CahiersG U T enberg

‘¢ VFLIB — A GENERAL FONT LIBRARY THAT
SUPPORTS MULTIPLE FONT FORMATS

(Hirotsugu KakuGawa
Cahiers GUTenberg, n° 28-29 (1998), p. 211-222.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_1998___ 28-29_211_0>

© Association GUTenberg, 1998, tous droits réservés.

Lacces aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),

implique I'accord avec les conditions générales

d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).

Toute utilisation commerciale ou impression systématique

est constitutive d'une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_1998___28-29_211_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html

Cahters GUTenberg n” 28-29 — Congres EuroTEX mars 1998 211

VFlib — a General Font Library that
Supports Multiple Font Formats

Hirotsugu KAKUGAWA

Research Institute for Information Science and Education
Hiroshima University

1-7-1 Kagamiyama, Higashi Hiroshima, Hiroshima,
739-8521 JAPAN

Abstract. VFIlib is a font library written in C which provides several functions for
obtaining bitmaps of characters (i.e. a rasterizer). VFIib hides the font format of font
files and provides a unified API for all supported font formats. Thus, programmers
of application software need not worry about font file formats. Instead, any software
using VFlib can support various font file formats immediately. In addition to this, when
a new font format is supported by VFIib, application software need not be modified to
use such new fonts.

VFlib has been developed not only for Latin fonts but also Asian scripts such as Chi-
nese, Japanese, and Korean. Since it is designed as a general font module, it can be
used in DVI drivers for TEX and BTgX. In this paper we explain the API of VFlib, a
font database file called vflibcap, and the internal structure of VFlib.

Keywords: digital fonts, multilingual typography, multilingual documents, multi-
lingual information processing, TEX

1. Introduction

Commercially and freely available fonts exist in many different font file formats.
When we develop software to display or print characters which do not depend on
a particular window system and/or operating system, we must write interface
routines for accessing font files for each application program again and again.
To do this, programmers must have knowledge of font file formats; it will be a
difficult task for programmers if the number of font formats that an application
program supports becomes large.

VFlib is a font library written in C which provides several functions for obtaining
glyphs (bitmaps). VFIlib hides the font format of font files and provides a unified
APT for all supported font formats so that application software programmers

212 Hirotsugu KAKUGAWA

need not worry about font file formats. Thus, any software using VFlib can
support various font file formats immediately, without modification, even when
VFlib is updated to support new font file formats. Furthermore, VFlib is not
window- or operating-system dependent.

As far as the author knows, there is no general font library other than VFlib that
supports multiple font formats in a platform-independent way and that provides
a unified API for font access. For example, X Window servers support multiple
font formats, but to use a font service, an X server process is required. Some
font libraries have been proposed for general use: FreeType by David Turner,
Robert Wilhelm, and Werner Lemberg is a library for accessing TrueType fonts
[7]. t1lib by Rainer Menzner is a library for handling Type 1 PostScript fonts [6].
Although both are very useful libraries not dependent on window or operating
systems, each of them supports only one font format and has a different APIL.

Conversion of font formats so that application software can use multiple font
formats is one possible approach. For example, ttf2pk [3] (TrueType fonts to
PK fonts) and hbf2gf [4] (HBF! fonts to GF fonts), both written by Werner
Lemberg, makes these font formats available to TEX. This method is useful but
one drawback is that we must convert many font files in advance.

Currently, VFlib supports the following font file formats: PCF, BDF, HBF,
TrueType, GF, PK, TFM, VF, Syotai Kurabu and JG 2. To search TgX font
files such as PK, GF, and TFM files, VFlib uses the kpathsea library 3.0 by
Karl Berry [1]. VFIib can be used as a font module for drivers and previewers
of DVI files generated by TEX and IATEX.

This paper describes VFlib version 3.33. VFlib versions 1 and 2 were designed
and implemented for Japanese fonts only; they are widely used in many local-
ized software packages in Japan, for example by Ghostscript, dvi2ps, and xdvi,
for printing Japanese Kanji characters. VFlib version 3 is designed for multilin-
gual document processing in English, French, Chinese, Japanese, Korean, and
other languages.

This paper is organized as follows. In Section 2, the basic concepts of VFlib
are explained. The API of VFlib is shown in Section 3, and the font database
called vflibcap is explained in Section 4. An interesting feature of VFlib is the
ability to provide fonts without font files. Section 5 explains this feature. The

1 The Hanzi Bitmap Font (HBF) format [2] is a binary format for bitmap fonts for
Japanese, Chinese, and Korean characters.

2 pCF (Portable Compiled Font) format is a binary format for bitmap fonts used on X-
Window. BDF (Bitmap Distribution Format) [8] is an ASCII format for distributing binary
fonts. Syotai Kurabu, which means font club in English, is a vector font format for Japanese
Kanji characters. JG format is another vector font format for Japanese Kanji characters.

3 VFIib version 3.2 is introduced in Ref. [5].

A Font Library VFlib 213

author has developed several sample programs using VFlib, and one of these is
introduced briefly in Section 6. Section 7 gives concluding remarks.

2. Basic Concepts

2.1. System components
The VFIib system consists of two parts:

1. A library (1ibVF1lib.a)
It provides several C functions. Any application software using VFlib must
link with this library.

2. A font database file (vflibcap)
This file defines fonts and their properties (called capabilities), such as
point size and the font file format. Its syntax is similar to termcap* and
printcap®.

When we initialize VFlib, we can specify a vflibcap file to be used and thus
different font sets can be used by different software.

2.2. Font classes and font drivers

VFlib can handle multiple font file formats. Reading a font file according to the
font file format is carried out by an internal module in VFlib corresponding to
its font file format. This internal module is called a font driver. Service units
provided by font drivers are called font classes. From an end-user’s point of
view, various font formats are distinguished by various names of font classes.
Font drivers are internal to VFIib and invisible to end-users.

Some font drivers may not read font files on disk: they may generate glyphs
and outlines by internal computation only. In addition, some font drivers may
return glyphs which are obtained as glyphs by another font class.

2.3. A view of VFlib font from the end-user’s perspective

Each (virtual) font by VFlib has its inherent information about point size, pixel
size, and resolution of the target device. In addition, font metrics are defined for

4 termcap is a database file of various terminal characteristics used on UNIX. Text editors
read the termcap file to control screen of a terminal.

5 printcap is a database file of printers used on UNIX. Print system refers printcap file to
decide which printer-specific program should be invoked, for example.

214 Hirotsugu KAKUGAWA

each glyph. Some font file formats may not have such concepts. For instance,
TrueType font files are vector font files and do not have information about the
point size. Syotai Kurabu format fonts do not have font metric information at
all. In such a case, either (1) the missing information is given in vflibcap or
(2) the specific font driver gives such information as default values.

2.4. Font names and font searching mechanism

In VFlib, a font is specified by a font name on opening. First, VFlib checks
whether the font name is given in vflibcap or not. If the font name is found,
VFlib reads the description for the font in vflibcap. The description contains a
font class name; VFlib then invokes a font driver corresponding to the font class
name. Finally the font driver opens the font file (if necessary).

If the font name is not given in a vflibcap file, a font searching mechanism is
invoked. Since there are many font files for X Window and TgX, this feature
is introduced in order to avoid writing an entry for each font file. Various font
drivers will be called to see whether the font can be opened; a list of font
drivers for font searching is given in the vflibcap file. If a font driver succeeds
in opening the font, font searching finishes and the VFlib font opening function
returns successfully. Otherwise, font open fails.

Fonts described in a vflibcap file are called explicit fonts and fonts that are
searched for by the font search feature are called implicit fonts.

2.5. Two modes of opened fonts

The following two modes are provided for obtaining glyphs of the fonts.

— High resolution device-oriented mode (mode 1)
The size of the glyphs is specified by the physical size of the glyphs and
the device resolution.

— Low resolution device-oriented mode (mode 2)
Glyph sizes are specified by pixel size rather than by device resolution.

When the size of a glyph in the source font is different from the target size,
VFlib scales the source glyph internally. Thus, users need not know the original
size of the glyphs in the font files.

Two modes are provided for the following reason. When we write application
programs that print documents on a printer, it is convenient to specify the
glyph size by point and device resolution such as glyph of 12 point for a 300 dpi
printer. On the other hand, when we write application programs that display
documents on a CRT screen, it is convenient to specify the glyph size by pixel.

A Font Library VFlib 215

Application Software
A

Y VFlib
VFlib API
VFlib core ~—| flibcap
"""" font driver interface

2

BDF PCF TrueType PK
font font font --- font
driver driver driver driver

Figure 1 — Internal structure of VFlib

2.6. Internal Structure

The VFlib library consists of a core and several font drivers. The VFIib core
provides entry functions of the API, as well as a font driver table, opened font
table, vflibcap access module, and other utility modules. The internal structure
of VFIib is depicted in Figure 1.

Each font driver has corresponding functions for each font operation of VFlib.
These functions are implemented to provide VFlib API-compatible behaviour.
The set of capabilities that can be used for each font class in vflibcap file may
differ; each font class defines the capabilities it needs.

3. The API

In this Section we describe the API of VFlib. The API that VFlib defines is
simple. For example, as a contrast, FreeType defines a rich set of functions
including access to kerning information. The simplicity of VFlib API is a result
of the limitation that it must be common to every font format that VFlib
supports. VFlib does not have features for typesetting such as obtaining kerning
information of fonts. But it is strong enough to print and display typesetted
documents such as DVI files.

216

Hirotsugu KAKUGAWA

3.1.

Data types

VFlib defines the following three data types for font access: bitmaps, and metrics
for modes 1 and 2.

— Bitmap object

3.2.

A bitmap object is a set of font metrics and bitmap data. The following
is the definition of bitmap structure.

struct vf_s_bitmap {

int bbx_width, bbx_height; /* in pixels */
int off_x, off_y; /* in pixels */
int mv_x, mv_y; /* in pixels */
unsigned char* bitmap;
int raster;

};

The members bbx_width and bbx_height are the width and height of
the bitmap, respectively. The members bitmap and raster are pointers
to the glyph data and the number of bytes of a raster. The members
off_x and off_y form a vector from the reference point to the upper-left
corner of a bitmap. The members mv_x and mv_y form a vector to the
next reference point. Metric information is given in pixel form.

Metric object (modes 1 and 2)

Metric objects for modes 1 (high resolution device-oriented mode) and 2
(low resolution device-oriented mode) are defined similarly as bitmap ob-
jects except that they do not have bitmap and raster members. Member
types of mode 1 metric objects are double, not int; their units are points
rather than pixels.

Functions

int VF_Init(char* vflibcap, char*x variable_list)

Initialize VFlib. The first argument vflibcap is the file name of a vflibcap
file. The second argument wvariable_list is a list of parameters passed to
VFlib for parametrization of vflibcap. (See subsection 4.3 for details of
parametrization.)

int VF_OpenFontl(char* font_name, double dpi_z, double dpi_y,
double point_size, double mag-z, double mag-y)

Open a font in mode 1. The font name is given by the first argument. Two
arguments mag_z and mag_y are horizontal and vertical magnification
factors. The actual font size is determined by these arguments. This
function returns a font identifier (font id) for the opened font. All font
operations take this font id to specify a target font.

A Font Library VFlib 217

— int VF_OpenFont2(char *font_name, int pizel_size, double
mag_z, double mag-y)
Open a font in low resolution mode. This function is similar to
VF_OpenFont1() except that the font size is given in pixels.

— VF_BITMAP VF_GetBitmapl(int font_id, long code_point, double
point_size, double mag_z, double mag-y)
Obtain a glyph bitmap of a given font id (in mode 1) and code point.
The font id font_id must be an id returned by VF_OpenFont1(). The size
of the bitmap to be obtained can be specified by the point_size, mag_x,
and mag-y arguments. If the argument point_size is negative, the value
given at font open is assumed.

— VF_BITMAP VF_GetBitmap2(int font_id, long code_point, int
pizel_size, double mag_z, double mag-y)
Obtain a glyph bitmap of a given font (in mode 2) and code point.

VFlib defines other functions such as VF_METRIC1 VF_GetMetricl1() and
VF_METRIC2 VF_GetMetric2() to obtain font metrics of a character of
mode 1 and 2 fonts, respectively; VF_OUTLINE VF_GetOutline() to obtain
VFlib format vector data of a character of mode 1 fonts; and VF_BITMAP
VF_Outline2Bitmap() to convert VFlib format vector data to a bitmap. By
calling VF_InstallFontDriver (), a font driver is installed.

4. The Font Database File “vflibcap”

A vflibcap file is a database of font definitions for VFlib. It is read when VFlib
is initialized. A simple example of a vflibcap file is shown below:

VFlib-Defaults:\
:uncompression-programs= .Z=zcat, .gz=gzip -cd:\
:implicit-font-classes= pcf, bdf:\
:extension-hints= .pcf=pcf, .bdf=bdf:
BDF-Defaults:\
:font-directories= /usr/local/share/fonts/x11//, \
/home/kakugawa/fonts-bdf :
PCF-Defaults:\
:font-directories= /usr/X11R6/1ib/X11/fonts//, \
/usr/openwin/lib/fonts//:
timR24|Times Roman 24pt, BDF format:\
:font-class=bdf:\
:pixel-size=24:\
:dpi=300:point-size=24:\
:font-file=timR24.bdf:
timR18|Times Roman 18pt, PCF format:\
:font-class=pcf:\

218 Hirotsugu KAKUGAWA

:dpi=300:point-size=32:\
:pixel-size=32:\
:font-file=timR18.pcf:

In this example, there are 5 entries: VFlib-Defaults, BDF-Defaults,
PCF-defaults, timR24, and timR18. The first three entries are used to give
default parameters for VFlib and each font class. We shall explain these entries
later and explain the other two entries first. Although many capabilities are
defined, we shall explain only the fundamental ones.

4.1. Font entries

The entry timR24 has several capabilities. A capability font-class specifies
the font class name. In this example, timR24 belongs to the bdf font class. The
capabilities dpi and point-size give the device resolution and point size of a
font. These values are used when this font is opened in mode 1. A capability
pixel-size gives the pixel size. This value is used when this font is opened
in mode 2. The capabilities pixel-size, dpi, and point-size can be omitted
since a BDF font file contains their values. A capability font-file gives the
file name of the font. Similarly, timR18 is defined except in cases of PCF fonts.

The two font files timR24.bdf and timR18.pcf are both bitmap fonts used
in X Window. Although pixel size, point size, and target device resolution are
together with the bitmap given in the font file, VFlib internally enlarges or
shrinks bitmaps to yield the requested size. From a user’s point of view, only
the font names (timR24 and timR18) are visible; users need not be aware of
font formats.

4.2. Default descriptions

In the example above, there are three default descriptions. The first entry
VFlib-Defaults is used to give global parameters of VFlib. In our example, the
relation between the filename extension and an uncompression program is given
by the capability uncompression-programs; it specifies that files whose names
end in .Z and .gz are uncompressed by running commands zcat and gzip
-cd, respectively. The capability implicit-font-classes is used to specify
a list of font classes that search implicit fonts. When a font is opened and a
corresponding entry is missing in vflibcap, font drivers given by this capability
are called to search the font in a given order. Suppose a font named timR10.bdf
is requested to open. Since such an entry does not exist in the vflibcap file, the
font is searched as an implicit font by calling the PCF font driver first, and
then the BDF font driver. A capability extension-hints gives a relation of

A Font Library VFlib 219

the font name extension and the font class. In the example, if an extension of a
font name is .pcf (.bdf), the PCF (BDF) font driver is called for an implicit
font search. For example, if a font named timR08.bdf is requested to open, the
BDF font driver is called. This is useful for searching implicit fonts quickly.

The next entry BDF-Defaults is a default description for the BDF font class. A
capability font-directories is a list of font directories in which font files are
stored. If the directory name is terminated by //, files are searched recursively
under the directory.

4.3. Parametrized vflibcap

Capability values in vflibcap can be overridden at execution time. By this fea-
ture, called parametrization, several applications can share the same vflibcap
file. The next example is a vflibcap for the printer driver for the 300 dpi Canon
Laser Shot. Note that all fonts are implicit fonts.

VFlib-Defaults:\
:implicit-font-classes= gf/pk:\
:extension-hints= pk=gf/pk:\
:variables-default-values= \
TeX_DPI=300, \
TeX_KPATHSEA_MODE=cx, \
TeX_KPATHSEA_PROGRAM=/usr/X11R6/bin/x1dvi:
TeX-Defaults:\
:dpi=$TeX_DPI:\
:kpathsea-mode=$TeX_KPATHSEA_MODE:\
: kpathsea—program—name=$TeX_KPATHSEA_PRUGRAM :

In the VF1ib-Defaults entry, the capability variables-default-values gives
a list of variable names and their default values. In this example, there are three
variables. For instance, the default value of TeX_DPI is 300. A capability value
can be a value of a variable if a dollar sign ($) followed by a variable name is
given. In the TeX-Defaults entry, which is used to give a default description
for TEX related font classes, the value of the capability dpi is given as the value
of a variable TeX_DPI, for example.

Default variable values can be overridden by giving a list of pairs of variable
names and their values when VFlib is initialized by VF_Init(). If a UNIX
environment variable VFLIBCAP_PARAM var (e.g., VFLIBCAP_PARAM TeX DPI is
defined, its value becomes the value of the vflibcap variable var.

The example vflibcap file can be used for 600 dpi HP Laser Jet 4 printers if
we override variable values so that TeX_DPI is 600 and TeX KPATHSEA MODE is
1ljfour on execution time without any file modification.

220 Hirotsugu KAKUGAWA

AIEHAANTT,

Figure 2 — Mixture of gothic and mincho fonts in Japanese comics

5. Font Classes without Font Files

Fonts provided by font classes need not be associated with font files.

As an example of such font classes, a Japanese comic font class is implemented.
In Japanese comics, a gothic font is used for Kanji characters and a mincho
font is used for Kana characters, as shown in Figure 2. Without creating a new
font, we can implement such fonts by a Japanese comic font driver: a font F
of the Japanese comic class needs two sub-fonts that are specified in a vflibcap
file; fonts for Kanji characters, say F;, and Kana characters, say F5. A glyph
for code point ¢ of font F' is obtained from Fj if ¢ is a Kanji character, and
from F3 if ¢ is a Kana character. The font classes of F; and F5 need not be the
same.

6. Sample Programs

VFlib is distributed with sample programs. One of them is a previewer for DVI
files. In a DVI interpreter, a TEX font is opened by the following sequence:

sprintf (f_name, "Y%s.pk", name);
fid = VF_OpenFont1(f_name, h_dpi, v_dpi, -1, mag, mag);

The variable name is a font name as appearing in a DVI file (e.g., cmr10);
h_dpi and v_dpi are the horizontal and vertical device resolution of the tar-
get device in dpi, respectively. The variable mag is a magnification factor.
The PK font driver finds an appropriate font file from parameters given in
VF_OpenFont1() and the TeX-Defaults entry in vflibcap. For instance, if the
font name is cmr10.pk and h.dpi = v.dpi = 300, and mag = 1.2, the PK
font driver looks for the font file cmr10.360pk. Glyphs are simply obtained by
calling the VF_GetBitmap1 () function.

Figure 3 shows a screen shot of a sample previewer on X Window using Motif.
This previewer supports drawing EPS figures and colour changes.

A Font Library VFlib 221

@ i

2 g) g, g-;@ SRV Previeu

XKMDVI version 2.4.1

Reload_{ IMagninication..} £, - Printer,.

VFlib 7’03z 7

File. "} Paper.. . | 7. Opiions

Prév j

Al HR (BERE)

Email: h.kakugawa@computer.org

Mossag

19974 12H 40

i i kg stk gtk 21T 1 T S
Opering fonts.

Lmrvg :maahﬂm ﬁﬂﬂpk sealed by 20740 instead -
Usig 12 3000 sealec by 1 7283 st 03 (8] Hmljnp"rl i :

cone
Dva\mnga Postcript figure.) :
o . Print DV file Close]

B ey
SO
S
s

AJ_U S 9;@@

H._

rrferAr

L n.y'

U8 Bt Commands
Y Prnt il - {{Print Curtert Paget

beo s
U’if)‘; fif

Printer Selection

Postsetipt Prints

SEBRSFTHE (Photo by Hitotsngn Knkugawa)

VFlib 3.3 supports the following font file formats: PCF,
3DF, BBF, TrueType OF, PK, TFM, FFESE, and JC.
/irtuaj Font support is under progress.

VFlib Version 3.3 can be used as & font module for drivers
and previewers of DVI files (TEX and BTEX); part of this pack-
age is a sample dvi previewer spwx11 for X Windows written
with only 400 lines of C code.

Fe e
)

FEfEey ey rr1 rr“/\:_rj‘r_fj
J ’LJ ’,’2 ’J £

i e e =
é?w-nt'w'wzv-zv-wwwww-y-wwwww-y-wwwwa-w

i
Eiri?i?i?i?i}‘.{?

Figure 3 — A DVI file previewer xmdvi

7. Conclusion

In this paper we have introduced a font library VFlib which supports multiple
font formats with a unified API. It is especially useful for DVI drivers.

The current implementation of the TrueType font driver does not support com-
posite glyphs and hinting; the author plans to use the FreeType library which
supports composite glyphs and hinting. Currently, a font driver for virtual
fonts (vf) is under development. The author is going to implement a Type 1
font driver using t1lib.

VFlib has been tested on FreeBSD 2.2.2; Linux, and Solaris 2.5.1 for SPARC;
there is no difficulty to port it to other UNIX-like operating systems. VFlib is
available electronically from the URL:

ftp://ftp.se.hiroshima-u.ac. jp/pub/TypeHack/.

It is included in a TypeHack package which is a set of VFlib-based software.

222

Hirotsugu KAKUGAWA

Acknowledgements

The author would like to thank Werner Lemberg for helpful comments on the
specifications and implementation of VFlib. He also thanks Ken’ich Handa and
Satoru Tomura for valuable discussions.

Bibliography

1]

Karl Berry. Kpathsea version 3.0. Included in web2c, which is available
electronically from CTAN, systems/web2c/web2c-7.0.tar.gz/, 1997,
Feb.

Nelson Chin et al. Hanzi Bitmap Font (HBF) File Format Version
1.1. Available electronically from ftp://ftp.ifcss.org/pub/software/
info/HBF-1.1.tar.gz, 1994, Sep.

Werner Lemberg. ttf2pk. Available electronically from CTAN,
language/chinese.

Werner Lemberg. hbf2gf. Available electronically from CTAN,
language/chinese.

Werner Lemberg. New font tools for TEX. Proceedings of TUG 97, 1997,
Jul. (to be published)

Rainer Menzner. A Library for generating Character Bitmaps
from Adobe Type 1 Fonts. Available electronically from ftp:
//ftp.neuroinformatik.ruhr-uni-bochum.de/pub/software/t1lib/
t11ib-0.3-beta.tar.gz, 1997, July.

David Turner, Robert Wilhelm, Werner Lemberg. The FreeType
Package. 1997. Available electronically from ftp://ftp.physiol.med.
tu-muenchen.de/pub/freetype.

Adobe Systems Incorporated. Glyph Bitmap Distribution Format
(BDF) Specification Version 2.2. Available electronically from
http://www.adobe.com/supportservice/devrelations/PDFS/TN/

5005 . BDF_Spec . pdf,1993.

