. (1) Java is not as type-safe as we had thought, at

least if one wants both type-safety and e�ciency at the same time. Whereas

in Pascal one can write :

type group = (simple_group, semi_simple_group, ...)

and thereafter use the identi�ers simple_group (etc.) in the absolute certainty

that they can never be used in a context where (e.g.) an integer is expected, this

is not the case for Java. There are no enumerated types, and thus if one wants

type-safety to be checked and enforced at the compiler level, one is virtually

forced to use objects to represent even the simplest enumerated type.2 And

objects, of course, carry considerable baggage with them, and their use (in

excess) has a heavy performance impact. (2) Java lacks generic types, and thus

in a situation in which one wants to manipulate (say) lists of di�erent types of

object, one is forced either to write type-speci�c code for each type of object

or to use the only truly generic object (Object itself), and then to use casts.

In the latter case, type-checking is deferred from compile-time to run-time,

with an accompanying lack of (a) compile-time type-safety, and (b) e�ciency.

(3) Java imposes considerable performance overheads. If NTS were ten times

slower than TEX, I might be prepared to argue that (a) Java performance

will continue to improve, and therefore we should be within touching distance

of TEX's performance before too long ; and (b) a performance degradation is

acceptable if both maintainability and extensibility are considerably enhanced.

But I cannot, in all honesty, o�er these defences in the present situation : if

NTS remains 100 times slower than TEX, its chances of ever being used in

earnest are vanishingly remote.

Java's strengths, on the other hand, remain virtually unchallenged ; it is por-

table (and obviates any need for system dependencies and/or local modi�ca-

tions), it has attracted a large user (=programmer) base, and it does o�er

seamless network connectivity. At the moment, we are uncertain which (if any)

other language could o�er these advantages while avoiding Java's limitations.

�Generic Java�, particularly if supported by Sun, would make great sense ; Ei�el

2. the java.util package does recognise the need for enumerated types, but unless and

until they are included in the base language, e�ciency will clearly be compromised



The NTS project : from conception to implementation 77

looks interesting, too. All I can say at the moment is that Karel will �nish NTS

V 0 using Sun's Java ; if, after that, there is general consensus that the project

should continue, we will investigate the option of translating (probably auto-

matically) NTS from Java to another, more e�cient, language. And beyond

that is too far to see !

And one �nal problem, which has dogged this project, and which (sadly) doesn't

seem likely to disappear. That is a problem of communication. The team are

geographically diverse, with representatives from at least �ve nations (UK, CZ,

DE, PL, NL) ; our programmer is based in CZ, where the only other team

member is more than fully occupied running a major university (Ji°í is now

Rector of Masaryk University). Thus Karel lacks the day-to-day support of

others with whom to discuss progress and problems other than by e-mail and

at occasional group meetings. Almost certainly, communication problems have

also led to various misunderstandings within the group, which are frequently

seen as being politically motivated. Politics have cast a shadow over this pro-

ject, of that there is no doubt ; yet equally without doubt every member wants

the project to succeed. I believe that the goodwill which exists outweighs the

di�culties which can occur, and that we will be able to bring this project to a

state where NTS is complete and usable.

But Don advised us that we should be prepared at some point to do what he

has done � to say �enough is enough� and to allow others to carry the torch

forwards. I'm sure we aren't ready to do that yet � there are far too many

exciting challenges to be met � yet the time will undoubtedly come when NTS

will itself be regarded as passé, and others will be keen to take on the challenge

of carrying computer typesetting (in the �nest TEX tradition) forward in as-

yet unforeseen ways. I hope that amongst those who take up this challenge,

members of GUTenberg will �gure prominently : you have amongst you many

who have contributed enormously to the furtherance of TEX, some of whom I

have had the pleasure of knowing as friends as well as colleagues. On behalf of

the NTS project, I thank you most sincerely for your support ; I hope that you

enjoy the demonstration of NTS which follows, after which I will try to answer

any questions which you may have.


