CAHIERS DU BURO

MAURICE GIRAULT

Le processus ponctuel de Poisson

Cahiers du Bureau universitaire de recherche opérationnelle. Série Recherche, tome 5 (1964), p. 3-16

http://www.numdam.org/item?id=BURO_1964__5_3_0

© Institut Henri Poincaré — Institut de statistique de l'université de Paris, 1964, tous droits réservés.

L'accès aux archives de la revue « Cahiers du Bureau universitaire de recherche opérationnelle. Série Recherche » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

LE PROCESSUS PONCTUEL DE POISSON

par

Maurice GIRAULT

1/ Quelques généralités sur les Processus aléatoires.

Le Calcul des Probabilités étudie des éléments aléatoires à un nombre restreint de dimensions : une, deux Ces modèles, issus du calcul classique des probabilités ne permettent pas d'étudier certains phénomènes courants tels que l'évolution aléatoire d'un système au cours du temps.

Exemple 1: Magasin de vente - évolution du nombre de clients présents dans le magasin au cours d'une journée.

Exemple 2 : Débits d'un fleuve au cours d'une année.

Dans chacun de ces cas, on est en présence d'un système qui évolue dans le temps d'une manière aléatoire; ce qui veut dire que le système est, à chaque instant dans un certain état et que la suite des états pris par le système et repérés sur une échelle des temps (chronique) est décrite par une loi de probabilité. Les modèles associés à de tels phénomènes sont dits processus aléatoires. La définition en probabilité et l'étude de ces modèles se heurtent à de nombreuses et très sérieuses difficultés à la fois théoriques et pratiques.

Reprenons l'exemple 2. Soit X(t) le débit à l'époque t (âge du processus). Pour chaque valeur de t:X(t) est une variable aléatoire ordinaire. Mais puisqu'on s'intéresse essentiellement à l'évolution du système, il faut pour tout ensemble t_1 t_2 ... t_n d'instants connaître la loi de l'ensemble aléatoire à n dimensions :

$$X(t_1) = x_1, \quad X(t_2) = x_2, \dots, \quad X(t_n) = x_n$$

c'est-à-dire se donner la fonction de répartition :

$$F_{x_1x_2...x_n}^{t_1t_2...t_n}$$

et cela non seulement pour toutes les valeurs possibles de

$$t_1, t_2, \ldots, t_n$$

mais encore pour un nombre n arbitrairement grand de paramètres.

On dit que la famille des fonctions de répartition

$$F_{x_1x_2\cdots x_n}^{t_1t_2\cdots t_n}$$

(pour toute valeur de n et de t_1 t_2 ... t_n définit la loi temporelle du processus. Les données sont nombreuses et les ensembles aléatoires ainsi définis peuvent sembler très riches. Pourtant la loi temporelle ne définit pas en probabilité la fonction aléatoire X(t) (où t prend ses valeurs sur un continu). En effet le simple évènement X(t) < h pour $t \in [t_0, t_1]$ (intervalle continu) n'est pas, dans l'optique précédente, probabilisable. Cela veut dire qu'à partir des évènements élémentaires considérés :

$$X(t_1) \le x_1$$
; $X(t_2) x_2$; etc.

et en appliquant les opérations permises du calcul des probabilités, on ne peut pas atteindre (ou exprimer) l'évènement X(t) < h intersection d'une infinité continue d'évènements élémentaires.

2/ Quelques définitions.

Des distinctions peuvent être faites selon la nature de l'ensemble E des états possibles et selon les possibilités de changement d'état.

- a) L'ensemble E peut être fini, infini dénombrable ou continu.
- b) On peut d'autre part considérer l'ensemble & des instants qui, à priori, sont des instants possibles de changement d'état.

b.1 - Si % est discret (fini ou dénombrable) on dit $\,$ que le processus est discret.

Exemple 3 : Cas de marchandises reçues et expédiées par convois à des dates fixées d'avance : les quantités transportées sont aléatoires, les dates ne le sont pas.

b.2 - Si % est un segment ou une demi-droite de l'axe des temps, le processus est dit permanent (cas de l'exemple 2 discuté ci-dessus).

Pour certaines applications, on peut se limiter au cas où E est fini, le processus étant par ailleurs soit discret soit permanent et continu en probabilité.

On dit qu'un processus (permanent) est continu en probabilité si : $(Prob(E_{\{t+h\}} \neq E_t))$ tend vers 0 en même temps que h.

La succession des instants (aléatoires) où se produit un changement d'état constitue un processus ponctuel.

3/ Processus ponctuels.

On suppose qu'un évènement instantané peut ou non se produire à chaque instant. Toute réalisation d'un tel processus est décrite par une suite de points P_1 P_2 ... P_n sur l'axe des temps, d'où le nom de processus ponctuel.

Exemples: Succession des instants où arrive un camion à un poste de chargement; succession des "accidents" (repérés par leurs dates) dans une usine, des instants de débuts de pannes d'un ensemble de machines... Enfin: suite des instants de changement d'état d'un processus permanent, continu en probabilité et à un nombre fini (ou dénombrable) d'états.

3.1 - DEFINITION EN PROBABILITE D'UN PROCESSUS PONCTUEL

Soit un ensemble d'intervalles disjoints $(t_1' \ t_1'')$; $(t_2' \ t_2'')$... $(t_k' \ t_k'')$ et $N_1 \ N_2 \ \dots \ N_k$ les nombres aléatoires d'évènements qui se produisent dans ces intervalles. Pour définir en probabilité le processus ponctuel il faut par exemple se donner, pour toute valeur de k et en fonction de

 t_1' t_1'' ; t_2' t_2'' ... t_k' t_k'' la fonction de répartition de l'ensemble aléatoire $(N_1, N_2, ..., N_k)$ nombres d'évènements qui se produisent dans les intervalles considérés.

On peut songer à d'autres procédés pour définir en probabilité un processus ponctuel : par exemple : définir les intervalles aléatoires successifs $U_1,\ U_2\dots$ U_n par leur distribution où

$$U_1 = P_0 P_1 U_2 = P_1 P_2 etc.$$

Le système fondamental de lois de probabilité serait alors le suivant :

loi de U1.

loi conditionnelle de U_2 si $U_1 = u_1$.

loi conditionnelle de U_3 si $U_1 = u_1$ et $U_2 = u_2$.

etc. .

Un tel processus est beaucoup trop général pour servir de modèle dans une étude pratique. Il faut pouvoir estimer avec assez de précision les paramètres du modèle et, pour cela, ils ne doivent pas être trop nombreux. On obtient un cas particulier très remarquable en posant deux conditions que nous allons préciser.

4/ Les axiomes du processus ponctuel de Poisson.

4.1 - AXIOME A ; AXIOME D'INDEPENDANCE

En adoptant le schéma de définition (3.1) on pose par hypothèse que les nombres aléatoires $N_1, N_2 \ldots N_k$ sont mutuellement indépendants en probabilités. Au lieu de se donner l'ensemble des lois considérées en 3.1, il suffit de se donner la loi de N(t', t'') nombre aléatoire d'évènements qui se produisent sur l'intervalle (t', t'') et cela, bien entendu en fonction de t' et de t''.

4.2 - AXIOME B ; AXIOME D'UNIFORMITE

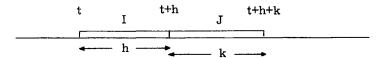
On pose par hypothèse que la loi de $(N_1, N_2 \ldots, N_k)$ reste inchangée si les 2k valeurs t_1' , t_1'' ; t_2' , t_2'' , ..., t_k' , t_k'' sont toutes augmentées d'une même quantité. Si l'axiome A est réalisé, il suffit de se donner une seule famille de lois, dépendant d'un seul paramètre : la loi de probabilité de N, nombre d'évènements qui se produisent sur (t', t'') en fonction de h = t'' - t'.

Cette famille de lois, comme nous allons le voir, n'est pas arbitraire.

4.3 - LOI DE L'INTERVALLE ALEATOIRE SEPARANT DEUX EVE-NEMENTS CONSECUTIFS

Soit tout d'abord p_o la probabilité qu'aucun évènement ne se produise entre les instants t et t+h. D'après l'axiome A, cette probabilité est indépendante des réalisations en dehors de (t, t+h) et ne dépend que de t et de h. De plus, en vertu de l'axiome B elle est indépendante de t. C'est finalement une fonction de la seule variable h: soit $p_o(h)$.

Considérons alors deux intervalles consécutifs I et J séparés par les instants t, (t + h) et (t + h + k)



Prob.
$$\{0 \text{ sur } I \cup J\}^{\bullet} = \text{Prob. } \{0 \text{ sur } I\} \cdot \text{Prob. } \{0 \text{ sur } J\}$$

$$p_{o}(h + k) = p_{o}(h) \cdot p_{o}(k) \quad (1)$$

Cette relation (1) est caractéristique de la fonction exponentielle.

On a donc

$$p_o(h) = e^{-ch}$$

οù

$$c \ge 0$$
 puisque $p_o \le 1$

^{*} On note ainsi la probabilité qu'aucun évènement ne se produise sur l'intervalle I \cup J.

Soient E_i et E_{i+1} deux évènements consécutifs, séparés par la durée aléatoire θ .

Prob
$$\{\theta > t\}$$
 = Prob. aucun évènement sur intervalle d'amplitude t $1 - F(t)$ si $F(t)$ est la fonction de répartition des intervalles θ

finalement
$$F(t) = 1 - e^{-ct}$$
 (2)

loi élémentaire
$$f(t) dt = e^{-ct} cdt$$
 (3)

Conclusion: θ , intervalle aléatoire séparant deux évènements successifs obéit à la loi exponentielle (3) ou loi gamma (notée γ_1).

Valeur moyenne : E $(\theta) = \frac{1}{c}$ (ou période moyenne des évènements), c représente la *fréquence moyenne* (ou densité moyenne sur l'axe des temps).

En posant $c\theta$ = U on obtient la forme réduite de la loi γ_1 . L'expression élémentaire de U est :

En vertu de l'axiome A: les intervalles aléatoires successifs θ_1 , θ_2 ... sont mutuellement indépendants en probabilité. On a donc ainsi défini en probabilité le processus de Poisson.

4.4 - LES LOIS EULERIENNES DE PROBABILITE

Les intégrales eulériennes peuvent servir à définir des lois de probabilité :

 $F(a) = \int_{0}^{\infty} e^{-u} (u)^{a-1} du \text{ est une fonction de a définie pour } a > 0 \text{ elle est dite 'gamma de a' ou fonction eulérienne de 2e espèce.}$

Si a est entier soit m, on a

$$\Gamma(m) = \overline{m-1}$$
!

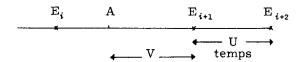
d'où

$$f_a(u) = \frac{e^{-u} u^{a-1}}{\Gamma(a)}$$

est, pour a > 0 une fonction positive absolument intégrable de 0 à + ∞ , l'intégrale sur cet intervalle vaut 1

donc $f_a(u)$ du pour a>0 est l'expression élémentaire d'une loi de probabilité. Cette loi est dite "lot gamma de paramètre a" et est notée $\gamma(a)$. Cette famille de lois a des propriétés remarquables, étroitement liées aux propriétés de l'intégrale eulérienne de 2e espèce. Ces propriétés s'interprètent facilement à l'aide du processus de Poisson.

4.4.1 - Loi de "survie" d'un intervalle de type γ_1 . Soit A un point donné sur l'axe des temps ;



 $\mathbf{E_i}$ l'instant où se produit le dernier évènement avant A $\mathbf{E_{i+1}}$ " premier " après A

Soit U la durée aléatoire E_j E_{j+1} de loi γ_1 (pour j quelconque) soit V la durée aléatoire A E_{i+1} : V obéit à la même loi γ_1 que U.

En effet, on peut reprendre, en l'appliquant à V le raisonnement que nous avons appliqué en 4.3 à U. Cette propriété est une conséquence de l'axiome A.

4.4.2 - Loi de l'intervalle séparant (k + 1) évènements consécutifs.

La durée qui sépare E_{n+k} de E_n est la somme de k intervalles $\overline{E_s}$ E_{s+1} (pour $s=n,\ n+1$..., n+k-1) ceux-ci sont indépendants en probabilité (axiome A) et obéissent à la loi γ_1 . On démontre sans difficulté (soit par les fonctions de répartition, soit par les fonctions caractéristiques) que $\overline{E_n}$ $\overline{E_{n+k}}$ = X obéit à la loi γ_k d'expression élémentaire.

$$f_k(x) dx = \frac{e^{-x} x^{k-1}}{k-1} dx$$

sa fonction caractéristique est $\varphi = (1 - it)^{-k}$

$$E(X) = k$$
 variance $X = k$

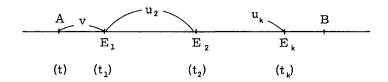
Si la "densité" du processus est c (fréquence moyenne) la loi de Y = $\overline{E_n}$ $\overline{E_{n+k}}$ est

$$f_{k}(y) dy = \frac{e^{-cx} (cx)^{k-1}}{k-1} cdx$$

et
$$E(X) = ck$$
 variance $X = c^2k$

4.5 - LOI DE PROBABILITE DU NOMBRE D'EVENEMENTS SE PRODUISANT DANS UN INTERVALLE DE TEMPS DONNE

Soit l'intervalle \overline{AB} = T. Désignons par P_k la probabilité qu'il se produise k évènements exactement sur AB et par $\pi_k = P_k + P_{k+1} + \dots$ celle qu'il s'en produise k au moins.



La durée
$$\overline{AE}_k = v + u_2 + ... + u_k$$
 obéit à la loi γ_k

$$\pi_{k} = \text{Prob.} \{ (t_{k} - t) \leq T \} = \int_{0}^{T} e^{-ct} \frac{(ct)^{k-1}}{k-1} \cdot cdt$$

$$P_{k} = \pi_{k} - \pi_{k+1} = \int_{0}^{cT} \left(e^{-u} \frac{\underline{u}^{k-1}}{k-1} \cdot - e^{-u} \frac{\underline{u}^{k}}{k!} \right) du$$

en intégrant par parties le premier terme, on obtient après simplification :

$$P_{k} = e^{-cT} \frac{(cT)^{k}}{k!}$$

C'est la loi de Poisson de paramètre cT.

5/ Lois associées au processus de Poisson.

Les lois eulériennes de probabilité sont étroitement associées au processus ponctuel uniforme. Leurs propriétés sont des conséquences des axiomes A et B.

5.1 - LOIS GAMMA

On désigne par γ_{\bullet} la loi de la variable aléatoire X positive, continue. L'expression élémentaire de cette loi est :

$$f(x) dx = \frac{e^{-x} x^{a-1} dx}{\Gamma_2}$$

et sa fonction caractéristique est $\varphi(t) = (1 - it)^{-a}$

Le paramètre a est positif. Si a est entier, soit a = k, la loi correspondante est celle de l'intervalle séparant (k + 1) évènements successifs. La propriété d'additivité de ces lois est une conséquence des axiomes A et B.

On peut introduire un second paramètre (paramètre d'échelle). γ (a, p) est la loi d'expression élémentaire :

$$f(x) dx = e^{-px} \frac{(px)^{a-1}}{a-1}! p dx$$

C'est la loi de $\overline{E_n}$ \overline{E}_{n+k} lorsque le processus a pour fréquence moyenne p.

5,2 - LOIS BETA

 $\beta_1(a, b)$ est la loi de U d'expression élémentaire

$$f(u) du = \frac{u^{a-1} (1 - u)^{b-1}}{B(a, b)} du \quad \text{avec} \quad \begin{cases} 0 \le u \le 1 \\ a > 0 \\ b > 0 \end{cases}$$

C'est la loi du rapport $\frac{\overline{E_n \ E_{n+a}}}{E_n \ E_{n+a+b}}$ avec a et b entiers positifs.

 $\underline{\beta_2(a, b)}$ est la loi de V d'expression élémentaire

$$g(v) dv = {1 \over B(a, b)} {v^{a-1} \over (1 + v)^{a+b}} dv$$

C'est la loi du rapport $\frac{\overline{E_n} \ \overline{E_{n+a}}}{\overline{E_m} \ \overline{E_{m+b}}}$ avec a et b entiers positifs ; les segments aléatoires $\overline{E_n} \ \overline{E_{n+a}}$ et $\overline{E_m} \ \overline{E_{m+b}}$ étant disjoints (donc indépendants en probabilité).

5.3 - LIEN AVEC LA STATISTIQUE

La loi γ est celle du χ^2 étudiée en statistique mathématique.

Si
$$Z$$
 obéit à la loi du χ^2 \longrightarrow $\frac{Z}{2}$ obéit à $\gamma(\frac{k}{2})$

Les lois de Student et de Behrens Fisher sont des lois β_2 .

Si (r_1, r_2) est un couple de variables aléatoires indépendantes telles que

$$r_1^2$$
 obéit à la loi du ' χ^2 à n_1 dégrés de liberté r_2^2 '' " n_2 " "

le rapport t = $\frac{r_1}{r_2} \frac{\sqrt{v_1}}{\sqrt{v_2}}$ obéit à la loi dite de "Behrens Fisher" à n_1 et n_2 dégrés de liberté

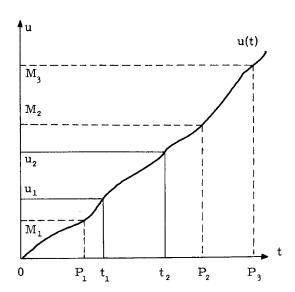
et
$$t^2 \frac{n_1}{n_2}$$
 obéit à β_2 $\left(\frac{n_1}{2}, \frac{n_2}{2}\right)$.

6/ EXTENSION. Processus non uniforme.

Dans le modèle initial, à chaque intervalle élémentaire de temps (t, t + dt) la probabilité qu'un évènement au moins se produise est c dt où c est une constante. c se présente comme une densité (nous allons préciser de quoi), elle est ici constante. On obtient un modèle plus général en supposant cette densité variable avec t. On peut généraliser davantage en ne supposant pas l'existence de cette densité en chaque instant.

6.1 - DESCRIPTION D'UN PROCESSUS NON UNIFORME DE POISSON

La manière la plus simple de décrire un processus non uniforme consiste à effectuer un changement d'horloge à partir d'un processus uniforme :



Soit sur l'axe 0u un processus uniforme de densité 1. (ce qui signifie que sur un intervalle (u_o, u_1) le nombre aléatoire d'évènements (M) a pour valeur moyenne $(u_1 - u_o)$: il obéit à la loi de Poisson de paramètre $(u_1 - u_o)$.

Définissons un changement d'échelle par la donnée d'une fonction u(t) monotone croissante définissant une application M < > P biunivoque et bicontinue.

$$M \in (0u)$$
; $P \in (0t)$

A une réalisation $(M_1,\ M_2,\ M_3\ \dots)$ du processus sur 0 u est associée une réalisation $(P_1,\ P_2,\ P_3\ \dots)$ d'un processus ponctuel sur (0t). Ce dernier processus obéit à l'axiome A d'indépendance, mais non à l'axiome B : on dit que c'est un processus non uniforme de Poisson.

Soi un intervalle (t_1, t_2) le nombre d'évènements (P) qui se réalisent dans cet intervalle est égal au nombre de ceux (M) qui se réalisent sur l'intervalle (u_1, u_2) : ce nombre obéit à la loi de Poisson de paramètre $u_2 - u_1$ soit :

$$u_{(t_2)} - u_{(t_1)}$$
.

6.2 - DISTRIBUTION DES VARIANCES

En définitive un processus ponctuel de Poisson sur un axe (0, t) est caractérisé par la propriétés suivantes :

- a) Sur tout intervalle : $(t_1 \ t_2)$ le nombre aléatoire d'évènements $N(t_1, \ t_2)$ obéit à une loi de Poisson dont le paramètre est fonction de t_1 et de t_2 soit $v(t_1, \ t_2)$
- b) Sur deux intervalles disjoints ces nombres aléatoires sont indépendants en probabilité.

Or le paramètre $v(t_1,\ t_2)$ qui caractérise complètement la loi de probabilité de $N(t_1,\ t_2)$ est une variance :

v(t', t'') est une fonction positive, additive d'intervalles (t', t''). C'est donc une mesure. Cette mesure est définie par la donnée de sa "fonction de distribution" :

$$F(t) = v(0,t)$$

donc:

$$v(t_1 t_2) = F(t_2) - F(t_1)$$

La fonction u(t) de 6.1 est une fonction F(t). Elle correspond au cas où F(t) est strictement croissante.

La fonction F(t) (comme les fonctions de répartition du calcul des probabilités) se décompose en 3 éléments.

$$F(t) = F_1(t) + F_2(t) + F_3(t)$$

où $F_1(t)$: fonction "en escalier" ne varie que par "sauts" - le nombre de ces sauts est dénombrable.

 $F_2(t)$: fonction absolument continue : elle est partout dérivable et égale à l'intégrale de sa dérivée.

F₃(t) : fonction singulière (pour mémoire).

Si F se réduit à F_1 : le processus est "discret": les évènements ne peuvent se produire qu'en des instants connus d'avance appartenant à un ensemble dénombrable (E). En chaque instant t_i de E le nombre d'évènements obéit à une loi de Poisson de paramètre a_i où $a_i = F(t_i + 0) - F(t_i - 0)$.

Si F se réduit à F_2 on est dans le cas étudié en 6.1 : à chaque intervalle élémentaire de temps (t, t + dt) est associée la fonction $f(t) = \frac{dF_2}{dt}$ dite "densité" (de variance) et la probabilité qu'un évènement au moins se produise est f(t) dt. Le nombre moyen d'évènements qui se produisent sur (t_1, t_2) est :

$$\int_{t_1}^{t_2} f(t) dt = F(t_2) - F(t_1)$$

7/ Processus en grappes.

Une autre généralisation du processus initial est la suivante :

Plusieurs évènements peuvent se produire simultanément : on dit qu'ils constituent "une grappe". Le processus peut être défini en probabilité comme suit :

- a) La suite des "grappes" forme un processus ponctuel de Poisson (uniforme ou non) défini par la fonction de distribution des variances F(t)
- b) Chaque grappe a un effectif K aléatoire (entier positif) : les effecțifs des différentes grappes sont indépendants en probabilité et obéissent tous à la même loi (d'ailleurs arbitraire).
- Il faut noter que si le nombre de grappes sur tout intervalle obéit à une loi de Poisson, il n'en va pas de même pour les nombres d'évènements.