
Cahiers
enbergGUTGUTGUT

m TYPESETTING SGML DOCUMENTS USING
TEX
P Andrew E. Dobrowolski

Cahiers GUTenberg, n 10-11 (1991), p. 185-196.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_1991___10-11_185_0>

© Association GUTenberg, 1991, tous droits réservés.

L’accès aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),
implique l’accord avec les conditions générales
d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).
Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_1991___10-11_185_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html

Cahiers GUTenberg n * 10-11 — Septembre 91

Typesetting SGML documents
using TgX*

Andrew E. DOBROWOLSKI

ArborTexi Inc., 535 West William Street, Suite 300, Ann Arbor, MI 48103
a e d C a r b o r t e x t . c o m

A b s t r a c t . Since its publication as an international standard in 1986, the
Standard Generalized Markup Language (SGML) has become a preferred
document markup standard within many industries. Many users have
developed their own document type definitions (DTDs) which define the
elements (tag sets) for their documents. However, if SGML is to become a
universally accepted standard of document interchange then a standard way
to specify formatted output and a means of producing that output will be
needed.

The U.S. government's Computer-aided Acquisition and Logistic Support
(CALS) initiative selected SGML as the standard of text interchange. The
output specification section of the CALS standards proposed the Formatted
Output Specification Instance (FOSI) as the means of formatted output
specification interchange.

T^X can be used as the formatting engine to implement FOSI-based
formatting. But without extending TgX not every FOSI formatting request
can be fulfilled. Conversely, certain TgX capabilities cannot be formulated in
terms of FOSI characteristics. However a FOSI/T^X based formatting system
would be a major advance towards fulfilling the document interchange needs
of a growing community of SGML users.

R é s u m é . Depuis sa publication en tant que norme internationale en 1986,
SGML a été adopté comme système de marquage de documents dans beaucoup
de milieux industriels. Nombre d'utilisateurs développent leurs propres DTD
(définition de type de document) qui définissent les différents éléments de leurs
documents. Cependant, si SGML est appelé à devenir une norme universelle
pour l'échange de documents, il est nécessaire de disposer d 'un standard pour
spécifier les sorties finales et les façons de les obtenir.

Le programme américain CALS a choisi SGML comme norme d'échange
de documents et a proposé la norme FOSI pour spécifier l'aspect physique du
document.

TfiX peut être utilisé pour traiter les formats F0S1. Mais toutes les
requêtes FOSI ne peuvent être exécutées sans extension de TfcX. De même,

*The fisrt publication of this paper appears in TUGboai vol. 12(3), Proceedings of the the TUG
1991 annual meeting. It is publish here with authorization of TUGboat's editor.

185

A. E. Dobrowolski

certaines possibilités de TfiX ne peuvent s'exprimer en termes FOSI. Quoi
qu'il en soit, un système basé sur TfiX et FOSI sera un grand pas en avant
pour répondre à la demande de la communauté grandissante des utilisateurs
de SGML.

Key words: SGML, FOSI, CALS, standards

1. Document Interchange Standards.

In the past ten years TgX has become a well known and widespread language
for typesetting technical documents. From its original base of universities
and colleges it has spread so that people in industries with only incidental
needs for publishing have heard about it. A large part of TfeJC's appeal comes
from its portability, since the program is in the public domain and has been
ported to quite a number of operating systems. There is no standard for
the way a T^X document is "marked up", it depends on the macro package
being used. Given the right macro package and fonts, the formatted output
of two different T^X implementations on two different machines will produce
identical results.

By contrast generic markup systems identify document structures
without making assumptions about the end application of the document.
This makes the same document useful to various programs and for various
applications. Generic markup has been around in several flavours for over
ten years. These dissimilar flavours were a hindrance to its utility. To
remove this hindrance and to promote the portability and acceptance of
generic markup, an international standard (IS) specification for generic
markup was established in 1986. Since then S G M L (Standard Generalized
Markup Language) has become extremely important to industry, especially
in areas where huge quantities of data have become a document management
nightmare. Today a large number of programs can read and write S G M L on
a variety of platforms.

The U.S. government's Computer-aided Acquisition and Logistic Support
(C A L S) initiative gave S G M L additional clout by selecting S G M L as the
standard of text interchange between the Department of Defense and its
sub-contractors. However S G M L contains no information pertaining to
the printed representation of a document or the meaning attached to the
markup. The companion standard to S G M L which addresses standardized
formatting specifications, the Document Style Semantics and Specification
Language (DSSSL), is still in the design stages. It is not expected to

186

Typesetting SGML documents using TjjjX.

become an international standard until at least 1993. For this reason the
output specification section of the CALS standards proposed the Formatted
Output Specification Instance (FOSI) as the means of output specification
interchange.

2. SGML and FOSI structure: An Overview.

All SGML documents must conform to certain rules which are defined
partially by the standard and partially by a prolog to the document which is
called the document type definition (DTD). The DTD defines the "elements"
of a document, which in a document instance are marked off by start tags
and end tags. For example, a hypothetical section may be marked up like the
fragment on the left in Figure 1. There <head> and </head> (pronounced
"head" and "end head") are start and end tags that delimit the head element.
The parent of head is section and its siblings are the two para elements.

<section>
<head>SGHL and FOSIs:
An Overview.</head>

<para>All SGML documents
conform to certain rules which
are defined partially by the
Btandard and partially by a
prolog to the document which
is called the document type
definition (DTD).</para>

<para> In addition to being
first off the starting blocks
to becoming a national
standard, the FOSI is also the
most manageable.</para>

</Bection>

\section{}
\sectionhead{}SGML and FOSIs:
An Overview.\endsectionheadO

\firstpara{}All SGML documents
conform to certain rules which
are defined partially by the
standard and partially by a
prolog to the document which
is called the document type
definition (DTD).\endfirstparaf>

\nonfirstpara-Q In addition to
being first off the starting
blocks to becoming a national
standard, the FOSI is also the
most manageableAendnonfirstparaO

\endsection{>

Figure 1. A Document Instance Fragment and its Translation into TfjX.

A DTD also defines what "attributes" are associated with an element.
An attribute is an annotation that appears in the document instance and
augments the information provided by the markup. Attributes appear within
an elements start tag. If the element called "head" had an attribute "id" for

187

A. E. Dobrowolski

use in cross references, then that attribute could be assigned some value in
the document instance, for example <head id="overview">.

It is important to note that SGML allows the same element to appear in
many contexts within a document structure. The same markup can be used
to describe a chapter head, a section head and even a table head. At some
point a distinction must be made between these various contexts, at least for
the purpose of formatting the document. But since the DTD also restricts the
possible contexts in which any element may appear, using content models,
the task of defining the style of every element in every possible context can
be fairly well defined. Thus a FOSI will not define the formatted output style
of a document element but of an element in context (or e-i-c).

Many industries have developed DTDs which define the elements (tag
sets) used to mark up their documents. Before SGML becomes a universally
accepted standard of document interchange, one of SGMLs companion
standards for output specification must be fully implemented. TgX could
be the engine in the implementation—the means of producing standardized
output for any SGML document. The ultimate goal would be to make this
process automatic for the arbitrary DTD document. The only information
that would need to pass from one site to another in order to print a document
would be the document instance, the DTD, and an output specification.

It appears that FOSrs are the closest of all proposed output specification
standards to becoming a recognised standard. In addition the FOSI
specification is the easiest to implement. A FOSI is itself an SGML document
that conforms to the Output Specification (OS or outspec) DTD. But instead
of being made up of parts, chapters, or sections, a FOSI is made up of divisions
that describe page models and the output format of each of the document's
elements.

There are six major divisions in an output specification instance: the
security description (secdesc), the page description (pagedesc), the element
style description (styldesc), the table element style description (tabdesc), the
graphical element description (grphdesc), and the footnote area description
(ftndesc). All but the pagedesc and styldesc are optional. There is
still no definition for the output style of mathematical formula elements.
Thus either mathematics must be passed through in the native language
of the formatting system, translated into the native language by the
translator, or the formatting system must have the output specification for
the mathematical elements "hard wired".

188

Typesetting SGML documents using TjjjX.

The style description is the most important division of the outspec
for simple text documents. The styldesc contains a document description
(docdesc), zero or more environment descriptions (envdesc) and at least one
formatting specification for an e-i-c. It is in these subdivisions that special
FOSI elements called categories appear. Each category provides data on a
different aspect of the formatted output. There are 24 categories (with names
such as font, leading, etc.) and each of these has from one to 13 attributes.
These, when fully specified, exactly define the formatting aspect with which
their category is concerned. These attributes are called characteristics of
which there are 128 in total. Once values for all the characteristics of any
given e-i-c have been determined, it should be possible to define that e-i-c's
appearance on the printed page.

The categories control the font, leading, hyphenation, word spacing,
letter spacing, indents, horizontal justification, highlight, change marks,
prespace, postspace, page breaking, vertical justification, text breaking,
spanning, page borders, ruling, character fill, enumeration, print suppression,
automatic generation of text, automatic generation of graphics, the saving
of text for cross reference, and the use of text saved for cross reference.

SGML and FOSI structure: An Overview.

All SGML documents must conform to certain rules which are defined
partially by the standard and partially by a prolog to the document
which is called the document type definition (DTD).

In addition to being first off the starting blocks to becoming a
recognised standard, the FOSI is also the most manageable.

Figure 2. Typeset Document Fragment.

As mentioned above, the elements that may appear in a styldesc are
docdesc, envdesc and e-i-c. The characteristics of the docdesc define the
style of the overall document and the default values for characteristics that
are needed but not specified in an e-i-c. When used in this way, the docdesc
is called the default environment. The envdesc section defines "named"
environments that may be used instead of the default environment. The
actual style definition for an element in a particular context in the document
instance is given by an e-i-c. The SGML terminology for an elements name
is generic identifier (gi). An e-i-c specifies an element, its context and

189

A. E. Dobrowolski

its occurrence within that context by using the g i , context and occur
attributes, as is seen in Figure 1.

<e-i-c gi«"section">
<charlist>

<preBp nominal»"30pt"
•inimum="30pt" maiinum«"30pt ">

</charlist>
</e-i-c>

<e-i-c gi="head" context=Msection,l>
<charlist>

<iont inherit=l style="sans"
Bize«"14pt" weight="bold">

<leading lead-"14pt">
<quadding quad""right">
<keeps keep«"l" next-"l">
<postsp nominal«"24pt"
minimum«"20pt" maximum-"30pt">

</charlist>
</e-i-c>

<e-i-c gi»"paxa" occur»"first">
<charlist>

<indent firstln-"Opt,,>
</charlist>

</e-i-c>

<e-i-c gi="para" occur="nonfirst">
<charlist>

<indent iiretln«"15pt">
<presp nominal«"6pt"
minimum~"4pt" maximum*"6pt">

</charlist>
</e-i-c>

\def\Bection{\starteic{section}
\font{\def\family{cm}}
\presp{\nominal*30pt

\minimum=30pt \mazimum-30pt}
\eiccontent}

\def\endsection{\endeic{section}}

\def\sectionhead{\starteic{head}
\font{\inherit=l \def\style{sans}

\size=14pt \def\weight{bold}}
\leading{\lead»14pt}
\quadding{\def\quad{right}}
\keeps{\keep»l \next»l>
\post sp{\nominal»24pt

\minimum«20pt \maiimum=30pt>
\eiccontent}

\def\endsect ionhead{\endeic{head}}

\def\iirstpara{\starteic{para}
\indent{\f irstln-Opt}
\eiccontent}

\def\endfirstpara{\endeic{para}}

\de f\nonf irstparaiNstart eic{para}
\indent{\f iratIn»15pt}
\presp{\nominal«6pt

\minimum=4pt \maximum>6pt}
\eiccontent}

\def\endnonfirstpara{\endeic{para}}

Figure 3. A FOSI fragment and its Translat ion into TgX.

Furthermore this FOSI also uses the occur attribute of an e-i-c to make a
distinction between the output format of the first and non-first occurrences
of the para element. The paragraph indent of the first para within a structure
is zero, while non-first paragraphs have an indent of 15 points and an
additional prespace of 6 points. Figure 2 shows the formatted output from

190

Typesetting SGML documents using TjjjX.

the document instance fragment. Characteristics not explicitly listed in the
e-i-c definitions default to the values sepecified in the docdesc (not shown).

3. SGML to T£X Translation.

As with most SGML documents, the FOSI must first be read by an SGML
parser or a dedicated program and translated into a form suitable for the
formatting engine. Likewise, the document instance must be translated by
some process into a suitable form.

The translation of a FOSI into TjrjX looks like a series of TgX macro
definitions. These define the macros that appear in the translation of the
document instance into T}?X. Given a suitable starting set of macros it is
possible to load the new macro definitions produced automatically from the
FOSI translation and to format the document.

Because the output specification for a given document element is context
sensitive, either the translation process or TgX must track and differentiate
between differing contexts. To make the work of the macro package easier,
the context sensitivity should be built into the translation process. In fact,
T^X's limited lookahead prescribes that the translation be context sensitive.
T̂ gX cannot recognise when an element is the last of its kind within the parent
structure. But some occurrence conditions require that this distinction be
made. For example the last item in a list may need to inhibit a page break
from separating it from the second last item. This occurrence recognition
must therefore be done by the translation process.

The easiest way to accomplish this is to give each e-i-c in the FOSI a
distinct name and to use that name, when appropriate, in the translation
of the document instance. The right sides of Figures 1 and 3 show the T^X
translation of the SGML document instance and the sample FOSI fragment
in the respective left sides. Notice how the two sets of <para>. . .</para>
tags in Figine 1 are translated according to their occurrence within the
<section>.

4. Implicit Specification of Characteristics.

Let us examine more closely the specification of the first para e-i-c in
the FOSI fragment in Figure 3. It explicitly sets the values for the
f i r s t l n characteristic of the "indent11 category and the s t a r t l n and endln

191

A. E. Dobrowolski

characteristics of the "textbrk" category. However, it neglects to explicitly
define many other important formatting parameters. Nowhere was the font
mentioned, nor the prespace, nor the justification (quadding). Nonetheless,
as the formatted output suggests, these characteristics are well defined. In
general, one of two implicit methods is used to determine the value of a
characteristic not mentioned explicitly in an e-i-c.

One of the methods is inheritance. An unspecified characteristic that is
inherited assumes the value it had at the level of its parent. In the example
of Figure 1 above, the font family of the head is inherited from its parent (the
section). If the font family characteristic for section is changed this will in
turn affect the head. This method of determining the value of an unspecified
characteristic has to be explicitly requested by setting the i n h e r i t attribute
of the affected category to one, as shown in Figure 3. Explicitly assigned
characteristic values override inherited values.

The usual method of determining the value of a characteristic that
has not been explicitly assigned in the e-i-c is to look up its value in
an environment. Every FOSI contains the document environment which
explicitly mentions all 128 formatting characteristics. This is the default
or "unnamed" environment normally used when a lookup must be done.
For example, the prespace category (presp) was entirely left out of the
declaration for head in Figure 3. So head was typeset using the default
environment's prespace characteristic values, which were all zero.

Other "named" environments may optionally be defined in the envdesc
section. For an e-i-c's characteristic to be looked up from a named
environment, the structure in an e-i-c that contains the categories (charlist)
must set its envname attribute to the environment name.

Of the two methods of determining the values of unspecified character-
istics (inheritance from parent and defaulting from an environment) the in-
heritance method is the more problematic. Since the value of an inherited
characteristic cannot be decided until the element's context is known, current
characteristic values need to be tracked by I^X. Fortunately T^X's grouping
already works this way. Characteristic values that need to be looked up from
an environment can be either added to the definitions in the FOSI as part of
the translation process, or the lookup can be performed by T^X as part of
the typesetting process.

192

Typesetting SGML documents using TjjjX.

5. Typesetting the Translated SGML Document.

The processes performed by T£X that culminate in typesetting the translated
document can be separated into two levels. The top level is responsible for
the inheritance, lookup, and setting of characteristic values, as discussed
above. Macros, such as \ s t a r t e i c and \ ende ic used in the right side of
Figure 3, group these values to restrict inheritance, while \ f o n t , \ t e x t b r k
and the like are used to set explicit overrides.

The lowest level is responsible for the setting of T^X parameters. This
layer is invoked at the end of every start tag. In Figure 3 it is the call to
\ e i c c o n t e n t that triggers this processing.

Various optimizations are possible. For example if the only category
changed since the last text fragment was the leading category (which controls
line spacing) then there is no reason to change the current font. By keeping
track of the categories that have not changed since the last time the lowest
layer was called we save the overhead of computing any TgX parameter that
relies entirely on those unchanged categories.

Whatever optimizations are used, it is required that the current font,
horizontal and vertical size, margins, indent, interword space, page breaking,
line breaking, and baselineskip parameters be properly set. Some non-
primitive parameters (e.g., for controling the number of columns) must
also be set. In additon certain IfcX commands must be executed at the
appropriate times, commands such as inserts, vertical and horizontal skips,
counter increments, macro text expansions for typesetting, and so on. All of
these actions must conform to the current settings of the FOSI characteristics.

Sometimes the correspondence between FOSI characteristics and TgX
capabilities is close, and a simple transformation will allow TgX to produce
the results specified by the FOSI. An example is the transformation of the
pre-space category (presp) which controls vertical spacing. Presp contains
characteristics called minimum, nominal and maximum which specify the
whitespace that precedes an e-i-c. The actions T^X must take can be defined
by means of the transformation:

<presp nominal"! minimum-jr maximum=z> i—•
\ v s k i p x p lus min(z — z,0) minus min(i —y,0)

The indent category's characteristics are also easy to transform into T^X.
There are only three indent characteristics, all of which are dimensions:

193

A. E. Dobrowolski

leftind, rightind, and firstln. It is possible to specify that a dimension is
absolute or relative to its current value. So assuming that the conditional
\ i f abs l ind is set to false if the leftind is specified relatively and to true if
it is specified as an absolute value, and likewise assuming \ i f absr ind and
\ i f abs f ind are appropriately set, the transformation becomes:

<indent leftind=x rightind=y firstind=z> i—•
\ifabslind\else\advaiice\fi\leftskip x

\ifabsrind\else\advance\fi\rightskip y

\ifabsfind\else\advance\fi\parindent (z — z)

Another fairly straightforward transformation between FOSI characteris-
tics and T^X parameters is the font assignment. The FOSI font category
includes characteristics named style, famname, size, posture, weight, width,
allcap, smallcap, and offset. A table lookup scheme can be devised that allo-
cates the fonts found on the users system based on the classification given by
these characteristics. I would exclude allcap and offset from the classification
as these are not really properties of a font.

6. Difficult or Impossible Transformations.

The three transformations listed above are among the easiest. The
characteristics affecting one TgX parameter do not necessarily come from
a single category. Sometimes the transformation into T^X requires a long
and complex algorithm. The seemingly simple request would
cause an element to interrupt the current column mode in a multicolumn
document, balance off the existing text on the page, switch into one column
mode for the duration of the element contents, and then switch back into
the interrupted column mode. These changes would also effect any T£]X
parameter whose setting depends on the \ h s i z e . Nonetheless, multicolumn
algorithms exist and the required side effects of switching column modes
can be rigorously determined. So the span characteristic can, in theory, be
implemented.

There are characteristics that are impossible to implement in T£X. The
category that controls page breaks, called keeps, has characteristics keep,
widowct, and orphanct. The first is a toggle (0 or 1) that inhibits the
breakability of the entire e-i-c. The other two are integers that control the
number of widow or orhan lines to be kept together if the element must
break. But TgX only gives widow/orphan control for page breaks between

194

Typesetting SGML documents using TjjjX.

the first two and the last two lines of a paragraph. So the best transformation
is only approximate:

<keeps keep=i widonct-a orphanct«i> i—•
\ifcase t \interlinepenalty=10000
\else

\tfidotrponalty-\ifntitt a>l 10000 \else ISO \ii
\clubpenalty= \ifnum i>>l 10000 \else 150 \fi

\li

The lettersp category concerns kerns between letter pairs. Tf^X can be
made to do "track kerning" in limitied circumstances but the process is
inefficient and the conditions under which it can be used are limited. There
seems to be no point in attempting to implement this capability.

The quadding category controls justification of lines within an element.
Among other possibilities, it gives the FOSI designer the power to request
that paragraph lines be ragged on the inside margin only or the outside
margin only. But TpX cannot justify the lines of a single paragraph based
on which page they fall on, at least not in a one pass system. This is yet
another esoteric request that would not cause a book designer to lose any
sleep if it were glossed over.

Still other FOSI capabilities can be implemented by using extensions to
TEX. The category that controls underscoring and overstriking (highlt) may
require a T£X extension or some driver assistance via \ s p e c i a l commands.
This same category gives control over the background and foreground colors.

7. Capabilities Not Expressible In a FOSI.

It is interesting to note that just as there are FOSI capabilities that are not
possible to implement by TgX, there are T^X capabilities that cannot be
described in a FOSI.

The p l a i n . t e x package already provides many typographical parameters
to which the FOSI designer will have no access. Only parameters and
capabilities that may need to be used in the middle of a document
will be listed, since the macro package can set up the other parameters
easily. The list includes: horizontal kerning; \vboxes and \hboxes
to any fixed dimension; the capabilities of \ h a l i g n , \ v a l i g n and
simple tabbing; mathematics and all parameters realted to mathematics;

195

A. E. Dobrowolski

\ l oosenes s , \parshape and the paragraph hanging parameters; \ l i n e s k i p
and \ l i n e s k i p l i m i t control; \ topsk ip ; multilingual hyphenation patterns;
marks of various flavours; and \xspacesk ip although interword space can
be adjusted.

By adding macro packages the shortcomings of the FOSI grow. Add
to the list: mixed multi-column modes on one page, although spanning
to one column is possible; precise control of figure placement and many
insert categories; side by side paragraphs; "picture" modes; multiple levels
of footnotes; marginal notes; paragraph line numbering; and the list can go
on.

In general the major advanced capabilities that TgX has over FOSI
capabilities are macro expandability, contitionals, and the ability to define
custom output routines. For the time being, these axe not serious limitations.
It is more important to find an interim solution to the arbitrary DTD
formatting problem. The FOSI-driven T^X formatting engine provides a good
solution. Its wide acceptance in the SGML community would also mean a
wide acceptance of T^X. A factor that would weigh strongly in T^X's favor.

Bibliography

[DSSSL91] ISO/ IEC JTC 1 INFORMATION TECHNOLOGY, "Information Technology —
Text and Office Systems — Document Style Semantics and Specification Language
(DSSSL) — DRAFT", International Organization for Standardization, International
Electrotechnical Commission, Ref. no. UDC 681.3.06 : 519.767, 1991.

[SGML86] ISO WG8, "Information Technology — Text and Office Systems —
Standard Generalized Markup Language (SGML) ISO 8879:1986(E)", International
Organization for Standardization, Ref. no. IS08879:1986/A1:1988(E), 1988.

[M28001A] US DoD, "MIL-M-28001A — Markup Requirements and Generic Style
Specification for Electronic Printed Output and Exchange of Text. (CALS)", Naval
Publications and Forms Center, 20 July 1990.

196

