Actions quasi-convexes d'un groupe hyperbolique : flot géodésique
Thèses d'Orsay, no. 333 (1993) , 98 p.
@phdthesis{BJHTUP11_1993__0333__P0_0,
     author = {Bourdon, Marc},
     title = {Actions quasi-convexes d'un groupe hyperbolique : flot g\'eod\'esique},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {333},
     year = {1993},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_1993__0333__P0_0/}
}
TY  - BOOK
AU  - Bourdon, Marc
TI  - Actions quasi-convexes d'un groupe hyperbolique : flot géodésique
T3  - Thèses d'Orsay
PY  - 1993
IS  - 333
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1993__0333__P0_0/
LA  - fr
ID  - BJHTUP11_1993__0333__P0_0
ER  - 
%0 Book
%A Bourdon, Marc
%T Actions quasi-convexes d'un groupe hyperbolique : flot géodésique
%S Thèses d'Orsay
%D 1993
%N 333
%I Université de Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1993__0333__P0_0/
%G fr
%F BJHTUP11_1993__0333__P0_0
Bourdon, Marc. Actions quasi-convexes d'un groupe hyperbolique : flot géodésique. Thèses d'Orsay, no. 333 (1993), 98 p. http://numdam.org/item/BJHTUP11_1993__0333__P0_0/

[B.1] R. Bowen, Equilibrium states and the ergodic Theory of Anosov diffeomorphisms, Springer Lectures Notes in Mathematics, 470 (1975). | MR | Zbl

[B.2] R. Bowen, Hausdorff dimension of quasi circles, I.H.E.S., Publ. Math., 50 (1979), 11-26. | MR | Zbl | Numdam | DOI

[B.3] R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460. | MR | Zbl | DOI

[B-S] R. Bowen and C. Series, Markov maps associated to Fuchsian groups, I.H.E.S., Publ. Math., 50 (1979), 153-170. | MR | Zbl | Numdam | DOI

[Be] N. Benakli, Polyèdres hyperboliques, passage du local au global, Thèse, Université de Paris-Sud, (1992).

[Bea] A.F. Beardon, The geometry of discrete groups, G.T.M 91 (1983). | MR | Zbl

[Bi-S] S.J. Birman and C. Series, Dehn's algorithm revisited, with applications to simple curves on surfaces, Combinatorial group theory and topology, Ann. Math. Studies III, Princeton U.P. (1987), 451-478. | MR | Zbl

[Bo] M. Bourdon, Applications de Markov sur un groupe hyperbolique et son bord, et formalisme thermodynamique, Prépublication Université de Paris-Sud, (1992).

[C] M. Coornaert, Sur les groupes proprement discontinus d'isométries des espaces hyperboliques au sens de M. Gromov, Thèse, publication de l'IRMA, Strasbourg (1990). | MR | Zbl

[Ca] J. Cannon, The combinatorial structure of cocompact discrete hy-perbolic groups, Geom. Dedicata 16 (1984), 123-148. | MR | Zbl | DOI

[C-D-P] M. Coornaert, T. Delzaut et A. Papadoulos, Géométrie et théorie des groupes, les groupes hyperboliques de Gromov, Lecture notes in Math. 1441 Springer (1990). | MR | Zbl

[C-E-H-P-T] J.W. Cannon, D.B.A. Epstein, D.F. Holt, M.S. Paterson et W.P. Thurston, Word processing and group theory, Bartlett and Jones, Boston (1992). | Zbl

[C-P] M. Coornaert et A. Papadopoulos, Dynamique symbolique et groupes hyperboliques, Prépublication IRMA Strasbourg (1992), à paraître au Lecture notes de Springer Verlag sous le titre : Symbolic dynamics and hyperbolic groups. | MR

[F] W.J. Floyd, Group completions and limits sets of kleinian groups, Invent. Math. 57 (1980), 205-218. | MR | Zbl | DOI

[G] M. Gromov, Hyperbolic groups, in "Essays in group theory", (S.M. Gersten ed.), Springer, (1987), 75-263. | MR | Zbl | DOI

[G-H] E. Ghys et P. De La Harpe (eds.), Sur les groupes hyperboliques d'après M. Gromov, Progress in Mathematics, vol. 83, Birkhäuser, (1990). | MR | Zbl

[Gu-Ha] Y. Guivarc'H et J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov. Ann. Inst. Henri Poincaré, vol. 24, n. 1, (1988), 73-98. | MR | Zbl | Numdam

[H] U. Hamenstädt, Time-preserving conjugacies of geodesic flows, Ergod. Th. and Dynam. Sys. 12 (1992), 67-74. | MR | Zbl | DOI

[Ha] F. Haglund, Les polyèdres de Gromov, Thèse, Université Lyon I (1992).

[Ho] E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. AMS, 77 (1971), 863-877. | MR | Zbl | DOI

[K] V. A. Kaimanovich, Invariant measures of the geodesic flow and mea-sures at infinity on negatively curved manifolds. Annales de l'Institut Henri Poincaré, Physique Théorique, 53 (1990), 361-393. | MR | Zbl | Numdam

[M] D.H. Mayer, Continued fractions and related transformations, in "Ergodic theory, Symbolic dynamics and Hyperbolic spaces", T. Bedford, M. Keane, C. Series (Eds), Oxford University Press, (1991), 175-222. | MR | Zbl

[N] P.J. Nicholls, The ergodic theory of discrete groups, Cambridge University Press, (1989). | MR | Zbl | DOI

[P] S.J. Patterson, Lectures on measures on limit sets of kleinian groups, in "Analytical and geometric aspects of hyperbolic space", Cambridge University Press (1987), 291-323. | MR | Zbl

[Pan] P. Pansu, Dimension conforme et sphère à l'infini des variétés à courbure négative, Annales Academiae Scientiarum Fennicae, Series A.I. Mathematica 14 (1989), 177-212. | MR | Zbl | DOI

[Pau] F. Paulin, Topologies de Gromov équiariantes, structures hyperboliques et arbres réels, Invent. Math. 94 (1988), 53-80. | MR | Zbl | DOI

[Po] M. Pollicott, Closed geodesics and zeta functions, in "Ergodic theory, Symbolic dynamics and Hyperbolics spaces". T. Bedford, M. Keane, C. Series (Eds), Oxford University Press, (1991), 153-173. | MR | Zbl

[P-P] W. Parry, M. Pollicott, Zeta functions and the periodic structure of hyperbolic dynamics, Astérisque 187-188, (1990). | MR | Zbl | Numdam

[R] D. Rudolph, Ergodic behaviour of Sullivan's geometric measure on a geometrically finite hyperbolic manifold, Erg. Th. Dynamical Systems, 2 (1982), 491-512. | MR | Zbl | DOI

[Rue] D. Ruelle, Zeta functions for expanding maps and Anosov flows, Invent. Math. 34 (1976), 231-242. | MR | Zbl | DOI

[S.1] C. Series, The infinite word problem and limit sets in Fuchsian groups, Erg. th. Dynamical Systems, 1 (1981), 337-360. | MR | Zbl | DOI

[S.2] C. Series, Geometrical methods of symbolic coding, in "Symbolic dynamics and Hyperbolic spaces", T. Bedford, M. Keane, C. Series (Eds), Oxford University Press, (1991), 125-151. | MR | Zbl

[Su] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Publ. math. I.H.E.S., 50 (1979), 171-202. | MR | Zbl | Numdam | DOI

[Su2] D. Sullivan, Entropy, Hausdorff measures old and new and limit sets of geometrically finite kleinian groups, Acta Math., 153 (1984), 259-277. | MR | Zbl | DOI

[T] W.P. Thurston, The geometry and topology of 3-manifolds, Notes de cours, Princeton, 1978-1979.