
Cahiers
enbergGUTGUTGUT

m DVIPDF AND EMBEDDED PDF
P Sergey Lesenko

Cahiers GUTenberg, n 28-29 (1998), p. 231-241.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_1998___28-29_231_0>

© Association GUTenberg, 1998, tous droits réservés.

L’accès aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),
implique l’accord avec les conditions générales
d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).
Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_1998___28-29_231_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html

Cahiers GUTenberg n̊ 28-29 — Congrès EuroTEX mars 1998 231

DVIPDF and Embedded PDF

Sergey Lesenko

Institute for High Energy Physics,
Protvino, Russia
E-mail: lesenko@mx.ihep.su

Abstract. We explain how the current version of the DVIPDF program manages to

integrate external multipage PDF files into its own PDF output.

1. Introduction

Today’s electronic documents for the Web are most often distributed in HTML
or PDF format [1]. PDF format is the only candidate if a document contains
vector graphics and we want them to be scalable for the user without any
loss of quality. This article describes the protocol by which the DVIPDF[8][9]
conversion program from TEX’s DVI format to Adobe’s Portable Document
Format (PDF) now manages to embed pre-existing PDF vector graphics into
its PDF output files.

Initially, there existed just one program yielding graphics output in PDF for-
mat, namely Adobe Distiller, which converts pre-existing PS files. But now,
the number of programs in this arena is growing day by day. We now have
Ghostscript by Peter Deutsch [4] (noncommercial), Illustrator by Adobe, and a
remarkable program, Mayura Draw, by Rajeev Karunakaran [6] (noncommer-
cial). Incidentally, Mayura Draw was used to create the flow diagram and the
flowers in this article.

What we call PDF graphics can in fact be a mixture of graphics and text
involving PostScript (PS) Type 1 fonts. Furthermore, the current version of
DVIPDF permits insertion of multi-page segments of pre-existing PDF files
into the PDF output.

Hopefully this new capability of DVIPDF will largely compensate for
DVIPDF’s continuing inability to integrate EPS (Encapsulated PS) on its
own1. Indeed, qualitatively speaking, any sort of (still) graphics image can
now be efficiently integrated into DVIPDF’s output. Currently DVIPDF is

1 i.e. without first converting EPS to EPDF using, for example, Ghostscript.

232 Sergey Lesenko

supported by the graphics and graphicx packages [2][3]. It will also be sup-
ported, where graphics objects are concerned, by an extension of the boxedeps
package [10] .

In conclusion, we will briefly speculate on the possibility and interest of using
DVIPDF and Acrobat Reader in tandem to provide something qualitatively
new, namely a freely distributable DVI viewer with unlimited graphics abilities.

2. EPDF, MPDF and OPDF

We introduce some terminology for the exposition to follow:

— MPDF (Main stream PDF file) refers to a PDF file into which we wish
to insert vectorized graphics at points specified by suitable markup. This
PDF file is an intermediary (and incomplete) product that normally exists
only inside the DVIPDF program; it is derived from a DVI file, along with
fonts. As one would expect, the markup in the MPDF is derived from the
\special commands in the DVI file.

— EPDF (Embedded PDF file) refers to a PDF file containing one or more
graphics objects that are available for insertion into the MPDF file and
are designated in ways we will explain presently. We note a couple of
restrictions that DVIPDF currently imposes: an EPDF file has to be in
ASCII format (not binary) and its page content has to be non-compressed.

— OPDF (Output PDF file) refers to the final complete PDF file produced
by the DVIPDF program by integrating into the MPDF file some of
the graphics objects in one or more EPDF files or bitmapped files of
norms PNG and JPEG. Since the integration by DVIPDF of PNG and
JPEG graphics has been described before [9], all mention of concurrent
integration of PNG and JPEG files will be omitted from what follows.

3. Simplest integration

Now we can discuss an introductory example of vector graphics integration.
The ‘Flower’ drawing (Figure 1) is an EPDF file created in Mayura Draw. Its
integration with some text is presented in Figure 2. This is the simple sort
of integration that has for many years been very popular with an EPS files
in place the EPDF file. (We will do something more impressive in the next
section!)

It is instructive to follow what happens in this simplest integration process. It
involves one of the more important concepts of the PDF file format, namely,

DVIPDF and Embedded PDF 233

Figure 1

‘Form XObject’. For brevity we use the term ‘Form’ throughout this paper.
This is a composite object analogous to a box in the the TEX realm — in as
much as each has a bounding box and can contain others of its kind. Where
we want to embed a picture, a reference to a Form occurs in the MPDF file,
in a part called a page stream. After all the page streams are completed the
Form referenced is created from the EPDF file and installed further along in
the OPDF file.

Let us be a bit more explicit about the integration of the flower. In the TEX
typescript, the integration is commanded by:

\resizebox{4in}{!}{%
\includegraphics[bb= 83 237 477 767]{flower.pdf}}%

234 Sergey Lesenko

Время и Случай
И обратился я, и видел под солнцем, что
не проворным достается успешный бег,
не храбрым – победа,
не мудрым – хлеб,
и не у разумных – богатство,
и не искусным – благорасположение,
но время и случай для всех их.

– Екклесиаст 9:11

I returned and saw under the sun, that
the race is not to the swift,
nor the battle to the strong,
neither yet bread to the wise,
nor yet riches to men of understanding,
nor yet favor to men of skill;
but time and chance happeneth to them all.

– Ecclesiastes 9:11

Figure 2

This assumes LATEX, and the graphicx package, activated by

\usepackage[dvipdf]{graphicx}

The bounding box (bb) given here was taken from a comment

/MediaBox [83 237 477 767]

DVIPDF and Embedded PDF 235

that Mayura Draw inserted into the EPDF file flower.pdf. In a later section we
will discuss ways of automating the choice and use of bounding boxes.

At the DVI level, there results three special commands with the following three
arguments.

pdf: /S 0.731 0.731 <<
pdf: /GRAPH flower.pdf llx=83 lly=237 urx=477 ury=767
pdf: /S >>

Here /S is for scaling.

In the OPDF file the Form reference in the page stream occurs as /Fm1 in the
midst of sizing and positioning commands, and further on, one encounters the
form itself which begins as follows:

21 0 obj
<< /Type /XObject /Subtype /Form

/FormType 1 /Matrix [1 0 0 1 0 0]
/BBox [83 237 477 767]
/Name /Fm1 /Resources 23 0 R /Length 24 0 R >>

stream ...

Hopefully these samples give some idea of the internal workings. Naturally,
detailed understanding is for experts only, and requires familiarity with the
PDF format specification [1].

4. Complex paste-up

We now describe a less familiar and more interesting sort of integration. It is
possible to apply the above techniques to scavenge various fragments from PDF
files, perhaps several from a single PDF page, and then use the fragments like
tiles to build up a new PDF. For example, Figure 2 can be scavenged to create
Figure 3.

The strategy is obvious: scavenge three Forms from Figure 2 corresponding to
the two text blocks and the flower. Then use TEX and DVIPDF in sequence
to construct Figure 3 from these three pieces. Note that all of Figure 2 except
the original Russian title is scavenged, and that similarly the only really new
material in Figure 3 is the English title. The one flower is reused many times
via a new linear mapping each time. Note also a significant economy: since the

236 Sergey Lesenko

Time and Chance

Время и Случай
И обратился я, и видел под солнцем, что
не проворным достается успешный бег,
не храбрым – победа,
не мудрым – хлеб,
и не у разумных – богатство,
и не искусным – благорасположение,
но время и случай для всех их.

– Екклесиаст 9:11

I returned and saw under the sun, that
the race is not to the swift,
nor the battle to the strong,
neither yet bread to the wise,
nor yet riches to men of understanding,
nor yet favor to men of skill;
but time and chance happeneth to them all.

– Ecclesiastes 9:11

Вре
мя
и С
луч

ай

И о
бра
тил

ся я
, и
вид
ел п

од с
олн
цем
, чт

о

не п
ров
орн
ым

дост
ает
ся у

спеш
ный

бег,

не х
раб
рым

– по
бед
а,

не м
удр

ым
– хл

еб,

и не
у ра

зум
ных
– бо

гат
ств
о,

и не
иск
усн
ым
– бл

агор
асп
оло
жен

ие,

но в
рем

я и
слу
чай

для
всех

их.

– Е
ккл
есиа

ст 9
:11

I re
tur
ned
and
saw
und
er t
he s
un,
tha
t

the
rac
e is
not
to t
he s
wift
,

nor
the
bat
tle
to t
he s
tron
g,

neit
her
yet
bre
ad
to t
he w
ise,

nor
yet
rich
es t
o m
en o
f un
der
stan
din
g,

nor
yet
favo
r to
men

of s
kill
;

but
tim
e an
d ch
anc
e ha
ppe
net
h to
the
m a
ll.

– E
ccle
sias
tes
9:11

Время и Случай

И обратился я, и видел под солнцем, что

не проворным достается успешный бег,

не храбрым – победа,

не мудрым – хлеб,
и не у разумных – богатство,

и не искусным – благорасположение,

но время и случай для всех их.
– Екклесиаст 9:11

I returned and saw under the sun, that

the race is not to the swift,

nor the battle to the strong,

neither yet bread to the wise,

nor yet riches to men of understanding,

nor yet favor to men of skill;

but time and chance happeneth to them all.– Ecclesiastes 9:11

Время
и
Случай

И
обратился

я, и
видел

под
солнцем, что

не проворным
достается

успеш
ный

бег,

не храбрым
–
победа,

не мудрым
–
хлеб,

и
не у

разумных
–
богатство,

и
не искусным

–
благорасположение,

но
время

и
случай

для
всех

их.–
Екклесиаст

9:11
I returned

and
saw
under the

sun, that

the
race
is not to

the
swift,

nor the
battle

to
the
strong,

neither yet bread
to
the
wise,

nor yet riches to
m
en
of understanding,

nor yet favor to
m
en
of skill;

but tim
e
and
chance

happeneth
to
them
all.

–
Ecclesiastes 9:11

В
рем

я
и
С
лучай

И
обратился

я, и
видел

под
солнцем

, что

не
проворны

м
достается

успеш
ны
й
бег,

не
храбры

м
–
победа,

не
м
удры

м
–
хлеб,

и
не
у
разум

ны
х
–
богатство,

и
не
искусны

м
–
благорасполож

ение,

но
врем

я
и
случай

для
всех

их.

–
Е
кклесиаст

9:11

I
returned

and
saw
under

the
sun,

that

the
race

is
not
to
the
sw
ift,

nor
the
battle

to
the
strong,

neither
yet
bread

to
the
w
ise,

nor
yet
riches

to
m
en
of
understanding,

nor
yet
favor

to
m
en
of
skill;

but
tim
e
and
chance

happeneth
to
them

all.

–
E
cclesiastes

9:11

Время и Случай
И обратился я, и видел под солнцем, что
не проворным достается успешный бег,
не храбрым – победа,
не мудрым – хлеб,
и не у разумных – богатство,
и не искусным – благорасположение,
но время и случай для всех их.

– Екклесиаст 9:11

I returned and saw under the sun, that
the race is not to the swift,
nor the battle to the strong,
neither yet bread to the wise,
nor yet riches to men of understanding,
nor yet favor to men of skill;
but time and chance happeneth to them all.

– Ecclesiastes 9:11

Figure 3

flower is a Form, the cost in storage space of using it many times in Figure 3
is surely going to be little more than that for using it once.

The most delicate point is to understand just how, starting from Figure 2, the
three Forms are scavenged, namely the two blocks of text and the flower. If
one examines the PDF file for Figure 2, one observes that the two blocks of
text are part of one and the same primitive PDF ‘object’; therefore it would
be very awkward to extract them neatly. Thus a rough way is used to scavenge
them: one extracts the whole page, views it as a Form, called say /Fm0 and then

DVIPDF and Embedded PDF 237

(in just a few lines) formally derives three Forms /Fm1, ... ,/Fm3 by cropping
/Fm0 down to the three boxes of material we need. This construction of /Fm1,
... ,/Fm3 is summarized in the flow diagram (Figure 4).

BBox3

BBox1

BBox2

Fm0

Fm1 Fm2 Fm3

Figure 4

As we know from studying the construction of Figure 2, the flower does occur
as a Form, say /Fm4, within the the page form /Fm0. Thus one could have
extracted it without using the cropping device, and then used it in place of
/Fm2. However there is nothing to be gained thereby in the present case.

5. Finding bounding boxes

For the user, the two main steps in using an EPDF graphics object in a TEX
typescript are:

— Select bounding box on the graphics page,
— Make TEX exploit the bounding box parameters.

After the first of these two steps we store the bounding box parameters in the
same sort of auxiliary file as is used by the graphics package for bitmap files.
Such an auxiliary file has an extension ".bb". In the case of a one-page EPDF
with a single bounding box selected, it can consist of a single line of the form:

%%BoundingBox: 0 0 144 72

238 Sergey Lesenko

The simplest (but also the clumsiest!) way to choose a bounding box is to print
out the EPDF and to draw and measure the bounding box by hand. The units
are in big points measured from the lower left corner of the PDF page.

A more convenient way uses the commercial program Adobe Acrobat Exchange
and also some ‘plug-ins’ for it. One opens the EPDF file and crops to a user-
selected region. Then the needed bounding box appears as a /CropBox comment
in a new PDF file.

Hopefully both of the following methods for EPS files will soon be extended to
PDF files.

Recall that GhostScript, in conjunction with a header file called bb4gs.ps,
provides a quick way to determine the (cropped) bounding box for a one-page
graphics object of norm EPS. The GSview program [7] does something similar,
and more automatically. With ‘hand marking’ of regions, GSview is useful for
selecting multiple bounding boxes from the same page.

6. Finding bounding boxes automatically

A more difficult problem is to make truly automatic the acquisition of bounding
box data for graphics insertions from an EPDF. As TEX is not very suitable for
parsing PDF files (even ASCII), this job is one for DVIPDF. This can require
hints from the author such as page number in the EPDF, and more.

When the graphics object is alone on a single page PDF, we can often get a
good approximation to the wanted bounding box by simply searching for a
comment of type /MediaBox or /CropBox. For example Mayura Draw puts the
comment

/MediaBox [50 209 488 786]

in the body of the EPDF file representing the the flower of Figure 1.

For the remainder of this section, we simply assume that DVIPDF is somehow
able to find the bounding box automatically.

This situation is then handled by a protocol that involves TEX macros in
addition to the parsing by DVIPDF. It requires two passes as described by
L. Siebenman for integration of bitmapped images (PNG and JPEG); see Sec-
tion 4 of [11]. On first pass, DVIPDF produces an auxiliary file with bounding
box parameters. On the second pass, TEX is able to use this bounding box, and
DVIPDF accomplishes the wanted insertion of the EPDF.

DVIPDF and Embedded PDF 239

In practice, it may occur that the bounding box found automatically by
DVIPDF should been changed. For example, the received bbox from Medi-
aBox will be constant, if it is preferable to save the initial PDF file without
changing, and we want to select a different bounding box. Using syntax from
the boxedeps package, one might have to precede the insertion by a command
\TrimRight{40pct}; this would cut off the righthand 15% of the automatically
found bounding box.

7. Logistics and efficiency

To incorporate EPDF with MPDF we have to add all needed components or
objects to database of MPDF, we have to rename all objects corresponding to
our main database, and we have to avoid repeated loading of the same objects.

Insertion EPDF is based on one of the more important concepts of PDF, namely
“Form XObject”; we use term “Form” in this paper. How does it work? When
we want to embed a picture, we place Form reference in MPDF page stream.
After producing all pages we place this Form really. It is produced on the base of
the EPDF page stream with renaming of objects on the fly, and finally needed
objects are added in MPDF. If this stream has its own Forms, the process of
parsing is recursive.

First we mention some logistic problems arising from the fonts used in EPDF
graphics objects. DVIPDF keeps a font database with systematic nomenclature
to help solve them.

Two fonts of the same name may in fact be different. Their versions may be
different; even the familiar Times of Adobe has changed some shapes and pa-
rameters. When are different versions ‘essentially equivalent’? Another compli-
cation: the encodings may be different. Should they be realigned?

Acrobat Reader loads just one font with a given name; thus although one can
store distinct fonts under the same name in a PDF file, such a tactic is not just
chancy; it is guaranteed to fail.

Two radically different partial fonts derived by subsetting from the same stan-
dard font can sometimes bear the same (augmented) name. This is unlikely,
but it can occur, particularly when different engines have been used to extract
the subsets. For example DVIPDF itself is one such engine; it augments the
original font’s name using a cyclic redundancy check value (CRC)[5] computed
from codes and widths of characters used. Other engines use other recipes.

One of the weak points of the PDF format is the relative bulkiness of PDF
files compared with HTML files. PDF files do strain Internet’s capacity; thus

240 Sergey Lesenko

it is very important that PDF files posted on the Internet be no bigger than
absolutely necessary. DVIPDF strives to be space efficient when integrating
graphics.

When, like the flower in this article, a graphics object is used several times with
simple variations, it is important that only one be stored in the PDF file, and
that all variations be produced by suitable references to that one. DVIPDF
keeps a graphics database with systematic nomenclature to permit this.

Such efficiency in EPS integration is possible (with DVIPS for example) but is
rarely attempted; DVIPDF makes it routine practice.

Exploiting DVIPDF

As explained in [8], DVIPDF is, at the programming level, an offshoot of T. Ro-
kicki’s freeware DVIPS, and when mature it may even be reintegrated with
DVIPS. In contrast to Adobe Acrobat Exchange DVIPDF is a ‘blackbox’ pro-
gram in portable C code, and for many users it badly needs a more comfortable
interface. Currently DVIPDF (console mode for Windows 95) permits a sim-
ple ‘drag-and-drop’ interface to be used. There are two obvious approaches to
interfacing.

— Make DVIPDF a tail end to TEX, allowing even the most standard TEX
installation to output PDF files automatically.

— Make DVIPDF a front end to Acrobat Reader.

The second approach seems particularly interesting. Indeed, Acrobat Reader
is the ‘definitive’ PDF reader, and further the concept of ‘plug-ins’ for it has
been formalized in a reasonably platform-independent way.

Such ‘plug-ins’ convert Acrobat Reader into a DVI reader that is able to view
graphics of norms PNG, JPEG, (E)PDF — and most graphics falls comfort-
ably within their scope. There are problems here, related to variable \special
syntax, but they seem to be solvable [11]. The concept of an electronic posting
that consists not of a single file, but rather of a directory of files, including
graphics files and a DVI file, has advantages as well as disadvantages. Indeed
the autonomous graphics files are both attractive and useful.

DVIPDF ‘plug-ins’ for Acrobat Reader would permit the scientific community
to continue indefinitely to benefit from some still unique talents of the DVI for-
mat: enviable space efficiency; enviable coverage of heritage printers and screen
displays; and finally enviable browsing speed as exemplified by the freeware
viewers XDVI and Textures.

DVIPDF and Embedded PDF 241

Acknowledgments

I would like to thank Laurent Siebenmann for his useful suggestions and the
English edition of this paper.

Bibliography

[1] Tim Bienz, Richard Cohn.
Portable Document Format Reference Manual.
Adobe Systems Incorporated, 1993.
Addison-Wesley Publishing Company. ISBN 0-201-62628-4.

[2] David Carlisle, Sebastian Rahtz. The graphics package.
ftp://ftp.tex.ac.uk

[3] David Carlisle, Sebastian Rahtz. The graphicx package.
ftp://ftp.tex.ac.uk

[4] L. Peter Deutsch. Aladdin Ghostscript. Electronic distribution:
ftp.cs.wisc.edu://pub/ghost/aladdin

[5] L. Peter Deutsch. RFC 1952: GZIP 4.3 specification.
ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html

[6] Rajeev Karunakaran. Mayura Draw.
Electronic distribution: http://www.wix.com/mdraw210.zip

[7] Russell Lang. GSview. Electronic distribution:
/ftp.cs.wisc.edu://pub/ghost/rjl/gsview*.zip

[8] Sergey Lesenko. The DVIPDF Program.
TUGboat 17, 3, September 1996, pp. 252–254.

[9] Sergey Lesenko. DVIPDF and Graphics.
“TEX and Scientific Publishing on the Internet”.
Proceedings TUG’97, San Francisco.
TUGboat 18, 3, 1997, (to be published).

[10] Laurent Siebenmann. DVI-based electronic publication.
TUGboat 17, 2, June 1996, pp. 206–215.

[11] Laurent Siebenmann. The boxedeps package.
ftp://ftp.tex.ac.uk

