THESES D’ORSAY

LEILA SCHNEPS

Fonctions L p-adiques et construction explicite de certains
groupes comme groupes de Galois

Theses d’Orsay, 1990
<http://www.numdam.org/item?id=BJHTUP11_1990__ 0277__P0_0>

L’acces aux archives de la série « Theéses d’Orsay » implique 1’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

UNIVERSITE

PARIS ‘NuMbDAM
SUD

These numérisée par la bibliotheque mathématique Jacques Hadamard - 2016
et diffusée dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=BJHTUP11_1990__0277__P0_0
http://www.numdam.org/conditions
http://www.numdam.org/
https://bibliotheque.imo.universite-paris-saclay.fr/
http://www.numdam.org/

QRSAY
n® d'aordre : 62869

UNIVERSITE DE PARIS-SUD
CENTRE D'ORSAY

THESE

présentéde

Pour obtenir

Le TITRE de DOCTEUR EN SCIENCE

PAR

Mademoiselle Leila Schneps

SUJET:

Fonctions L p-adiques, et Construction explicite de

groupes de Galois

15 Janvier 1990

soutanue le devant la Commission d’'examen

MM. _BEAUVILLE Président
HENNTART

HUBBARD

MESTRE

BARSKY







Je tiens a remercier tout d’abord John Coates qui m’a proposé le probléme de la nullité
de l'invariant-p des fonctions L p-adiques et également celui de la construction explicite
de fonctions L p-adiques dans un cas ol ¢a n’avait pas encore été fait, les extensions des
corps quadratiques imaginaires non nécéssairement abéliennes sur Q. Je remercie aussi

Pierre Colmez qui a abordé ce deuxiéme probléme avec moi.

J’aimerais exprimer la plus vive reconnaissance a Jean-Francois Mestre pour toutes
les conversations mathématiques et autre que j’ai eu avec lui et qui m’ont orientée dans la
direction des groupes de Galois, ainsi qu’a Jean-Pierre Serre qui m’a donné de son temps

pour améliorer la rédaction de la note que je lui ai soumise.

Je remercie également le Max-Planck Institut fiir Mathematik pour son hospitalité et

son soutien financier pendant la préparation d’une grande partie de ce travail.

Finalement, je remercie sincérement M. Arnaud Beauville pour avoir accepté de
présider le jury de soutenance, ainsi que MM. Jean-Frangois Mestre, John Hubbard et
Daniel Barsky qui en font partie, et particuliérement Guy Henniart pour avoir joué le réle

parfois ingrat de directeur de these.






SCHNEPS, Leila

Titre de la thése: Fonctions L p-adiques, et Construction explicite de certains groupes
comme groupes de Galois

Code matiére AMS: 14K07, 11F67, 11F85, 12F10

Mots clefs: Elliptic curves, Special values of L-functions, p-adic theory, Galois theory

Résumé: Cette thése consiste en un ensemble de travaux réunis autour de deux thémes
principaux: les fonctions L p-adiques et la construction explicite de certains groupes comme

groupes de Galois.

Abstract: This thesis consists of a collection of articles on two different themes: p-adic

L-functions and explicit construction of certain groups as Galois groups.






Table des matiéres

§1. On the mu-invariant of p-adic L-functions attached to elliptic curves with complex

multiplication.
§2. P-adic Interpolation of Special Values of Hecke L-functions.
§3. Explicit realisations of subgroups of GL,(F3) as Galois groups.

§4. Dy et Dy comme groupes de Galois.






INTRODUCTION

Cette thése consiste en un ensemble de travaux réunis autour de deux thémes prin-
cipaux : les fonctions L p-adiques et la construction explicite de certains groupes comme

groupes de Galois. Chaque article est précédé par un bref résumé de son contenu.

Article 1. Sur linvariant-p des fonctions L p-adiques attachées aux courbes elliptiques a

multiplication complexe.

Soit E une courbe elliptique définie sur un corps quadratique imaginaire K, & multi-
plication complexe par K, et soit p un premier différent de 2 et 3, o E a bonne réduction,
qui est décomposé dans K; on écrit (p) = pp*. Soit F, le corps obtenu en ajoutant a
K tous les points de p"-division de E (n = 1,2,...), et soit M, la p-extension abélienne
maximal de Fo, non-ramifiée en dehors de p. Soit X, le groupe de Galois de M, sur Fi.
Soit I' = Gal(Foo/Fp), ot Fy = K(E,). Il est connu que Xo est un Z,[[I']]-module de
torsion de type fini. Nous démontrons ici que son invariant-u est nul.

La méthode utilisée est de démontrer que 'invariant-u est nul pour chacune des fonc-
tions L p-adiques L, i, 1 <i < p—2, construites par Bernardi-Goldstein-Stephens; il n’est

p—

pas difficile & voir que (Xoo)=3"2"7 u(L, ;). Pour étudier l'invariant-u de ces fonctions
L, on utilise leur construction en tant que transformée gamma de fractions rationnelles
sur la courbe elliptique E, et on donne une formule générale reliant 'invariant-y d’une
telle fraction rationnelle & celui de sa transformée gamma. Explicitement, si R est une
fraction rationnelle sur F dont le développement de Laurent est entier, on lui associe une
mesure A sur Zp, et on définit sa i-iéme transformée gamma pour 1 < ¢ < p — 2 par
L(s) = [, (z)*wi(z) d), ol w est le caractére de Teichmiiller. On a alors:
P
Théoréme: ,u( Y wi(v)A*o (v)) = u(T(s)), ot W est I’ensemble des racines de I'unité
veEW
dans K, \* est la mesure ) restreinte & Z et Ao (v) est la mesure définie par Ao (v)(C) =

AM(vC) pour tout ensemble ouvert-compact de Z,.
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The main result of this paper proves that the p-invariant is zero for the Iwasawa
module which arises naturally in the study of p-power descent on an elliptic curve

with complex multiplication and good ordinary reduction at the prime p. 1987
\cademic Press. Inc.

0. INTRODUCTION

Let £ be an elliptic curve defined over a quadratic imaginary field K,
with complex multiplication by K. and let p be a prime different from 2 and
3. where £ has good reduction. and which splits in K. say (p)= ,.*. Let
F. be the field obtained by adjoining to K all ,.”-division points on E
(n=1.2...). and let M, be the maximal abelian p-extension of F.
unramified outside p. Write X, for the Galois group of M., over F_,
cndowed with its natural action of the Galois group Gal(F, K). Let
I"=GaltF, F,), where £, =K(E ). It is well known that X', is a finitely
generated Z,[[/']]-trosion Z,[[I"]]-module. The aim of this paper is to
prove that the u-invariant of X', is zero.

Our methods have been inspired by the recent work of Sinnott [9] in
the cyvclotomic case. The same result has been obtained independently and
simultaneously by Gillard [5]; the key difference between his approach
and the one in this paper is in the proof of algebraic independence
(Theorem III here, 1.2 in [5]). In particular, Gillard studies the schematic
closure of a certain subvariety of E”, whereas here we consider the Zariski
closure of a certain subgroup of the formal group of E£", E being the curve
reduced mod p, which permits us to establish the theorem by elementary
methods. This is the only point in Sinnott’s article which does not
generalize easily to the elliptic case. It is also noteworthy, however. that in

3
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U-INVARIANT OF p-ADIC L-FUNCTIONS 21

applying the results to the p-adic L-functions, Gillard used those construc-
ted by himself in an earlier article [10], whereas here we follow the con-
struction of the p-adic L-functions L,, for 1 <i< p—2givenin [1].

1. NOTATION

Let K be an imaginary quadratic field of class number l. with ring of
integers (. Let E be an elliptic curve defined over K. with complex mul-
tiplication by (', and let Y be the Grossencharakter of E over K. We fix an
algebraic closure K of K and an embedding K ¢ C. Let S be the set contain-
ing 2. 3. and rational primes g such that E does not have good reduction
for at least one prime lying over g. Let p be a rational prime which is not in
S. and such that p splits in K: (p) = /1/1* Let m = /(). Let K, be the com-
pletion of K at 4 and let /, be the ring of integers of the completxon of the

maximal abelian unramified extension of K ,. We fix a Weierstrass model
for E.

yT=4x"— g,x — g, (1)

such that g,, g; € ¢. and g3 — 27¢3 are minimal at all primes of K not lying
above a prime in S. Let L be the period lattice of the Weierstrass
w-function associated with this model. Since K has class number 1. there is
an € L such that L =QC(.

Let L(J*, 5) be the complex Hecke L-function of J*. Let 2, be a p-adic
period of E. We follow the notation of [1] in reviewing the construction of
the p-adic L-functions L, (s)for 1 <i< p—2. such that for each integer
A=zl k=i(mod p—1),

QIAL, (k) =(k— 11— (" (2)/N,))Q *LJ* k). (2)

Note that the interpolated L-function is the primitive one.

Let ¢(z. L)Y=(¢(z= L), 2'(z, L)). Let w» be the Teichmiiller character on
Z,. and for each xe Z}, let (x) = x/w(x). Let E denote the formal group
giving the kernel of reduction modulo 4 on E: a local parameter for E is
given by t = —2x/y. If we consider - to be the parameter for the additive
formal group G,, then 1= —20(z)/'(2) gives the exponential map from
G, to E. If we let w be the parameter for the multiplicative formal group
G,,, then since £ has height 1 (since p is split). there exists a power series
otw)ewl ,[[w]] which gives an isomorphism of formal groups 9: G,—E.
The p- _adic period is. by definition. the coefficient of w in J: it is determined
up to a unit in Z}.

We now introduce the basic rational functions on E (see [2] for details).
Let xe (. 2#0 or a unit, and let £, denote the kernel of x on E. For each

L



22 LEILA SCHNEPS

,0<i< p—2, such that f; # 1, let Q, be a primitive f;-division point on E.
Define

P)=[] (x(P)=x(R)) and &, ,(P)= [] AP+ Q) (3)
Re E,

te Gy,
R#0

where G, = Gal(K(E,)/K). We have the following equation [1]. For any
ideal # of ¢ prime to x and to f|,

[T ¢ao(P+S)~Co00 (W(E)P), (4)
Se ks
where o, is the Artin symbol of # relative to K(E,)/K, and the symbol ~
means that the quotient of the two functions is a constant in K*.

We now consider the development of the rational functions in (3) in the
parameter - of the additive formal group, and define

IS Z. 1 T = ]~
R, (= L)= {;1(¢( L)) if ‘
‘ Crolo(z. L)) otherwise.
Let m, = cardiGal(K(E,) K)) for each i. Consider the set # of maps u:
4 — Z. where 1 is the set of elements of ¢ prime to f, and to ,, and where

wx) =0 for almost all xe A and > p(a)(Nx—1)=0.

x€e 4

For we#. let R, (z.L)= [T.cs (x*™R_(z. L))"*. Then (d/d=)log R‘,,‘,
(z. L) has a Laurent series expansion in ¢ which is an integral power series
in / [[1]]. and for a suitable choice of y, this is the series underlying the
construction of the L (s) (see [1, 3]).

In order to complete the construction. we need to introduce several basic
facts about gamma-transforms (for more details see [9]). Let A,, be the

space of / -valued measures on Z,, and let C denote a compact-open sub-
set of Z,:

(a) There is an isomorphism A4,, — /7, [[w]] given by 2+— H (w),
where H,(w)=>, ., (j.z,, (M) diyw' = 52,. (T 4+w)" da.
(b) Letf(x)=2,a, ' be the characteristic function of C, where ¢, are

p-power roots of unity [9]. We define a measure 4|, by restricting ~ to C

and extending by zero. Then the power series H;, (w) associated to 4| is
given by

ZaiH;.(Ci(1+‘1')—l)- (5)
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In particular. if C=2%, we write A* for ';-|z; and H*(w) for H,.(w). We
then have

1'1}"(\1')=H;‘(w)—l Z H;({(1+w)—1). (6)

r=1

(c) We define the measure 4-7 for yeZ¥ by ~ 7(C)=~(;C). Then
H, (w)=H,(»w "'). and we have the formula

roY e =4l 7 (7)

(d) We now discuss the gamma-transform. Let J(r)e[/ [[r]], and
set JOw)e I,[[w]] equal to J(o(w)) viewed as a power series in w. Let £ be

the measure associated to the series J(w). For each i. 0<i<p—2. we
define

r(s)= t (XD wi(x) dr (8)

and we may thus speak of the gamma transform of a measure associated
with a power series in t. Clearly 7Y"'(s) is an [wasawa function. te.. if u is a
topological generator of 1+ pZ,, then there exists a power series
G.(w)el [[w]] such that G(u*—1)=T7""(s). Let ¢: Z, - U=1+ pZ, be
the 1somorphism given by 1+ u'. Then as a power series. G,(w)
corresponds to the measure in A,, given by

(Zg‘}.»ﬁi(-\) P, (9)

where the sum 1s over the (p — I)th roots of unity in Z, (see [9]). By (c)
above. we may write (9) as

N\

(z il ) o (10)

We now apply the gamma-transform of (d) to the measure whose
associated power series in 7 is the Laurent expansion of (. dz) log R;“_,-(:, L).
Up to multiplication by units in the Iwasawa algebra. this gives the
functions L, (s) for 1 <i< p—2 (see [ 1] for the complete construction).
Now. the p-invariant of I'Y”(s) is considered by definition to be the
pu-invariant of the associated power series G,(w). i.e.. the infimum of the
valuations of its coefficients. Thus it clearly suffices to study the u-invariant
of the gamma-transform to determine the u-invariant of L, (s).

€
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2. u-INVARIANTS OF CERTAIN GAMMA-TRANSFORMS

Let E be an elliptic curve as in Section 1. and let R(P) be a rational
function on E: by a slight abuse of notation we write R(t) for the expansion
of R as a Laurent series in 7, where r = —2x/y is a local parameter at zero
on E. We suppose that R(r)e !, [[1]]

Let 0: G,, — E be the isomorphism of formal groups as in Section 1, and
consider a measure 4 on Z, with values in I, whose associated power series
in / ,[[w]] has the form R(é(w)) for R(P) as above. Let W denote the set
of roots of unity in K. The aim of this section is to apply the methods used
by Sinnott in the cyclotomic case (see [9]) to prove

THEOREM 1. For each i. 0<i< p— 2. we have the formula

,Ll< Z w'(v) 2* - (v) ) = u((s)).

re W

Before the proof of Theorem I, we need several preliminary remarks. Let

r be the number of roots of unity in K. m=(p—1)/r. and f3,..... S, be a
basis for the ¢ -module generated by the (p — 1)th roots of unity in Z,. For
1 < j<m. let ¢, be representatives of the (p — 1)th roots of unity modulo
. Then

3,=Za,-,-/f,, a,el (11)

for 1 < j<m.

Now. since we are considering p-invariants. we will wish to consider the
reduction of our power series R(Jd(w)) modulo ,.. To this end. we denote by
d(w) the power series d(w) modulo /. so Jtw) has coefficients in F,, the
algebraic closure of F,. Letting £ denote the curve reduced mod ,.. we see
that o(w) gives a formal group isomorphism from the multiplicative formal
group in characteristic p to the formal group of E. which we denote by &
But since the points of E all reduce to 0 mod 4, we let B=F,[[T]] for an
indeterminate 7. and we extend the field of definition of E to the quotient
field of B. We also consider B to be the underlying set for G,, in charac-
teristic p. Then J converges to a value on £ whenever w has its value in the
maximal ideal of B. which is the ideal generated by T.

We now recall that for each element e Z,. there exists a unique power
series. usually denoted [f] (r), such that [f](¢)=fit (mod deg2) and
[f](r) is an endomorphism of E (see [8]). We use the notation
gp(t)=[B1(r) and write g,(¢) for the reduction of ¢,(7) mod s.

Now. let E" be the abelian variety consisting of the product of n copies of
E. and let ¢,..... t,, be the copies of 1 coming from the » coordinate projec-

7
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tions E” — E. Let K(E") denote the field of rational functions on E”
developed out in their Laurent expansions at ¢,,..., ¢,, and let 4 = K(E")n
1,[[t s 1,1]. In the same vein, we write 4 =K(E")n B[[t,,... 1,]1] for
rational functions on the reduced abelian variety.

We now state two independence results which are fundamental to the
proof of Theorem I. For the a; as in (11), we have

THEOREM II. For 1 < j<m, let ®,: E" — E be the map given by
®(P,... P,)=Y a,P.,

and suppose r,...., r,, are rational functions on E such that

”m

Y r(@d,(x))=0 forall e E™
;=1

Then euch r, is u constant function on E.

THEOREM III. Let ©: B[[t,..... t,11 = B[[t]] be the map given by
Ot,)=qyu(t). Then the restriction of @ to A is injective in the sense that if
red und riq,(1).....44,(t))=0. then r =0 identically.

Theorems Il and ITl will be proven at the end of this section. We now
proceed to the proof of Theorem I. Let ~ be a measure on Z, as before

whose associated power series has the form R(d(w))e/ [[w]] for Re A.
We have

PROPOSITION.  Let C be a compact-open set in Z,. Then the power series

associated to 4| has the form R (d(w)), where R is also a rational function
on E.

Proof. We may write >, h,(T for the characteristic function of C. as in
Section 1(b). Then the power series associated to ~|. is given by
S, b, RA(C,(1 +w)—1)). Now, since 0 is an isomorphism of formal groups,
and {, — 1 is in the maximal ideal of /,. we see that {, — 1 corresponds
under o0 to the r coordinate of a n-power division point }/, on E. Thus,

YA RGN +w)—1)=3 bR — 1B d(w))

1

=Y b, RU(V)® p1),

which is the expansion of 3,5, R(V, @, P) in 1. By definition. this function
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1s R~(P). But R, is a rational function on E since addition on E is rational,
and 4| is associated to R(d(w)), which concludes the proof.
Now, for each i, 0 <i< p—2, define a measure

Ki= Y w'(v) A*:=(v)
re W
We first remark that x; is associated with a rational function in d(w) on E.
For by the preceding proposition, A* is associated with a rational function
R*(d0(w)), and then by Sectionl(c), /*-(v) 1is associated to
R*(3((1 +w)" '—1)=R*([v '1(8(w)))=R(vr~'P) on E. Now, we are
considering the u-invariant of a measure to be the pu-invariant of its

associated power series; this is how we investigate the u-invariants in the
statement of Theorem I, which we recall as

u( > w‘(u)),*:(u))=u(1“,"’(s)). (12)

re W

In fact. proving the simpler formula
u(k;) = pu(l(s)) (13)

is equivalent to proving (12), for the left-hand sides are the same by
definition. and for the right-hand sides we have

-~

ris)= 3 o'(e)| (x> o'(x)di*-(v)

re W ‘Zn

= Z w’(v).. e 'y o (e 'x)di*
dz;

re i’

= z u)’(v)w"(v")L‘ (x> w'(x)dr

re W

= r(s).

Thus, since we have stipulated that p #2 or 3. and r must always be 2. 4.
or 6, we have

p((s)) = u((s)).

To prove (13). we prove that divisibility by = of x; (i.e.. of its associated
power series) implies that of /'!'(s) and vice versa. thus, cancelling the fac-
tors of n from both sides gives (13). The first implication is evident. since if
n divides ~, then it certainly divides 3, e'x; ¢l (Eq. (9)), so I'{'(s), by
Section 1(d). The second implication is not trivial. Suppose n divides
Y. &'w; - ¢l Then m divides r 37 &7 'k, |(,-'¢) = (¢, '), reformulating as in
(10).
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Let r,(d(w)) be the power series corresponding to the measure

e, 'K | 'v)- We may then write the assumption that n divides the gamma-
transform as

m

Y rio((1 +w)?—1))=0 (mod =/ ,[[w]]). (14)

/=1

Considering the rational functions 7, on E and the whole situation in
characteristic p, we have

m

Y F([&]3(w))=0. (15)

j=1
Thus using the notation §,(r) for [¢,](¢) reduced mod s, we have

m

Y G (1)=0. (16)

y=1

Now. in the notation of Theorem II. let @,: E” — E be defined by

12

¢/(tl A ] ’n) = Z (7(1,,(t1)*

=1
for the «,, as in (11). Then (16) may be written

1244

S FADPUAGp (1) G (1)) =0. (17)

1 =1

Now. by Theorem III. this statement implies that the function 3" | 7, - &,
on E" is identically zero. and by Theorem II. we obtain that each 7, is then
a constant function on E. so that 37, 7, =0. or equivalently. ¥, r,; =0
(mod n/ [[w]]).

Finally. recalling that r(P) was the rational function on £ associated to
the measure ¢, 'x,|,, ',,. we obtain

nm
K, = Z Z €, lKi'(c, ey (D)

Jj=1lrve W

=Y ( Y r,(vP))sO (mod ),
re W j=1
so k, is divisible by n, which concludes the proof.
We note that since the p-adic L-function is constructed by taking the
gamma-transform of a measure whose power series is exactly the develop-
ment in w of a rational function on £, we may apply Theorem I to obtain

information on their p-invariant. This is done in Section 3. We now prove
Theorems II and III.

10
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Proof of Theoremll. First, note that since ¢, =27_,a,;B; and
®D(P,,..., P)=37_,a,P;, we must have the condition

ac®;,=bod,<>a=5b=0

for a.be(, and i# j, since this is clearly true of the ¢, This and
algebraicity are the only conditions on the @&; which are needed in the
proof of Theorem 2. The algebraicity of the @, means that since they are
certainly not constant maps, they must be surjective onto E. Now, let
K, = Ker @;. We will show that whenever i # j, @, |, is still surjective onto
E. If it were not, it would be constant, so its image would be e, the identity
element of E. Now, obviously, @, |, =e, so we have induced maps

&, E"/K, -E and &, E"/K, > E.

Thus. &, - &' is an endomorphism of E, so some 7€ (. But then 1 - &, =
;- @,. which is not possible. So @, |« is surjective.
Now. let P, € E be a point at which r,, has a pole. Then r, (P, ®;P) has

a pole at e. Choose R, in E” such that &, (R,)= P,; then we still must
have

m

2 ri:®(Ry+R)=0 VRe E",

/=1

so it suffices to know Theorem II for the functions r(®,(R,) ®,P), ie., we
may suppose that r,, has a pole at e.

Let D, be the set of poles of r,; then @~ '(D;)n K,,, for 1 < j<m. must
have codimension 1 in K, otherwise @, would be constant on X,,, which
is not the case. So 3 "' @~ '(D;)n K, has codimension 1 in K,,. Thus, we
can choose an R, in K,, such that ®(R,)¢D,, | < j<m— 1. We can now
write

m—1
oo @o(R)=r,, @, (R, +R)=— Y r;c®(R, +R).

j=1

But the right-hand side is regular, implying that r,, has no pole at e!
Evidently. the procedure works for each of the r; in the same way, so they
are all constant functions on £. This concludes the proof of Theorem II.

Proof of Theorem IIl. We need a long series of lemmas.

LEMMA 1. Let H be a Zariski-closed subgroup & E". Then there exists a
non-trivial homomorphism ®: E" — E such that H = Ker &.

Proof. Let I,: E— E™ be inclusion of the ith factor for 1 <i<n. Then
since H is a proper subgroup, there exists j between 1 and »n such that

"
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Im /, ¢ H. Thus the composition t: E— % E" — E"/H is non-trivial. and
since H is closed, E"/H is an abelian variety. So the dual t*: (E"/H)* - E
(as abelian varieties) is non-trivial. But E”/H is isogenous to (E"/H)*, so
choosing an isogeny f: E"/H — (E/H)*. we have t*- f: E"/H — E non-
trivial. Then &: E" —» E"/H — *° ' E is non-trivial and H < Ker .

LEMMA 2. Let ®@: E" — E be a homomorphism. Then ® has the form

n

(D(Q],.... Qn)= Z xiQi’ 1,-6@.

i=1
Proot. In the notation above, set x, = ®-[,: E— E. Then

n

DO, ... Q,,)=d>< > 1,-(Q,-)>= Z %, Q.
f 1

=

¢ =1

LEmMA 3. If G is a subgroup of E". und H is its Zariski closure. then H
is also a subgroup.

Proot. 1t suffices to show that H is closed under addition and inverses.
Let 4: Hx H — H’ be addition. For any algebraic map ¢ which is zero on
. we know ¢ must be zero on H. But then ¢ A 1s zero on H x H since it is
zero on G x G and H x H is the Zariski closure of G x G. But this means ¢
1s zero on H’. so H' < H. The argument for inverses is analogous.

LEMMA 4. Let f3,..... B,.be elements of Z, which are linearty independent
over (. and write t =3(w) as usual. Let F be the algebraic closure of the

quotient tield of the ring B. R the ring of integers of F. und M the maximal
ideal ot R. Let

G= Gy (1) Gu1)) | 1=30w), weM].

Then G is Zariski dense in E" (considered to be defined over F).

Proot. Recall that whenever w is in M. then J(w) converges to an
actual value on the formal group of E. Let H denote the Zariski closure of
G. Then by Lemma 3. H is a subgroup of E™. If H # E", then by Lemmas 1
and 2. there exist elements «,...., x, € ¢, not all zero, such that

n

Y 2,0,=0  Y(Q,,..0,)€H.

But then. we may write this as

n

R GEDY 1.[/7,](”:[ > 1,-3,-](1)=0
1 =1

1=

i=1
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for all ¢ on the formal group of £, so 27_, 2;f: =0. But this is not possible,
so we must have H = E".

We may conclude the proof of Theorem 3. Suppose that for some re 4,
we have ©(r) =0. This means

r(Gg,(1)s.r G (1)) =0.

But r is continuous in the Zariski topology, so it must be zero on all of E".

3. THE u-INVARIANT OF THE p-ADIC L-FUNCTION

The aim of this section is to apply the results of Section 2 to the measure

associated to the p-adic L-function. as discussed in Section 1. In particular,
we prove

THEOREM V. u(X,)=0.

In order to do so, we show that the p-invariant of each L, (s) is zero.
Indeed. it is shown in [ 1] that the u-invariant of X is equal to the sum of
the p-invarnants of the L, (s) for 1 <i<p-—2.

Recall from Section 1 that for each i, 1 <i< p—2, and for a suitable

choice of u. the integral power series expansion of the rational function on
the curve

d d

—log R,,(5, L) = —log [T (2™ Ry (=, L)y (18)
d= dz
is exactly the power series which gives the measure associated to L , /(s) as
in Section l(a).

LEMMA 1. For each i, 1 <i< p— 2. we have u(4;) =0, where the series

associated 1o 4, is the development in w of (d/dz)log R wilz, L)

Proof. We show that as a rational function on E, (d/dz)log R, (=, L)
does not reduce to zero mod /4, in fact, we exhibit its poles on E. Recall
that r=# W.

Let S={xed | u(x)#0}, and & = [{Re E| R is a point of x-division for
some x€ S|. Now, since all x€ .S are prime to z and prime to each other
(see [1. Lemma I1.7; 3, Lemma 287]), we have that reduction mod /4 is injec-
tive on .. We separate the proof into two cases.

Case 1. f., =1, 1e., r divides i. We explicitly write down the rational
function on the curve from (18):
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d
2 wa)—log [T (x(P)—~(R))

xe A Re E,.
R+*0
—2v(P)
= - 19
EA Ma)g.\‘(P)—x(R)’ (19)

from which it is easy to see that the poles must come from the points O and
Re . Now. in fact. the residue at O is exactly > ,. , u(x)(Nx—1)=0, so
there 1s no pole there. However, the residue at each R is —2u(x), and since
ulx)= =1 (see [1]). this does not reduce to zero mod .. Moreover. since

reduction mod , is injective on .Z, all the points in ¥ give poles of the
reduced function on E.

Cuse 2. f,# 1. The only difference with Casel is in the explicit
expression of the function associated to ~,:

{
z;zlx)—;—lognn(.\‘(P+Qf)—,\'(R))
x (= R T

_ —2v(P+ Q)
‘?%2"‘“’ NP+ Q) —x(R)

Here again. the poles come from the points —Qf and R— Q7 for all te G,
and Re 2. Now. the residue of cach pole at —QF is again
Soutx Nz —1)=0. so there are actually no poles there. But the poles
coming from the R — Q; have residue —2u(x). which as before is prime to
,» for each =z (see [3. Lemma 287]). Moreover. since each R— Q] 1s a
primitive z/ -division point. again reduction mod ,; is injective on this set,
so each R — Q7 gives a pole of the reduced function on E. This concludes
the proof.

LEMMA 2. The p-invariant of +¥ is zero.

Proos. In fact. we show that the u-invariant of 2, |, is not zero. from
which the result follows. Note that the characteristic function of pZ, is

(1 p)y> .- , 2% Now. the power series associated with 4, is the development
n ow oof 3>, ,uxnddzylog S, ,(P) when f, # 1. so by Section 1(b), the
power series associated with blpe, s S e HlxNdldz)

log [1s. +. Z..0(P + S). which by the functional equation (4) given in Sec-
tion |. can be written

re A4

1[ d 3
Y w1 | Soe trga 1P | (20)
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Now, by the chain rule, we can write 3., u(x)(#n/p)((d/dz)
log ¢, 0.,1([7]P) for (20), which allows us to reduce modulo ,. The poles
of this function come from the points —Q*+ S and R— Q™+ + S for all
t1e€eG,, Re ¥, and Se€ E,. But all the S reduce to zero mod £, so evidently
the residue of each pole is a multiple of p, and thus reduces to zero mod 4.

Thus the rational function in (20) is divisible by p, which concludes the
proof.

LEMMA 3. The u-invariant of the measure

Y wi(v) AF:(v)

re W
is zero.
Proof. As usual. we divide into two cases.

Case 1. f,=1.1e. r divides i. In this case, the measure in the lemma
becomes simply > .. 4 A¥ = (v), since w'(v)=1 for each v € W. But the poles
of 4* are given by the points Re ¥, and the v are isomorphisms of E, so
they only permute the poles. So 4A*-(v)=4* for each v. and the measure
can be written r~*. Now the result of Lemma 2 concludes the proof.

Case 2. f, # 1. Let us consider the set of poles of the form

We attach a P, to each Re . For each Pg, let v 'P, denote the set
‘vt ""(R—Q7)| ted,|. Now, since the orbit of Q; under the t lies entirely
in one congruence class modulo W, the v 'P, are compietely disjoint sets
for R fixed and ¢ varying in W. We show. moreover, that if
v 'Pg =t 'Pg, then R, = R,. For first of all, R, and R, would have to
be points of x-division for the same z. But then, letting f; act on both sides
of the equality, we would have R, = R,. This shows that for v fixed, the
poles of 2* (v) are given by the v ~'Pg for Re &£, and that all these poles
are distinct. It remains to be shown that no pole of A* (v,) can be a pole
of *-(v,) if v, #v,. Suppose we had R,, R,, t,, and 7, such that
v (R, — Q) =v, '"(R, — Q7). First. we see immediately that R, and R,
must be points of z-division for the same x. But then, letting x act on both
sides. we obtain

el (= = v (7).

which is impossible if v, # v, since the two points would be in different
congruence classes mod W.

We have now proved that all the poles of >, ,, w'(v) 2* - (v) come from
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v~ 'Pg for all ve W and Re %. Applying the methods in the proof of
Lemma | to these points. we easily compute that the residues all have the
form vu(x) for some ve W, and as before, that this is never congruent to
0 mod ,.: similarly, we see again that reduction mod / is injective on the
entire set of poles. This suffices to prove that the rational function
associated with 3. _,, w'(v) A* - (v) does not reduce to zero mod .

Now. for 1 <i< p—2. up to units in the Iwasawa algebra. L, (s) is
given by the (i — 1)th gamma-transform of 4, (see [1] for details), and
L, o(s) is itself given by a unit in the Iwasawa algebra. Thus. applying the
resuit of Theorem I in Section2 permits us to conclude that the
p-invariants of the L, (s) are zero for 0<i< p—2. This concludes the
proof of Theorem IV.

REFERENCES

1. D. BErNarbl. C. GOLDSTEIN. AND N. STEPHENS. Notes p-adiques sur les courbes ellipti-
ques. J. Reine Angew. Math. 351 (1984), 129-170.

. J. Coartes axp C. GoLpsTEIN. Some remarks on the main conjecture for elliptic curves
with complex multiplication. Amer. J. Math. 103 (1983), 411435,

3. J. CoaTES AND AL WILES. On the conjecture of Birch and Swinnerton-Dver. /nvent. Math.
39 (1977). 223-251.

4 J. Coates AND A, WiILES. On p-adic L-functions and elliptic units. J. Austral. Math. Soc.
Ser. A4 26 (1978), 1--25.

R Girrarp. Transformation de Mellin-Leopoldt des fonctions elliptiques. Publication of

the Unmiversity of Geneva. to appear.

6. C. GOLDSTEIN AND N. SCHAPPACHER. Séries d'Eisenstein et fonctions L de courbes ellipti-
ques a4 multiplication complexe. J. Reine Angew. Math. 327 (1981). 184-218.

. R. GREENBERG. On the structure of certain Galois groups. /nvent. Math. 47 (1978). 85-99.

- J. LusBiN. One parameter formal Lie groups over p-adic integer rings. 4nn. of Math. 80
(1964). 464484,

9. W SiINNOTT. On the p-invanant of a rational function. [fnvent. Math. 75 (1984). 273-283.

10. R. GiLrLarD. Unites elliptiques et fonctions L p-adiques. Compositio Fascicule 1 (1980).
S7-88.

(})

‘N

Printed by the St. Catherine Press Ltd.. Tempeihof 41. Bruges. Belgium



Article 2. Interpolation p-adique de valeurs spéciales de fonctions L.

Soit K un corps quadratique imaginaire. Soit K sa cloture algébrique et fixons un
plongement de K dans C et C, pour tout nombre premier p. Soit F' une extension de K
de degré n. Un caractére de Hecke ¥ de K sera appelé K-admissible s'il existe k() € N
et (1) € N— {0} tels que 3 ((a)) = mkw)Np/K(a)‘j("’) pour tout a € K* congru
a 1 modulo le conducteur my de 3. Si 9 est un caractere de Hecke de F' qui est K-
admissible, on pose A() = T'(j(y))"(2mi)~" ¥ L(y,0), ot L(¥,s) est la fonction L de
Hecke attachée a . Une conjecture de Deligne prouvée par Harder prédit la valeur de
A(%) a multiplication par un nombre algébrique prés. Dans cet article, nous étudions le
comportement p-adique de A(¥).

Soit p # 2,3 un premier qui est décomposé dans K. Soit p le premier de K induit
par le plongement de K dans C, et P l'autre premier de K sur p. Or il est connu que
tout caractére de Hecke ¢ de F' de type Ay (et done tout caractére de Hecke de F' qui
est K-admissible) induit un unique caractére continu 1(?) de Gal(F?®/F) & valeurs dans
C;. Si m est un idéal de I’anneau des entiers de F\, soit |m| I'ensemble des places de F
qui divisent m, et si S est un ensemble fini de places de F' qui ne divisent pas (p), soit
GF,s,p (resp. GFsp) le groupe de Galois group sur F' de 'union des extensions abéliennes
de niveau m telles que |m| C SU|(p)| (resp. |m| C SU|p|). Si ¢ est un caractére de Hecke
de F qui est K-admissible, de conducteur my, alors 1(P) se factorise & travers § F,S,p pour
tout S tel que |my| C S U |(p)| et méme & travers Grsp si k(¢p) = 0 et |my| C SU |p|.
Finalement, soit F'V conjugué complexe de F' et si ¢ est un caractére de Hecke de F,
soit ¥V le caractére de Hecke de FV defini par ¥V(a) = N(a)~'¢~!(d) pour tout idéal
fractionnaire a de FV.

Théoréme: (i) Il existe une mesure unique pg sur Gr s, telle que pour tout caractére de
Hecke v de F qui est K-admissible et tel que »(P) se factorise & travers G F,s,p (et avec
’hypothése supplémentaire que k(1)) =0 ou j(¢) =1sin > 3), on a:

/g P dus = Egy(6¥) i (9) W ($) Es($)A().

(ii) Il existe une unique pseudo-mesure (qui est une mesure si S # @) caractére de
Hecke K-admissible 3 de F tel que %(P) se factorise & travers Gr s p, on a:

/g P dhs = B (9" Wo($) Es($)AG),

ou si T est un ensemble fini de places, E7(3) est le facteur d’Euler au-dessus de T (en
s = 0) de la fonction L attachée a ¥ et W;(¢) est une racine locale.
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P-adic Interpolation of Special Values of Hecke L-functions

Pierre Colmez and Leila Schneps

0. Introduction

Let I be a quadratic imaginary field. Let K be its algebraic closure and fix an
embedding of I¥ into C and C, for all primes p. Let F be an extension of degree n of
LK. A Hecke character v of K will be called I{-admissible if there exist k(¢) € N and
j(¥) € N = {0} such that ¥((a)) = Wk(w)Np/K(a)"jW’) for all @ € K* congruent
to 1 modulo the conductor my of ¥. If ¥ is a K-admissible Hecke character of F, we
set A(¥) = T(j(v))"(27i)~™¥) L(4,0), where L(3, s) is the Hecke L-function attached to
v. A conjecture of Deligne [D] proved by Harder [H-S| predicts the value of A(¢) up to
multiplication by an algebraic number. The aim of this paper is the study of the p-adic
behavior of A(¥).

Let p # 2.3 be a prime splitting in . Let p be the prime of K induced by the
embedding of I into C, and P the other prime of K above p. As observed by Weil [W1],
any Hecke character w.of F of type Ay (thus any K-admissible Hecke character of F) gives
rise to a unique continuous character ¥?) of Gal(F*®/F) with values in C;. Ifmisan
ideal of the ring of integers of F, let |m| be the set of places of F' dividing m, and if
S is a finite set of places of F' not dividing (p), let GF,s, (resp. Gr,sp) be the Galois
group over F' of the union of all abelian extensions of level m such that |m| C S U |(p)|
(resp. |m| C SU |p|). If ¥ is a K-admissible Hecke character of F' of conductor my,
then ¥(P) factors through G s, for all S such that |my| C S U |(p)| and even through
Grsp if k() = 0 and |my| C SU |p|. Finally, let FV be the complex conjugate of
F and if ¢ is a Hecke character of F, let ¥V be the Hecke character of FV defined by
»Y(a) = N(a)~'¢~1(a) for all fractional ideals a of FV.

Our main result can be stated as follows:

9



Theorem: (i) There exists a unique measure ps on Gr s, such that for all K-admissible
Hecke characters ¢ of F such that (P) factors through Gr s, (and with the additional
assumption that k(¢) =0 or j(¢p) = 1 if n > 3), we have:

/g OP dus = By (") Epg(¥)Wo () Es($)A().

(ii) There exists a unique pseudo-measure (which is a measure if S # 0) such that for
all K-admissible Hecke characters 1 of F' such that 1(?) factors through G F,S,p, We have:

/g B P dhs = Epgy (4" )Wo($)Es($)A®),

where if T is a finite set of places, Ep(1) is the Euler factor above T (at s = 0) of the
L-function attached to v and Wy(3) is a local root number.

Remark: Stated like this the theorem does not really make sense because in each equality,
the left hand side belongs to C, and the right hand side to C. But as we have fixed
embeddinés of K into C and C,, if we choose an elliptic curve E defined over K with
complex multiplication by K, a generator n of H!(X,0x) and a generator v of the 1-
dimensional K-vector space H;(E(C),Q), we can define a p-adic period 5, = f7 n and a
complex period 7 = f1 n (cf. III §2 for details). The fields K (1) and K(n,) as well as
the isomorphism between them sending 7., to 7, are independent of the choices of E, 7
and v and all equalities take place in K (7c0) ~ K(7,).

Such measures have been previously constructed in the case n = 1 by Manin-Vishik
[M-V] and Katz [K]. Using ideas of Coates-Wiles [C-W], Yager [Yal],[Ya2] and Tilouine
[T] (see also de Shalit’s book [d Sh]) obtained a much more elementary construction of
this measure (still in the case n = 1).

We obtain our theorem in the following way. Using a method developed in [Co 1],
similar to Shintani’s method [Sh| in the totally real case, we can define a value A’(%)
explicitly given as a polynomial in Kronecker-Eisenstein series attached to lattices in K
and a priori depending on various auxiliary choices (mainly the choice of “Shintani decom-
position”) which is formally (i.e. without worrying about convergence problems) equal to
A(). To prove that A’(¥) = A(%) in general turned out to be beyond our capacities,
but by a suitable modification of the methods of [Co 1], we were able to prove the desired
equality whenever n = 1,2 or n > 3 and k() = 0 or j(¢) = 1. Now, having these explicit
formulae allowed us to deduce the general case from the case n = 1. A by-product of the

existence of this measure is that A’(¢) is independent of all choices.
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If y is a continuous C}-valued character of G5, (resp. Gr,s,p), We set L, s(x) =

fg”'? X dps (resp. Lp s(x) = ng's’p x dAs. We can then make the preceding theorem
more precise as follows:

Main Theorem: (i) L, s(x) is a holomorphic (and even Iwasawa) function of x.

(ii) If ¥ is an admissible Hecke character of F' such that 9(?) factors through Gr s,
then

Ly s($'P) = E(¥)Efg (V) Wa(9)Es($)AT ().

(i11) If the conductor of x is divisible by all the elements of S, then there exists a p-adic
unit TV(P)(x) such that W) (x)L, s(x) = Lp,s(x"), where xV is the character of G, 3y
obtained from Y in the same way as ¥V was obtained from 1 for 3 a Hecke character of

F.

(iv) Lp, s(x) is a meromorphic function of y, holomorphic except for a simple pole at

\'=1if5=@.

(v) If ¢ is an admissible Hecke character of F such that y(?) factors through G s p,
then Ly, s(¢?) = Eg(v¥)Wp(¥)Es(v)A().

The paper is organized as follows. After introducing in I the basic notations and
recalling some basic facts about Fourier transforms of functions on adéles, we present in II
a slight modification of the Shintani-like method developed in [Co 1]. In part III, we prove
the existence of p-adic measures attached to n-dimensional generalizations of Eisenstein-
Kronecker series attached to lattices in K. As a consequence of the existence of these
measures we derive the fact that all choices that we had to make in part II lead to the
same result. In part [V we prove a number of functional equations satisfied by A(v) and
apply the result of the two preceding parts to compute A(¢). Finally, part V is devoted
to the construction of us and As using the measures constructed in part III and to the
study of the p-adic L-functions L, s and Ly s.
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I. Notations and Definitions.

Let K be a quadratic imaginary field. Let a — @ denote the non-trivial automorphism
of K. Let F ~ K[X]/P(X), for P an irreducible polynomial of degree n, be an extension of
degree n of K. Let FVY = K[X]/P(X): We still write o — @ for the antilinear isomorphism
from F to FV sending X to X. We shall use H to denote either F or FY so HY will be
FV (resp. F)if H = F (resp. H = FV). Let Oy be the ring of integers of H, Uy be
the group of units of Oy, I(H) be the group of fractional ideals of H, I*(H) C I(H) be
the set of ideals of Oy, Cl(Oy) be the group of ideal classes, C(H) C I*(H) be the set
of ideals a of Oy such that Op/a is cyclic, C°(H) be the set of principal ideals of C(H),
P(H) be the set of prime ideals of Oy, P(H) be the set of finite subsets of P(H), Ay
be the ring of adéles of H, A{I be the ring of finite adéles of H and dy be the absolute
different of Oy. If V is a subgroup of Uy let VV = {3 | v € V'} be the corresponding
subgroup of UY;. If a € I(H),leta = {@ | a € a} € I(HY) and if S € P(H), let
S={plpeS}ePHY). Ifme I(H),let |m|={q € P(H) | vg(m) # 0} € P(H) and
if S e P(H), let Is(H) = {a € I(H) | la|nS = 0}. Also let Op, s (resp. O ) be the
subring of H defined by z € Op,s (resp. OY g) if and only if vq(z) > 0 if q € S (resp.
q¢S5) .

Fix an embedding of the algebraic closure K of K into C. Let Yy oo = HQQC ~ Y} X
Y,, where Y] = HQgCand Y, = HYQk C. Let 1,...,7, be the n embeddings of H into
K; we obtain an isomorphism of ¥; (resp. ¥;) with C™ sending a®1 to (1(), ..., Tn(e))
(resp. to (1i(@),...,ma(@)) ). With these identifications, H and HV become dense K-
vector subspaces of C* and a € I(H) becomes a lattice in C". If y = (y1,...,y») and
z=(z1,...,2n) belong to C", let Tr(y) = Y7, vi; N(y) = 1=, ¥i; ¥z = (v121,- - -, YnZn);
(y | z) = Tr(yz +yz) and (y | )0 = exp(—2m2{y | 2)). If B is a basis of H over K, we
let BY be the basis of HY over K dual to B with respect to ( | ) and if B is a finite set of
bases of H over K, we let BY = {BY | B € B}. If a € I(H), let a¥ be the dual lattice of
a with respect to (| ). Then, a¥ € I(HV) and we have a¥ =a~!d3} = (ady)~.

If q € P(H), let Hq be its completion at q and Oq be the ring of integers of Hq. If
S € P(H), let Hs = [[ c5Hq and Os = [[;¢5Oq. We can describe A}, as the set of
£=(...,2q,...)suchthat 4 € Hq forall q € P(H) and z4 € Og for almost all q € P(H).
We can define a pairing ( | )y on A{{ X A{{ with values in the group of roots of unity
of K~ C C* in the following way. The above defined pairing { | ) on C™ x C™ induces a
pairing on H x HY with values in Q which we can extend to a pairing on AL X Aﬁv with
values in Aé, and usinifile canonical ’iicfmorphism between A,fQ /11 » Zp and Q/Z, we set
(z | y)u = exp(—27i(z | y)) where (z | y) is the image of (z | y) in Q/Z. This pairing
induces local pairings ( | )s on H X HZ and we have (z | y)u = [[4epin)(%a | ¥g)al-
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Using these pairings, we can define the (local and global) Fourier transform. Let Sg g
be the space of K-valued locally constant compactly supported functions on Hs. IfaC b
are two fractional ideals of Hs and ¢ € Sg p is constant modulo a and zero outside b, we
define its Fourier transform Fs(¢) € Ss u by:

N—(a") .
Fs(o)(y) = { Sty Lzeb/ad(@)z |y)s ifzea’
0 ifz ¢ a¥

where a¥ is the ideal of H% dual to a with respect to (| )s and Ns(a) is the norm of a as
a fractional ideal of Hgs. It is an exercise to verify that this definition does not depend on
the choices of a and b and that F5(Fs(¢))(y) = ¢(-y).

Let S(H) be the space of K -valued locally constant compactly supported functions on
A{,. The fractional ideals of A{, are in 1-to-1 correspondence with elements of I(H). So
if a C b are elements of I(H) and ¢ € S(H) is constant modulo a and zero outside of b,
we define its Fourier transform Fy(¢) by the same formula as before (with the subscript
S replaced by H) and we have Fyv (Fu(4))(y) = ¢(—y).

If S € P(H), let Ss(H) be the subspace of S(H) of functions of the form
os(rg)Hq¢5 lo,(zq), where ¢5 € Ssy and 1lp, is the characteristic funtion of Oq.
There is an obvious isomorphism between Ss i and Ss(H) and S(H USGP(H) Ss(H).
fSNS =0 and 0 = OS(xS)quss lo,(zq) € Ss(H) and ¢' E Ss' y. we define
o' *0 € Ssus/(H) by ¢' x o(z) = ¢'(zs )ps(zs) quSUS, lo,(zq). Finally, if b € I(H),
define ép € Sjp|,i by éb = 1o}, — b where 1y, is the characteristic function of b con-
sidered as an Hjp| fractional ideal, and if b € I(HY), let &y € Sip|,u De defined by
oy = 10|E| — N(b)™! le-t. Let v be a generator of the fractional ideal of H|y,| generated
by dy. Then we have

f|b|(6_ (z) = bp(v2).
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I1. Shintani’s method.

In this section, we shall recall some results obtained in [Co 1| and improve a little bit
on them. Let k¥ € N, j € N — {0}, and let V be a subgroup of finite index in Uy. Let
Sk,j,v(H) be the subspace of S(H) of functions satisfying:

$(vz)Na/R(0) Nujx(w) = g(z) forall zeAf and veV. (1)

If ¢ € Sk,j,v, we set

k

1
TV vr)M > e

BEH*[V

Ak, j,¢,8) =

This expression is independent of the choice of V' and converges for Re(s) >> 0. By a
theorem of Hecke, A(k, j, ¢,s) admits an analytic continuation to the whole complex plane
and a functional equation relating it to A(j — 1,k + 1, Fy(¢), —s). We set

A(k,j,9) = Ak, J, ,0), (3)
and the functional equation gives
A(k,5,9) = (=1)"U"ViA(f = L,k + 1, Fr(9))- (4)

From now on, V will be a torsion free subgroup of finite index of the subgroup of Uy
of elements of norm 1 over K. Let B(V) be the set of finite sets of bases of H over K

satisfying:
=Y fa(vz) (5)
veV peB
where, if B = (f1,B,..., fa,B) is a basis of H over K, we set
= det(B) [[(Tr(fip2)™ (6)

i=1

for all z € (C*)" such that the right hand side converges.

Remark: This condition is an “algebraic” version of Shintani’s condition [Sh] (in the to-
tally real case), that the union over B € B of the cones generated by f; g,..., fa,B is a
fundamental domain of (R} )" modulo the action of V.
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Lemma 1: (i) B(V) is not empty.
(i1) If B € B(V), then BY € B(VV).

Proof: We shall use theorem 1 of [Co 1] to construct explicit elements of B(V). By a
theorem of Dirichlet, V' is of rank n — 1. Let us choose a basis 71,...,n7,-1 of V, and for
eacho € Sp_y,let fi, =1land f; , = Hj<i No(j) for 2 <4 < n. Write ¢(o) for the signature
of o and suppose that (fi,s,..., fn,0) is a basis of H over K for all o € S,—; (we can always
find 79,....7n—1 so that thls is true). Then there exists a sign € = €(n1,...,7n-1) such
that. if B = (f1,6,---+fn,0c) When ee(0) =1 and By = (fno, f2,05-- - fn—1,0, f1,0) When
ee(0) = —1, then B = {B, | 0 € S,_1} € B(V). Part (ii) of the lemma follows by taking
the Fourier transform of both sides of (5) and using the fact that the Fourier transform of
Fp(z) with respect to ( | )oo is t"Fpv(2).
Let z; = (zi1,....2in) for ¢ = 1,2 be variables in Y; ~ C". Let V; = H" ( aza,,)

We deduce from (5) and the fact that V, ov = V; if v € V, that whenever the right hand
side converges and B € B(V'), we have

k

L™ S 3. 1
(2iz)n) (3 -+ 30)) 7z7r)n(k+1) (ZE;/ 32;3 vB + 21]22)o0 fB(vE + 1)) 1 =2,=0
v €
(7)
If B is a finite set of bases of H over K and ¢ € S(H), we set
K(z1,22,6,B) = Y_ Y $(B)fB(B + 21)(w + 21]22)oo- (8)

BEH BeB

This series is not absolutely convergent but makes sense as a distribution, and the resulting
distribution can be expressed in terms of elliptic functions attached to lattices in K (cf.
[Co 1] and III §3 of this paper).

If o € Sk.;v and B € B(V), we set

1 1 21 Z9
(

F(zl’:%d)’s):[—U_H:—V]W ¢ 2—75,%,05»3)- (9)

Now. plugging (7) into (2) with s = 0 yields the following formal identity:

A(k,j, ¢) = VIT'VE(F (21,22, ¢, B)) (10)

21=22=0"

The main problem with (10) is that F(z, z2, ¢, B) is in general not regular at z; = z, = 0.
In fact. we have the following lemma:

Lemma 2: The singularities of I{(2, z2, ¢, B) are simple poles situated on the hyperplanes
Tr(fi.B(3+ z)) =0 (resp. Tr(fipv(B + z)) = O) where (§ runs through elements of H
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(resp. HV) such that ¢(8) # 0 (resp. Fu(4)(B) # 0), B runs through elements of B and
1<:<n.

Proof: The proof results from the expression of K(z1, 22, ¢, B) in terms of elliptic functions.

Remark: The poles on the hyperplanes of equation T'r( f; B(8 + z)) are already apparent
in formula (8); the others appear if we use the following functional equation which is a
direct consequence of the Poisson summation formula:

I{(21,22,¢,B) = 2.n(‘zl l 22)001{(3% _zl7fH(¢)an)° (11)

We shall say that (¢, B) satisfies the condition (*) if K(z,22,9,B) has no singularity at
z1 = zo = 0. This is equivalent to

1) é(z)#0=>Tr(fipz)#0 forall € H, Be€B and 1<i<n.
2) Fu(o)z)#0=Tr(fipvz)#0 forall z€ HY, B€B and 1<i<n.

We shall say that (¢, B) satisfies (**) if it satisfies (*) and if we have moreover

3) #z)#0=>Tr(fr)#0 forall z€ H and f € &B)
4) Fu(z)#0=>Tr(fz)#0 forall z€ HY and fe€&(BY),

where £(B) (resp. £(BY)) is a finite subset of H (resp. HV) which will appear in the proof
of Theorem 3.

If (¢,B) € Sk,jv(H) x B(V) satisfies condition (*), we set
Ag(k,j,8) = Vi VE(F(21,22,9,8)), _, _, (12)

and

Fj(22,6,B) = Vi (F(21, 22,4, B))

Let g be a C'*° compactly supported function on C equal to 1 in a neighborhood of 0. Let

(13)

21=0"

e > 0 and pi(s) = ik%’g—#%, and set
Ag(k,j5,¢,5) = /Cn FJ(ZI’¢7B)H(g(ez2,z)“k(3)wm)' (14)

1=1

Theorem 3: (i) A (k,J, 9, s) is a meromorphic function of s € C and the locus of its poles
is independent of e.

(i) When € goes to 0, Ag (k,j,d,s) converges uniformly (outside the poles) to
A(k,j, ¢,s) on each compact subset of Re(s) > % + 1.
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(ii1) For all € > 0, we have Ag ((k,J,¢,0) = Ag(k, ], d).

(iv) If (¢, B) satisfies condition (**), then Ag (%, j, ¢, s) converges uniformly (out-
side the poles) on each compact subset of Re(s) > g — =75 (tesp. C), if n > 3 (resp.
n=12).

(v) AB(k,j,0) = (=1)"U=Di*Agy (j — 1,k + 1, Fu(9)).

Corollary: If (¢, B) satisfies condition (**), we have Ag(k,j,¢) = A(k,7,4)if n= 1,2 or if
n>3andk=0o0rj=1

Proof of theorem 3: (v) is an immediate consequence of formula (11). Using the same
method as in [Co 1. p. 198], we see that A(k, j, #, s) is a finite combination of the functions
studied in [Co 1, II]. Granting this, (i) follows from [Co 1, II Lemma 8], (ii) from [Co 1,
II Lemma 9] and (iii) from [Co 1, II, §6]. The only thing which is new is (iv), which will
allow us to remove from [Co 1, Th. 5 and 6] the meaningless condition about embeddings
of F into K. This improvement is made possible by replacing Lemma 1 of [Co 1, III] by
the following stronger theorem of Schmidt:

Lemma 4: (Schmidt’s subspace theorem) Let é > 0 and {(Lj1,...,Ljna) |7 € J} be
a finite set of families of n linearly independent linear forms with algebraic coefficients.
Then there exists a finite set £ of elements of HY such that for all ¢ € S(HV), the set of
elements of HY satisfying

(i) ¢(z) # 0
(i) there exists j € J such that [[1, |L;,i(z)| <[ =]~

is contained in the union of the hyperplanes of equation Tr(fz) = 0 for f € £ up to a
finite set.

For the proof of this statement see [Sch, Th. 7TA]. Let us go back to the proof of (iv).
Let & > 0. A slight modification of the proof of [Co 1, II, Lemme 10] shows that there
exists a finite set £L(BY) = {(Lj1,...,Ljn) | j € J} of families of n linearly independent
linear forms with algebraic coefficients (they are the Ny ; of [Co 1, Th. 2]) such that if,
for all j € J, the set of z € HY such that Fu(¢)(z) # 0 and [[i, |L;i(2)] <z |~ is
finite, then Ag (%, 7, ¢,s) converges uniformly (outside the poles) on each compact subset
of Re(s) > %— Q(nl—i%}:-}f—m (resp. C) if n > 3 (resp. n = 1,2). To finish with the proof,
we just have to take £(B) (resp. £(BY)) of condition (**) to be the set £ associated to
L(BY) (resp. £(B)) and § = (4(n - 1))_l by Lemma 4.

When (¢, B) does not satisfy condition (*), we cannot define Ag(k, j,9) by formula
(12). As the singularities of F(21, 22, ¢,B) are simple enough, we could give a meaning
to (12) by taking a suitable finite part as in [Co 1, II, §6], but here we shall use the
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standard technique of replacing ¢ by a suitable linear combination to eliminate the pole.
IfSeP(H)let Sk ={qN Ok | q€ S} € P(K) and if S € P(K), let SH = {q € P(H) |
3p € S such that q|p} € P(H).

Lemma 5: Let £ be a finite subset of H*; then there exist S(€) € P(H) such that for all
S € P(H), all b € C(H) satisfying |b| N (S(€) U(Sk)®) = 0 and all f € £, we have: if
z € b™10y 5 — O s, then Tr(fz) ¢ O% (5, n and in particular T'r(fz) is non-zero.

Proof: Let S' = |du| Usee |(f)| and S(€) = (Sk)?. Let b € C(H) be such that |[b| N
(S(&)U(Sk)?) =0 and « € b™10% g — Oly 5. There exists q € |b| such that ve(z) < 0.
As Op/b is cyclic, q is of degree 1 and if p = qN Ok and q' € |p| — {q}, then q' ¢ |b|,
hence vg/(z) > 0; and this implies, as q ¢ S’, that vp(Tr(fz)) = vq(z) which implies
Tr(fz) ¢ O (sy)a-

If S € P(H) and §' € P(HV), let C(S,5") = {(by,b2) € C(H) x C(HV) | [bs| N
(Sk)H = 0,|ba| N (S4 )" =0 and |by | N |be|x = 0}, and if T € P(H), let C1(S,S") =
C(SUT,S5'UT). Also let C°(S,S") (resp. C3(S,S")) be the intersection of C(S,S")
(resp. C7(S,S")) with C°(H) x C(HV). If ¢ € S(H), and by € I(H),bs € I(HV), set
Bby by = 6b1_1 * 5:2_1 * 0, whenever this is defined.

Lemma 6: Let B be a finite set of bases of H over K. Then there exist S = S;(B) € P(H)
and S’ = S}(B) € P(HV) such that, for all T € P(H), all ¢ € Sp(H) and all (by,b;) €
Cr(S,S"), the conditions (*) and (**) are satisfied by (@b, b,, B)-

Proof: b, ,b,(z) # 0 implies z € bI_IOQI,T — Oy 1 and FH(db,,b,)(z) # 0 implies z €
by lO’HV’-T - O’HV,T‘ Hence, the result is an immediate consequence of Lemma 5.

Let OF act on Sy, by ¢ — ¢ oy where ¢ o y(z) = ¢(yz). Any ¢ € Sy, has a
unique decomposition ¢ = ) ¢y where ¢, = 0 for almost all x, x running through the
locally constant characters of OF, and ¢, oy = x(7)¢y for all vy € O%. Now, using the
identification between Sy,r and S7(H), we can decompose any ¢ € ST(H) as ), ¢y and
if ¢ belongs to Sk ;v (H) then so does ¢. Let (by,by) € C3(S1(B),S;(B)) and 1 € H
be a generator of by and #; € HY be a generator of b,. If ¥ € H* and ¢ € S(H), let
¢ oy € S(H) be defined by (¢ o v)(z) = ¢(yz). Then we have )

(¢X)b!vb2 = d’X_X(BI)_1¢x°ﬂ1_N(b2)X(B-2)¢x032—1 +N(b2)X(B2,81_1)d’xo(ﬂlﬁz—l)a (15)

but as N k(1)
v
Ak, 5, 607) = ———A(k,j,6), (16)

Ny/k(7)
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we obtain

Ak, 3,0) =Y vs, 82k, 5, X)ACk, , (6 )by ba), (17)
X

where

V.Bl,ﬂz(kaj> X) = (1

X(B) T Nuyk(BiY -1, X(Ba)Ngv k(B2)F | 1
- ) (1- . (18)

—_k —_—j-1
Nuk(B1) Nuv/(B2)

To be coherent with formula (17), we set, if ¢ € S7(H) N Sk,;,v(H), B € B(V) and
(blsb?-) = ((/81)3('32)) € CT(SI(B)’S;(B))?

‘\B.ﬂl,ﬁz(k’ja ¢) = Z Vﬁl.ﬂz(kﬂj’ X)"'\B(k’j’ (¢X)b1,b2)’ (19)

X

and the right hand side is well-defined by Lemma 6.

Remark: We expect that Ag 3, 3,(k,7,0) = A(k,J,0) and by the corollary to theorem 3,
this equality is true if n = 1,2 orif n > 3 and £ = 0 or § = 1. Moreover, we shall prove
using p-adic methods (cf. III §4 of this paper) that, to a large extent, Ag g, 3,(k, , ¢) does
not depend on the auxiliary choices of B, #; and f;.
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III1. Construction of the basic measure

§1. P-adic measures

Let p # 2,3 be a prime which splits in K. Fix an embedding of K into C, (and keep
the previous embedding of K into C). Let p be the prime ideal of O determined by this
embedding, Op be the completion of Ok at p and P the other prime ideal of Ok above p.
Let Yo p =OH ®@0x Op ¥ Onv ok O and Yy, = Oy ®Z, =Y; x Y, where Y7 =Yy
and Y3 = Ygv . We can also describe Y; (resp. Y2) as the topological closure of Op (resp.
Opnv) into C? via the map a — (r1(a),...,Ta(@))( resp. (T1(@),...,Ta(a@))). With this
description, we can write y; € Y; as (yi,1,---,¥in). If 2 € C}, weset Tr(z) = 3, z and
N(z) = H:;l zi. If £ is a prime ideal of Ok, let dy ¢ be the part of dy above ¢. Fix a
basis B = (f1,...,fn) of d;I%OH.p over Ok . Let B* = (g1,...,9n) be the basis of H
over K dual to B with respect to the bilinear form Try,x(zy) and BY = (f;V,..., fa")
and (B*)Y = (g1V,...,gn") be the bases of HY over K dual to B and B* with respect to
(]). Then B* is a basis of d,‘,}pOH,,J over Ok,p, BY is a basis of dgl\,,sOyv’p over Ok,p
and (B*)V is a basis of d;{l\,,pOHv,p over Ok p. .

Ify; € Vi, weset z; = (zi1,...,%in), Where z; ; = Tr(g;jy1) and z2,; = Tr(g;"Vy2).
The map y; — z; induces an isomorphism of Op-modules between Y; and Op ~ Z3. If
zi =(zi1,-..,2in) for i=1,2 is sufficiently close to zero in C3, weset w; = (wi1,..., Win),
where wy j = exp(—Tr(fjz1)) — 1 and w,; = exp(—Tr(f;V22)) — 1.

Let A be a closed subring of O the ring of integers of C,. A A-valued measure on a
compact and totally disconnected topological space X is a continuous (for the supremum
norm) linear map on the space of continuous functions on X with values in C, whose
values on characteristic functions of compact open subsets of X are in A. If u is a A-
valued measure on Yy ,, we define its Fourier-Laplace transform by

2 n
ezp(—=Tr(y121 + y222))dp = /Z2 H H(l + w; ;)" dAp,

p 1=1j7=1

Fy(z1,22) = /

YH,p
where \p is the measure on Zf," deduced from p via the map (y1,y2) — (z1,z2).

Lemma 7: If p is a A-valued measure on Yy p, then F,(z, 22) is given by a power series in
a neighborhood of zero, and reciprocally, if F(z1,2;) is a power series, then for F(z;,2)
to be the Fourier-Laplace transform of a A-valued measure, it is necessary and sufficient
that F(z1,22) expressed in w;,w; is a power series with coefficients in A.

Proof: The general case reduces easily to the case n=1 which is well-known.
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We shall write Wpg ,(wi,ws) for the Fourier-Laplace transform of p expressed in
wy,wy. Ify € H/ d;ﬁPO H,p, We define a locally constant character x. of Y; identified with
Onv ®0x Op by the formula x+(y1) = (7 | y1)jp| (cf. I), andif vy € HV/dI';lv’pOHv,p, we de-
fine a locally constant character xy of Y2 ~ On ®o, O by the formula x+(y2) = (2 | 1)
The map 7 — X induces an isomorphism from H/dg' ,On,p (resp. HY/dgy ,Onv p) to
the group of locally constant characters on Y7 (resp. Y3).

Lemma 8: Let j,k € Nand 7, € H/d;prH,p and v, € H"/dl}l\,’pOHv,p. Then

(i) fYH.p X'fl(yl )X‘Yz(y2)N(y1 )JN(y2)k d'll = V‘]’.vg (FX‘n X“Izl‘(zl’ 22)) 21=22=0"

where, if ¢ is a continuous function on Y , then ¢u is the measure defined by

Sy, ¥ d(n) = Jy,  o¥dp, and
(i) Fyy, xvpn(z1:22) = W u(o. oy 6 5(1 +wij) — 1,...),
where the ¢€; ; are p>®-th roots of unity defined by €; ; = x, (_f_]) and €2,; = xv,(f; V)

Proof: (i) follows by developing e:z:p( Tr(yl z1+1Y222)) as a power series and (ii) is evident

if we remark that \,(y:) = [[}=, € "7, which gives

z.
F\n\n# 21, 72) HH €i,j 1+w,11 7 dAp.

YH P 1_1 ]._

Our aim in the rest of this section will be to prove that under suitable conditions,
the holomorphic part of K'(z1,22,¢,B) is the Fourier-Laplace transform of a measure on
Y .p. We shall first consider the case H = K, and this will involve the study of the p-adic
behavior of Eisenstein-Kronecker series. This is the aim of the next paragraph, and in the
paragraph after that we shall reduce the general case to the case H = K.



§2. P-adic properties of Eisenstein-Kronecker series.

Let us begin by recalling the definitions and some basic facts about Eisenstein-
Kronecker series. We refer to [W2] for the proofs. Let L be a lattice in C and A(L) =
7= 1Vol(L). If u,z € C, we set

(z,u)r = exp(A(L) ™! (27 — uz)). (20)
If k£ > 1is an integer, we define for Re(s) >> 1 the function H(s, z,u, L) by the formula

Z+w)k

Hk(S,Z,U,L) = F(S)A(L)a_k Z'(W,’U.)L Iz +w|23 '

w€L

(21)

This function has an analytic continuation to the whole complex plane and satisfies the

functional equations

Hi(s,z,u,L) = (u,z) Hx(k + 1 — s,u,z2,L), (22)
He(s,z,u,L') = [L': L¥* Y (v,u)r Hi(s,z +7,[L' : L]u, L) (23)
YeEL'/L

if L is a sublattice of L', and
Hi(s, Az, u, ALY = A% Hy(s,z,u,L) for A€ C. (24)

From (4) and (5) one deduces that if u € QL and b € C is an endomorphism of L such
that bu € L,
*
Hi(s,z,u,L) = W Y (v bu)LHi(s,y +b7"2,0,L). (25)
v€b-1L/L

If j is an integer such that 1 < j <k, we define

Ekyj(z,L) = Hk+j(j,2,0,L) and EJ'(Z,L) = Eo,j(Z,L), (26)
aj(L) = E;(0,L) = Ey,;-1(0, L), (27)

and
p(z,L) = Ea(2,L) — az(L) (so p'(z,L) = —E3(Z,L)). (28)
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Ey(z,L) has the following Laurent expansion in a neighborhood of 0:

EI(Z,L) "‘TL—)’ +z + Zan+l(L)£:;_z)_n_’ (29)

and Ey j(z,L) — (A?L)> PT(fl is real analytic in a neighborhood of 0.

Proposition 9: There exists a (non-unique) polynomial Pj ; with rational coefficients in
the variables E(z,L) = {Ei(z,L),....Ej(z,L),...} and a(L) = {a1(L),...,q;(L),...}
such that Py j(E(z,L),a(L)) = Ek,j(z, L) for z ¢ L.

Proof: The proof is by induction. The statement is trivial for k = 0 and j > 1. Moreover,
as %Ek_]-(z,L) = —FE% j+1(z, L), if the statement is true for (k,7) it is true for (k,j + 1).
Thus the problem is to show the existence of Pr4;; assuming the existence of Py ; for
k < nandj> 1. If we write down a Laurent expansion for Ep4;,1(2, L)+ =5 Ei(z, L)"+?

n+2
in a neighborhood of 0, we obtain

n n+2-—k

n+2 ZZQ"kJ(aL)( z )F(J)+R()

zJ
k=0 ;=1

Ensi1a(z,L) +

where the Qn «,; are polynomials with rational coefficients and R,(z) is real analytic in a
neighborhood of 0. From this we deduce that

n n+42-k
Env1a(2.0)+ ( )n+2 Z Z PkJ z L), (L))Qn,k,j(a(L))

k=0 ;=1

1s a doubly periodic real analytic function annihilated by a power of (%) and hence a
constant. Using the fact that E,411(0.L) = an4+2(L) we find that this constant can be

expressed as a polynomial in the aj(L) with rational coefficients, which concludes the proof.

Let E be an elliptic curve with Weierstrass model y* = z* — g2z — g3, defined over O
with complex multiplication by Ok and with good ordinary reduction at p. Let L be the
period lattice of w = dz/y. Choose a basis (v1,72) of Hi(E(C),Z): then fv: w=r1/) w
for some 7 € ', and a = Z + Zr is a fractional ideal of K. We assume that we have chosen
our basis (71,72) in such a way that vp(a) = vg(a) = 0. Let n = (z + az(L))w. Then
(w.n) is a basis of HLz(E) and if a € Ok, then a*w = aw and a*n = an in HLx(E). Set

= f‘r1 w and Ne = f,n n. Using Legendre’s relation, we obtain A(L) = —Teo/Neo- If
a € K. welet & = aws € QL, and if P is a torsion point on E, we let 2(P) € I be any
element such that Z(P) = wez(P) corresponds to P via the isomorphism C/L ~ E(C).

Of course. z(P) is only determined up to an element in a.
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Let t = —2z/y = —2p(2)/p'(z) = (2 + - --) be the parameter of the formal group E
which is the kernel of reduction mod p, A(t) be the power series giving z in terms of ¢
(it is the logarithm of £ and we have dA(t) = w(t)), and ® denote the formal group law
on E. Let I, C O be the ring of integers of the completion of the maximal unramified
extension of Q, and M = Qp(g2,93). The formal groups E and G,, are then isomorphic
over I, g def I,(g2,93). We shall fix an isomorphism ¢ from E to Gy by requiring that
the following condition holds. Let @) be a point of p*-division on E. Then we want
1+:(t(Q)) = (2(Q), 1) where the left hand side is a p®-th root of unity in C, and the
right hand side is a p®-th root of unity in C. We will write ¢(Q) for this p/in fty-th root
of unity. For reasons to become obvious later, we write —n, for the coefficient of ¢ in
v € I, g[[t]] (« has no constant term), and extend the isomorphism from K C Cto K C C,
to an isomorphism from K (1) to K(n,) sending ne to n,. Note that this is possible
because 7o is transcendent due to a theorem of Cudnovskii (cf. [Wa]) and 7, also in a
more trivial way.

Suppose G(z1, ..., zn) is locally real analytic around 0. We define the holomorphic part
of G to be 'H(G(zl, . zn)), the power series in 21,. .., z, obtained by equating z;,...,Z,
to 0 in the formal Taylor series expansion of G in 21,...,2n,Z1,...,2n. If H(21,...,25) is
locally of the form F(z,...,2,)/G(z1,...,2n), where F is real analytic around 0 and G
holomorphic, we define_the holomorphic part of H, H(H(z1,...,2a)) € C((21,-..,2n)),
by H(H) = H(F)/G. If moreover H(F) and G have coefficients in K (7o), we shall also
view H(H) as an element of C,((z1,...,2n))-

Proposition 10: Let @ € (K — p~*a) U a, which means that the division point P(a)
corresponding to a is either 0 or does not belong to E. Then if 1, is the characteristic
function of a, we have:

(i) H(Er(a+A(t),L)) = la(a)t~ + E(& L)+ 122, ba(a)t ' Gi(a,t), where b,(P)
is in the ring of integers of M (P(a)).

(i) E1((&, L) = @np (mod O).

(iii) If Q is a p™-division point, then G;(a,#(Q)) (which converges by (i)) is equal to
Ei(a+2Q),L).

Proof: Let ¢(z,u) = Ey(z+u,L)— Ey(z,L)— Ey(u, L). Then ¢ is a meromorphic function
in u and z and hence an algebraic function on E x E. Moreover, it is easily seen to belong
to M(E x E) and to have a well-defined reduction mod p. Now, if &« € K — p~®a, then
H(E1(A(t) + & L) — E(M(t),L) — Ey(&,L)) +t~! is an algebraic function on E without
singularities on E and whose reduction mod p is defined, and so is given on E by a power
series in t with coefficients in the ring of integers of M (P(a)). Hence, to prove (i) and (iii)
for any a, it suffices to prove them for a = 0.
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Let B € Ok such that  is prime to p By the same arguments as before, one sees
that H(E1(BA(t), L) — BEI(A( ), L)) — B~Y(N (,3) — 1)t™! is an algebraic function on E
with no singularities on E, and so is given on E by a power series G(t) with coefficients
in the ring of integers of M. Now take 8, € Ok satisfying f, =1 (mod p") and 3, =1
(mod p"). Let n tend to +0o0. Then Gg,(t) obviously tends to (E;(A(t))) — ¢! which
concludes the proof of (i). To prove (iii), suppose @ is a p™-torsion point. Then if n > m,
we have ,Q = Q and o G, (@) = (1 - B)E:(3(Q), L) - B (N(Ba) — HQ)" (as
Gp, is an algebraic function, one can evaluate it at a point defined over K using complex
arguments). But when n tends to +00, Gg, (t(Q)) tends to G1(0,t(Q)) —#(Q)™" and the
right hand side tends to E1(2(Q), L) — ¢(Q)~! which concludes the proof of (iii).

It remains to prove (ii). First note that if a € a, there is nothing to prove as Ey(&,L) =
0. So suppose a ¢ a and write @ = ag + a; where a3 € p~®a and vp(ag) > 0. Then,
using (i) and (iii) with a = ag and @ corresponding to &;, we deduce that if (ii) is true
for ap then it is true for a and we are reduced to the case when a ¢ a and vp(a) > 0.
Now, if 8 € Op, then F3(z) = E1(Bz,L) — BEi(z, L) is an algebraic function on E whose
reduction mod p is defined. so if z corresponds to a point defined over K which does not
reduce to a 3-division point mod p, then F3(z) € O. One deduces from this that if (i) is
true for « it is true for Ja, and if § is prime to p and (ii) is true for « then it is true for
3=1a. Now let h be the class number of K and let 7 be a generator of p*. By the previous
reductions, it suffices to verify (ii) fora =7 " andn > 1. Let k € Z and a, = ¥~ ". Then

1 -
Ey(kéin, L) = Hi(1.kGn,0,L) = Hy(1,0,kéin, L) = — Y (nELEi(r, L)
yexr~"L/L
¥#0

Let € = (v,1),. Then using the isomorphism ¢, we see that

E\(kd,,L) = in Z e G1(0,c7 (e - 1)).

us

So
. 1 -
Ei(Gn,L) = E\(dn, L) = Ey(0,1) = — > (e=1)G1(0,:7 (e - 1)).

But as tG1(0,¢71(t)) € —np + tI, g[[t]], we obtain the desired result by applying the
following obvious identities:

i_ ) -1(modr™) ife=0
Z (e—l)z{O(modTr") ifi>1"
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Corollary: 7, = nliI%O p"E1(p™"weo, ).

Thus 7, appears as the p-adic period of the differential form n = (z + a2(L))(dz/y)
integrated along the cycle v; viewed in Tp(E) in the obvious way (cf. [P-R], [de S]). Using
this remark, it is easy to show that the isomorphism between K(7o) and K(n) does not
depend on the choice of E or 7;; it depends only on the embeddings of K into C and C,.

Proposition 11: Let a € (K — p~*°a) and let Gk j(a,t) = H(E4,j(& + A(t),L)). Then
(i) Gr,j(at) € O[[t] ® Q.
(ii) If Q is a p-division point, then G (a,(Q)) = Ex,j(& + #(Q), L).

Proof: If k = 0, then (i) follows from Proposition 10 and the fact that Ey ; = —%Eo,j_l
and £ = 44 where &£ ¢ 1+ tO[[t]], and (ii) follows from the fact that Ep ; is a rational
function on E. The general case follows then from the existence of P ; (Proposition 9).

Proposition 12: Let @ € K, vp(a) > 0. Let Ay(2) = (2,é&)r. Then
() H(Aa (A1) € Ol1e)

(ii) If @ is a p*°-division point, then ’H(Aa (/\(t))) evaluated at t = ¢(Q) is equal to
Aq(2(Q)) where 2(Q) has to be chosen so that @z(Q) € p~°°a (this restriction being due
to the fact that A,(z) is not periodic of period L in z).

Proof: Everything is obvious once we have proved that 'H(Aa (/\(t))) =(1+ L(t))a-. But
we have Aq(z) = ezp(A(L)™}(2@We0 — 0wooZ)). So using the identity A(L) = —Toona)!
we obtain: H(Aqa(z)) = ezp(—neo@z), and p-adically, 'H(Aa(/\(t))) = exp(—nyaA(t)).
As ) is an isomorphism from E to G, we find that ¢(t) = ezp(u)(t)) — 1 for some u € C,.
Equating terms of degree 1 in t gives u = —n, which allows us to conclude.

Proposition 13: Let & € K — p~®a and § € K such that vp(8) > 0. Thenfor1 < j <k
we have:

() H(He (G, & + A1), 5,1)) € Ot © Qp.

(i1) If Q is a p*-division point then the previous series evaluated at t = t(Q) is equal
to Hi(j,a& + 2(Q), 3, L), where z(Q) has to be chosen in such a way that B2(Q) € p~a.

Proof: Choose b € O satisfying (b,p) = 1 and b8 € a. Then formula (25) gives:

. A & A1)
Hk(]a&+/\(t)’:8aL) = T Z <7’BB>LEIC—],](7+—+—,L)

YEb-1L/L b b
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Since b is prime to p, b~! is an endomorphism of E and b~ \(¢) = A([b~!]t). Then (i)
follows directly from Proposition 11 (i).

Now let @ be a p™-division point and let b* € O be such that b*b = 1 (mod p™). Then
[671]#(Q) = t(b*Q) and so by Proposition 11 (ii), we obtain that 'H(Hk (G, &+ A(), B, L))
evaluated at t = ¢(Q) is equal to

—k—j
b ) ~p - * > -~ * ~ 2
= 2 (WBBLE(y+ a7 +5°H(Q), L) = Hi(j, & + b5°(Q), B, L),
yEb-1L/L

which allows us to conclude.

Proposition 14: Let a € I be such that v5(a) > 0and § € K —p~>°a. Thenfor1 <j <k

(i) H(Hk (. & 8 + A1), L)) e O[lt] © Q.

(11) If Q is a p*°-division point, then the previous series evaluated at t = ¢(Q) is equal

to Hi(j, & 5+ 3(Q), L),

Proof: Everything follows easily from the previous proposition and the functional equation
for Hi(j,u.z.L) which says that

H(Hi(j,a.3+ M0, L)) = (14 o(0) "H(He(k +1- 4,5+ \1),6,L) ).

Note however that Proposition 5 (ii) would give some restrictions as to the possible value
of z(Q) which makes (ii) work, but since Hk(j,u,z,L) is periodic of period L in z this

restriction is unnecessary.

Proposition 15: Let a,3 € Ik —a. Let k.l € N and Gi,1,q,8(t1,t2) be the power series
defined by

Grla,3(tit2) = H(HHI(L& + A1), 3+ A(t2), L))
If a.3 € Ok p, then

(1) Gi.la,8(t1,t2) € Ip E[[t1,22]]-

(11) If @1, Q2 are p>°-division points, then
Grtos (H(@1),8(Q2)) = Hipu(l,& + 2(Q1), 5 + (Q2), L),
where z(Q,) has been chosen so that z(Q1)(8 + 2 Qz)) ®a,

The proof of this proposition will need several lemmas (as well as the preceding propo-
sitions). First, call a power series H(t1,t2) = 3, i a; jtit} “almost bounded” if, when 1
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is fixed, a;,; is bounded as j varies and if Q is a p®-division point, then H(t;,#(Q)),
which converges because of what precedes, is a bounded power series in ¢;. If H is almost
bounded, then if Q; and @, are p™-division points we can define H(t(Q1),(Q2)) as the
value of H(t1,1(Q2)) at t; = t(Q1).

Lemma 16: If H is an almost bounded power series satisfying H(¢(Q1),¢(Qz)) = 0 when-
ever (J; and Q2 are p°°-division points, then H is identically equal to 0.

Proof: If you fix Q, then the series H(t1,(Q2)) is bounded and is equal to 0 if #; = Q)
where Q is a p™-division point. This implies that H(t;,¢(Q2)) is equal to 0 as a power
series in t1, hence for all i > 0, 3522 ai ; (t(Qz))j = 0. But this is true for all p*-division
points @2, so a; j = 0 for all z and ;.

Lemma 17: Gk i1,q,3 is almost bounded.
Proof: We have

2 (=A(t))" ) »
Grtastttn) =30 ) (144,85 + M), D)) = Y ot

By Proposition 14 (i) and the fact that A(¢) has no constant term, we obtain that when 7 is
fixed, a;,; is bounded as j varies. Moreover, by Proposition 14 (ii), if Q2 is a p*-division
point then:

Grap(ti (@) = > MHHH;U +1,& B+ %(Q2), L)

1=0
= H(Hk+,(l,& + A(t1), B + E(Qz),L))-

Then Proposition 13 (i) allows us to conclude. But in addition, Proposition 13 (ii) gives
(i1) of Proposition 15.

Lemma 18: Let § € Ok, d € Ok satisfy dé € a and (d,p) = 1. Let 7 be a generator of
p" and & € a satisfy §y = 6§ (mod 7"). Then

~

S= Y GneH(Lzu L) = 7w, bo) LH (1, 2 xmu, L),

vEdm-nL/dL

Proof: We have

S= ) Zaﬂwy (wyu)r.

yEdm-nL/dL wEL
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But )
> (5+w,v)L={Pnh if b twem L
ednonL/dL 0  otherwise

The result follows easily using formula (24).

Lemma 19: Let a.b € Z, and set G4, = Go,1,a,3- Then we have:

Tabmm = ,,(m) D D Q) e(Q2) T Gays(H(Q1),UQ2))

Ql eEr"‘ Q2EE1”

= (& B)m "™ H, (L, (v /77)(& + @), (7" /7™ )(B — o + B), L),
where fy € a and 3y = § (mod 7™™).
Proof: Using Lemma 18 and the value of G4 5(¢(Q1),t(Q2)), we obtain

p% Y EQ2) " Cas (H(Q1), HQ2))

QQGEpn
= (~ 5) L7 " Hi (1, (@ + 2@ ) a) /7", 7" B, L)
B, 6 + FHQr)) L Hi (1,7 (07+Z(Q1)—<“1)/7",L)-
Now using Lemma 18 agam and writing (3,2(Q1))z = (73,7 "% Q1)). and not
forgetting that = (7" /7™ )a, we find that X, p n.m is equal to

7 m(3,6) (6 + & Bo — B Hi (L, (2" /Z™)(B = Bo + b), (7™ /™)@ + &), L).
The result follows from the functional equation of H;.
Lemma 20: Let v.6 € K — a verify vp(y) > 0, vp(6) > 0, vp(7) + v5(8) > 0. Then
Hi(1,7,6, L)€ I, E.

Proof: Choose d € Ok such that vp(d) = sup(0,—v5(6)), vs(d) = 0 and dé € a. By
formula (25), Hy(1,7,6,L) = (1/d) Zyed_nL/L(y,ag)LEl((‘"//d)+y,L). Writing (d) = p*d
where d is prime to p, we can write y € d”'L/L in a unique way as Z, + 3; where
20 €d~'a/a and z; € p~*a/a. Set §' = d§ and 7' = d~!v. We obtain

Hi(1,7.6.L)=d™ Y (5,8 D> (2,8 .E:(3' + %0 + 51, L),

z0€d-la/a z1Ep~*ta/a

By Proposition 10. we can write

d! Z (51,5'>LE1(’7’+50+51,L)=d_l Z 63’G1(7’+20,L—1(6"1))-

z1€p~ka/a erk =1
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But G1(y'+20,t) € M(P(v'+20)) and with the exception of the constant term has integral
coefficients. As v'+2¢ € Ok p, P(7¥'+ 20) is defined over the maximal unramified extension
of M which implies that Gy (' +z0,¢7(w)) € E1(¥' +%, L)+ wl, g[[w]]. But we also have
E1(¥' + %0, L) = np(¥ +20) = 17’ (mod I, £), so we see that G1 (v + 20,4} (w)) — 1,7 €
L g(w]]. As ) x_,(e— 1)ieg' € Z and is congruent to 0 (mod p*), we finally obtain

H1,76L) -n7 Y, 8 € (0*/dI,E,
yE€d-1L/L

which gives the result, since (p¥/d) € I, g and Zyed-lL/L<y76,>L =0 when 6 ¢ a.
Corollary: X4 p,n,m € Ip E.

Define a measure fio,3 on Y , = Op x Op by

#a,ﬁ((a + pmh) X (b + ﬁnh)) = Za,b,n,m-

This is an I, g-valued measure. Let

H(ty,t2) = / (1+ L(tl))I (1 + L(tz))y dpa,g(z,y);
Yk.p
then H(t1,t2) € I, g[[t1,t2]] and if @y, Q2 are p™®-division points, then by construction
of pia,3, H(t(Q1),4(Q2)) = Ga,s(t(Q1),t(Q2)) and so H = G4 by virtue of Lemma 16.
This concludes the proof of Proposition 15 for £ = 0 and [/ = 1. The general case follows
from the following identity:

Hk+j(j,&+Z,B+U,L)=
(u,G + 2) (—i)k[("+ ) (—E)Hﬂ(l 5+ 2,5+ L]
, \~ 3. a+z,u)g £ 11,8 + 2, u,L)|,
which yields

Gr st ta) = (1+(t2)) (- 6/\((9t2))k (14 ut2)) " (- a/\?tl))j_lGa,g(tl,tg)]. (30)

Proposition 21: If @, and @, are p*-division points, then

Gays(t1 B H(Q1),t2 ®1(Q2)) = (1 + u(t2)) " Gt sy pex(0n (t1r ).

where z(Q1) has to be chosen so that 2(@1)(8 + 2(Q2)) € p~*°a.
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Proof: Set G} ; , 5(t1,t2) = (1 + «(t2)) _aGk,j,a,ﬂ(tl,tg). Then formula (20) becomes:

(~art)” (i) ottt =Gttt

so that, as power series, we get

, M) (=A)F
Gayg(t1®w13t2®w2)=z( j‘!l)) ( 2'2)) kj+1,0,8(W15 02).
j!k ’

Now. let wy; = ¢(Q1) and wy = t(Q2). Using Proposition 15 (ii) and Proposition 12, we
obtain:

Gas(ti 8HQ1),t2 ©HQ2)) =

o —}\t J -A k
(14 (t2)) Z ( ;'1)) ( itf)) Hk+j+1(j+1,&+ (@), B+ 3Qn), L)
= ! !

But using (30) applied to t; =t; =0 and a = a+ 2(Q,), f = B + 2(Q2), we find that:

v (=At)) (=A(t2)*)

i T Hijor1(J+1,6+2(Q1), B+ 2Q2), L)

1k

is the Taylor expansion in —A(t;), —A(t2) of (1 + L(t2))—E—E(Ql)G&+§(Ql)v3+E(Q2)(t1,tz),
which concludes the proof.

If a is a fractional ideal of K. let I (z1,z9,a) = Zwéa e (w+ 21| 22)0. If 1a is the
characteristic function of a. then we have A'(z;,25,a) = K (zl )22, a,\1)) in the notations
of part II. Set w; = exp(—z;) — 1 for 1 = 1.2.

Proposition 22: Let § € K. 8 € K — 60y and f; € I{ — (60k)V. Then

( (ZmI\(ﬂl 2#1’*39 Zm’bof\ )) € I\(noo)[[zl,‘h]]

(11) If moreover ¢ is a unit in O p, 31 and B, belong to Ok , and Wy 3, 3,(w1,w2) €

Cp[[w],'u)2” is equal to H(#K(ﬂl 21n"82 + 2m’501\’)) expressed in w;,ws, then
“"5.31.,’32 e Ip[[w]. u)?”.

(i) If y1,72 € K/p~> Ok p and €; = \+,(1), then
”/’5_31'32((1 + wy )61 - 1(1 + ‘w2)62 - 1) =

H(-— K (5, =3 | 250),

2m 2t
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where 4, is a representative of 4; in p~®§0k and 4, a representative of 7y, in

P~ (60K + (1) + (m))"-
(iv) If B € K, then H((B | £ )oo) = (1 +w1)P.

Proof: Part (iv) is obvious. To prove (i), (ii) and (iii), let us introduce an elliptic curve E
with Weierstrass model defined over the ring of integers of the Hilbert class field of K with
good reduction at all places above p and j-invariant equal to j(Ok). This implies that the
period lattice of E has the form weo(E)Ok for some weo(E) € C*. If Ox = Z + Zr, then
Noo(E) = -u—zlzlﬁ == and 7,(E) € I;. Now, straightforward computation yields

5K (o, 2 60k) = 5= Fi (1, (r = Pl6 o2, 25, 60x)
=MHI( L_.z_?w;”gz,?;’w,wmoK)
26—(;—_17'517:H1( 6%0 ;;ﬁ’wmol().
Hence,
1

Wﬁ,ﬁl,ﬂz(wl’ w2) = Gm,az ([3] ’ L_l(w2)’ [6(7' - ?)]-l : L—l(w2)),

6T —1)np
where ¢ is the isomorphism between E and G, and [8] is the endomorphism of E associated

to B, a; = 60, and a; = Wfl-riﬁl' Now (i), (ii) and (iii) are just reinterpretations of
Propositions 15 and 21.
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§3. Construction of p-adic measures attached to generalized Eisenstein-Kronecker series.

If ¢ € ST(H) where TN|(p)| = 0, set ¢ = ¢p * ¢ where ¢, = N(dH’p)—%ld’—yl € Sip|,H
is the Fourier transform of the characteristic function of Ojg| considered as an element
of Sjp|,av- Let I, y be the ring of integers of the completion of the maximal unramified
extension of the fleld generated over Q, by all conjugates of H and sqrtN(dy p). The aim
of this paragraph is to prove the following theorem:

Theorem 23: Let B be a finite set of bases of H over K. Then there exists S = S5(B) €
P(H) and S' = Si(B) € P(HV) such that for all T € P(H) satisfying T N |(p)| = 9, all
o € ST(H), all (by.by) € Cry(p)(S5,S"), we have:

) H((?:i)""[\'(%,%,&bhb,,B)) € F(noo)[[zl,zz]] and is the Fourier Laplace
transform of an I, y-valued measure pp, b,,¢,8 00 Y p.

(it) Let 0, be a locally constant function on Y; which can also be considered as an
element of Si5), yv. and 02 a locally constant function on, Y, also considered as an element
of Si51.1- Then the Fourier-Laplace transform of ¢1¢2ub, b,,e,8 is

sl io—n7rf ?1 22
H((Zm) I\(%,z—ﬂ,f|§|(¢l)*¢2*¢b1.bz’8))°

Lemma 24: Let 4 be a principal ideal domain having only a finite number of prime

ideals and let ' be its field of fractions. Let vy,...,v, € A™ be a basis of K™ over
L but not of A" over A; then there exists w € A™ such that for all 1 < : < n,
det(vy,.... Uim 1o W Uie e e - s vn) is either 0 or a strict divisor of det(vy,...,vn).

Proof: Choose wy = 5, a;v; with a; € K, belonging to A™ but not to the submodule of
A™ spanned by the v;'s. By the Chinese remainder theorem, we can find b; € A such that
a; —b; =0if a; € A and a; — b; = ¢;/d; where c; is a unit in A and d; is not invertible in
Aifa; ¢ A. Then w =3 (a; — b;)v; obviously answers the question.

2] ]\/Il(z)
If M € Mp(LK). weset M ( ) = and Fp(z) = det(M) []ie, Mi(z)™!.
’Mn(z)

Zn

Lemma 25: Let A be as in Lemma 24 and M € GL,(K). We can find a finite family A
of elements of GL,(.4) such that

Fu(z) = Y Fn(z).

NeN
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Proof: First note that Fi(z) does not change if M is multiplied by a scalar; so we may
suppose that M € M,(A). Let vy,...,v, be the rows of this matrix. Then either vy,...,v,
generate A" in which case M € GL,(A) and there is nothing to prove, or we can find w as
in the preceding lemma. Let v; ; (resp. w;) for 1 < j < n be the coordinates of v; (resp.
of w) and Mp41(z) = 31—, wjzj. Let N; be the matrix whose j-th row is equal to v; if
J #tand w if 7 =¢. We obtain:

V1.1 oo Ulin M](Z)
. . . n n+1
0 = det e D = Fue) = Y Fri2) [ Mi2),
Un,ag -+ Unpn Mn(z) i=1 j=1
w1 cen Wn Mn+1(2)

where the first equality is obtained remarking that the last column is a linear combination
of the others, and the second is obtained by developing the determinant with respect
to the last column. Now, removing from the N; those with determinant 0, we obtain
Fym(z) = )y Fn(z), where the det(V) are strict divisors of det(M). We just go on with
this process until we reach the desired result.

Corollary: Let B be a basis of H over K. We can find a finite family C(B) of bases of
dZI%BOH-P over Oy p such that, for all ¢ € S(H), we have

I{(Zl 122, ¢$ B) = Z I{(Zl 122, ¢1 C)
C€eC(B)

Proof: Choose a basis C, of dI_{IBOH,,, over Ok p; then there exists M € GL,(K) such
that B = MC,. We just apply Lemma 25 to this M and A = Og,, (which has only two
prime ideals) to conclude.

Remark: Replacing B in theorem 23 by (JgczC(B), we see that we can suppose that all
elements of B are bases of d_P-ITEOH’P over Ok p. On the other hand if B; and B, are finite
sets of bases of H over K satisfying theorem 23, then setting S2(B; UB;) = S2(B;)US2(B3)
and S5 (B1 U By) = S55(B1) U S3(B2), we see that B, U B; also satisfies theorem 23. Hence,
it is enough to treat the case where B = B and B = (f1,..., fn) is a basis of dETEOH,p
over Ok,, which we can take to be the B used in III, §1.

Ifae I(H),seta= dﬁfpa. If ¢ belongs to St(H) with TN|(p)| = 0, then ¢ is constant
modulo a for some a € I(H) satisfying |a| C T; so by linearity, we are reduced to the case
where ¢ is the characteristic function of a + &, where |a| C T and a € dEIPO'H,T- Let
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gB:C" — C" be defined by gp(z) = (Tr(f12),...,Tr(fnz)). As B is a basis of d;}pOH,p
over Ok p, the image of d,}fp by gp is a lattice L contained in (Ok,p)" such that Ok ,L =
(Okp)" and so contains (6gOk )" for some 6 € O relatively prime to p. There exists
ba € K* with |(6a)| C Tk such that a contains 6,Op. Hence, if we set §a,5 = 826, we
have |(8a.B)| C Tk U|(6B)| and gp(a) contains (04, BOK)™. Let Y be a set of representatives
of gp(a) modulo (éa,50k)". Using the identity (21 | 22)o0 = [[ei(TT fiz1 | T £Y22)co,
we obtain

) - det B T
K(z1,22,6,B) = ———= Y_ [ K+ Tr(fi(z1 + @), Tr(f) 22),6a,80k).
V N(dn.p) yeY j=1
y=(¥1,---1Yn)
(31)
On the other hand, a straightforward computation yields
K(z1.22.06, 05, B) = ) Y. (=B2la+z)eK(z1+ 51,22+ 52,6, B).
31€b]'a/a Br€by'b1aY /braY

3, ¢a 32¢b,aY

: (32)

Now. by Lemma 5. we can find S(B) € P(H) and S'(B) € P(HV) such that if (b;,bs) €
Cruiip(S(B),S'(B)). then for all a € I(H) with |a| C T, all & in dﬁ}pO'H,T-, all 51,8,
as above. we have Tr(fi(a + 81)) ¢ 6a.80k and Tr(fYB2) ¢ (6a,80k)". On the other
hand Tr(fi(a + 31)) and TrfY 3, belong to Ok p, so putting together formulae (31) and
(32) we see that K(z, 29, éb‘,b,, B) can be expressed in terms of the functions studied in
Proposition 22. Thus part (i) of theorem 23 is a direct consequence of (i) and (ii) of this
proposition. To prove (ii), we can restrict ourselves to the case ¢; = x4, and d2 = X+,
since the Y~ form a basis of the space of locally constant functions. Now, using Proposition
22 (ii1) along with formulae (31) and (32), we obtain that the Fourier-Laplace transform

of X~ X+v2Hb;.b2,0,B 1s:

1
(2m2)n

z /A z n z ~
2;1')‘”1‘(7‘ + o_,:i"f? + 5=, 6by.bsy B)); (33)

2 2’

H( (%2 |
where 4; is a representative of 7; in p~*ab, and 4, is a representative of v, in
p~®bi(a + (a) + (11) + d;fp)v, from which we can deduce the result after a straight-
forward computation (the main ingredient being the fact that if w € 4 + a + b7 '4, then
V(@) = (F2 | w)eo)-
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§4. Complements to Shintani’s method.

In this paragraph, we shall use the results of the preceding paragraph to prove that
AB,g, 3,(k,],¢) does not really depend on the choice of B, §; or f,.

Theorem 26: Let ¢ € Sk j,v(H). We can define a number A’(k, j, ) such that

(i) For all B € B(V), there exist S(B) € P(H) and S'(B) € P(HV) such that
AB.g, p,(k, 5, 8) = A’(k,5,¢) for all ¢ € ST(H) and all ((B1),(B2)) € C3(S(B),S'(B)),

(ii) A*(k,j,9) = A(k,j,4) if either n =1,20orn>3and k=0o0r j =1,

(iif) A?(k,J, 6 07) = Ny (Y Ny () A% (k> 5, 6),
(iv) A’(k,7,6) = (=1)"U=D"A(j — 1,k + 1, Fu(4)).

Remark: Of course, we expect that A’(k, 7, ¢) is always equal to A(k, 7, 4). In this direction,
(iii) and (iv) are functional equations also satisfied by A(k, j, ¢) (formulae (4) and (16)).

Proof: Suppose ¢ € St(H). By linearity, we can restrict ourselves to the case ¢ = ¢,
for some locally constant character x of OF. Choose a prime p splitting in K such that
TN|(p)l=0and |dy|N|(p)| = 0. Let B € B(V) and let S(B) = S1(B) U S2(B)U|(p)| and
S'(B) = S1(B)U S3(B) U |(p)|, where S1(B) and Sj(B) are defined in lemma 6 and S;(B)
and S3(B) are defined in theorem 23.

If p is a measure on Yy, and v € Oy ,, we define a measure p oy on Yy, and a
measure 7(u) on Yy, = Op X Op by the following formulae:

fyr,y2) d(poy) = fOry, v y2) dp, (34)
YH';, YH,p

fa1,22) d n(u) = /Y F(N(s), N(y2)) d. (35)

Yi,p

Lemma 27: If (b, by) € C$(S(B),$'(B)) and v € O , satisfies |(7)|x N (|b1| U [bo]) =9,
then

(b, ba,gor,8) = Nu/k(7) (7(iby bs,6,8 0 7))

Proof: To prove that two measures p; and pg on Yy , are equal, it is sufficient to verify

that [, , iy(z2) dpy = fy zi1p(z2) dps for all i € N and all locally constant functions
¥ on Og. But we have

L Illlb(l‘g) d “(Nbl,bz,dwv,B) = N(yl )11/) 0 N(y'Z) d”bl,b2,¢0‘y,87 (36)
K

P Yk,»
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and by Lemma 8, this is equal to Vi applied to the Fourier-Laplace transform of
¥ o N(y2) dpb, by,¢0v,8 and evaluated at 2z; = 2, = 0. Now, as ¥ o N is locally con-
stant, we can use theorem 23 (ii) to obtain (cf. formula (12))

[ #0) dn(pnsone) = 0601+ 1Y O N+ (Borup). (BT
Yi.p
The same computation gives

V(@) [ #$9(2) d(r(pn, 080 7)

Yk,p

= ‘\TH/K(7)i+1L lv(yl)i¢(1v(7_ly2)) dubl,b2,¢,3
K

P
= Nu/(7) ' As(0,i + 1, (% * 0)by by)s (38)

where U'(y2) = v(N(y 7 y2)).

Let o' = (v % 0)b, .b,- Then 9 o N * (¢ 0v)p, b, is neither more nor less than ¢' 0 7.
Now. using the corollary to theorem 3. we obtain Ag(0,7 + 1,¢') = A(0,7 + 1,¢') and
Ag(0.i+ 1.0 0~)=\(0.i+ 1,4 07), and the desired equality follows from formula (16).

Corollary 1: Under the same hypothesis as in Lemma 27, we have
: ok .
Ag.3,3, (k. j,607) = Nyy(Y)Y Nuyr(y)  Asgyp.(k, 5, 9).

Proof: By the very definition of Ag g, 3,(k,7,¢) (cf. (19)) and of pb, b,,¢,8, We obtain,

using lemma 8

A3, (kg 0) = Vﬂl,ﬂz(kaj’X)/ ] b d m(p(p,),08),6,8): (39)

Yk.p

and the result is an immediate consequence of lemma 27.
Corollary 2: Let ((31).(32)) and ((8),(B3)) belong to C%(S(B),S'(B)). Then

AB.ﬂl,ﬁz(k9j7 (p) = ‘I\B.ﬂ{,ﬂ'z(kaj’ ¢)

Proof: Up to introducing an auxiliary ((87),(8Y)) € C%(S(B),S'(B)), we may suppose
— —1 )
(I3 W 3)Ix) N (1B U 1(B2)]x) = 0. As (8(8,),(82) 8,85 = (D(87).(83))(81).(82)»

we have

/[(Bl))(ﬁ2)!¢(ﬂ;),(ﬂ’2)13 = 'u(ﬂ;)r(ﬂ;)a‘ﬁ(ﬁl),(ﬂz)yB)
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hence by formula (39) we have

V82 (ks 3, X) T AB,61,8: (K, 5 b(a)).(8y) = varay (s 35 x) T A gy gy (ks 3, 8081 (8))-

We obtain the result using formula (15) and the previous Corollary.

Corollary 3: A*(k,j,¢) does not depend on the choice of ((81),(82)) € C%(S(B),S'(B)).

It remains to check that A’(k,j, #) is independent of the choice of B and this follows
from the following Lemma whose proof is identical to that of Lemma 27.

Lemma 28: Let By, Bs € B(V) and S = S(B1)US(B,), §' = S'(B1)US'(B). If 6 € S(H)
and ((81),(B2)) € C(S,S") then 7(1(g,),(82),6,8:) = T(1(8,),(82),6.8:)-

This concludes the proof of (i). Now (ii) is a consequence of the corollary of theorem
3, while (iii) follows from corollary 1 of lemma 27 and (iv) from theorem 3 (v).
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IV. Special values of Hecke L-functions.

Let i be a Hecke character of H (i.e. a continuous C*-valued character of A};/H*).
Let my be the conductor of . We can associate to % a character of Iy, (H). still denoted
by v, by the formula: if q € P(H) — |my|, then ¥(q) = %((1,..., Lwg!,1,...,1)), where
wgq 1s a uniformizing parameter of Oq. If ¢ is a Hecke character of H, let ¢V be the Hecke
character of HY defined by ¥¥(a) = N(a)~'¥(a™!) if a € I, (HY).

A Hecke character of H will be called admissible if there exists k() € N and j(¢) €
N — {0} such that for all @ =1 (mod my,),

k(¥)

U((a)) = JVH/K(O() JVH/K(Q)“j('»L'),

In particular, an admissible Hecke character is of type A, and critical in the sense of Deligne
(cf. [D]). If ¥ is admissible. so is ¥V and we have k(¥V) = j(¢) — 1 and j(¢V) = k(¥) + 1.
If v is a Hecke character of H and S € P(H) contains |my|, we set

b(b
Lstws) = 3 ek, (40)
belf(H)
and if a € Cl(Oy), we set
. b
Ls(y,a,s) = Z % (41)
belf(H)na

These two series converge for Re(s) >> 0 and define functions of s possessing meromorphic
continuations to the whole s-plane. holomorphic except for a simple pole at s =t + 1 if
v(b) = N(b)!. If ¥ is an admissible Hecke character, we set

T(j(e)" TGW)"

As(¥) = WLSW,O) and As(4,a) = (21 )n](w) Ls(4,a.0), (42)
and if S = |my/|, we drop it from the notations.
If q € P(H), let vq € S|q),4 be defined by
) _fe((1....1,zq,1,...,1)) ifzq € 0f
l"Q(IQ) - {0 if Zq ¢ O; : (43)

Hence. if q ¢ |my|, we have vq = 8q. If S € P(H) contains |my| and a € Is(H), let
's.a € S(H) be defined by

vsal(z) = [] valza) [ 1az:( (44)

q€S q¢S
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where 1 ag! is the characteristic function of the fractional ideal of Hq generated by a~
Ifae Is(H) is in the ideal class a, writing b € I$(H) N a in the form b = (f)a, where
B € a~! is uniquely determined modulo Uy, we see that Ags(t,a) is neither more nor less

than ¢(a)A(k(¢),](¢), "»bS,a) .
Whenever it is defined, we have

bb * Ysa = ¥s,a — ¥sab-1 and 6 *Ysa =vsa— N(c)  Ysaz, (45)

from which we deduce, using the fact that multiplication by an ideal induces a bijection
on Cl(Op), that if A is a set of representatives of Cl(Oy), we have

Y w(@)A (k)i (%), .; 8b; * * 6% +isa) =

acA
k 1
1= wm) [TQ - vY(cj))As(w), (46)
=1 =1
whenever everything is defined. As an application, since ¢s, = es*l |6q * Pmy,a, W€
q€S—|my
obtain
As(¥) =Y (@A (k($),i(¥), ¥sa) = Es($)A(W), (47)

acA

where, by definition, Fs(¢) = HqGS—Imwl(l - w(q)) is the Euler factor of ¥ above S.

We can attach local and global root numbers to ¥ in the following way. For each
q € |mydp|, choose vq € H* such that vg(7q) =1 and vq/(7q) =0if ' € |myd x| - {q}.
Let aqg = vq(mydpg).

Lemma 20: (i) There exists a constant Wy, () such that
Fa(g ' )(@) = Wa,ve(2)¥q(7a° 2)-
(ii) Set
Ny k(1q)' ¥ o

| | G

W (1/’) Wy, Ya 1/’((1_1(’7«1)) )
NH/K(’Yq) q'€|my|—-{q}

Then Wq(%) is independent of the choice of 74 and is by definition the local root number
of ¥ at q.

(iii) Wq(4)Wa(4") = ¢a(-1).

Proof: Everything follows from standard computations (cf. [L]).
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The global root number W (%) is defined by W(y) = (—1)k(¥) [aeimydn Wal¥). If
S € P(H), let Ws(¥) = [Tqesnimydq Wa(®)- Let So C S, and define 5.5, € S(H) by

vssa@) = [] ¥alza) [T Fal¥a")(za) I 10z (za)- (48)

qu“So qESo qﬁS

Lemma 30: If 4 C Is(H) is a set of representatives of Cl(Og), then

> w(a)A (K(®), (), ¥s,5,.0) = (W, (#)) Bg, (¥) Es—s, ($)A).

acA

Proof: Let v = [[4es, vq®. Using Lemma 29 (i) and the fact that the Fourier transform
of bq is 657 (vz) if q € S + |my|, we obtain

¥s,s,.a(r) = Woa(yz), (49)
where
W= H Yq(77h) H (‘/’q(’qu'Y_l)Wqﬂqw))’ (50)
q€ES-5, q€S,Nimydy|
= ) &=V als 51
© qES—(;;UImwl) qq€50t|m¢| 4 *Ymy, (51)
and
a' =a(y™!) [] q*. (52)
qESo

Now. using formula (16) we obtain

Ny (y)i®)
e(a)A(k(v), (), ¥s.5,.a) = ¢(a)¥’V—Ii/£-z——A(k(¢)’j(¢), Pa)- (53)

k()
Nyk(v)

Writing ¢(a) = v(a') qu S, ¥(79q7!)% and using the fact that a — a’ induces a bijection
on Cl(Op) and formula (46), we obtain

> w(@)A(k(¥),5($).¥ss,.a) =

acA

Ny (ry®

i (TI #(raa ™)) Bs, (") Es-s,(9)A®W), (54

—
N/ () q€S,

and the result follows. using Lemma 29 (ii).
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Lemma 31: (Hecke’s functional equation) W(¢)A(y) = " "A(pV).

Proof: Let a € Ijm,a,|(H) and let ¥ =[] cim,dp vq*. Using Lemma 29 (i), we obtain
Fuv (b, 2)(@) = N(a) W thmy 2 (712), (35)

where a' = (y"!)mydya~?! and

(I War®) T sala™, (56)

q€lmydy]| a#q’
q,9'€lmydp]|
So we get
N (7)1('&)
BV @A) (), Fav (8, 2)) = M@ (@) W ————A(K($),(¥),a). (57)
Nux(7)
Now, we have
N(a)yy¥(a) = ¢(a™"!) = p(a')(ymy'dy'), (58)
and N (%)
. J
w D yomptagy = [ Waw) (59)
Nuk(7) q€|mydn|

and by formula (4),

Ak, 58, Fav (¥, &) = (D™ DiA(R(®Y), i(9Y) b, 8)- (60)
We obtain the result by summing up (57) over a set of representatives of Cl(Oy).

Set A%L(¥,a) = ¢(a)A’(k(¢),j(¥), ¥s,a). An immediate consequence of theorem 26 is
that the above computations are valid with Ag(%, a) replaced by A?S(1/J, a). More precisely,

if Ais a set of representatives of Cl(Op), set A5() = Y, 4 A5(¥,a). Then we have:

Proposition 32: (i) A%(1,a) depends only on the image of a in Cl(Oy).

ii) Ag() = EsA'().

) Daca V(A (k($),5(¥),¥s,5,,0) = ([Iqes, Wa(¥)) Es, (¥V)Es—s, (¥)A’ ().
iv) W()A () = i A7 (yV).

v) A’($) = A(¥) if n=1,20r n >3 and k() = 0 or j(¢) = 1.

—
—
—e

(
(i
(
(
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V. P-adic measures on Galois groups and P-adic L-functions.

§1. Preliminary constructions.

Let 1 be a Hecke character of H of type Ay and conductor my. We can associate
to % a unique continuous character ¢(P) with values in C, satisfying $(P)(a) = 1(a) for
any a € I, p)(H) (cf. [W1]). But, as % is trivial on the connected component of
1 of A} /H*, it can be interpreted as a character of Gal(H**/H). In fact ¥(P) factors
through G m,p = Gal(Hp(p)e /H), where m is the prime-to-p part of my and Hp(p)w
is the union of all abelian extensions of H of level m(p)¥ for k > 0. We shall say that 1
is p-admissible if it is admissible and y(?) factors through Gy m p = Gal(Hmpw~/H) (note
that this is equivalent to k(%) = 0 and ¢5 = 1 on Of;). Let us choose a set A C Ijm(p)|(H)
of representatives of Cl(Opg). We have the following isomorphisms of topological spaces:

GHmp~ AX (Og/m)* x Y5 )/Un and Gump =~ Ax (Oy/mx Yy ) /Uy,

where Uy denotes the topological closure of Uy in the space considered. If f is a function
on GH.mp (resp. on G mp), let f be the function on 4 x (Og/m)* x Yy, (resp.
A x (Op/m)* x Yj ) obtained by composing with the projection modulo Uy.

Choose a torsion free subgroup V of finite index of the subgroup of Uy of elements of
norm 1 over K and B € B(V). Let T € P(H) contain |m|, |(p)| and |a| for all a € A. If
a € (Of,|m|)* and a € 4, let ¢a,a € ST(H) be the function defined by

éa,a(z) = d’a,lml(‘rlml) : ¢‘p(xp) H 1a‘1(mq)a (61)

qé|mp]|

where @4 jm|(Z|m|) = 1 if || € @+ mO)y| and 0 otherwise, and ¢p, is the function defined
in III §3.

For all (by,b,) € C7(S(B),S'(B)), where S(B) and S'(B) are as defined in theorem
26 we define a measure Ap, b,,m On GHmp and a measure pb, b,,;m ON GHm,p by the

formulae:

1 -
d\ Jb2m = T / a, o, d~b1’ ,ba.a,Bs 62
/Q'H,m,p f dAb, b, [UH: V] Z z Yo xYs f( Y1) dilb, b, ba.a,B (62)

a€A a€(Oy /m)*

1 "
) m = ,a,Y1,Y2) dj . (63
-/gy,m,,, f oy [Ug: V] Z Z /Y;xy; f(a,a,91,92) dilby by, 60,8, (63)

a€A a€(Oy/m)*

53



where pin, b,,¢,5 is the measure constructed in theorem 23, and if ¢ is a measure on Y* x Y5,
then [ is the measure defined by

[ ) di= / Ny) ™ Fur v2) d (64)
Yl‘sz

Yl. X Y2

Let v, 1, () = (1= %(b7™)) (1 - $¥(b7")).

Proposition 33: (i) Ab,,b,,m is the unique measure on Gy m p such that

/g VP Aoy pom = Vi () Efg) (4" ) Wip| () Bjem) ($)A(¥) (65)

for all p-admissible Hecke characters of H of conductor dividing mp®°.

(i) ib,,b,,m is the unique measure on Gy m p such that

L 5 i = (DB (5 Wi (DBt (DA (66)
H,m,p
for all admissible Hecke characters of H of conductor dividing m(p)* satisfying k() =0
or j() = 1.

(iii) Moreover, if we do not assume k(%) = 0 or j(¢)) = 1, then

/g ¥ dpby ba,m = Vby,by (¥) Ejp| (¥ )Wip) (%) Ejma) (9)A" (). (67)

Corollary: If one can prove by any other method (for example using refinements of Harder’s
proof) that there exists a measure satisfying (ii) for all admissible %, then A(y) = A%(¢)
in all cases.

Proof: Let 3 be an admissible Hecke character. By definition of pb, ,b,,m, we have
. 1
[t pm = b)Y Gla) (68)
GH.m.p H- acA a€(Oy [/m)*

where
Gla) = w,m.(a)/y Y (y)Ys(y2 )N (v YOI N(y2) ) dpy, by 9008 (69)
H,p

Now, using theorem 23 (ii) and formula (48), we obtain that the Fourier-Laplace

transform of .

Tr V] Y Gmi(@)UE (1 )¥s(y2) diby bs6a,B

a€(Og /m)*
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1s
1 1 L,/ 21 29
TV (5‘,;5 (T 22 Pm()Llpla)bi b2 B)), (70)

and we can deduce (iii) from Lemma 8 and Proposition 32 (ii). Then (ii) follows from the
fact that A’(y) = A(¥) if k(3) = 0 or j()) = 1 and (i) is obtained in exactly the same
way as (iii). The unicity of Ap, b,,m and pb, b,,m is due to the fact that the subspace of
the space of continuous functions on Gy,mp (resp. GH,m,p) generated by the ¥ with
k(4) = 0 and j(3) = 1 is dense (we are allowed to multiply by any locally constant
character).

82. Measures and pseudo-measures on profinite abelian groups.

In order to put the results of the preceding paragraph in a more satisfactory form, we
shall shift to the language of pseudo-measures. In this paragraph, we shall collect from
[Se] the definitions and some basic facts about pseudo-measures.

Let G be a profinite abelian group and A be a closed subring of 0. We define the
Iwasawa algebra A[[G]] of G as lim A[G/H|] where H runs through the open subgroups
of G. Then A[G] is a dense subalgebra of A[[G]] and we have a canonical isomorphism
between A[[G]] and the algebra of A-valued measures on G, the multiplication in A[[G]]
corresponding to convolution of measures. This will enable us to view a A-valued measure
on G as an element of A[[G]]. For example, the measure associated to g € G is the Dirac
measure at g.

Let X(G) be the group of continuous C;-valued homomorphisms of G endowed with
the topology of uniform convergence. If x € X(G) and u € A[[G]], we write (x, #) instead
of [, x dp and let xpu € A[[G]] be defined by (i, xp) = (¥x, n). Then we have (x,ul) =
(x; 1) {x; A} and x(pA) = (xp)(xA).

Suppose from now on that G has a quotient isomorphic to Z, and let ' C G be a
lifting of Z,. Let A’[[G]] be the total fraction ring of A[[G]] (i.e. the ring of a~!§ where a,
f are elements of A[[G]] and « is not a zero divisor). If A = a™1 € A’[[G]] and x € X(G)
satisfies (x, a) # 0, we set (x,A) = (x,@)~*(x, ) and this depends only on ), not on the
particular decomposition of A in the form a=!. The map x — (x, A) is defined on a dense
open subset of X(G). If A € A'[[G]] and x € X(G) we can still define A € A'[[G]] and we
still have x(Ap) = (xA)(xp). An element A € A'[[G]] will be called a “pseudo-measure” if
(1 - ¢)A € A[[G]] for all g € G. We shall write A[[G]] for the space of pseudo-measures.
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Let m: G' — G be a surjective morphism of profinite abelian groups. Then 7 induces
a surjective morphism from A[[G']] to A[[G]] which can be prolonged in a unique way to
a morphism from A[[G']] to A[[G]] in the following way. If g € G, then g — 1 is a zero
divisor if and only if the topological closure of the subgroup generated by ¢g in G has a
finite p-Sylow subgroup; in particular if the image of ¢ in Z, is non-zero, then ¢ —1 is not
a zero divisor and the set of ¢ € G such that ¢ — 1 is a zero divisor is contained in a closed
subset with empty interior. So take A € A[[G']] and g € G’ such that 7(¢g) — 1 is not a
zero divisor and set 7(\) = ((g) — 1)_17r((g —1)X). This clearly does not depend on the
choice of g and defines a pseudo-measure on G.

Lemma 34: (i) If the p-Sylow subgroup of G/T is infinite, then A[[G]] = A[[G]], or otherwise

stated, all pseudo-measures are measures.

(ii) If m:G' — G is a surjective morphism of profinite abelian groups and X is a
pseudo-measure on G’ such that 7(}) is a measure, then A itself is a measure.

Proof: This follows easily from the structure of A[[G]] given in Th. 1.15 of [Se].

Corollary: Suppose G has a quotient isomorphic to Z2. Let x1,...,xn € X(G) and
A € AN[[G]] such that ¥(g1,...,9n) € G™, A[]i=;(1 — xi(gi)gi) € A[[G]], then X is a

measure.

Proof: An immediate induction reduces the study to the case n = 1. So let x € X(G)
and A € A'[[G]] be such that (1 — x(g)g)A € A[[G]] for all ¢ € G. We then find that

Y71 = x(9)9)A) = (1 — g)(x~'\) is a measure for all ¢ € G. As G has a quotient
isomorphic to Zg this implies by a) that x~!) is a measure, hence ) also.

83. P-adic L-functions

If S € P(H) satisfies SN |(p)] = 0, let Gu,sp (resp. GH,sp) be the Galois group
over H of the union of all abelian extensions of H of level m with |m| C S U |(p)| (resp.
|m| C SU|p|). If p denotes the complex conjugation on K induced by the embedding of K
into C, the map 0 — 7 defined by &(z) = p(o(p(z))) induces a (canonical) isomorphism
between Gn,sp and Gy 5 . iz € A} /H*, let o, € Gal(H®/H) be its Artin symbol. If
b € Isyp)(H), let o, € GH,s,p (resp. Gu,s,p) be the Artin symbol of the idéle (..., zgq,...),
where vq(zq) = —vq(b) and 0-; € G s, be the Artin symbol of (...,zq,...) where
zq = —1if q € |p| and zq = 1 otherwise. If b € Isy(,)(H), we have op = 7% in
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Gyv 5, Let N be the cyclotomic character of Gu,s,p defined by N(on) = N(b) and if x
is a Cj-valued continuous character of Gy,s,p, let x¥ be the character of G v 5 p defined
by x¥(o) = N(e)™'x(77).

If (by,b2) € Cr(S(B),S'(B)), we let pby,bys € Ipul[Gn,spl]l and Apyb,,s €
I, 1([[GH,s,p]] be the respective projective limits of the pb, b;,m and Ab, b,,m defined in
Proposition 33. If x is a continuous Cj-valued character of Gy,s,p (resp. GH,s,p), We set

Lp,s(x) = [(1 - x(ow,) ™) (1 - N(bz)X(Ug,))] - /g X dAby b,,S)

and

Lps(x) = [(1 — x(on,) ™) (1 - XV(sz))_l] - / X diby by, S-

Gn,s.p

Lp,s and Ly s are independent of the choice of (by,b2) as can easily be deduced from
Proposition 33. We can now state our main result:

Theorem 35: (i) L, s(x) is an Iwasawa function of x, i.e. there exists a (unique) measure
ps on GH sp such that Ly s(x) = fg‘“'p x dus.

(i1) If ¢ is an admissible Hecke character of conductor my, satisfying |my| C SU|(p)|,
then L, s(¥P) = Eg(¥Y)Esupp (¥)Wip(¥)AT (%)

(iii) If the conductor of x is divisible by all elements of S, then there exists a p-adic
unit W(P)(x) such that

W (x)Lp,s(x) = x(0-1)L, 5(x").

Moreover, if 1 is an admissible Hecke character, then

woEe) = [ Wa).

qeSu|dy|-|(p)|

(iv) There exists a (unique) pseudo-measure As on Gg,s,p such that

Los(x) = / x dis,
gH S,.p

and s is a measure if S # { or if the p-adic regulator Ry, of Uy is equal to 0.

(v) If ¢ is a p-admissible Hecke character of H of conductor my, satisfying |my| C
SU [pl, then Ly, s(#®)) = Epg(4")Wip|(¥) Es()A(%).

Proof: (i) First note that Gy s,, has a quotient isomorphic to Z2, namely Gal(H Ko /H),
where K, is the union of all Z,-extensions of K, and that the image of CT( (B),S'(B )
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by the Artin map is dense in Gg 5., X Gy 3p by Tchebotarev’s density theorem. Hence,
there exists a subset C of Cr(S(B), 5'(B)) dense in Gn,s,, X G Hv 5 p Such that the quotient
of ub, b,,s by (1 — 0;11)(1 — N(b;)on,) is well-defined. An immediate consequence of
proposition 33 is that this quotient is independent of the choice of (by, bs) € C. We shall
denote it by ugs. We see that (1 — agll)(l — N(b2)7%s, ) is is a measure on G g, for all
(b1,b2) € C. As Cis dense in Gn,s5,p X Gyv 5, this implies that (1 01)(1=N(o3)o2)us
is a measure for all 01,02 € GH,s,p; hence, ps is a measure by virtue of the corollary of
Lemma 34.

(ii) and (v) These are immediate consequences of Proposition 33.

(iii) Let ¢ be an admissible Hecke character of conductor my satisfying S O |my| D
SU|(p)|- We have:

Lp,s(¥'P) = Ej(v") Ejg (" )Wip ($)A* (),

L s((¥")?) = Egg(¥") Eg(¥)Wip (¥ YA (),
WA () =i "A*(3Y),
Wip| (¥ )Wigi($) = $pg1(-1);

W) = ()W We) [ Wa),

q€|mydg|-|(p)l
PP (o ) = (=1)* ¢z (-1),

from which the formula for W(P)(4(P)) follows immediately. The fact that W()()(?)) is a
p-adic unit is a consequence of the fact that Wq() is a unit at all places prime to N(q).
The general case can be deduced from this case as in [d Sh, II, §6].

(iv) The definition of As is about the same as that of us. The quotient of Ay, b,,s
by (1—03,) (1= N(bz)og,) does not depend on the choice of (b1, b2) € Cr(S(B), S'(B))
and will be denoted by As. The difference with a) is that now, N(bs) is not a continuous
function of o5 and the image of Cr(S(B),S'(B)) in (Gu,s,p)? X Op, by the map (by,by) —
(Gbl—x,dgz,IV(bg )) is dense. This implies that (1 — 01)(1 — ao3)As is a measure for all
01,02 € GH,5p and a € O;‘,. Hence (1 — 01)(1 — po2)As = 2(1 — o9)(1 — %20'2))\5 -
(1 = 01)(1 — 02)As is a measure. But (1 — pog)~! = 372 p*o¥ is a measure and so
(1 —01)As is a measure for all o; € Gy 5 p, which means that Ag is a pseudo-measure.

Now, if S # 0, take q € S and let §' = S —q. Let 7 be the projection from Gy sp to
GH,s',p. Then we have m(As) = (1 —0q)As and thus 7(\s) is a measure which implies by
Lemma 34 (b) that As is a measure is 5 # 0. The fact that )y is a measure if R, = 0 can
be obtained by the same method as in [Se], which concludes the proof.
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Article 3. Sous-groupes de GL;(F3) comme groupes de Galois.

Soit H un groupe fini et G une extension centrale non scindée de H par Z/2Z. Soit F
un corps de caractéristique différent de 2 et K une extension galoisienne de F' de groupe
de Galois isomorphe a H. Soit E(H, G, F, K) ’ensemble des corps L, quadratiques sur K

et galoisiens sur F, tels que le diagramme suivant commute:

Gal(L/F) — Gal(K/F)
! l
H — G.

Quand F est un corps de nombres, Witt a calculé explicitement l’ensemble
E(Z/2Z,Hg, F,K). Dans cet article nous généralisons sa méthode pour calculer les en-
sembles E(Dy, Dy, F,K), E(A4,SLy(F3), F,K) et E(Ss, GLo(F3), F, K).
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Explicit realisaticns of subgroups of GL2(53>

as Galois groups

Leila Schneps

Let F be a number field and K an extension of F with Galois group

D, (resp. A

A 4 OF S4)‘ In this article we explicitly comnstruct all of the

guadratic extensicas L ©

Hh

¥ having Galois group D4 (the 2-Sylow
subgrcup of GLE(Eg)) {resp. SL2££3) or GL2(33)> over F, whenever such

extensicns exist.

Ve wish tc thank the Max-Planck Institut fUr Mathematik for its

hospitality and fizancial support during the preparation of this paper.
§1. Introductica

Let G be a fizite group, and H an extensicn cf G by {£1}, i.e.

-

Let {vveH ! v€G} be a set cf representatives of H/{xl} such that
v, 2 under reducticn mod 1. Let F be a number field, and K

a Galois extensicn cf F having Galois group G. The following result

is well-known:

Lemma 1: Let A = I va = (K/F,C; T) be the crossed-product
[ 1
algebra whose multiglicative law is given by
av = vvv(a) fcr a € K and VeVr CV.TVUT ( C;’T= +1),
where the C; , are given by multiplication in H. Let E(X,F,G,H) be the
1]

set of quadratic extensions L of K, Galois aver F of Galois group H and
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such that the diagram

Gal{(L/F) > Gal/F)

d ¥ commutes. Then
G - H

5,5, G,H) is non-empty if and cnly if the class of A in the Brauer

b=}

grcup 2r(F) is equal to the identity class. Moreaver if ¥ € K is such

that %( ¥) € E(X,F,G,H), then E = { X¥r¥) ! r e F ),

Proci: Suppose there

gver ¥ of Galaois group

£ 0

exists ¥ ¢ K such that L = K(V?) is Galois

H. Let w =‘V§: for each ¢ ¢ Gal(X/F), set cc =

vv(u)/'. Then CvV(C*)Cv —1{ . = 1, so the cocycle defining A is

Thegoram 20, there exists

T o

czscycle and A splits. In the cther Zirecticao,

2
<

2 ]
in . Then <, V(CT) = c , 50 by Hilbert's

T

i3 Galcis over T with Galois group H.

{5 easy -c zee

are the K(‘rX) for

]
m

)[’

the existence cf r

m

e

i
fa
(]
e}
Q
ct
(]

T =t
=%

Pt
B

in terms of generatcrs

zcreaver that if K(f?) ¢ EWXX,F,G,H) then =0
F. if K(f&) and K(¥X) are bath in E one deduces
suck tkhat X = ry from Hilbert's Theorem 90.
ceatral =xtemsiaon of 84 oy {xl} described

and ralations by

2 2 . 3
=1, w =1, wt, = t.w, (t.,t YT =1, t.t, = wt, %
i ’ ’ i s i7i+1 U173 371
for gemerators w,t,,%,,t, {(see [21). For the rest of this article we
i < -~

cnly consider G © €, and H = G, the lifting of G in S

1

52. The quaternion group i

subgrcup {1, (12)(34), <

4

3

Let G be tke Vierergruppe I/27 x I/2Z, which we identify with the

131424, (14)@2r < 84. G is the quaternion

group Ha cf order 8. Let X/F be a biquadratic extension, the v_ an

“he algebra A as in 81.

Witt [4] constructs L explicitly whenever
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A splits. Ve briefly recall his method here.

1 72 and 03 be the elements of G, and let < EV I v € G)

e a pasis cf ¥/F such that f =1, 6 2 = a € F, n f =1
1 4 [ 4 reG g

and 7(E~) = fw‘ The v, generate a quaternion algebra (-1,-1) over F

-

and tte § v generate (-a_ ,-a_) : since the v_commute with the
T T 4 o o
1 2
. h - (- -1 (- -
fTvT,Ne“aveA (-1, ‘)®F\ao"ao')'
1 2
The fact that A splits implies that (-1,-1) = (—av T2 ) and
1 2
“Zereicre tlere 2xist alements 3., ¢ F such that setting
-J
3 h % = 2 1 =122
w_ = I, ... , we have T, w_ = -1 and w = -1/a for i=1,2,C.
y, =1 Fiio»r i=l o, g o,
i 3 i i i
et w, = .. V¥itt now extends the scalars of (-1,-1) to K
‘so ¥ iz zow the center of this algebra), and sets jv = £yw&: he
-1
*hen consiructs the element C =1 v jv' This element is non-zero
0eG
-
and verifies tke Identity CjVC o= Vv for each # € G. Replacing

T o, ; r.—1
by v 27 in this aquation also warks. Now set M, vvC C °. Then

zince L _v_u O] (pCY T =v

’
T hg Y bs D4

we find that B, € K. Let

r, -1 2
¥y = YC ‘=-ze quaternicn zcrm). Then ¥ € X and Y ¥ = K, for all = € G,
is Galois over F. Moreover, the By satisfy the cocycle
ralatizn o & Ju =4 , and { C } 1is exactly the factor
T Pl Ty o, T o, T
systex describing HS‘ so Gal(XK/F) = HB' Direct calculaticon shows that

L ] c’+ Pas 0,24- Pas ”é so we have proved the following

emma 2: ‘Witt) Let ¥ be an extension of F of Galois group Z/2Z x 1/22.

Then E(K,F.Ha,ZIZZ x 2/2Z) = { K> ! r € F ), for Y defined as above.

65



§3. The generalized dihedral group D4

Ve now let F be a number field and X a2 Galois extension of F such
that GalX/F) = 54, the dihedral group of order 8. Such a field always
occurs as the splitting field of a polynomial of the form

sy = X*+vx® +d, bdecF,

where 4, bz—4d and d(b2—4d) are not squares in F. K contains three

A -
suadratic subiizids, F{ bo-4d), F( D) = T &) (where D = 16(b°-4d)%d

i3 the discrizizant cf the polynomial P(X)) and F( d(b2—4d)).

In Theorem 3 we explicitly give the set of Galois extensions oif
T contaizniag ¥ and kaving Galois group D4 {this group is also known as
the generalizad Jiledral group and is generated by elements a and b

4 ) 2 2
such that a = (ah)~” = -1 and b = 1.)

>

Let «., x., x, and a4 be the roots of P(X), anumbered in such

a way that x. - x, = 0. We have:
2
2 2 o) - 2 2 - -4
02 = o2 = =_ _h;_&d and a. %= « = =2 , th=-ad

Gal(X/F) is then the subgroup {1, (12)(34), (13)(24), (14)(23),

(13), (24>, (1234>, 11432} C:S4. F(al) is fixed by p = (24).

Let 5, = x, *oa,, ga = l/(a1+a°)(a,+a4) = -1/ b2-4d and

€3 = o ta, ‘we write fi for-{v, in the preceding notation).
| i

Then 1,g1.g2 and €q form a basis of K/F(WE). Moreqver if for

—

~

L ¢ 1 ¢ 3 we defize 2, = 5% the a, are in F(Yd) and

Gal(k/F(fd)) = 2/2Z « 2727  (identified with the subgroup
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{1, 12)(34), (13X(E4), AP @) of D4), sa aver F({d) we are in the
quaternicn case cf Witt. Ve form Witt's algebra

(-1,-1) Qk(fa)(-a1.-aﬂ).

A
- <

Lemma 2: Let (2,5 " denote the part of the quaternion algebra (a,b)
fixed by the action of p, this action being conjugation by v . Let

A be the algebra associated *to D4 and D4 as in Lemma 1. Then

where [A] denctas =ie class o A in the Brauer group Br(F).
Preooi: a facz, A = f—l.~l>pCE (—aﬂ,—az)p @, (1,2) where (1,4d) is

generated ty v ‘v 7= 1> and 4. But £(1,d3)] is trivial in Br(F).

The part zI ‘a,t) fixed by p consists of the elements x + v xv_ for
all x e (a,b>. ‘-1,-1) is generated over = fa) by v,, v, and v, =
—1/v,v°, S0 since v v, v = -v and v dvov = dw (—1,—1)p

plp 3 P 2’

aigebra -2,-4) cver F. Similarly, setting u, T glvl, uy = € v, and

Up = “S3vy = -l/uluz, the u, Zenerate (—al.—az) aver F( d) and tl =
v, = VacT-adu te (-a,,-a)P = (2b,-d(b>-4d)) over F
U, Uy, t, E s u, generate 10720 = ,—ad e .

(A = [(-2,-d) G% (2b,-d(b2—4d))l

in the Brauer group 2r(F). Ve note that this algebra is equal to
(-25,-&) B '25,5°-4d) @, (2,d) = (Vitt imvariant of Tr(¥) @, (2,
so the splitting of A is identical to the condition for the existence
cf L given in Serre’s theorem [Z].

If A splits then there exists an isomorphism of algebras
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o]
T (=2,-3) 3 (2b,-d(b"-44)), and elements qij € F such that
3

t, = iél qijn(sj) . By extension of scalars, the isomorphism f gives

rise tc a unique isomorphism n: (-1,-1) - (—al,—ao) and an associated

matriz R = (rij) suck that:
3
ui = ,E‘ rijx(vj) , i=1,2,3.
Let P = (pi ) = tR—l. Then R is a "Witt's matrix", i.e. setting

J
¥y = 1 ¢+ rllgl + r22€2 + r33 q the field L = K(f?) iz Galois

cver ¥7 4) with Galcis group Ha.

Thegrem 4: Let ¥ and ¥ be as abave. Then E(K.F,D4.D4) =

t K(f?}) ' r g F}.

S . o -1 ; .
Progi: We first show that yPy iz a square in F. Define w, =
P
< 2
L, p.,v, for p,, as abave. Then w,~ = -1/a,. Let j_ = & w , and let C
JEL P i3 i i o o
; -1
te tle element ng v, 3, constructed by Witt in the algebra (-1,-1)
cver ¥ ‘with scalars extended to KD. For any quaternion
3 =2 =%v, +cv, - 3dv

iV, vﬁqvp = pfa) - p(b)v3 - p(c)v2 - p(d)vz,

a
- < [ I

50 H{quvp) = p(Nq). JYow, we saw before that the matrix R = (rij>
ccrrespcnds tc an isomorphism n: (-1,-1) - (—al.-az) satisfying

§ T jgl pijx(vj)

Ifqe (-1,-0), g = § a;x X, for a € (-2,-d) and

« ho + v - 4
Xy -({E), -hen :pqvp § af@ p(xi) since p acts trivially

4, = ;gl r;Jx(v{) : this gives w
- v - J

(4]
M

cn (-2,-4). Thus, *he isomorphism ff commutes with conjugation
by v_ zn (-1,-1). This allows us to calculate the vaivp:
’I
vwy =vavIv =nalv.v.v) = -w . Now we calculate
pip P ity pivp 4-1

_1 ...1 _1
< = i + +
vpc:p 1 + vp(v1 Jl)vp vp(v2 j2)vp vp(v3 js)vp
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since

furth

-1
= + v (v v + v (v v vv v
1 P( f w, ) 0 P( 2 fzw ) 0 + ( a §éw )

-1 -1 - - . _
1+ oy p§D vy + v, PN vy + oy )p(§;><-v1> =

p§,> =6, . Thus, ¥* = @of = N(v,Cv > = §C = y! One can

er verify that 1if B, = VVCVC—l for ¢ € {1; (12> (34), (13)2%),

(18)(23)Y and p__ = p P& | the B, verify the cocycle relation

o
[
xVy)

fact

In thi

po r “p,o

Byr = CV.? for o,7 € D4 and therefore Gal(K(V§§/F) = D4 and

5 E(K,F.D4,D4). Lemma 1 suffices to conclude.

Ve remark in particular that the ¥ constructed in tkis way is in

an element of F(a,).

1

4

Zxample: Let PX) = X~ - Xz +d, d, 1-44 and d(1-4d) not squares in F.

s case, <2b.-d(b2—4d)) = (-2,-d(1-44)), so the condition for

the existence of L becomes (-2,-d(1-44)) = (-2,-d), or (-2,1-44) =1

in the Brauer group Br(F). This is equivalent to the condition

+here exist u,v € F such that -2u2 + (1-4d)v2 = 1.

Suppose this conditicn is satisfied. Then a matrix Q as above is

1 0 0
-1 _ 1 2du .
given by Q = 0 e (1-4d) - » and this gives
0 . | S 1
dv(1-44) v
1,1 -u 11
2va 2 v a2va 2
1 3
tP _ T 1 A )
- va, v va,
11 -u 1,1
2va1 2 v 2va3 2



Thus we can take ¥y = 1 + (é’+ 5&; )gl + <t)§2 + ( é‘+ ‘l—')fq =

1 + a, -~ —FT—=

2
If QX> is the minimal polynomial of this element, then QX™) is a

polyncmial having Galois group D4.

Zet P{X) Te a pclynomial over F having splitting field K such that

Zal(X/FY = A,. Let T = (1, (12)(34), (13)24%), (1423 < A4, and
‘r

let R< ¥ ze the fixed field of ' Then [(R:F]l = 3 and Gal<(X/R)

1]
]

30 cver R we are iz the quaternion case of Witt. Let v = (234) ¢ A4,

Ihegrex T: Suppcse there exists an element ¥ € K such that Xy

2
i5 Galcis cver 2 with Galois group HB" Set 83 =¥ XT XT . Then
SK,F AL,,A ) = K(Vrﬁ) "' r e F ).

Progf: [a order *ao show that GalX( BY/F) = A4, we must show that BBw

: X 2
is a square fcr all o € A4. Jow, A4 =T x <1,7,77>, so we can write

2

v = 6w, with £ ¢ [ and w € <1,7,72>. Then 8% = (yy "y ) (yS@ 00T SwTs,

-~ & S =2
= (xx'yT Y (¥ xsyygT ) since w permutes 1, T and 72. But ' = Gal(K/R),

50 XXS is a square in K for each § € . Moreover, writing §r = 6, and

1
572 = 7252, we find that 61 and 62 are in I', so
2 2 2 2
§
887 = aHaWHaT ™ H = S ey T T 83
2 :
= (YXS)(YYS')T(YXSZ)T is a square.
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The usual remark on the cocycle relation satisfied by the By shows

that Gal(K(fB)/F) is really A4 and Lemma 1 suffices to conclude.

Ve remark that the § obtained in this way is an element of F(al).

Example: Let P) = 14 - 1212 - 8X + 9. Then the discriminant of P

is 10082 and it is easy to check that the Galois group of P aver Q

is A4. Let al. a2, a3. a4 be the roots of P(X). Let é& = al + as,
= = - T =

82 «, + «,, and f; (¢, + a5)/8. Then 515253 1 and togetlher

with 1, these elements form Witt's basis gver the field R =

Q. +a)2). Let ¥ be the splitting field of P(X). For 1 ¢ i ¢ 3,
17%3 ¢ SP

N

2
let a; = E‘“. Vitt's methods give the following expression for an

element Y such that K({;) is Galois over R of Galois group H8:

= —a- - - - §
X 672+(-8 19232a3+4al)§1+( 192+320a.a +12a2)§é+<1472 8a.a 4096a3) 3

173

172

Let v be the permutation of the roots given by the 3-cycle (234), and
2

-~ -~
4 B

11 2
let B = (Y ¥ ¥ /(277-77). Then if Q(X) is the minimal polynomial

of B, Q(Xz) has Galois group A4 over Q: we have

ed® = ¥ - 12884x° + 41492682x* - 7085480580%° - 5051798406522
= x8 - 22.3221x% + 2.3%.7.11.17-587x* - 22.37 . 5.7.11.2371%°
6

- 2-37-7-494983187.
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§5. The group S4 = GLZ(ES)

The argument is analogous to that for A4. using D4 instead of T.

Let Gal(X/F) = 84, and let D4<=-S4 be given by {1, (12)(34), (13)(24),

(14) 23>, (13>, (24>, (1234, (1432)}C:S4. Let R be the fixed field

of D4. Then [R:F1 = 3, but R is not Galois over F. Let 1 = (234) ¢ 84,
_ 2
Then ~ LD4T ='Ga1(K/R7) and TD41 1 = Gal(K/R7 ).

Thegrem §: Suppose there exists Y in K such that KC ¥) is Galois over
2 ]
R with Galois group D4. Let 8 = 3"y . Then K(fﬁ) is Galois aver

T witk Galois group S4, and therefore E(K,F, S4,S > = {KQArB) ! re F).

®rcof: As before, we must show that BBV is a square in K for all ¢ € K.
We first suppose that o € 83 = {1, (234>, (243>, (23),24>,34)}), i.e. the

set cf elements of S4 fixing F(al). Now, by the argument far D

know that ¥ € R(al) and therefore R € F(al), sa BB’ = ﬁz in K.

¥ext we let o € I = {1, (12)(34), (13)(24), (14> (23)). This subgroup is

4 e

ncrmal Ino 84 and therefore 887 is a square in K by the same argument

as in the case of A4. Naw, S4 =T x SS' SO an, o € S4 can be

written ¢ = 6w, 8 € T, we S.. Then Bp° = pg®% = pp¥pfp@(gs, 2 -

3 =
(BBS>(BB°)6(56)—2 which is a square in K.

Ve note that we may use these methods to derive Serre's theorem

directly for n=4 (see [31).

lemma 7: Let P(X) be a polynomial over F with splitting field K, and

Galois group 84: we assume P has the form X4 + bx2 + cX + d. Let

V2<P) be the Vitt invariant of the quadratic form TrK/F<x2). Then there

exists a quadratic extension L of XK such that L is Galois over F with
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exists if and only if (-2,-D)(Y,-DY) splits: but in this case (Y,-DY) =

(Y,D) = (Y2-4d,16d-3Y°) splits because 4(T>-4d> + (16a-37%) = Y

which is a square in R. So (-2,-D) must split for L to exist.
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Article 4. D, et Dy comme groupes de Galois.

Soit E(H,G,F,K) comme dans l’article précédent. Nous calculons explicitement
E(D4, Dy, F,K) pour tout corps F de caractéristique différent de 2 et E(Ds, D, F,K)
pour tout corps global F. Cette méthode nous permet de donner des exemples explicites

d’extensions réguliéres de Q(t) de groupe de Galois D, et Dj.
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Algébre/Algebra

D, et D . comme groupes de Galois

Leila ScHNEPs
Résumé — On construit explicitement des corps ayant D, ou D, comme groupe de Galois.

D, and D, as Galois groups
Abstract — Explicit fields having D, or D, as Galois groups are constructed.

Soit H un groupe fini, et soit G une extension centrale non scindée de H par C,, le
groupe multiplicatif {1, @} d’ordre 2. Le groupe G satisfait 1 - C, - G — H — 1. Soit
F un corps de caractéristique différente de 2, et soit K une extension galoisienne de F
telle que Gal(K/F)=H. Soit E(H, G, F, K) I’ensemble des corps L quadratiques sur K

Gal(L/F) — Gal(K/F)
et galoisiens sur F tels que Gal(L/F)>~G et que le diagramme Cl} I}I
commute. Dans ce qui suit, nous prenons H=D,, le groupe diédral d’ordre 8 dont on
fixe un plongement dans S,, et G I'un des deux groupes D, et D, qui apparaissent
comme 2-sous-groupes de Sylow des groupes S, et S,[1]. Nous donnons une description
explicite de E(D,, D,, F, K) et une description de E(D,, D,, F, K) dans le cas ou F est
un corps vérifiant certaines conditions, par exemple quand F est un corps global. Nous
utilisons des méthodes basées sur des idées de Witt[2], que nous illustrons par des
exemples d’extensions réguliéres de Q (t) de groupe de Galois D, et D,.

Nous tenons a remercier le Max-Planck Institut fir Mathematik pour son hospitalité et son soutien financier
pendant la préparation de cette Note.

1. LE THEOREME DE WITT POUR LE GROUPE DES QUATERNIONS Hg. — Soit I'=Z/2Z xZ/2Z
et soit K une extension d’un corps R de caractéristique différente de 2, telle que
Gal(K/R)=TI". Ecrivons I'={1, ,, 0,, 63}. Soit {£{,|cel'} une base de K sur R
satisfaisant &£, =1, [[€,=1, o(§,) =&, et E2eR. Posons q,=E2.

L. 3

Witt s’intéresse au groupe des quaternions Hg, qui est une extension de I' par C,. Soit
{hy]ocel’'} un systétme de représentants de Hy/C,. Pour o, tel' on définit
le.x=hyh h;!', ou ( . est un élément de C,={1, o} que 'on identifie avec {1, —1}.
Soit T le produit croisé (K/R, {,,). Rappelons que T est une algebre centrale simple de
dimension 16, contenant K. Soit {v,|ceI'} une base de T telle que T= ) Kv, avec

cel
Ug Uy =U4g Vg €t U, a=0 ()1, si ae K. Soit A la sous-algébre de T engendrée par les v,
pour cel’ et B celle engendrée par les £,v, pour ceI. Les algébres A et B sont
isomorphes respectivement aux algébres de quaternions (—1, —1) et (—a,,, —a,,). On
voit facilement que T=A®gB. Il est connu que E(I, Hg, R, K) est non vide si et
seulement si T est décomposée.

THEOREME 1| (Witt[2]). — Supposons que T soit décomposée, donc qu’il existe un

isomorphisme d’algébres g: ASB. Pour un tel g, soit c,eA®rK le quaternion

c,= Zr v, 'ET g (E.v). Soit y=N,c, la norme de c, Alors les éléments de

E(T, Hg, R, K) sont les L, =K (_/rzy), ou r parcourt R*.

Note présentée par Jean-Pierre SERRE.
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De plus, en posant 8,=v,cjc,' pour cel et 3§,=08%(,, on constate que
8,6.8,.'=(, . pour tout o, tED4 et donc que Gal(L/F) est bien D,. On a donc montré
que L est dans E(D,, D,, F, K). Les autres é¢léments sont donnés par K ( \/— ), reF*.

Cas 2. — G=D, et F est un corps giobal. Le fait que T est décomposée signifie que
les algébres A, =AP@¢(—1, d) et B, =B°®(1, d) sont isomorphes. L’algébre A, est
engendrée par A et un élément a tel que a’=—1 et a~ ! xa=x" pour tout xeA. De
méme B, est engendrée par B et un élément B tel que B2=1 et By =" pour tout yeB.

On a A=A’Q:R et B°Q:R; comme (—1, d) et (1, d) sont décomposées sur R,
I’hypothése A, =B, entraine A =~B. D’aprés le théoréme de Skolem-Noether, il existe un

isomorphisme h: A, £ B, qui applique A sur B et est R-linéaire. A un tel A on associe

un élément A (h) de B tel que h( \/Z o) =A (h) B (notons que, puisque h ( \/c_i a) anticom-
mute avec \/d il se trouve forcéement dans B ). L’élément A (h) a les deux propriétés
suivantes :

(D AMPA(M)B=A(R)A(h)P=d.

(i) Pour x€ A, on a (A (h)B) ! h(x) (A (h) B)=h(x), autrement dit
BhA(x)B=h(x)=A(h)~" h(x) A (h).

LEMME. — On peut choisir h de telle sorte que Ny A (h) =d.

Démonstration. — Choisissons un isomorphisme hy: A, Zz‘-»Bl comme ci-dessus. Pour
tout ge B*, g™ ! hyq est aussi un tel isomorphisme. Nous allons construire un ge B* tel
que Ng(A (g ' hyg))=d. On commence par remarquer que

Mg hoq)B=g""ho(/d.a)q=q ' A(ho) Bg=q ' A (ho)q"B.

Donc Ngi(q™'hoq)=(NgA(ho))(Ngq)*(Ngq)~'. Soit z=Ngz(A(ho))/de F(\/a) On a
alors zz°=1 et donc par le théoréeme 90 de Hilbert, il existe yeF( \/3) tel que z=y/y’.
Donc (Ng(A (hy)) y°/y =d. On remarque qu’a chaque place réelle de F( \/Z) ou Ngx est
définie positive, z est positif et donc y et y° ont méme signe : on peut donc rendre
v positif & chacune de ces places en le multipliant par un élément convenable de F.
Or, la norme d’un quaternion est une forme quadratique a 4 variables, donc par le
théoreme de Hasse-Minkowski, ’équation Nzgq=y a une solution dans B. On pose
h(x)=4q ' hy(x)q, ce qui permet de conclure.

Choisissons h comme dans le lemme, et soit g sa restriction a A, qui est un isomorphisme
de A sur B. L’application x+— f,(x)=a "' g~ ' (Bg(x) B) « est un automorphisme de A. Il
existe donc un élément ue A* tel que u ' xu=a "' g ' (Bg(x)B)a pour tout xe A. Pour
tout xe A,

u lxu=a g ' (Bg(x)P)a
=a g7 ') gx)A()a=a" g A ) Haxa g A (M),
doncu=a"!g ! (A(h))a Ceci donne N, u=N, (g~ (A (h))?=N, (A (h))°=d par le lemme.

Soit y=N, ¢, la norme du quaternion c,c A®gK associ¢ 2 g. Comme dans le cas
G =D,, pour montrer que L est galoisien sur F il suffit de montrer que y*y~! est un
carré dans K. Tout d’abord. on a

=2 (=) (v, 15T T E v )

1

tel
=3 (—0) ' pE) T 2T g T Eev)
el
= Z (—vmo)_lg;pl —1(BE”U B)u
tel
= Zr vp—v; ip—f; -1( E.tprp mp)u— zrv 1& —l (ét vt) u.
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On emploie alors I'identité suivante, facile a vérifier :
oo l=c, (G g T Ev)) e =i (T E g T (B v u) ()TN

On en tire: ¢, 'chu™'(§7'g7 &, 0))=(, g ' (E.v))c, ' cfu"t, dou le fait que
c;'cbu™" est dans le centre de A®rK, donc dans K. Donc N,c,=N,c,.N,u
modulo (K*)2. Mais par construction N, u=d, qui est un carré dans K. On voit donc
que L=K( \/?) est galoisien sur F. Pour vérifier que Gal (L/F) est bien D,, on remarque
qu'en posant 8,=v,cjc, ' pour cel et §,= /d.c;'cou™' on a §,8.5.'=C,, pour
tout o, te D,. Donc K ( \/?) €E(D,, D,, F, K) et les autres éléments sont les K ( ﬁ)
ou r parcourt F*.

Exemples. — Soit P(X)=X*—X2+d, ou d, 1 —4d et d(1 —4d) ne sont pas des carrés
dans F, et soient a,, a,, a, et a, les racines de P(X) comme ci-dessus.

Cas1l. — G=D,. On a A?=(—2, —d) et B°=(—2, —d(1—4d)), donc si A°P=B" il
existe u et veF tels que —2u?+(1 —4d)v?=1. La méthode décrite ci-dessus donne

1 1 1
=14+0a,— - oy, ou /T—4d= - —a?.
Y Vo T=4d v ji-ad 2 !
Soit Q(X) le polyndme minimal de y. Alors le groupe de Galois de Q(X?) est D, et
2. 9 A2 2 (0 4
Q(X’):xs_4xé+(2u+10u v 3 4u )x*- (4u (v 1)>x=+( 4u*d )
v(1+2u%) v(1+2u?) (1+2u?)?
En prenant v=2, par exemple, et u=t, ce polyndme donne une extension réguliére de
Q (¢) de groupe de Galois D,.
Cas 2. — G=D,. On considére le cas ou I'algébre (— 1, d) est décomposée : dans ce
cas on n’'a pas besoin de supposer que F est un corps global. Si (—1, d) est décomposée,

il existe x et yeF tels que —x?+dy?>=1. On envoie A® sur B® comme dans le cas 1 et

a+—»>xB+yP /d Posons A= —yd+x ﬂe F( \/H) Alors la méthode décrite ci-dessus
permet de calculer

y—(2ydk)[l+a — ! ! o]

'"v /T—4d v_/i—4d ‘|
On en déduit des extensions réguliéres de Q (z) a groupe de Galois le groupe quaternionien
d’ordre 16.

Note remise le 21 novembre 1988, acceptée le 23 novembre 1988.
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