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SUBJECT

. On some nonlinear problems arising in plasma physics.
. On some nonlinear diffusion problems in hydrology and in population

dynamics.

ABSTRACT

In the first part of this thesis we consider certain nonlinear problems
arising in plasma physics. We first study a singular two-point nonlinear boun-
dary value problem on an interval (0O,R) ; we prove that it has a unique solu-
tion and study its Llimiting behavior as R > ©® and as a small parameter €40 .
We also study the large time behavior of a related evolution problem. We then
extend our study to more general boundary value problems in higher dimension
and show that as e+¥0 their solution converges to the solution of a free

boundary problem.

The second part of the thesis concerns the study of certain nonlinear
diffusion problems. We first show the existence and uniqueness of the solution
of boundary value problems related to a doubly nonlinear diffusion equation in
hydrology and study its asymptotic behavior as t - « . We then consider a
system of nonlinear degenerate parabolic equations which models the time evo-
lution of the densities of two interacting biological populations. We suppose
that their supports are initially disjoint. Our results concern the time evo-
lution and the lLarge time behavior of those populations and of their supports,

and the regularity of the boundaries of the supports.

KEY WORDS

Nonlinear elliptic equations, Singular perturbations, Nonlinear diffusion

equations, Free boundary problems.
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INTRODUCTTION

INTRODUCTION A LA PREMIERE PARTIE.: SUR QUELQUES PROBLEMES NON
LINEAIRES EN PHYSIQUE DES PLASMAS,

Le probléme que nous étudions provient de la physique des plasmas.
On considére une assemblée d'ions et d'électrons. Les ions, lourds et lents,
sont considérés comme fixes dans L'échelle de temps considérée et L'on se
propose de déterminer la densité des électrons, leur charge totale étant
supposée connue. Si L'on prend comme inconnde le potentiel électrique, on
obtient le probléme

- Au + eU/€ = f dans @

T J QUe o ¢ C>0
Q

UIBQ = constante (inconnue) ,

ou N est un domaine de R" , borné ou non, et € une constante proportion-
nelle & Lla température. La fonction f correspondant a la densité ionique

est supposée connue ; la quantité eU/E correspond & la densité des électrons
et la condition intégrale exprime le fait que leur charge totale est connue.
On suppose de plus que le domaine § est entouré d'un conducteur électrique,

ce qui implique la condition UIBQ = constante.

La situation expérimentale étudiée par Bastien et Marode est celle
d'une décharge filiforme entre deux électrodes ; le systéme physique présente
une symétrie de révolution par rapport a Ll'axe X3 et L'on suppose que les
fonctions considérées ne dépendent que de r = V¥ x$ + xg . Dans le Chapitre
I, nous explicitons les lois physiques qui déterminent le probléme et nous

résumons les résultats des Chapitres II-IV en termes physiques.
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Dans le Chapitre II, nous considérons le probléme aux limites qu'on
r/? [/I

obtient en posant y(x) = ] eU(r)/€ rdr et g(x) = J f(r) rdr , soit
0

0

exy"+ (gx) -y)y' =0 , x € (O,R)
P, R) {
y(0) =0 y(R) =C ,

et nous supposons que la fonction g est suffisamment réguliére, strictement
croissante et strictement concave et telle que C € (0,g(«)). Nous montrons
que P(g,R) a une solution unique y qui converge vers une limite ;' quand
R>® .S €sg(®-¢, ;' coincide avec la solution de P(g,®) ; si

g > g(o) - C, P(g,®) n'a pas de solution. Nous prouvons ensuite que, quand
e+ 0, y converge vers la fonction min(g(x),C). Pour les démonstrations
nous employons essentiellement des arguments Lliés au principe du maximum et

a la construction de sur- et sous-solutions.

Nous nous intéressons ensuite & la stabilité de la solution du Pro-
bléme P(eg,»), ce qui nous améne, dans le Chapitre III, a L'étude du probléme

d'évolution non Llinéaire

+ _+
v =exv ¥ (g(x)-v)vx (x,t) ER xR
P, v(0,t) = 0 t € [0,
+
vix,0) = P(x) X ER

ol Y est une fonction croissante telle que P(0) =0 et yY(x=) = C . Nous
démontrons que le Probléme P1 admet une solution classique unique v et nous
étudions le comportement asymptotique de v quand t = « . En particulier, on
déduit que, si € < g(») - C, la solution y de P(e,») est algébriquement
stable. Nous considérons également le cas Llimite € + 0 ; quand e+v0 , v
converge vers la solution généralisée v du probléme hyperbolique correspon-

dant et quand t » ©» , v converge algébriquement vers sa limite.

Si L'on ne suppose plus que la fonction g est monotone, le probléme
réduit correspondant a P(g,R) a en général une infinité de solutions ; il

s'agit de déterminer laguelle est la Llimite de y quand e€+0 . Dans le but
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de rendre les démonstrations moins techniques nous considérons dans le
Chapitre IV le probléme 0, y(0) =0et y(1) =1
g€ L2(0,1). Pour étudier ce probléme nous utilisons la

ey" + (g-ydy' = ou
L'on suppose
théorie des opérateurs maximaux monotones et aboutissons finalement a

une caractérisation concréte de la Limite de y quand € ¥+ 0 .

Dans le Chapitre V , nous étudions le comportement Llimite, quand

e ¥+ 0, de La solution ug du probléme

-Au+h & = f
€

BVP J h &%y4 = ¢
. Q0 €

u|89 = constante (inconnue)
2 borné et La fonction h
DCh) =R et

dans le cas ou h(s) = es - 1 . On utilise une

ol nous supposons

sante et telle que

théorie de la dualité pour montrer Ll'existence
Ue de ce probléme. Quand €40, u. converge

a frontiére Llibre, que L'on peut mettre sous la

dans Q

h(==) < ¢/|Q| < h(4)
’

continue, strictement crois-

h(0) = 0 . Ce probléme correspond a BVP

méthode variationnelle et Lla
et L'unicité de Lla solution
vers la solution d'un probléme

forme d'une relation d'inclu-

sion , si la fonction h est bornée, ou d'une inéquation variationnelle si

h(+ «) =

gue Brauner et Nicolaenko obtiennent pour un probléme provenant de la théorie

+ © ou h(- ®) = - oo _ Les résultats obtenus concordent avec ceux

cinétique des enzymes.

INTRODUCTION A LA DEUXIEME PARTIE : SUR DES PROBLEMES DE DIFFUSION
NON LINEAIRES EN HYDROLOGIE ET EN DYNAMIQUE DES POPULATIONS.

Cette partie porte sur des problémes de diffusion non Linéaires
dégénérés.

Dans le Chapitre VI, nous étudions un modéle introduit par de Josselin
de Jong pour décrire L'infiltration d'eau salée dans les nappes aquiféres au
voisinage des zones cétiéres. Plus précisément nous nous intéressons a L'évolu-

tion dans le temps de L'interface entre eau salée et eau douce. Mathématique-
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Y

ment, cela nous améne a étudier L'équation

E u, = (D(u)tp(ux))X

Ry

ou D et ¢ sont des fonctions suffisamment réguliéres telles que D > 0

sur (0,1) et DCO) =D0D(1) =0, D" <0 sur (0,1 , 0 =0, ¢'>0sur -1,1,
@'(-1) =¢9'(1) =0 . L'équation E dégénére a la fois aux points ou u =20

ou u=1 et a ceux ol u, = 1 ou u, = -1 . Nous montrons Ll'existence et
L'unicité de la solution de problémes de Neumann, Cauchy et Cauchy-Dirichlet

liés a cette équation et nous étudions le comportement asymptotique de La
solution quand t = o . Pour les démonstrations nous adaptons en particulier

la méthode de monotonie et nous utilisons des arguments Lliés a un principe

de comparaison et au fait que la solution vérifie une propriété de contraction

dans L1 .

Nous étudions ensuite un systéme d'équations de diffusion non Llinéai-
res intervenant en dynamique des populations. Il a pour origine un modéle de
Gurtin et Pipkin décrivant la dispersion de deux populations biologiques en
interaction qui se dispersent sous L'influence de la pression de population.

Ce modele est basé sur L'hypothése que les vitesses de dispersion individuelles
sont proportionnelles a -(u+v)x ou u et v sont les densités correspondan-
tes. Si L'on suppose de plus que L'habitat  est isolé, on obtient le proble-

me d'évolution suivant

P
u, = (uCutv) ) dans QxR
t X X
v, = k(v Qutv) ) dans Qx]R+
1 t X X
u(u+v)x =0, v(u+v)x =0 sur M2XR+
ulx,0 = uo(x), v(x,0) = vo(x) dans
.

ot k20, Q=10«L,L) avec L>0 et ou ug et Vo sont des fonctions

suffisamment réguliéres telles que UgrVg 20.

Dans les Chapitres VII et VIII, nous considérons le cas ou k = 0 ;
L'équation en v du probléme I implique alors v =v(x) et L'on a donc
une population mobile u en présence de la population sédentaire v . Le

probléme I se réduit alors au probléme
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u, = (u(u+v)x)x dans QxR

II u(u+v)x =0 sur 90 xR
ulx,0) = uo(x) dans @

Dans Lle Chapitre VII, nous étudions un probléme plus général en

dimension N quelconque

= Ap(u) + div(u grad v) dans Q X]R+

Yy
III -a%cpw) +u-§—:’)-=o sur 30 xR
ulx,0) = uo(x) dans Q

ot N est un domaine borné de R" » VvV Lle vecteur unitaire normal a 9% ,
¢ est une fonction réguliére telle que ©(0) =¢'(0 =0, ¢'(s) >0 pour
tout s > 0 , la fonction initiale Ug € L7() est telle que uj 20 et v
est une fonction donnée suffisamment réguliére. Ce chapitre est composé de
deux parties. Dans la deuxiéme partie nous montrons que le Probléme III admet
une solution généralisée unique u(t,uo). Dans la premiére partie, nous prou-
vons que u(t,uo) se stabilise quand t — «. L'une des difficultés mathémati-
ques provient du fait que L'on est en présence d'un continuum de solutions
stationnaires ; pour les démonstrations on s'inspire d'une méthode de Osher

et Ralston. L'idée est de prouver tout d'abord que u satisfait une propriété
de contraction dans L1 , de montrer que dans certains cas cette contraction
est stricte et d'utiliser cette propriété et La structure du continuum de

solutions stationnaires pour construire une fonctionnelle de Lyapounov.

Dans le Chapitre VIII on revient au Probléme II et L'on s'intéresse
a la question suivante : si & Ll'instant initial, le support de u est d'un
cdté du support de v , une partie de la population u peut-elle atteindre
L'autre c6té de la population sédentaire v pour t suffisamment grand, ou
bien la population v constitue-t-elle une barriére infranchissable pour Lles
membres de la colonie u ? La réponse dépend des proportions relatives des deux

populations. Nous montrons que si la population mobile u est suffisamment
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importante par rapport a la population sédentaire v , alors u occupe tout

L'habitat & partir d'un certain moment ; si par contre ||uOH < vl
L= L®(Q)

alors la population v représente effectivement une barriére pour la population
u . La plupart des démonstrations de ce chapitre s'appuient sur des résultats

obtenus au Chapitre VII.

On s'intéresse ensuite au Probléme I dans le cas ol k >0 et L'on
suppose que les fonctions initiales ug et Vo sont séparées, c'est-a-dire qu'il
existe a € Q tel que

uo(x) =0 si x> a et vo(x) =0 si x<a .

On se propose de montrer que le Probléme I admet une seule solution généralisée

(u,v) telle que u(t) et v(t) sont séparées a tout instant t . L'idée est

la suivante. On pose U = IQ ug - vV = (Q Vg et L'on suppose que (u,v) est

une solution du Probléme I telle que u(t) et v(t) sont séparées a chaque

instant t . Alors la fonction 2z : Qx [0,0) >R définie par
: X
) z(x,t) = - U+ [ (u(s,t) + v(s,t))ds
-L

satisfait formellement le probléme

(c(z))t = (|z Im-1 z.) dans QxR
X X" x
IV 2¢-L,t) = - U z(,t) =V pour t ER"
z(x,0) = zo(x) dans

ou

X
zo(x) =-U+ [-L (u0 + vo) ,

m=2 et € :R->R est défini par

IA
o

G S si s
c(s) =

(9]

(72}

2
w -
v
o

avec ¢ = 2 et c+ = 2/k .
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Dans le Chapitre IX, nous étudions le Probléme IV avec m > 1,
c >0 , c+ > 0 quelconques et nous supposons que la fonction initiale
2, est suffisamment réguliére, non décroissante et qu'elle satisfait
zo(-L) =-U et zO(L) = V . Nous montrons que le Probléme IV admet une
solution généralisée unique z(t,zo) qui converge dans C1d§) vers L'unique
solution stationnaire quand t =+ « ., Le but principal de ce chapitre est de

donner une description détaillée de L'ensemble

N(z) : = {(x,t) € Qx [0, : z(x,t) =0} .

On obtient en particulier le résultat suivant : il existe des fonctions continues

+
g” : [0,0) > Q telles que

N(z) = {(x,t) € Ox [0, : £ (1) xSz (D} .

De plus il existe T* 2 0 tel que

. + , .
z est croissante, ¢ est décroissante sur [0,T*]
et
1

CG) =) =) pour t 2 TN, £ECTUTY, )

et z (g(t),£) >0 pour t > T .

Un élément essentiel de la démonstration est constitué par un changement de

coordonnées introduit par Gurtin, MacCamy et Socolovsky.

Dans lLe Chapitre X on montre que le Probléme IV est équivalent au
probléme de rechercher une solution (Q;v) du Probléme I telle que u(t) et
v(t) soient séparées a tout instant t . Donc, si les fonctions initiales Yg
et Vo sont séparées, le Probléme I admet une seule solution (u,v) telle que
u(t) et v() sont séparées pour tout t et L'on peut immédiatement déduire
des résultats du Chapitre IX des informations sur les supports de u et v :
L'ensemble N(z) constitue le front de séparation entre les deux populations ;
4 partir de L'instant T* , les supports de u et v ne sont donc plus séparés
que par une courbe de classe C1 (La courbe x = z(t)) qui représente une Lligne de

discontinuité pour les deux fonctions u et v .
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RIGOROUS RESULTS ON A TIME-DEPENDENT INHOMOGENEOUS
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We report results obtained by rigorous analysis of a nonlinear differential equation for the electron density ng in a spe-
cific type of electrical discharge. The problem is essentially two-dimensional. We discuss in particular (i) the escape of elec-
trons to infinity above a critical temperature; and (ii) the boundary layer exhibited by ne near zero temperature.

In a filamentary discharge studied by Marode et
al. [1,2] electrons and ions are produced with num-
ber densities n, and n;, respectively. The charged par-
ticles move in a background of neutrals. The discharge
area is cylindrical and has its radial dimension much
smaller than its longitudinal dimension. Since to a
good approximation the physical situation is cylindri-
cally symmetric, it suffices to consider a two-dimen-
sional cross section perpendicular to the cylinder axis,
in which all quantities involved are functions only of
the distance r to the axis. As the ions are heavy and
slow, n;(r, t) = n;(r) may be regarded as fixed on the
time scale of interest. For the density n.(r, t) Marode
et al. [3] used the following three equations:

(i) Coulomb’s law:

r=L3[rE(r, 1)]/or = 4me(ni(r) —n (¢, 1], ()

where F is the electric field and —e the electron charge;

(ii) a constitutive equation for the current density
j(r), consisting of a drift term and a diffusion term,

j(r, t)=eun,(r, t)E(r,t) + eD ony(r, t)/or , 2)

where u is the electron mobility and D the diffusion
constant; and

(iii) the continuity equation
edn,(r, t)/ot = r=1a[ri(r, H)]/or . 3)

Both E andj are radially directed.

From egs. (1)—(3) a nonlinear partial differential
equation for a single function can be derived. To this
end we set [4]

Vx
u@e,0= [ pnp,ndp, (4a)
0
N3
g(x)= [ pmp)dp . (4b)
J

Upon employing for the diffusion constant the
Einstein relation D = kgTu/e (Where kg is Boltzmann’s
constant and T the electron temperature), putting € =
kpgT/(2 me?), and absorbing a factor 8 ue in the time
scale we deduce that u satisfies

U, =exuy, t (g-uu, , )
u,1=0. 6)

By its definition g(0) = 0. Typically, as r increases,

424 0 031 -9163/81/0000--0000/$ 02.50 © North-Holland Publishing Company
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n;(r) rapidly falls off to zero, and hence g (x) attains
a limit value g(o0). The nonlinear term in eq. (5) re-
presents the interaction between the electrons. With-
out it, this equation would reduce to a linear one
studied by McCauley [5] and describing the brownian
motion of a pair of opposite two-dimensional charges
in each other’s field. As it stands, eq. (5) is rather re-
miniscent of the nonlinear equations occurring in the
Thomas—Fermi theory of the atom (see, e.g., ref.
(6.

In the experimental situation that we are describ-
ing the total charge in the discharge area is positive
and conserved in time. This is expressed by

u(e,t)=N,, for0<t<oo, @)

with 0 <NV, <g(c°). One of the authors has investi-
gated [4,7,8], by rigorous mathematical methods, the
solution of eqs. (5) and (6) for a given initial distribu-
tion u (x, 0) = uy(x) and subject to condition (7) on
the total charge. Here we present the main results in
physical language.

1. We take g concave and in C2([0,°)). Then at
given € (i.e. at given temperature), there exists [4] a
unique stationary solution u(x) if the total number
of electrons V, is such that N, < g(c°) — €. In partic-

ular, when € > g(0), thermal motion prevents any elec-

trons to be bound to the fixed ionic background. The
existence of such a critical temperature is character-
istic of two-dimensional Coulomb systems [9]. The
main mathematical tools in treating the stationary
problem are maximum principle arguments and the
construction of upper and lower solutions.

2. The solution u ., when it exists, has the follow-
ing properties [4].

(i) It belongs to C2([0, =)). It is strictly increasing,
concave, and bounded from above by the function
min(g(x), NVe). Asx = o, u(x) approaches its limit-
ing value IV, at least fast enough so that

ne(r) <ng(ry) (2 xy) BOD-Nelle pseo (3)

st»

where r% =x, > 0is arbitrary. Such power law decay

is again typical of Coulomb systems in two dimensions.

(ii) As € ¥ 0,u(x) converges to min(g(x), V)
uniformly on [0, o), and we have for the zero temper-
ature limit of the electron density

}?111(1) n,(r)=nyr)y, r<ry, ©)
=0, r>ry,
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where the critical radius r, is defined by the relation
&(rg) =N,. At small € there is a transition layer of
width ~€l/2 | located at ry»analogous to a Debye
shielding length [3]. A uniformly valid approximate
stationary solution for € < 1 is given in ref. [4]. It is
obtained by the method of matched asymptotic expan-
sions.

3. We consider now the time evolution problem of
egs. (5) and (6). Suppose that the initial condition u
is sufficiently smooth, nondecreasing, with bounded
derivative, and with uy(0) = 0 and uy(e°) = N,.
Mathematically one has to find a way to deal with the
degeneracy of the parabolic equation (5) in the origin.
In ref. [7] this is done via a sequence of regularized
problems. The following is shown.

(i) The time evolution problem has a unique solu-
tion u(x, t) such that u and u, are bounded. In fact
it satisfies 0 <u(x, r) <N, it is nondecreasing in x
for all ¢, and for each ¢ > 0 we have u (e, t) = N,.

(ii) In order to discuss the behavior of u(x, 7) as
t - oo we consider the function #; which satisfies the
steady-state equation and has boundary values % (0)
=0and

Uy () =N, ifN,<g() —e, (10a)
=g() —¢, if0<g() —e <N, (10b)
=0, otherwise . (10c)

We know from section 1 that @, exists and is unique.
In particular, in the case of eq. (10c), % (x) = 0. Our
result is that the solution u (x, ¢) of the evolution
problem converges to @ (x) as t > o, uniformly on all
compact subsets of [0, =); in the case of eq. (10a) the
convergence is actually uniform on [0, ). The proofs
are based upon the use of upper and lower solutions
of the stationary problem and on a comparison
theorem. Thus we have proved that all the electrons
stay attached to the ions for ¢ < o at temperatures
such that e <g(e°) — N, [case (10a)]. If the temper-
ature rises above this critical value, then some of the
electrons diffuse away to infinity [case (10b)], and

if it rises above a second critical value, viz. € = g (),
then all electrons escape to infinity [case (10c)].

(iif) For the case of eq. (10a) (with the inequality
strictly satisfied) we have derived results about the
rate of convergence of u to @ . Let the initial state
have the property that N — u,(x) <N, (x{ /x)” for
some xy,» >0 satisfying e < ( + 1)~ 1 [g(x) = N, ].
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Then u(x, t) converges to @ (x) at least as fast as
t=Y(2p) with p = [1/v] +1, for all finite x. Further-
more, if » > 1 and € <3 [g(e°) — N, ], then u conver-
ges to Wy, at least as fast as =12,

4. Negative regions in the background charge
density. We have considered an interesting modifica-
tion of the above problem obtained by also allowing
negative ions to be present in the fixed background
[8]. This leads to a function g which can assume
minima and maxima. We studied the stationary state
on a bounded domain [0, R] with boundary condition
Ug (R)= N, .For non-monotone g it is nontrivial to
find the zero temperature (¢ - 0) limit of u(x) [and
thus of n,(r)], since the solution of the reduced differ-
ential equation (i.e. the one obtained by setting e =0)
is no longer unique. To solve this problem we observe
that for € > 0 the solution u (x; €) minimizes the free-
energy functional

R R( —14)2
Fe[u]=efuxlnuxdx+§f %“dx, (11)
0 (V]

which is readily recognized as the sum of an entropy
and an electrostatic energy term.

In ref, [8] two alternative methods were used to
study the minimization of F .. one based on the theory
of maximal monotone operators and one on duality
theory. Both yield

T (g —uy?
lim u_(x; €)= inf X dx, (12
lim ugy(x; €) 20f . (12)

0<u<Neg,u'>0
i.e. the limit solution of the differential equation is
the physically expected minimum-energy configura-
tion. The function ug(x; 0) is continuous [10] and
can be characterized as follows: there exist intervals
lay, b1, [ay,b;5], ..., lag, bg], s > 0, where u(x; 0)
takes constant valuesc;,c,, ..., ¢, respectively, and
where, therefore, n,(r) = 0. Outside those intervals
ugy(x;0) =g(x). The constantsa;,b; and ¢;,i= 1,2,
..., 8, can be shown, finally, to be uniquely determined
by the set of implicit inequalities
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b

fi;gﬁdpo, if ¢, % N,
* (13)
ff"—lfg—)dsgo,‘ if e, #0

forallx € [a;,b;], i=1,2,..,s.

To verify this characterization of u(x; 0), one checks
[8] that this function satisfies a variational inequality
related to the minimization problem (12). In particular,
if 0 <c¢; <N,,we have the equal area construction

f fl.f[c,- —g(®)]&~1 d& = 0. The interpretation is that the
points x =g; and x = b; are at equal potential and sepa-
rated by a potential barrier. Eqgs. (13) may serve as the
basis for a numerical algorithm to compute a;, b; and
Ci.

The authors acknowledge with pleasure stimulating
discussions with I. Gallimberti. They are indebted to
Ph. Clément, O. Diekmann, L.A. Peletier and R. Témam
who together with D.H. contributed to the mathema-
tical results.
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A SINGULAR BOUNDARY VALUE PROBLEM ARISING IN A
PRE-BREAKDOWN GAS DISCHARGE*

O. DIEKMANN?®, D. HILHORST* AND L. A. PELETIER#?

Abstract. We consider the nonlinear two-point boundary value problem exy” +(g(x)—y)y'=0, y(0)=0,
yv(R)=k, where g is a given function. We prove that the problem has a unique solution and we study the

limiting behavior of this solution as R > and as ¢ |, 0.
Furthermore, we show how a so-called pre-breakdown discharge in an ionized gas between two
electrodes can be described by an equation of this form, and we interpret the results physically.

1. Introduction. In this paper we study the two-point boundary value problem
(1.1) exy"+(g(x)—y)y'=0, xe(0,R),

in which R is a positive number, which may be infinite, and g a given function, which
satisfies the hypotheses

H,:geC*R,), g(0)=0, g'(x)>0 and g"(x)<0 forallx=0.
We are interested in solutions of (1.1) which satisfy the boundary conditions
(1.2) y(0)=0,
(1.3) y(R)=k

in which k € (0, g(o0)) and R > x,, x, being the (unique) root of the equation g(x) =k.

In § 2 we shall sketch how problem (1.1)-(1.3) arises in the study of electrical
discharges in an ionized gas. It will appear that y’ and g’ are measures for, respectively,
the electron and ion densities, and tkat the parameter ¢ is proportional to the
temperature of the gas.

In § 3 we begin the mathematical analysis of problem (1.1)-(1.3). We derive some a
priori estimates and then prove the existence of a solution. Subsequently, in § 4 we
prove that the solution is unique.

The main objective of this paper is the study of the dependence of the solution on
the parameters ¢ and R. In § 4 we prove that the solution is a monotone function of ¢
and R. From the physical point of view the interesting regions of the parameters are
small ¢ and large R. In § 5 we analyze the limiting behavior of the solution when R tends
to infinity and ¢ is kept fixed. It turns out that the solution converges uniformly in x to a
function y which satisfies (1.1)—(1.2) and the limiting form of (1.3), i.e., (o) = k, if and
only if ¢ = g(o0)— k. If on the other hand, this inequality is violated, then the solution
converges uniformly on compact sub-sets to a function y which satisfies (1.1)-(1.2) and
y(o0) = max {g(o0) — ¢, 0}. In particular this implies that y is identically zero if £ = g(c0).

In § 6 we analyze the limiting behavior of the solution when ¢ tends to zero and R is
kept fixed. It turns out that the solution y converges uniformly for x € [0, R] to the
function y(x) = min {g(x), k}, but that its derivative y’ converges uniformly to y’ only on
compact subsets of [0, R] which do not contain the transition point x,.

In § 7 we discuss in greater detail the behavior of y' near the point xoas ¢ | 0. By
the standard method of matched asymptotic expansions we formally obtain in § 8 an
approximation y,. In § 9 we prove that for each n > 1

Y=va=0("""?),  y-yi=0("""? asel0,

* Received by the editors March 15, 1978, and in revised form July 9, 1979.
+ Mathematisch Centrum, Amsterdam, the Netherlands.
+ Mathematisch Instituut, Rijksuniversiteit Leiden, Leiden, the Netherlands.
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uniformly on [0, R], where n counts the number of terms included in the approxima-
tion. In this part of our treatment of the singular perturbation problem we derived much
inspiration from reading bits and pieces of van Harten's thesis [9].

Since the limits ¢ | 0 and R -» o (for ¢ = g(20)—k) are interchangeable, the two
separate limits give a complete picture of the limiting behavior with respect to both
parameters.

Finally, in § 10, we consider problem (1.1)-(1.3) under the much weaker condition

on g:
H,:gcC'(0,R), gl0)=0, g(R)Zk,

g has only finitely many local extrema on [0, R].

Again, the existence and uniqueness of a solution y(x; ¢) is established and it is shown
that y’> 0. In addition

vix;e)»u(x) ase |0,

uniformly on [0, R], where the function &, which is continuous, consists of pieces where
u(x)=g(x) and pieces where u(x) is a constant. The arguments we employ here are
borrowed from the theory of dynamical systems and are somewhat unusual in this
context.

Problems like the one treated in this paper have also been considered by Hallam
and Loper [8], Howes and Parter [11] (also see Howes [10]), Clément and Emmerth [4]
and Clément and Peletier [5]. Both of the first two papers deal with one particular
equation and the second two papers deal with concave solutions y, of a general class of
equations. In all of these lim, | ( y. is determined. In this paper we do the same by the
method of upper and lower solutions, which was also used by Howes and Parter, and in
addition we give precise estimates of the behavior of y, and y. as ¢ | 0.

2. Physical background.

2.1. An electrical discharge. Marode et al. [14] consider an ionized gas between
two electrodes in which the ions and electrons are presént with densities n;(r) and n.(r)
respectively, where r = (x, x2, x3). The ions are heavy and slow, and the density n;(r)
may therefore be regarded as fixed. The electrons are highly mobile and assume a
spatial distribution in thermal equilibrium with the ions. The problem is then to find
n.(r) for given n;(r).

A special situation of practical interest is a so-called pre-breakdown discharge
which spreads out in filamentary form (cf. Gallimberti [7] and Marode [13]). In this
situation there is cylindrical symmetry about the x;-axis and the particle densities
depend on p = (x] +x3)"? only. Using Coulomb’s law and a constitutive equation for
the electric current, which contains both a diffusion and a conduction term, Marode et
al. [14] derived that the electron density n.(p) should satisfy the equation

1 d p d
2.1 el a d o
=y 2p dp<n,,(p) dp ne(p)> ni(p)=n.(p),

where ¢ is a combination of physical constants which is proportional to the temperature.
In addition n, has to satisfy the boundary condition

dn,
dp

(2.2) (M=0
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and the condition
(2.3) J {ni(p)—n.(p)} pdo =N >0,
0

where N is a measure for the excess of ions.

In the experiment the ions are concentrated near the center of the discharge.
Hence we shall take for n; a function which decreases monotonically to zero as p tends
to infinity. In this paper we study the solution n, of (2.1)-(2.3) and in particular its
behavior as ¢ | 0.

In order to cast (2.1) in a more convenient form, we make the change of variable
(2.4) x=p’
and we define the new dependent variable

x12

(2.5) y(x)=J n.(s)s ds.
0

Thus, y(x) represents the number of electrons contained in a cylinder of unit height and
. /2
radius x'’*. Analogously, we define
x1/2

(2.6) g(x)=J ni(s)s ds.
0

If we now multiply (2.1) by p, integrate from p =0 to p = x'/? and use (2.4)~(2.6) we
obtain (1.1). The boundary condition (1.2) is implied by (2.5) and the boundary
condition (1.3), with R = o0, follows from (2.3):

y(0) = k :=g(0)—N,
where clearly k € (0, g(c0)).

2.2. The two-dimensional Coulomb gas. Equation (1.1) describes the equilibrium
distribution of electrons interacting, via the Coulomb potential, with themselves and
with a fixed positive background in a two-dimensional geometry. Theoretically one can
generalize Coulomb’s law to a space of arbitrary dimension d and then the correspond-
ing equation would become

(2.7) st((d—l)/d)y!l+(g(x)_y)yr=0

in which ¢ is again a positive constant which is proportional to the temperature.

The behavior of an assembly of charges depends on the competition between the
electrostatic forces, which tend to bind positive and negative charges together, and the
thermal motion which drives them apart. By physical arguments one can show that for
d > 2 the thermal motion wins: at no nonzero temperature are the electrons bound to
the ions. For d <2, the electrostatic forces win, and whatever the temperature the
charges are bound together (see Chui and Weeks [3]).

For the model problem consisting of (2.7) supplemented with the boundary
conditions (1.2) and (1.3), with R = o0, we find these matters reflected in the fact that for
arbitrary positive ¢, no solution exists when 4 >2 whereas, on the contrary, a unique
solution exists when d < 2. One can prove this along the lines indicated in § 5.

The marginal case d = 2 is of greatest interest. Presumably there is a critical value
of the temperature at which a transition occurs from bound to unbound charges and
recently there has been much interest in the precise nature of this transition (see

Kosterlitz and Thouless [12]).
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In our study of the twa-dimensional case we find indeed, in § S, a critical value of ¢
(and hence of the temperature)

i:"1=g(x‘)“'k’:1\v

at which the nature of the solution n, changes, corresponding to the loss (towards
infinity) of part of the negative charge. Beyond a still higher value of ¢:

€2=g(o0)

there appears to be no solution, indicating that the negative charge is no longer bound to
the positive background.

2.3. Low temperatures. We also have studied the equations in the low tempera-
ture regime, i.e. for £ | 0. Physically one then expects all the electrons to gather in the
region of lowest energy, that is in the center of the ion distribution. Indeed we have
found that for £ | O the solution of (2.1) exhibits transition behavior

lim n,(p) = ni(p), p<po,

e 40 ¢ 0’ p > pOy
where po is determined by the boundary condition (2.3). There appears to be a
transition layer of width of order £'/> which, according to Marode et al. [14], has the
form of a Debye shielding length.

3. A priori estimates and the existence of a solution. In this section we consider the
problem (1.1)-(1.3) for fixed values of the parameters ¢ and R. By a solution we shall
mean a function y € C*([0, R]) which satisfies (1.1)—(1.3). We first derive some a priori
estimates for a solution and its first two derivatives. Subsequently we prove that a
solution actually exists by constructing an upper and lower solution and by verifying the
appropriate Nagumo condition.

THEOREM 3.1. Let y be a solution; then for all x € (0, R)

(i) 0<y(x)<min{g(x), k};
(i) 0<y'(x)<g'(0);

(iii) —(g'(0))*/& <y"(x)<O.

Proof. Let us first prove that y'(x) >0 for all x € (0, R). Suppose that y'(x;) =0 for
some x; > 0; then the standard uniqueness theorem for ordinary differential equations
implies that y(x) = y(x;) for all x. Since this is not compatible with the two boundary
conditions we conclude that y’ is sign-definite. Invoking the boundary conditions once
more, we see that the sign has to be positive.

The positivity of y’ implies that 0 <y (x) <k for x € (0, R). Next we shall prove that
y(x) < g(x). We begin by observing that this inequality holds for x = x,,. Suppose there is
an interval [x;, x,] < [0, x,] such that y — g is strictly positive in the interior of [xy, x5]
and y(x)—g(x1) = y(x2) —g(x2) = 0. Then y'(x3) = g'(x2) < g'(x1) = y'(x1). On the other
hand (1.1) implies that y"(x) >0 for x € (x;, x2) and hence y'(x,) = y'(x,)+J';‘lz y"(€) d€ >
y'(x1). So our assumption must be false since it leads to a contradiction. Thus,
y(x)=g(x). Now, let us suppose that y(x;) = g(x;) for some x; >0, then necessarily
y'(x1) = g'(x1). However, because y"(x,) =0 (by (1.1)) and g"(x,) <0, this would imply
that y(x)>g(x) in a right-hand neighborhood of x;, which is impossible. Hence the
inequality is strict for x € (0, R}, and this completes the proof of (i).

From (i), y'(x)>0 and (1.1) we deduce that y"(x)<O0 for x (0, R). Hence
y'(x)<y'(0)=g'(0) for x € (0, R) which completes the proof of (ii).
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Finally, we note that H, implies that g(x)=g'(0)x and hence that y"(x)=
(ex) ' (v(x)—g(x)y'(x)>—(ex) 'g(x)g'(0)=—¢ '(g'(0))>. This proves property
(). O

THEOREM 3.2. There exists a function y € C*([0, R]) which satisfies (1.1)—(1.3).

Proof. We define two functions @ and 8 by a(x):=0and B(x):= g(x) for x € [0, R].
Moreover, we define a function f by f(x, y, y):=(ex)'(y —g(x))y’. Then a"(x)=0=
0=f(x,a(x),a’(x))and B"(x) = g"(x) <0 =f(x, B(x), B'(x)) for x € (0, R). Hence a and
B are, respectively, a lower and an upper solution of (1.1). The existence of a solution
now follows from [1, Thm. 1. 5.1] if we can show that f satisfies a Nagumo condition
with respect to the pair , 8. This amounts to finding a positive continuous function 4 on
[0, o) such that |f(x, y, y)|= h(]y'|) for all x€[0, R], a(x)=y=p(x) and y’€ R and,
furthermore, such that

= s

——ds >B(R),
J’R“BtR)h(S) A

cf. [1, Def. 1.4.1]. The function A defined by h(s)Z# s"g'(O)(s+ 1) satisfies all these

conditions. 0O

4. A comparison theorem. In order to emphasize that we are going to study the
dependence of a solution on the parameters € and R, we introduce the notation P(¢, R)
for the problem (1.1)-(1.3). The main result of this section is a comparison theorem
which is proved by standard maximum principle arguments. As corollaries we obtain
that the solution is unique and that it depends in a monotone fashion on both ¢ and R.

THEOREM 4.1. Let y; be a solution of P(e, R)) for i=1, 2 and suppose that
R,=ZR,>x0 and ex=Z¢,. Then y,(x)Z yi(x) for 0<x <R,. Moreover, if one of the
inequalities for the parameters is strict, then so is the inequality for the solutions.

Proof. Let the function m be defined by m(x):=y,(x)—y,(x). Suppose that m
achieves a nonpositive minimum on (0, R,), i.e. suppose that for some x; € (0, R,),
m(x,;)=0, m'(x;) =0 and m"(x;) = 0. By subtracting the equation for y, from the one
for y, we obtain

erxim"(x1) = (e2—e1)x1y2(x1) = y1(x1)m(x,) = 0.

However, all the terms on the left-hand side of this equality are nonnegative and if
either £, > ¢, or m(x,) <0 at least one of them is positive. If £; = £, and m(x,) =0 then
the uniqueness theorem for ordinary differential equations implies that m(x) = 0 for all
x €[0, R,], which cannot be true if R, > R,. So we see that m cannot achieve a negative
minimum and that m cannot become zero on (0, R,) if one of the inequalities for the
parameters is strict. Since m(0) =0 and m(R,) =0 this proves the theorem. 0O

COROLLARY 4.2. The problem P(e, R) has one and only one solution.

Proof. We know that at least one solution exists (Theorem 3.2). Let both y, and y,
satisfy P(g, R), then Theorem 4.1 implies that y;(x) = y,(x) but likewise that y,(x)=
yi(x). Hence, yi(x) = ya(x) for x€[0, R]. O

CoROLLARY 4.3. Lety =y(x; €, R) be the solution of P(e, R). Then y is a monotone
decreasing function of € f-~ each R>x, and each x€(0,R) and y is a monotone
decreasing function of R f» . 1ch € >0 and each x € (0, R).

5. The limiting beha+iur as R » 00, In this section we study the limiting behavior as
R - o0 of the solution y = yv(x; ¢, R) of the problem P(e, R). Since y is a bounded and
monotone function of R, the definition ¥(x; £1:=limg .« v(x; &, R) makes sense for all
x. £ > 0. This definition implies at once that ¥({). +1 =0 and that v is a nondecreasing
function of x and a nonincreasing function of :
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From the estimates in Theorem 3.1 we obtain, via the Arzela-Ascoli theorem, that
both y(-; &, R)and y'(-; &, R) converge uniformly on compact subsets. Invoking (1.1)
we see that the same must be true for y"(-; e, R). It follows that y(-: ¢) belongs to
C?*(R.) and satisfies (1.1). Now it remains to determine y(c0, ¢). We will estimate
y(c0, £) from below by constructing a more subtle lower solution for y. But first we
prove a result which can be used to estimate ¥(2c, £) from above.

LEmMMa S5.1. Let zeC*R.) satisfy (1.1) and z(0)=0. Suppose that
2(00) = lim,.~ z(x) exists and satisfies 0 < z(cc)<20. Then z(0) = g(©)—¢.

Proof. Both z and z' are positive on (0, ) (cf. the proof of Theorem 3.1). For the
purpose of contradiction, let us suppose that z(c0)>g(c0)—¢. Let x, be such that
B=¢ '"(z(x;)—g(®©)>—1. Then z(x)—g(x)Zz(x;)—g(0)=¢B for all x=ux,.
Integrating (1.1) twice from x; to x we obtain

'3
- )
z(x)=z(x1)+2z'(x) I exp (J’ z(n)_g(ndn> dé.

x) 1 &n

x

Thus, for x = x,,
) * 12’0 x\ P
zx)zz (anexp (B 1nf:> d¢ = ;3+11 ((Z) _1>'

Since B +1>0 this would imply that z(x)—> 0 as x » . Hence the assumption that
z(00) > g(o0) — ¢ must be false. O
We define a function s = s(x; A, x, v) by

(5.1) s(x;)t,xl,u):/\(l—(i) )

X1

and we investigate which conditions for the parameters A, x, and » guarantee that
s"=f(x,s,s') for x=x, (recall that f(x,y, v')= (ex) Ny —g(x))y'). A simple compu-
tation shows that this inequality holds indeed forall x = x; if and only if g(x,) —A —ev —
£ 20, or equivalently, v =¢ '(g(x,)—A)— 1. The latter inequality can be satisfied for
some positive value of v if and only if A <g(x;)—e. In its turn this inequality can be
satisfied for sufficiently large x; and some positive value of A if and only if g(cc)—¢ >0.

We now have all the ingredients at hand to prove the following theorem:.

THEOREM 5.2.

(i) Ife =g(c)—k then y(©, ¢) = k and limg . SUPo=x=r |y(x; &, R)—y(x; €)=
0;
(ii) if g(ec)—k <e < g(o0) then y(00;¢e)=g(0)—¢;

(iii) if e = g(0) then y(x;e)=0 for all x =0.

Proof. (i) For any A < k we can choose x; such that A < g(x;)— ¢ and subsequently »
such that 0<» =¢ '(g(x;)—A)— 1. For these values of the parameters, s is a lower
solution on the interval [x,, R]. The function ¢ defined by #(x) := k is an upper solution
and f satisfies a Nagumo condition with respect to the pair s, r and the interval [x;, R]. It
follows that the inequality

s(x;A, x, v)Sy(x; e, R)Sk,

which holds for x = x, and for x = R, actually is satisfied for all x € [x,, R]. By taking first
the limit R -» = and then the limit x - o we obtain
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Since this inequality holds for A <k, necessarily y(0, ¢)=k. This result and the
monotonicity of y with respect to x together imply that the convergence of y to y is in
fact uniform in x (we refer to [6, Lemma 2.4] for the proof of this statement).

(i) If g(o0)—k < e <g(o0), we can make s into a lower solution by a suitable
choice of x; and v if and only if A < g(o0) —¢. The argument we used in the proof of (i)
now shows that y(c0;e)=g(o0)—e. On the other hand, Lemma 5.1 implies that
y(00; €)= g(0)—€. So y(00; ) = g(0) —e.

(iii) From Lemma S.1 we deduce that no solution of (1.1) with a positive limit at
infinity can exist if ¢ = g(c0). Hence y(20; ¢) =0 and consequently y(x; ) =0 for all
xz0. O

The results of this section are at the same time results concerning the existence and
nonexistence of a solution of the problem P(e, ) defined by (1.1), (1.2) and
lim, .o y(x) = k. By exactly the same arguments which we used before one can derive
the bounds of Theorem 3.1 and one can show that there exists at most one solution of
P(g, ). For convenience we formulate this result in the following theorem.

THEOREM 5.3. There exists a function y € C*(R.) which satisfies (1.1), (1.2) and the
condition lim, .« y(x) = k ifand only if e = g(0) — k. If it exists, itis unique and it satisfies
the inequalities given in Theorem 3.1.

6. The limiting behavior as £ | 0. Throughout this section R > x, will be fixed and
we will suppress the dependence on R in the notation, because it is inessential. The
solution y of (1.1)-(1.3) is a bounded and monotone function of ¢ and we define
y(x):=lim, ;0 y(x; €). From Theorem 3.1(i) and (ii) and the Arzela-Ascoli theorem we
deduce that y is continuous and that in fact

lim sup |y(x)—y(x;e)|=0.
e]0 0=xs=R

THEOREM 6.1. y(x) =min {g(x), k}.

Proof. From Theorem 3.1(i) we know that y(x) =min {g(x), k}. Take any x < x,,
then y(x) < k. We claim that this implies that lim, ;o inf y'(x; £€) > 0. Indeed, suppose
that the sequence {¢;} is such that ¢; } 0 and y'(x; &;) | 0 as i > 00, then by taking the limit
{ - oo in the relation

R
k=y(R;e)=y(x; ei)+I y'(ée)désy(x;e)+(R—x)y'(x; &),

we arrive at the conclusion that y(x) = k, which is impossible.
Integrating (1.1) from 0 to x we obtain

(6.1) e(y(x; €)=y 0 )= | Nt =80, ) e

Suppose that x < xo and maxox=¢s. |y (£) —g(£)|>0; then,since g'(0)>y'(¢; e) 2 y'(x; €)
for 0<¢=x and lim, o inf y'(x; £) >0, the right-hand side of (6.1) is bounded away
from zero as £ | 0. However, this is impossible since the left-hand side tends to zero as
€ 10.S0 y(x)=g(x) for all x < xo, and by continuity y(x,) = k. The function y, being the
limit of monotone functions, is monotone nondecreasing. Hence y(x) = k for x > x¢ and
consequently y(x)=k for x >x,. 0

By taking ¢ =0 in (1.1) we obtain the reduced equation

(6.2) (glx)=yv)y'=0.
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The limiting function y satisfies the boundary conditions (1.2) and (1.3) and (6.2) except
at the point x = xo, where y' is not defined. Motivated in part by the physical application
(cf. § 2) we shall now investigate the limiting behavior of y'(x; €) as £ | 0. It will then
become even more apparent that x = x, is an exceptional point. The following lemma is
needed in the proof of Theorem 6.3, but it is of some interest in itself.

LEMMA 6.2. Let § >0 be arbitrary. For any €0>0 there exists an M >0 such that
0<g(x)—y(x:e)<Mex forall x€[0, xo— 6] and all £ € (0, €o).

Proof. Let § >0 and &0 >0 arbitrary. We define

m(e)= min {gx)—y(x; )}
xo-8=x=x9—}8
Then there exist positive constants C,, i =1, 2, 3, such that for £ € (0, &)

x,—8/2

m(s)§C1J (8(&)—y(&; ) dE

xp—8

1A

x,—8/2

° )—y(&e)

CZI 8O YEE) v o) de=Cre
X0—8 f

(see the proof of Theorem 6.1 and in particular formula (6.1)). Let the function

v=uv(x; ¢) be defined by v(x; e):=g(x)—y(x; e) — Mex, where the constant M >0 is

still at our disposal. Then v satisfies the equation
ext"—y'(x;e)v=ex(g"(x)+My'(x; ¢))
and consequently exv”—uv >0 if M >yu ", £ €(0, &o) and x € (0, xo—38], where the
positive numbers y and u are defined by
y=—__inf s g"(x)

0<x=xo-

and

. , é
H= 0<1P<fen y (x"_i; 8)‘
So if M>+yu™' and £ €(0, o), then v cannot assume a nonnegative maximum on
(0, xo—38). Let x(e) be such that g(x)—y(x; ) achieves its minimum on the set
[x0—8, xo—38] in the point x =x(g). Then v(x(e);e)=m(e)—Mex(e)<0 if M >
(xo—8)7'Cs. Since v(0;¢)=0, this implies that for M >max {yu ", (xo0—8)"'C3},
v(x; e)<O0for x (0, x(e)) and a fortiori for x € (0, x,—8). O
THEOREM 6.3. Let § >0 be arbitrary. Then
(i) lim, o SUPosxsx,-5 18'(x)—y'(x; €)|=0;

(ii) lim, ;o Supy,+ssxsr |y'(x; )] =0.

Proof. (i) From (1.1), Theorem 3.1(ii) and Lemma 6.2 we deduce that —g'(0)M <
y"(x; e)<0forxe[0, xo—8]and ¢ € (0, £o). By the Arzela-Ascoli theorem this implies
that the limit setof {y'(- ; £)| e >0} as £ | 0 is nonempty in C([0, xo — &]). The result now
follows from the fact that y tends to g on [0, xo—8] as £ | 0. '

(ii) Integrating (1.1) from xo+38 to x we obtain

s()"(x;e)_*Y'(xo+%5;e))=J’ —‘——‘y(f;g)—g(f))"

s £) dE.
xo+48 f (f E) f

For x € [x, +8, R] the right-hand side is smaller than 3R ~'(k — g(xo+ (8/2N)y'(x; €).
Consequently 0<y'(x; £)<2g'(0)eR8 '(g(xo+(8/2))—k)™'. O
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In the next section we shall concentrate on a formal approximation for y and y' in
the neighborhood of x = x.

In § S it was shown that the problem P(e, o) has a unique solution for ¢ sufficiently
small. The analysis of this section can be repeated, mutatis mutandis, to derive the
analogous results concerning the limiting behavior of this solution as £ | 0. In particular
this implies that the limits £ | 0 and R - c© are interchangeable.

7. The transition layer. In Theorem 6.3 we have shown that y' converges nonuni-
formly on the interval [0, R] as £ | 0. This feature is typical for a singular perturbation
problem. In, this section we use the standard method of the stretching of a variable to
obtain more information about the behavior of y' near the transition point x = x,.

By the stretching of the variable x near x, we mean the introduction of a local
coordinate £ according to x = xo+ ¢ °£. At the same time we introduce alocal dependent

variable n according to
y(x) = g(xo) +£°n(£).

If we make these substitutions in the equation, and subsequently only retain the terms
of lowest order in ¢, it depends on the values of « and 8 what the resulting equation will
be. One easily verifies that the choice a = 8 = 3 leads to a significant equation, namely to

(7.1) xon1+(£g'(x0)—n1)n1 =0,

where we-have introduced the subscript 1 to indicate that we consider in fact a first
approximation. To this equation we add the condition that its solution should match the
limits of y to the left and to the right of x,, respectively, up to the appropriate order in
Ve. This amounts to the conditions

Mm(&) =g'(x0)é+0(1) as¢->—co,
ni(€) =o0(1), as¢->+oo.

A straightforward application of the maximum principle (see Theorem 4.1) shows that

the problem (7.1)-(7.2), which we shall denote by II,, admits at most one solution.
The problem II, is nonautonomous. However, if we set n; =z,, divide the

equation by z; and then differentiate it, we formally obtain an autonomous problem,

which we denote by I1;:

(7.2)

! !

(7.3) xo(g—‘) +g'(x0)— 2, =0,

1

z1(&)=g'(x0)+0o(1) as¢&-»-—oo,

(7.4)
z1(€)=o0(1) as ¢+,

One should note that, at least formally up to first order in Ve, z, describes the shape of y’
in the neighborhood of x,. In the remainder of this section we shall discuss the existence
of a family of solutions of problem I1,, and we shall show how this family can be used to
obtain the solution of problem II;.

One way to handle problem ﬁ, is to write (7.3) as a two-dimensional first order
system and analyze the trajectories in the phase plane. It turns out that the singular
point (zy, z1) = (g'(xy), 0) is a saddle point and that one branch of the unstable manifold
lies in the half-plane z} <0 and enters the (singular) singular point (0, 0). Hence fll has
a one-parameter family of strictly decreasing solutions, where the parameter describes
simply the translation of one particular solution.
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However, it so happens that I1, can be solved explicitly for £ in terms of z;. To this
end we put

z;=g'(xo)e’ and ¢'= 28’ (Jto)‘f
Then v = v(¢’) has to satisfy
zvn+1_ev=0’
v(-©)=0, v(+00)=—00,

and we obtain, after multiplication by v’ and one integration,

() +v-e’=-1

and finally
C
dw
(7.5) '=J N
¢ . Ve —w—1

where the parameter C corresponds to the free translation parameter. From this
expression we easily obtain the asymptotic behavior of the solutions:

Jo'(x) .
Zx(§)~g’(xo)+exp( glx °)(£ C)) > —00,

g (Xo) (xo)

z,1(€)~ g'(xo) exp ( (f C) ) £ +00.

As candidates for a solution of I1, we take the functions
: e

¢ ,
w(f,C)=j 2'1(1+C)dT=J’ Z1(7) dr,

@

where Z, is the particular solution of [T, which satisfies 7,(0) =1g'(x0) (or, in other
words, which corresponds with C = 3g’(xo) in (7.5)). Using (7.3) we obtain after some
manipulation

(ra"+ (68 (x0) = 00') = 5 ot + 6 )= )0,
where primes denote differentiation with respect to £ and where we have suppressed the
dependence on C in the notation. Hence
xo¥"+(£g'(x0) —Y)¥' = K1y
Furthermore, we deduce from fIl that
Y& C)=g'(x0)é+Kz+0(1), §->—c0.

Since ¢"/¢' tends to zero as £ » —0 it follows that K, = - K.
Of course the constants K, and K, depend on C and it remains to show that we can
choose C in such a way that they both become zero. We observe that

¥"(0; C)
¥'(0;C)

_ (o) J‘
():I(C .

Ki(C)=xo—————-¢(0; C)
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From the known asymptotic behavior of 7| we deduce that K, tends to =o¢ as C tends to
F20. Moreover
C;—Ké]-(C) =.to(?:l> (C)=21(C)=—-g"(x0)<0.

Thus, K, is a strictly decreasing function with range (—oc, oc) and we conclude that there
exists a unique value of C, C say, such that K;(C)=0. Consequently n;:=¢(-; C,) is
the solution of problem II,. Furthermore, the properties of 7, imply that (i) n; is
negative, strictly increasing and concave, (ii) n,(£)— 0 faster than exponentially as
¢— 400, (iii) the function 7,(£)-g'(x0)¢, as well as all its derivatives, converge
exponentially to zero as £ » —0.

The idea of singular perturbation theory is that Z,(- + C,) describes the transition
of y' near x = x, for small values of ¢, and that one can approximate y' uniformly on
[0, R] by using the building-stones 7,(- + C;) and y'. In the following sections we shall
elaborate this idea and we shall prove its correctness. It turns out that this will require
the construction of at least five terms in a uniform asymptotic expansion. Since for us, as
for many mathematicians, five is almost equal to infinity we shall first discuss the
construction of a complete asymptotic expansion.

8. Matched asymptotic expansions. Throughout this and the next section we shall

assume that g e C7([0, R)).
On the interval [0, xo— 8] we look for an asymptotic expansion of the form

(8.1) yx)= Y £"yulx).

n=0

We find that yo(x) = g(x) and that y, is defined recursively by
n—1

(8.2) _v,,(x)=(yé(x))"{xyl-x(x)—kZ yk(x)y,’l-k(x)}, nzl.
=1

In order to calculate the matching conditions for the transition layer expansion, we
expand each y, in a Taylor series

o _ (k) }
yalx)= Y (\/E)k)’_"_(_ﬂ)fk’
k=0 k‘

where, as before, £ =(x — xo)/\/;. If we substitute this in the expansion for y and
rearrange the resulting expression by collecting terms with like powers of Ve, we obtain

(8.3) yx)= Y (V&) um(£)
m=0
where, by definition,
) {m/2) 11'"‘2"‘ X0) m—2n
(8.4) Un(e)= 3 L X0 2

n=0 (m—2n)!

On the interval [x, + 8, R] one can also introduce a series expansion in powers of &,
but it will quickly turn out that all the terms, except the one of zero’th order which is &,

are zero.
Next we introduce the transition layer expansion

(8.5) Y=Y (Ve)'nalé),

n=0
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where 7,(¢é)=glxo) and 7, is the solution of the problem II, discussed in §7.
Substitution in the equation yields an equation for each 7,. Together with the matching
condition which is obtained by formal identification of (8.5), as £ » —o0, with (8.3), this
yields for n =2 a linear problem I1, defined recursively by

xonat (8 (X)) €= NN =M1 = qn,
(86) ﬂn(§)=un(§)+0(1) an""OCa
n.=o0(l) asé&->+o,

where

(n) n—1 (k) X
(8.7) q.(é)= _8 n('XO)fnrlll —fTI:—l —k§7 ﬂ;+1~k<g_k‘('_olfki" 77k>.

As before the maximum principle implies that problem II, can have at most one
solution. In order to discuss the existence of a solution we first rewrite the equation by

making use of (7.1) for n,:

1 LB .
Introducing z,:= 11, {» = (z1)"'n, and h, = ((z1)”'q.)’, we obtain by differentiation
(88) xO{IrL-zl{n =hn-

At this point it is important to observe that we know a particular solution of the
homogeneous equation xo¢" —z,6 =0, namely
z1(§)

(8.9 é(&)=—7

: e
(one can verify this by differentiation of (7.3)). Hence we can construct solutions of
(8.8) through the method of variation of constants, and we find

-1t N A ’
(8.10) {n(f,C)~x— ¢ ()| &(o)h.(0)dodr+Ch(¢)
0 0 —ao
(note that we do not consider the general solution of the homogeneous equation since
only ¢ has the right asymptotic behavior as £ » —0). For any C, the function defined in
(8.10) is of polynomial growth as £ » +00 and behaves like g'(xo)u,, as £ » —00. The last
statement can be verified by working out the consistency relations between g, and u,
which follow from the identity
(n) — (k)

(x0) ,n , P (x0)

g—of 14 (Xo)‘fun--l’ Z Mn+1-k(g X! 9 Ek‘uk)

n! k=2

Xon—g'(xo)u, = —

and by making use of the known asymptotic behavior of ¢.
Finally, we define
¥

(8.11) (& C‘=J 21(7)a (75 C) dr = 1, (£, 0)+ Cni (£).
Then n,(&: C) = w, (&) + B, +g'(xy)C +0(1). £ = =%, where B, is some number, which
does not depend on C Tt follows that there exists a unique constant, say C,, for which
the matebine condimen ssatiched and conseguentdy o 000 Covis the urdgue selotios of

[ '."': ») S [ vecet o T e i
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To conclude this section we construct a uniform approximation of formal order
2n +1in ve. We introduce two C ™ -functions H and J defined on R (so-called cut-off
functions) with the following properties

0 iflx—xo=6y,
H(x)=

e 8
1 if lx — x| §?1,
0 ifix=é,
J ):{ L7
W= =26,

where &8, and &, are suitable constants which do not depend on ¢. Then the formal
approximation y,(x) is defined by

X —x n -1 X —x.
J( /—O> Y e"ym)+Hx) ¥ (V‘e)’"(nm( —O>
vVE m=1 m=1 \/E

X —Xg X —Xo

(8.12)  yulx)= —J( — )um( = )) for x = xy,
Ve

Ve

- 2n~1 — -
J(x /:“)k(,l—H(x))ﬂr-H(x) y (v's)mn,,,(i—:@) for x = x,.
-\ Ve , Ve

m =1

Apart from the cut-off functions this formula is the usual one, expressing a uniform
approximation as the sum of approximations in the different regions minus the
matching terms, which are contained in two approximations and hence should be
subtracted in order to avoid double counting. The cut-off functions are used to achieve
two ends: the approximation should satisfy the boundary conditions and it should be
smooth at x = x,. Moreover, the cut-off functions are harmless in the sense that they are
multipled by factors which are small (if £ is small) in regions where the cut-off functions
are different from one. In the next section we shall prove that y, and y, are indeed
uniform approximations of y and y’ up to the order ¢"*""/* and """/, respectively.

9. A proof of the validity of the formal construction. We begin by deriving an
estimate for the difference

9.1) z(x) =y (x) = yalx).
It follows from the equation for y and from the construction of y, that z satisfies
©.2) exz"+(g—ylz'=yv'z+zz'=r,
z(0)=0, zZ(R)=0,
where the remainder term r, defined by
9.3) r(x)=—(exyi+(g = Va)ya),
can be shown, after an elaborate computation, to satisfy
(9.4) rix)=0(xe") ase0and/orx|O.

If we multiply the equation for = by z and integrate from 0 to R we obtain after some
integrations by parts and an application of the Cauchy-Schwarz inequality
R

R . 1 )
sJ x(2'(x)) dx +§I (g )+ v Nz (x) dx =|z|llirll,
0 8]
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where ||-|| denotes the L,-norm. Since g'(x)+ y'(x) = g'(R) this implies, first of all, that
2
S ——lir
Io0 e

and hence that

R '

R
€ J x(z'(x))* dx +8 (R)

0 2
Now, fix 6 € (0, xo). The estimate above is easily translated into an estimate for the
H'(8, R)-norm of z, where H' denotes the usual Sobolev space of L,-functions which
have a generalized derivative belonging to L,. Thus, by the continuous imbedding of H'
into the space of continuous functions we obtain

lzx)=Cle P ?=Ce"V?, s=x=R,

where C depends on 8. Having established this estimate on the interval [§, R], we can
extend it to the interval [0, R] by means of the maximum principle in exactly the same
way as we proved Lemma 6.2.

Next, it is advantageous to take explicitly into account the dependence on the
parameter n, which counts the number -of terms included in the approximation. So
putting z = z, we write the estimate obtained so far as

|2, (x)| = Cxe"" "3, 0=x=R, neN.

2 2 2
zZl|'= .
I =5

Then, observing that
|Zns1(x) = 24 (x)| = Cxe"",
we deduce the sharper estimate
N2a ()| = 2a(x) = Zaa1 ()] + |20 w1 (1) = Cxe "2

(This is the familiar ‘‘throwing away’’ of terms which are needed in the proof, but do not
contribute to the result.) We state this as a theorem.

THEOREM 9.1. There exist constants >0 and C >0 such that

ly (x) = ya(x)|= Cxe"*'"?

for0<e<eggand 0=x=R. ‘

Our next objective is to show that the derivative of y, is a good approximation for
the derivative of y (recall that y, is more or less constructed through the integration of
its derivative, and that in our application the derivative is the function which has a direct
physical meaning). Our proof will be based on the following interpolation inequality.

LEMMA 9.2. There exist constants o> 0 and D > 0 such that for anry ¢ € C*([0, R])

and each u € (0, wo)
sup [¢(x)] = D{u sup [¢"(x)|+ u ™" sup [ (x)]},

where the suprema-are taken over the interval [0, R].
Proof. See Besjes [2]. The proof is based on a result to be found in Miranda[15, 33,

III, p. 149]. O
THEOREM 9.3. There exist constants £9>0 and C >0 such that

[y'(x)=yix)=Ce"™"?

for 0<e<e,and 0=x =R.
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Proof. From the equation for z (see (9.2)) we deduce that

)| se ‘{, +Ci|z'(x)|+ C> (X’}
where
)=y (.
C,= sup M, Cy:= sup |y.(x)l.
0=x=R X 0=x=R

Next we apply Lemma 9.2 with u = £(2C,D)”! to obtain

sup |2"(x) !ng_l{sup ;%’+2(C1D)ze” sup |z(x)|+ C; sup l%x)'}

By Theorem 9.1 and the estimate (9.4) this implies that
sup |z"(x)|= O(e" ).

“Then a second application of Lemma 9.2, this time with u = ¢, leads to the desired
result. O

10. Some remarks about the case where g is neither everywhere increasing nor
‘everywhere concave. In this section we shall discuss some extensions of our results to
equations in which the conditions on the function g are considerably relaxed. In fact we
shall merely assume that g satisfies the following hypotheses

H,:geC'([0,R)), g0)=0, g(R)=k,
g has only finitely many local extrema on [0, R].

Thus, in particular the sign conditions on g’ and g" are dropped.

First of all we observe that the existence of a solution of (1.1)-(1.3) can be proved
asin Theorem 3.2 by using zero as a lower solution and G as an upper solution, where G
is any increasing, concave and smooth function such that G(0) =0 and G(x)=Zg(x) on
[0, R].

As before we find thatif y = y(x; ¢) is asolution then y' > 0 and hence sign y" = sign
(y — g); subsequently, reasoning along the lines indicated in the proofs of Theorem 3.1
one can show that for any ¢ >0,

(10-1) 0<y'(x;e)= sup g'(&).

0=¢=R
This in turn enables one to prove by means of the maximum principle that (1.1)-(1.3)
can have at most one solution, and that the mapping e — y(-; £) is continuous from R,
into C = C([0, R)).

By (10.1) the set {y(-; £)|e >0} is a precompact subset of C. Let X denote its limit
set, as £ /0, in C. Taking into account the continuity with respect to ¢, we conclude that
X is a nonempty, compact and connected subset of C (see Sell [16, p. 20]).

Any element u of X is a nondecreasing function with #(0) =0 and u(R) = k. Our
first objective is to give further characteristics of the elements of X.

LEMMA 10.1. Let u € X. Then there exist a nonempty, open set A and a closed set B
such that

(i) ulx)=gx) ifxeA,
(if) u is constant on each connected component of B,

(iii) ANB=Y, AUB=[0,R].
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Proof. Since u € X, there exists a sequence {¢,} such that as n >, ¢, 0 and
y(+; &) > u stronglyin C. By (10.1){y(-: £,)}isbounded in H' = H'(0, R) and hence it
is possible to pick a subsequence, again denoted by {¢,}, such thatas n >0, y(-; €,) > u
weakly in H'.

Next, we multiply (1.1) by an arbitrary function ¢ € H', integrate from 0 to R,
integrate the first term by parts and let n tend to infinity. This yields the identity

R
J’ (g(x)—u(xNu'(x)d(x)dx =0,
0

whence
(10.2) (gx)—u(xNu'(x)=0 a.e.on[0,R].
Define the sets A and B by
A ={x€[0, R]|u = g in a neighborhood of x}, B=[0,R)\A,

then clearly u'(x) =0 a.e. on B. In view of the continuity of g and u the sets A and B

have all the properties listed in the lemma. 0O
LEMMA 10.2. Letu € X and let I be a connected component of B such that I < (0, R).

Then

J’ u(x)—g(x) dx = 0.
1

(10.3)
X

Before proving this lemma, we prove an auxiliary result.
LEMMA 10.3. Suppose that, as n >, €,]0 and y(x;e,)-> g(x) uniformly on
[a, b]1<[0, R]. Then

e, Iny'(x;6,)>0 asn->o©

uniformly on [a, b].
Proof. Choose a subinterval [c, d] of [a, b] and a positive constant § >0 such that
g'(x)=é on [c¢, d]. Define for each n = 1, a point £, € [¢, d] such that

y' (& en) =max{y'(x;e,)|c =x=d}.
Then it follows that there exists an N; =1 such that
V(& €a) =38 forn=Nj.
If we divide (1.1) by xy’ and integrate from &, to x we obtain

: y(f;sn)-g(r)dt

enlny'(x;en) =€, Iny'(&; €n)+J
,

Since the right-hand side tends to zero as n > %, the same must be true for the left-hand
side and the result follows. [ '

Proof of Lemma 10.2. Let I = (e, f), where, by assumption, 0 < e < f < R. Manipu-
lating as above we obtain

f _
endny'(e;e,)—e, Iny'(f; E"):J’ wj—)dr

e T

Applying Lemma 10.3 to a left-hand neighborhood of ¢ and to a right-hand neighbor-
hood of f, we deduce that the left-hand side of this identity tends to zero as n - 20. So
taking the limit n » 2 leads to the desired result. [
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We now collect the information we have obtained about an arbitrary element u of
X: u is a continuous, nondecreasing function with #(0)=0 and u(R) =k, which is
composed out of pieces where u(x) = g(x) and pieces where u(x) is constant. Moreover,
if I is a maximal interval on which u« is constant, and I does not contain 0 or R, then
(10.3) has to be satisfied. For convenience of formulation we shall call the set of
functions having all these characteristics Y.

Our next objective is to show that Y is finite. First we shall illustrate our approach
by discussing one example in full detail.

Consider a function g satisfying I-L and such that g’ vanishes at only two points b
and ¢, b being a local maximum and ¢ a local minimum. Assume that 0 < b <¢ <R and
0<gl(c)<g(b)<k.Let g{l denote the inverse of g on [0, b] and g{l the inverse of g on
[c, R].

o p— —— — — — - —

- X

Define two points a and b by
a=gi'(glc)), d=g3'(gb).

Then g([a, b)) =g([c, d)). (See Fig. 1.)
On [a, b] we define a mapping F by

g;‘uzl,\‘)) _
F(x)=j gx)-glr)

T

Then on (a, b)
g3 Mgix)
F'(x)=g'(x)J’ ?>0

and F(a)<0, F(b)>0. Consequently F has a unique zero on {a, b].

Let w be an arbitrary element of Y. Then w has to coincide with g on [0, a] and
[d, g5' (k)] and it has to be equal to k on [g7'(k), R]. Since w is nondecreasing the
inverse function of w must *‘jump” from a pointon [a, b]to a pointon [c, d]. In view of
(10.3) this jump can only take place at the unique zero of F. Thus Y consists of one and
only one element.

Returning to a general function g satisfying H, we define E to be the set of local
maxima and minima of g and D to be the closure of the set {x|g is increasing in a
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neighborhood of x}. Let D, be one of the finitely many connected components of D.
The set g '(E) N D, is finite. Take two successive points @, and B, in this set. To [ao, Bo]
there correspond finitely many disjunct intervals [a;, 8;]< D such that a; >a, and
g([ao, Bo)) = g([a;, B:)). Define g; ' on [g(ao), g(Bu)] as the inverse of g with range in
[a;, Bi]. On [ay, Bo] we define mappings F; by

g7 lglx) _
E(x)=I gx)-glm)

T

Since F; is monotone, it has at.most one zero.

As already noted above the condition (10.3) implies that a point where the inverse
function of an element of Y makes a jump should be a zero of some F; for some
connected component D, of D and some pair of points ao, Bo. Hence the set of possible
“jump” points is finite and likewise the set Y is finite.

Thus X, being a subset of Y, must be discrete. Because it is also connected it can
only consist of a single element. Consequently y(-; ¢) converges in C to this function as
€ | 0. We summarize the results in the following theorem.

THEOREM 10.4. There exists a function u € Y such that

li?(;n y(x;e)=ul(x), wuniformlyon [0, R].

In some cases the conditions determine the limit uniquely. For instance, this
happens in the example we discussed at length and, more generally if the local extrema
are ordered in such a way that with each connected component of D there corresponds
precisely one possible “‘jump” point. In other cases our analysis is not constructive in
the sense that, although we have shown that convergence occurs as € | 0, we are not able
to describe the limit completely. (See Fig. 2.) We intend to investigate whether this
ambiguity can be resolved by using variational principles. See note added in proof.
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F1G. 2. Two possible configurations: separate jumps (a —b. ¢ ~d) or a two-in-one jump ia — 8.
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In conclusion we remark that the hypothesis g(R ) = k was made in order to obtain
the uniform convergence on [0, R]. If g(R) < k the solution will exhibit boundary layer
behavior near the right endpoint. However, outside a small neighborhood of this
endpoint, the solution will behave in exactly the same way as we have shown for the case
g(R)>k.

Acknowledgment. This problem was suggested to us by E. Marode and I. Gallim-
berti. H. J. Hilhorst patiently explained to us many physical aspects and suggested
important improvements in the presentation. The comments and suggestions of M.
Bakker, J. Grasman and E. J. M. Veling helped us to overcome several difficulties. The
critical remarks of the referees have led us to a fairly substantial extension of the first
version.

Note added in proof. It has been possible indeed to resolve the ambiguity connected
with the limit ¢ - 0 by means of a variational formulation of the problem (O. Diekmann
and D. Hilhorst, How many jumps? Variational characterization of the limit solution of a
singular perturbation problem, Proceedings of the Fourth Scheveningen Conference on
Differential Equations, 1979, Springer, to appear).

REFERENCES

[1]1 S. R. BERNFELD AND V. LAKSHMIKANTHAM, An Introduction to Nonlinear Boundary Value
Problems, Academic Press, New York, 1974.
[2] J. G. BESIES, Singular perturbation problems for partial differential equations, Ph.D. thesis, Delft
Technological Univ., Delft, The Netherlands.
[3] S. T. CHUI AND J. D. WEEKS, Phase transition in the two-dimensional Coulomb gas, and the interfacial
roughening transition, Phys. Rev. B, 14 (1976), pp. 4978-4982.
[4] Ph. CLEMENT AND I. B. EMMERTH, On the structure of continua of positive and concave solutions for
two point nonlinear eigenvalue problems, MRC Rep. 1766, Univ. of Wisconsin, Madison, 1977.
[5] Ph. CLEMENT AND L. A. PELETIER, On positive, concave solutions of two point nonlinear eigencalue
problems. J. Math. Anal. Appl., in press.
{6] O. DIEKMANN, Limiting behaviour in an epidemic model, Nonlinear Analysis TMA, 1 (1977), pp.
459-470.
[7] 1. GALLIMBERTI, A computer model for streamer propagation, J. Phys. D 5 (1972), pp. 2179-2189.
[8] T. G. HALLAM AND D. E. LOPER, Singular boundary value problems arising in a rotating fluid flow,
Arch. Rat. Mech. Anal., 60 (1976), pp. 355-369.
[9] A. VAN HARTEN, Singularly perturbed nonlinear second order elliptic boundary value problems, Ph.D.
thesis Univ. of Utrecht, Utrecht, the Netherlands.
[10] F. A. HOWES, Boundary-interior layer interactions in nonlinear singular perturbation theory, AMS
Memoir 203, American Mathematical Society, Providence, RI, 1978, 108 pp.
[11] F. A. HOWES AND S. V. PARTER, A model nonlinear problem having a continuous locus of singular
points, Studies in Appl. Math., 58 (1978), pp. 249-262.
[12] J. M. KOSTERLITZ AND D. J. THOULESS, Ordering, metastability and phase transitions in two-
dimensional systems, J. Phys.-C, 6 (1973), pp. 1181-1203.
[13] E. MARODE, The mechanism of spark breakdown in air at atmospheric pressure between a positive point
and a plane; I: Experimental: nature of the streamer track ; Il : Theoretical: Computer simulation of
the streamer track, J. Appl. Phys., 46 (1975), pp. 2005-2015; pp. 2016-2020:
[14] E. MARODE et al., in preparation.
[15] C. MIRANDA, Partial Differential Equations of Elliptic Type, Springer, Berlin, 1970.
[16] G. R. SELL, Topological Dynamics and Ordinary Differential Equations, Van Nostrand-Reinhold,
I.ondon, 1971.






CHAPITRE III

A NONLINEAR EVOLUTION PROBLEM ARISING IN
THE PHYSICS OF IONIZED GASES

par

D. Hilhorst.






ITII.1.

SIAM J. MATH. ANAL. © 1982 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, January 1982 0036-1410/82/1301-0002 $01.00/0

A NONLINEAR EVOLUTION PROBLEM ARISING
IN THE PHYSICS OF IONIZED GASES*

D. HILHORST*

Abstract. We consider a Coulomb gas in a special experimental situation: the pre-breakdown gas
discharge between two electrodes. The equation for the negative charge density can be formulated as a
nonlinear parabolic equation degenerate at the origin. We prove the existence and uniqueness of the
solution as well as the asymptotic stability of its unique steady state. Also some results are given about
the rate of convergence.

1. Introduction. In this paper we study the nonlinear evolution problem
U, = exuy +(g(x)—u)u, onD =(0,00)%x(0,T),

P u0,6)=0 for te[0, T,
u(x,0)=¢(x) for x € (0, ©),

where ¢ is a positive constant, g is a given function which satisfies the hypothesis
H,:g e C*([0,)); g(0)=0; g'(x)>0and g"(x) <O for all x =0 and the initial function
¢ satisfies the hypothesis Hy:
(i) ¢ is continuous, with piecewise continuous derivative on [0, ©);
(i) ¥(0)=0 and ¢(0) =K € (0, g(x0));
(iii) there exists a constant M, = g'(0) such that 0=¢'(x) =M, at all points x
where ¢’ is defined.

In § 2 we briefly describe how the problem arises in physics and give the derivation
of the equations.

In § 3 we present maximum principles for certain linear and nonlinear problems
related to P; the uniqueness of the solution of P follows directly from those principles.

In § 4 we prove that P has a classical solution which satisfies furthermore the
condition

(%) u(o,t)=K forte[0,T], T<co.

The methods used here are inspired by those of van Duyn [7], [8] and Gilding and
Peletier [13]. We also consider the limit case £|0 and prove that u tends to the
generalized solution of the corresponding hyperbolic problem.

We then investigate the behavior of u as ¢ » 0 and prove that it converges towards
the unique solution ® of the problem P, defined as follows

ex®"+(g(x)—P)d' =0,
®(0)=0, ®(00) = Ao =:min (max (g(0)—¢, 0), K).

Qualitative properties of ® have been extensively studied by Diekmann, Hilhorst and
Peletier [6]. Here we analyze its stability. In § 5, following a method of Aronson and
Weinberger [2] based on the knowledge about lower and upper solutions for the
steady state problem Py, we prove that ® is asymptotically stable.

In § 6 we investigate the rate of convergence of u towards its steady state. The
function @ turns out to be exponentially stable when the function g grows fast enough
to infinity as x - 00; the proof, based on constructing upper and lower solutions for
the function ¥ —®, follows the same lines as that of Fife and Peletier [10]. We also

* Received by the editors December 23, 1980.
t Stichting Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands.
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consider the case when g increases less fast and show that provided ¢ < g(o0)—K and
& converges algebraically fast to K as x » o0 the function u —® decays algebraically
fast; this is done by obtaining first that property for a weighted integral of u—®
according to a method of II'in and Oleinik [14] and van Duyn and Peletier [9]. Finally
we consider the corresponding hyperbolic problem and obtain a similar result of
algebraic convergence.

2. Physical derivation of the equations. The physical context of the present
problem has been described in some detail by Diekmann, Hilhorst and Peletier [6].
Here we shall summarize it .again and explain how one can obtain the time evolution
problem P.

One considers an ionized gas between two electrodes in which the ions and
electrons are present with densities n;(r) and n.(r, t) respectively, where r=(x,, x»,
x3). The ions are heavy and slow and the density n,;(r) may therefore be regarded as
fixed. The electrons are highly mobile. The problem is then to find n.(r, f) for given
n;(r) and in particular to find out whether given an initial electron distribution, the
electrons stabilize and if so to evaluate the time needed for such a stabilization.

A special situation of practical interest is a so-called pre-breakdown discharge
which spreads out in filamentary form (cf. Marode [17] and Marode, Bastien and
Bakker [18]). In this situation there is cylindrical symmetry about the x;-axis and the
particle densities depend on r = (x] +x3)"? only. We thus have effectively a two-
dimensional Coulomb gas with circular symmetry. The starting equations are

(i) Coulomb’s law for the electric field E,

10
(2.1) ——rE=-Cy(n.—n,),
ror

where C; is a fixed constant;
(i1) a constitutive equation for the electric current j,

on,
ar’

(2.2) j=n.uE +kT

in which the first term represents Ohm’s law and the second term is due to thermal
diffusion, u being the mobility, £ Boltzmann’s constant and T the temperature; and
(ii1) the continuity equation for the electron density,

on, 10

2.3 == —j
2:3) at ror 7
If we set

Vx

u(x,t) =J’ n.(r, t)rdr

0

and

Vx©
glx)= I n;(r)rdr,
0

we obtain, after redefining the constants, the equation

(2.4) ut=5xu.rx+(g(x)_u)uxa
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where € = 2kT/(uC,), and the boundary condition
(2.5) u(0, r)=0.

Furthermore one makes the hypothesis that the total charge is positive and fixed, that
is

I (ni(r)—n.(r, ))rdr=N >0,
0

from which we deduce the boundary condition at infinity;
(2.6) u(o, t) =K :=g(c0)—-N.

Clearly K € (0, g(c0)).
Equations (2.4) and (2.5) together with the initial condition

2.7 u(x,0)=¢(x)

constitute the mathematical formulation of the problem which we propose to study
in this paper. Furthermore the condition (2.6) will turn out to be satisfied at all finite
times ¢ and also, for low enough values of the small parameter &, at the time ¢ = 0.
This latter property expresses the fact that all the electrons stay attached to the ions
at low enough temperature; we shall also see that if the temperature rises above a
critical value then some of the electrons escape to infinity, and if it rises even further
above a second critical value then all the electrons escape to infinity.

3. Maximum principles for some degenerate parabolic operators—uniqueness
theorem. In this section we prove maximum principles for some linear and nonlinear
operators which have a degeneracy at the origin; these principles hold for functions
u € C*(D)N C(D), where C*'(D) is the set of continuous functions on D with two
continuous x-derivatives and one continuous z-derivative. It will follow easily from
those maximum principles that P can have at most one solution u € C *(D)NnCc(D)
such that u, is bounded in D.

We begin by defining a linear operator L as follows

3.1) Lu=¢exu, +b(x, )u, +c(x, Hu —u,

where the functions b and c are continuous on D and such that the quantities b/(1+ x)
and ¢ are bounded on D. First we consider the bounded domain Dg := (0, R) X (0, T),
where R is a positive constant. In the same way as for a uniformly parabolic operator
one can prove the following maximum principle which holds in fact for a much wider
class of degenerate parabolic operators (see, for example, Ippolito [15] or Cosner [4])

THEOREM 3.1. Suppose ¢ =0.Letu € C*'(Dg) N C(Dg) satisfyLu Z0on (0, R) X
(0, T). Then if u has a positive maximum in Dg, that maximum is attained on ((0, R) X
{opuU (o, R}x[0, T).

Next, following a method due to Aronson and Weinberger [2], we derive a
comparison theorem for a class of nonlinear evolution problems.

THEOREM 3.2. Letu and v e C*'(Dr)N C(Dg) and suppose that either u, or v, is
bounded on Dg. Let u and v satisfy

Lv—vv,=Lu—uu, on (0,R)x(0,T],
and let

O0sv=u=K on (0,R)x{0}and {0, R}x[0, T].

IIA
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Then v=uin (0, R)x (0, T).
Proof. Let
—at

w=({@w—u)e °,

where

a = max_(c(x, t)—u.(x, t)
(x,t)e D

(in the case where u, is bounded). Then w satisfies
exw +b(x, t)—v)w,+(c(x, ) —uy—a)w—w, =0
and
w=0 on(0,R)x{0}and {0, R} %[0, T].
Thus we deduce from Theorem 3.1 that
w=0 in(0,R)x(0, T],

which completes the proof of Theorem 3.2. U

Now let us consider the unbounded domain D. To begin with we
Phragmeén-Lindelof principle which is a special case of a theorem due to Cosner [4].

THEOREM 3.3. Suppose that b/(1+ x) and c are continuous and bounded in D. Let
ue C*'(D)N C(D) satisfy Lu=0 on (0,0)x (0, T] and the growth condition

.. o —BR

(3.2) h;}n_)ngf e [OrgfléxTu(%, H]=0
for some positive constant B. If u=0 for t=0 and on {0}x[0, T] then u=0 in
(0, 0)x (0, T].

Making use of Theorem 3.3 one can prove a comparison theorem on the
unbounded domain D.

THEOREM 3.4. Letuand ve C*'(D)N C(D) be such that either u, and v or u and
v, are bounded on D and that

lu(x, )], |v(x, t)l.é CeP*
for some positive constants C and B and uniformly in t € [0, T]. Suppose that
Lv—vv.ZLu—uu, on (0,0)x(0, T]
and that
0

A
1A

v=u=K on (0,0)x{0} and {0} %[0, T].
Then v =u in (0,00) X (0, T].

Finally let us come to the question of uniqueness of the solution of problem P.

DEeFINITION. We shall say that u is a classical solution of problem P if it is such
that (i) u € C*'(D)N C(D), (ii) u and u, are bounded in D, (iii) u satisfies the equation
in D, (iv) u satisfies the initial and boundary conditions.

THEOREM 3.5. Problem P can have at most one solution.

Proof. Apply Theorem 3.4 twice to deduce that if # and v are two such solutions
then their difference w = u — v satisfies w =0 and w =0 and thus w=0. O

4. Existence and regularity of the solution. In order to be able to prove the
existence of a solution of the nonlinear degenerate parabolic problem P, we consider
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certain related nonlinear uniformly parabolic problems on bounded domains and
observe that they have a unique solution; we then deduce that P has a generalized
solution, in a certain sense. It finally turns out that this solution is in fact a classical
solution of P and thus the unique solution of P and that it also satisfies condition (*).
Finally we consider its limiting behavior as ¢ | 0.

4.1. Existence. Let us first introduce some notation. Let D, := (0, n) X (0, T). We
denote by C,..([0, n]) the space of functions v which are twice differentiable and
such that v” is Holder continuous on [0, n] with exponent a. We also use the spaces
C.(D,), Cs.o(D,) and C,,4(D,), defined in Friedman [11, pp. 62, 63].

Consider the problem

u=e(x+1/n)u, +(gkx)—u)u, inD,,
P, u(0,1)=0, u(n, t)=K, tel0, T],
u(x, 0) =y, (x), x€(0, n),
with n = g'l(K ) and where ¢, is such that
(i) ¢n € C™([0, ]);
(if) ¢, satisfies H,;
(iii) ¢n(0)=0 and ¢,(x)=K for xe[n —1, ).
In what follows we shall denote by H,, properties (i) — (iii). The following theorem holds:

THEOREM 4.1. There exists a unique solution u, € C..(D,) of P, forany a € (0, 1);
furthermore u, satisfies the inequalities

4.1) 0=u,(x, t)=min (M, x, K),
(4.2) 0= un(x, ) =M,

forall (x,t)e D.. .

Proof. The existence and uniqueness of u, € Cz..(D,) is a consequence of
Theorem 5.2 of LadyZenskaja [16, pp. 564-565]. The inequalities in (4.1) can be
deduced by means of a comparison theorem analogous to Theorem 3.2. From the
linear theory (Friedman [11, p. 72]) we deduce that the function w = u,, € Cs.,(D,);
thus w e C*'(D,) N C(D,). Furthermore w satisfies

wi=ex+1/n)we +(gx)—u, +e)w, +(g'(x)—w)w,
(4.3) 0=w(0,)=M,, O=w(n,t)=M,,
w(x, 0) = ¢n(x).

The bounds on the function w(n,t) follow from the fact that the function
max (0, M, (x —n)+K) is a lower solution of the boundary value problem

1 |
E("*Z)¢”+(g(x)—¢)¢'=0, ¢(0)=0, ¢(n)=K

and consequently a lower bound for u,. Clearly the set
{we C(0, n]) such that 0= w(x)=M,,}

is invariant with respect to the problem (4.3), and thus the inequalities (4.2) are
satisfied.

Next we deduce, from Theorem 4.1, the existence of solution of P. We begin by
approximating the initial function ¢ by a sequence of smooth functions {¢,}.
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LEMMA 4.2. Let the function  satisfy H,. Then there exists a sequence {¥,} which
satisfies the properties H, given at the beginning of this section with M, =M,, for all
n, such that , - ¥ as n - ©, uniformly on [0, ).

Proof. Let no=g '(K) be such that for all n =n, the point x;, defined by
M, (xy, —1/n)=4(x,,) is such that 1/n <x;, =n—2 and the point x,, defined by
o =n—=2+(K—y¢(n—-2))/M, satisfies n —2 < x,, <n —1. Also define

1
0, —0<x=—,
n
1 1
Mw(X“‘), ;<x§xlm
n(x)= "
(x), Xin<x=n-—2,
M,(x—n+2)+¢(n-2), n—2<x=xy,,
K, Xop <X < +00,

Note that, for all x,
M,
¢ (x) — ¥ (x)] = max (~n—“’ K—¢(n —2)).

Next introduce the function
0 if [x|=1,

p(x)= 1
Cexp(z—) if x| <1,
|x|*~1

where the constant C is such that g p dx =1, and let

p(x/8)

ps(x)= s

Finally define

t//n(x)=J ps, (x =y (y) dy, x€[0, n],
R

with 8, =min(1/n, x1,—1/n,n —2—x1,, X2, —n+2,n —1—x5,)/10. We now show
that ¢, has the desired properties. Firstly ¢, € C*([0, n]). The uniform convergence of
{¢.} to ¢ follows from the continuity of ¢, uniformly in n and in x and the uniform
convergence of ¢ to  as n » 0. Finally properties (ii) and (iii) of H, can be deduced
for ¢, from the fact that ¢ also satisfies them.

Next we prove the following theorem.

THEOREM 4.3. P has a unique classical solution. Furthermore this solution also
satisfies condition (*):

(*) lmc1o u(x,t)=K foreachte(0, T].
Proof. We rewrite the parabolic equation of problem P, as

(4.4) u=elx+1/nmu +clx, thu,,
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where

clx, ) =gx)—u,(x, t).
From Theorem 4.1 we know that for all (x', t), (x", t) € D, and for all n =n,
(4.5) lun (x', £) = un (x", 1) = My|x' — x".

Now fix I Zno; (4.4) and (4.5) enable us to apply a theorem of Gilding [12] about
the Holder continuity of solutions of parabolic equations, and we obtain

|t (x, £') = un(x, t")| = Clt' ="

for all n =TI and for all (x, t'), (x, t") € Dy, with |t —t"| = 1. Here the constant C depends
on I but not on n. The set {u,(x, t)}; -, is bounded and equicontinuous in Dy, and thus
there exists a continuous function u;(x, t) and a convergent subsequence {u,, (x, )}
with n, = I such that u,, (x, t) > u; (x, t) as n; - 0, uniformly on D;. Then, by a diagonal
process, it follows that there exists a function u(x, t) defined on D and a convergent
subsequence, denoted by {1;(x, 1)} such that u;(x, ) > u(x, t) as j - o, pointwise on D.
Since this convergence is uniform on any bounded subset of D, the limit function u is
continuous on D.

It remains to show that u is a solution of P; to that purpose we shall proceed in
two steps: firstly we show that u is a generalized solution of P in a certain sense and
then we conclude that it is in fact a classical solution. We shall say that u is a generalized
solution of P if it has the following properties:

(i) u is continuous and uniformly bounded in D;

(ii) u(0,t)=0forall te[0, T];

(iii) u has a bounded generalized derivative with respect to x in D;

(iv) u satisfies the identity

|1/2

@6) [ [ tuti—e o= )b~ g —w/2ud,~ug'8)dr i+ [ 906 (x,0) dx =0
D 0
for all ¢ € C'(D) which vanish for x =0, large x and t=T.
Let us check that u satisfies those properties.
(i) We already know that « is continuous on D and furthermore, since u(x, t) =
lim;,e u;(x, t), we have that 0= u =K.
(ii) This property follows from a similar boundary condition in P,,.
(iii) Let ¢ be an admissible test function and let L = n, be such that supp ¢ < D;.
Since |u;,| is uniformly bounded with respect to j = L for all (x, t) € Dy, it follows that
there exists a subsequence {(u; ).} and a bounded function p € L*(Dy) such that

(up)x—p in L*Dy) as Ji = 0.
Now let ¢ € Co (Dy). Then
(4-7) ((ujk)xy {)-) (ps {) as jk - 0,

whefe (-, +) denotes the inner product in Lz(DL). But since u;, - u as ji - 00, uniformly
on D;, we have
(4.8) (4 £x) > (u, ) as jx > 0.

Hence, combining (4.7) and (4.8), we find that p is the generalized derivative of u.
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{iv) Since u;, is a classical solution of P, it follows that

[t~ -5 -] ac

Dy
4.9) L
+I 0, ()6 (x, 0) dx = 0.
0

The sequences {; } and {ufk} converge to u and u”, respectively, strongly in L*(D;)
as j, -» 0. Furthermore since (u;, ), is uniformly bounded we have

1
JI —(uj ) dx dt >0 as j, > 0.
Jk

Dy

Thus letting j, » 0 we obtain (4.6). Because ¢ has been chosen arbitrarily, we may
conclude that u is indeed a generalized solution of P.

It remains to show that u is a classical solution of P. One can do it by using a
classical bootstrap argument (see, for example, Gilding and Peletier [13]) to show
that for whatever 7, L >0 there exists a(n, L) € (0, 1) such that

(4-10) ue C2+a((771 L) X (77, T))9
where a and ||ul|c,,. may be estimated independently of T. In particular,
ue C*(D)NC(D).

Since furthermore u and u, are uniformly bounded u is a classical solution of
problem P and by Theorem 3.5 it is the unique solution of P.

Finally let us analyze the behavior of u for large x; since we have 0=u=K
and u, =0, u(,t)=lim,. u(x, t) is well defined for all t€[0, T] and such that
0=u(,t)=K. Next we show that u(c0,)=K by constructing a time dependent
lower solution for P. Consider the problem

U, = exty, + (K —u)uy,
4.11) u(xo,)=0, x0Zg '(K),
u(x, 0) = ¢(x).
Since u, =0 we have that
EXU +(g(X)—u)uy — U, = exty + (K —u)u, —u, +(g(x) — K)u,
Z Xty + (K —t)u,—u, forallx =g '(K).

Thus a lower solution & of (4.11) with 4, =0 is also a lower solution of P on
[x0, 0) X [0, T]. We search such functions &, which satisfy furthermore

fi (00, t)=K —k forall te[0, T] and with k € (0, K).
Writing
0=K-1i,
reduces this to finding an upper solution o, of
U, = EXUy + VU,

v(xo, 1) =K, v(00, t)=0.
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Next we look for such a function 4, also requiring that
o 2 X
, )= —].
O, )= "(t + 1)
Setting

X

t+1°

one can easily derive that fk should be an upper solution for the boundary value
problem

enf'+(f+n)f =0,
fx)=K,  f(0)=0.
Let xo>max (e, g_l(K)), and take

m

. 1-x4/€
fm=k+&-0(2)

Xo
One can check that indeed f; is an upper solution for problem 7 and consequently
that dc(x,t)=K —fk (x/(t+1)) is a lower solution for problem P on the sector {t=
0, x Zxo(t + 1)} provided that x, is large enough. Since k& can be chosen arbitrarily
in (0, K) it follows that u(c0, t) =K for all t<oco. 0O

4.2. The limiting behavior as £ | 0. In this section we study the limiting behavior
of the solution u of P as £ 0. To begin with, we consider the following hyperbolic
problem:

u,=(g(x)—u)u, inD,
u(x,0)=¢(x)  forallx € (0, ),

H

and make some heuristic considerations about the solution & of problem H; they are
due to Wilders [23]. One possible configuration of g and ¢ is drawn in Fig. 1; the
corresponding characteristics are represented in Fig. 2. Their equations are

dx
- —(g(x)— ¢ (x(0))).

Along those characteristics & is constant, i.e., @ = (x(0)). Also, since ¥(0)=0 it
follows that the line x =0 is the characteristic passing through the point (0, 0) and

YA

4+
\

FI1G. 1
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A

FiG. 2

consequently that # automatically satisfies a boundary condition of the form (0, 7) =
0. Next we deduce from the fact that ¢ is nondecreasing that two characteristics do
not intersect. Suppose that there exist two characteristics issuing from the points x = a
and x = b(a < b) on the initial line, intersecting each other at the point (x, ) = (x*, *).
Then if they would intersect transversally we would have —(g(x*)—y(a))>
—(g(x*)— (b)) and hence ¢(a)> ¢(b), which is impossible. Now if the characteristics
would be tangent to each other at the point (x*, t*) we would have —(g(x*)—¢/(a)) =
—(g(x*)— (b)) and consequently ¢(a)=(b); both characteristics would then be
described by the same differential equation dx/dt= —(g(x)—(a)), which, by the
standard uniqueness theorem for ordinary differential equations, implies a = b. Finally
we conclude that since the initial condition ¢ is continuous and nondecreasing, no
shock wave can occur and (-, ¢) is continuous at all times.

In [19] Oleinik proved existence and uniqueness of the generalized solution of
Cauchy problems and boundary value problems related to problem H but since the
boundary line x =0 is a characteristic for H (which is reflected in the relation
g(0)—u(0,0)=0), problem H does not satisfy all the assumptions made in [19].
This leads us to give here a proof of the existence of a solution of problem H, by
showing that the solution u of problem P tends to a limit as £{0; the uniqueness is
a consequence of [19]. Following [19, Lemmas 18 and 19], we say that i is a
generalized solution of H if it satisfies

(i) @ is bounded and measurable in D

7] , ) — U 5 I . =
(ii) fx x) ;t(x; )éM.,, for all points (x4, t), (x2,t) e D;
17 X2

(iii) @ satisfies the identity

4.12) ” [aqs, ——(g—g)ﬁqﬁx - ﬁg’qb] dx dt+J:O W(x)é(x, 0) dx =0

D

forall ¢ € C'(D) which vanish for large x and t=T.

Next we shall prove the following theorem.

THEOREM 4.4. The solution u(x,t) of P tends uniformly on all compact sub-
domains of D to a limit i as € [0, where i is the unique generalized solution of H.
The function i is furthermore continuous, nondecreasing in x at all times t€[0, T]
and satisfies the boundary conditions @ (0, t) =0 and @(c0, t) =K.
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Before proving Theorem 4.4, let us introduce a class of upper and lower solutions
for problem P which depend neither on £ nor on time. They will turn out to be very
useful both to prove that &(o0, t) = K in Theorem 4.4 and to study the asymptotic
behavior of u as ¢t > o in the next sections. Next we define

sT(x)=min (Myx, K)

s (x, A, x1, )= max (0’ )‘(1 - (xil)_u))’

where the constants A €[0, K], »>0 and x, >0 are chosen in the following manner:
(a) If € <g(o0), we choose x; >0 so that g(x;)>¢, then A >0 so that A <g(x;)—¢
and finally » >0 so that

and

(4.13) v=e'(gx)—A)—1.

(b) If £ = g(c0), we set A =0, whiﬁ amounts to setting s~ =0.
It is easily seen that s~ satisfies the inequality

Ex(s7)"+(g—=s7)(s7)=0 forallxe[0,0)\{x1}, £€(0,¢).

Thus if £ < g(), given any A <A, =min (g(e0)— ¢, K), one can find £; and 7 satisfying
(4.13) and such that s™(, X, £, #)=¢. Applying the comparison Theorem 3.4 we
deduce that s (-, A, £1, #) = u (and thus that Ao = u (%, t) for all t =00). Similarly one
can check that u =s".

Proof of Theorem 4.4. The uniqueness of the solution of problem H can be proven
along the same lines as in the proof of [19, Thm. 1, Lemma 21]. Next we show its
existence. Fix I =1. Since u and u, are bounded uniformly in ¢ we deduce from
Gilding [12] that u is equicontinuous on Dj; thus, there exists a subsequence
{u., Y- of u and a function &; € C(Dy), suck that u,, - i as &, | 0 uniformly in D; and
such that for all A <K, one can find x; and » satisfying (4.13) and s (-, A, xq, V)=
ir(+,t)=s"(+). Then by a diagonal process, it follows that there exists a bounded
continuous function i and a converging subsequence denoted by {u., } such that u,, 3 &
as €, | 0, pointwise on D and uniformly on all compactsubsetsof D.Since 0 = (u., ) = M,,
@ is nondecreasing in the x-direction and satisfies (ii); u., (0)=0 implies the same
property for i. The boundary condition (%, t) =K follows from the inequalities
sT(L A x,v)sa(-, )=s"(-) forall A <K.

It remains to show that i is a generalized solution of H. Let ¢ € C'(D) vanish
for large x and ¢t =T, and let L =1 be such that ¢ vanishes in the neighborhood of
x =L and for x > L. Because the functions u,, are classical solutions of P, we have

Ue,

JI [us,‘(t’z — Er( XUy — Ue, )x — (g -7) U bx — uekg'¢] dx dt

Dy
L
+J 0 (x)é(x, 0) dx = 0.
0

Now letting £, |0 we deduce that & satisfies (4.12); because ¢ has been chosen
arbitrarily we conclude that i is indeed the generalized solution of H and that {u.}
convergesto @ as /0. O
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5. Asymptotic stability of the steady state. Adapting a method due to Aronson
and Weinberger [2] we investigate the stability of the solution ® of problem P,. To
that purpose we consider the solution u of the corresponding evolution problem P;
since its dependence on ¢ plays a central role in what follows, we denote this solution
by ul(x, t, ). We show that for all the functions ¢ satisfying the hypothesis H, given
in the introduction we have that

ulx,t,y)>d(x) ast—>o00.

To begin with we prove two auxiliary lemmas.
LEMMA 5.1. (i) Let e<g(©) and A\, X, 7 satisfy (4.13). The function
u(x,t,s (+,A, X1, v)) is nondecreasing in time and such that

(5.1) lim u(x, t, s (-, A, £1, ) = ¢1(x),

where ¢; is the unique solution of

" + _ - 0’
(5.2) fi? (g(x)-o)o (
#(0)=0, ¢(0)=A.

(ii) The function u(x, t,s") is nonincreasing in time. Furthermore

(5.3) }1:2 ulx, t,s)=o.

Proof. First note that it follows from the proofs in § 4 that problem P with initial
value s (x, A, £1, #) has a unique classical solution u(x, #, s (-, )A\, %1, ¥)) with u(co, t) =
A for all tr=o. Applying repeatedly Theorem 3.4, one can show that
ulx,t,s (-, A, £1, 7)) is nondecreasing in time and that u(x, t, s) is nonincreasing in
time; it also follows from Theorem 3.4 that

u(x, L, s_(' ’ ;\v x‘l’ ﬁ))é(b;\(x)’
and that

ulx, t,s7)=d(x).

Now for each x, u(x, t, s (-, X, £1, 7)) is nondecreasing in ¢ and bounded from above.
Therefore it has a limit 7—(x) as ¢t > o0 and one can use standard arguments (see for
example Aronson and Weinberger [2]) to show that 7~ € C,..((0, ©)) N C([0, o)) and
satisfies the differential equation in (5.2) and the boundary conditions 7 (0) =0 and
77(00) = A. Finally since ¢ is the unique solution of problem (5.2) we have that 7~ = ¢;.
Similarly one can show that u(x,¢, s*) converges to a function 7'e
Cs.4((0,0))N C([0, o)) which satisfies the steady state equation, the boundary condi-
tion 7*(0) = 0 and the condition ®(c0) = 77 (00) = K. The fact that 7" (c0) = ®(c0) follows
from [6, Lemma 5.1]. Consequently 7 = ®,

LEMMA 5.2. &; is an increasing and continuous function of A. More precisely if
A1 = \> we have

0§¢}‘l‘¢,‘\2§;\1—‘;\2.
Proof. Let m = ¢5,— ¢i,. It satisfies the differential equation

exm"+(g—di)m'—di,m=0
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and the boundary conditions m(0) =0 and m () = X, — A, = 0. Suppose that m attains
anegative minimum at a certain point £ € (0, 00); then m(£) <0, m'(¢§) =0and m"(£)=0
which is in contradiction with eém"(£) = ¢5,(£)m(£). Thus m =0. In the same way
one can show that m cannot attain a positive maximum, which implies m = X —-5\2.
Finally we are in a position to prove the following theorem.
THEOREM 5.3. Let ®(x) be the solution of problem Po. Suppose  satisfies the
hypothesis H,, then for each x 20

}Lrgo u(x, t, ¢) =d(x).

If € = g(c0)— K the convergence is uniform on [0, ©); if € > g(c0)— K it is uniform on
all compact intervals of [0, ).

Proof. Since the functions u and u, are bounded uniformly in ¢, we apply the
Arzela-Ascoli theorem and a diagonal process to deduce that there exists a function
7€ C([0, 00)) and a sequence {u(t,)} with u(t,) = u(-, t,, ¢) such that u(t,) > 7 as t, » 0,
uniformly on all compact subsets of [0, 00). Let & <g(c0); then for each A<Ao=
min (g(©)—¢,K) one can find # and £; satisfying (4.13) and such that
s (+, A, 1, ?) = ¢. Applying Theorem 3.4 we obtain

(5.4) ulx, t,s (M2 D) Sul Y)Sulx, t,s7).

Letting ¢t - o0 in (5.4) and applying Lemma 5.1 we obtain
dis=r=d forallAi<A,.

Next we deduce from Lemma 5.2 that
d-r<ro—A forall A<A,
and thus, that 7 = ®. If £ = g(c0), then the inequalities
Osulx,t,¥)=u(xt s

imply
0=sr=0=0.

Thus also in this case we have that 7 = ®. Finally we conclude that as ¢t > o0, u(-, ¢, ¢)
converges to @, uniformly on all compact intervals of [0, ). This convergence result
can be made slightly stronger in the case that ¢ = g(o0)—K: since then () =K and
since u is nondecreasing in x one can apply Diekmann [5, Lemma 2.4] to deduce
that the convergence is uniform on [0, 00). U

6. Rate of convergence of the solution towards the steady state. In this section
we analyze the rate of convergence of the solution u of P towards its steady state &.
The results which we are able to derive depend strongly on the behavior of g as x » .
If g tends to infinity fast enough, we can prove exponential convergence with a certain
weighted norm. In the more general case, when ¢ < g(o0)— K we find that the solution
converges algebraically fast towards its steady state on all finite x-intervals. No results
are available in the case & = g(c0)— K, which coincides with the physical situation
when some (or all the) electrons escape to infinity.

We write

u(x,t, ) =d(x)+v(x,t).
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Then v satisfies the problem
U = EXUx + (g — D)o, —D'v — v,
(6.1) v(0, ) =0,
v(x,0)=y¢(x)—P(x).

Now let us make the change of function

d{) (x, t).
Problem (6.1) becomes
61 = €X5xx - Q(x)5 + h(x, 6’ 6x)y

6.2) 0(0,1)=0,

¥ -
00 0)=exp (L %{(;) d{) (W (x) - D(x)),
where
- 2 , _
q(x)=(‘g(x)4 ()", g'(0) +P'(x) gx)=Dlx)
EX 2 2x
and

"8 -PW) N+~  8x)—DP(x) .
2el d{) u(v 2ex v).

In particular, there exists M > 0 such that

h(x, 3, 5x)=—exp(—J'
0

lh(x, 3, )| = M(I5|*+]5.1%), 0<x<oo,

where the notation ||| indicates the sup-norm.

In what follows we shall distinguish two cases: (i) the case when liminf ,,» q(x) =
8 >0: this is so if g(x)= CoVx for all x =x, for some positive constants Co and x;;
(ii) the case when liminf, .. q(x)=0.

6.1. Case when g tends to infinity at least as fast as Vx for x > . :The theorem
we give next is very similar in its form and in its proof to a theorem of Fife and
Peletier [10].

THEOREM 6.1. Suppose that there exist constants x,, Co=0 such that

(6.3) gx)=CoVx forallx=x,.

Then there exist positive constants 8, u, C such that if

Jexo ([ 257 de) -] =5

then

o[ 252

where the notation ||| indicates the sup-norm.

d{)(u(',t,t!/)—d))”§Ce"", t=0,
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Proof. To begin with we note that with the hypothesis of Theorem 6.1 we have
that v(co, t) = 0 (since ¢ < g(o0) — K) or equivalently

. (8= N
lim exp ( L o dg)v(x, 1)=0.
Next let us consider the boundary value problem
(6.4)  exw’"—(q(x)+A)w=—6(@®'(R)+A) min (D(x), (x/R) "°D(R)),w(0)=0,
where
. *g(0) - ®()
d(x)=exp (J’O —2€{

The right-hand side of the differential equation in (6.4) has been chosen in a special
manner so that one can exhibit upper and lower solutions for a problem closely related
to (6.4); more precisely we shall prove in the appendix that this problem has at least
one solution w € C*([0, ©)) with w,w’ and w"” bounded such that

dt) @),

0< w(x)=min (dx), (%)_"ch(%))

for all constants vo>1 provided that the constants 6 € (0, 1), # >0 and A <0 satisfy
certain conditions. We adjust @ such that ||w|+[w'[|=1.
We are now in a position to prove Theorem 6.1. Let

z(x, t)=B(w(x)+y) e ™,
in which B, ¥ and u are positive constants still to be determined, and let
Mz =¢€xz,,—q(x)z+h(x, 2, 2,)— 2.

(i) The function q is positive for x near zero and, because of condition (6.3),
also for large x; thus there exists go>0 and (i, {>€(0,%) such that go=
min {q(x): x €[0, {,]U[{2, )} is positive; therefore

Mz=Be (A +p)w+y(=Go+u)+MB(1+7v)?).
Choose
0 <u <min (=4, §o);
assume that vy is known (we shall specify it later), and choose
¥(Go—u)
M@ +y)”

Then #z =0 for all x €[0, £;]U[{2, ) and 1 =0,
(ii) Let £y =x ={5; since w(x)>0 on (0, %), and since w is continuous we have

B =

m=min{w(x): {1Sx ={2}>0.
Therefore
Mz =B e (A +p)m+y(=q+u)+ MB(1+7)?),
where § is an arbitrary constant such that

g <min{q(x): x [0, 0©)}.
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Hence
Mz=Be ™ ((A+u)m+y(—G+qGo)).

Therefore if we choose

we have
Mz=0 for{,=x={,and =0.

Thus for the above choice of B, ¥ and u the function z is an upper solution of the
equation 7 = 0. Let

sup 0(x, 0) =34,
[0,%0)
where 6 = By. Then
7(x,0)=2(x,0) forallxe[0, ),
and hence by Theorem 3.4
o(x,t)=z(x,t) forall xe[0,00), t=0.
In a similar manner one can show that if

inf 5(x,0)=—-6
[0,00)

then
o(x,t)=—2z(x,t) forall xe[0,00), r=0.
Hence if ||5(-, 0)|= 8 then ||5(-, t)||= Ce ™' where we define

C=B1+y)=(1+1/y)s. 0

6.2. Algebraic decay rate in the case that £ <g(c0)—K. Provided that ¢ <
g(00)— K and that the initial function ¢ converges algebraically fast to K as x -» oo,
we prove that the solution u of P converges algebraically fast to the steady state
solution @ for all finite values of x. To that purpose we show that a certain weighted
space integral of the function |u —®|, for some integer p =1, decays algebraically in
time; a similar proof, with exponent p = 1, has been given, for example, by van Duyn
and Peletier [9].

THEOREM 6.2. Provided that ¢ <g(0)—K and that ¢y =s™ (-, K, X1, v) for some
X1, v satisfying (4.13) with A = K, we have that '

j (8'(x)+(p— DO )ulx, 1, ¥)— D) dx
6.5) °

g“ow (5" =B +(@—57)") dx]/t
forailt>0andp=[1/v]+1.

Proof. Since |v(x, )|’ = (s (x)—s(x, K, %1, #))” it follows that [° (v(x, 1))" dx is
defined for all t=0. If p =2 let us multiply the differential equation in (6.1) by v” "
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and integrate with respect to x; we obtain

e o]

d © P oo p © N
——J v—dx=[exvxv" Bk —[ev—] —-e(p—l)J‘ x0” 2 (vye)* dx
p pJdo 0

dt Jy
vp]oo J.cao vp [ Up vp+1]co
+lg=—]| - "+ d'(p-1)—dx—|®—+
[gpo O(g (p ))p" PRFTSIR

Since v tends to zero at least as fast as x ” as x - %, the equation above can be written
in the simpler form
d e o] p . (s o] £ o)
o J " dx = [axuxv"“] —e(p- 1)j x0” " (0,)? dx
0 0
(6.6)

—j' (g+d'(p—1)) —dx.
0 p

Now let us define the functions v™ and v~ as the solutions of (6.1) with initial values
v¥(x,0)=5"(x)—®(x) and v (x,0)=s"(x, K, &, #) — D(x), respectively. By Theorem
3.4 we know that v* =0 and v~ =0. Furthermore, it follows from Lemma 5.1 that
v" is nonincreasing in time and v~ nondecreasing. Of course both v and v~ satisfy
(6.6) and in order to simplify this expression we use the following lemma which we
shall prove later.

LEMMA 6.3. Let ¢ <g(0)—K. Then lim,..x®'(x)=0. If furthermore ¢ =
s (-, K, %1, 7) for some %, v satisfying (4.13) with A = K (we suppose furthermore
that v>1 if £<(g(0)—K)/2) and ¢e€Ci,([x3, ®)) for some a,x3>0, then
lim, . xu,(x, t) =0 for all t € (0, ).

From Lemma 6.3 and formula (6.6) we deduce that v satisfies

i oo(v+)p‘ o ~ © ooz e (v )p
dtJ'o » dx=—¢(p I)J‘0 x(0 )P (vy) dx— J (g+P'(p-1)) .

If p = 1, similar calculations yield

d o . o
— =— v dx.
dt.[) v dx L g'v” dx

Since 0< g'(x) < g'(0) and 0 < ®'(x) <P’'(0), we have for all p=1

1
g'(0)+(p-1)P'(0)

I (W (x, ) dxz— I (') +(p— D@ (%, 1)) dx,
0

and thus
L (g'(x)+ (p— DV (X)(v " (x, 1)) dx
= (g'(0) + (p— 1)P'(0)) j (0" (x, 0))" dx

—(g'(0)+(p - 1)2'(0)) L dr L (8'(x)+(p— D' (X)) (v (x, 7))° dx

In what follows we apply the following lemma that we shall prove later.
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LEMMA 6.4. Lety € C([0, )) with y'e L'((0, ©)) and y' =0 such that

t

6.7) Oéy(t)éN—Mj y(r)dr
(1]
for some constants N =0, M >0. Then
N
(6.8) y(t §——t.

Since the function [; (g'(x)+ (p— 1)®'(x))(v " (x, 1))” dx is continuous and nonincreas-
ing (because v™ is nonincreasing), we deduce from Lemma 6.4 that

f (@' () +(p - DV (X)) (0" (x, )" dx = (J'm (v*(x, 0))° dx)/ L

(Y

Similarly one can show that
[ @000 des([ (-0 o) ar)/r
0 0
Formula (6.5) is then deduced from the fact that

lo(x, )| =max (v (x, £))%, (—v " (x, 1))P) = (0™ (x, 1)) + (—v " (x, 1))". ]

Proof of Lemma 6.3. We first show that lim, .. x®'(x) = 0. Since
ex®'(x) = edP(x)— J-O (8()—d())P'(¢) df =K,

we have
0=xPd'(x)=K.
Furthermore

g—d-¢
€

x®)=xd"+P'=— ®'=0 for x large enough.
Since the function x®’ is bounded and decreasing for large x, we deduce that there
exists E € [0, K] such that

lirg x®'(x)=E,

which implies
O(x)~Elnx+C asx->00,

Since

lim d(x) =K,
we deduce that E =0.
Next we show that lim,_« xu, =0 by making use of Bernstein’s argument, in a
similar way as in Aronson [1] and Peletier and Serrin [21].
Let
n 3n
2’2

R,,=( )x(o, T,  n>3x
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and let
Nr(4—-r
o(n="820

where N =supg u —infz u. The function ¢ increases from 0 to N as r increases
from O to 1. Note that ¢'(r)=2N(2-r)/3>0 and ¢"(r)=—-2N/3<0 and define a
new function w such that

u=inf u+¢(w).

Then w satisfies the differential equation
"(w)
d'(w)

Set p = w, and differentiate the last equation with respect to x; we get

W; = EXWy, + EX (wx)2+(g-—¢(w)—ir_1f UIW,.
R,

n > " m ! 3
= EXDux T ED HE— P H+2ex— P, x+ex(—,>
p: P p n b P b p

+(g—¢ —igf u)ps+(g'—&'p)p,
and thus

%(pz),—exppu = ex(%’,) ,p“+€(%—¢’)p3
(6.9)

+2ex ?psz +(g —¢ —inf u +¢)pp. +g’p2.
R,
Let R* =(3n/4, 5n/4)x (0, T], and let  =1—4(x —n)*/n>. Set z = {*p°.
(i) If z attains its maximum value at the lower boundary of R, we have

3
sup z =z(x,0) where x€ [E, _n]
R 22

Hence,
sup {|wy| = L()|wi(F, 0)].
R

Since { =3/4 in (3n/4, 5n/4) and since u, = ¢'(w)w, we find

4sup ¢’
A e L
R* 3 inf o]

(ii) If z attains its maximum value at an interior point (x, f) of R, we have at
that point

v@I=2

2, =20'p*+2¢°pp. =0,

exzy—2:=0.

(6.10)

The last inequality can be cast in the more explicit form

PG(p%) . —exppa) Zex (P> + L'+ 4L, ppe + ' D3).
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Using (6.9), (6.10) and the inequality
[44¢'ppe| = 7% +4¢7p?

we obtain
_2ﬂ'4<_ 'ﬂ §_2¢_"_£'3
2o 5) ots( 2ot et S )
+ (P8 +3ep2- oS TIMRNTE 1) 2
X. X

Since (¢"/¢')' = —3, this implies
20%p* =6.p* + (%l pl,

where the €;’s are positive and depend only on N and n. Since
2

€
(elpP =2+ p’

it follows that
2
z(x, ) =max (z(x, 1)) =6, +TZE s

R,
Therefore

4¢5"?
3

max |w,| =
R}
Finally u, = ¢'(w)w, and ¢'=4N/3 imply that
max |u,| = 16N€3'%/9.
R}

Note that N =supz (K —s (x, K, %1, 7)) (which behaves as x , where v>0)
is furthermore such that 7 >1 if ¢ <(g(c0)—K)/2.
Thus
(K _sﬂ(x’ K9 fl) ﬁ))
9 .

(6.11) m_axlu,‘|§16‘€§/2 sup
R} R,

If £ <(g(0)—K)/2 €5 is bounded uniformly in n, and we deduce that xu, tends to

zero as x - 00, If on the other hand (g(c0)—K)/2 = ¢ < g(c0)—K, then we only have
that 7>01in (6.11) and supz, (K —s (x, K, %1, 7)) tends to zero as x - 0. However €5?

tends to zero as 1/x when x - 00, which also yields the result. 0
Proof of Lemma 6.4. Integrating by parts we get

J y(r)dr=1ty(t) —I y'(r)dr=ty(t).
0 0
Also we deduce from (6.7) that
! N
=
[ ynarsy,

and thus (6.8) follows. 0O
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Next we deduce from Theorem 6.2 that there is also pointwise convergence.
More precisely we prove the following theorem.

THEOREM 6.5. Provided that € < g(0)—K and that y=s (-, K, X1, 7) for some
X1, v satisfying (4.13) with A = K, we have that

(6.12) lg'()+(p =D (u(-, t, ) - D)= SZp for all t>0,
and p=[1/v]1+1, where

C.=[2((K7 17+ K" E=2) 100+ K sup [g'(@))
(6.13) e 1/2p
.J’O (5" = D) + (@ —57)") dx] .

In particular, if ¢ <(g(c0)—K)/2 and # > 1, then p = 1 and formulas (6.12) and (6.13)
simplify as follows

(6.14) le'( (-, 1, w>—<1>>||é§ for all >0,
t
where

© - 1/2

c=[2(@or+k swp [g0l) [ - KA d]
x€[0,00 0

Proof. To prove Theorem 6.5 we need the following auxiliary lemma.

LEMMA 6.6. Let ¢ be defined for 0 = x <0 and satisfy the conditions

(i) ¢(x)=0 and ¢(0)=0;
(ii) ¢ is Lipschitz continuous with constant [
(i) [g & (x)dx =N.

Then

sup | (x)| = V2N
O0=x<oco
We omit here the demonstration of this lemma since the main ideas of the proof are
given in the proof of Peletier [20, Lemma 3].
Now let us apply Lemma 6.6 to the function (g'+(p— 1)d’ )u—®|; it is non-
negative, equal to zero at the origin and its derivative is continuous by parts and
bounded by

(K + k") g0 K" sup ()]

x€[0,00)

at all points where it is defined. Finally the bound on its integral is given in Theorem
6.2. Inequality (6.12) follows. 0

6.3. Asymptotic behavior of the solution & of the hyperbolic problem H as 7 -> .
THEOREM 6.7. Let ¢ satisfy H, and be such that ¢ Zs (-, K, %1, ) for some
%1>0, 7> 1 satisfying (4.13) with A = K and define ®(x)=min (g(x), K). Then

lg'()@(-, t, ) — )| _s_% for all t>0,
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where C is the constant defined in Theorem 6.5.

Proof. Let € € (0, (g(0)—K)/2)| 0 in inequality (6.14), note that the constant C
does not depend in ¢, and use the fact that ® converges to ® uniformly on [0, ©) as
el0 (see[6])). O

Appendix. In what follows we shall prove the following theorem:

THEOREM A1l. Suppose that there exist constants x;, Co> 0 such that the condition
(6.3) is satisfied. There exist 6 € (0, 1), & >0 and A <O such that the Cauchy-Dirichlet
problem (6.4) has at least one solution w € Cz([O, 00)) with w, w', w" bounded and

0< w(x)=min (&)(3), (x/R) " DR)) for all x € (0, ).

Proof. Let n =1; and consider the boundary value problem

(A1) e(x +%)w"—<qn<x)+uw =—6(®'(R)+A) min (,(x), (x/R) D, (R)),

(A2) w(0)=0,
where

* _ * (&) - D)

©n(x) =exp (L 2e(l+1/n) d{)CD(x),
and

=(g(x)—<I>(x))2+g'(x)+<l>'(x)_g(x)—<l>(x)
4e(x+1/n) 2 2(x+1/n)’

qn(x)

vo>1 is arbitrary and where the constants 6 € (0, 1), Z >0 and A € (—®'(R), 0) satisfy
some additional conditions which will be given later. Obviously zero is a lower solution
for the differential equation in (A1). We shall now construct an upper solution. Firstly
we deduce from the asymptotic behavior of g that there exists £, =1 and go> 0 such
thatq,(x)=2qofor x =R;. Alsoif A > max (—qo, —P'(R))and 6§ <(qo+A)/(DP'(R)+A),
then the function (x/R)™"°®,(R) is an upper solution of the differential equation (A1)
for x = R = max (&1, 2evo(vo+ 1)/~q0). Next we note that ®,, is an upper solution of
(A1) on [0, #] and thus that min (®,(x), (x/ R) 0D, (R)) is an upper solution of (A1)
on [0, c0). Finally we conclude that there exists at least one solution w,, € CZ([O, 00))
of (A1), (A2) [3, Thm. 1.7.1], such that
X

0=w,(x)=min (Ci),.(x), (@)—Vofbn(@)),

which, since <I~>,, = &), implies that
(A3) 0= w, (x)=min (cb(x ) (-;7) 06(%)).

Furthermore, the inequalities (A3) and

(g9 g+@

(A4) g, (x)| = Tox >

yield, together with (A1),

[wi(x)|=C for all x €[0, ),
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where C >0 is independent of n. Now let us integrate (A1); we get
wn(x)=w,(0)

(A + J @O+ M)W ()= 6@ (R) + ) min (D, (), &/R)"®u(R)) dL
0 €(§+ 1/")7 ‘

and again using-(A3) and (A4) we obtain
|lwh(x)|=C for all x €[0, o]

Using the Arzela—Ascoli theorem and a diagonal process, we deduce that there exist
a function w € C'([0, ©)) and a subsequence {w,,} of {w,} such that w,, - w as n; >
uniformly in C'([0, )) on all compact subsets of [0, ). Also setting n = ny in (AS)
and letting n, - %0, we deduce that w satisfies the differential equation

(A6) exw"—(q(x)+A)w = —6(P'(R)+A) min (B(x), (x/R) " D(R))
and the boundary condition

w(0)=0.
It follows from (A6) that w € C?((0, ®)), and since

lim w"(x) =[(®'(0)+)w'(0) — 6(P'(%R) +A )&'(0))/e,

we deduce that in fact w e C*([0, c)). Finally the strict inequality w >0 is proven by
means of a maximum principle argument. [
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1. INTRODUCTION
Consider the two-point boundary value problem

ey" + (g-y)y' = 0,
BVP

Y(O) = 0, Y(l) = 11

where g € L, = L2(0,1) is a given function and y € H2 is unknown. As we shall

2

show, there exists for each € > 0 a unique solution'ys, which is increasing.
We are interested in the limiting behaviour of Yy, as € + 0.

Motivated by a physical application we previously studied a similar
problem in a joint paper with L.A. PELETIER [2]. Using the maximum principle
as our main tool we were able to establish the existence of a unique limit
solution Yo under certain, physically reasonable, assumptions on the func-
tion g. In some cases we could characterize ¥q completely, in others, how-
ever, some ambiguity remained.

Here, inspired by the work of GRASMAN & MATKOWSKY [4], we shall resolve
this ambiguity by using a variational formulation of the problem. The method
we use is based on the theory of maximal monotone operators. It has been
suggested to us by Ph. Clément.

During our investigation of BVP we experienced that it could serve as
a fairly simple, yet nontrivial, illustration of concepts and methods from
abstract functional analysis. In order to demonstrate this aspect of the
problem we shall spell out our arguments in some more detail than is strict-
ly necessary.

The organization of the paper is as follows. In Section 2 we prove, by
means of Schauder's fixed point theorem, that BVP has a solution Yo for each
g > 0. Moreover, we show that BVP is equivalent to an abstrac£ equation AE,
involving a maximal monotone operator A, and to a variational problem VP,
involving a convex, lower semi-continuous functional W.

In Section 3 we exploit these formulations in the investigation of the

limiting behaviour of as € + 0. It turns out that y converges in L, to
ye € 2
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a limit Yor Moreover, Y is abstractly characterized as the projection (in
L2) of g on D(A). We conclude this section with some results about uniform
convergence under restrictive assumptions.

In Section 4 we give concrete form to the characterization of Yo- In
particular we present sufficient conditions for a function to be Yo and we
show, by means of examples, how these criteria can be used in concrete
cases. The first part of the title originated from Example 4.

In Section 5 we make various remarks about generalizations and limita-

tions of our approach.
ACKNOWLEDGEMENT

The authors gratefully acknowledge helpful remarks and suggestions of

Ph. Clément, E.W.C. van Groesen, H.J. Hilhorst, L.A. Peletier and R. Témam,
2. THREE EQUIVALENT FORMULATIONS

In order to demonstrate the existence of a solution of BVP, let us

first look at the auxiliary problem
u" + (g-w)u' = 0,
u(0) = 0, wu(l) =1,

where w € L2 is a given function. The solution of this linear problem is

given explicitly by

X C
C(w) J exp(f (w(&) - g(&))dg)dg
0 0

u(x) =
with
1 4
clw) = (J exp(f (w(g) - q(E))dE)dc)_l.
0 0

From this expression it can be concluded that u' > 0 and 0 € u £ 1. So if

we write u = Tw, then T is a compact map of the closed convex set
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{w € L2 0 <w < 1} into itself and hence, by Schauder's theorem, T must
have a fixed point. Clearly this fixed point corresponds to a solution of

BVP. Thus we have proved

PROPOSITION 2.1. For each e > O there exists a solution Y, € H of BVP.

Moreover, any solution y € H2 satisfies (i) y' > 0 and (ii) 0 <y < 1.

The a priori.knowledge that y' is positive allows us to divide the

equation by y'. In this manner we are able to reformulate the boundary value

problem as an equivalent abstract equation

AE (I +ed)y=g

where the (unbounded, nonlinear) operator A: D(a) - L2 is defined by

(2.1) Au = -E;:_(Zn u') !
u
with
(2-2) D@ =f{uer, |ue 5%, w' > 0, u(0) = 0, u(1) = 1}.

PROPOSITION 2.2. The operator A is monotone. Hence the solution of RAE (and

BVP) s unique.

PRCOF. Let u; € D) for i = 1,2 then

1]

(Au1 - Au,, u; - u2) -I((Zn ui)' - (£n ué)')(u1 - u2)

I(Kn ui - £fn ué)(ui - ué)lz 0

(because z » £n z is monotone on (0,«); note that here and in the following
we write f¢ to denote fé $(x)dx.) Next, suppose sAyi =g-y;r i =1,2, then
2
- - =(g-vy, - - = - -yl
0 < e(Ay,; -Ay,s ¥, -¥,) =(9-Y, -9+Y¥,r ¥4 Y,) "y1 yzl and hence
vy, =v, O

We recall that a monotone operator A defined on a Hilbert space H is
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is called maximal monotone if it admits no proper monotone extension (i.e.,
it is maximal in the sense of inclusion of graphs). It is well known that
A is maximal monotone if and only if R(I+eA) = H for each € > 0 (see
BREZIS [1]). In our case, with H = L2 and A defined in (2.1), this is just
a reformulation of the existence result Proposition 2.1. Consequently we

know

PROPOSITION 2.3. A is maximal monotone.

In search for yet another formulation let us write the equation in the

form

-€elny')' +y-g=0
Hence, for any ¢ € Hé,
€ I ¢$'(dn y' + 1) + I $(y - g) = 0.

Motivated by this calculation we define a functional W: L2 + R by

(2.3) W(u) = e¥(u) + % la - gll2
where
fu' £&n u' if u e D(V),
(2.4) ¥(u) = {
+ o otherwise,
and
(2.5) DY) = {u e L, | uwis AC, u' 20, u' £n u' € Ly, u(0) =0,

u(1) 1}

(here AC means absolutely continuous.) Also we define a variational problem

We note that the mappings z # z £n z and z b z2 are (strictly) convex (on
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[0,) and (-»,») respectively) and that W inherits this property because
D(¥) is convex as well. Hence VP has at most one solution. For further use
we observe that the convexity of z+ z £n z implies, for z 2 0 and z > O,

the inequality
zInz-glng=2 (1 +Lnt)(z-27).

PROPOSITION 2.4. Ve solves VP.

PROOF. Firstly we note that Yo € D(¥). So for any u e D(¥)

W(u) - W(ys) € J (u' £n u' - y; £n yé) + %Hu-gﬂz— %Hys-guz

\"

€ I (1 + £n yé)(u'-yé) + f (Ye"g)(u'-ye)

f (-¢ §§-+ Y. - g)(u - ye) = 0. 0

We recall that the subgradient 3Y of the convex functional ¥ is defined
by

() ={zeL, | ¥(v) - ¥(u) 2 (g,v - u), ¥v e D(¥)}.
A calculation like the one above shows that, for u € D(A) and v € D(¥),
¥(v) - ¥(u) =2 (Au, v=-u).

Hence A c 3Y¥, but, since 9¥ is monotone and A is maximal monotone, we must
have A = 3¥. Likewise it follows that 3W = €A + I - g. These observations
should clarify the relation between VP and AE.

One can show that ¥ (and hence W as well) is lower semicontinuous and
subsequently one can use this knowledge to give a direct variational proof

of the existence of a solution of VP,

We summarize the main results of this section in the following theorem.

THEOREM 2.5. The problems BVP, AE and VP are equivalent. In fact, for each
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e > 0, there exists Y. € D(A) which solves each problem and no problem

admits any other solution.

3. LIMITING BEHAVIOUR AS € + O

The fact that Ve solves AE can be expressed as
-1
y. = (I + €A) ‘g

Subsequently, the observation that A is maximal monotone provides a key to
describing the limiting behaviour. For, it is known from the general theory

of such operators (see BREZIS [1, Section II.4, in particular Th. 2.2]) that

lim (I + eA) 'g = Proj gs

e+0 D(A)
where the expression at the right-hand side denotes the projection (in the
sense of the underlying Hilbert space, hence L, in this case) of g on the

closed convex set D(A), or, in other words,

Proj g =7,

D(a)

where Yo denotes the unique solution of the variational problem

with
Hy(w) = lu- gl 2.

Below we shall give a proof of this result for this special case, using
techniques as in Brézis' book, but exploiting the fact that A is the sub-

differential of the functional VY.
~ THEOREM 3.1.

lim ly -y I = 0.
e+0 € 0
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PROOF. First of all we note that ﬂyg" < 1. We shall split the proof into

three steps.

Step 1. Take any z € D(A) then from
¥(y) - ¥(z) 2 (Az, y_ - 2)
it follows that

lim inf e(¥(y.) - ¥(2)) =2 0.
e + O &

Step 2. By definition,
02 Wy ) - W(z) = e(¥(y ) - ¥(2)) + +lg-y 12 - Lig-z12
- € € 2 € 2 :
Hence

lim  sup ||g—y|l25ﬂg-z“2, vz € D(A).
€
e + O

But then, in fact, the same must hold for all z € D(A).

. . " < . . .
Step 3. Since Ilye <1, {ye} is weakly precompact in L, Take any {en} and

; such that Yo < ; in Ly, then
n
(%) ﬂg—§ﬂ2 < lim  inf lg-y 1% < 1im sup lg-y 1% < ﬂg-zﬂz,

vz € D(A).

Consequently y = Yor which shows that the limit does not depend on the
subsequence under consideration. Hence Y. = Yo Finally, by taking z = Yo

in (*) it follows that in fact Yo * Yo O

We note that

D(A) = {ueL, | u is nondecreasing, 0 < u < 1},
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So in general Yo need not be continuous (nor does it need to satisfy the
boundary conditions). However it  is possible, as our next result shows, to
establish uniform convergence to a continuous limit at the price of some

conditions on g.

THEOREM 3.2. Suppose g € C], g(0) < 0 and g(1) > 1. Then Yo € C and

lim sup |y (x)-yo(x)l = 0.

e¥0 0<x<l1
PROOF. The idea is to derive a uniform bound for yé. We know already that
yé > 0 and we are going to show that yé < sup g'f To this end we first
observe that g(O)-—ye(O) < 0 and g(l)-—ye(l) > 0, which, combined with
the differential equation, shows that yg(O) > 0 and y;(l) < 0. Hence yé
assumes its maximum in an interior point, say x. Next, differentiation
of the differential equatlon followed by substitution of y"(x)— , ng§) <0
leads to the conclusion that Ve '(x) < g"(x). The uniform bound for y; implies,
by virtue of the Arzela-Ascoli theorem, that the limit set of {ye} in the
space of continuous functions is nonempty. Combination of this result with

Theorem 3.1 leads to the desired conclusion. 0

In Section 4 we shall show that Yo can be calculated in many concrete
examples. Quite often it will turn out that Yo is continuous (or piece-

wise continuous). This motivates our next result.

THEOREM 3.3\ Suppose Yo 18 continuous. Then y, comverges to y, unt formly
on compact subsets of (0,1).

PROOF. Let I <« (0,1) be a compact set. Put B(e) = max{ye(x)-yo(x) | x e 1}
and let x(e) € I be such that ye(x(e)) - yo(x(e)) = B(e). Suppose

lim sup 40 B(e) = B > 0 and let {e } be such that B(e ) > B as n > =,
Choose § ¢ (0,6 ), where 6 denotes the distance of 1 to I, such that

|y0(X) yo(g)l 4 B if |x g| < 6. Also, choose n, such that B(e ) 2 Z B

for n > n,- Then for x € [x(en), §(en) + 8] and n 2 n, the following in-

0
equality holds:
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y€n(x) - yo(x) 2 yen(;(en)) - y0(§(sn)) + yo(i(sn)) = Yo
3. 1. 1
>78-78=38.

However, this leads to

Iy, - yg1? > 7 68

n
which is in contradiction with Theorem 3.1. Hence our assumption B > 0 must
be false and we arrive at the conclusion that
lim SUP_ . max{ye(x) - yo(x) | x € I} < 0. Essentially the same argument
yields that lim inf€+0 min{ye(x) - yo(x) | x € I} > 0. Taking both statements
together yields the result. 0

It should be clear that appropriate analogous results can be proved if
Yo is piece-wise continuous. In Theorem 3.3 the sense of convergence is
sharpened "a posteriori'", that is, once the continuity of Yo is established
by other means. Note that our proof exploits the uniform one-sided bound

' s
Ve 0.
4. CALCULATION OF y,

We recall that Yo is the unlque solution of the variational problem
mlnﬁ?KT 0,‘where Wo(u) "u—g“ . It is well known (for instance, see
EKELAND & TEMAM [3, II, 2.1]) that one can equivalently characterize Yo s

the unique solution of the variational inequality:
4.1) find y € D(A) such that (y-g,v-y) 2 0, Vv € D(A).

Already from the reduced differential equation (g-y)y' = 0, it can be
guessed that Yo is possibly composed out of pieces where it equals g and
pieces where it equals a constant. Of course, if Yo = 8 in some open inter-
val, g has to be nondecreasing in that interval. The characterization of

Yo by (4.1) can be used to find conditions on the "allowed" constants.
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THEOREM 4.1. Suppose y € D(A) has the following property: there exists a

partition 0 = Xy <X <. <x <X S 1 of [0,1] and a subset L of
{0,1,...,n-1} such that:
(1) 2f i ¢ L then y(x) = g(x) for x € [xi,xi+]],

(ii) 2f 1 € L then y(x)
X.

C; for x ¢ [x;5%;,,1 and

1+1
J (Ci-g(g))dg > 0, VX € [xi,xi+]], if Ci e [0,1),
X
X
[ (Ci- g(g))dg < 0, Vx € [Xi’xi+l]’ if Ci_e (0,11,
X.
1 X.
(so in particular, if C; € (0,1), IX%+](Ci - g(g))dg = 0).
Then y = Yo° *

PROOF. According to (4.1) it is sufficient to check that
I = G-pe-nzo,  wedm.

In fact it is sufficient to check this for all v ¢ D(A) n Hl (since this set

is dense in D(A) and I is continuous). We note that I(v) = Ei Ii(v), where

eL
%i41
Ii(v) = (Ci - g(E))(v(E) - Ci)dg-
X.
i
If C. = 0 then
i
Xi+1 Xi+1 %41
L(v) = —v(x;) f g(g)dg - I v'(g) J g(x)dxdg > 0.
xi xi g
If Ci € (0,1) then
X341 ,Xi+1
L = [ v' (&) I (C; - 8(x))dxdg 2 0.
X 4 g
If C. = 1 then
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X+l Xi+1
1L, = (ixg,) - D f (c; - g(£))dg - f v'(E)
X. X.
1 1

£
[ (Ci—g(x))dxdg >0.
X5

Hence indeed I(v) = 0, Vv ¢ D(A) n H]. g

The sufficient conditions of the theorem can be used as a kind of al-
gorithm to compute Yo in concrete cases. We shall illustrate this idea by

means of a number of examples (some of which are almost literally taken from

[(2]).

EXAMPLE 1. Suppose g is nondecreasing, then

0 if g(x) < 0,
Vo) =9 8(x) if 0 < gx) <1,
1 if g(x) 2 1,

EXAMPLE 2. Suppose g is nonincreasing, then yo(x) = C with

0 if g <0,
c=9 Jg if0<fg=s1,
1 if fg > 1.

EXAMPLE 3. Suppose that g ¢ Cl is such that g' vanishes at only two points
b and ¢, b being a local maximum and ¢ a local minimum. Assume that

0<b<c<1and 0 < g(c) < g(b) <1, Let g;l denote the inverse of g on
[0,b] and gzl the inverse of g on [c,1]. Define two points a and d by

a=g (g, d=g, (&b).

Then g([a,b]) = g([c,d]l). (See Figure 1).
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tg
,/7/;7}7>§>x v |
} I
g
——————— |
| | | | l
| | l | ' |
| I ! ! |
a o b o] B d > X
Figure 1

On [a,b] we define a mapping G by

g;l(g(X))
G(x) = (g(x) - g(&))de.
X
Then G(a) < 0, G(b) > 0 and on (a,b)
£, (8G0)
G'(x) = g'(x) J dg > 0.

X

Consequently G has a unique zero on [a,b], say for x = a. The function Yo
has the tendency to follow g as much as possible. However, it also has to
be nondecreasing. So the inverse function of Yo must "jump" from a point
on [a,b] to a point on [c,d]. In view of Theorem 4.1 this jump can only

take place between o and B = g;l(a). We leave it to the reader to verify

(by checking all requirements of Theorem 4.1) that
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[0 if x < o and g(x) < 0,
g(x) if x < o and g(x) = 0,
yo(x) =4 g(a) if a < x < B,
g(x) 1if x 2 B and g(x) <1,
L 1 if x 2 B and g(x) = 1.

It should be clear that the differentiability of g is not strictly necessary
for our arguments to apply. In fact the monotonicity of G follows from
straightforward geometrical considerations and the condition G(a) = 0 has a

corresponding interpretation (see Figure 1).

EXAMPLE 4. If g has more maxima and minima the construction of candidates

for~y0 can be based on essentially the same idea as outlined in Example 3.

However, it becomes more complicated since the number of possibilities

becomes larger (see [2] for some more details). For instance, if g has a
graph as shown in Figure 2, looking at zeroes of functions like G above

leaves us with two possible candidates: one with two "jumps" (a-b,c-d) and

one with a "two-in-one jump" (o-B).

tg

W ————— — — — —

Figure 2
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In [2] we were unable to decide in such a situation which was the actual
limit. But now it can be read off from the picture that only the one with
two "jumps" satisfies the requirements of Theorem 4.1, and hence this one
must actually be Yo* (The other one corresponds to a saddle point of the
functional W, restricted to D(A).) It is in this sense that ¥y must have

0
as many "jumps'" as possible.

5. CONCLUDING REMARKS

(i) In all our examples Yo satisfies the reduced equation (g-y)y' = 0.
However this equation is by no means sufficient to characterize Yo
completely. Our analysis clearly shows that the reduced variational
problem Minﬁzzy WO contains much more information than the reduced
differential equation.

(ii) In [2] we were actually interested in a boundary value problem of the

type
(5.1) exy" + (g-y)y' = 0, 0<x<1,
(5.2) Y(O) =0, Y(l) =1,

which arises from the assumption of radial symmetry in a two-dimension-
al geometry. This problem can be analysed in completely the same way

as we did with BVP in this paper, by choosing as the underlying

Hilbert space the weighted L2—space corresponding to the measure

du(x) = x_ldx. For instance, the operator A defined by

~ _ u"(x)
(Au) (x) = -x -u“'"(-x-)'
with
@) = {ue 1@ | u' € 0,11, u' >0, u(l) =1,

. u 2
igreli@@wl,

where i denotes the function i(x) = x,
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is clearly monotone in this space. The surjectivity of I + €A can be
proved with the aid of an auxiliary problem and Schauder's fixed point
theorem. (Note that some care is needed in checking that the functions
which occur belong to the right space and that the solution operator
is compact. This turns out to be all right. We refer to Martini's
thesis [5] where related problems are treated in full detail.) Hence
A is maximal monotone. Subsequently it follows that, for given

g € L2(du), the solution Ve tends, as € ¥+ 0, to a limit Yo in Lz(du)
and that Yo is the projection in L2(du) of g onto the closed convex

set

DA) = {u e L2(du) | u is nondecreasing, 0 < u < 1},
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1. INTRODUCTION

In this paper we study the nonlinear boundary value problem
-tu+ h() = £ in @

BVP J h(Eé?l)dx =C
Q

u|aﬂ is constant (but unknown)

where
(1) Q is a bounded open subset of R" with smooth boundary 99
(ii1) € is a small positive parameter

(iii) h : R > R is a given continuous, strictly monotone increasing
function with h(0) = 0

(iv) f is a given distribution in'H-l(ﬂ)

(v) C is a given constant which satisfies the compatibility condition
h(-=) Q| < C < h(+=)|Q]l.

Here |Q| denotes the measure of Q.

1309
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The motivation for studying BVP partly stems from the physics of ionizer
gases and in this respect we continue earlier work [18, 19, 24, 25]. We refer
to [25] and Appendix 2 for a discussion of this connection.

Our basic tools are the calculus of variations, convex analysis and the
maximum principle.

We prove that BVP admits for each € > 0 a unique solution u, which con-
verges as € + 0 to a limit u,. Moreover, we give a variational characteriza-
tion of ug which leads to the conclusion that uo solves a free boundary
problem. .

Our findings fit in with those of BRAUNER & NICOLAENKO [8, 9] in their
study of related Dirichlet problems (we certainly have been inspired by
their paper). In this connection it is also worth mentioning the work of
FRANK & VAN GROESEN [21] and FRANK & WENDT [22] which analyses in particular
the coincidence set. In Appendix | we give the analysis of the homogeneous
Dirichlet problem.

In a recent paper [10] BRAUNER & NICOLAENKO stress the following point.
Suppose one wants to analyse some free boundary ﬁroblem, then it may be pos-
sible to view this problem as the limit when €+ O of a problem like BVP (with
€ occurring in the argument of a smooth function). This smooth regularization
can be used to solve problems of existence, regularity and approximation and
it forms an alternative version of the usual penalization method. (see also
[71.

In the physical problem of Appendix 2 the parameter € naturally appears

in the same way as in BVP. In other situations one may arrive at the equation
—-eAv + h(v) = £.

Then our results bear on eve and h(vs)’ The model of a confined plasma
introduced by TEMAM [29,30] is of this type (with f = 0) but with h decreas-
ing. The limiting behaviour of its solutions v, as e+ 0 is studied by
CAFFARELLI & FRIEDMAN [15] and BERGER & FRAENKEL [6]. It may be possible
that an adapted version of our duality approach cam be applied to this prob-
lem. One would then have to use Toland's non convex duality as given by
DAMLAMIAN [16].

After these general remarks, let us describe the contents of the paper
in some more detail. We shall interpret BVP as the subdifferential equation
ave(u) = 0, where VE is a proper, strictly convex, lower semicontinuous and
coercive functional defined on the direct sum of Hs(ﬂ) and the constant

functions on Q. This is rather easy if h satisfies certain growth restric-
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tions. For the general case we heavily lean upon some results of BREZIS [12].
These and some other preliminaries are collected in section 2. The functional
V€ is defined in section 3 and from its properties we deduce the existence
and uniqueness of a solution u, for each € > 0.

The functional Ve depends monotonously on € and therefore has a well-
defined limit VO' Moreover, VE is coercive uniformly in € and consequently
we deduce in section 4 that as € ¢ O u_ converges to ug, the minimizer of VO‘
The subdifferential avo is multivalued. We find that Uy satisfies an operator
inclusion relation if h is bounded and a variational inequality if h is un-

bounded. We emphasize that Uy depends only on f£,C and h(#=),

Problem BVP has the form
u -
Lu + N (e) = f

where both L and N are maximal monotone operators. The variational approach
suggests the introduction of a dual formulation (in section 5) which turnms

out ta be of the form
(eA+ I)p =g

where A is a maximal monotone operator on (LZ(Q))n with a special structure,
and where g is related to f by div g = f. This gives some further insight
into the convergence. The limit Py equals the projection of g onto the closed
convex set D(A). Duality theory yields a characterization of D(A) by inequal-
ities which seems difficult to obtain directly. Duality theory has been
applied to related problems by ARTHURS & ROBINSON [4] and ARTHURS [3]. For
the basic theory we refer to EKELAND & TEMAM [ 20]

In section 6 we assume f € L (Q). We employ maximum principle arguments
and make some estimates. We prove that u_ andzuo belong to wz’P(n) fgr each
p 2 1 and that u_ converges weakly to uj in WP (0) for each 0 with 0 ¢ Q.
Either one has convergence in wz’P(n) itself, or a boundary layer develops
as € + 0. We present criteria in terms of the data f, h(t») and C from which
it can be decided in many cases which of these two possibilities actually
occurs. In section 7 we briefly discuss the one-dimensional case.

Our analysis reveals that BVP and the homogeneous Dirichlet problem
have exactly the same variational structure. In order to emphasize this point
we analyse the latter problem in Appendix 1. Finally, we discuss the physical

background of BVP in Appendix 2.
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2. PRELIMINARIES

In this section we collect some definitions and results from the litera-
ture which we will use later. We state these in the form we need, which is
not always the most general.

Let B be a Banach space and B* its dual. Let F : B > (-=,+»] be a proper
(i.e. F £ +x), lower semicontinuous (L.s.c.), convex functional. The polar

(or conjugate) functional F*: BY (=»,+=] is defined by

(2.1) F*(ﬁ*) = sup{<u*,u> - F(u) | ue D(F)}
where
(2.2) D(F) = {u | F(u) < +=}

and where <,+> denotes the duality pairing between B" and B. The subdiffer-
ential 3F is a, possibly multivalued, mapping of X into X* defined by

(2.3) e 9F(u) if and only if F(v) - F(u) 2 <u*,v-u>, Vv € B.

LEMMA 2.1.
u* € 3F(u) if and only if F(u) + F (u*) = <u*,u>.
LEMMA 2.2.

u* € 3F(u) Zf and only if u € 3F (u*).

A convenient reference for these items is EKELAND & TEMAM 720].
If B is a Hilbert space one can identify B and B* and then 3F becomes

a mapping of B into itself. It is well-known that 3F is maximal monotone.

LEMMA 2.3. Let H be a Hilbert spoce and A a maximal monotone operator on
H. Then, for each ¢ > 0, (I+ eA)-] 18 a contraction defined on all of H and
lim (I1+¢A) ' b = projection of h on D(A).
€40
For this standard result we refer to BREZIS [11].

Let, as before, Q2 be a bounded open subset of R" with smooth boundary.
We shall write H(I),LZ etc. to denote Hé(n),Lz(Q) etc. Also, we write fu to
denote IQ u(x)dx.
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Let j : R + [0,+~] be a convex, l.s.c. function such that j(0) = 0.

The convex, l.s.c. functional J : Hé + [0,+=] is defined by

2.4) T = { J j(u) if j(u) € L,

+o otherwise.

The following two lemmas are special cases of results due to BREZIS [12].

LEMMA 2.4. Suppose D(j) = R then

* J i) ifwen!n L, and Y e L,
J (w) = {

+eo otherwise.

LEMMA 2.5. Suppose D(j) = R then w € 3J(u) 2f and only if w € H'nL

w.u € L] and w(x) € 3j(u(x)) for almost all x € Q.

1°

Finally, we quote a special case of a result of BREZIS & BROWDER [13,14].

LEMMA 2.6. Assume w € H-] n L1 and u € H(l)

for almost all x € Q and some g ¢ L- Then w.u € L, and

are such that w(x)u(x) = g(x)

<w,u> = f v.u.
Here and in the following <+,*> denotes the duality pairing of H_l and
H(]). We observe that Lemma 2.6 implies that the condition w.u € L‘ in Lemma

2.5 is automatically satisfied.

3. VARIATIONAL FORMULATION

Let X be the direct sum of H] and the constant functions: X = H] e R.

0 0
If u is some element of X, we write u = u + ulm for its decomposition. X is,
provided with the topology inherited of Hl, a Hilbert space. Moreover, X is
isomorphic to H(]) x R and the Hl—norm is equivalent with the norm

';Il-ll + | ulaf2 | on X. So we can realize the dual space X" by
0
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the pairing being given by

<(w,k),u>_ = <w,;> + ku|9ﬂ.

X

Consider the functional W defined on X by

' (H()-Cu if Bu) € L
@3.1) W(u) = {J ° 30 B 1

+o0 otherwise,

where by definition

y
(3.2) H(y) = J h(n)dn.

0
LEMMA 3.1.

* . -1 *

. IH(w) szeL‘nH,H(w)eL,ande=k+C,
W (w,k) = {

4o otherwise.

PROOF. The idea is to take first the supremum with respect to the Hé-component

and to use Lemma 2.4.

U e Hé, u|aﬂ e R}

sup{<w,u> + k u|3$2 - f H(u+ u!an) +C ulaﬂ

sup{ J ) - u[an J' w + (k+C) u|aﬂ u]m € R}
N -1 *
= 1fweL]nH andl-l(w)e!..l
+o otherwise

1

f H*(w) if we Ll nH

R H*(w) eL1 andfw= k+C
+o otherwise.

LEMMA 3.2.

“(h(u), f h(u) - €) ifh() e H ' n L,
W) = {

[ otherwise.
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PROOF. (i) Let (w,k) € 3W(u) then

W(v+ v[m) - Wu+ “|an) > <w,v-u> + k(v-u)laﬂ

for all v ¢ H! and all v[an ¢ R. By first taking VIBR = ul we see that

0 ap, 15 °°¢
necessarily w belongs to the subdifferential of the functional u + W(u+u|aﬂ)

defined on H(‘). Hence, by Lemma 2.5, w = h(u) and w € Ll
of Lemma 2.1 and Lemma 3.1 shows that necessarily k = [ w—C = [ h(u)-C.

. Next, a combination

‘n L,. Since h is the derivative of H we have

(ii) Conversely, let h(u) € H 1

H(v) - H(u) 2 h(u)(v-u) = h(u) (v- u+ v-w)],0).
So if H(v) and H(u) € Ll’ we can invoke Lemma 2.6 and conclude that

h(w) (v -1) € L,
tion of the inequality then yields, after adding a term —C(v-u)[m,

and that the integral equals the duality pairing. Integra-

W) - W(w) 2 <h(u),v-w o+ (f h(u) =€) (v-u)|,q- 0
We remark that, by Lemma 2.2, W = h_l. So, since h is strictly mono-
tone,
y
* -1
(3.3) H (y) = f h " (n)dn.
0

Let g € (L2)n be such that div g = f. The functional G : (Lz)n + R
defined by

(3.4) e = f Up? + g.p)

is Fréchet-differentiable with derivative p+g. The polar functional

¢ (Lz)n + R is given by

(3.5) ¢*(p) = 4 J (o-g)°

and its derivative is p-g.

We define the bounded linear mapping T: X > (Lz)n by

(3.6) T u = - grad u.
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. * n *x . .
Its adjoint T :(L2) + X 1is given by
* .
(3.7) T p = (div p,0).

Clearly the functional u*> G(-Tu ) defined on X is differentiable with deri-

vative —T*G'(-Tu ) = (-Au- £,0).

Finally, let us put together the materials constructed above. Define

V. : X+ (-»,+=] by

€
(3.8) V_(u) = 6(-Tu) + ew(‘é).
Then
(~bu- £+ h(®), J hE) - c) ifh® ewln L,
(3.9 W _(w = { € € €
otherwise

and, consequently, the problem BVP is equivalent with the variational problem

A4 Inf V _(u).
€
ueX

THEOREM 3.3. VP has a unique solution U,

PROOF. G is convex, W is strictly convex and both functionals are l.s.c. (by
Fatou's lemma). It remains to verify that Ve is coercive on X. It is con-

venient to rewrite the functional Ve as
V (u) = (Q(gradu)2 + (g-a) . gradu + ¢ e - c u)
€ € Tel

where |Q| denotes the measure of Q-and a is such that diva = Clﬂl-l (for in-

stance take a = c(nlnl)'l (xl,...,xn)). Since Clnl_]e (h(-=),h(+=)), there

exist positive constants § and M, such that

1
eH(E) --1%[}72 Slyl - M.

By the inequalities of Holder and Poincaré there exists a positive constant
MZ = MZ(Q) such that
flu] A ﬂuILz < legrad uILz = legrad u|L2

Hence, using Holder's inequality once more, we find
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2 ~
v (w2 ilgradu WLZ - Ig-aILZ lgrad u‘L2+ slal | ulanl s Jlul M,

2
1 i -
> ilgrad u Lz + GIQI| u[39 | M3
for some constant M3. It should be noted that the right hand side is inde-

pendent of €. [

4. LIMITING BEHAVIOUR OF u, AS e + 0

In this section we show that u_ converges as ¢ + 0. The limit ug is
characterized as the unique solution of a variational problem. Equivalently
one can characterize ug by an operator inclusion relation if h is bounded and
by a variational inequality if h is unbounded. It turns out that Yy depends

only on h(t=), f and C.

As € + 0, the function h(%) converges to the multivalued function

h(+), y>0
.1) hy(y) =4 [h(==),h(+=)], y=0
h(-=), y < 0.

in the sense that each point on the graph of ho is the limit of points on

the graph of h(é). We define

[ b=y, y >0
(4.2) Hy(y) = i 0, y=0
h(-m)y’ y < 0

LEMMA 4.1. € H(E) converges monotonously increasing to Ho(y).

PROOF . h(g) increases towards h.(n) for n > 0 and decreases towards ho(n)
for n < 0. Since ¢ H(E) = fg h(E)dn~we can use Lebesgue's monotone conver-

gence theorem. [J

We note that, by Dini's theorem, the convergence is uniform on compact
subsets if h is bounded and, for instance, uniform on compact subsets of
(=»,0) if h(-») > -= and h(+®) = +», Motivated by Lemma 4.1 we define

B (u) - C u if H (u) € L
4.3) “o(“) = { I 0 N 0 1

+o otherwise
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and we introduce the reduced variational problem

RVP Inf G(-Tu ) + Wo(u).
ueX
Exactly as in the proof of Theorem 3.3 it follows that RVP has a solution.
The functional G(-Tu ) + wo(u) is convex, but not strictly convex. Still we
have
LEMMA 4.2. RVP has a unique solution uye
PROOF. Since G(gradu) 1is strictly convex on H,

0
differ by a constant. For arbitrary u € X define

, two minimizers can only

2, = {x| u(x) > 0}, 2y (u) = {x] ux) = 0}, 2_(u) = {x] u(x)< 0L
Then
lim %(WO(U+G)-WO(u)) = h(+m)|Q+(u)l+h(+“)[Qo(u)|+h(—“)fﬂ_(u)| -C
S840
and
.
::rg 5 (W (ur8)=Wy () = h(+°°)|9+(u)l+h(-°°)|90(U)|+h(—°°)|9_(u)l - C.

So if Wo(u+£) is constant for |£]| < n then necessarily for those values of /
h(+m)!9+(u+£)|+ h(+m)[90(u+£)|+ h(-=)[Q_(u+l)| =
h(+=) |2, (utl) | + h(==) |2, (u+l) | + h(-=) [2_(u+f)| = C.
Since h(+®) > h(-») this implies that
{x | -n < u(x) < n}
has measure zero. Then, however, u has to be sign-definite (this follows,
for instance, from the connection between Sobolev and Beppo Levi spaces;
see DENY & LIONS [17]) and we arrive at the conclusion that either

h(+>) Q] = C or h(-=)|Q| = C. Finally, the compatibility condition excludes
both of these possibilities. [J

THEOREM 4.3.

lim |ue - uOlX = 0.

€40
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PROOF .
Step 1. We know that Ve is coercive uniformly in e (see the proof of Theorem

3.3). Hence lue"X < M for some constant M independent of € and, consequently,
the weak limit set of {ue} is nonempty.

Step E. Suppose uen ;é u as n > += and suppose ghat h(+w)6= +w, We claim
that u < 0. Define QO = {x] u(x) 2 6 > 0} and Qn = {x € Qo ] uen(x) > 48},
Then

2
[lo, -ai22 [t -w? e b

n
R
%\,

Hence, since uEn + u strongly in Ly, necessarily lQil - ng[. Furthermore,

€n f H ( :§3~) 2 e, J H ( 5%; ) =e H ( E%; ) lQil

n

%
. Yen | . . . 3
Since €, f H (~?;: ) 1: bounded uniformly in n and since enH( EE; ) ; + as
n + +o, necessarily lin + 0 as n > +». So we must have lQo[ = 0.
Since § > 0 was arbitrary we conclude that u < 0. Similarly, h(-=) = -

implies u = 0.

Step 3. Suppose u, — u as n + +o, We claim that Ve (ug ) > VO(G).
oFep 2 n n n

From Ven(uen) - VEn (u) =2 <8V§n(u), uEn— u>x we obtain, using step 2,

vV (u )=V @) 2 J(grad u+ g) (grad u - grad u)
€2 n €n n

* f(h( S0, - W) - - Wy
n n n

Since the right-hand side converges to zero as n +~ +~ we find

lim inf Vs (ue ) 2 1lim Ve (u) = Vo(u).
n-> +o n n n-eo n

On the other hand, since u. minimizes V. and since Ve(v) is, for fixed v,
n

€
n
monotone with respect to ¢ (Lemma 4.1), we have

Ve (w ) sV, (u) < v0<a).
n n n
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Step 4. Suppose u =~ u as n + +o. Then
n
v (ue ) < Ven(uo) < Vo(uo)

€
n n

and therefore Vo(u) < Vo(uo). Hence u = uy-

Step 5. We now know that u, is the only point in the weak limit set of {ue}

0
and thus u — uy as € + 0. From

u

Ye Yo 0
EJ(H(?)-H(T)) th(—s—)(ue-uo)
and Step 2 we conclude that

u
s €
lim inf f eH (-E— ) 2 f Ho(uo).
e+ 0
It then follows from the weak l.s.c. of G and Step 3 that necessarily
lgrad u l. - lgrad u l. as € + 0. Consequently u_converges in fact strong-
€ L2 0 L2 €

ly in X to u,- 0

In order to get more information about ug we first determine WS and awo.
We write u 2 0 for some u € X if and only if u(x) 2 0 for almost all x € Q.
Let C denote the closed, convex, positive cone corresponding to this ordering.
By duality C induces a cone C* in X*: we write (w,k) 2 0 if and only if
<(w,k),u>y> 0 for all u ¢ C. For any u € X we define u, = max(u,0) and

+ € X, u_ € X and at least one of these belongs to Hé

(see, for instance, KINDERLEHRER & STAMPACCHIA [26, Ch. II, Proposition 5.31]).

u. = max(~u,0). Then u

In the following we slightly abuse notation if h(+») = += and/or h(-=)

= —w, However this should not lead to confusion.

LEMMA 4.4.
(h(+=)=w,h(+=) |2] - C- k) € C*
[ 0 <f both N
(w=h(-=),k- h(-=)|Q|+C) € C
Wg(w,k) =
+o  otherwise.
PROOF .

Wg(w,k) = sup{<(w,k),u>y - f h(+m)u++f h(-=)u_+ C u[an | uex}
= sup{<(w-h(+=), k- h(+=) @] + C), u >y

- <@-h(==),k=h(==) |2l + C),u_>y | ue X} a
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LEMMA 4.5. Suppose - < h(-») < h(+») < += then

fw- C}.

PROOF. (i) Suppose (w,k) € 3W0(u). As in the proof of Lemma 3.2 it follows
that w ¢ L

Wy (w) = {(w,k) | we Ly, w(x) € hy(u(x)) for a.e. x € 9, k

) and w(x) € ho(u(x)) a.e.. Let vo be the solution of

Then Va 20 and, as n > =, v, converges strongly in L2 to zero. By
Lemmas 2.1 and 4.4 we know that

<(h(+=)-w, h(+=) Q|- C-k), v, > 20

and

<(h(-°f)-w, h(-=)[al-C-k), v >, s O.

Taking into account that w ¢ L (since w ¢ ho(u)), we rewrite these inequali-

ties as

J{ (h(+=) =w) (v -1) + h(+=)[2l - C -k 20

J (h(-m)-W)(vn—l) + h(-=)|2] - C -k < 0.

Upon passing to the limit n + += we find that [ w - C - k 2 0 and
fw-cCc-kso.
(ii) is exactly the same as the second part of the proof of Lemma 3.2. [

COROLLARY 4.6. Suppose —= < h(-=) < h(+=) < += then RVP is equivalent with the
reduced bowndary value problem

Au + f € ho(u)
RBVP J(Au + f) =¢C

] u|3‘z is constant (but wnknouwn).

Finally, let us consider a function h which is unbounded. We concentrate
on the case h(~») > —» and h(+») = +=, From the proof of Theorem 4.3 we know
that uy < 0. Consequently RVP is equivalent to minimizing a differentiable

functional on the cone - C and, therefore, with the variational inequality:
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Find u € =C such that for all v.e -C
a |

<(-fu + h(-») - f, h(-=)|Q] - C), v- wy 2 0.

Unfortunately we cannot use Lemma 2.5 in this situation (see, however, [23])

but still we have

LEMMA 4.7. Suppose h(-=) > —= and h(+») = +». Then

{(w,k) | (w-h(==), k - h(-=)|Q] + C) € C* and .
AWy (w) = <(-h(-=), k=h(-=)[2] + C),u >y =0} if -ueC

@ otherwise.

PROOF. This follows directly from Lemma 2.1, Lemma 4.4 and the fact that WO

is linear on the negative cone. [J

5. THE DUAL FORMULATION

So far we have used polar functionals repeatedly, but we have not
yet given a systematic presentation of duality theory as applied to our
problem. This will be done now. We follow closely EKELAND & TEMAM [20, Ch. III,
section 4, in particular Remarque 4.2].

The dual formulation of VP, corresponding to the splitting Vs(u) =
= G(~-Tu) + ew(g), is given by

VB* If e W) + G (p).

pe (L))

Since VP is stable (use [20, Proposition III.2.3]), VP* has a (unique) solu-

tion P.- Furthermore, the infima are equal to each other and ug and p. are

related by the so-called extremality relations

u
* €
(5.1 T P = aW( ry )

(5.2) P, = 3G(-Tu).

By Lemma 3.2 and (3.4) these can be rewritten as

u ¢ u
(5.3) div p_ = h( 2? ) and I h( :ﬁ y=¢

(5.4) p_ =g + grad u_.

€
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Note that g is not uniquely determined by div g = f but that (5.3) and (5.4)
define P~ 8 and div P, unambiguously. One can view (5.3) and (5.4) as a
canonical splitting of BVP into first order equations. Indeed, elimination
of P, leads to BVP. On the other hand, we can also eliminate u to find the

subdifferential equation satisfied by p.:
-1 x
(5.5) e T(3W) (T'p) + P, =8
or, more explicitly,
-1,..
-e grad(h ~(div pe)) + P, =8
BVP [ divp_=¢
=1,..
h " (div ps) e X

By Lemmas 2.2, 3.2 and [20, Proposition I.5.7] the operator A from (LZ)n into
itself defined by

Ap = -grad(h-l(div P))

(5.6) D) = {p ¢ (Lz)nl divp el f div p = C, div p = h(u) for

1°

some u € X}

is the subdifferential of the convex l.s.c. functional p = w*(T*p). Conse-
quently, A is maximal monotone. (See Weyer [31] for related results). Re-

writing (5.5) as
(5.7) (eA + I)P€= g

and invoking Lemma 2.3, we find that P, converges, as € + 0, strongly in
(LZ)n to the projection of g onto D(A). It does not seem easy to characterize
P(A) directly from (5.6). Therefore we use duality theory once more, but
now for the reduced problem.

The dual formulation of RVP is given by

RE* mE  w(r'p) + 6.
n
pe(Ll,)
By (3.5) and Lemma 4.4 the solution of RVP” is the projection of g onto the

closed convex set
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(5.8) Q=1{p ¢ @L)"| (a(+=) - div p, h(+=)I2l - C) e C*
and (div p - h(-=), C - h(-=)|a e C*}

Denoting the (unique) solution of RVP” by Py> e have the extremality rela-

tions
*
(5.9) T Pg € awo(uo)

(5.10) Py = 3G(-T uo).

The second one, Pp=8* grad ugys is identical to the extremality relation

P. =8 + grad u. Hence the fact that u_ converges strongly in X to Ug» im-
plies that p_ converges strongly in (L2)n to Py So we find that p_ converges
to a limit which is at the same time the projection of g onto D(A) and onto
Q. Since g is an arbitrary element of (Lz)n, necessarily T(A) = Q. Thus we have
shown that (5.8) gives an explicit characterization of 7).

The extremality relation (5.9) is easy to work with only in the case
that h is bounded (see Lemmas 4.5 and 4.7). It then follows that RBVP is
equivalent to (5.9) - (5.10). Likewise one can, by elimination of Uy derive
a subdifferential equation for Pg similar to BVE.

If h(-») > -» and h(+=) = += we deduce from Lemma 4.7 that u_ is the

0
solution of the following variant of VI:

Find u'e -C such that
(i) <(-Au+ h(-=)- £, h(-=)|Q|-C), vy $0, W e c,

(ii) <(-du+ h(-=) - £, h(-=)|Q|-C), u>, = 0.

6. THE REDUCED PROBLEM AS A FREE BOUNDARY PROBLEM

In this section we assume that f € L_. We shall deal with the regularity
of Yy (and ué)’ with the free boundary value problem satisfied by uy and
with sharp convergence results versus the occurrence of boundary layers. We
shall write C]’“ to denote the Holder space Cl’a(ﬁ) and W2
usual Sobolev space. We recall that w2,p is imbedded into Cl’a if p(l1-a) 2 n.

*P to denote the

THEOREM 6.1. If h s bounded, u_ converges to u weakly in wz’p for each

p 2 1 and strongly in Cl"Jl for each a € [0,1).
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PROOF.
nA“e“Lw < max{-ﬁ(-w),h(+m)} + Ifan. 0

We can now interpret RBVP as a free boundary problem. The domain Q con-

sists of three subdomains:

+ h(+x)

[
n
»
o©

Q, = {x e 2] uo(x) > 0} where -Auo

2 =1{xe uy(x) < 0} where -Au, + h(-») = f a.e.

0
0} which has to be a subset of

QO = {x € Ql uo(x)

{x € | h(-=) < £(x) < h (+=)}.
These subdomains are unknown, possibly empty and such that

hee)la, |+ he-=)la |+ [ £ = c.
o
From the proof of Theorem 4.3 we know that ug = 0 if h(#=) = tw. So in
that case we camnot have convergence in Wz’p‘unless ff = C.
Next, we concentrate on the most interesting case in which h is bounded
from one and only one side. In the remaining part of this section we assume
that h(-») > -« and h(+®) = +». We emphasize that all theorems below have a

counterpart in the case h(-») = -» and h(+») < +w,
THEOREM 6.2. u_ « W>'P fop cach p > 1.

PROOF. We shall show that AuE is bounded by finding an upper bound for u_.

1 be the solution of -Af+ h(-») = f. Then, in fact, since Azf is

0
bounded, we have Z € Cl’a

Let € H

. Define ¢ € Hé by ¢ = u -u - r. Then

el 3Q

u
b = Bu_ - AL = h(—=) - h(-=) 20

and hence, by the weak maximum principle, ¢ < 0. So ue is bounded from above

by the bounded function usl +z. 0

aQ

THEOREM 6.3. If C < [f, u_ converges to u
strongly in c'e for each a € 10,1).

0 weakly in W2’p for each p 2 1 and

u
PROOF. We show that h( :?) and hence AuE is bounded. Choose 8§ > 0 and define

ue(x)

€

Q= {x e 2|h( ) > lfle+ §}.
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(x)

The points of BQE either belong to 3Q or are such that h( e )=“fILw+ 8.
If [Qel # 0 and ane n 3N = P, we find that simultaneously AuE > 0 in Qs and
u_ assumes, with respect to Q , its maximum in an interior point. Since this
is impossible we conclude that either Iﬂ | =0 or aQE NN+ @ and ﬁe assumes
its maximum at 39 with h( —-Jiﬁl ) > Bl Lo * 8-

Suppose lQel # 0. Let 56 be a domain with boundary 3Q u T' and
strictly contained in Q . We define u to be the solution of Au .= §, u(x) =
u (x), x € 39 . Then ue attains its maximum on gﬂ and it follows from the
Hopf maximum prlncxple 27, Thm 7, p. 65] that -5—-[ >.O Also we have that
A(u -u, ) =868 - hc——) + f < 0 and therefore ue - ue 0 and, finally,

& |
5 laa 2 50 |

This leads to the contradiction

auE
C‘_Jf=JAu€=J'¥>O. n}
1)

u
The proof above shows that, if h( 2?—) blows up somewhere, it does so

at the boundary. If u < 0 this can not happen, so we also have

0|an

THEOREM 6.4. If uglag veakly in WP, p 2 1, and

strongly in C ,u, a e [0,1).

< 0 then u_ converges to Y,

THEOREM 6.5. u. ¢ W-*P for each p = 1.

0
PROOF. If uo‘aﬂ < 0 we can apply Theorem 6.4. If uolan = 0, then ug is com-
pletely characterized by the restriction of RVP to H!. The result then fol-

0
lows, for instance, from Appendix 1. [

THEOREM 6.6. u, is completely characterized by

—Auo + h(-=) - £ <0 a.e.

u, <0 a.e

9 uo(-Au0+ h(-=) - £) =0 a.e.
f(Auo+f) -Cc<0
ugl 5[ ug+e) - €) = 0.

PROOF. Because of Theorem 6.5 we can rewrite the variant of VI given at the

end of section 5 in the form
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f(AuO— h(-=)+ f)v+ (C- .[’(Aun+ f))v[aQ >0, WecC,
J(Auo- h(==)+ f)ug + (C - [(Auo-* gl = 0,

and from this formulation the result easily follows. [

If [f > C then Theorem 6.3 implies that actually [(Au0+f) = C. We em—
phasize that ff < C does not preclude the possibility that uofaﬂ < 0 and
I(Auo+f)= C. However, if f(Au0+f) <C we cannot have weak convergence in HZ’P.
Next, we present some conditions on the data h(-«), f and C under which this

happens.
THEOREM 6.7. Any of the three assumptions
(1) £(x) < h(-=) a.e.
(ii) £(x) 2 h(-=) a.e. and [f < C
(iii) [ f<cforall Gc@
3 .
implies that f(Au0+ £) < C.
PROOF. (i) Let v ¢ H; be the solution of Av = h(-x) - f. Then v < 0 and
f(Av* £f) = h(—=)|Q| < C. By Theorem 6.6 uy = v.
{ii) Again by Theorem 6.6, uy = 0.
(iii)
[(Au0+f)=fh(-m)+ f £ = h(-=}|Q| + I f<cC
a \Q Q\Q
where @ = {x]| uo(x) <0}. O
In the proof of Theorem 6.3 it was already shown that if u, displays a
layer of rapid change somewhere, it certainly does so near to the boundary.
Next we prove that it can do so omly near to the boundary. The estimates

below have been indicated to us by H. BREZIS.

THEOREM 6.8. Assuwme h 7s C'. Then u,_ converges to uy weakly in wz’p(O) for
any open set 0 with OcQandany p = 1.

PROOF .
Step |. Since h(y) > h(-=) we have

u u
f Ih( —ei ) o= J h( —CE) - 2h(-=)]Q] = C - 2h(-=)|q].
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Step 2. Since u, is bounded uniformly in e in Hl, it follows from the Sobolev
imbedding theorem (see, for instance, ADAMS [1, p. 97]) that u is bounded
uniformly in € in Lr(Q), where r = :Tnz ifn>2andr211if n < 2.

Step 3. (Proof by recursion). We suppose that h( ?f- ) is bounded uniformly
in € in L (U ) for some q = 1 and U] such that UT c Q. Let ¢ be a ¢ -function
with compact support in U We myltiply the differential equation by

|I( | : ) I;I and we integrate. Thus we obtain
u u u
€ t- 2 € t € t-1
j b (=) £31e1 + [Ine 2 )e1® s [ieel ne £ )17

Integrating the first term by parts and using the inequality ab < é a% +

1 : 1 1
+§b8w1tha,b>0, a,B > 1 and;+§
side we deduce

= 1, for the term at the right hand

u u
“‘figradui |t |h( €yt 2 n (?‘)+%I|h(—§)clt
1 t Ye -2, Ve t
Stflfc‘ -_{[h(—e—)l h( —) grad u_. grad Izl

We observe that the first term at the left hand side is nonnegative (so we
delete this term). Now let y(x) = Ih(x)lt-2 h(x) and T(x) = j’g y(t)dt. Then

I'(x) < xy(x) for all x and hence
u u u
€ t _ € t € t
JY( = Jgrad u_. |grad z|" = sJF( - JAlelT < Jusv( = JAlzl
So finally

Ye | it Ye | t-1
(6.1) fm( -t s K+ KZJ lugl €=
u]
We now distinguish different cases:
st case ¢ = 1. If n > 2, we choose t = l+pztg in (6.1) and apply Holder's
inequality with conjugate exponents 22 and 2+2, also using the results of

Steps 1 and 2 we deduce that flh( —_ )clt is bounded uniformly in e. If n<2,

we choose t = 1+rT]- for some r > l and apply Holder's inequality with con-
jugate exponents r and —] to obtain a 51m113t result. So we know in both
cases that h( —) is bounded uniformly in L (U ) for some t > 1 and any

open set U w1th U— c U . Consequently u, is bounded uniformly in W ’t(U )
(cf. AGMON [2]).



V.21.

PERTURBED FREE BOUNDARY PROBLEM 1329

2nd case q > g. It follows from the Sobolev imbedding theorem that u, is
bounded uniformly in € in L (U]). Choosing t = q+1 in (6.1), we deduce that
h( ;5 ) is bounded uniformly in € in Lq+]((b). The result of the theorem fol-
lows then from a bootstrap argument.

3rd case q < g. By the Sobolev imbedding theorem u is bounded uniformly in
. 1 1 2 1 1 1, . 2
Lq*(ul) with *-a ;'(or g for any o € (0’6) if q = 2). Let q**
be the conjugate exponent of q* and choose t = 1 + a%; . Applying Holder's
u
inequality (with exponents q* and ¢**) to (6.1) we deduce that h( ?E ) is
bounded uniformly in Lt(Uz). Now a bootstrap argument either yields the

result or leads to the 2nd case. [
7. THE ONE DIMENSIONAL CASE

Again we assume that h(-=) > -« and h(+») = +», The results of section

5 imply that Py is the projection of g onto the set
T@ = (pely | (' - h(-=), C- h(=)lal) eC*}.
A simple calculation shows that, with Q = (-1,+1),

D@ nu' = {p | p' 2 h(-=) and p(1) - p(-1) < C}.

We found in section 6 that Py € (A) n Hl if f € L_. So we can find Py by
minimizing the Lz-distance to g subject to two constraints: an inequality for
the derivative and a bound for the total variation. This is more or less a
combinatorial problem which is rather easy to solve for some given smooth g,
but whose general solution is cumbersome. We refer to [19, section 4] for a
more detailed discussion of the symmetric case, noting that the result pres-
ented there covers the general case after some minor modifications. Finally,
we remark that, once Po is found, uy can be calculated from the extremality

relations.
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APPENDIX 1. THE HOMOGENEOUS DIRICHLET PROBLEM
In this appendix we present some results about the problem
-su + h(D) 3 £,

where by assumption h is the subdifferential of a convex, l.s.c. function
H: R > [0,°), with H(0) = 0 and H(y) < +» for all y ¢ R. Here f € H-l is
given and u € H:J is sought. We use some of the notation defined in the pre-
ceding pages and omit all proofs since these are similar to (and in fact

easier than) those already given. In contravention of prior definitions we

now have:
T : H(I) > (Lz)n, Tu = -grad u
™ (Lz)rl - ‘H-‘, T*p= div p
: [H@) if HQu) €L
W HO - [0,=], W(u) = {

+oo otherwise.

The problem can be rewritten as

ave(u) 20
where
V_(u) = 6(-Tu) + ¢ W(g).



V.25.

PERTURBED FREE BOUNDARY PROBLEM 1333

It admits a unique solution u which converges as € + 0 strongly in Hé to ug,
the unique solution of

Inf G(-Tu) + W_(u).
0
ueHO

If h is bounded ug satisfies

- + b () 3¢

and if, for instance, h(-») > - and h(+») = +~ then u, solves the varia-

0
tional inequality: find u < O such that

<=Au+ h(-)- £, v-u> 2 0, Vv < 0.
The dual formulation is obtained by the transformations
p=g-Tu
u € eh_](T*p)
f= T*g
and reads
-1, %
e T(h (Tp)) +p3g
or, equivalently,
(eA+I)p g
n n . .
where A : (Lz) - (LZ) is defined by

Ap = T (T*p))

D(A) = {p ¢ (Lz)n | T*p € Ll and there exists u € Hé such that T*p € h(u)}.

As € + 0, p, conmverges to the projection of g onto
T® = {p e )" | h(==) < T < h(+=)},

~where the inequalities are defined by the positive come in Hé
of Hé and H-l.

and the duality
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If fel,, u_ converges to u, weakly in W2’p for each p 2 | and strongly
in C]’a for each a € [0,1). This follows most easily from the observation
that, by the maximum principle, u equals the solution of the "truncated"
problem

-bu+h (D) 3¢

where

L,
h(y) = { n(y) if -1el < h(y) s beb

¥ if n(y) 2 1€l

t —IfHL if h(y) < —lfﬂLm.

'

For sharper estimates under additional assumptions we refer to [81, [91, [5]
and [28].

APPENDIX 2. THE PHYSICAL BACKGROUND OF THE PROBLEM

Consider a bounded domain Q in Rz or R3 and a charge distribution

inside Q with two components:

(i) a fixed ionic charge density en,

(ii) a mobile electronic charge density -en, such that

(A.1) f n, = N .
Here e is the unit charge, n; and n, are number densities and Ne is a number.
N, and n; are given, but o, is unknown.

Let the region outside Q be a conductor. Then we have the condition

(A.2) the potential ¢ is constant outside Q.

Physically this condition is realized by the formation of a surface charge
density which, however, will be of no further concern.
The equation for the potential ¢ in Q can be deduced from two physical

laws:
(A.3) A = —4ne(ni- ne), Poisson's equation,

and
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ed
kBT

(A.4) n, = Ke . Boltzmann's formula.

Here K is a normalization constant, T is the temperature of the system and

kB is Boltzmann's constant.

Substituting (A.4) into (A.3) and (A.1) we obtain the problem

ed
kT
-Ad + 4meK e = 4meny
ed
r T
'KJekB=N
e
L Q‘BQ is constant (but unknown)

which, up to a renaming of the constants and variables, is the special case
of BVP in which h(y) = eV-1.

Alternatively, one can argue that n, should be such that the free energy

F of the system be minimized under the constraint (A.1). The free energy is
defined by

F=U-TS
where U is the electrostatic energy given by

1 2

U= B I (grad ¢)°,

T is the temperature and S the entropy given by

S =-ky [ n, £n n_.

So if Ei denotes the electric field created by the ions and E, the electric

field created by the electrons, it comes to solve the minimization problem
Inf kT | div E_ fn (div E) + o~ | (&, -E)>
E B e e 8w i e
subject to the comstraint
f divE_ =N_.
e e

Clearly this problem corresponds to vP*.
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The main results of this paper concern the limiting behaviour of the
potential ¢ and the electrical field Ee due to the electrons, as the temper-
ature T tends to zero. For instance, we find that at 3Q no boundary layer
occurs if the total charge demsity f n, of the ions exceeds Ne. In the limit
T - 0 there may be regions where electrons are absent. If such a region Q
is strictly contained in Q it necessarily must be such that fﬁ n, = 0. For
such a region which extends up to 3Q there is a more complicated condition.
If n, 2 0 and f n, < Ne’ necessarily a boundary layer arises: the electrons

are repelled against the conductor.
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1. Introduction.

In this paper we consider the nonlinear partial differential equation

(1.1) u, = UJhﬂ¢(ux))x

where the functions D and ¢ satisfy the hypotheses

Hy i 0 clt-1,11) n c®((-1,1)), $(0) = 0, ¢'(-1) = ¢'(1) = O,
$*'> 0O on (-1,1).

H :Decl(0,1]) nc?((0,1)), D > 0 on (0,1), D(0) = D(1) = 0,
D" < 0on (0,1).

The main difficulty in studying equation (1.1) is that it has two kinds
of degeneracies, namely one in points where u = 0 or 1 and one in points
where u = 1 or -1. An equation of type (1.1) arises in the theory of
hydrology, with D(s) = s(i-s) and ¢(s) = s/(1+sz). We give its deriva-

tion in section 2.
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We are interested in the following three problems related to equation
(1.1) : the Neumann problem on (-1,1) with the natural boundary con-
ditions D(u)¢(ux)(il,t) =0 for t > 0, the Cauchy problem and a
related Cauchy Dirichlet problem on (0,«) with the boundary condition
u(0,t) =A for t >0, A€ (0,1).For each problem we assume that the

0

and -1 < ué £ 1 a.e. in the corresponding domain. For the precise assumptions

we refer to section 3.

initial function u, is Lipschitz continuous and such that 0 < U <1

In section 4, we show that solutions of the three problems satisfy a
contraction property in Ll.'It then follows immediately that each

problem has at most one solution.

Considering related uniformly parabolic problems and using the monotony
of the function ¢ , we prove that there exists a solution of each
problem (for the Cauchy-Dirichlet problem under some extra assumptions

on the data). This is done in section 5.

In section 6 we study the large time behaviour. In the case of the
Neumann problem, we show with the help of a suitably chosen Lyapunov
functional that the solution converges to a constant as t - ® ., For
the Cauchy problem, we give conditions on the initial function under
which the solution converges to a similarity solution as t = « in the
case that D(u) = u(l-u). Finally, we show by means of a method based
on the comparison principle that the solution of the Cauchy-Dirichlet

problem converges to the unique stationary solution as t > « .

Other doubly degenerate problems, with differential equations of the

form

(1.2) ut==(IP((¢(u))x))x
have been considered by several authors : in the case of the Cauchy
problem, Kalashnikov [15,16] gives a method for studying the existence
of a solution and proves some properties related to the support of u.
Bamberger [4] constructs a solution of the Dirichlet problem and remarks
that it has at most one solution such that u € IJ]. For the study of the

semi-group solution we refer to Benilan & Crandall [6] and Cortazar [7].
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Atkinson & Bouillet [2,3] study similarity solutions for the Cauchy-
Dirichlet problem and give a comparison principle for solutions satis-
fying u, € Ll. We remark that the methods used in this paper to study
the large time behaviour of solutions could also be applied to solu-

tions of the differential equation (1.2).

Acknowledgerent. The authors are very grateful to M.Bertsch for the
many discussions which have been at the origin of this paper. They
wish to thank Ph. Clément for pointing out the contraction property,
R.Kersner for showing the articles of Kalashnikov and L.A.Peletier

for many inspiring comments.
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2. The physical derivation of the problem.

Consider the two-dimensional flow of fresh and salt groundwater in a
homogeneous coastal aquifer, which is vertically confined (with height
H) and horizontally extended. The fresh and salt groudwater have a

different specific weight, Y_ and Ys respectively. In addition to external

factors, the difference in s:ecific weight induces a flow and thus a
movement of both fluids.

It is common practice in hydrology to assume that the fluids are separated
by a sharp interface, e.g. see Bear [5]. Adopting this assumption, it

is then sufficient to know the evolution of this fresh-salt interface in
order to determine the movement of the fluids.

In this section, a derivation of a differential equation is given which
describes the fresh-salt interface as a function of position and time.

The analysis is based on the work of de Josselin de Jong [14], further

references are given there.

1z
YISO IIIIININDININDIDIINNININIINININD

salt-water
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Fig.l. The distribution of fresh and salt water in an aquifer.

Let the flow take place in the xz-plane. The height of the interface is

denoted by £(x,t) : when 0 < z < E(x,t) only salt water is present, when

€(x,t) < z < H only fresh water is present. Here t denotesthe time.



Further, let o denote the angle of the tangent at the interface
with the horizontal and let»n ands £ denote the local orthogonal
coordinates, normal and tangential to the interface (see fig.l1).
In both fluids, the specific discharge g , the pressure p and

specific weight y are related through Darcy's law as :

(2.1) Tq +gradp +ye, =0, i=£s,

where y is the dynamic viscosity of the fluids (which is assumed
here to be the same for both fluids), k is the intrinsic per-
meability of the porous medium and e, is the unit vector in the
positive z-direction.

If the fluids are incompressible, the following continuity condition

is required at the interface :

(2.2) qf -q =0 at z = &.

At the interface, the fluids must also be in equilibrium. This means
that the pressure on either side of the interface must be equal :

pf - ps = 0 along the interface. This implies that

9p op
£ s _ _
(2.3) 5 85 0 at z = &.
Equations (2.2) and (2.3), written out in x and z coordinates
become
(2.4) (qf - qg ) sino - (qf - q Jcosa = 0O
X X z z
and
(3p, 3p_ ) (3, dp_ )
(2.5) 3% - —a'x— cosa -\ 3z - —g sino =0 .
Substituting Darcy's law in (2.5) vields
(2.6) (q. - q_) ¥ cosa + (q. - g ) E-sina = sina (y_ - v_.)
£ s 'k f S, x s £
X X z z



(2.7)

(2.8)

(2.9)

(2.10)
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) can be solved:

Then from (2.4) and (2.6), the unknown (qf - qs
X X

tano

=T at z = §,

1+tan a

where T = E-(Ys - Yf). Here (2.7) represents the x-component of
the discontinuity which occurs in the tangential component of
q - g at the interface : this is the shear flow observed by de

Josselin de Jong.

The total fresh water discharge through the aquifer in the positive x-

direction 1is given by

H
Q (x,8) = [ q. (x,z,t)dz .
X E(x,t) X

The corresponding expression for the saltwater is

E(x,t)
Q_ (x,t) = ] a

X 0 X

When the aquifer is confined in the sense that 9 = 9qg
z

(x,z,t)dz.

= 0 when
z

z = 0 or z = H then the following continuity equations hold:
9Q
Tx _ 2
ox ot
and
3Q
% %
ax at

where n denotes the porosity of the medium. Consequently, the total

discharge

does not depend on x : it is considered here as a given constant.
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Next a simplification is being made which is related to the Dupuit-
approximation in hydrology : it is assumed here that the horizontal

components of the specific discharges 9 and q, are constant over

. X x
the height of the aquifer. Thus

A
N
IA
m

(2.11) qf (x,2,t) = qf (x,&,t) for &
X X

and

IA
N
IA
wmy

(2.12) qq (x,z,t) = qs (x,8,t) for O
X X

Strictly speaking, this simplification is only valid when the inter-
face is rather flat : thus for large angles a we expect this model
to break down.

The total discharge can now be written as

(2.13) Q= Qf + Q qf (x,&,t) (H =&) + qs (x,£,t)¢& .
X X X X

From equations (2.7) and (2.13)the unknowns qe (x,£,t) and q (x,8,t)
X X
can be solved : for qp one finds,
be

(2.14) qp (x,E,8) = Q+TE 22

X 1+tan o

Finally, expression (2.14) is substituted into equétion (2.8) and the
result into equation (2.9). This gives the partial differential

equation

£
(2.15) ng, = {(H - £)Q + T(H-)E —5 ) :

1+gi




(2.16)
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where the subscripts t and x denote differentiation with respect

to these variables and tano = Ex is used.

Settingn=H=T=1, Q =- X and &§(x,t) = u(x,t), (2.15) becomes
Uy
u, = (u(l-u) ) +Au .
t 1+ui X X

Observe that in the case of the Cauchy problem, the term Aux can
be eliminated. We set x = x + At and u(x,t) = ﬁ(i,t). Then since
u, = + Aux + u,, we have that

ut=<u(1—u) —-?2') .
1+u_ ’
X
X

In this paper, we study the following problems : the Cauchy problem

u
u, = (u(l-u) X ) for (x,t) ¢« R x ]R+
t 2
. 1+u
X X
C
u(x,0) = uo(x) for x € R,

the Neumann problem which is interesting in its own right and which

is useful for understanding Problem C

u
u, = (u(l-u) "2 ) for (x,t) € (-1,1) x R'
1+u
X
u
X . +
N u(1l-u) =0 for (x,t) € {-1,1} x R
1+u
u(x,O) = UO(X) X € (-111)1

and the Cauchy Dirichlet problem
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Uy + +
u, = (u(l-u) ) + Au for (x,t) e R X R
t 2 x
1+u
X
+
u(0,t) = A te R
+
u(x,0) = uo(x) X e R N

with A 2 0 and A € (0,1).

Instead of studying these three problems with this specific dif-
ferential equation, we consider the more general case where the
nonlinear term has been replaced by (D(u)¢(ux))x, where D and ¢
are given real functions such that D defined on the interval [0,1]

and ¢ on [-1,1] satisfy the hypotheses H) and H¢.
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3. Definitions.

Let us first give a definition of a solution of the three problems and
state for each of these problems the precise hypotheses on the initial

function uO.

The Neumann problem

u, = (D(Wé(u)) (x,t) € (-1,1) X R"
t x 'y

N D(u) ¢(u) =0 (x,t) € {-1,1} x "
u(x,0) = uy(x) xe (-1,1)

where uy satisfies the hypothesis

H :u

on cew (-1,1) ,0<u. <1, -1<u' <1 a.e.

0 0 0"

‘Definition 3.1. We say that u is a weak solution of Problem N if
it satisfies for every T > O

1,

, © o 2 . e (o .
(i) u€lL (0,T;W (-1,1)),ut €L (QNT) with QNT := (-1,1)x (0,T);

< < - < . ;
(i) 0su=s<l1l, -1c< u 1 a.e. in O
(iii) a{.,0) =110(.);

(iv) ff‘[ut Y + D(u)¢(u) wx} =0 for all ¥ € L2(0,T.;H1(-1,1)L
QNT

The Cauchy problem

u = (D(Wé(u)) (x,t) € R x R
c { t X Ty X

u(x,0) = uo(x) X € R

where u0 satisfies

1, - 1 R
< ]
] ’ _] < u < ] a.e. and uo H € L ( )

where H denotes the Heaviside function: H(x) =1 when x>0 and

o]
H T u €W (R),Osu

oc 0

H(x) =0 when x<0.
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Definition 3.2. We say that u is a weak solution of Problem C

if it satisfies for every T > O

(i) u€L°°(0,T; Wl'm (R)), utGLz((—R,R) x (0,T)) for all R>0;

(ii) 0O<u=<1, -1cx u, <1 a.e. in QCT where QCT := R x (0,T);
(iii) wu(.,0) = uo(.) ;

(i) Jf {u ¥+ Dé(u) ¥} =0 for all e pX(0,T ; B (R)
Q
cr

such that ¥ vanishes for large [xl.

The Cauchy-Dirichlet problem

+ +
u, = (D(u)‘i’(ux))x +>\ux (x,t) e R X R
cp { u(0,t) = A te R
u(x,0) = uo(x) x € R s

where the constants A and A are such that A 2 0 and 0 <A < 1 and

where u, satisfies the hypothesis

1’°°(O'°°) n Ll(o,m) r 0Su, < 1 , =1 < u

H s u 0

oD €W

0 <1 a.e., uO(O) = A.

Definition 3.3. We say that u is a weak solution of Problem CD if

it satisfies for every T > O

L | 1,0 _+
(1) u~-A€ekL (0,T; V) whereV := {vew (R ), v(0) = 0} and

ute Lz((O,R) x(0,T)) for all R > O;

) I + .
(ii) 0su=s<! ,-1x u < 1 a.e. in Q0 where Q ., := R x(0,T);
(iii) u\‘q,o) =u0(.);
2 1
(iv) [f {u ¥+ (D(@d(u) + Au) wx}= 0 for all ¥ e L°(0,T; Hy(0,*)
Q
DT

such that ¥ vanishes for large x.

We remark that if u is a solution of any of the three problems thec..
u(t) € wl'°° () for all t > 0, where Q denotes either (-1,1) or

R or }9'. This is a consequence of a result éiven by Temam [19,
Lemma 1.4 p.263].
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4. Contraction property and uniqueness of the solution.

In this section we show how solutions of each problem satisfy a contrac-
tion property in L1. The uniqueness of the weak solution follows immedia-

tely.

Lemma 4.1. Let u be a solution of any of the three problems. Then
D(u)¢(ux)(t) € C(Q) for a.e. t>0 where Q denotes either (-1,1) or R or R'.

Proof. We prove Lemma 4.1 in the case of Problem N. By Definition 3.1
2
u € L°(-1,1) and u (D(u)¢(ux))x for a.e. t > 0. Thus

DWu)) € L2(-1,1) for ae. t >0
and consequently

D(u)¢(ux) € c([-1,1]) for a.e. t > 0 . o

Remark 4.2. Let t be such that D(u)¢‘(ux)(t) € c(Q). Then ux(t) is

continuous as a function of x in every point x such that u(x,t) € (0,1).

Theorem 4.3. Let u and v be solutions of Problem N with initial

conditions vy and v, respectively. Then

0

[|uCt) - v(©)|| 1 < IIuO—VOH for all t >0 .
L

(-1,1) 1,0

Proof. Let W denote either u or v. By Definition 3.1 W satisfies for
a.e. t >0

-
2
W, € L7(-1,1) and W = (DWW ))

(4.1) <{and

D(W)¢(Wx)(t1,t) =0.

Multiplying by sgn(u-v) the difference of the equations for u and v yields

1 1
(4.2) J (u—v)t sgn(u-v) = J

» {D(u)¢(ux) - D(v)d)(vx)}x sgn (u-v)

-1
for a.e. t >0
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where sgn s = -1 if s < 0, 0 if s = 0 and 1 if s > 0.

Next we use the following lemma, given for instance by Crandall & Pierre

[8].

Lemma 4.4. Let G : R+ R be a Lipschitz function. If w€ w1’1(0,T;L1 (-1,1)),

then ¢Gw) € W 10,1  (-1,1)) and 3“? G(w) = G'(w) ‘?11{' a.e.

It follow from Lemma 4.4 that
(u—v)t sgn(u-v) = Iu-vlt a.e.

so that (4.2) implies that

1
{D(u)¢(ux) - D(V)¢(vx)}x sgn (u-v)

d
%.3) 4] umv - J
dt 1 1 -1

for a.e. t > 0.

We show below that the right hand side of (4.3) is nonpositive for a.e.
t > 0. This corresponds to the accretivity in L1(-1,1) of the operator

Au = -(D(u)¢(u'))"' when defined on a suitable domain.

Let t be such that (4.1) holds ; since u(t) and v(t) are Lipschitz conti-
nuous the open interval (-1,1)‘~{x|ﬁ(x,t) - v(x,t) = 0} is the union of
open intervals where either u-v > 0 or u-v < 0 . Since the proofs for
both kinds of intervals are similar, we only consider the intervals where
u-v > 0. In order to simplify the notations, we omit the variable t in

what follows.

(i) if [a,b] = (-1,1) is such that u-v > 0 on (a,b) and u =v in

a and in b then

b
|” @@ - o), sen wv)
(4.4) 4

= {D(W ($u) - ¢ IH(b) - (DWW ($Cu) - ¢(v,))}a)
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Then if u(b) = 0 or 1 the first term on the right-hand side of (4.4)
is equal to zero and if 0 < u(b) < 1 it follows from Remark 4.2
that ux(b)and. vx(b) are well defined; then ux(b) < vx(b) and this
term is nonpositive; similarly one can see that the second term on

the right-hand-side of (4.4) is also nonpositive-

(ii) if (-1,c] < (-1,1) is such that u - v > 0 in (-1,c) and

u(c) = v(c) then, in view of the boundary condition,

C

f <D(u)¢(uxo - D(v)¢(vx)) sgn(u - v) = {D(u)(¢(ux) - ¢(vx))} (c)

-1 X

which, similarly as in the case (i):is nonpositive.

Finally, one finds that

‘;_t”u"’” ) <0 for a.e. t > 0.

and thus

[lutt) = vir) || 1 < Huo - Vo” ) for all t > 0. o

L (-1,1) L (-1,1)

Corollary 4.5. The solution of Problem N is unique.

In what follows, we prove similar properties for the problems C and
CD.

Lemma 4.6. Let u be a solution of Problem C.

Then u(t) - H €Ll (R) for all t>0.
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0]
+
Proof. We show below that [ u(t)<e. The proof that [ (1-u(t)) < =
- 0

is similar. It follows from Definition 3.2 (iv) that u satisfies

t
Juwyp = [ ap+ [ [ (D(u) ¢(ux)) ¥
R R 0 R X

for all ¥ € HI(IU with compact support and all t > 0. Let R > 0

be arbitrary. The characteristic function x[_ of the interval

R,0]
[-R,0] can be constructed as the limit in L“(R) of H functions

with compact support. Thus

t
Ju®x_g 01 = J uwoXpg,o1* ] (D(“)""ux)) X[-Rr,0]
R 0 R X
R
which implies that
J ? } e
u(t)xp_ < Ju,+ J D(uo(u )] .
R (-r,0]1 = - 70 0 3

Finally applying Lebesgue's monotone convergence theorem one finds

0 0
[ u) < fu0+c1:. o

Corollary 4.7. Let u be a solution of Problem C. Then, for all

t>0, u(x,t) > 0 as x + -», u(x,t) > 1 as x > +,
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Proof. Corollary 4.7 follows from Lemma 4.6 together with the
fact that u(t) is Lipschitz continuous for all t > O. o

We are now in a position to show that the solution u of Problem C

defines a contraction in L1(IU .

Theorem 4.8. Let u and v be solutions of Problem C with initial

functions u, and vogrespectively. Then

< lu,y = vl for all t > O.
1l (®) 0 0% i l(w)

ha(t) - v(t) ||

Corollary 4.9. The solution of Problem C is unique.
Proof of Theorem 4.8. Let R > 1 be arbitrary. Then, for a.e. t > 0

R
= f (D(u)¢(ux) - D(v)¢(vx)) sgn (u - v) .
L (~R,R) - X

Using the proof of Theorem 4.3 we deduce that for all t

+o t
[ lue) - V(t”xt-n,nf{) {(|D(U)¢(ux)| + DD (RE) +

-00

(4.5

.
+ (p@ou)] + D@ -rwfat + [lug - vl tm

Let us denote by fR the integrand in the first term at the right-
hand-side of (4.5). Since by Corollary 4.7, fR tends to zero as

R > » for a.e. T € (0,t) and since Hf || < C , it follows

tl(0,t)

from the dominated convergence theorem that T fR tends to zero
0

as R > © , which completes the proof. o
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Similar results hold for the Cauchy-Dirichlet Problem CD,
namely that

(1) u(t) € L1(1R+) for all t > 0 ;

(ii) u(x,t) > 0 as x > +» for all t > 0 ;

(iii) If u and v are solutions of Problem CD with initial

functions uO and VO' then

[lutt) - vie) || for all t > 0 .

< lugy - vyl
L1(1R+) 0 0 Ll(]R)

Since the proof of properties (i) - (iii) is very similar to the

one given above, we omit it here.
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5. Existence of solution.

In this section, we adapt a proof of Kalashnikov [17] in order

to show that there exists a solution of each of the three problems
(in the case of Problem CD under an extra assumption relating D,¢,A
and A). We first consider the Cauchy and the Neumann problem; we
then show how one can modify the proof in order to obtain the

existence result for the Cauchy Dirichlet problem as well.

We consider the following problems, with n € N large enough

u, = (Dn(U)¢n(ux))x in Qi = (-n,n) x (0,T)
P ux(—n,t) =0 ux(n,t) =0 for t € (0,T]
u(x,0) =u, (x) for x € (-n,n) ,
where
2 . 1 1
D € C (R) is such that D (s) = D(s) for s ¢ |—, 1-—
n n - {n n
and %-inf D<D <supD onR ,
iL,1-4 Lo, 1]
n n
and

2 . _ 1 1
¢>n € C°(R) is such that ¢n(s) = ¢(s) for s € [-1 + = 1-;]

and l-inf ¢' < ¢' < sup ¢'

2
[-1+l,1_l] [-1,1]
n n

and where

H T u, € Cw(IU 1 Su, <1 - 1 lut |1 - 1 ul (x) =0
On On "'n On ~ n ' On'"~ n’ “On

for ]x| 2 n, Ug, converges uniformly to u, on all compact subsets

of R as n > o,

We show in the appendix that given u, satisfying the hypothesis HOC’
.+ oorstruct a sequence of functions {uon} satisfying Hy .

First we prove a comparison principle.
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Lemma 5.1. Let u, and u, € Cz'l(énT) be two solutions of Problem

1 2
Pn with corresponding initial functions Yoy <u Then ul(t) < u2(t)

02°
for every t = O.

Proof. The function z := uy

- u, satisfies the problem

2

_ \
z, = (Dn(ul)An(x't)zx}x + Bn(x,t)¢n(u2x)z in QnT

X
z (-n,t) =0 z (n,t) =0 for t € (0,T]
X X
z(x,0) = u01(x) - uoz(x) for x€ (-n,n)
where
1
A (x,t) = g ¢l (u, (x,t) + (1 - ©) u, (x,t))d0
and
1 L]
B (x,t) = g D_(Ou, (x,t) + (1 = 0) u,(x,t))dd

Since z(0) £ 0 , it is a consequence from the standard maximum

principle that z(t) < 0 for all t € (0,T]. o

Lemma 5.2. Problem Pn has a unique classical solution
+0o -
€ C2 G(QnT) for each a € (0,1). Furthermore we have that

<u <1 - 1 and -1 + l-s u <1 - 1 in Q .
n n n nx n nT

Sl e
=}

Proof. The existence and uniqueness of the solution of Problem
P follows from [18, Theorem 7.4 p.491 and a remark at the end of
Section 7 p.492]. Also we remark that both %-and 1 - %-satisfy
problem P which, by Lemma 5.1 implies that %-S u < 1 - %\ Next
we show that lu | <1 - lu We set w = u . Using the linear

nx n nx 2+a
theory (see for instance in [12, p.72]) we deduce that w € C” (Q ) -
Thus w ¢ C(QnT) n C2’1(QnT). Differentiating the differential

equation in Pn yields
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(

w, = D(un)¢r'1(w)wxx + \\D(un)tbl';(w)wx + 2D' (un)w¢'n(w)

1 ” 2 s

+ D (un)¢n(W))wx + D" (u )¢ (w)w in Q .
w(-n,t) = 0 w(n,t) =0 for t € (0,T]
w(x,0) = u(')n(x) for x € (-n,n) .

In order to simplify the notation, we rewrite the equation above as
w, = a(x,t)wxx + b(x,t)wx - c(x,t)w

where a,b,c are continuous functions and a > 0, ¢ = O.

The function w - 1 + ;11— satisfies

1
a(x,t) (w- 1+;1—)

P E) (Wol4D) - clx,t) (w-143) - (w-1+D) 20
n y n n

XX t
in Q .
1 1
w(-n,t) - 1+; <0 w(n,t) - 1+;‘ <0 for t € (0,T]
1

w(x,0) -1 +=<0 for x € (-n,n)

o]

Thus by the maximum principle w-1 +% < 0, that is u <1 —%.
The bound u 2 -1+ % follows in the same way. o

&

Lemma 5.3. < C(R,T) for all1 R < n-2

O+

R

u2
Zr Ot
where the constant C(R,T) does not depend on n.

Proof. Let m,ne Nsuch that 0 <m<n. Set

1 X <m-1

m - x m-1<x<m
cm(X)=O X 2m

g (-x) x <0 .
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We multiply the differential equation for u by cmz L to obtain

the equality

ffu2, 22 U(p(u)cb(u x)) w2

x nht "m
QnT QnT

that is, after integration by parts

2 2 .
fount Cm—— I'[D(mn)cb(l‘lnx) unxt -ZQIID(u )Muxunt Cm cm .
nT QnT nT
Thus
2 2 _ ) 1.2 '
IIunt Lm - J.J’D(un) 5E'F(unx)gm - 2”-D(unw(unx) nt cm Z;m
QnT QnT QnT

. s
where the positive function F is defined by F(s) = f¢(1)dr.
Thus

fu? %4 ?D(u (T))F(u_ (T)) >
J nt °m n nx m

nT -n

(

n
< D(u )F(u‘ )C 4ﬂ{2 sup D sup ¢\ II C ) + sup D'sup F
-n (o,1]1 [-1,1] fo,11 [-1,1]

Q;ﬁﬂﬂiﬁf

T

which we rewrite as

fful 2 < Cm+cw.ﬁ-(” . )*’

nT QnT nt m

Finally, we find that

T m-1 2
I I u < C(m,T)
0 -m+1

which concludes the proof of Lemma 5.3. o
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Theorem 5.4. There exists a solution of Problem C.

Proof. Fix R > 0. Since 1/n < u < 1-1/n and since
| u o | €<1-1/n, it follows fromGilding [13] that

lu_(x,t') - u (x,t)] <cl|t - t'|%

n n

for all n > R and for all (x,t), (x,t') € QRT := [-r,RrR] x [O,T].
Here the constant C depends on R but does not depend on n. The
set {un}n> g is bounded and equicontinuous in Q... Thus there
exists a continuous function uy and a subsequence {unk}, with n, >R

k

such that u converges uniformly to u > « . Then by a

nk R k
diagonal process there exists a function u € C(écT) and a converging

in éRT as n

subsequence {uj}such that u
QCT

the estimates above that qu4> u, and ujt4> ut weakly in L (q¥r) for

all R > 0 as j - «» . Thus u satisfies conditions (i), (ii), (iii) of

converges to u as j > ® , pointwise on

3

and uniformly on all bounded subsets of Q r Also it follows from

Definition 3.2. In what follows we check that u also satisfies (iv).

The function uj satisfies for j sufficiently large:

[
o

(5.1) [f {ujtw + D(uj)¢(ujx) wx}

QCT

for all ¢y e V := {v € L2(0,T ; H'(R)) such that v = 0 for large |x|}.

Since ||¢(u )|| < sup |¢|, there exists x e Lw(CET) and
L (Oar) [-1,1]

a subsequence of {uj}, that we denote again by {uj}such that

¢(u ) ->x weakly in L (Q ) ,

for any R>0 as j>« . Letting now j+» in (5.1) yields

(5.2) {f fu v+ D(wx ¢ .} =0 for all y eV
e

ext we show that .
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(5.3) [[D()(x - $(u)) =0 for all ¥ € V

QCT

We first write an inequality which is based on the monotonicity of the

function ¢ and which involves the functions u.,. This was also done by

Kalashnikov [17], for example.

Let us extend ¢ on R such that ¢(s) = ¢(1) for s > 1 and

$(s) = ¢(-1) for s < -1 and let vbe suchthatv - u € V. We have, with

m<n, Qo := (-mm) X (0,T)and § € (0,1]

2 2
QIID(u) ((ug ) = $(v)) )(z;m(uj - v))x = QII . D(u) (¢(uj_x) - e ) (uy v )
CT

mT

+2 QIIcm £a D (9 (ug ) = $(v)) (uy = V)

m
mT

> [fel D (lug) - 6w uy, - v)
QmT

- 8ff ;:1 D(w) (¢ (u) - ¢(vx))2 - +fpw (u - v 2

QmT QmT

- ' 2 N 3 2
> (1 6.?_11;’?]) ijcm D(u) ($luy ) - d(v,)) (uy = V) SIRICY (-,
mT

Setting § = 1/sup ¢' vyields

[-1,1]
(5.4) 4[fD(u)<¢(u. ) = (v ))(cz(u. - v)) 2 —c [[D(u) (u, - v)2 .
5 jx X m j % 9 j
mT mT

Since un satisfies the differential equation in Problem Pn, we also have
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2
(5.5) jfn(u)¢(ujx)(cm uy)

QmT

2 2
= [f(D() - D(uj))¢mjg(cm ug)y - ffujt LYy
QmT QmT

Letting j > « while keeping m fixed in (5.4) and (5.5) yields

2 2
- ffutu Cm - IID(u)x(Cm v)x

QmT QmT
2 2 2
(5.6) - [fpév)(CE v, - €Sw)2=-c [fpu-w°.
X m X m X Q
QmT mT

Replacing y by Ci u in (5.2) yields

(5.7) [fag@2w + b x @2 w ) =0

QmT

Next we add (5.6) and (5.7) to obtain

2 2 2
[fD(u) (x - Sy ) W - & V) ) 2-C D) (u - v)

QmT QmT
. 2 1 .
We set v=u- uwithuy>0, & € L (0, T ; H(R)) with £(x) =0
for |x| 2 m - 1. Then

[fpx-oa, - ug)) g, 2w’c ffow £
% O

.

Dividing by p and letting u + 0 yields

[Ip) (x - sta g 20
QCT

which in turn implies (5.3).
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In section 4 we proved that u(t)-He LI(IR) . We show below

some extra invariance properties of Problem C, namely that if

2 2 2
]
ug € L (R)) , ux(t) € L' (R) for all t > 0 and that u, € L (QCT).

We suppose that the approximating functions u,, are such that

n 2
limsupf ubn 23 f uéz (it follows from the appendix that the construction

n>© -n

of such functions is possible)

Lemma 5.5. Let ug € L2(]R) . Then [ ui(t)s[ u(')2 for all t>0.
R R

Proof. We multiply the differential equation

u e = (D(un)¢(unx)>xx

N\

. e (o » .
by unx and integrate on Qnt := (-n,n) (0,t) to obtain

Hunxt Ynx = U(D(unw(unx))xx Unx’

Qnt Qnt‘
that is
n n
2 2 _
_£ unx(t) - _{ uOn =-2 QII(D(un)¢(unx))x unxx
nt

(5.8)

2

=-2 [ p'(u)ém Ju u -2 ijo<un)¢'(unx) ule

Qnt nt
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s
Next we define the monotone function ¢ (s) := f¢ (1)t dtr. It follows

0
from (5.8) that

n o, n 9 3
{ u () - fu(')n <-2 [[p () 5= eu )
-n -n nt
< 2 HD"(un)d)(unx)unx < 0.
Qnt
Thus
n n
2 , 2
I unx(t) < I uon
-n -n

Since the L2-norm is w.l.s.c., this implies that

R 2

fu (t) £ u'® for all R>0
-R X 0
R

2
and finally that |[u (t) < It . o
y llu, (e || 2o F Mg 2 g

2 2
Lemma 5.6. Let u(') € L"(R) . Then u, € L (QCT).

Proof. The proof is close to that of Lemma 5.3. Here one multiplies

ion for
the equation u by L

2
Remark 5.7. If one assumes that uc') € L"(R) , it is not necessary

to use the cut-off functiong m in the proof of Theorem 5.4.

Theorem 5.8 .There exists a solution of Problem N.

Proof. The proof is very similar to that of Theorem 5.4. It uses

the same auxiliary problem Pn’ but now on the fixed domain QNT' o
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We shall now study the existence of a solution of Problem CD. An
essential problem here is to find a lower bound on ux(O,t) , which

is obtained by considering a suitable lower solution for the problem.
Therefore, we first study the corresponding stationary problem

(D(y)d)(y'))‘ +Ay' =0 in R
sk{‘

y(0) =A ; y(®) =0 1if A >0

Definition 5.9. A function Yy is said to be a weak solution of

Problem SA if it satisfies

1)y, e gl (0,R) for all R > 0
(1) 0<y, s1,-12y! 51 ae. in (0,)
(iii) yA(O) =3 ; yx(“) =0if A > 0

1.+
(iv) I{+ (D(y,)¢(y}) + Ay,)¥' = 0 for all ¥ ¢ H (R

such that Y vanishes for large x.

Remark 5.1lu. iz Y, 1S a weak soiution or rrooiem S,, then Yy

satisfies the differential equation a.e.

Lemma 5.11. Let Yy -be a weak solution of Problem S, for A>0.

A
On the set where Yy is positive, it satisfies:

(1) y;\ is continuous, (ii) y}‘ is strictly decreasing, (iii) y)\ is

convex.

Proof. 1f Yy is a weak solution of S, for A >0, then it satisfies

A

% D(y,)d(y}) + Ay, = O in R

Yy (0) =a yx(w) =0 .
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Thus

Y
5.9 ') = = A
( ) ¢(Y>\) D(y}\)
at points where 0 < Yy < 1 , which implies that yi is continuous

and strictly negative in those points. Next, we show that Yy is

convex in a neighborhood of each point where it is positive. We
D(x) - xD'(x)
. Dz(x)

it follows from the concavity of D that d is nonincreasing on (0,1).

define d(x) = - B%E) on (0,1). Since d'(x) = -

’

Let 0 < Xy < x, be such that YA(xl), Yx(xz) € (O,A).‘Then
Y;\ (X2) < y)‘ (xl)
and thus

vy (%)) =y ()
D(y, (x,)) - Dly, (x;))

which yields
$(yy (x5)) = ¢y} (x,))
and finally

yi(xz) 2 yi(xl). o

Lemma 5.12. Suppose A > ?.)Problem Sy has a unique yeak solution if
. D(A
< o= — (= - -
and only if A < A max A (~¢(-1))
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proof. It follows from (5.9) that S, has no solution if the con-
dition A < EX(é)(—da(—l)) is not satisfied. Next we supppose that

this condition holds and construct a solution Yy which will turn out
to be the unique solution of Problem SA‘
We deduce from Lemma 5.11 that if Yy is a solution, there exists

LA € (0,2] such that Y, is positive and strictly decreasing on

(O’LA) and that YA(LA) = 0. In order to calculate LA and YA on

the interval (O,LA) we take as ‘new unknown on that interval the inverse

function x := o(yx). It comes to solve

D
A= - (Y)‘)¢/ 1 - ) on (0,3)
( v, ‘\T )

Thus

A ds
olyy) =-J —3
Y, ¢ ~(-As/D(s))

and

ds
¢'1(-As/D(s))

so that Lx,which by (5.11) has a finite value, and the function
y, on the interval (O’LA) are uniquely determined. Note that YA(X) =0
for all x > LA since otherwise there would be a point X such that

0 < yx(;) <1 and yi(;) > 0 which contradicts (5.9). o

Corollary 5.13. Let 3 e [O,L)\] be such that y' > -1 on ('g,t)‘).
Then Y, € Cz((E,LA)).

Proof. Corollary 5.13 follows from the fact that the elliptic equation

in Problem SA is non degenerate in (E’LA)' a
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2
. , _
We remark that if X < Amax' then YA(O) > -1 and Y, € C ([O'LA))'

Lemma 5.14. If A = 0, the unique solution of Problem SA is Yo = A.

Proof. Integrating the differential equation in S, yields

A
. +
D(yo)¢(y(')) = C in R

yO(O) =A .

If C = 0, then Yo = A. We claim that Clmust be equal to zero.
Suppose not and let C > 0. Then Yg€C ([O0,+9), 0 < Yo < 1 and
yé > 0. Since Yo is increasing and bounded from above, it tends
to a constant as x - » . Hence there exists a subsequence {xn}
such that yé(xn) -+ 0 as xn + o ,This is in contradiction with
the differential equation. Similarly, one can show that C cannot

be negative. o

Lemma 5.15. (i) Yy is decreasing in ) .

-1/n ; asn->e , y

(ii) Let An = A converges to

max An

+
YA uniformly on compact subsets of R ,

max

Proof. Property (i) follows from (5.10). As n > = , y n decreases

A
to a limit y, which satisfies Properties (i), (ii) and (iii) of

Definition 5.9. In order to show that ; = , one also has to

- ¥\ max
show that y satisfies the integral relation (iv) in Definition -5.9.

This is done in a similar way as in the proof of Theorem 5.4. O

We are now in a position to prove that there exists a solution of

Problem CD, however with some extra assumptions on A, A and uo.
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=DM _iiZ1)) .y < +
0 <) < Amax = A (-¢(-1)) ; uo..A on R ;
Hep if A\=0, A <s :=sup {s € (0,1) such that D'(s) = 0};
ifA>0, u. 2y on R
’ O A -

max

Next we consider the regularized problems, with n ¢ N large enough

_ \ . x n
u, = (Dn(u)¢n (ux) y + Anux in QT := (0,n) X (0,T)

CDn u(0,t) = A ux(n,t) =0 for t ¢ (0,T]
u(x,0) = uOn(x) for x € (0,n)
where ;n := min (A,An) and where uO satisfies
n © _+ . . ‘
HO : uOn eC (R), uon(x) = A for x in a neighborhood of zero, uOn < A,
ubn(x) =0 for x 2 n, u,, converges uniformly to u, on compact
subsets of IU- as n >, If A > 0, then Yo > max| A(1+yin(0)),

] -y ! . 3 - ' -
yxn}and ‘uOnI < yln(O), if X = 0, then uy, 2 1/n and |u0n| < 1-1/n.

We show in the appendix that, given an initial function u0 which satis-

i and H ne whi
fies Hyp oD one can construct a sequence {uon} hich

satisfies the above properties.

As in the case of Problem Pn’ one can show that a comparison principle
holds and that Problem CDn has a unique solution u which is such that
' < < < —y! if A> . < <
A(1+yxn(0)) u A and u yxn(O) if O(resp. 1/n un A and

u < 1-1/n if A
nx

0). In order to show that u > yi (0) if X > O (resp.
n

u 2 -1+ l-if A = 0) a lowerbound for u__(0,.) is necessary.
nx n nx

Lemma 5.16. Suppose that A > 0. Then u > Y, in Qg , which implies

that u__(0,t) 2 y; (0) for all t ¢ Lo,r]. n
n
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Proof. Assume that n is large enough so that Lk < n. Since

n
u = 0 in Qn , we have that u_ 2y, in [L , nl] x [0,T]. Also,
n T n An A

n
since Yy satisfies
n

! v eXyr = (A - A)y' =20 for x ¢ (0,L, )
(D(y)\n)(b (y)\‘n)) nykn ( n n y)‘n 2o
yy, (0) = un(O,t) = A v, (Iy ) =0%2 un(LA ,t) for t € (0,T]
n n “n n
yxn S ug for x € (O’Lln)

it follows from a comparison principle argument that u > y, on

[O,LA 1 x [o,T]. n o

n

Lemma 5.17.If XA =0, u 2y := max (A-(1-1/n)x, 0) in Qg.

Proof. Again suppose that n is large enough so that n > A/(1 - 1/n).
Obviously u 2y for x € [A/(1-1/n),n]. It remains to show that

(D(y)é(y"))' 20 for x <A/(1-1/n)
that is
D'(y)$(1/n-1)(1/n-1) 20

which follows from the assumption that A < s. o
Theorem 5.18. There exists a solution of Problem CD.

Proof. From Lemma 5.16 (resp. Lemma 5.17 if A = 0), it follows that

2 ' 2 - i = .
u 2y, (0) (resp u 1/n-1 if XA = 0). In particular, Iunxl <1

on Q; » thus there exists a sequence {n,} and a function u ¢ C(QDT)

such that u, tends to u as n > uniformly on compact subsets of
k

QDT' It follows at once that u satisfies condition (i) -(iii)of the

definition of a solution of Problem CD (Definition 3.3). The proof
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that u also satisfies the integral condition (iv) of Definition 3.3
is quite similar to that of Theorem 5.4. However it is convenient
to consider the function u := u-yA as the new unknown function, in

order to have a homogeneous boundary condition in the point x = 0. o
Note that the following .results hold .

Theorem 5.19. Let u be the solution of any of the three problems.
Then u € C(Q) where Q denotes either (-1,1) x Iﬁ- or R X Ig- or

+ +
R x R.

Theorem 5.20. (Comparison principle).

(i) Let uy and u, be the solutions of any of the three problems with

: . . <
initial functions Uy, < uy,- Then ul(t) < u2(t) for all t > O.

(ii) Let ) € [Az,A1] c lo, Amax] and let u be the solution of Problem

CD. Then if Yy < ug < Yy ¥y < u(t) < Yy for all t > 0.
2 2

1 1

Finally we remark that the hypothesis D" < 0 is necessary to obtain

the uniform bounds on u in the proof of Lemma 5.2.
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6. The large time behavior

6.1. The case of the Neumann problem. Convergence to a constant.

In this subsection, we show that the solution of Problem N converges
to a constant as t > » ; we adapt a proof of Alikakos & Rostamian [1]
and Dafermos [9] based on the use of a suitable Lyapunov functional .
We first give a result in the case that u is bounded away from O and 1.

We denote by u(t,uo) the solution of Problem N with initial function us-

Theorem 6.1. Let § < u, < 1-6 for some § ¢ (0,1/2). Then there
exist constants K > 0 and g = o(8) > O such that

1
Hu(t,uo) - %- f u0|| < ket t
-1

o

L (-1,1)

v
o

Proof. We first consider the solution u, of the problem Nn

u, = (D(u)¢(ux)>x in Nt

Nn ux(—l,t) =0 ux(l,t) =0 for t € (0,T]

u(x,0) = u, (x) for x € (-1,1)

On

where u satisfies

On
- < <1- ' -
ug, € c ([-1,1], 8§ < Uy, S 1-6, |uon| <1-1/n,
' - = ' = [
uon( 1) uon(l) 0, uOn converges to u0 as n -

uniformly in [-1,1].

Using the methods developped in section 5, one can show that the
solution u, of Problem Nn converges to the solution u of Problem N

uniformly in QNT .

1
1 ‘e
Let M ) —{ Uon® Then vy satisfies the problem
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Ve = <D(un)¢(vx))x in QNT
vx(—l,t) =0 vx(l,t) =0 for t € (0,T]
1 1
v(x,0) = von(x) = uon(x) -3 _{‘uOn for x ¢ (-1,1) ,
1
and is such that [ v (t) =0 for all t ¢ [0,T]. We multiply
-1

by v the equation for v and integrate by parts. This yields

1 1
1 d 2
2 at _{ Yn T _{ D(un)‘t’(vnx)vnx .

Now since ¢' 2 0 with ¢'(0) > 0, there exists p > 0 such that
|6(s)| = ul|s| for s € [-1,1]. Thus

1 1 1
%-g% f vi < -u inf D f v;; < - %- inf D f vi
-1 [§,1-8] -1 [6,1-6] -1
which implies that
1 1 - = inf Dt
s (Jog) < 2 e
-1 n -1 On/
Letting n > «® , we obtain
(6.1) Ilvier ||, < Kle_clt
L°(-1,1)
where Ul = %- inf D. Next, observe that since v(t) is Lipschitz
[§,1-8]

continuous with respectto the space variable, it satisfies the inequality
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1
Slver | 2, < Jlvw | s vZilvoll
-1,1 L (-1,1)

which combined with (6.1) yields

-0,t/2
|| vee) || - < 23/4 VE;é 1 . o
L (-1,1)

Theorem 6.2. Let § < ug < 1 for some § > 0. When t > =, u(t,uo)

u, uniformly on[-1,1].

s L

1
converges to the constant 5 0

Proof. since {u(t), t = 0} is precompact in C([-1,1]), there exists

a sequence {tn} and a function q € C([-1,1]) such that

u(t ) > q as t > « uniformly on [-1,1]

In particular u(tn) converges to q in Ll(—1,1). Defining the w-limit

set of u, by

w(uo) = {w e Ll(—l,l) : there exists a sequence tn* © such that
. 1
u(t ) > w in L7 (-1,1) as t > w}

we conclude that w(uo) is not empty. Define V : Ll(—l,l) + R by

- ess inf v(x) if - ess inf v(x) < +«

V(v)= xe (-1,1) xe (-1,1)

+ otherwise.

Since u(t,.) 2 ess inf u(t
xe(-1,1)

), we have that, for t =2 t

0 o'

u(t) 2 ess inf u(to). This follows from the comparison principle
x (-1,1)

and the fact that constants are solutions of Problem N. Thus

V(u(t)) < v(u(t such that t =2 t

for all t,tO 0

o))
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which shows that V is a Lyapunov functional for Problem N. Since
this functional is lower semi-continuous in Ll(-l,l) and since the
orbits are Lyapunov stable (because u satisfies a contraction
property in Ll(-l,l)) , it follows from DaFermos [9, Proposition

4.1] that V is constant on w(uo), say V = -W. Next, we show that

for any Wo € w(uo)
wo(x) =W for all x e (-1,1).
Since
1 1
Jw = [u, <2
44 0 30

and since LA <1, it follows that W < 1. Now suppose that (6.2) is
not true. Then for sufficiently small u € (0,1-W) the set

Qu ={x e (-1,1) : wo(x) > W+ ult

has a positive measure. Define

.o wo(x) if wo(x) <W+ u
o () =

W+ if wo(x) > W+ "

and let w and w be the solutions of Problem N with intial values

and Wy respectively. Since § < LAY < W+ u <1, we have that

¥
§ <w < W+ u<l. Thus, by Theorem 6.1, w(t) converges to

W, as t > « , uniformly on [-1,1].

N+
—_—
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Hence for given n > 0, there exists T(n,u) such that

N =

1
w(t) 2 f Wo = M for t 2 T(n,u) .
1

Since Y, < LAY the comparison principle implies that w < w.
Therefore for t 2 T(n,u)

1
1 1
{Eo‘“-‘f [ w5 [ owy-m.
(-1,1)\Qﬁ Q

Thus

Q
w(t) 2%(2—l9ﬁ|)W+é—|9u|(W+u) -n=w-n+J—i‘-|-u.

For fixed u , we choose n sufficiently small so that
w(t) 2 W+ v for some v > O.

Then
V(w(t)) < -W, for t sufficiently large,

which is a contradiction.

1

Theorem 6.3. When t > « , u(t,uo) converges to the constant % f uy
-1

uniformly on [-1,1].

Proof. We now take as the Lyapunov functional
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ess sup Vv(x) if ess sup v(x) < + =
x e (-1,1) xe(-1,1)

V(v) =
+ otherwise

Then V is constant on w(uo), say V = W. The reasoning then follows as

in the proof of Theorem 6.2. The auxiliary function is now defined as

_ wo(x) if wo(x) > W - M
wb(x) =

W-on if wo(x) <SW-1q

with § € (0,W). Then w_ > O and by Theorem 6.2 the solution w of Problem

0
N with initial function GO converges to %- 30 as t > », which in turn
implies the contradiction -1
V(w(t)) <W
for t sufficiently large. o

Corollary 6.4. There exists t, > 0, K>0 and ¢ = o(to) > 0 such that

a

1
1 -ot
[lutt,u)) - = fu | < Ke for all t 2 t .
2.1 01,1 °

Proof. Corollary 6.4 follows from the uniform convergence of u(t)

1
to %—_{ uy € (0,1) as t > =, o
6.2. The Cauchy problem in the case that D(u) = u(l - u).
Convergence to similarity solutions.

In this section, we first construct a class of similarity solutions and

then give a convergence theorem.
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Following de Josselin de Jong [14] and van Duyn [10] , we look for

a similarity solution of Problem C of the form

1

if < =

0 n 5
(6.3) u (x,t) = £(n) = l-+ n if N n < 1
. ey = 5 > < < 2

. 1

1 if n>3

with n = x/g(t) where the function g is still unknown and has to be
determined. Substituting (6.3) in equation (1.1) with D(s) = s(1l-s),

we formally deduce that § must satisfy the differential equation

SV (p) = _1_
(6.4) g'(t) =2¢ <g(t) )

which we solve below together with the initial condition

g(0) = 21

Note that l/g0 corresponds to the slope of the initial value us(x,O)
for x 6(-g0/2,g0/2).

We set
t ds 1 du
o(1) = [ T = [ ——— for 1t 21,
1 96 1/t ¢()u

Remark that since ¢'(0) > 0, & (+») = 4+, Thus the function ¢ , which
is strictly increasing,maps [1,®) on to [0,*). Integrating the differential
equation (6.4) yields

d(g(t)) = 2t + @(go)

and thus

glt) = o F(2t + 2(gy)).



VI -41

The function us is such that

u (x,t) =0 for x < S_(t)
s v £
0 < us(x,t) <1 for Sf(t) <x < Ss(t)
us(x,t) =1 for x 2 Ss(t)
where
Sg(t) = -g(t)/2 and s (t) = g(t)/2

and the velocity of the two fronts is given by

\ _ 1 , _ 1
sf(t) = ¢(g(t)) and ss(t) ¢(§7§7) .

It remains to show that u_ is a weak solution of Problem C. It is
immediate that u_ satisfies properties (i) and (ii) of Definition

2 .
3.2. Since us(l—us)¢(usx) e L (QCT)and since u_ satisfies equation

X ‘
(1.1) a.e., it easily follows that u_ satisfies the integral equation

(iv) of Definition 3.2.

‘Next, we give a convergence theorem which extends a result of van Duyn
[11] in the case that ¢(s) = s.

Theorem 6.5. Suppose that D(u) = u(l-u).Let u, be such that uo(x) =0

0

for x < x, and uo(x) =1 for x > X, with -= < Xy < X, < 4+, Then there

1
exists C > 0 such that

2

| utt,uy) - £(./geN | < ¢/g(t) for all t 2 0.
L (R)

Proof. We choose 99 = 1; then g(t) = ¢_1(2t). In view of the hypothesis
on u, there exists 4 > 0 such that

f(x-d) S u.(x) < f(x+4d) for x € R.

0
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Then by the comparison theorem

£((x-d)/g(t)) < ulx,t) s £((x+d)/g(t)) for all (x,t) e QCT,

which implies that

lu(x,t) - £(x/g(t))| < |£((x+d)/g(t)) - £((x-dA)/g(t))]| < 2d/g(t)

for all x €e R and 0 £ £t < T < o, a]

6.3 The Cauchy-Dirichlet problem : convergence to the stationary

solution.

In what follows, we show that the solution of Problem CD stabilizes as t-—> .
+
The idea of considering sets of the form R x(t,t+T) was suggested to us

by M.Bertsch.

Theorem 6.6 .i)If A> Oandif U satisfies the hypothesis HCD and is such

that u, < yi for some A € (0,A], then the solution u(t,uo) of Problem CD

0 —
converges to the stationary solution Y, as t > o , uniformly on R .

(ii) If X = 0 and u, satisfies H __, u(t,u.) converges to A as t > » ,
0 —F CcD 0
uniformly on compact subsets of R .

Proof. (i) It follows from the comparison theorem 5.20 that

y < u(t,y ) fu(t,u,) < u(t,y_) <y_. for all t = 0.

A h\ . 0 3 3
max max

The proof will be completed if we show that u(t,yA ) and u(t,yi) converge

to the stationary solution y, as t > ® . Since botﬂug;oofs are similar,

we only show the convergence result for u(t,yA ) .
max
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Using again the comparison principle we deduce that

u('r,y)" ) <u(t+ T'y)\ ) for all t, 1t 2 0
max max

and thus that u(.,y ) is nondecreasing. Since furthermore u(.,y )
A A

max _
< A, there exists a function q € CO'I(IUW such that max

u(t,yx ) >gas t >
max
uniformly on compact subsets of RY . It remains to show that q=Y,-
Obviously gq(x) = 0 for large x and q satisfies properties (i), (ii), (iii)
of Definition (5.9). Next, we show that q also satisfies the integral
relation (iv). In order to have a homogeneous boundary condition in O,

it is convenient to make the change of functions
u=u-y, and & =9 - Y.

Then u satisfies the differential equation

(6.5) u, = (D(1_1+y)\) ¢ (t?lx+y>'\))x + A +y3)

+
for (x,t) e R X ]R+. Set

w(t)(x,s) = ﬁ(x,s-kt).

(t)

Then w satisfies the differential equation (6.5) as well as the boundary

condition w(t)(O,.) = 0. Let T > 0 be given. Then

(6.6) [ v - v oo =
rY Rt
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(t) ) (t)

t
- {w(t)wt ~ow® sy Peyn s aw™® ey v, }

for all ¢ € LZ(O,T;H(l)(]R+)) such that zpt € L2(IIR+ x (0,1)).
Note that

(i) w(t) +~g as t > » , uniformly in R

(ii) there exists a function )_( € Lm((0,°°) x (0,T1)) and a sequence
{tn} such that
(tn) _ 9 9
q:(wx + yi) ~ x weakly in L“(0,t; L°(0,»))

Letting t »> « in (6.6) and setting ¥ = Y(x) yields

(6.7) [ J @+y) X+A@+y))¥ =0 forall ye Hé(rﬂ'y
0 Rt

We show below that

(6.8) " [ bp(q+ yx)(i - ¢(§'4—yi))¢' =0 for all ¢ e Hé(n#v.
0 =Rt

Let v € L2(0,T;Hé(]R+)) . Since ¢ is monotone, we have that

(t) (t)
T - n (] | ] n
(6.9) g £ﬁ_D(q +y,) (lw +y3) - dlv, + ¥ (wy -v) 20

(t) (t)
n.
and since w © satisfies (6.6), we also have, putting y = w

fT | _ (t) (t) (t))
(6.10) ' D(q + +y') + A
o xt (g + y,) o (w ;) (w + yk)}w

X
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(t)) (t)) (t)

- n
= OIT {R+ {D(q + y)\) -Dw "+ y)\)}cb(wx + y}")wx

(¢ ) (¢ )
2 L Tt Lw M on?.
R Rr*

Letting tn tend to infinity in (6.9) and (6.10) yields

~ - T = v put q'
(5.11) é {R+{D(q+y>‘) X v, +Ma+y)q'l

T q RYZ
ST pE ey e, D@ - v 0.

Replacing ¥ by q in (6.7) gives
(6.12) ST @+ y) XA @+ yPla=0.
+
0 R
Next we add (6.11) and (6.12) to obtain

T - vt ' o' —
g J];+D(q+y)‘)(x—¢(vx+y>\))(q v,) 20.

We set v = a -y with u > 0 and £ € Hé(lﬂﬁ .
Then

[T D@+ y) (- 0@ +y] - uE) WE' 20
0 RV
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Dividing by u and letting u + 0, we obtain
T = = - 1,_+
["f p@+y)(X - (g +yE 20 for all £ € H.(R)
o ®Y A A 0

which in turn implies (6.8). Combining (6.7) and (6.8) we obtain

ST @+ 3@ + ¥ + MA@+ )" = 0 for all ¥ € Hy(R")
+
0 ®

from which we deduce that q = a + Yy satisfies the integral relation

(iv) of Definition 5.9. Thus q = Yy and & = 0.

&ii) The proof of (ii) is quite similar to that of (i). However, since
we do not suppose here that u has compact support, one has to use cut-

off functions in several formulas. D
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APPENDTIZX

We prove below two approximation lemmas

Lemma Al. Let u. satisfies H. . Then there exists {uon} satis-

0 oc
. . 2 . . s
fying Hy . If uj e L (R) , {uOn} satisfies in addition
n
limsup J u'oi < f uéz .
n>w -n R
Proof. Set
U, = (1 - 2/n)uO + 1/n
and
1 1 ~ .
max(;, (1 _r_f) (x+n/4) + uon(-—n/4)) if x £ -n/4 ,
A ~
Uy, (¥) =fug (x) if |x| < n/4,

. 1 1 ~
mln(l-;,(l—n) (x-n/4) + uon(n/4)) if x 2n/4 .
Using the function
f 0 if x| 21,
p(x) = 1 2
c exp(1/(]x|® - 1)) if |x| <1,

where C is a constant such that f p(x)dx = 1, we define the sequence
R

A
ug (%) =n fp(n(x—y))uOn(y)dy .

R

Then one can check that if n is large enough,u satisfies the hypothesis H

2 On On °
Also if u(') € L (R) , then
+n n o,
[uéj < uO'IZ]S "ué" 22 + c(n)
-n -n L™ (IR)
where lim C(n) = O. (a]

n->o



VI -48

i i {u.}
Lemma A2. Let u, satisfy Hop and Hop- Then there exists LI

satisfying Hg.
Proof. (i) The case A = 0. Set

Yon = (1 - 1/(an)) (4, -A) + A

and
A if x £ 1/n
o (x) = |lmax(=(1-1/n) (x- 1/n) +&, U _(x)) if 1/n < x < n/4
max (- (1 - 1/n) (x - n/4) +u,_(n/4), 1/n) if x = n/4
A ~
where we assume that n is large enough so that uy, = uOn in an interval

of positive measure. Let

Uy, (¥) = 2n [ o (2n(x-y)) 4

(y)dy for x 2 0
0 - n

0

n

Then one can check that u satisfies the hypothesis HO

on for n sufficiently

large.

(ii) The case A > 0. We first construct an approximation of Yamax®
We set

~

y, = max(y)‘ ’ A(1+y;\ (0)))
n n

and
A if x < 1/n
y (x) = {
~ 1
n y (x-= if x 2 1/n.
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Let {en} be such that €l > 0 and € ¥+ 0 as n > > and let

-z\ A
y_(x) = 1 f o<§—5> y_(z)dz for x 2 0
n € € n
n R n

Then one can check that for n large enough and for En small enough
n

yn satisfies the hypothesis HO in the case that u, = yAmax'

+
>
In the general case that u0 yAmax on R , we set

- max(yk,(x), - yi (0)(uo(x)-A) + A) if x < n/4
u, (x) = { n n
On -
max(A(1+y>" (0)), y;\ (0) (x-n/4) +u._(n/4)) if x > n/4
n n On
and
A if x < 1/n
A
uOn(x) = { ~
- 1 >
uOn(x 1/n) if x 2 1/n

Again one can check that the functionu, , defined by

On

_ 1 x-___y\ A >
uon(X) =z f O(E } uon(y)dy for x 2 0
n R n

which is such that uOn 2 yA , satisfies the hypothesis Hg for n large

enough and En small enough;
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CHAPITRE VII

A DENSITY DEPENDENT DIFFUSION EQUATION IN POPULATION
DYNAMICS : STABILIZATION TO EQUILIBRIUM

par

M. Bertsch et D. Hilhorst






1.

VII.1.

INTRODUCTION
Let Q bé a bounded domain in IRN(N > 1) with smooth boundary 3. We con-

sider the nonlinear evolution problem

u, = Kp(u) + div(u grad v ) in @ x IR+'
(P) i)—q}(u) +uy—=0 on 39 x IR+

v v

u(x,0) = uo(x) in Q.

Here v denotes the outward normal at x € 92, the function ¢ is a smooth
function such that @(0) = 0, ¢@'(s) > 0 for s > 0 and @' (0) = 0, the
initial function ug € LQ(Q) is nonnegative and v € WI'W(Q) is a given

function (for the precise assumptions we refer to section 3).

In section 2, we show how Problem P arises in the theory of population
2
dynamics in the case that @Y(s) = %s  and interpret some of our results

in terms of the geographical location of two biological populations.

This paper is divided into two main parts.
In part I we discuss the large time behaviour of the solution of Problem

P. In part II we collect the basic results about Problem P: existence,

uniqueness and regularity of the solution.

In part I we prove that the solution u(t;uo) of problem P stabilizes to
equilibrium. Let E denote the set of equilibrium solutions; then there

exists a function g € E such that

u(t;uo)-+ q in C(%) as t » =

where q satisfies

f qdx = fuodx.
Q Y

In addition we give a characterization of E: we show that E coincides

with the set
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s = {w ¢ C(Q):w = 0 in Q, and for every x€ ) either w(x) =0

(1.1)
or &(w)+v = constant in a neighbourhood of x}.
Here
? © (1)
® (s) = f ——;I—-dr, s 2 0. (1.2)

The proof of these results is given in the sections 4 and 5. In section

4 we show that solutions of Problem P satisfy a contraction property in
Ll(g). In section 5 we follow an idea of Osher and Ralston [18] and
exploit this contraction property, combined with the structure of the

set S, to construct a Lyapunov functional.

A remarkable detail of the proof is that we do not study the elliptic
problem to prove that E = S. Also this fact follows from the contraction

property and the structure of the set S.

In section 6 we extend the above results to the case when the natural

boundary condition is replaced by a homogeneous Dirichlet condition.

In part II, we show that Problem P has a unique solution in some gener-
alized sense. In section 7 we construct a solution u(t;uo) of Problem P
as the limit of solutions of related uniformly parabolic problems. It
turns out that the set {u(t;uo);t > 1} is precompact in C(Eb, thanks to
a regularity result of DiBenedetto [71].

In order to show that the solution of Problem P is unique, we are led to
use another sequence of regularized problems, following closely a method

of Kalashnikov [12,13]. This is done in section 8.

Finally,in section 9, we give the corresponding results about the

Dirichlet problem.

Studies concerning the existence and uniqueness of the solution of
problems related to Problem P have also been done by Aronson, Crandall
and Peletier [3], Diaz and Kersner [6], Gagneux [10], Madaune [17] and
Touré [21].

There exists an extensive literature about the large time behaviour of
solutions of degenerate parabolic equations. However there are not many
articles where one constructs a Lyapunov functional in order to establish
the stabilization to equilibrium. We have already mentioned the work of
Osher and Ralston [18]. Such a method is also used by Aronson, Crandall

and Peletier [3], Schatzmann [20] and Alikakos and Rostamian [1,2].
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BIOLOGICAL CONTEXT

Problem P arises in the theory of population dynamics. Conside* a popu-
lation in a finite habitat @ which consists of two different groups,
for instance age groups. Let u(x,t) and v(x,t) denote the density of
these groups. In order to model their evolution with time, Gurtin and

Pipkin T 11] propose the following system of equations

u div(u grad (utv)) in Q@ x IR+

t

v k div(v grad (u+v)) in Q » IR+,

t
where k is some positive constant. The flow of the populations is de-
scribed by the dispersal velocities: grad(u+v) for the u-individuals
and k grad (ut+v) for the v-individuals. In particular, when the para-
meter k is small, the v-individuals disperse much slower than the u-

individuals.

In this article, we study the problem in the limit k = 0. The second
equation yields at once that v is constant in time; remains the equa-
tion in u which coincides with the gJifferential equation in Problem P
if we set @(s) = &sz. The boundary condition expresses the fact that no

individuals can leave or enter the habitat.

An interesting consequence of our results is the following.It follows
from (1.1) that, for any non-constant function v(x), the set E = S

contains a non-trivial function g(x) such that
g 2 0 in QO cf,q>01in 9\90

for some nonempty subset QO. If Uy < q in @, then u(t;uo) £ qin @

for all t > 0. In particular
u(t;uo) Z2 0 in QO for t 2 0.

From a biological point of view this phenomenon of localzzation is

interesting: the v-individuals can stop the spread of the u-individuals.

A detailed analysis of this model in one space dimension was given in

[4].
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3. PRELIMINARIES
Let us first state the precise hypotheses on @, ug and v and give a

definition of a solution of Problem p,
1

Hl. @ec(®D) ncl@®Y), 00 =90 =0, [ tTler(nar < =,
@'(s) >0 for s > 0, P"(s) = 0 for s € (O,so)ofor some s, > 0.

~

Q> 5} and Av =2 -M in 5 in the

[

H2a. v € W1 “(5) for some smooth domain
sense of distributions for some M > O.
H2b. If N 2 2, v € wz'P(ﬁ) for some p > N.
H2c. v has finitely many local strict minima.
H3. If N =1 either @(s) = %sz or v" € Ll(Q).

o .
H4. U, e L (Q), uo >0 a.e. in Q.

We use the notations Qt = Qx(0,t] for t > 0 and Q = Q X IR+.

DEFINITION 3.1. We say that a function u : [0,») - Ll(sz) 18 a gener—

alized solution of Problem P if it satisfies:

(i) uec(fo,l; Li@) n L"(,) for all t > 0;

(ii) fu(t)¢(t) = fuow(O) + ff{w(u)Aw +up, - ugrad v grady}
Q 0 ‘
2,1" "

for all t > 0 and all yeC (Q) such that ¥ 20 in Q and % =0 on

1Y xIR+.
A generalized subsolution (resp. supersolution) of Problem P 18 defined

by (i) and (ii) with equality replaced by <(resp. 2).
In the sequel we shall often omit the word generalized.

In part II, we shall prove the following results.

We suppose that the hypotheses Hl1-H2a-H4 are satisfied.

PROPOSITION 3.2. There exists a unique solution of Problem P.

PROPOSITION 3.3. (Regularity). Let u be the solution of Problem P.
Then u € C(Qx(0,»)) and the set {u(t); t > 1} is bounded and equi-

continuous. Furthermore if u, € c(Q), then u € c(@x[0,)).

PROPOSITION 3.4. (Comparison Principle). Let u(t) and u(t) be respect-
ively a subsolution and a supersolution of Problem P with initial
functions u, and EO such that u, < GO‘ Then u(t) < u(t) <n Q for

t =2 0.
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PART I

4. CONTRACTION IN LI(Q).

In this section we prove a contraction theorem which turns out to be our

main tool when studying the asymptotic behaviour of u(t) as t > o ,

THEOREM 4.1. Let u, (t) and u, () be the solutions of Problem P with
initial funetions u,, and u__ respectively and suppose that the hypo-

01 02
theses H1-H2a-H4 are satisfied.
( i) Then
Ilu (t)-u, (t)|| < = || for any t > 0.
L () 01 702 LI(Q)

(ii) Let v satisfy in addition the hypotheses H2b and H3. If Uy and
u ., € C(Q) and if there exists a connected subdomain U cQ such that

02 &
ug, >0 uy, > 0 in U (4.1)
and
Usy T Ypo changes sign in U,
then
Iu (t)-u (t)HL @ < ||u01—u02[[L1(Q) for any t > 0.

REMARK 4.2. Condition (4.1) is necessary because the parabolic equation

in Problem P is degenerate at points where u = 0.

Due to the degeneracy of the equation and the fact that v is not smooth,
the proof of Theorem 4.1 is fairly technical. The idea of the proof is
due to Osher and Ralston [18].

PROOF OF (i). In part II of this article we show that we can approximate
ui(i = 1,2) by solutions of uniformly parabolic problems: let uié(e >0)

be the classical solution of the problem

u, = Awe(u) + div(u grad ve) in Q@ x nf'
v
+
€
— =0 on 9 x IR
v ¢E(u) +u v
u(x,0) = uOis(X) in @,

where w is a smooth function such that ¢ (s) 2 c(g) > 0 for s 2 0 and
@, (s) + @(s) uniformly on compact subsets of [0,») and where Ve and Uyie

2
are smooth functions such that ve -+ v in H (2) and u0 €+ uoiln L (Q) as
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€ + 0. In part II we show that {uis}is uniformly bounded and equicontinu-
ous in compact subsets of ﬁx(o,w). Using in addition the uniqueness of

the solution ui(i = 1,2), we conclude that

u; (£) > u (t) in C(Q) as e »0 for t >0, i = 1,2. (4.2)
We define

ze(x,t) = ule(x,t) - u2€(x,t), Xxe Q, t=0.

Then z_ is the solution of the linear problem

z_ = A(a z) + div(z grad v ) in Q X I§+
-t € €
v
3 € _ +
(Le) ™ (asz) + z Yl 0 on 3R x IR

z(x,0) = ZOE(X) = uOle(x) - uOZg(X) in Q,

where
1

a_(x,t) = g ©'_(0u; (x,t) + (1-0}, (x,t))do.
For smooth initial functions zOe which satisfy the compatibility con-
ditions at 32 x {0}, the existence of a unique solution z_ € C2'1(§) of
Problem L_ is proved in [16, p. 320 Th. 5.3]. Below we shall need an
existence and uniqueness result if zOe is merely continuous in Q.
To obtain this result we can proceed in the same way as we sketched
above (and as we shall prove in section 7) for the more difficult non-
linear and degenerate Problem P: we approximate Z0e uniformly by smooth
initial functions.zoen(n = 1,2....). Then the corresponding solutions
z  are uniformly bounded and equicontinuous in @ x [0,t] for t > O
and z€n converges uniformly to a generalized solution z€€ c@x[o,t])
of Problem L as n - «, By standard regularity results [16, 8],

2, s . . .
Cc 1(9 X (0,t]). In addition these solutions satisfy the comparison

z €
€
principle; in particular they are uniquely determined by the initial
function. The proof rests on the same testfunction argument which is
used in section 8 for the nonlinear problem and which is extremely easy

in this linear case.
For any initial function zo€C(§), we denote the unique solution of
+ -
Problem Le by ze(t) = Te(t)zo. We set a = max {a,0} and a = max{-a,0}.

Then for any t > 0



lz_wll, -z, Il , =ik w2z, -7 e |, -lz || =
e T pliey % plgy & 9% e 0Tty 0T g

= [{max T (t)z - min T_ (t)z } ax - ||z || =
Q+ ,- e + ,- 05 Li(g)

[{max T (t)z; + min T_ (t)z gl ax - / (z + z_ )dx

Q +,- € +,- Q Oe
-2 [ min T (t)z =f{T (Bzf +T ()z. -z, -z } dx
€ € Oe € Oe Oe Oe
Q+,- Q
-2 f min T (t)z e‘ = -2 f min T (t)z dx,
Q+,- © Q+,- €
since
é T (t)zo dx = f ZOE dx.
It follows from the comparlson principle that T (t)zOe 2 0. Thus for any
€ >0
Iy, (©)-u, (&) ]] - ||u I < 0. (4.3)
1
dlay | oteTozel 1o,

Clearly Theorem 4.1 (i) follows from (4.2) and (4.3).

PROOF OF (ii). Let uie(i = 1,2) and z_ be defined as above. Since

u

£
= . > i
0i € C(f2) we may assume that Uose Uyg Let § 0, and write

z (£) = T2 (t)z (§) for t > 6.
€ € €

Then, by the proof of (i),
Ilze(t)ll . -||z€(5)|| ; =-2[ min (Te(t)z (8)), t 2 8,
L () L () Q +,-
and it is enough to prove that, for sufficiently small values of 6§, there

exists a t1 = t1(6) > 6 such that

[ min (T (t)z_ £(8)) 2 n(t,8) >0 for t e (8,t,)
Q +,-

for all small € >0.

Consider the Cauchy-Dirichlet problem
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z, = A(aez) + div(z grad ve) in U x (6,x)
~§ ~
(L)qz =20 ondU x (§,x)
E + ~
z(m’S) = z;(cS) in U,
where J € U is such that dist(U,ﬁU) >0 and z =u -u changes sign

o ~8 01> 01 02
in U. We denote the solution of Problem Le by

z (t) =T (t)z (8) in U x (§,x).
€ € €
Then, by the maximum principle,
~G + § + ~
< .
Te(t)ze(c‘i) < Ts(t)ze(é) in U x (8,).
Thus, it is enough to prove that

[ min F0)22(8) 2n (£,8) >0 for t e (8,t,) (4.4)
§a,- € €

for every ec¢ (O,eo) for some €0 > 0.

This will be done by means of the.following lemma, which is an immediate

consequence of Harnack's inequality [16, p.209-210].

LEMMA 4.3. Let ¢;>0 and t, >8>0 be constants, and let the following
assumptions be satisfied for all ee(0,¢ey)

8 *
(a) T2 (6) 2 (&) | =Gy 21y >0 for tels,t, ],
(b) When N = 1, then ||a€||Lw(6,t1;H1(U))s ¢ and HVEHW]"OO(U) <c,
(c) When N > 2, then ||a€|| <C and Ilvellwz <c,

L°°(<S,t1 o 'P(y)

or some constants p, >0, C>0 and p >N. Then, for all e€€(0,¢.),
0 0

¥g(t) zz(s) > ux,t58)> 0 in Ox(8,t, ]

for some function u which does not depend on €.

Assuming that (a), (b) and (c) are satisfied for small 8 >0, (4.4) fol-

lows. Thus, to complete the proof we need to verify these conditions.

In view of Proposition 3.3 and the assumption uoiéc(ﬁ), we have

uy eC(Qx [0,o)). Hence there exists a tO >0 such that uy >0 in

o x [O,tO] and z(t) = ul(t)-uz(t) changes sign in 5 for t€ [O,to].
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Since w, >u, and z_ >z in C(9 x [O,to]) there exist positive numbers o

vo and EO such that for all €€ (O,EO)

u, vy in U x [O,to] , i=1,2, (4.5)

and

Hz )], 22u, for telo,t]]l. (4.6)

L (U)

Let § € (O,to) be fixed.

When N = 1, Lemma 7.7 below, combined with (4.5), implies that u, ie is uni-

formly bounded in L (G,tO,H (U)). Hence it follows from the definition of

ag that condition (b) is satisfied for all tIG (G,to] (The hypothesis H3 is
necessary in the proof of Lemma 7.7).

When N 2 2 we may assume that v_ is uniformly bounded in Wz'p(ﬂ). It fol-
lows from (4.5) and [16, Th 3.1, p.437] that u o is uniformly bounded in

Lw(G,tO,Wl’m(U)). Thus condition (c) is satisfied for all t, ¢ (§,t,].

It remains to show that for some t1€ (G,tO] condition (a) is satisfied. In
view of the conditions (b) and (c), which we proved to be satisfied for

ty € (G,to] we deduce from [16, Th.7.1, p.181] that gz(t) zi(a) is uniformly
bounded in ¥ x [§,t ). In addition, (4.5) and [ 16 ., Th.1.1, p.419] imply
that ul (8) is uniformly Holder contlnuous in U. Finally it follows from
[16, Th.10.1, p.204] that T (t) z (6) is Holder continuous in U x [§, ty 1,
uniformly with respect to ee:(O,eO). Hence, by (4.6), there exists

at,e (6,t0] such that condition (a) of Lemma 4.3 is satisfied for all

ee (0,e.).

0
This completes the proof of Theorem 4.1.

5. STABILIZATION TO EQUILIBRIUM
In the present section we prove the main result of this paper, namely

that u stabilizes to equilibrium as t -+ =,

Let the set E be defined by

E={geC(Q) : g=0 and f (¢(g)An - g grad v grad n) =

for all neC?(R) with —'1 0 on 3Q}.
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It follows from the definition of a solution of Problem P (Definition

3.1) that
E={g €C(:q>0 and u(t;q) =q for t > 0}. (5.1)
Let S be defined by (1.1).

THEOREM 5.1. If the hypotheses H1-H2abc-H3-H4 are satisfied. Then
(i) E = S;
(ii) There exists a function q € E such that

u(t;u.) » qin C(R) as t »

0

where q satisfies

[ qax = | u,dx (5.2)
Q Q

REMARK 5.2. For some functions v and initial functions Uy, condition

(5.2) characterizes q completely (see [4]).

The main tools in the proof of Theorem 5.1 are the contraction property
which we proved in section 4, and the following Lemma about the struc-

turé of the set S.

LEMMA 5.3. Let q € C(Q) be nomnegative. Then either q € S, or there
exists a function w € S such that w-q changes sign in a connected sub-

domain U < Q such that w,q > 0 Zn U.

Thus S is a continuum in the space of nonnegative continuous functions

on .

PROOF OF LEMMA 5.3. Suppose that there is no w € S such that w-q changes
sign in some connected subdomain U € Q such that w,q > 0 in U. We shall

prove that g € S.

If g =0 in 2, then g € S. So let q(xl) > 0 for some X, € Q. We set
C1 = @(q(xl)) + v(xl), where the function ¢ is defined by (1.2). Let
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P1 c Q be the connected component of the set {x € Q: v(x) < cl} which

contains xl. We claim that

d(g(x)) = C1 - v(x) in Pl' (5.3)

Suppose that P1 contains a point where ¢(q) < Cl-v. Then

®(q(x) +v(x) =c, - £, and q(x) > 0

1~ %

~ . ~ c
for some x € P, and 80 > 0. Let P8 Pl

component of the set {x € 8: vix) < cy - e} which contains x. We fix

(0 < ¢e < eo) be the connected

€€ (0,80) so small, that ;; contains X, . Define w. by

Cl-s—v(x) foer'f’;
d(w(x)) =
0 for x € Q\Es.

Then w € S. Let I' be a curve in ;; which connects x and X . Since w > 0
on I', and since, by construction, w-q changes sign on I', there exists
a connected closed subset PO < T such that

w,q > 0 on T, and w-q changes sign on FO.

0
Hence there exists a neighbourhood U of Po in g;, where w,qg > 0 and

w-g changes sign. Thus we have a contradiction and P1 does not contain

points where ¢(q) < cl—v.

A similar, but easier proof yields that P1 does not contain poiﬁts

where ®(q) > Cy-vy and (5.3) follows.

If P, = Qor if g =0 in ﬁ\Pl, then q € S. So suppose that q(xz) > 0 in

1
Q\Pl. Set C, = ®(q(x2)) + v(x2) and let P2 c Q be the connected compo-

nent of the set {x € Q: C, - v(x) > 0} which contains x,. Then again we

conclude that

®(g(x)) = c, - v(x) in P2
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Continuing this process, we construct sets Pi’ i=1,2,... Since v has
a local strict minimum in each connected Pi and since the number of

local strict minima of v in @ is finite, this process is finite. Thus

q € s.

PROOF OF THEOREM 5.1.(i). We first show that S C E. Let w € S. Since v
has a finite number of local strict minima, it follows from (1.1) that
there exists a finite number of continuous functions @i(x)(i = 1,...,i0)
with connecﬁed and mutually disjoint support such that

i

It
MO

d(w(x)) Qi(x) (5.4)

-
I
—

and
¢i(x) = ci - v(x) for x € supp ¢i

1,0
for some constants Ci. Since v € W' (R) it follows from a standard

result (see for instance [14, Th. al, p. 50] that ®(w(.)) € Wl’q)(Q) and

- gradv in {x: w(x) > 0}

grad o(w) =

0 elsewhere

Next we show that @(w(-)) € Wl':]° () and that

-wgradv in {x: w(x) > 0}
grad @(w) = (5.5)

0 elsewhere.

To do so we first prove that @(w(-)) is a Lipschitz continuous function.
) 1, )
Then, by Rademacher's theorem [19], ©(w(:)) € W' (Q) as well. Let

hwll < D. Then, for X # X, € Q, we have that
L (Q)
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w(xz) w(x.)
|@(W(X1)) - w(w(xz))l = | I m'(S)dsl.f D | I @' (s) ds
w(xl) w(xl) s

=D |¢(w(x1)) - ¢(w(x2))| < C dist (xl,xz)

since ¢(w(-)) is Lipschitz. Thus @(w(-)) is Lipschitz. It follows from
[14, Lemma A.4, p. 63] that grad O(w) = 0 a.e. in {x: w(x) = 0}. Let
x € {x: w(x) > 0} and let U be a neighbourhood of x where w(x) > 6 > 0.

1,
Then, by (5.4), w €W (U) . Thus
grad ©(w) = @' (w)grad w = w grad &(w) in {x: w(x) > 0}

and (5.5) follows.
Let @y € Cz(ﬁ) with 9n/9v = 0 on 3Q. Then, by (5.5),

I (p{w) An - wgradvgradn) = - f (gradp(w) + wgradv)grad n = 0.
Q Q

Thus w € E.
Next we show that E ©€ S. Let g € E and suppose that q £ S. Then, by
Lemma 5.3, there exists a w € S such that w-q changes sign in a connect-

ed subdomain U < Q in which w,q > 0. Since q € E andw € S € E, it fol-
lows from (5.1) and Th. 4.1(ii) that

I lg-wl | T = |lu(t;q) - u(t;w) |} 1 < |lg-wll 1 r t> 0.
L () L (9) L ()

Thus we have obtained a contradiction and q € S.

REMARK 5.4. When N = 1, Th. 5.1(i) follows at once by integrating the

differential equation (see [4]).
PROOF OF THEOREM 5.1.(ii). We define the w~limit set

w(uo) = {w € LI(Q): there exists a sequence t o such that

u(tn) - w in LI(Q) as t - o},
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By Proposition 3.2, the set b(t;uo); t > 1} is precompact in C(2) (and
hence in Ll(Q)). Thus w(uo) is nonempty and w(uO) cc@.

Let g € w(uo). We show first that q satisfies (5.2), then that q € E,

and finally that w(u,) = {ql}.

Setting ¥ (x,t) = 1 in Definition 3.1, we find that

It

[ u(t;u)) fu for all t > 0
Q -

and (5.2) follows.

In order to show that g €'E, we argue by contradiction: suppose that
q € E. Then, by Theorem 5.1(i), g € S. Thus, by Lemma (5.3), there exists
a function w € S such that g-w changes sign in a connected subdomain

U C Q in which g,w > 0. We use w to define the functional V: Ll(ﬂ) -

[O'w):
1
V(u)=||u—w||1 , W ELT(Q).
L (Q)

Since w €‘E, it follows from Theorem 4.1(i) that the solution u(t) of

Problem P satisfies

V(u(tl))‘f V(u(tz)) for all t, >t > 0.
Thus V is a Lyapunov functional for Problem P. Since u € c([0,®): LI(Q))
and V is continuous, it follows from [5, Prop. 2.1 and 2.2] that u(t;q)
€ w(uo) and that V is constant on w(uo). Hence

V(u(t;q)) = V(q) for all t > 0. (546)

On the other hand, since q and w € c(Q), it follows from the choice of

w and Theorem 4.1(ii) that

V(u(t;q)) < V(g) for all t > 0
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which contradicts (5.6). Thus g € E.

Finally we show that w(u,) = {g}.
Suppose that q € w(uo) and that u(tn;uo) -+ g as tn - o and u(sn;uo) - E

as s - < where the sequences {tn} and {sn} are chosen such that s <t

for all n > 1. Then, using Theorem 4.1(i), we find that

| lq-g! | = lim llu(t_j;u) - qll <
l@ o n’ 0 o T
< lim llu(s_;u)) - qll = 0.

Thus ?;' = q, which completes the proof of Theorem 5.1.

THE DIRICHLET PROBLEM
In this section we show how the results about Problem P can be extended

to the case of homogeneous Dirichlet boundary conditions. We consider

the problem
u = AP(u) + div(ugradv) in @ x®r"
() 3 u=0 on 3 xR"
u(x,0) = uo(x) in Q.

We define a (generalized) solution u(t;uo) of Problem P_ in a similar

D
2'1((-2 ) such that

4 =0 on 9Q x]R+. The Propositions 3.1, 3.2 and 3.3 as well as Theo-

way as for Problem P, taking testfunctions + € C
rem 4.1 remain valid in the case of Problem PD. In particular
u(tsug) € c(®) and u(t;u,) =0 on 3Q for t > 0. (6.1)

Let the set of steady-state solutions, E_, be defined by

D

By = {qg€c@®: q>0 and [ (©(q)An - qgradvgradn) = 0
Q

for all n € Cz(ﬁ) such that n = 0 on 3Q}.

LEMMA 6.1. Let E be defined as in section 5. Then

E, € E.

D
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PROOF. Let g € E_. Then

D

u(t;q) = q for t > 0. (6.2)

Let ﬁ(t;q) denote the solution of Problem P with initial function gq.

Since, by (6.1) and (6.2),

~ +

u(t;q) > u(t;q) =qgq=0 on 3L x R ,
ﬁ(t;q) is a supersolution of Problem PD. Hence, by (6.2),

~ . +

u(t;q) >q in @ x R . (6.3)
On the other hand we have that

f Wtigrax = [ qax, t > o.
Q Q

Combined with (6.3) this yields u(t;q) = q for t > 0. Thus q € E.
We define SD by

Sy, = {q € s, such that q = 0 on 39},
where S is defined by (1.1). In what follows we prove the following

theorem.

THEOREM 6.2. Let the hypotheses H1-H2abc-H3-H4 be satisfied. Then
(i) ED = SD;
(ii) Ej contains a maximal element Qax’ i-€-a2q, tnQ for any
q € Eyi )
(iii) There exists a function q € Ej such that u(t;uo) - g in C(R) as

t & oo,

If in addition Uy S A then q satisfies - é qdx = é u,dx.

PROOF. (i) By Lemma 6.1 and Theorem 5.1(i), ED c S. Hence»ED c SD' The

proof of the inclusion SD c ED is identical to the proof of S € E, given

in section 5. Thus ED = Sp.
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(ii) Let € > |lvll _  be constant and let w € S be defined by
L(Q)

d(w(x)) =C - v(x), x € Q.

Then w > 0 in § and it follows from the definition of the set S, that
q <w in Q for any q € SD' Hence, by (i),

g <w in @ for any q € Ej- (6.4)

Since w € S = E, w is a supersolution of Problem PD. Hence the solution

u(t;w) of Problem P_ is nonincreasing in t and we may define

D

0 <p(x) = lim u(x,t;w), x € Q.
t-0

By (6.4) and the comparison principle
q <p in Q for any q € Ej. (6.5)

Below we prove that p € ED. Then the result follows at once from (6.5),
with qA x = P. . )

Let n(x) > 0 be a smooth testfunction on Q such that n = 0 on 3Q.

Then u = u(-;w) satisfies

[ utyn= I wn + ff (9(u)An - ugradvgradn) .

Q Q o,
Thus
%E u(t)n = § (@(u(t))An - u(t) gradvgradn) . (6.6)
Q Q

Since u(t;w) decreases to p as t = o, the left~hand side of (6.6) is non-

positive and there exists a sequence tn - o such that

d
*a:- 0 u(tn)n - 0 as tn - o (6.7)

On the other hand, the right hand side of (6.6) converges to

f (p(p)An - pgradvgradn) as t s
Q
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Hence, by (6.6) and (6.7),

f ©(p)An - pgradvgradn) = 0O
Q

and thus p € ED.

(iii) . Given an initial function UO, one can find a function

w € S such that uo‘f w in QUsing the above argument and the comparison

principle, we find that

limsup u(x,t;uo) f‘qmax(x)’ x € Q.
-0

Hence
q € w(uo) implies that g f_qmax. (6.8)

In order to prove that u(t;uo) stabilizes to equilibrium, we use the
same arguments as for the proof of Theorem 5.1 (ii), but now based on
the fact that sDisacontinuum between zero and qmax’ on (6.8), and on
the contraction property of u. If furthermore u, < Do’ then the solu-

tion E(t;u ) of Problem P satisfies E(t;uo) f-qmax for t > 0 and in

0
particular u(t;uo) =0 on 32 x R . Thus u(t;uo) coincides with the so-

lution u(t;uo) of Problem P_ (see Lemma 9.4 below). Then, if

D
g = lim u(t;uo), we have, by Theorem 5.1 (ii)
t—00

f qdx = f uodx.
Y/ Q

PART IT

EXISTENCE AND REGULARITY

In this section we prove the existence of a solution of Problem P which
satisfies~ this problem in a somewhat stronger sense than that of De-
finition 3.1. We first recall some usual definitions and then give an
alternative definition of a solution, involving the gradient of @(u).
The existence proof itself is based on the study of uniformly parabolic

problems which are related to Problem P.
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1
We denote by L2(O,T; H (Q)) the Hilbert space with inner product

(u,v) 2 = II uv + ff gradugradv

t?o,mmt (@) o o

and by v, (QT) the Banach space with norm

2

jul
V2 (QT)

= ess sup f u2(t) + ff (gradu)z.
0<t<TQ O

DEFINITION 7.1. We say that u: [0,) - Ll(s’l) 18 a weak solution of
Problem P if it satisfies

(1) ue€cio,tl; th@) n L Q) for all £ € (0, ;

(ii) @(u) € V2(Qt) for all t €t(0,°°);

(did) !g u(t)P(t) = }; u ¥ (0) + [ {utl,vt - (gradp(u) -ugradv) grady}
for ail v € 1@ and a11%%€ (0, .

LEMMA 7.2. A weak solution of Problem P is a generalized solution as
well.

PROOF. Take y € c2’1(§) with %‘% = 0 on 990 x ]R+ and integrate by parts.

In what follows, we show that Problem P has a weak solution. To that

purpose, we consider the problems

~

u_ = Ap_(u) + div(ugradv,) in Q. = Q X (0,1]
ov
{-—Etp(u)+u——e-=0 on 3Q x (0,T]
v TE FRY) !
L u(x,0) = uOs(X) in Q

where

o, €Ccm®h, v (0) =0, ©!s) >cle) >0 for s € [0,K]

(Lp;](s))'f_ (tp—l(s)). for s € [0,9(2K)] where K is theuniform L -bound
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L}
of ue that we find in the proof of Lemma 7.4 below and ws and ws con-

verge to ¢ and @' on all compact subsets of I2+ as €V0,

where

vECR, v Il , _ < C for some constant C > 0,

c(Q)
v 1 =, < Ilvll and |lv_ - vl - 0 as €40
€ C(Q) A € HI(Q)

and where

uy, € CT@, 0 <uy, < lugll,, , uy, satisies the compatibility

L(R)
9 Bve
condition 55 wé%uOS) t Uy Ty 0 on 3Q and IIqu - uOII 5 -0

L7(Q)
as £+40.

Since it is standard that one can construct the approximations ws of the
function @ having the properties indicated above, we do not do it here.
Oon the other hand we construct explicitely in Appendix A approximations
Ve and Use of the functions v and uy-

To begin with we give a comparison principle, which turns out to be
basic in the study of Problems P8 and P.

LEMMA 7.3. Let u, and u, € cz'l(éT) be two solutions of Problem P,

1

with initial functions u

01 2

02° Then ul(t) < u2(t).

PROOF. Let z = u, - u,. Then z satisfies the linear problem L8 which

1 2
we discussed in section 4 and Lemma 7.1 follows from the comparison

principle for that problem.

Before proving the existence of a solution of Problem P, we first give

some a priori estimates.
LEMMA 7.4. Let ug € C2’1(§T) be a solution of Problem P.. Then

0 5.u8‘5 K in QT (7.1)

where the constant K does not depend on T.
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PROOF. We first note that zero is a solution of Problem Pe. Consequent-

ly, since w _ > 0, we have that u, > 0. In order to find an upper bound

(o] €
for u., we now search for a large enough stationary solution of Problem
P. Let a, = llu, || . We define
0 0 o
L ()
s ., s @' (1)
- T
¢ (s) =) (0 dt and ¢ (s) = I £ dt for s > a_ .
%o %o

The function

-1
B =0 (Hvll -v.)
e 0.e L(Q) &

is a solution of Problem Pe and it is such that

-1

<P =%,

u, < (ivil .

L ()

Also, since Qé converges uniformly to ' on compact subsets of ni+ as

converges uniformly to ¢ on compact subsets

€¥0, we have that ¢
+ 0,8 0
of R as €¥0. Thus there exists C > 0 such that

<B, < o1 (vl ) +cC

u
eE—0 L (R)

(0]

which completes the proof of (7.1).

LEMMA 7.5. Problem P, has a unique classical solution u, € C2+°G§r)
for each o € (0,1).

PROOF. See [16, Th. 7.4, p. 491].

In what follows we give some more a priori estimates for u, .

LEMMA 7.6. Let 0 < t-T < t < T. Then there exists C(t) > O such that

t
J f(gradwe(ue))z‘g c(t).
t-1

In particular the constant C(t) does not depend on T or on &.



VII. 22

PRCOF. We multiply the differential equation by ws(u ) and integrate by

s
parts over Q X (t, t+1). This yields, setting Fe(S) = I ms(r) dat
0
t+T 2
[ F ) (evn) - [ P (u)(0) + [ [ (grad @ (u)
Q Q t Q
t+Tl
=- [ [ grad v_ u_ grad ¢_(u).
t 0 € ¢ £E'€

Since 0 < u, < C, we deduce the result by applying the Cauchy-Schwarz

inequality.

Next we give an estimate which is useful for the proof of Théorem 4.1

(ii) ; we adapt a proof from Gagneux [10].

LEMMA 7.7. We suppose that either ®(s) = stf' or Av € Ll(Q). Then

Mo, (a) 11 <C(1), 0<T<T. (7.2)
L (T-7,T;H (2))

The constant C(t) does not depend on T.

PROOF. We first show that for 0 < t-t < t < T, the following estimate

holds

t
I J oy (u) (graa us)2 < c(1). (7.3)
t-1 Q

For that purpose we multiply the differential equation by u, and inte-

grate by parts; we obtain

1, 2 t 2
) - 5[ ul(t-T) + [ ©} (u,) (grad u,)
Q t-t Q

t

1 2
2 Q €

F 2

1
f f grad Ve grad(ius).
t-1T Q

2
When (i): @(s) = 557 we have
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t
[ [ grad Ve grad(iuez)f_ cVt | |<D(ue} I < cvt
t-T Q L (t-1,t;H (Q))

by Lemma 7.4; and when (ii): Av € Ll(Q) , then

t 9 . ui
J J ograa ve grad(§u€)= f f=

t av, t
- Av, — 2 c(1)
t-1 Q t-T 3Q t-1 Q

which completes the proof of (7.3).

In order to prove (7.2) we multiply the differential equation by
(s-t+1) ((,os(us))t and integrate by parts. We obtain

t
. 2,1 2
t{T sz (s=t+T) @f (uy) (ug)° + 3 {2 (grad ® (u,) (t))
(7.4)
t
= - t{T {2 (s—t+T)u8 grad vs(grad (pe(ue))t.

Integréting the right-hand side of (7.4) by parts and applying the

Cauchy-Schwarz inequality we obtain

t
IrES| = |+ S [ grad ve(ug + (s-t+7) u

) grad @_(u)
Q t-T £ ¢

€t

-1t [ grad v, u (t) grad @ (u.) (t)
f

< Vrtllgrad v_I1| Ho_(u) 1]
- % ¢ Y Le-r.eEN @)

t
[u_11 + llgrad v_I| ([ [ (s-t+1) @' (u)
& L°°(QT) €@ t-t @ e ¢
2%  F 2.y
(uet) )7« f f (s=t+T) tD;: (ue) (grad ue) )

t-7 Q



VIT. 24

) 2
[u |1 ( [ (grad ip_(u) (£))“) 2
£ LZ(Q) € LOO(Q) a £ ¢

+ 1 |lgrad v_I| s

This inequality combined with (7.4) implies that

t
[ J (grad @_(u))? < c(1)
t-T Q € € -

and the proof of Lemma 7.6 is complete.

We shall need a result of DiBenedetto [7, Th. 6.2] to deduce a strong
estimate, namely the equicontinuity of u.
LEMMA 7.8 (i). For every T > 0 there exists a continuous nondecreasing
function w (2), w (0) =0 such that
lu_ (x,,t,) - u_(x,,t,)) ] <w_(lx,-x,] + It -t I;2
A i | € 72727 =1 1 72 1

2)-

For all (xi,ti)‘e ax [t,r], i=1,2.
The function w_ does not depend on T and t.
(i) If u, € C(R), then {ugyis equicontinuous on @ x [0,T].

We are now in a position to prove the existence theorem.

“HEOREM 7.9. We suppose that H1 and H4 are satisfied and that

v € wl’m(ﬂ). Then there exists a weak solution of Problem P which

satisfies
u <
0 <u<c on QT
and 18 continuous in any set Q x [t,7] with © > 0. The constant C

crd the modulus of continuity do not depend on T.

PROOF. From the estimates above we deduce that there exist a function
u € ﬁw(QT) N c(@ x (0,T]) and a subsequence of {ue} which we denote
again by {ug} such that
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(1) u, - u uniformly on all sets of the form & X [1,T] with T > 0 (by
Lemma 7.8);
(ii) u > u strongly in L2(QT) and a.e. (this is a consequence of (i)
and the uniform bound of u8 in L (Q));
(iii) (p (u ) = Y(u) weakly in L (0,T; H (2)) {(this follows from Lemma
7.6; one checks that the limit is @(u ) by observing that by (ii)

and Lebesgue s dominated convergence theorem w (u ) & @(u) strong-

ly in L (QT)).

( iv) u, grad Ve *u grad v strongly in L (QT).

It remains to check that u is a solution of Problem P. Is is easy to
deduce from (i) - (iv) that u satisfies the intergral equation in De-

finition 3.1 since u_ satisfies a similar equation. Also u € C((0,T];

3

1 ,
L (). In order to show that |lu(t)!| is continuous at zero we use

Ll
the contraction Theorem 4.1 (i). Let (Q) be a solution of Problem

P with initial function u08 obtained as a 11m1t of solutions of Problem

Ps. Then

u(t) - u.ll < llu(t) -a_(t) 11 + 119 (t) - u. 1l
' 0Ll T € Ll e 0t 1l

+ lu, - u.ll .
O¢ 0 Ll(ﬂ)

. 1
Let n > 0 be arbitrary. Since u,, converges to uo in L (Q), one can fix

€ such thatlhho8 - uOII < n/3. Then by Theorem 4.1

I lu(t) - %‘e(tm

1
L (p) —
1 n/3 Finally we deduce from Lemma 7.8 (11) that
L)

one can f1nd t such that 11a_(e) - u, 11 < n/3 for all t < t..
€ Oe LI(Q) - -0

REMARK 7.10. If the function ¢ is defined on R with ®'(s) > 0 for

s < 0, the condition u, > 0 is not necessary to obtain the results of

section 7.
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8. UNIQUENESS OF THE SOLUTION

In order to show that the solution of Problem P is unique, we apply a
method due to Kalashnikov [13] which consists of comparing an arbitrary
solution of Problem P with a solution obtained as the limit of a se-
quence of classical solutions of the parabolic equation in Problem P.
We do so below and for technical reasons which will appear later we im-

pose the condition Av > -M in the sense of distributions.

We approximate Problem P in two steps, first by the problem

[ ur = Ap(u) + div(u grad v) in Qr
9 oV A -Mt
(Pn) < ss-w(u) tu s==—e on 30 x (0,T]
(x,0) = u_ (%) := u (x) + = in Q
Lu ) = Yon T 0 n in

which in turn we approximate by the problem

fut = Mp(u) + div(u grad vj) in QT
v
d j_a -mt
(Pnj)l v @(u) + u v -5 © on 30 % (0,T]
u(x,0) = u. . (x) + 1 in Q
T Yog n *
where
v, € dw(ﬁ), [ v, 1] < C, for some constant C, > 0,
5001 - 26 1
Cc ()
Av, > -M and |lv. - v|| 1 =0asj-o
J H(Q)

where the constant A is such that A Z-Cl and

u € C2+?§), 0 <u . <C, for some constant C2 > 0,

03 03 2

u satisfies the compatibility condition

03
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1 3uoj v, 1 ij
! =) T : —_ (e - =
@ (uoj D) 5ot —3% Y03 + o (35 A) = 0 on 39
and is such that |lu . - u || 20 as j o,
0] 0 L2(Q)

We show in the appendix that one can construct such functions vj and

uOJ B

We first give uniform upper and lower bounds for the solution unj of
Problem Pnj; the fact that unj turns out to be bounded away from zero

ensures that Problem Pnj is uniformly parabolic.

2,1 = .
LEMMA 8.1. Let U €c Q) be a solution of Problem Pnj' Then, for

n large enough,

1 -Mt =
Te = unj(x,t) < C for all (x,t) € Q..
where the constant C does not depend on time.

The main tool of the proof is the following comparison principle which

is an immediate generalization of Lemma 7.3.

LEMMA 8.2. Let u, and u, € c2'1(§T) and assume that uy and u, are posi-
tive on Q;. If

Am(ul) + d:Lv(u1 grad Vj) - Uy Z.Aw(uz) + div(u2 grad vj) - Uy O

5 ij 3 avj
5 (O(ul) + 5y < 3v (9(112) + u2 3y °or Q2 x (o,T]
u, (x,0) < u,(x,0) in Q.
Then
ul-f u, n QT.

-Mt

=R
(1]

PROOF OF LEMMA 8.1. We first observe that the function s (x,t):=

is a lower solution of Problem Pnj since it satisfies
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- . - -_1 -Mt .
Ap(s ) + div(s grad vj) s, = gh e (Avj + M) >0 in QT
ov —Mt v,
3 - - j 3j A -Mt
< 5;—@(5 ) + s - v SD e on 3 x (0,T]
T(x,0) =L <u(x) ++ in 0
s (x, =5 % uOj b'e o in Q,

1 -M
Thus, by lemma 8.2, u Z_E- . Next we seek an upper solution in the

form
s+(x,t) = ®-1(C - vj - e_Mt h(x))

where h is a smooth function such that 1 f_h 5.2 and the constant C is

choosen large enough so that

C +1<<1>'1(c-c - 2)

2 1

and hence
+ 1
s (x,0) > U, (x) + = for alln>1, j > 1.

Thus we must choose the function h such that

ap(st) + aiv(s® graa v,) - s, <0 in g (8.1)
and
9 + ov jJ A -Mt
5 Qs+ st 55 > 5 €  on 3 x (0,Tl. (8.2)
We rewrite (8.1) as
div [s* graa(e(sh) + vj)] - s: <0

+
and we substitute the expression for s to obtain

¢-1(C-v.—e—Mth)

-1 -Mt
-div]® - v, - < .
div[o “(c vy - e h) grad h] < Mh(x) vy

m'[é—l(c-vj—e h) ]

This inequality is satisfied if
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lAhl + lgrad hl| + lgrad hl2 <cC in QT (8.3)

3

for a sufficiently small constant c3. On the otherhand condition (8.2)

is equivalent to

-Mt _-1 -Mt oh A -Mt
-e ® " (Cc - V:.| - e h) K?—; e on ¥ x (0,T]
which holds if
dh A
- T (8.4)

53'3-(c2+1)n ‘

Let h be defined by Ah = -1 in @, h = 0 on 3R, and set h = 1 + oh where
o is a positive constant such that dﬁ_ﬁ 1 and (8.3) is satisfied.

Since %% < 0 on 30, (8.4) is satisfied . for n large enough. Thus we

have found a function h such that s+ is a supersolution. It follows that
unj §.s+.§ % 1(C) in QT.

By the method of section 7 one can obtain further a priori estimates

for so;utions of the problems Pnj and Pn and use them to show that a
subsequence {unj} of solutions of Problems Pnj converge to a generalized
solution of Problem P as j = = and then that a subsequence {u;} of so-
lutions of Problems Pg converge to a solution of Problem P. In addition,
following DiBenedetto again, we find that the sequence {unj} is equi-
continuous. In particular one can show that there exists a solution u
of Problem P and a subsequence of ﬁhe solutions u of Problems Pn (which
we denote again by {un}) which converges to u as n = .,

Below we use this construction to prove the following result.

THEOREM 8.3. We suppose that the hypotheses H1-H2a-H4 are satisfied.
Let u be the solution of Problem P obtained above and let u (resp. u)
be a subsolution (resp. supersolution) of P with initial function 4,
(resp. uy). Then for every t € (0,T] we have that

[ @ -uent < f @ -uy? (8.5)
Q 1Y)
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and

[ o - wenT < f -’ (8.6)
Q f
COROLLARY 8.4. If the hypotheses H1-H2a-H4 are satisfied, Problem P has

a untque solution.

COROLLARY 8.5. Let u(t) and u(t) be respectively a subsolution and a
supersolution of Problem P with initial functions u, and GO such that

u. < u. Then u(t) < u(t) for every t € (0,Tl.

—0 0’

PROOF OF THEOREM 8.3. The proof follows closely that of Diaz and Kersner
[6]. et ¥ be a test function. Then

J @-uw)w oy (o -é (uy = uy ) ¥ (0)

Q
t
jg gIz { - u)(t) ¥, + (@@ - ©u)idy - (u- u) grad v grad y}
t
R fe™y
0 aQ
t
=< é é (u-mu) {wt + A A - grad v grad v}
where

1
A (x,t) = [ © (Ou(x,t) + (1-0) u_(x,t)) do.
n 0 - n

1 - .
Since uniz Y e Mt, there exists €(n) > 0 such that An > &(n) > 0. We

now define a sequence of smooth functions Anj > &(n) such that

. 2 .
Anj - An strongly in L (QT) as j = oo,

Let wnj be the solution of the problem

wt + AnjAw - grad vj grad ¢ =0 in @ x (0,t)
AW _

(©,) 1% =0 on 39 x [0,t)
P(x,t) = x(x) in @,
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where x is a smooth function such that 0 _<_ X f_ 1. As a consequence of
the maximum principle we have that 0 < wn 3 < 1. We set ¢y = 'pnj' Then

+
J m-wu)x= sfz(_qo-uoﬁ)

& (8.7)

+ sfz (3_ - un) {(An-Anj)Albnj - (gradv - gradvj) gradwnj}.

O ¢t

In what follows we first keep n fixed. In order to show that the second
term of the right-hand side of (8.7) vanishes as j = =, it is sufficient

to prove that there exists a constant C(n,t) such that

O ¢t

t
f (graa ¢ )% <c(n,t) and [ ] @b )% <cm,b. (8.8)
nj - nj —_—
Q 0Q

These estimates follow from multiplying the differential egquation in
Problem Lnj by A\bnj and integrating it on @ x (0,T). For details we re-
fer to Aronson, Crandé.ll & Peletier [3] where a similar calculation is

made. Inequality (8.7) together with (8.8) yields

+
{2 (u(t) - u_(£))x _<_sz (8y = uy )

for ail smooth X such that 0 £ X < 1 and hence, since uOn - u, in c(R)

and u - uin C(QT) we have

J - umx < @ - e (8.9)
1Y)

«

Next we consider a sequence of smooth functions Xm such that ’xm conver-
ges in 12(2) to a limit X defined by
1 in {x | u(x,t) > u(x,t)}

X(x) =
0 elsewhere

Taking X = xm in (8.9) and letting m - o vield (8.5). Finally one can

show (8.6) in a similar way.
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SOME REMARKS ABOUT THE DIRICHLET pROBLEM
In this section we shall discuss the existence, uniqueness and regulari-

ty of solutions of Problem PD' which we introduced in section 6.

THEOREM 9.1. (Existence + Regularity). Let H1 and H4 be Satisfied and
1, . . . .

let v € W '7(Q). Then Problem P, possesses a solution u which is uni-

formly bounded in Q and which is continuous in any set ¢ x [t,T] with

T > 0. The modulus of continuity does not depend on T.

The proof of Theorem 9.1 is quite similar to the proof of Theorem 7.9

and we omit it.

THEOREM 9i2. (Uniqueness + Comparison Principle) Let H1, H2a and H4 be

satisfied.

( i) Problem P, possesses at most one solution.

(ii) Let u(t) and u(t) be respectively a subsolution and a supersolution
of Problem P with respect to the initial functions u, and GO' If

u <u in Q, thenm u(t) <u(t) <n Q for t > 0.

-0 0

In order to prove Theorem 9.2 we proceed as in section 8. Let u be a
solution of Problem PD which is obtained as the limit function of a

sequence {un}, where u. is the solution of

u, = Ap(u) + div(u grad v) in Q
-Mt +
(PD,n) {u= (1/n)e on N X R
u(-,0) = U, + 1/n in Q,
N
such that
(1/me ™ <u <c in Q. (9.1)

Then it is sufficient to prove that for any t > 0

+
[ fut) - we}x 5{2 (wy = ug)” (9.2)

Q
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and
[ {w - st <] wy-a97, (9.3)
Q Q

for any x € dw(ﬁ) with compact support in @ such that 0 < x <1 in Q.

The proof of (9.2) follows the same lines as the proof which we gave in
section 8. However, the proof of (9.3) requires handling a boundary term
which was absent in section 8. This aspect we discuss below.

Let +nj be the solution of

r+t + Aanw - grad vj .grad4 =0 in @ x [0,t)
(LD){ 4 =0 on 39 x [0,t)
L“I"(' £) = X in Q,

. 2
where Anj - An in L (Qt) as j =+ o, with
{o(u) - o}/ (u - v ifu #1
m'(un) if u = u,

ind where vj is as in section 8. Then (cf. (8.7))

t ot
= - 1 -Mt nj
[t -amix<f @ -a)t-ffoeEe™ 2
Q n Q On 0 0 30 n v
t - -
+ g é (un - u){(An-Anj)Adhj - (grad v - grad vj)grad +hj}' (9.4)

As in section 8, the third term at the right-hand side vanishes as j=*

for fixed n. In order to handle the second term, we need the following

lemma.

LEMMA 9.3. Let +nj be the solution of Problem L If 0 <ée(n) < Anj <K
in Q¢ and |grad vjl 5_K2 in Q, then.
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,Z),-’.;n'
53—1 > - C/e(n) on 32 x [0,t],

where C depends on Q, X, K, and K.

The proof of Lemma 9.3 is lengthybut fairly standard. For completeness,

we give it in Appendix B.

Since @' (0) = 0 and Q" (s) > 0 for 0 < s < SO’ we deduce from (9.1) that

1 -Mt 1 -Mt, .
A > @(n e )/(n e ) in Qt
if n is big enough. Since we may assume that Anj Z_An, it follows from

Lemma 9.3 that

e Mt on 30 x [0,t).

S
]
510

ol > -

Hence (9.3) follows if we let first j = «© and then n - o in (9.4).

Finally we give a result which we used in section 6.

LEMMA 9.4. If the solution u(t;ug) of Problem P satisfies u(tiuy) =0
on 3Q for any t > 0, then u(t;ug) 18 a solution of Problem Py.

PROOF. Let + ECZ'l(Q) with + = 0 on 38 x RY. Then u(t;uo) satisfies
the integral equality (iii) of definition 7.1. Integrating by parts

yields
t > t
[ udw) = [ a0 - [ [ow 5o+ [ lowad + ub
Q Q 0 9Q 0 Q

- u grad v grad +}.

+ .
Since @(u) = 0 on 90 x R , the second term at the right-hand side

vanishes. Thus u(t;uo) is a solution of Problem PD.
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APPENDIX A

In this appendix we collect various approximation results which are used

in this article.

Al. APPROXIMATION OF v
LEMMA Al. Let v € W.'™(Q). Then there exists a sequence {v }c @

such that ||v€||c1(§) <c, |lv HC(Q) < llvlle(m and
||v€-vll1 - Q as &€Y0.
H(Q)
PROOF. Let @ D Q with dist(ﬂ,a?l‘) > 0. Then one can extend v by a func-
tion v € wl'w(ﬁ) such that v = v in @ and | 31| ~ Sl o . we
define the function L” (@) L (%)
0 if Ixl > 1
P(x) =<
Cexp{-——-l—z——} if Ixl <1
L !x’ -1
where C is a constant such that I P(x)dx = 1. Let
_—
_N X~ ~ ~
vs(x) =t f p(—y-e ) .v(y)dy for x € @,
[+
In particular note thatl Iv, ”C(S’z) < llvll . Let us suppose that

£ < dlst(Q,BQ) Theén it is a standard resu&t (see for instance Kufner

et.al. [15])" that

-N -
grad vs(x) = I p(x—ex) grad v(y)dy for x € Q. (A.1)
[
Then |lgrad Ve I < llgrad vl and |lv_ - vi| -+ 0 as &+0
c(R) @) € Wl'p(ﬂ)

for every p E [1,0).

LEMMA A2. Let v € W '™() be such that Av> -M in the sense of distri-
butions in % > Q with dist(Q,3R) > 0. Then there exists a sequence

{v,} € cT(@) such that llv Il | _ <c, Av, > -M in Q and

llv, = vll , = 0as es0. c ()
H (Q)
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PROOF. In view of the proof of Lemma Al, it remains to show that

AvC > -M. From (A.1) we deduce that

Ave(x) = e-Jq< Av(y), p(fgl) > for x €Q

where <., . > denotes the duality pairing between Hé(ﬁ) and H_I(E). In

particular, since Av > -M we have that for x €

- - -N
Ave(x)‘z -£ NM f E-S-}E-Ez--)—-dy =-£ M f p(%% du = -M
5 R
which yields the result.

A2. APPROXIMATION OF uo
LEMMA A3. Let uy € L™ (Q) withu, > 0 a.e. and let v, vy € c(?) be such

that |lv_I1 , vt < C. Then
¢ @ @
( 1) there exists a sequence {u, .} < (R such that 0 < uye < Hagll
Uoe satisfies the compatibility condition L @
Buo€ oV,
©® (uo,s) 5y T Ye 5y = 0 on 3 and ”uOs' ull , = 0as e&v0.
L (Q)
o 00 =
(ii) there exists a sequence {uoj} < C () such that 0 < Ups <G5 Ugy
satisfies the compatibility condition
1 Buoj avj ij
P gyt R Byt ey Yoy Yyt A/ =0
where A is a given constant and IIuO. - uoll 5, ™ 0asj e

L (R)

PROOF. Since (i) is practically a special case of (ii) we only prove

(ii) . We define
~ .n . .
Ups (1) = 3 gIzomx-y))uO(y)dy

and note that 0 <u_. < |lu.ll . Let B be a positive constant. It
= 0= 0 g
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follows from Friedman [9, p. 39] that one can find a function wj €@

ow. -1 ov. ov. .
such that w, = B and -a-v—J- = = (a lg+ (—5-\-’-'1 - A)/n). Also,
I3 0 @'(B+n )

since grad Vj is bounded in C(Q) uniformly in j we have that

- < C. Si . i 0. i ist(
lle“c(ﬂ) < C. Since B > 0, there exists QJ c Q with dlst(Qj,BQ) >0

such that wj > 0 on Q\?Z'j. Finally we choose Qlj c sz < @, such that

dis(,,,0%) > 0, dist(Q,,,30,,) >0, @, :‘ﬁj and meas (M) < 1/3.
We define
f%;j(x) if x € 0
I%jm)=4 %bd%ju)+(L{ﬁx”wﬂx)ifx€$§fﬂu
wj(x) if x € Q\sz

~

where Ej is a Cm function such that

r
1 if x € Q.
13
E.(x) = J [o,1] if x € Q..
3¢ ' 23 13
0 if x € N, .
L 23
We have that o3 € (%) . also
I, - ull <llu, -3 Il + 11, - ull .
03 0 12(q) 03 03 '12(q 03 012
o, - u.ll can be made arbitrarily small by choosing j large
0j 0 2 !
L7(9)
enough.
~ 1
The term | luoj - U I lLZ(Q) is bounded by -j-( I luol IL?(Q) + Ilel |L°°(Q))
which tends to zero as j = oo,

APPENDIX B

Here we give the proof of Lemma 9.3. It is a generalization of the

proof in the case N = 1, which is given by Diaz and Kersner [6].
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PROOF OF LEMMA 9.3. Since 9 is smooth,  satisfies the exterior svhere
condition, i.e. there exists a number R1 > 0 such that for anyxO € 3Q

there exists a point x, € R ™\0 such that
B\xl;Rl) neao-= {xo}

where B(xl;Rl) = {x € I{n : Ix—xll < Rl}‘ Since X has compact support

in 2, there exists a number R2 > R1 (which does not depend on xO) such

that
Xx=0inu=8nN B(xl;Rz). (B.1)

We fix xO € 32 and we define

wix,T) = +nj(x,r) + d(lx-xol) in U x [0,t].

Here the function o € Cz([Rl,Rz]) will be chosen below such that w

attains its maximum on U x [0,t] in {xo} x [0,t]. We assume that
o' <0 and o" > 0 in (R, R,). (B.2)
Then w satisfies in U x [0,t)

we + AnjAw - grad vj grad w >

> e(mo" (Ix-x, 1) + (K, Eii + K)ot (x-x, 1)

1

]
o

if we choose

1 e-Kr/C(n)’ R. < r <R

o(r) = Cle(n)K 1 2 <Ry,

where C1 is an arbitrary constant and K = KI(N—I)R-1 + K2. Note that
0 satisfies (B.2). Hence w attains its maximum on the parabolic boun-

dary of U x [0,t). On this boundary we have
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f w(x,t)

o(lx=x,1) + x(x) <o(R)), x €U

w(x,T) = o(lx-x,1) <0o(R)), x € 3U N 3, T € [0,t]

w(x,T) o(lx—xol) + +nj(x,r) <0(R) +1, x €N aB(xl;Rz),rﬂo,t]

LW()blT) G(Rl)r T € [Olt]l

where we used (B.1) and the facts that ¢'< U and 0 5‘+hj <1 in Q.. If

we choose

KRy /& (n)__KRy/e (), T

c, = k{e(n) (e

1
then
o(Rz) + 1 = o(Rl).

Hence

w(x,T) <w(xy,7) in U x [0,t]

and
2 >0 on {x,} x [0,t].
v — 0
Thus
E‘:%i >0'(R)) = -K{e(n) (1_e“K(R2-R1)/5(n)) -1 >

v

-K/¢(n) on {xo} x [0,t].

This completes the proof of Lemma 9.3
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On interacting populations that disperse to avoid
crowding: The effect of a sedentary colony

M. Bertsch', M. E. Gurtin?, D. Hilhorst', and L. A. Peletier'

' Department of Mathematics, University of Leiden, Leiden, The Netherlands
2 Department of Mathematics, Carnegie-Mellon University, Pittsburgh, PA 15213, USA

Abstract. An analysis is given of a model for two interacting species, one
mobile and the other sedentary, in which the mobile one disperses to avoid
crowding. The spatial distribution of the mobile species over the habitat, as
it evolves with time, is studied. In particular it is shown that a colony of the
sedentary species can form an effective barrier against the spreading mobile
species, and prevent it from entering certain parts of the habitat.

Key words: Population dynamics — dispersal — interacting species — spatial
segregation

1. Introduction

One of the first persons to propose a continuum model for the dispersal of
biological populations was apparently Skellam [14], whose assumption of random
dispersal led to the partial differential equation

p.=4p +o(p)
with p the spatial density and o(p) a function which represents the supply of
individuals due to births and deaths. (Here the subscript ¢ represents differenti-
ation with respect to time, while 4 is the Laplacian.) There are, however, many
biological species for which dispersal — rather than being random — is a response
to population pressure'. To model this phenomenon Gurney and Nisbet [6] and
Gurtin and MacCamy [7] introduced a model based on the equation

p=A4(p")+a(p),

with m = 2. The tendency of individuals to avoid crowding is reflected by the
nonlinear diffusion term 4(p™).

! Field studies and experiments demonstrating the effects of population pressure on dispersal are
discussed in detail by Okubo [9] and Shigesada [12]
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Recently, Gurtin and Pipkin [8] extended the theory of [6, 7] to include a
finite number of interacting biological groups’; these groups might consist of
different species or of different age classes of the same species. In the model of
[8] the densities p,, n=1,2,..., N, are related through the system

P =k, div(p,VU)+0,.(p1, P2, - -+ PN) 1)
in which
U=pi+py+---+pn

is the total density, while the coefficients k, are nonnegative constants. As is clear
from (1), the dispersal velocity for species n is —k,VU, so that each species
disperses locally toward lower values of total population; in this sense the
dispersal is a response to population pressure (cf. the discussion of [8] and the
references quoted therein).

In this paper we shall analyze, in some detail, a simple example of (1). We
consider two species, one mobile (k, > 0) with density p, = u, the other sedentary
(k,=0) with density p, = v; we neglect births and deaths, so that o, = 0, =0; and
we assume a one-dimensional habitat. Under these hypotheses the Egs. (1) reduce
to

u =[u(u+ v)x]x,
(2
v=1v(x),
where x designates the spatial coordinate.

In biological terms, the assumption underlying (2) is that the dispersal of
v-individuals — as well as the supply, due to births and deaths, of both species
— takes place on a time scale much longer than that characteristic of the dispersal
of u-individuals.

We shall suppose that both groups live in a finite habitat

N2=(-L1L), L>0,

that individuals are unable to cross the boundary of {2,

u(u+v),=0 atx==+L,t>0, 3)
and that initially the mobile species is distributed according to

u(x, 0) = uy(x), -Lsx<L (C))
Finally, we shall assume throughout that u, and v are continuous nonnegative
functions on 2 ={—-L, L]. ‘

In Sect. 2 we study the set & of equilibrium solutions of (2) and (3). In

particular, we show that & consists of a continuum of continuous functions: each
g € € is either a function which is positive on 2 and for which g +v is constant,

or it has intervals over which g =0 interspaced by intervals over which q +v is
constant (the constant may vary from interval to interval).

% See also Busenberg and Travis [3]. An alternative theory was developed by Shigesada, Kawasaki
and Teramoto [13]. A detailed discussion of this theory is given in [8]. See also our remark in
Sect. 4.
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Fig. 1. The initial distributions -L -a

In Sect. 3 we turn to the full initial-value problem (2), (3), (4). We define the
notion of a weak solution — a notion necessitated by the fact that solutions will
generally not be smooth — and we state three theorems: a theorem of existence
and uniqueness due to Bertsch and Hilhorst [2], a comparison theorem also due
to [2], and a stabilization theorem. The latter theorem shows that the solution

u(x, t) of (2), (3), (4) satisfies

u(-,t)>qe € ast->oo.
As a consequence of this result we show that when the mobile population is
sufficiently large relative to the sedentary population, the mobile species eventually

populates the entire habitat.

In Sect. 4 we consider the converse question: are there circumstances under
which the sedentary colony blocks the migration of mobile individuals? Here we
shall be interested in the following situation (Fig. 1): the sedentary colony is

localized around the center of the habitat, i.e.
v(x)=0 for0<a<|x|<L;
and initially the mobile species lies to one side of this colony, i.e.
uy(x)=0 for—a=sx<L.
We show that when

max U, < max v,
N n

mobile individuals do not reach the portion of the habitat that lies to the other side
of the sedentary colony; that is,
u(x,)=0 foras<x=<L,t=0.

Finally, in Sect. 5 we present a proof of the Stabilization Theorem.

2. Equilibrium solutions

We assume throughout this section that v# 0 is nonnegative and continuous on £.
Let g(x) be a time-independent solution of (2) and (3). Then, clearly

[9(g+v)T=0 on{,
q(q+v) =0 onaf,
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or equivalently (for q(q +v)’ absolutely continuous on £2)
q(g+v)=0 on{2

(prime denotes differentiation). This should motivate the following definition.
An equilibrium solution is a nonnegative function g on £ with:
(i) g +v absolutely continuous on 2;
(ii) g(g+v)=00n Q.
The next proposition gives a useful decomposition of the set & of equilibrium
solutions.

Proposition 1. Let

(]
Il
o5

Then
E=%, 0%,

with

& ={qe €. q+v>00on N}

& ={qe € q+v<ionQ}
Proof: Let g€ € and let 2 be a connected component of the set

{xe 2: q(x)+v(x)> b}.

Then ¢ >0 on 2, and (ii) yields

gx)+v(x)=c>0 on P,

with ¢ constant. Thus, since q +v is_continuous on 0, ? must coincide with its
closure, a possibility only if 2= or = . Since q belongs to &, or &,
according as ? = {2 or # = (J, this completes the proof.

It is clear from the proof above that

&, ={c—v: c=constant> 7}
(cf. Fig. 2a). The specification of &, is not so simple; we can, however, give a
complete characterization when the set
Q. ={xe: v(x)>c}

is connected for each ¢ €[0, 7). In this instance, if we let v(X)=© and define, for
b, ce[0, 7],

max{0, b—v(x)}, —-L<x
max{0, c—v(x)}, X<sx<IL,

4(x, b, c)= { &)

it follows that (cf. Fig. 2b)
g2 ={qA( T b’ C): b’ ce [O’ ﬁ]}.

In the event the set £, consists of two or more disjoint subsets for some
values of ce[0, ) the set of equilibrium solutions becomes more complicated.
An example is given in Fig. 3.
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some c€[0, D) -L

3. General results

Stabilization

We now turn to the evolution of the distribution of mobile individuals and
consider the solution u(x, t) of the problem:

u,=lu(u+v),], forxe,t>0, ?2)
D u(u+v),=0 forxeaf, t>0, 3)
u(x,0)=uy(x) forxe 4

Equation (2) is a degenerate diffusion equation. If we write w=u + v, then
(2) becomes

W, = UW,, +UW,,
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an equation for w which — for fixed u — is parabolic when u > 0, hyperbolic
when u =0. Further, for v =0, (2) reduces to the porous media equation

u = %( uz)xxa

and equation which has been studied extensively in recent years. (We refer to
the survey article of Peletier [11].)

Because of the degeneracy of Eq. (2), Problem I may have solutions which
are not smooth (cf. the equilibrium solutions sketched in Fig. 2). We therefore
introduce the notion of a weak solution, a notion inspired by its analog for the
porous media equation (cf. [1]).

Let

Q=12 x(0, ),
and for any function f(x, ) let f(¢)=f(-, ).

Definition. A (weak) solution u(x, t) of Problem I is a bounded continuous function
on Q with the property

J u(t)llf(t)‘-‘J uo¢(0)+j J G U Y+, — U, 6
n n 0 Jn2

for any t>0 and ¢ € C*(Q) such that ¢ =0 on Q and y,(£L, 1)=0 for all t=0.
If we take Y(x, t)=1 in (6), we arrive at the conservation law

J’ u(t)=J u, forallt=0, @)
0 o)

which asserts that the total number of mobile individuals does not change with
time. This is consistent with the assumption that individuals do not cross the
boundary of the habitat.

We now state two general results for Problem I. The first states existence and
uniqueness, the second gives a comparison principle which we will use repeatedly
in what follows. These results, which are due to Bertsch and Hilhorst [2], are
based on the following assumptions:

Al. There exists a constant K > 0 such that
lv(x)—v(y)|<K|x—y| forallx,ye .
A2. There exists a constant M such that

v'(x)—v'(y)
x=y

=-M foralmostall x,ye £, x # y.

Proposition 2. Let v satisfy Al, and let uy€ C(2) be nonnegative. Then Problem
I has a solution u on Q. If, in addition, A2 is satisfied, the solution is unique.

Proposition 3 (Comparison Principle). Let v satisfy Al and A2. Let u and i be
solutions of Problem 1 with initial data u,, iio€ C({2), u,, ii,=0. Then

Uosuy, inQ=>d<u inQ.
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A direct consequence of the Comparison Principle is that solutions of Problem
I are nonnegative.

The next theorem asserts that solutions stabilize. The proof, which is a bit
technical, will be given in Sect. 5.

Stabilization Theorem. Let v satisfy Al and A2, and let u,c C(£2) be nonnegative.
Let u be the solution to Problem 1. Then there exists an equilibrium solution q such
that

u(t)»q inC(2) ast->x. 8)

I q=J’ Uo- ()]
0 0

The following corollary of the Stabilization Theorem shows that if the mobile
population is large enough, this species will eventually populate the entire habitat.

Moreover,

Corollary. Assume, in addition to the hypotheses of the Stabilization Theorem, that

J u0>J (5 -v). (10)
n 0

Then for some t,> 0,
u(x,1)>0 forallxeQ t=t, (1)
Proof: By the Stability Theorem u(t) tends to a limit q € &, and by (9) and (10),

J (g+v-0)>0.
n

We may therefore conclude from Proposition 1 that g € &,, and hence that
q>5—-v=0 onf.

Thus, since u(t)-> q in C(£2), there exists a t, such that (11) is satisfied.
To conclude this section consider the situation described in Fig. 1. Let

i, =max u U=max v 12
0 & 0 0 ( )

and suppose that
< 1.
Then §(x, i, 0), defined by (5), is an equilibrium solution in &,, and
Uuo(x) < §(x, i, 0) forxe (.
Thus, by the Comparison Principle,
0<u(x, t)< §(x, tip,0) forxe £, t=0, (13)
and hence, since by the Stabilization Theorem u(t)>gec € as t >,

0= q(x)=<4(x, i, 0)
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(cf. Fig. 2b). Since g € &, q must belong to &,; hence
q(x)=4(x, b,0)

for some b € (0, u,), which — using the Stabilization Theorem again — can be
determined uniquely from the relation

J' q(X, ba 0) dx = J u()(x) dx.
Q2 0
In a similar manner, if (10) holds, then g € &,;and hence

q(x)=c—v(x)

for some ¢ > ¥, which can be determined uniquely from (9); the result is

1
= —— + 3
c oL L [uo(x) +v(x)] dx.
4. The Barrier Theorem

In view of the corollary to the Stabilization Theorem, if the mobile population
is large enough this species will eventually populate the entire habitat. This
motivates our asking whether there are conditions under which the sedentary
colony blocks the migration of mobile individuals. The next theorem gives such
a condition for the situation sketched in Fig. 1. In particular, it is shown that if
max u, < max v then the mobile species never reaches that portion of the habitat
which lies to the other side of the sedentary colony.

Barrier Theorem. Let v satisfy Al, A2, and the condition
v(x)=0 forO0<as|x|<L.
Let uge C(£2) be nonnegative and satisfy
uy(x)=0 for—a<x<L.
Then if
max u,<max v,

it follows that

u(x,t)=0 forasx<UL,t=0.
Proof: Let

xo=sup{xe 2: v<i,on[-L, x]}.

Then, by (5) and (13),

u(x,t)=0 forxo<x<UL,t=0. (14)
Since x,< a, the theorem is proved.

The Barrier Theorem gives a condition on u, which insures that mobile
individuals do not disperse completely through the sedentary colony. In a similar
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manner, one can prove that given the right distribution of sedentary individuals
— for example the one sketched in Fig. 3 — the mobile species may get trapped
inside the sedentary colony.

Granted the hypotheses of the Barrier Theorem, it seems reasonable to ask
how far into the sedentary colony the mobile species will penetrate. To make
this idea precise, note that

x, =sup{x € 2: u(x, t)> 0 at some t> 0}
represents the furthest point reached by mobile individuals, while
x,=sup{xeN: v=00n[-L, x]}

marks the start of the sedentary colony. We define the depth of penetration d(u)
by

d(u)=x, —x,.

This definition makes sense for u,# 0. Indeed, since each equilibrium solution
q is continuous on £ and constant on [—L, x,], each nontrivial q satisfies g% 0
in (x,, L); it therefore follows from the Stabilization Theorem that x, > x,, and
hence that d(u)>0.

By (14),
d(u)<xy—x,

and it is clear from Fig. 4 that the steeper the v-distribution to the right of x,,
the smaller the value of this upper bound. With this in mind, consider the situation
shown in Fig. 5, in which v has a jump discontinuity of magnitude larger than

Ug— Ug.V

Fig. 4. The points x, and x,

Ug.v

.
/

Fig. 5. The case x,=x, -L Xv=Xg L
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. Of course, discontinuous functions v do not fit into the framework studied
here, but an obvious limiting argument leads us to expect that if a solution u
exists, its depth of penetration is zero. Such a result would be interesting as it
yields segregation of the two species for all time.

Remark: An alternative model for species which disperse to avoid crowding is
given by Shigesada et al. [13]. (Cf. the discussion of [8].) For two species, one
mobile and one sedentary, their model leads to the partial differential equation

u, =[u(u + )], xe€ (), t>0,
and the boundary condition
[u(u+v)], =0, x €02, t>0.

For this model one can show, using a stabilization theorem analogous to ours,
that the mobile species always spreads through the entire habitat.

5. Proof of the Stabilization Theorem

We assume throughout this section that v satisfies A1 and A2, and that all initial
data referred to are continuous and nonnegative on (2. Further, we will use the
notation (12).

Lemma 1. The solution u of Problem 1 satisfies
u(x,t)y<c—uv(x) for—-Lsx<L t=0,
where
C=iy+1.
Proof: Let q(x)= ¢ — v(x). Clearly, q is an equilibrium solution and
q(x)=dy=uy(x) for—L<x<L.
Hence, by the Comparison Principle,
u(x,)<q(x) for—L=sx<1L,t=0.

Our proof of stabilization is inspired by an approach due to Osher and Ralston
[10]; it is based on a contraction property which we state as Lemma 2. To state
this lemma concisely, we write

1= 1sco ax
0
for the L'(2)-norm, and we say that two functions f and g on {2 intertwine if
there is an interval I < {2 such that
f>0 and g>0 on f,
f—g changessignon L
Lemma 2. Let u, and u, be solutions of Problem 1 with initial data u,, and uy,. Then

|2 (8) — un (0| <||tor — uos| fort=0.
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If in addition uy, and uy, intertwine, then
llu1(2) — ux(D)l| <llo) — uoal| Sfort>0.

Because the proof of this lemma is quite technical, we shall not give it here;
it can be found in [2].

Proof of the Stabilization Theorem: It is useful to view the solution u of Problem
I as tracing out a continuous orbit

y={u(t): t=0}
in the space C(£2). The omega-limit set w of v is defined by
w={weC(2):3{t,}, t,»0 asn->oo,
such that
u(t,)»>w in C({2) as n>}.
By a result of DiBenedetto [5], the set

v. ={u(t): t=7>0}

is precompact in C(£2) for any 7> 0. Hence » contains at least one element.
Let we w. We shall show that we &€ Suppose wg & We shall construct an
element g € € which intertwines with w. We choose g from the family of functions

q.(x)=max{0, c—v(x)}, ¢=0.
By Lemma 1,
0=go(x)< w(x)<g:x) for—-L=sx<L

Hence there exists a d € (0, ¢) such that g, and w intertwine. We take § = g
Consider the function V: C(2)- [0, ) defined by

V(z)=|z-qll.

Because u e C(Q), V(u(t)) is a continuous function of ¢t which by Lemma 2, is
nonincreasing. Thus V is a Lyapunov function.

Let w(x, ty denote the solution of Problem I with initial data w(x). By the
invariance principle, w is an invariant set and hence w(t) € w for all = 0. Because
V is constant on w (cf. [4]), it follows that

V(w(t))= V(w) forallt=0.
On the other hand, since g and w intertwine, we conclude from Lemma 2 that
V(w(t))< V(w) forall £>0,

and we have a contradiction. Thus we &, and hence wc &.
We show next that w consists of one element only. Suppose that w|, w,€ w
and u(t,)> w;(i=1,2) as n—>co. Suppose further that the sequences {t,,} and
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{t,,,} are so chosen that ¢,, <t,, for all n=1. Then, using Lemma 2 we find that

[w, — wy|| = lim||u(t,,) — wi|
n-»>oco

< lim||u(t,,) — w||
n-oo

=0.

Thus w, = w,. Hence w consists of one element.
Writing w ={q}, we are led at once to (8), and this result combined with the
conservation law (7) yields (9). This completes the proof.
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1. Introduction

In this paper we consider the nonlinear diffusion problem

r
+

c(2), = (l2,™" &) in Q= (-L,L) xR (1.1)

4

(1) § 2(-L,t) = -U, z(+L,t) = V for t >0

2(x,0) = zo(x) for x € (-L,L)

\

where R’ = (0,@), L, U and V are positive constants , m >1 , and

cs for s < O
c(s) =

+

cs for s >0,

+
with ¢ >0 . The initial function z, satisfies

Hl. 25 € C(1-LoL1) » 2y(-L) = ~U, 2o(+L) =V, 25" 50 on [-L,L] ,

and the set {x ¢ [-L,L] : zo'(x) = 0} 1is empty or consists of a finite number
of non-empty closed connected subsets of [-L,L].

Problem I arises in the theory of population dynamics. Let u(x,t)
and v(x,t) denote the densities of two populations. Following Gurtin and
Pipkin [18] , we assume that the dispersal velocities of u and v are
proportional to -(u+v)x , i.e. the dispersal is a response to the population
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pressure. Neglecting birth and death processes, and assuming that no individuals
can leave the habitat (-L,L) , we arrive at the problem

Uy = k1(u(u + v)x)x
{ .
% in Q
Pove = ko(v(u+ ) )
(1) |
i u(u + v)x = vy(u + v)X =0 for x=xL,t >0
\ u(x,0) = uo(x), v(x,0) = vo(x) for x € (-L,L) .

Here k] and k2 are positive constants (the case k] >0, k2 =0 was
discussed in [7,9]), and the initial distributions Ug and Vo are given

nonnegative functions.

The connection between the Problems I and II is as follows.
Consider the special case of Problem II where initially the two populations

are segregated : for some a € (-L,L)
uo(x) =0 for x>a and vo(x) =0 for x<a .

The question is whether Problem II has a solution pair (u,v) such that
u(.,t) and v(.,t) are segregated for all later times. To answer this question
we introduce the function

2(x,t) : = -U + JXL {u(s,t) + v(s,t)} ds , (x,t)eqQ .

Using that the total densities of both populations are conserved, i.e.

L L
u(x,t)dx = U : = uo(x)dx
and L -L
_L L
v(x,t)dx =V : = J vo(x)dx R
-L -L

we find that formally z satisfies Problem I , with

m=2, c¢ =2/k ct - 2/k, s

'I s
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and
X

zo(x) = -U + [4fu0(s) + vo(s)} ds .
For more details about the relation between the Problems I and II , we
refer to [8] .

The purpose of the present paper is to study Problem I in detail.
The results are used in [8] to construct a pair of segregated solutions
of Problem II .

Two mathematical difficulties arise from the differential equation (1.1),
First we observe that the equation is of degenerate parabolic type : at points
where z, = 0 , it lTooses its parabolicity. In addition, when R » the
function c(z) is not differentiable at 2z = 0 . To prove the existence of a
unique solution 2 of Problem I , there are more or less standard methods to
overcome these difficulties. The basic results are given in section 2 ;
the proofs are postponed to the appendix.

Since zo' > 0 din (-L,L) , it follows easily that the solution =z
satisfies

z >0 and -U<z <V in Q (1.2)

The purpose of this paper is to give a detailed description of the sets

O
1]

{(x,t) €Q : -U < 2(x,t) <0 and z (x,t)> 0}
and

Q = {(x,t) €eqQ : 0< 2z(x,t) <V and zx(x,t) > 0} .

In view of (1.2) , Q and Q+ are completely determined by the sets
N(2) = {(x,t) é Q : z(x,t) = 0}

and

N(zx) = {(x,t) ¢Q : zx(x,t) =0} .
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Observe that all these sets are interesting in view of Problem II

Q (resp. Q+) is the set where u >0 and v =0 (resp. v>0 and u=20),
N(2) is the set which separates the regions where u >0 (Q ) and v >0 (Q+)
and N(zx) is the set where both u =0 and v = 0 . Furthermore we notice
that N(z) and N(zx) are precisely the sets where equation (1.1) 1is not
regular.

In this paper we shall describe N(z) and N(ax) in detail. For the
precise results we refer to section 3 . As an illustrative example we describe
here the results in the case that the interval {x € [-L,L] : zo(x) = 0} has
a positive measure, which implies that the sets where Zg = 0 and zo' =0

overlap. First we obserye that, since z, 2 0, there exist functions
+

z : [0,0) »(-L,L) such that
N(z) = {(x>t) €T : g (t)<x< c+(t) , t>0}.

In this papér we shall show that z and g+ are continuous and that there
. . *
exists a time T > 0 such that

2 (t) < (1) for t e [0,T7)
and

z(t) : = £ (t) = () for t >T .
In addition ¢  is nondecreasing and c+ is nonincreasing on [O,T*]; and

2, (5(t),t) > 0 for t>T,

i.e. N(z) N N(z,) = L(x,t) €T T (t) <x<zh(t), 0<t<Th.
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Q’
z,>0
z2>0

xy

FIGURE 1 .

We prove the main results in the sections 4, 5 and 6 . In section 5
we charactérizé the sets N(:X) and n(2) n N(zx) . In section 6 we study
the level sets of 2z 1in the region where z > 0 and in particular the set
N(Z) < N(z) .

In section 4 we introduce the most important tool in the proofs,
which is of independent interest and which we discuss here in some detail. We
consider an approximating sequence of regularized Problems In’ whose solutions
z, are such that 2y 2 1/n . Hence the level sets of z ~are actually

curves : X = Xn(p,t) , defined by
z (X (pst)st) = z (p.0) for pe [-L,L] .

In this way we have introduced a coordinate transformation in T : (xst)> (pst) .
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Following an idea by Gurtin, MacCamy and Socolovsky [17]1 , we show that the
function Xn(p,t) satisfies a parabolic differential equation in Q . Using
this equation we derive in section 4 the estimate

X | s @/t  for t>0, (1.3)

or, alternatively, if we assume in addition that ((zo')m'])' is bounded
in (-L,L) ,

X.| <€ for t>0, (1.4)

ntI
where the constant € does not depend on. n . These and other estimates
for Xn are important for the analysis in the sections 5 and 6 .

In section 7 we discuss the large-time behaviour of the solution z .
We show that z(.,t) converges exponentially to the unique steady-state solution
of Problem I .

Finally we remark that nearly all the results carry over to the case
that the function s - ]s[m'] s in equation (1.1) 1is replaced by a more
généra] function ¢ , which is smooth enough and satisfies ®(0) =¢'(0) =0 ,
@'(s) >0 for s #0, and

1
I .«p! (S) ds < © .
0 S

Only the estimate (1.3) cannot be easily generalized to this case, but when

we assume that (@(zo'))' is bounded on (-L,L) , where

S

o(s) : = IO Sﬂ%ll drt

b

then the estimate (1.4) follows easily.
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First we give the definition of a (weak) solution of Problem I .
The unique steady-state solution of Problem I 1is denoted by % :

Uu+yv
z(x) =

2L

We shall use the notation

Q = (-L,L)

and

(x+L)-U, -L <x<lL.

QT =0 x(0,T] .

Definition 2.1 . A function 2 € C([0,») : L1(Q)) is a solution of Problem I

if

() z-F € 7((0) : W @) n HY(@)

(i1) z e L5(Q;)  forall T>0;

(i) 2(0) =z ;

(iv) for all VY€ C1(6) with YFL,t) =0 for t> 0, 2 satisfies
for all T> 0

JJ ez, v+ 2™ 2 v 2= 0.
O

Observe that if 2z is a solution of Problem I , then it satisfies equation (1.1)

a.e. in Q.

We shall prove the existence of a unique solution of Problem I under

slightly more general conditions on the initial function z

1

‘Theorem 2.2 . Let Z,

0 °

H2 . 2y € W *2(-L,L) , 2g(-L) = U, zy(+L) =V, z' 20 a.e. in (-L,L) .

satisfy hypothesis H2 .

(Z) Problem 1 has a unique solution 2 ;

(<2) 2 €C(Q) , z € C(Qx(0s)), and N4 0 Zn Q;

(222) the set {2z(.,t)

t> 1)

18 precompact in C](ﬁ);

(iv) if 2, € C:(Q) > then 2 € C(Q) , and the set {z(.,t) : t >0} zs
q) .

precompact in C (
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We give the proof of Theorem 2.2 in the appendix. There we shall also show
that 2z can be approximated by solutions z of more regular problems. Since
we need this approximation in the rest of this paper, we give some details here
already. For all proofs we refer to the appendix.

First we approximate the initial function zg.

Lemma 2.3 . Let Zg satisfy hypothesis H2 . Then there exists a sequence
of functions {zon, n=1,2,...} « C(Q) such that

(i) 25,(-L) = -U, 25 =0 in_a neighbourhood of x = L , and

Q
S

/n <25, < lzgll o+ c/n

Q for some c> 0 ;
(22) 2y, > 2y In C(R) as n o
(iii) if 2, €C (@), then 20y > % in C(7) as now |

(o) if ((z)™) € L7(0) , then [1((z5, )™ ) Il <l((zg)™ "yl

.
oo}

Here "'"p denotes the norm in LP(Q) (1 <p <=) .

Consider for T>0 the problems

ca(2)y = (12)™ 2 ) in 0
(I,) 2(-L,t) = -U 5 2(L,t) = V_ for 0< t< T
2(x,0) = zon(x) for x € Q,

where Zon is given by Lemma 2.3, V = zon(L) , and c, € C°°(1R) satisfies

n
c, ¢ uniformly on R as n » o,

Cr'x - ¢' uniformly on compact subsets of R~NM0} as n =«

s

. + - + -
min {c',c } <c, < max {c',c} on R.
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Lemma 2.4 . For all T > 0 Problem In has a un.ique (classical) solution

2401, 450
z €C (GT) for each o € (0,1) . In addition =z satisfies
' C .
and ( : .2 <@, (2.2)
pachitad J Q nt -

T
where € does not depend on n , and where C is given by Lemma 2.3 (7) .

In the appendix we shall prove that the sequence z ~converges to
the unique solution 2z of Problem I :

En—>2 in C(—Q—T) as n -» o,
and, for 1 € (0,T) ,

g > in C(ax[1,T1) as n -»ow . (2.3)

Finally, when 2, € C](ﬁ) , then

2 > 2, in C(Qf) as N oo, (2.4)
Remark. Theorem 2.2 can be proved without the rather restrictive condition
26 > 0 in hypothesis H2 . In that case however we need a different
approximation of Problem I , since the sequence Zon in Lemma 2.3 no longer
exists. Instead one can choose an approximation in which equation (1.1) is
replaced By

cn(z)£ = ((|:X|m'] + %) z), in Q.

In this paper we have chosen the approximation by Problem In » because it will
be more convenient to work with in the following sections.



3 . The main results

In this section we describe our main results. Theorem 3.1 characteri-
-zes N(zx) » the set where 2z = 0 . In Theorem 3.2 we describe the level
sets of z in the region where z > 0, in particular the set N(z)~ N(zx) .

Theorem 3.3 deals with the large time behaviour of z .

First we introduce some notation. We set

)
1]

N(z,) N {t =0}, i.e.

-
]}

x €eQ
If z satisfies hypothesis H1 , we can write for some 2 € {0,1,2,...}

1= jgl I (3.1)

where 1. are nonempty closed connected subsets of Q ;if 2=0, we mean
by (3.1) that T =290.

Since 26 > 0 , we can rearrange the intervals Tj such that for

some constants -U < 91 < 92 <. .. <0 Y

2p(x) = 9; for x € Ij . (3.2)

Theorem 3.1 . Let 5 satisfy hypothesis H1 , and let z(t) be the solution
of Problem 1 . Then there exist constants

0 < tj < Tj s J=T1,0005 2,

and continuous functions

+

g [O,Tj] -0 , i=1,2,...,0 .

such that
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and

N
1]
@

on Nj , (3.3)

where

Ny o= {06t) €0 s g3(t) ex < cg(t) » 0 st < T3}

+
for j =1,...,% . Here the functions gg satisfy :

+ -
CJ(TJ) = CJ(TJ) 5

Cg(resg. ;}) 18 constant on [O,tg] (resp. [O,t;])

and strictly increasing on (tg, Tj) (resp. strictly decreasing

. + .
on (t5,75)) 3
t 1,1

Theorem 3.2 . Let 2y satisfy hypothesis H1 , and let z(t) be the solution
of Problem I .

(1) Let p€ Q~1, t.e. 26(p) > 0 . Then there exists a continuous

function X(p,.) : [0,) - Q , such that the curve x = X(p,t) s a level

set of z

{(x,t) € Q : 2(x,t) = zo(p)} = {(x,t) : x = X(p,t), t > 0} .

In addition 2 (X(pst), t) > 0 for t > 0, X(p,.) € C@®") , X(p,0) = p ,

and X(p,.) satisfies for t > 0 :




i (2 m-]) (X(pst),t) <f -U<zy(p)k0  (3.4)
(- x IHPEDR) L TR EIR '
m -1 .
X, (P>t) -C+(m_1)‘<zx’" ) (X(P>t)st) Zf 0<zq(p)V (3.5)
m
- Tim 2.™ 1) (x,t) =
<D ety
i (3.6)
| o tin (5" (x0t) i 2y(p)=0
+ 9 .
) ) )
(i1) Let
- + .
Pj = CJ(TJ) = CJ(TJ) > J 1, s 2

Then there exists a continuous function X(pj,.) :[Tj,w) - Q
such that

(1) €T 2 2(6t) = 050 t 2 Ty} = {(x:1) : x = X(pypt)s t 2 Ty} .

, .y o 1
In addition ZX(X(pj,t),t) >0 for t> Tj’ X(pj,.) €cC (Tj,m )

X(pj’Tj) =p .) ‘satisfies the equations (3.4) , (3.5) and (3.6)

j b pidand J"

for t > Tj » with p replaced by Py - If Tj >0, then X(pj,.) s

- Lipschitz continuous down to t =T i




x:X(pz,t)

x = X(p,t)

FIGURE 2 . The shaded areas are the sets where zx =0 .

Remark . Since the curves x = X(p,t) (p € 7r) and x = X(pj,t) are level

curves of 2 , it follows at once that they do not intersect, and that they

fill up completely the region where z > 0.

Theorem 3.3(Large time behaviour). Let 2 be the unique steady-state solution
of Problem 1 . For any initial function which satisfies hypothesis H2 (see

section 2 ), there exist constants M> 0 and vy > 0 such that

|2(t 5 2g) - E“C](?i) < Me Y for t>1
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4 . A coordinate transformation

In this section we study a coordinate transformation for the
approximating Problem I which we introduced in section 2 .

Let zZ : @ - R be the solution of Problem In . Since zZ is

a smooth function on Q , and since, by Lemma 2.4 , Z s 2-% in Q,

it follows from the implicit function theorem that there exists a smooth function

Xn . O' -» 0
such that

2 (X (Pst)st) =25.(p) » Pe Q> t » O, (4.1)
i.e. X = Xn(p,t) are the level curves of z

Theorem 4.1 . Let Xn be defined by (4.1) . Then there exists a constant

€ > 0 which does not depend on n , such that

Xi] < €/t in Tx (0se) .

Proof . We follow [17] and derive a parabolic equation for Xn . First we
observe that it follows from (2.1) that Xp © = %—-Xn satisfies

P p

0 <y(n) < an < T(n) in Q

for some +y(n) and T(n) .

In order to simplify the notations we omit the subscripts n from
now on.

From the relation

< 2(X(pst),t)} = 0
dt
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and the equation for 2z , we derive that

1

Xt(p,t)= -{C'(i(X(P,t),ﬂﬂﬂ m(m-1)" ((zX(X(p,t),t))m—])X (4.2)

and thus

Xg(pst) = = (c'(2g)) mm-1)™ q(zg)™ (x) "™y T,

where zg is considered as a function of p : zy = zo(p) = 2(X(p,t),t) .

Thus X satisfies the parabolic equation
Xp = = (c'(2g))7 (2™ ((X)™), + mm-1) ()™ ) (x )™
t 0/ 0 p p v 0 p ’

Differentiating this equation with respect to t we find that

Xt satisfies

(Xl = (' (2g) ™! me(zg)™ ()™ (X)), +
m(m-) 7 (2)™) )™ ()b (4.3)
We introduce the auxiliary function

a(p,t) = tX,(p,t) - KX(p,t) , (p,t) €0,

‘where the constant K will be determined below. Using (4.3) , we arrive at

Qg = (1-K)X, + t(X

tht =

plp *

(1-K)X, + (" () mL(25)™ " (X)) ™ (a+kx)

+

m(m-1)"((25)™ )" (%)™ (@ekx) ) =

(" (2g)) Tml(2)™ (X )™ g )+

<+

m(m-)7 (25" (x) ™ e} + (1-(m)KX,
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Choosing K = (m+1) 1 , i.e. 1 - (m1)K =0, it follows that q attains
its maximum and minimum at the parabolic boundary of Q . Since tXt =0
at the parabolic boundary, Theorem 4.1 follows.

The following theorem shows that when zg is more regular, then

Xnt is uniformly bounded down to t =0 .

Theorem 4.2 . Suppose that ((z('))m_])' € L7(Q) .

for some constant € which does not depend on n .

Proof . Since Xnt satisfies (4.3) , the maximum principle implies that Xnt
attains its extrema at the parabolic boundary of Q . At the lateral boundaries,

+
X=T, X, =0.8y (4.2)

1% (O < © (g )™ )] »

[}

and thus, by Lemma 2.3 (iv) , Xnt("o) is uniformly bounded on (-L,L) .

This proves Theorem 4.2 .

5. The set where g = 0 : proof of Theorem 3.1 .

In this section we shall describe the set where z, = 0.

First we remark that the variable w = 2, satisfies porous media
equations ([21,11]) in the sets where z <0 and 2z >0 :

c'wt = (W if 2<0
and
c+wt = (wm) if 2>0.
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For the porous media equation many properties are known about the sets where

w = 0 , which correspond to the sets where z, = 0 [3] . These properties

will be frequently used in the proof of Theorem 3.1 .Herefore however, we

need first more information about the sets where 2z <0 and z >0 . In this
context, the following lemma will be useful : it tells us that the boundaries
z=-¢and 2z = ¢ of the sets where 2z <-¢ and z > ¢ , are, for small ¢ > 0,
smooth curves, where z > 0.

Letma 5.1 . Let @j(j=1,...,2) be defined by (3.2) , and let €0 >0

be so small that + e¢ ej(j=],,,,,£) for all € € (0,60) . Then for azZﬁéE(o,so)

there exist continuous functions : [0,2) » Q such that

{(x,t) €Q : z(x,t) = Iey = {(xst) €Q: x = C+€(t)}

In addition t, €C7(0,») and 2 (g, (t),t)>0 for t>0.

We need two auxiliary lemmas for the proof of Lemma 5.1 .

Lemma 5.2 . Let gz be the solution of Problem 1 and suppose that for some

z.(Xgst) = 0 for t e (1%l - (5.1)
Then
z(xo,t) = zo(xo,to) for t € [1goty] - (5.2)

Proof . Let z be the solution of Problem In . Then, for 9 < t<tps

t

2 (xgstg) = 2,(xgst) = J z . (xg»s)ds

t

t0 -1 m
= (ci(z.))  ((z,.,)"), ds
Jt n'‘n nx’ ’x lx=xo
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tO ' -
- jt (ci(2,))

_m m']) ds
m-1

Zox ((Zny) X

X=X0

From Theorem 4.1 and equality (4.2) we find that

€ (0 ds , T.<t<t (5.3)
12n(xo,t0) - zn(xo,t)] <F J; }znx(xo,s)l S, T 0 .

By (2.3) , z .y ~E in C(ﬁ‘x[t,to]) for o< t<ty and thus, by (5.1)

and (5.3)
z(xo,t) = z(xo,to) for < t<ty .

Finally, by continuity of 2, also 2(x0,10) = z(xo,to) .

Lemma 5.3 . Let 2 be the solution of Problem 1 and let for some Xg €Q

and t;>0 ,
zx(xo,to) =0 and z(xo,to) £0.

Then, for some j € {1,...,0} ,

z.(Xpst) =0 ‘and  z(xy,t) = 05 Jfor 0 <t < t5,

where Oj 18 defined by  (3.2) .

Proof . Without loss of generality we may assume that z(xo,t0)< 0 . Then
there exists a neighbourhood N(xo,to) of (xo,to) where 2z <0 and where
W=z is a (weak) solution of the porous media equation c'wt = (wm)Xx .

It is a well-known property of a solution w of a porous media equation, that
the set where w >0 1is expanding in the course of time [10,11], i.e. if

(xo,t) € N(xo,to) for t; <t < ty » then w(xo,to) = 0 dimplies that
zx(xo,t) = w(xo,t) =0 for te [tystg] -

Hence, if we set
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T = inf {t] € [O,tO] 2 (xp,t) = 0 for tE€ (t],tol} ,

then T, <t

0 0 and, by Lemma 5.2 ,

2(xpst) = 2(xpotg) <0 for tE€ [TO,tO] .
In particular, since z € C(Q) ,
zx(xo,Tb) =0 and z(xO,Tb) <0.

Suppose that T > 0 . Then we can repeat the above argument with
(xo,to) replaced by (XO’TO) » Which contradicts the definition of «t 0 -

Hence T, =0 and Xg € Tj and zo(xo) = ej for some” j € {1,...,2} .

This proves Lemma 5.3 .

Proof of Lemma 5.1 . First we show that zZ, > 0 on the level sets

{(X,t) € -Q : 2(X,t) = E} ’ €€ (0380) .

We argue by contradiction. Suppose there exist an ¢ ¢ (O,eo) and a point

(xo,to) € Q such that
zx(xo,to) =0 and z(xo,to) =€.
Then, by Lemma 5.3 ,
zé(xo) =0 and zo(xo) =€,
which implies the contradiction that ej =¢ for some Jje {1,...,0} .

By the implicit function theorem there exists a function CEE;C([O,w))
such that x = Ce(t) is the level curve {z =€} . To prove that z.€ C*(0400)

it is sufficient to show that z 1is C® 1in a neighbourhood of any point

(;s(to), to),with ty > 0 . This follows from standard theory, if we choose

a neighbourhood where 20> 0 and =z >-l g, and thus where 2z is a classical
' 2

solution of c'z, = ((ix)z)

t X °

The proof for the level sets {z = -e} with € € (0,q) is similar.
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Now we are ready to prove Theorem 3.1 .

Proof of Theorem 3.1 . First we prove the results in the set where z > 0 .

Let € € (O,eo) » Where € is determined by Lemma 5.1 .
The function w = z, is a weak solution of the porous media equation
in Q€ t= {(x,t) :t >0, ;E(t) < X< L},
where ¢_ is given by Lemma 5.1 . Since e can be chosen arbitrary small,
all the properties which we have to prove about the set where 2, =0,
follow, if we restrict ourselves to the set where z >0 , from known results
about the behaviour of the interfaces of solutions of the borous media equation,
which are proved by Knerr [19] and Caffarelli and Friedman [12] (for a survey
of the results we refer to [3]1) . However, both Knerr and Caffarelli and
Friedman consider the Cauchy Problem, and they assume that the set where ws> 0
is initially connected. But since the main part of their analysis is local, the
results carry over to our situation. The main non-local part in their proofs

is a Tower bound for (wnm']) for t > 0, which does not depend on n .

XX
Here Woi=g and z is the approximating sequence which we introduced
in section 2 .

The required lower bound is given by the following lemma.

Lemma 5.4 . For any § € (0,T) and € € (0,50) there exists a constant
k(8,e) which does not depend on n , such that

™)

. 8
((znX x 2 k(8,€) n Qg s

where
§ _ . '
QeT = {(x,t) € Q : ge(t) <x<L, 6 < t<T}.
We postpone the proof of Lemma 5.4 to the end of this section.

In the same way we can prove the required results in the set where
2z <0 . It remains to consider the set where z =10 .
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First we consider the case that
zo(x) =0 and zé(x) > 0 for some x € Q

Then, using Lemma 5.1 , there exists an ¢ € (O’EO] such that z, > 0
on the parabolic boundary of the set

{(xst) €eQ : = g_s(t) <X < Ce(t) , t >0},

and thus, by the maximum principle, z, > 0 in this set. In particular z > 0

on the level set {z =0} .

Finally we consider the case that

Cﬁ =0 for some Jj € {1,2,...,2} .
We define the functions Wo and Wpp ON Q by
j' 20(X) if 20 <0
L0 if 2, >0
and
(' 0 if 2y < 0
Woz (%) = |
\ zé(x) if zZg 20>
i.e.

X
2o(x) = = U + j_L (Wop (5) + Wyp(s)) ds .

Let w](t) be the solution of the problem
: c-wt = (wm)xx in Q
, m +
(PM) (M), (L) = 0

)

L w(x,0) = WO](X)

for t>0

for x€Q,
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and wz(t) the solution of

= (W, inQ

(PMy) [ (W"),(FL,t) =0 for t >0

L ow(x,0) = woz(x) for x € Q

(a solution of Problem PM, is again defined in a weak sense , see e.g. [5]
for the existence and uniqueness of a solution ; it is known that W, is
continuous on @ x RY)

We define Tj > 0 by

Ty =sup {t >0 : Py(t) n Py(t) = P}, (5.4)

where

Pi(t) = {X € [-L,L] : wi(x,t)> 0y, t > 0, i=1,2,

i.e. Tj is the time that the supports of w1(t) and wy(t) meet. Observe
that Tj < o,

We use the following lemma, which we shall prove below.

Lemma 5.5 . Let 05 = 0 for some j € {1,...2} and let Tj be defined
by (5.4) . Then, up to time Tj » the solution of Problem 1 s given by

2(x,t) = - U + JTL (w](s,t) + wz(s,t)) ds , xe @, t < T,

;-
In particular, if we define for t € [O,Tj]

;3(t) = sup {x 1 x €Py(t)} and g;(t) = inf{ x : x€ Py(t)} (5.5)

it follows from the results about the interfaces of w](t) and w2(t) that
g§ have the required properties.

Finally, the proof of Theorem 3.1 1is completed by another lemma,
which describes the situation for t> Tj .
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Lemma 5.6 . Let Qj =0 for some J € {1,...,2} and let Tj be defined
by (5.4). Then
z > 0 on d: = {(x,t) €Q:t> Tj and 2(x,t) =0} .

The remainder of this section is devoted to the proofs of the Lemmas 5.5 , 5.6
and 5.4 .

Proof of Lemma 5.5 . Here we shall prove that 2, € L2(QT.) and, for any

j
vec (@) with w(fLt)=0 for 0 < t ¢ T,
j

J

jjq c(z) b+ (2)" ¥ 3=0. (5.6)

15

Let the test function ¢ be fixed. The functions w, and w,

0,

satisfy, for all X € ¢21(q; ) with X (*L,t)
]

t=T
} J }
t) x(t = Koo+ wh
¢ jgw]u ® HQ €y Xy + WX )
= T.
J
and
t=T,
+ +
c wo(t) X(t) = Cwo X, +wWix ).
JQ 2 - JJQT- 27t 2 7 xx
j

X
We substitute X(x,t) = J P(s,t)ds into these equations. Defining
-L

+

= . (T.) = ¢ (T. 5. s i
y gJ(TJ) ;J(TJ) (see (5.5)) , and using that
Y
w](x,t) =0 for x>y ; J w](x,t)dx = U
-L
and
L
wz(x,t) =0 for x<y; J wz(x,t)dx =V,

Y
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we obtain after integration by parts

I}
—

't

oy J T.cy - m
- t)y(t) = J -c 2y, + + .
c LLﬂ)u> 't=0 h[i{Czt (wy + wp), )
and
t=T
L J T. L
- ¢’ ] 2(t)y(t) = f JJ {-c+z¢t +(wy + wz)mwx}
y t=0 07y

Adding these equations yields

t=T.
J m
J]Q ez, - ()" u ) - (5.7)

T5

j c(z(t))u(t)
Q

t=0

Now (5.6) follows at once,provided we show that c(z), € LZ(QT ) -
J

. ] m . 2

It is standard that (w]), and (Wy), are in L (@) ana,

sMw(aW=w+@in%jJBoﬁaﬂx

e L%(0; ) . Since by (5.7)
, J
c(z)t = ((zx)m)x in the sense of distributions, it follows that c(z)te LZ(QTj).

This comp]etés the proof.

Proof of Lemma 5.6 . If z, > 0 at some point (xo,to) € J , the maximum

principle, applied to the set {(x,t) : c_e(t) <X < g+€(t) st o>ty

for some € E(O,eo) (see Lemma 5.1), implies that

zx(x,t) >0 for (x,t) €J with t > ty -

Hence, arguing by contradiction, we may assume that for some t, > T,

1 J

2x(x,t) =0 din J n {(x,t) : Tj<.x<g t]} .
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We define the functions

n o [-LLD x 10,81 » [0,®) (i =1,2) by
(z < (% t) if 2(x,t) < O
mbet) =
L0 if 2(x,t) > 0
and
J’ 0 if z(x,t) < O
nz(x’t) =

v
o

1 :X(x,t) if z(x,t)

We claim that ub and n, are solutions of repectively Problem PM] and
Problem PM2 on [O,t]], i.e. Ny =W, and N, = W, on Qt1 . Accepting

this for the moment, it follows that Pl(t) n Pz(t) =p for 0 <tc< t] >

which is a contradiction with the fact that t1 > Tj

We show below that Ny is a solution of Problem PM2 . The proof
that N, is a solution of Problem PM] is similar. From now on we denote
n2 b.y n.

Upto t=T,, n is clearly a solution of Problem PM2 . Thus

J
it is enough to show that

e - xr) -
t
= J J (¢+ﬂ!% e X (5.8)
Tj Q

for all t€ (T,,t;] and all functions X € ¢®1@, ) with x_(*L,t) =0
1
for t >0.
We fix the test function X . Let €0 be given by Lemma 5.1 and

Tet 0 <g< €,< gy . We write ;](t) : = ;e](t) and ;Z(t) S Csz(t) .
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Then there exist functions X] and )<2 in C (Qi ) such that
1

X =x]+x2 in Qt1

A
+

supp X, (t) <=Ly g,p(8) » T, <tet

1 supp x2(t) c (C](t), +17, Tj <t

IN
-+

Since locally in the set {(x,t) : #z(x,t)>0}, p is a solution of Problem PM2,
(5.8) follows at once for X = Xy s and it remains to prove (5.8) for X 1°
which we denote by X .

Let us first consider the functions ¢ for € >0 . Since ¢. s
€ —
monotone in ¢ and bounded from below there exists a function T :[ Oy0)> @
such that ¢, |z as e} 0 for t >0.

Then z(z(t), t) = 1fm z(;e(t), t) = 0 and by Theorem 4.1
€+0

eCO’]([Tj,oo)) if T;>0 and 7ec®1((0,0)) if T, = 0 5 in this Tast

case the continuity of 2z 1implies that Z 1is continuous down to t =0 .

Since n=0 for 2 <0, it is sufficient to show that for t¢ (Tj,t]]

t T.
* jfz( D) xt -t jfz( ) n(Ty) x(T5)
z(t) 2(T5)

ot ga(T)
{2 i xp dr = 0 (5.9)
T, z(1)
Let T <s<t ¢t; .Since pn is a classical solution of the porous
med1a equation 1n the set

\, o\,

o, v
{(x,t) : ;e(t) <X < gz(t) » s stgty} forall ¢¢ (0,€2) and since T,

is smooth, we find that

i J PRUECES J 2 n(s) x(s) = ¢ J & JCZ(T) n(t) X())dt
c (t) (. (5) S

zo( 1) ¢

= J JCZS (c'n Xp + ( m)XX X) - C+J C;(T)(”'X)(CE(T),T))dT -
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t (g, (1) +
- L J 277 (Tnxg " xy) * I (s,t) (5.10)
for all ¢ € (O,gz) where

t
_ m _ /. R
I (s.t) = js ("X = (M2 (1951 - DX (1).1)) dr
Since = 2, is a classical solution in

{(xs1) : ;6/2 (1) < x < ;Z(T) s S <1 < t}, it follows as in (4.2) ,

from the relation z(ge(r),r) = ¢ that

J%<ﬂ=-ﬁ%uaﬂ4&<%una=-%3(#*&@Jﬂn).

Hence

t
1(s:8) = [ (7 X (e (1)

Next, using the expression above for I. , we let € | 0 in (5.10) .
Since z(z(t)st) =0 , we deduce that n(z(t)st) = 0 . Hence nm(ge(T),T)-* 0

as €} 0 for 1€ (s,t) . Then (5.10) becomes

t
z(s)

z(t)
ot (gp(T)
) Js J'Z?T)

Finally letting s | Tj in the equality above, one obtains (5.9).

+ m
(C n xt mn XXX)

Proof of Lemma 5.4 . Let %h be the extension of z on [-L,3L7 x [0,T] ,

defined by

%‘n(x,t) = 2z (L) -z (2L - x,t) in [L,3L] x [0,T] .
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Y
Then, restricted to the set Q. , defined by

Y
Qur = {6:t) g () < x<2l-g (t), Ot < Ty,

S; is the solution of the problem

2(z (t),>t) = 2, (¢ (t),t)
, for t €(0,T]
(2L - ¢ (t),t) = 3 (2L - ¢ (t),t)

2(x,0) = %h(x,O) for Ze(0)<x <2L - £ (0) .
. €
To prove Lemma 5.4 , it is enough to show that Q; = %hx satisfies

W) - Kese) i (i (5.11)

where
n S

Q€T = a;T n {(x;t) :6 <t <T}.

We define
pn = m_1_ (&r[‘]]-] ).XX in algT .
m—

Since z 1is a classical solution on the level line x = ;e(t) for 0<t< T,

Pp > m(m1) T (2™ )y on S, = {OGt)ix= g (t), 8 st T as nom,

and, on the other hand,

mm-1)" ((2)™ 1) > - M(sse) on S

XX = §

for some constant M](a,e) . Hence there exists a constant Mz(a,e) which
does not depend on n, such that

1
P, > - M2(6,e) on the lateral boundary of Uzi . (5.12)
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We follow Aronson and Bénilan [4 1 and introduce the differential

operator
L(q) = q, - m w -1 - om? w2y - (m+1) 2
q) = 9 n Ay x Wn nx Ix g -
Then
1
M,(S,€) 8
3V 7
=0 and - 0 in .
L(py,) L( ——1_t-—5) < ?58
2
where

My(se) = max ((m+ 1), My(e)( T - 15))
2 1

vy §
By (5.12) , P 2 -M3(5,€) / (t --%5 ) on the parabolic boundary of dz

_
Thus, by the maximum principle

1
Mo( 8 €) v
3 . 4
Ppoz = In Qg
t-=g
2

and inequality (5.11) follows with k{gs,¢) = 2(m-1) M3 (8s¢) / 6m .

This comp1etés the proof of Lemma 5.4 .

6 . The level curves of 2z 1in the set where 2 > 0 : proof of Theorem 3.2

In this section we shall prove Theorem 3.2. In the set where both
z#0 and z, # 0 , equation (1.1) is regular and the results follow easily.
The main difficulty is to prove the smoothness of the level curve 2z =0 in
the region where 2> 0.

Proof of Theorem 3.2 .

Theorem 3.1 and the implicit function theorem imply the existence
of the continuous functions X(p,.) : [Oye) > Q for pe Q~ 1 and the

continuous functions X(pj,.) : (Tj,w) -Q for j=1,2,...,8 . At t = Tj,
X(pj,.) is given by X(pj,Tj) = pj » and the continuity of X(pj,.) down
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to Tj follows from the continuity of z .

If zo(p) # 0 (resp. Cﬁ #0), then # 1is a classical solution
near x = X(p,t) for t>0 (resp. near x = X(pj,t) for t. Tj) . Hence
X(ps.) € C(0,») (resp. X(pj,.) € C“KTj,ag) . The expressions (3.4) and (3.5)

follow from equation (1.1) and the equality

g— (2(X(p,t),t)) =0 .

dt

Finally we consider the smoothness of the level curve 2z =0 in
the region where 2> 0 , and prove expression (3.6) for Xt . We do this
here in the case that 05 = 0 for some j =1,...,2 . In the other case

(i.e. zo(x) =0 for some x ¢ [-L,L] with zé(x)>-0) the proofs are
similar and we omit them here.

So assume that 0y = 0 and let P be defined by z(pj,Tj) =0.
Let 1> Tj be arbitrary . We shall construct neighbourhoods of the point
(X(pj,r),r) which are rectangles in a new coordinate system, which is a local

variant of the coordinate system which we introduced in section 4 .

Let x = g+€(t) denote the level curves 2z =+€ for € € (o,so) s
where gg Is given by Lemma 5.1 . Let 0 < e"<e'< €p and Tj <t'<t"<t
We define the sets Q" =< Q' =Q by

Ql

{(x,t) :¢ ! (t) <x< Tt (t) » t'<t <1}

and

Q" {(X,t) . C"EI" (t) <X <§€., (t) , t'<t < }.

Observe that the point (X(pj,r),r) €EQ" Q' .
By Theorem 3.1 and Lemma 5.1 ,

>0 in Q'.
zX n Q
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Hence we can introduce the coordinate transformation (x,t) - (p,t) for
(xst) €Q', defined by

n,
X = X(&,t)

and

2(X(Brt),t) = 2(Pot') .

In the (&,t) -plane the sets Q' and Q" correspond respectively to the
rectangles

wl

I
—~
——
2
]
‘—'-
e
Y
1
———
(—1.
~—
A
a=t

o (E) Pt )

and

=
I

{(Pt) tg , (t') <P <g » (t') , t"<t <1}.

n,
We define the functions Xn on W' by

n _ 1
! zn(xn(pst)st) - En(B',t )
n,
1 Xn(a"t|) = B’ s
where z is the solution of Problem In

n
Lemma 6.1 . () The functions Xn are uniformly bounded in C](W').

~ -
(i) The functions X . are uniformly ESlder continuous in W .

Before proving Lemma 6.1 , we complete the proof of Theorem 3.2m. By Lemma
6.1 (i) , there exist a function X_ on W' and a subsequence Xn such that

k
X —)Xoo in C(W') as nk—éoo.

We claim that

n,
X =X in W'. (6.1)
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Since
Iznk()’(bnk(éb,t)’t) - z(xog?i,t),tn <
| znk(?nszt),t) - z(fnk(ﬁ“,tm)mz&q((“p,t),t) -2

it follows from the uniform convergence of zZ. to 2z 1in compact subsets
of Q and the continuity of 2z in Q that

z_ (X (&,t),t)_,z(xw(a',t),t) as N oo -
Since z.>0 in Q' , (6.1) follows, and we obtain that

n n _

X, = X in C(W') as ns o« .

Combined with Lemma 6.1 (ii) , this implies that

~ n ) _

X0t = Xt in C(W') as n 5 «. (6.2)
Observe that, for (p,t) e W" ,

N . Y q,
Xi(p>t) = Xy (B>t) if X(p.t) = X(p,t) . (6.3)

. " "
Hence, when X(P,t) = X(p,t) and z(X(P¥,t),t) #0 , ;t(ﬁ,t) is given by (3.4)

ET

and (3.5) . Since

><

t is continuous on W" this implies that when

n n n
X(®,t) = X(p,t) and z(X(¥,t)t)=0 , Xt('b’,t) is given by (3.6) , and thus,
by (6.3) 5 X.(p,t) 1is given by (3.6) .

It remains to prove Lemma 6.1 .

Proof of Lemma 6.1 . (i) Since 2 >0 in Q' and 2. " & in c(qQ")
as n - o , the functions
r)\("\;('ﬁ’t)=z (P,t') / = &(“‘t) t) 6.4
np't’ nx\P> nx'*n\P2t)> (6.4)

are uniformly bounded with respect to n in W'..
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" 3"
On the other hand, by Theorem 4.1 , |[X .| < C/ t' , and thus X is

uniformly bounded in C](EF) .

n
(ii) We show below that the functions Xntp are uniformly Holder continuous
in W'. This property implies the result of Lemma 6.2 (ii) .

n
Xnt satisfies equation (4.3) with p replaced by P and zon(p)

replaced by zn(ﬁzt') . Next we differentiate this equation with respect to P .

Omitting all the tildas again we obtain

Cagg), = @n(®0) )+ Bo(po) Koy
where
et = (2 (Pt ™ (X (pu1)) ™
and
by (P t) - C,n(ZnTp’t,)) [z (ot ™ (X (pt) ™)

1) -1 -m-1
+ ;?T (2 (P57 (X (pst) ™)

Since Z.. is uniformly bounded and uniformly bounded away from

zero in Q' , the functions an(p,t) and znp(p,t) are bounded and uniformly
bounded away from zero in W' and so is a, - In order to show that bn is

uniformly bounded in W' , it remains to prove that ((znp(p,t'))m']) and

p
((an(P,t))-m'])p are uniformly bounded in W'. This follows easily from

Theorem 4.1 , equality (4.2) and (6.4) .

Multiplying the differential equation for Xnt by Xnt and

integrating by parts, we deduce that Xn is bounded in LZ(W') uniformly

tp
in n.
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It then follows from [20 , Thm. 8.1 p. 1921 and [ 20, Theorem 10.1

p. 2047 that Xntp is uniformly Hélder continuous in W" . This completes

the proof of Lemma 6.1 .

7 . The large time behaviour

In this section we prove that the solution 2z(t) of Problem I
stabilizes as t 5 = .

We define the functional V : C'(g) > R by
-] 1 .I
o) = )] e

Lerma 7.1 . Let 20€C1 () satisfy hypothesis H2 , and let z(t) be

the solution of Problem 1 . Then

m ((F(2)),)% + V(z2(t)) ¢ V(z)) fort >0, (7.1)
t

where

F(z) = JZ /c'(s) ds .

Proof. Let zn(t) be the solution of Problem In . Multiplying the equation

for z by Zp o We obtain

o] 1 ; 1
H% mgant%t--;Tku%wa+-<%@“}. (7.2)

We introduce

z R
F(2) = jo /e Ts) ds
and we let n - in (7.2) . Then we arrive at

lim inf fJQ (Fo(z)))" + V(2(t) < V(z,) - (7.3)
t

n - o
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Since, by Lemnma 2.4 , (Fn(zn))t is uniformly bounded in L2(Qt) and since

Fn(zn) - F(z) uniformly in Qt as N 5, We conclude that
. 2
((F ()¢ » (F(2)); weakly in L7(Q,) .

Since the functional p »J] p2 is convex and lower semi continuous in
Q
LZ(Qt) ,» it is also weakly Tower semi continuous. Hence

Tim inf HQ ((F,,(z,,))t)zzﬂQ ((F(2)),)?

-® t t

and (7.1) follows from (7.3) .

Lemma 7.2 . Let Z satisfy hypothesis H2 and let z(t;zo) be the
solution of Problem 1 . Then

z(t;2)) -2 in C](ﬁ) as tow.

Proof . By Theorem 2.2 (ii) , z(t;zo) € C](ﬁ)- for t> 0 and hence we
may assume without loss of generality that zg € C1(§) . By Theorem 2.2 (iv)
the orbit {z(t;zo) : t >0} is precompact in C](ﬁ) and hence the w-limit
set w(zo) , which we define with respect to the topology of C1(§) , is

non-empty. Thus it is sufficient to prove that
qE€ w(zo) implies that g =2 . (7.4)

Since z(t;zo) is continuous in C](ﬁ) and V 1is continuous,
it follows from standard stabilization theory (see Dafermos {147) that :
(i) if qe€ w(zo) , then 2(t;q) € w(zo) for t > 0 ;
(ii) YV 1is constant on w(zo) .
This implies that V(z(t:;q)) = V(q) for all g € w(zo) , and, using (7.1) ,
we find that

F(z(t;q))t =0 a.e. in Qt .
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Hence 2(t3;q) =q for t >0, i.e. q 1is a steady state solution of Problem I.
Now (7.4) follows from the uniqueness of z .

To prove Theorem 3.3 , we have to show that the convergence in
Letma 7.2 s exponential. Our proof follows the same lines as a proof by

Alikakos and Rostamian [2] .

Proof of Theorem 3.3 . Again we may assume that zg € C](ﬁ) . By Lemma 7.2 ,

zx(.,t)> 0 for t Tlarge enough, and hence we may also assume without loss
of generality that

zy(x) >80, xeq-.

To prove Theorem 3.3 it is sufficient to show that

U+YV
2L

2, (%,t) - | < Mt in Q. (7.5)

for some M>0 .
Let z be the solution of Problem In , wWhere

zén(x) >8>0 , xeq.

The function w_= 2 satisfies the problem

n " Znx
Y' Wy = {(Cln(zn))-] W)y by in Q (7.6)
[ oW (FL,t) =0 for t>0 (7.7)

w(x,0) = zén(x) for xeq . (7.8)

By the maximum principle,
W (X:t) 2§ in Q.

If we multiply equation (7.6) by. wo and integrate by parts,
we obtain
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ld_J 2__J m m-1 2
2 QW-- 0 w w N

n 1 n nx
dt cn(zn)
which implies that
-1
1 d 2 " 2
- — J W< - éL—‘JE:‘—:— [ Wox (7.9)
2 dt Jq max(c ,c ) ‘Q

We define Wn(x,t) = wn(x,t) - (U + Vn) / 2L .

Using that J W (ot)d =0 for t > 0, we find from (7.9) that
Q
2

d J Wn < -G J Wn for t > 0
dt ‘@ Q

where C, =m 1y (2L2 max (c*,c7)) , and thus

JQ Woc et for t oy o0, (7.10)

for some constant C2 . Since (7.10) holds for all n , we arrive at

< et for t > 0. (7.11)

U+ vH2

lg,(e) - &2

2

Following the proof which Alikakos and Rostamian [2] and Alikakos [1]

give in similar cases, it follows that (7.11) implies (7.5) .
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APPENDIX

In this appendix we prove Theorem 2.2 .

First we show that c(z) satisfies a contraction property in L](Q) s

which implies at once that Problem I has at most one solution.

Lemma A.1 . Let z](t) and zz(t) be solutions of Problem 1 with
initial functions 201 and 29y respectively. Then

le(z1(8) - ezl < [le(zg) - clzgpllly  for t 5 0.

Corollary A.2 . Problem 1 has at most one solution.

Proof of Lemma A.1 . We follow the main lines of a proof by Bamberger (67 .

Défine the function

5’ -1 if s <0
sgn(s) = { O if s=0
l +1 if s>0,

f‘-] if S < - n

sgnn(s) = l s/n if -n < s <n
1 if s >n.

Since (c(z]) - c(zz))t € LZ(QT) , we can multiply the difference of the equations
for z, and z, by sgnn(z] - 22) and integrate by parts. This yields, using
Lemma A3 below, that for all t >0
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and thus, by the dominated convergence theorem,

JTQ (c(z]) - c(zz))t sgn (z] - 22) < 0 for t 0.
t .

Since sgn (c(z]) - c(zz)) = sgn(z] - 22) , we find that

J]Q (c(z]) - c(zz))t sgn (c(z1) - c(zz)) < 0 for ts0,
t

which, again by Lemma A3 , implies that
H e(z)- ez, < O .
Q

This completes the proof of Lemma A.1 .

Lermg A.3 . Let G :R »R ke a Lipschitz function.

0,T : L1(Q) s then G(w) € Wl
( then

1,1

I we (0.7 : L' (2))

and

———

6w _ gy M 4
dt dt
The proof is given in [13] .
Next we show that Problem I has a solution. We construct this

solutionas the limit :function of the sequence z s the solutions of the
approximate problems I, which we introduced in section 2 .

We first prove the lemmas- 2.3 and 2.4 of section 2.
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Proof of Lemma 2.3. We define Z; ~on R by

'U 'if X<_'L+—

1 . 1
(X+L)+ZO(X)—ZO(-L+E)'U if xe[-L+~n—,L-E]

<
)
"
S|—

zOn

1 1 . : 1
ﬁ)—20(-L+ﬁ)-U if x > L-ﬁ-

zO(L -

Let the function p be defined by

;oo if (x| 2 1
o(x) = i
Cexp{]/(xz—l)} if x<1,
where C > 0 is a constant such that Hp”] =1, and let
zOn(x) = 2n LR o(2n(x - y)) Q‘On(y)dy » XeR.

Then one easily checks that 201 satisfies Lemma 2.3 (i) and (ii) .

In the case that Zy € C] (@) we construct the sequence Zon in a

different way. We set

1

Vo) = (2™ + (™ L xe T,
and
Von(L - 3 if x> L-1
Yo (x) = | ¥y (%) if xe[L+i,L-1
-"\"On("-*% ifox ¢ L4t

Finally we define

Von(x) = 2 J]R e(2n(x - y)) COn(y) dy , x€R,
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and
X
2g,(X) = - U+ J (o (N ™ 45 , xR .
L

Again one easily checks that Zon satisfies the required properties.

Proof of Lemma 2.4. The function W= 2 satisfies (7.6) , (7.7)

and (7.8) . It follows from the maximum principle and classical existence

and uniqueness theory [20, Th. 5.2 , p. 5647 that Problem In has a unique
solution which satisfies (2.1) . Inequality (2.2) follows at once from (7.2) .

We need two more lemmas for the proof of Theorem 2.2 .

Lemma A.4.  There exists a constant C>0 which does not depend on n
such that

lzn(x9t') - Zn(x,t“){ < C {t'- t..l1/2

for all (x,t') , (x,t") EQ-T such that |t' - t'| < 1.

Proof. This result follows from (2.1) and Gilding [167] .

. . 5 . . , 0 = . o—
Lemma A (7) For every < > 0 , the functions wn z . e equiconti

-nuous on Q X [1,1] , and the modulus of continuity does not depend on T .

° o - ] ey . N .. - N L. .
(<) If zoeC (2) s the functions w, o=z are equicontinuous on Q'T s

and the modulus of continuity does not depend on T .

Proof . The function P, = wg satisfies the equation

™, = (e(z)) 7 b,

and the boundary conditions 'px(iL,t) =0 for 0 < t < T.

The results follow at once from DiBenedetto [15] .
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Proof of Theorem 2.2 . By the lemmas 2.4 , A.3 and A.4 , there exist
a subsequence of {zn} which we denote again by {zn} » and a function

z € C(Q) with z, € C(Q x]R+) and g2, 2 0 in Q , such that z - 2

in C(Q;) as n > «and, forany te (0,T) , 2, >z in C(Qx[t,T])

g .
as N If z5€ C(q) , then 2> E dn C(Gf) as N -

)

We claim that z dis a solution of Problem 1 . For all T >0

and p € [1,)

g -z weakly in L2(0,T : w1,p(9)) as N 5o,

In addition, it follows from (2.2) and the uniform convergence of cn(zn)

to c(z) in Qr as n -« that
. 2
cn(zn)t - c(z)t weakly in L (QT) as n o o,

Using these properties, it follows that z satisfies the integral equation (iv)
of Definition 2.1 , by writing a similar integral equation for z, in which
we Tet n - .

Finally, because 2 € L°(0,T : H' (0)) and 2, € L3(0,T : L2(q)) for

T >0, we obtain  [22, Lemma 1.2, p. 261] that z € C([0x): LZ(Q)) c
C([0,) : Ll(Q)) . Hence, since z satisfies the conditions (i), (ii), (iii)

and (iv) of Definition 2.1 , 2z 1is a solution of Problem I .

The other properties in Theorem 2.2. follow at once ; the uniqueness
of z follows from Corollary A.2 , and the properties (iii) and (iv) of
Theorem 2.2 are a consequence of Lemma A.5.
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CHAPITRE X

ON INTERACTING POPULATIONS THAT DISPERSE
TO AVOID CROWDING : PRESERVATION OF
SEGREGATION.,

par

M. Bertsch, M.E. Gurtin

D. Hilhorst et L.A. Peletier






X.1.

1. Introduction

Consider two interacting biological species with populations
sufficiently dense that a continuum theory is applicable, and
assume that the species are undergoing dispersal on a time scale
sufficiently small that births and deaths are negligible.
Granted these assumptions, conservation of population requires

that

u, = -div(uq),
(1.1)

v, = =div(vw),

t

where u(x,t) and v(x,t) are the spatial densities of the
species, while the vector fields q(x,t) ‘and w(x,t) are the
corresponding dispersal velocities.

We restrict our attention to situations in which dispersal
is a response to population pressure and express this mathemaiically
by requiring that the dispersal of each of the species be driven
by the gradient V(u+v) of the total population,l u+v. We

therefore assume that

1For a single species this type of constitutive assumption was

introduced by Gurney and Nisbet [1l], Gurtin and MacCamy [2].
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g = -le(u+v),
(1.2)
w = -kZV(u+V),
with kl’kz strictly-—positivel constants, and this leads to
2
the system
u, = kldlv[uV(u+v)], ‘
(1.3)
vt = kzdlv[vV(u+v)].

For convenience, we limit our attention to one space-dimension
and we choose the time-scale so that kl = 1. Then writing k = k2

we have the system

u, = [u(u+v) 1,
(1.4)
v, = k[v(u+v)x]x.
We shall suppose that the two species live in a finite habitat
Q=(-LIL)I L > 0;
that individuals are unable to cross the boundary of Q,
u(u+v)x = v(u+v)x =0 for x = L, t > 0; (1.5)

and that the two populations are prescribed initially,

1The system (1.3) with ky = 0 was studied by Bertsch and
Hilhorst [3] and by Bertsch, Gurtin, Hilhorst, and Peletier [4].
Gurtin and Pipkin [5]. See also Busenberg and Travis [6]. An

alternative theory was developed by Shigesada, Kawasaki, and
Teramoto [7]. This theory is discussed in [4] and [5].

2
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u(x, 0) = uo(x), v(x,0) = vo(x) for x € Q.

In this paper we shall study the problem (1.4)-(1.6)

for initial data which are segregated in the sense that, for

some a € &,

uy(x) =0 for x> a, 'vo(x) =0 for x < a.

As our main result we establish the existence of a solution

in which the twovspecies are segregated for all time. This

result is quite surprisingl as it is independent of the
initial distributions2 of the species and of the ratio k of

their dispersivities.

lActually, Gurtin and Pipkin [5] gave a particular solution to

(1.2) - corresponding to initial Dirac distributions - in which

Being a specific
solution, it is not clear from this result whether "preservation

the two species are segregated for all time.

of segregation” is a generic property of the equations (1.4).

2Granted they are segregated.

(1.6)

(1.7)
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2. The problem. Results.

We shall use the notation

R' = (4®), 0=0xR®, o =0ax (0,

and, for any function f: Q -+ R,
ot (£) = interior{(x,t) € Q: f(x,t) > 0}.

Our problem consists in finding functions u(x,t) and

on Q such that

u

£ [u(u+v)x]x

in Q,

]

v

£ k[v(u+v)x]x

(1) +
u(u+v)x =_v(u+v).x =0 on 0o x IR,

u(x,0) = uo(x), v(x,0) = vo(x) in Q.

We shall assume throughout that:

(A1) k > 0, wugy,vy > 0, LA €c(D;

v(x,t)

(2.1)

(2.2)

(2.3)

(A2) the initial data are segregated, so that (1.7) holds

for some a €

(a3)1  each of the sets {x: uy(x) > 0} and {x: v (x) > 0

is connected.

The purpose of this paper is to establish - for such segregated

initial data - solutions of (I) which are segregated for all time.

1 . . .
We make this assumption for convenience only.
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Proceeding formally, let (u,v) be a segregated solution. Then
the sets Q+(u) and Q+(v) are disjoint; hence (assuming

u,v > 0)

w=0 in Q*(v), v =0 in oY(u),
and, by (2.1),

. +. . +
u, = (uux)x in Q (u), v, = k(vvx)x in Q (v). (2.4)

Thus where positive u and v obey porous-media equations.

As is well known,1 solutions of the porous-media equation may not
be smooth, and for that reason it is advantageous to work with a
weak formulation of Problem (I). This is reinforced by the
observation that (I) is a free-boundary problem and conditions

at the free boundary are generally indigenous to a weak formulation,
not required as separate restrictions. (The free bdundary is the

set
3= {30% () Uatwmling (2.5)

which separates the region with u(x,t) > 0 from that with
u(x,t) = 0 and separates the region with v(x,t) > 0 from
that with v(x,t) = 0.)

With this in mind, assume for the moment that (u,v) is a
smooth solution of (I). If we multiply (2.1) by an arbitrary

smooth function ¥(x,t), integrate over QT’ and use (2.2)

le., e.g., the survey article of Peletier [B].
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and (2.3), we arrive at the relations

J {a(m (T - uyv(o) ]
Q

é; V(T ¥(T) - vy¥(0) ]

Qp

T

J luv, - uue) v ],

= Q.f {vig - kv(usv) ¥ 1,

where we have used the notation u(t) = u(-,t), etc. We shall

use (2.6) as the basis of our definition of a weak solution.

Definition.

A (weak) solution of Problem (I) is a pair

(u,v) with the following properties:

(2.6)

(1) u,v €L7(0y) for T > 0; u(t),v(t) €L (D) for t ) 0;

(wv) 2 € 2(0,1; mE()

(ii) u(t),v(t) 20

fo

r T > 0;

almost everywhere in Q for t > 0;

(iii) u and v satisfy (2.6) for all § € CY(3) and T

If, in addition,

such that, given

there is a continuous function

any t

v(ix,t)

u(x,t)

>

then (u,v) is segregated.

curve.

0

0

0

14

for E(t) < x< L,

We will refer to

for -L < x < §(t),

g

€: [0,)~+ Q

as a separation

> 0.

(2.7)
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Remarks.:
1. The terms u(u+v)x‘ and v(u+v)x in (2.%5) are defined

as follows:

11 u 2 .
17 & [ (u+v) ]x if u>>0
0 if n=17

and similarly for v(u+v)x. Then, 'since u/(u+v) < 1, while
[(U+VL21x €.L2(QT), we have

uletv), € L0 for T > 0.

2. The integral identities (2.6) imply that, as t = 0,
u(t)_* Uy, v(t) Vv, weakly in ﬁz(ﬂ);
i.e., that

£ [u(t)=ugly = 0, £ [v(t)=vyly =+ 0 (2.8)

for all § € L?(Q). To verify (2.8) we simply apply (2.6) with
¢ € c1(T) (independent of time). This yields (2.8) for ¥ € cl (%)
and hence - using a standard argument - for E‘LZ(Q).

3. The choice § =1 in (2.6) leads to the global

conservation laws

g u(t) = g ug, g’v(t)-s f-vn (2.9)

for t > O.
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We close this section by stating our main results; the

corresponding proofs will be given in Section 3.

Theorem 1. Problem (I) has exactly one segregated solution.

Remark. It is important to emphasize that we have established
uniqueness only within the class of segregated solutions. Thus
we have not ruled out the possibility - for segregated initial

data - of solutions which mix. We conjecture that this cannot

happen.

Theorem 2. Let (u,v) be the segregated solution of

Problem (I). Then:

(i) u + v €C(Q);

.. . 1l . +
(ii) ut (uux)x classically in Q (u);

(iii) v, = k(vv,) ~ classically in ot (v).

- . — .
lThat is, u is C on Q+(u) and there satisfies u, = (uu )
pointwise. xx
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Our next theorem is concerned with the free boundary 3
(cf. (2.5)); In view of (2.4), the portion of & along which
the two species are not in contact should have properties

similar to those of the free boundary for the porous-media problem:

Py = (pr)x in Q,
(PM) PPy = 0 on 230 x ]R+,

p(x,0) = po(x) in Q.
As is known,1 when the initial data have the form

po(x) >0 in (al,az), po(x) = 0 otherwise,

-L < a; < a; <L, the free boundary Q N 3Q%(p) consists of
two continuous, time-parametrizable curves, one emanating from
a,, one from a,. If Db(t), 0 < t <T,, designates the curve

from aj (resp., az), then:

(Fl) b(t) = b(0) on (O,Tb) for some LY € [O,Tb];
(Fz) b(t) is Cl and strictly decreasing (resp., strictly

increasing) on (Tb,Tb);

This discussion should motivate the following definition in which

"FB" is shorthand for "free boundary”.

1Cf., e.g., the review article by Peletier [8]. See also
Aronson and Peletier [9].
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EA

Ll

Figure 1. b 1is a left free-boundary curve extending
to 93Q. ¢ is an internal free-boundary

curve that is right up to time 'r‘.
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Definition. An FB curve is a continuous function
b:: [O,tb) -+ Q

(tb may be ©°). Moreover:
(i) b is internal if ¢t =

(ii) b is left (resp., right) up to time Tb € [O,tb]
if (FlL(Fz) hold;
(ifi) b extends to 30 if b is right or left up to time

t, with t <, and b(t;) € a3Q.

b
Let b: [0,tb) + Q be an FB curve and let gq: Q~ IR. Then
FB conditions with velocity g hold from the left (resp., right)

on b if given any t € (0,t;) atwhich b is cl,

b'(t) = qb(t)t ¢) (resp., b'(t) = q(b(t)", t)).

Theorem 3. Let (u,v) be the segregated solution of Problem

(I). Then there exist FB curves bu'bv’cu'cv with the

following properties:

1 . :
(i) b, < ¢, ¢, <b, with b, and (,  forming the

+ . .
boundary of Q'(u) in Q, b, and (  forming the boundary

of Q'(v) in Q;

(ii) bu and bv extend to 9, with bu left and bv

right;

IHere each inequality is assumed to hold at those times at' which
the underlying functions are defined.
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(iii) Cu and gv are internal, and there is a time

T € [0,%2) such that ( = is right up to time T, Cv is
left up to time T, and
Calt) = €, (t) =: C(t) on [T,0)
with ¢ € cl(T,®); in addition,
(u+v) ((t),t) > 0 for t > T; (

(iv) FB conditions with velocity =-u, hold from the

right on b, , from the left on (. ;

(v) EB conditions with velocity -kv, hold from the

right on ¢, from the left on b,.

Remarks.
1. The curve { marks that portion of the free boundary on
which the two species are in contact. By (2.10), the functions

u and v suffer jump discontinuities across (; more precisely

for t > T,

w(f(t) T,8) >0, ug)t,v) =0,
vig(e)T,t) =0, vig)t,e) > o.

Further, (iii)-(v) of Theorem 3 in conjunction with the continuity

of u+v imply that, for t > T,

()™, t) = vigmwr’t, b,

u (G 7, 8) = kv (C(B)F, &) = -C'(8).

2.10)

(2.11)
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ot () ot v

u>0, v=0 v>0, u=0

Pigure 2.

The free boundaries. The shaded areas

correspond to u = v = 0.



Figure 3. The functions u(-,t) and v(+,t)

at a fixed time t > T.
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2. The results (iv) and (v) assert that each of the "fronts"
bu(t), Cu(t), Cv(t), bv(t) propagates with the velocity of
individuals situated on it; condition (2.11) is the requirement

that at the contact front ((t) the two species move together.

Our final result concerns the asymptotic behavior of segregated
solutions. Proceeding formally, suppose that uy,(x), W:Jk) is an
equilibrium solution of Problem (I). Then (2.1) and the boundary

conditions (2.2) yield

Yol t Voo )' = Veoltot Veo)' = 0 in O

hence
20 20 Q
[t vy) ] in
and
Y, + Vo, = constant.

If y,. and v, are segregated with habitats in [-L, x]

and [gx;,L], respectively, then there exists a constant p

such that



p if x € (L, %)

uco(x) = %—p if X = )EDC
i € , L
0 if x (%, L) (2.12)
0 if x € (-L, Xq)
Voo(x) = % p if x = x

p if x € (x_,L).

Moreover, if the equilibrium solution (uy,, V) is reached from

the initial data (uo,vo), the conservation law (2.9) implies

that
AV -
p=pit, % = LSRR, (2.13)
where
U= ugy, v=_ Vo (2.14)
Q Q

That these formal calculations are indeed correct is a

consequence of the following theorem.

Theorem 4. Let (u,v) be the segregated solution of (I)f

Then, as t =+ <,

ClE) = %, ult) »u,, vit) » v,

(o)

the latter two limits being pointwise in 0\{x_J}. Here

C(t) is the contact front (cf. Theorem 3), while Xor Yos

and v, are defined in (2.12),(2.13).



3. Reformulation of the problem.

Let (u,v) be a sufficiently smooth segregated solution of

Problem (I) and define

X
z(x,t) = -U + [ [u(y,t) + v(y,t)]dy; (3.1)
-L

z(x,t) represents the total population, at time t, in the

interval [-L,x]. In view of the conservation laws (2.9),
z(-L,t) =-U, z(E(t), t) = 0, z(L,t) =V, (3.2)

where U and V are defined in (2.14), so that separation curves

E(t) (cf. (2.7)) are level curves z(E(t), t) = 0; in fact,

z(x,t) <0 for x < E(t),

(3.3)
z(x,t) >0 for x > E(t).
Further, if we differentiate (3.1) with respect to t and use
(2.1), (2.2), and (2.7), we find that
Z,2.y for x < E(t)
z, = (3.4)
kzxzxx for x > §(t).

Thus defining c¢c: R-" IR by

s, s <0
c(s) = (3.5)
s



we may use (3.3) to reduce (3.4) to the single equation

C(z)t = zxzxx

on all of Q. Therefore, if we write

X
zy(x) = -U +:£ (ug+vy)s

we are led to the following problem for

c(z)t = zxzxx in Q,

z(x,t):

(D < z(-L,t) =-y, z(L,t) =V, t >0,

z(x,0) = zo(x) in Q

We assume, for the remainder of the section, that ¢

and z, are defined by (3.5) and (3.6

are satisfied.

Problem (I) under hypotheses more
been analyzed in [10). We shall simply

a version of the results of [10] appropr

), and that (Al)-(A3)

general than ours, has
state, without proof,

iate for Bur use. With

(3.6)

this in mind, we first define what we mean by a solution; in that

definition, and in what follows, Qx;x)

equilibrium solution of (I):

(U+V) (x+L)

z(x) = 5L,

designates the unique

- U.
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Definition. A (weak) solution of Problem (I) is a function

z € C([0,°); wl'co(n)) with the following properties:
. 1l
(1) z(-,t) -z € Ho(ﬂ) for t > 0;

. 2
(ii) z, €L (QT) faor T > 0;
(iii) for all ¢ € Cl(a) with ¢ = 0 on 230 x (0,©)

and all T > 0,

[leamym -capio] = [le@y, - IR S S E )
T

Theorem 5 ([10)). Problem (II) has exactly one solution z.

Moreover:

(1) z, €C(@ with z > 0;

(ii) ecl(z), = z,2z,, 'classically in Q'(z,);

(iii) Q+(zx) is the union of the sets

Ql = {(xlt) € Q: ~-U< z(x,t) < o]r

Q, := {(x,t) €Q: 0< z(x,t) <vl,

and there exist free-boundary curves bl,bz,cl,gz such that
b 8., C

u’ v'-"u' v

(i) - (v) of Theorem 3 hold with @*(uw),@*(v),b

replaced by 0Q;,Q,/by,by,¢,,C,, respectively, with u+v in (iii)

replaced by 2z,, and with u  and v, in (iv) and (v) replaced

bBY Zyx
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(iv) z(t) » 3z, in C'(@ as t +oo;

(v) given any X, € Q with zb(xo) > 0, there exists

tinuous function £&: [0,°) -+ Q such that

{(x,t) €Q: z(x,t) = zo(xo)} = {(x,t) €Q: x = E(t)]};

ver, £ € Cl(OﬁD) and, for t > 0,

moreo

where

(I

and

Then

g (t) = Kz (E(t), t),

K =1 or k according as z4(xy) < 0 or zy(xg) > 0.

The next result asserts the equivalence of Problems I and

and, when combined with Theorem 5,

yields the validity of Theorems 1-4.

Theorem 6. Problems (I) and () are equivalent:

(i) Let z be a solution of Problem (&) and define u

v on Q by
u(x,t) = zx(x,t), vix,t) =0 if =z(x,t) < O,
u(x,t) =0, v(x,t) = z (x,t) if =z(x,t) > 0,
u(x,t) = vix,t) = % z (x,t) if z(x,t) = 0.

(u,v) is a segregated solution of Problem (I).

(3.8}

(ii) Conversely, let (u,v) be a segregated solution of Problem

(I) and define z on QO by (3.1). Then 2z solves Problem (I).
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Proof.

(i) Let 2z be a solution of (I) and define (u,v) through
(3.8). By Theorem 5(i), the only nontrivial step in showing that
(u,v) solves (I) is proving that u and v satisfy the integral
identities (2.6). We shall only verify the first of (2.6);
the verification of the second is completely analogous.

For convenience, we write b = bl’ ¢ = Cl for the FB
curves established in Theorem 5, and we extend b(t) continuously
to [0,°) by defining b(t) = -L for t > t,. By Theorem 5(iii)

and (3.8),
supp u(t) = [b(t), C(t)].

Choose ¢ > 0 sufficiently small and let be(t) and Ce(t),
respectively, be the level curves 2z = -U +¢ and z = -¢
(cf. Theorem 5(v)). Then, by Theorem 5(ii) and (3.8),

u, = (uux)x classically and v = 0 must both be satisfied
in a neighborhood of any (x,t) such that bs(t) £ x < Cs(t)

and t > 0. Further, Theorem 5(v) yields

bé(t) = -ux(be(t), t), C;(t) = -ux(és(t), t)
for t > 0. Thus, choosing & > 0, the identity

t
[ £r(mar
5

f£(t) - £(9)

applied to



X.22.

Ce(m)
£(1) = [ u(m)y(7)
“b_(T)
€
yields, when § € Cl(a),

¢ (8) ceia) £ CE (T
J oueye) = [ uw@vd) = [{ [ (ui-u(usv) i) axtar.
b (t) b (%) o Lb.(7) (3.9)

Next, since bs(t) { b(t) and Ce(t) t ((t) as € ¢+ 0 for each

t € [Q,2), it follows from Lebesgue's dominated convergence theorem
that (3.9) holds with b_ and _ replaced by b and (. Also,
since z € C(Q), it follows that z (6) » z) in c(Q) as

0
6 ¢+ 0 and

C}é) C}O)
u(d) v(s) =+ UUW(O) as. & ¢ 0.
b(6) b(0)

Thus a second application of Lebesgue's theorem yields

¢(t) £(0) t (¢(7)

} u(t) y(t) - } uyv(0) = 1) Y } (¥ -u(u+v) ¥ )dxpdr,
b(t) b(0) 0 Lb(T) :

and, since u(t) = 0 on O\(b(t), C(t)), the first of (2.6)

follows.

(ii) Let (u,v) solve (I). We are to prove that 2z - defined
by (3.1) - solves (I). Choose T > 0. Thea u,v € ﬁx%QT) and
hence, by (2.9) and the definition of Zer 2(,t) -z € H%(Q).
Note also that, since z, =u + v and (u+v)2 € L2(0,T;H1(Q)),

it follows that
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22 € t20,m;81 (), (3.10)

2 2
where z, (zx) .

Our next step will be to establish the integral identity (3.7).

Thus choose X € 01(6) with X =0 on 30 x (0,c©) and take

X
vix,t) = [ x(y,t)dy
-L

in (2.6); in view of (2.7), (3.1), and (3.6), the result is

g(T) £(0)

va
—
(24
A4

T (0 T 1. 2
L ozemum - I zgve =£ I laghy - 3tz xlaxat,
L L T L (3.44
: - - k(g2
g(J;)zx('rm'r) - g(fo)zoww) £ g(ft)[zxvt 7(zy) X Jaxdt.

since ¥, = X, ¥(-L,t) =0, and X(£L,t) = 0, while z(x,t) satisfies
(3.2) and (3.3), i1f we integrate (3.11l) by parts and then add the

first of the resulting relations to x~1

times the second, we arrive
at (3.7) (with ¥ replaced by X).
We have only to show that z, € Lz(QT). But this follows from

in the sense

(3.10) and the fact that, by (3.7), c(z), = 3(z2)_

of distributions on Q,,. This completes the proof of Theorem 6.
T
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4. Remarks. Open problems. Conjectures.

1. Problem (I) with nbnseg:egated initial data is open. Here

the problem does not reduce to a free boundary problem for a single
scalar field 2z, as one must solve the system (2.1) in regions of

interaction (cf. Remark 2).

2. The system (2.1) with k =1 is far simpler to analyze.
There the total density p = u + v satisfies (PM) with initial
data Py =Yy + Voo and once §{ is known (2.1) are linear

hyperbolic equations for u and v:

u, = (upx)x. v, = (vpx)x

(cf. [5]). Using this reduction one can prove uniqueness within
the class of all solutions (as opposed to all Segregated solutions), a
one can show that solutions which begin mixed remain mixed for all

time, including t = . (Details will appear elsewhere.)

3. Assume, in place of (1.2), that the dispersal of each
of the species is driven by a weighted sum of the densities; i.e.,

that (in one space-dimension) ,

q = —(kyyu + kvl
(4.1)
w = —(kZlu + k22v)x
with all
k.. > 0. (4.2)

ij
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This constitutive assumption, when combined with the conservation
law (1.1) and corresponding zero-flux boundary conditions, leads

to the problem

u

= [u(k,,u + k..v)_]
t 11 12V x)x
** in a, (4.3)

v, = [v(kzlu + kzzv)x]x

(Im) +
u(kllu + k12v)x = v(k21u + kzzv)x =0 on 3Mx R,

u(x,0) = uo(x), v(x,0) = vo(x) in Q.

This formulation is greatly simplified if we define new independent

variables

a(x,t) = kllu(x't) ’ B(x,t) = klZV(x't)

and new constants

k=22 Kk
’ ’
k12 k11%22
for then (II) reduces to
o, = [a(a+d) 1
in Qq, (4.4)

m J P T KIBe + B,
a(e + B), = B(Ma + B), =0 on MxR',

a(x,0) = ag(x), B(x,00 = By(x) in @,

with
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Consider Problem (II), or equivalently (I¥).

The terms on

the right side of (4.3) involving second derivatives are

Writing A =

ukll

A(u,v)

uk

vk

12 uxx>
22 vxx

for the coefficient matrix in (4.5)

(4.5)

and

confining our attention to u > 0, v > 0, we conclude from (4.2)

that there are exactly three possibilities for the eigenvalues

ll $ Az

(1) Ay >

Moreover,

it is not

(1) Xl

(ii) A

(iii) Ay

We consider

Case (i)

as it is parabolic when u > 0

of A, namely:

0, 12 > 0; (ii)

writing K for the

K =

difficult to verify
>0, kz >0 &
=0, kz >0 &~
< 0, kz >0 &=

(det K > 0).

A, =0, A

1
matrix

(kij)’

that
det K > 0,

det K

]
o
<

det K < 0.

the three cases separately.

and v > 0, but not when

(iii) ll <o, Xz > 0.

Here the system (4.3) is degenerate parabolic,

uv = 0.

Because of this property, we expect that initially-segregated

solutions will eventually mix.

another reason.

We also expect them to mix for

Indeed, assume to the contrary that Problem

()
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has a segregated solution (u,v). For such a solution we would
expect the‘two populations to spread until they meet, and then

to remain in contact along a contact front ¢{(t) (cf. Theorem 3
and Remark 2 following it). From (4.2) one might expect that

both kllu + klzv and k21u + kzzv would be continuous across

¢, and hence both zero along {, a condition which cannot generally
be satisfied (cf. Remark 1 following Theorem 3). We are therefore
led to the following conjecture: for det K > 0 there are no

segregated solutions of Problem (II). In this regard it would be
1

interesting to look at (II) with

l+e€ 1
K = ’
1 1
€ > 0; in particular, the limit e * 0.

Finally, within the context of the biclogical model, the
off-diagonal elements of K drive the segregation of the species,
while the diagonal elements, by themselves, result in the usual
> k. k

k11¥22 > ¥1¥a
it would seem reasonable that in this case the two species

diffusive behavior. Since det K > 0 yields

ultimately mix.

Case (ii) (det K = 0). Here n =1 and Problem (I¥) is identical

to Problem (I). Thus all of our results generalize trivially to

populations whose interaction is described by (4.1) with K

singular.

l'I'his choice of K arose in discussions with R. Rostamian.
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For the case det K = 0 we would like to call the system (4.3)

degenerate parabolic-hyperbolic. 1Indeed, if we set w =« + B,

then, assuming k > 1, (4.4) can be written as

w [{w + (x-1) B]wx]x,

t

By = k(wyB)

t

i.e., as a system composed of a‘degenerate-parabolic equation and
a hyperbolic equation. The presence of this last equation makes
the discontinuity of u and v at the contact front less
surprising.

In this case one can speak of "passive segregation": if
the species start segregated, they may remain segregated, as we
have seen 'in the previous éections, and if they start mixed,
then, when k = 1, they remain mixed for all t 2 0 (see

Remark 2 of this section).

Case (iii) (dét K < 0). The system (4.3) is now not parabolic,
and Problem (II) is probably not well posed. Since the off-diagonal
terms in K dominate in this case, one might expect a tendency

towards segregation, even in a mixed population.
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5. The system (2.1) with k = 0 was studied in [3]) and [4].
There v(x)‘=‘= vo(x) and the problem reduces to solving (2.1)1,
(2.2)1, and (2.3)1. In this case, even with segregated initial
data, solutions eventually mix, an apparent contradiction in
behavior. The limit k #+ 0 in Problem (I) would therefore be

interesting.

Acknowledgment.

We would like to thank W. Hrusa and R. Rostamian for

valuable discussions.



X.30.

References

1. Gurney, W.S.C., Nisbet, R.M.: The regulation of inhomogeneous
populations. J. Theoret. Biol. 52, 441-457 (1975).

2. Gurtin, M. E., MacCamy, R. C.: On the diffusion of biological
populations. Math. Biosc. 33, 35-49 (1977).

3. Bertsch, M., Hilhorst, D.: A density dependent diffusion
equation in population dynamics: stabilization to equilibrium.
To appear.

4. Bertsch, M., Gurtin, M. E., Hilhorst, D., Peletier,‘L. A.:
On interacting populations that disperse to avoid crowding:
The effect of a sedentary colony. J. Math. Biol. 19, 1-12
(1984) .

5. Gurtin, M. E., Pipkin, A. C.: A note on interacting populations
that disperse to avoid crowding. Quart. Appl. Math.
42, 87-94 (1984)

6. Busenberg, S. N., Travis, C. C.: Epidemic models with spatial
spread due to population migration. J. Math. Biol. 16,
181-198 (1983).

7. Shigesada, N., Kawasaki, K., Teramoto, E.: 3Spatial segregation
of interacting species. J. Theoret. Biol. 79, 83-99 (1979).

8. Peletier, L. A.: The porous media equation, Application of
nonlinear analysis in the physical sciences (Amann, H.,
Bazley, N., Kirchgassner, K., eds.) pp. 229-241. Boston:
Pitman 1981.

9. Aronson, D. G., Peletier, L. A.: Large time behavior of
solutions of the porous media equation. J. Differential
Egns. 39, 378-412 (1981).

10. Bertsch, M., Gurtin, M.E., Hilhorst, D. : The equation c(z), =
(szlm“1zx)x : the free boundary induced by a discontinuity in the

derivative of ¢ . To appear.



