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dynamics.

Ab s t r a c t

In the f i r s t  part of  t h i s  t h e s i s  we consider cer ta in  nonlinear problems 

a r i s i n g  in plasma p h y s i c s .  We f i r s t  study a s ingular  two-point nonlinear boun­

dary value problem on an in te r v a l  (0,R) ; we prove that i t  has a unique s o lu ­

t i o n  and study i t s  l im i t in g  behavior as R 00 and as a small parameter e+0 

We a l s o  study the  large time behavior of a r e la t e d  e v o lu t io n  problem. We then 

extend our study t o  more general  boundary value problems in higher dimension 

and show that  as e+0 t h e i r  s o lu t io n  converges t o  the s o lu t io n  of  a f ree  
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d i f f u s i o n  problems. We f i r s t  show the e x i s t e n c e  and uniqueness of  the s o lu t io n  

of  boundary value problems re la ted  t o  a doubly nonlinear d i f f u s i o n  equat ion in 

hydrology and study i t s  asymptotic behavior as t  -*■ 00 . We then consider a 
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that  t h e i r  supports are i n i t i a l l y  d i s j o i n t .  Our r e s u l t s  concern the time evo­

lu t io n  and the  large time behavior of those  populat ions  and o f  t h e i r  supports  

and the  r e g u la r i ty  of  the boundaries of  the supports .

Key Wo r d s

Nonlinear e l l i p t i c  e q u a t io n s .  Singular p er tu rb a t io n s .  Nonlinear d i f f u s i o n  

equ at ions ,  Free boundary problems.





TABLE DES MATIERES

INTRODUCTION.

PREMIERE PARTIE : Sur q u e l q u e s  p r o b l è m e s  non L i n é a i r e s  en
p h y s i q u e  d e s  p l a s m a s .

I .  Rigorous r e s u l t s  on a time dependent inhomogeneous Coulomb gas problem. 
Phys. L e t t .  84 A. (1981) ,  424-426.
(en c o l lab ora t ion  avec H.J.  Hi lhorst  e t  E. Marode).

I I .  A s ingular  boundary value problem a r i s i n g  in a pre-breakdown gas 
disch arge .
SIAM J.  Appl. Math., 39 (1 9 8 0 ) ,  48-66 .
(en c o l lab ora t ion  avec 0. Diekmann e t  L.A. P e l e t i e r ) .

I I I .  A nonlinear evo lu t ion  problem a r i s i n g  in the physics  o f  ion ized  gases .  
SIAM J.  Math. A na l . ,  13 (1982) 16-39.

IV. How many jumps ? V aria t ional ch a r a c te r iz a t io n  of  the l im i t  s o lu t io n  of  a 
s ingular  perturbat ion problem .
Dans Geometrical Approaches to  D i f f e r e n t i a l  Equations,  R. Martini e d . ,  
Lecture Notes in Mathematics 810,  Springer (1980) .
(en c o l la b o ra t io n  avec 0.  Diekmann).

V. Varia t ional a n a l y s i s  of  a perturbed free  boundary problem.
Comm, in Part.  D i f f .  Eq.,  _7 (1982) ,  1309-1336.
(en c o l la b o r a t io n  avec 0.  Diekmann).

DEUXIEME PARTIE : Sur d e s  p r o b l è m e s  de d i f f u s i o n  non l i n é a i r e s
en h y d r o l o g i e  e t  en d yn am iq u e  d e s  p o p u l a t i o n s .

VI. On a doubly non linear d i f f u s i o n  equation in hydrology.
A para î tr e  dans Nonlinear Analysis  TMA.
(en c o l la b o ra t io n  avec C.J.  Van Duyn).

VII.  A d en s i ty  dependent d i f f u s i o n  equation in population dynamics : s t a b i ­
l i z a t i o n  to  equi l ibr ium .
A para î tr e  dans SIAM J.  Math. Anal.
(en co l la b o ra t io n  avec M. Ber tsch ) .

VIII .  On in te r a c t in g  populations  that  d isperse  to  avoid crowding : the  
e f f e c t  of  a sedentary colony.
J.  Math. B i o l . ,  19  (1984) ,  1-12
(en co l lab ora t ion  avec M. Bertsch ,  M.E. Gurtin et L.A. P e l e t i e r ) .

rn*~1
IX. The equation c ( z ) t  = ( | z x | z „ ) x : the fr e e  boundary induced by a d i s ­

c o n t in u i ty  in the d e r iv a t iv e  o f  c .
Première vers ion  d'un a r t i c l e  à p a r a î t r e .
(en co l la b o r a t io n  avec M. Bertsch et  M.E. Gurt in) .

X. On i n t e r a c t in g  populat ions  that  d isp erse  to  avoid crowding : preservat ion  
of s egrega t ion .
Soumis à J.  Math. B io l .
(en co l la b o ra t io n  avec M. Bertsch ,  M.E. Gurtin e t  L.A. P e l e t i e r ) .





I N T R O D U C T I O N

I n t r o d u c t i o n  à l a  p r e m i è r e  p a r t i e , :  S ur  q u e l q u e s  p r o b l è m e s  non  

l i n é a i r e s  e n  p h y s i q u e  d e s  p l a s m a s .

Le problème que nous é tudions  provient de la physique des plasmas.  

On considère une assemblée d ' io n s  et  d ' é l e c t r o n s .  Les io n s ,  lourds et l e n t s ,  

sont considérés  comme f i x e s  dans l ' é c h e l l e  de temps considérée e t  l ' o n  se 

propose de déterminer la den s i té  des é l e c t r o n s ,  leur charge t o t a l e  é tant  

supposée connue. Si l 'on  prend comme inconnue le  p o t e n t i e l  é l e c t r i q u e ,  on 

o b t ie n t  le  problème

+ e u /e  =-  Au + e = f  dans fi

BVP
eu(x)/e dx = c c > 0

fi

U[g^ = constante (inconnue) ,

où fi e s t  un domaine de Kn ,  borné ou non, et e une constante proportion­

n e l l e  à la température . La fon ct ion  f  correspondant à la d en s i té  ionique
U /p

e s t  supposée connue ; la quanti té  e correspond à la d en s i té  des é l e c t r o n s  

et  la condit ion  in té g r a le  exprime le  f a i t  que leur charge t o t a l e  e s t  connue.

On suppose de p lus  que le  domaine fi e s t  entouré d'un conducteur é l e c t r i q u e ,  

ce qui implique la condit ion

La s i t u a t io n  expérimentale  é tu d ié e  par Bastien  et  Marode e s t  c e l l e  

d'une décharge f i l i f o r m e  entre deux é l e c t r o d e s  ; le système physique présente  

une symétrie de révo lu t ion  par rapport à l ' a x e  et  l 'o n  suppose que le s  

fo n c t io n s  cons idérées  ne dépendent que de r = /  x  ̂ + x |  . Dans le  Chapitre  

I ,  nous e x p l i c i t o n s  le s  l o i s  physiques qui déterminent le  problème et nous 

résumons le s  r é s u l t a t s  des Chapitres II -IV  en termes physiques .

u 8fi c onstante .

x3



Dans Le Chapitre I I ,  nous considérons Le problème aux Limites qu'on  

r /x  u ( r ) / e
ob t ien t  en posant y (x)  = e u r e r dr et  g(x)  = f ( r )  r dr ,  s o i t

J 0 J 0

rz x y" + (g (x )  -  y ) y ' = 0 ,  x € C0,R)
P(e,R) <

ly (0 )  = 0 yCR) = C ,

et nous supposons que La fonct ion  g e s t  suffisamment r é g u l i è r e ,  s tr ic tem ent  

c r o i s s a n te  e t  s tr ic tem ent  concave et  t e l l e  que C £ (0 ,g ( ° ° ) ) .  Nous montrons 

que P(e,R) a une so lu t io n  unique y qui converge vers  une l im ite  y quand 

R -*■ °° . Si e SI g(°°) -  C ,  y co ïnc ide  avec la s o lu t io n  de P(e,°°) ; s i  

e > g(°°) -  C ,  PCe,00) n'a pas de soLution.  Nous prouvons e n s u i t e  que,  quand 

e + 0 ,  y converge vers  la fon ct ion  m in (g (x ) ,C ) .  Pour l e s  démonstrations  

nous employons e s s e n t ie l l e m e n t  des arguments l i é s  au pr inc ipe  du maximum et  

à la construct ion  de sur-  et sous-soLut io n s .

Nous nous in té r e s so n s  e n su i te  à La s t a b i l i t é  de La soLution du Pro­

blème P(e, ° ° ) ,  ce qui nous amène, dans Le Chapitre I I I ,  à L'étude du problème 

d 'é v o lu t io n  non Linéaire

( x , t )  e F +x 

t £ [0,«>) 

x £ R+

où ip e s t  une fonct ion  cr o i s sa n te  t e l l e  que ÿCO) = 0  et  

démontrons que le  Problème P̂  admet une s o lu t io n  c la s s iq u e  unique v et  nous 

étud ions  le comportement asymptotique de v quand t ■+ °° . En p a r t i c u l i e r ,  on

déduit que,  s i  £ < g(°°) -  C, La soLution y de P(e ,°°) e s t  algébriquement 

s t a b l e .  Nous considérons également le  cas Limite £ 4- 0 ; quand £ + 0 ,  v 

converge vers  La soLution g é n é r a l i s é e  v du problème hyperbolique correspon­

dant e t  quand t °° ,  v converge algébriquement vers sa Limite.

Si l 'o n  ne suppose p lus  que la fo n c t io n  g e s t  monotone, le  problème 

réduit  correspondant à P(e,R) a en général une i n f i n i t é  de s o lu t io n s  ; i l  

s ' a g i t  de déterminer Laquelle e s t  la Limite de y quand £ +  0 . Dans le  but

/ v. = exv + ( g ( x ) - v ) v  t XX s x

P1 ) v(0,t) = 0

\ v ( x , 0 )  = ^ ( x )

i . 2.

’oo c . Nous

X
+

r /7  

• 0■r«J o



de r e n d re  l e s  d é m o n s t r a t io n s  moins t e c h n iq u e s  nous cons idé rons  dans le

Chap i t re  IV le problème ey" + ( g - y ) y '  = 0 ,  y (0 )  = 0 e t  y(1)  = 1 où
2l ' o n  suppose g € L ( 0 , 1 ) .  Pour é t u d i e r  ce problème nous u t i l i s o n s  la 

t h é o r i e  des o p é r a t e u r s  maximaux monotones e t  a b o u t i s s o n s  f in a lem en t  à 

une c a r a c t é r i s a t i o n  c o n c rè te  de la  l i m i t e  de y quand e 4- 0 .

Dans le  C hap i t re  V ,  nous é t u d io n s  le comportement l i m i t e ,  quand 

e + 0 ,  de la  s o l u t i o n  u£ du problème

-  Au + h ( - )  = f  dans fi
e

BVP l h (— ') )dx = C h(-°°) < C/ |f l |  < h(+°o)
h e
u |9fi = cons* a n te  ( inconnue)  ,

où nous supposons £2 borné e t  la  f o n c t io n  h c o n t in u e ,  s t r i c t e m e n t  c r o i s ­

s a n te  e t  t e l l e  que D(h) = K  e t  h(0)  = 0 . Ce problème correspond  à BVP
s

dans le  cas où h ( s )  = e -  1 . On u t i l i s e  une méthode v a r i a t i o n n e l l e  e t  la 

t h é o r i e  de l a  d u a l i t é  pour montrer l ' e x i s t e n c e  e t  l ' u n i c i t é  de la  s o l u t i o n  

u£ de ce p roblème.  Quand e + 0 ,  u£ converge v e r s  la s o l u t i o n  d 'un  problème 

à f r o n t i è r e  l i b r e ,  que l ' o n  peut m e t t r e  sous la forme d 'u n e  r e l a t i o n  d ' i n c l u ­

s io n  ,  s i  la f o n c t io n  h e s t  bo rn ée ,  ou d 'une  in é q u a t io n  v a r i a t i o n n e l l e  s i  

h ( +  oo) = + oo ou h ( -  °0) = -  00 . Les r é s u l t a t s  ob tenus  concordent avec ceux 

que Brauner e t  Nicolaenko o b t i e n n e n t  pour un problème provenant de la t h é o r i e  

c i n é t i q u e  des  enzymes.

I n t r o d u c t i o n  à l a  d e u x i è m e  p a r t i e  : s u r  d e s  p r o b l è m e s  d e  d i f f u s i o n  

NON L I NÉ A IR ES  EN HYDROLOGIE ET EN DYNAMIQUE DES POPULATIONS.

C e t t e  p a r t i e  p o r t e  su r  des problèmes de d i f f u s i o n  non l i n é a i r e s

d é g é n é ré s .

Dans le C h ap i t r e  VI, nous é t u d io n s  un modèle i n t r o d u i t  pa r  de J o s s e l i n  

de Jong pour  d é c r i r e  l ' i n f i l t r a t i o n  d ' e a u  s a l é e  dans le s  nappes a q u i f è r e s  au 

v o i s in a g e  des zones c ô t i è r e s .  P lu s  p réc i sém en t  nous nous i n t é r e s s o n s  à l ' é v o l u ­

t i o n  dans le temps de l ' i n t e r f a c e  e n t r e  eau s a l é e  e t  eau douce.  Mathémat ique-

i . 3 .



ment,  ce la  nous amène à é t u d i e r  l ' é q u a t i o n

E u = (D(u)tp(uY))t  X x

où D e t  ip so n t  des f o n c t i o n s  suff isamment r é g u l i è r e s  t e l l e s  que D > 0

su r  ( 0 ,1 )  e t  D(0) = D(1) = 0 ,  D" S 0 su r  ( 0 ,1 )  ,  tp(0) = 0 ,  < p '> 0 s u r  ( - 1 , 1 ) ,

<p'(-1)  = <p'(1) = 0 . L ' é q u a t io n  E dégénère à la f o i s  aux p o i n t s  où u = 0

ou u = 1 et  à ceux où u = 1  ou u = -1 . Nous montrons l ' e x i s t e n c e  e t
x x

l ' u n i c i t é  de la  s o l u t i o n  de problèmes de Neumann, Cauchy e t  Cauchy-Diri  c h l e t  

l i é s  à c e t t e  é q u a t io n  e t  nous é t u d i o n s  le  comportement asym pto t ique  de la 

s o l u t i o n  quand t  -» °° . Pour l e s  d ém o n s t r a t i o n s  nous adap tons  en p a r t i c u l i e r  

la  méthode de monotonie e t  nous u t i l i s o n s  des arguments l i é s  à un p r i n c i p e  

de comparaison e t  au f a i t  que la  s o l u t i o n  v é r i f i e  une p r o p r i é t é  de c o n t r a c t i o n  

dans i J  .

Nous é t u d io n s  e n s u i t e  un système d ' é q u a t i o n s  de d i f f u s i o n  non l i n é a i ­

r e s  i n t e r v e n a n t  en dynamique des p o p u l a t i o n s .  I l  a pour o r i g i n e  un modèle de 

G ur t in  e t  P ipk in  d é c r i v a n t  la  d i s p e r s i o n  de deux p o p u l a t i o n s  b io l o g iq u e s  en 

i n t e r a c t i o n  qui  se d i s p e r s e n t  sous l ' i n f l u e n c e  de la p r e s s i o n  de p o p u l a t i o n .

Ce modèle e s t  basé su r  l ' h y p o t h è s e  que le s  v i t e s s e s  de d i s p e r s i o n  i n d i v i d u e l l e s  

sont  p r o p o r t i o n n e l l e s  à - (u + v )^  où u e t  v sont  l e s  d e n s i t é s  cor respondan ­

t e s .  Si l ' o n  suppose de p lu s  que l ' h a b i t a t  fi e s t  i s o l é ,  on o b t i e n t  le  p r o b l è ­

me d ' é v o l u t i o n  s u iv an t

u^ = (u(u+v) ) dans  fix]R
t  x x

v^ = k(v(u+v) ) dans fix]R+
t  x x

u(u+v) = 0 ,  v(u+v) = 0 sur  9 f ix p +
x '  x

u ( x ,0 )  = Uq ( x ) ,  v ( x , 0 )  = Vq ( x )  dans fi

où k à 0 ,  fi = ( -L ,L)  avec L > 0 et  où Ug et  v^ sont  des f o n c t i o n s  

suff isamment  r é g u l i è r e s  t e l l e s  que uq^vq = 0 .

Dans l e s  C hap i t r e s  VII e t  V I I I ,  nous co n s id é ro n s  le cas où k = 0 ; 

l ' é q u a t i o n  en v du problème I impl ique a l o r s  v = v(x)  e t  l ' o n  a donc 

une p o p u la t io n  mobile u en p résence  de la  p o p u la t i o n  s é d e n t a i r e  v . Le 

problème I se r é d u i t  a l o r s  au problème

i. 4 .
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/ u. = ( u ( u  + v )  ) d an s  fi x ]R +
I t  x x

II  < u (u  + v > x = 0 s u r  3fi x jrt

 ̂ u ( x , 0 )  = U g ( x )  dans  fi

Dans Le Chapitre VII,  nous étudions  un problème plus général  en 

dimension N quelconque

ut = Acp(u) + div(u  grad v) d an s  fi x]R +

s u r  3fi x ]R + 

d ans  fi

où fi e s t  un domaine borné de En ,  v le  vecteur u n i ta ir e  normal à 9fi ,

ip e s t  une fon ct ion  ré g u l i è r e  t e l l e  que <p(0) = ip'(0) = 0 ,  cp'(s) > 0 pour
00

tout  s > 0 ,  la fo n c t io n  i n i t i a l e  Ug € L (fi) e s t  t e l l e  que Ug  ̂ 0 e t  v 

es t  une fon ct ion  donnée suffisamment r é g u l i è r e .  Ce chapitre  e s t  composé de 

deux p a r t i e s .  Dans la deuxième p a r t ie  nous montrons que le Problème I I I  admet 

une s o lu t io n  g é n é r a l i s é e  unique u ( t , u g ) .  Dans la première p a r t i e ,  nous prou­

vons que u ( t ,u g )  se s t a b i l i s e  quand t ■+ °°. L'une des d i f f i c u l t é s  mathémati­

ques provient  du f a i t  que l 'on  e s t  en présence d'un continuum de s o lu t io n s  

s t a t io n n a i r e s  ; pour le s  démonstrations on s ' i n s p i r e  d'une méthode de Osher

e t  R a l s to n .  L ' id é e  e s t  de prouver to u t  d'abord que u s a t i s f a i t  une p r o p r ié t é
i

de contract ion  dans L ,  de montrer que dans c e r ta in s  cas c e t t e  contract ion  

e s t  s t r i c t e  e t  d ' u t i l i s e r  c e t t e  proprié té  e t  la s tructure  du continuum de 

s o lu t io n s  s ta t io n n a i r e s  pour constru ire  une f o n c t io n n e l l e  de Lyapounov.

Dans le Chapitre VIII on rev ient  au Problème II e t  l ' o n  s ' i n t é r e s s e  

à la quest ion  suivante : s i  à l ' i n s t a n t  i n i t i a l ,  le  support de u es t  d'un 

côté du support de v ,  une p a r t i e  de la population  u p e u t - e l l e  a t te in d re  

l ' a u tr e  côté de la populat ion sédenta ire  v pour t suffisamment grand, ou 

bien la populat ion  v c o n s t i t u e - t - e l l e  une barrière  in fran ch is sab le  pour les  

membres de la co lonie  u ? La réponse dépend des proportions r e l a t i v e s  des deux 

p op u la t ion s .  Nous montrons que s i  la populat ion mobile u e s t  suffisamment

I I I  < | ;<p<u> + u f * =  0

u (x ,0 )  = U g (X )
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importante par rapport à la population séden ta ire  v ,  a lo r s  u occupe tout

l ' h a b i t a t  à p a r t i r  d'un cer ta in  moment ; s i  par contre | |un ||  ̂ | |v| |
U L°°(fi) L°°(fi)

a lo r s  la populat ion v représente e f fec t ivem en t  une barr ière  pour la populat ion  

u . La plupart des démonstrations de ce chapitre  s 'appuient  sur des r é s u l t a t s  

obtenus au Chapitre VII.

On s ' i n t é r e s s e  e n s u i t e  au Problème I dans le  cas où k > 0 e t  l 'o n  

suppose que l e s  fo n c t io n s  i n i t i a l e s  Uq et  Vg sont s ép a rées ,  c ' e s t - à - d i r e  q u ' i l  

e x i s t e  a E fi t e l  que

Ug(x) = 0 si  x > a et Vq( x) = 0  s i  x < a

On se propose de montrer que le Problème I admet une seu le  s o lu t io n  g é n é r a l i s é e  

(u ,v )  t e l l e  que u ( t )  e t  v ( t )  sont séparées  à tout in s tan t  t  . L'idée e s t

la s u i v a n t e .  On pose U = j Ug ,  V = vn et  l ' o n  suppose que ( u , v )  e s t
fi 0

une s o l u t i o n  du Problème I t e l l e  que u ( t )  e t  v ( t )  sont  s é p a r é e s  à chaque 

i n s t a n t  t  . Alors  la f o n c t i o n  z  : f i x  [ 0 / » )  - » E  d é f i n i e  par

(1) z ( x , t )  = -  U + 

s a t i s f a i t  formellement le  problème

rx
( u ( s , t )  + v ( s , t ) ) d s

-L

Cciz))* = (|z |m'1 z ) dans !Î*P+t  ‘ X1 XX

IV  ̂ z(-L,t) = -  U z(L,t) = V pour t £ F +

z(x,0) = zn(x) dans fi

ou

zQ(x) = -  U + J Cu0 + vQ) ,

m = 2 et  c : R - > R  e s t  d é f in i  par

G S s i  S ^ 0
c(s )  = , +

c s s i  s k 0

avec c = 2 e t  c+ = 2/k .

i;
dans fi



Dans le  Chapitre IX, nous é t u d io n s  le  Problème IV avec m > 1 ,  

c > 0 ,  c > 0  que lconques  e t  nous supposons que la f o n c t i o n  i n i t i a l e  

Zq e s t  suffisamment r é g u l i è r e ,  non d é c r o i s s a n t e  e t  q u ' e l l e  s a t i s f a i t  

Zq(-L) = -U et  Zq (L) = V . Nous montrons que le  Problème IV admet une
'J _

s o l u t i o n  g é n é r a l i s é e  unique z ( t , z g )  qui converge dans C (fi) v e r s  l 'u n iq u e  

s o l u t i o n  s t a t i o n n a i r e  quand t  -*■ 00 . Le but p r i n c i p a l  de ce c h a p i t r e  e s t  de 

donner une d e s c r i p t i o n  d é t a i l l é e  de l ' e n s e m b le

N<z) : = { ( x , t )  6 ftx [0,°o) : z ( x , t )  = 0} .

On o b t i e n t  en p a r t i c u l i e r  l e  r é s u l t a t  s u iv a n t  : i l  e x i s t e  des f o n c t i o n s  c o n t in u e s
+

ç : [0,°°) fi t e l l e s  que

N (z )  = { ( x , t ) € ÏÏx [0 ,«0  : ç ' ( t )   ̂ x  ̂ ç + ( t ) }  .

^|f

De p lu s  i l  e x i s t e  T ^ 0  t e l  que

ç e s t  c r o i s s a n t e ,  ç + e s t  d é c r o i s s a n t e  sur [0 ,T *]

e t

Ç (t ) : = Ç ( t )  = ç+ ( t )  pour t   ̂ T*,  ç £ Ĉ  ( ( T * , 00) )  

e t  z x ( Ç ( t ) , t )  > 0 pour t  > T* .

Un élément e s s e n t i e l  de la dém onstrat ion  e s t  c o n s t i t u é  par un changement de 

coordonnées i n t r o d u i t  par G urt in ,  MacCamy e t  S oc o lovsk y .

Dans l e  Chapitre X on montre que l e  Problème IV e s t  é q u i v a l e n t  au 

problème de rech ercher  une s o l u t i o n  ( u , v )  du Problème I t e l l e  que u ( t )  e t  

v ( t )  s o i e n t  sé p ar ée s  à t o u t  i n s t a n t  t  . Donc, s i  l e s  f o n c t i o n s  i n i t i a l e s  Ug 

e t  Vg sont  s é p a r é e s ,  le  Problème I admet une s e u l e  s o l u t i o n  ( u , v )  t e l l e  que 

u ( t )  e t  v ( t )  sont  s é p a r ée s  pour t o u t  t  e t  l ' o n  peut immédiatement déduire  

des r é s u l t a t s  du Chapitre IX des  in fo r m a t io n s  sur l e s  supports  de u e t  v : 

l ' ensem b le  N(z )  c o n s t i t u e  le  f r o n t  de s é p a r a t i o n  e n t r e  l e s  deux p o p u la t io n s  ; 

à p a r t i r  de l ' i n s t a n t  T* ,  l e s  supports  de u e t  v ne sont  donc p lu s  séparés  

que par une courbe de c l a s s e  C ( l a  courbe x = ç ( t ) )  qui r e p r é s e n t e  une l ig n e  de 

d i s c o n t i n u i t é  pour l e s  deux f o n c t i o n s  u e t  v .

i . 7 .





C H A P I T R E  I

R ig o r o u s  r e s u l t s  on a  t i m e - d e p e n d e n t  in h o m o g e n e o u s  

c o u lo m b  gas  p r o b l e m

par

D. Hilhorst, H.J. Hilhorst et E. Marode.





Volume 84A, number 8 PHYSICS LETTERS 24 August 1981

RIGOROUS RESULTS ON A TIME-DEPENDENT INHOMOGENEOUS COULOMB GAS PROBLEM

D. HILHORST
M athematisch Centrum, 1098 SJ Amsterdam, The Netherlands 

H .J. HILHORST
Laboratorium voor Technische Natuurkunde, 2600 GA D elft, The Netherlands 

and

E. MARODE
Laboratoire de Physique des Décharges, ESE, 91190 Gif-sur- Yvette, France 

Received 16 December 1980

We report results obtained by rigorous analysis of a nonlinear differential equation for the electron density ne in a spe­

cific type of electrical discharge. The problem is essentially two-dimensional. We discuss in particular (i) the escape of elec­
trons to infinity above a critical temperature; and (ii) the boundary layer exhibited by ne near zero temperature.

In a filamentary discharge studied by Marode et 
al. [1,2] electrons and ions are produced with num­
ber densities ne and nv  respectively. The charged par­
ticles move in a background of neutrals. The discharge 
area is cylindrical and has its radial dimension much 
smaller than its longitudinal dimension. Since to a 
good approximation the physical situation is cylindri- 
cally symmetric, it suffices to consider a two-dimen- 
sional cross section perpendicular to the cylinder axis, 
in which all quantities involved are functions only of 
the distance r to the axis. As the ions are heavy and 
slow, nfo, t) = «¿(r) may be regarded as fixed on the 
time scale of interest. For the density nQ(r, t ) Marode 
et al. [3] used the following three equations:

(i) Coulomb’s law:

r~l a [rE(r, t)]/br = 4ne [«¡(r) -  n jr ,  01. (1)

where E is the electric field and —e the electron charge;
(ii) a constitutive equation for the current density 

/(/*), consisting of a drift term and a diffusion term,

j ( r ,  t )  =  efJtnQ(r, t)E (r, t) + eD dnQ(r, t)/dr , (2)

where ¡ jl is the electron mobility and D the diffusion 
constant; and

e d n Q(r, t ) /dt  = r ~ 1 d[rj(r, t ) ] /dr  . (3)

Both E  and/ are radially directed.
From eqs. (1)—(3) a nonlinear partial differential 

equation for a single function can be derived. To this 

end we set [4] 

fu ( x , t )  = J  p n e( p , t ) d p  , (4a)
0 

'fg(x) = J  p«i(p)dp . (4b)
0

Upon employing for the diffusion constant the 

Einstein relation D  = k^Tji/e (where k B is Boltzmann’s 
constant and T  the electron temperature), putting e = 

and absorbing a factor Snfie in the time 

scale we deduce that u satisfies

ut = e x u Xx +  (g - u ) u x , (5)

K(0,f) = 0 .  (6)

By its definition£(0) = 0. Typically, as r increases,
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n f c )  rapidly falls off to zero, and hence g (x )  attains 

a limit value g(°°).  The nonlinear term in eq. (5) re­

presents the interaction between the electrons. With­

out it, this equation would reduce to a linear one 

studied by McCauley [5] and describing the brownian 

m otion o f a pair o f opposite two-dimensional charges 

in each o ther’s field. As it stands, eq. (5) is rather re­

miniscent o f the nonlinear equations occurring in the 

Thomas—Fermi theory of the atom (see, e.g., ref.

[6]).
In the experimental situation that we are describ­

ing the total charge in the discharge area is positive 

and conserved in time. This is expressed by

u(° ° , t )  = N e , forO  (7)

with 0 <  N e < <§’(°°). One o f the authors has investi­

gated [4,7,8], by rigorous mathematical methods, the 

solution o f  eqs. (5) and (6) for a given initial distribu­

tion u(x,  0) = Uq(x) and subject to condition (7) on 

the total charge. Here we present the main results in 

physical language.

1. We ta k e#  concave and in C2([0 ,°°)). Then at 

given e (i.e. at given temperature), there exists [4] a 

unique stationary solution wst(x) if the total number 

of electronsN P is such that N Q < g (° ° )  -  e. In partic-

thermal motion prevents any elec­

trons to be bound to the fixed ionic background. The 

existence o f such a critical temperature is character­

istic of two-dimensional Coulomb systems [9]. The 
main mathematical tools in treating the stationary 

problem are maximum principle arguments and the 
construction of upper and lower solutions.

2. The solution ws t , when it exists, has the follow­
ing properties [4].

(i) It belongs to  C2([0 , °°)). It is strictly increasing, 
concave, and bounded from above by the function 

m in(g(;t), N q). A s x  -» wst(x) approaches its limit­
ing value N e at least fast enough so that

ne( r ) < n s(r1)(r2l x l ) ~ [g(Xi)~N^ le , r ^ ° ° ,  (8)

where r \  =x±  >  0 is arbitrary. Such power law decay 

is again typical o f Coulomb systems in two dimensions.

(ii) As e I  0, wst(x) converges to m in (g (x ) ,N Q) 

uniformly on [0, °°), and we have for the zero tem per­

ature limit o f the electron density

r < r Q , ^
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= 0 , r >  r0 ,

where the critical radius r0 is defined by the relation 

g (r0) =7Ve . At small e there is a transition layer o f 

width ~ e * /2 , located at , analogous to a Debye 

shielding length [3]. A uniformly valid approximate 

stationary solution for e <  1 is given in ref. [4]. It is 

obtained by the method o f  matched asymptotic expan­

sions.
3. We consider now the time evolution problem of 

eqs. (5) and (6). Suppose tha t the initial condition w0 

is sufficiently smooth, nondecreasing, w ith bounded 

derivative, and with Mq(0) = 0 and Wq(°°) = N e . 
Mathematically one has to find a way to deal w ith  the 

degeneracy of the parabolic equation (5) in the origin. 

In ref. [7] this is done via a sequence o f regularized 

problems. The following is shown.
(i) The time evolution problem has a unique solu­

tion u(x,  t)  such that u and ux are bounded. In fact 

it satisfies 0 <  u (x, t ) < N e , it is nondecreasing in x  

for all t ,  and for each t >  0 we have u (<», t)  = N Q.

(ii) In order to  discuss the behavior o f  u(x,  t ) as

t -> 00 we consider the function wst which satisfies the 

steady-state equation and has boundary values «st(0)

= 0 and

wst(°°) = N e> i f N s < g ( ° ° )  -  e ,  (10a)

= S'(00) - e ,  i f 0 < £ ( ° ° ) - e < 7 V e , (10b)

= 0 ,  o therw ise . (10c)

We know from section 1 that u st exists and is unique. 

In particular, in the case o f  eq. (10c), M * )  =  ° - 0 u r  
result is that the solution u(pc,t) o f the evolution 

problem converges to  wst(xr) as t  -» °°, uniformly on all 
compact subsets o f [0, °°); in the case of eq. (10a) the 

convergence is actually uniform on [0, °°).The proofs 
are based upon the use of upper and lower solutions 
of the stationary problem and on a comparison 
theorem. Thus we have proved that all the electrons 

stay attached to the ions for t  <  00 at temperatures 

such tha t e < £ (° ° )  ~ N Q [case (1 0 a)] . If the tem per­

ature rises above this critical value, then some o f the 

electrons diffuse away to  infinity [case (1 0 b )] , and 

if it rises above a second critical value, viz. e =g(°°), 

then all electrons escape to  infinity [case (1 0 c)] .

(iii) For the case of eq. (10a) (with the inequality 

strictly satisfied) we have derived results about the 

rate o f convergence of u to  ws t . Let the initial state 

have the property t h a tN e -  u0 (x ) < N q(x i /*)*" ^or 
some x 1 , v >  0 satisfying e <  (v + I ) -1  [g(x l ) ~ N Q] .
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Then u(x, t) converges to 0st(x) at least as fast as 
¿-l/(2p) p -  [I/p] + 1, for all finite x. Further­
more, if v >  1 and e < \  [# (°°) — Âe] , then u conver­
ges to u t at least as fast as t~ .

4. Negative regions in the background charge 
density. We have considered an interesting modifica­
tion of the above problem obtained by also allowing 
negative ions to be present in the fixed background 
[8]. This leads to a function £ which can assume 
minima and maxima. We studied the stationary state 
on a bounded domain [0,/?] with boundary condition 
ust(R )= N Q.For non-monotone g it is nontrivial to 
find the zero temperature (e 0) limit of wst(x) [and 
thus of ne(r) ] , since the solution of the reduced differ­
ential equation (i.e. the one obtained by setting e = 0) 
is no longer unique. To solve this problem we observe 
that for 6 >  0 the solution wst(x; e) minimizes the free- 
energy functional

^ / \2 
Fe [ u ) = e f  ux \nux dx+ ?  J ~x—  dx , (11)

0 0

which is readily recognized as the sum of an entropy 
and an electrostatic energy term.

hjCj-giO
J  ------ <U> 0 ,  if c ^ N e 

;-------------------------( 1 3 )
Xr Cj -  g(%)
J ------ -̂------dii <  0  , i f  Cj #  0

ai

for allx E [at , bt] , / = 1, 2 , s .

To verify this characterization of wst(jc; 0), one checks 
[8] that this function satisfies a variational inequality 
related to the minimization problem (12). In particular, 
if 0 <  Cf <  N q , we have the equal area construction 

Safci ~ #(£)] = 0- The interpretation is that the
points x  = and x  = bt are at equal potential and sepa­
rated by a potential barrier. Eqs. (13) may serve as the 
basis for a numerical algorithm to compute a b and 

ci-

The authors acknowledge with pleasure stimulating 
discussions with I. Gallimberti. They are indebted to 
Ph. Clément, 0. Diekmann, L.A. Peletier and R. Témam 
who together with D.H. contributed to the mathema­
tical results.

In ref. [8] two alternative methods were used to 
study the minimization of Fe : one based on the theory 
of maximal monotone operators and one on duality 
theory. Both yield

^ — \2
lim w„t(x:;e)= inf \  f —— —  dx , (12)
640 st 0<u<JVe ,u '> 0  {  x

i.e. the limit solution of the differential equation is 
the physically expected minimum-energy configura­
tion. The function ust(x; 0) is continuous [10] and 
can be characterized as follows: there exist intervals 
[al9 bx], [a2 ib2\,-'> [as,bs] ,s> 0,w here ust(x;0) 
takes constant values c1, c2 , c s , respectively, and 
where, therefore, nQ(r) = 0. Outside those intervals 
Mst(x; 0) =g(x:). The c o n s t a n t s bt and q ,  / = 1,2,
..., s , can be shown, finally, to be uniquely determined 
by the set of implicit inequalities
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A SINGULAR BOUNDARY VALUE PROBLEM ARISING IN A 
PRE-BREAKDOWN GAS DISCHARGE*

O. DIEKMANN+, D. HILHORST+ a n d  L. A. PELETIER+

Abstract. We consider the nonlinear two-point boundary value problem F*y" + ( g U ) -  y)y' = 0, y (0) = 0, 
y(R)  = k, where g is a given function. We prove that the problem has a unique solution and we study the 
limiting behavior of this solution as R  -> x  and as e j, 0.

Furthermore, we show how a so-called pre-breakdown discharge in an ionized gas between two 
electrodes can be described by an equation of this form, and we interpret the results physically.

1. Introduction. In this paper we study the two-point boundary value problem

(1.1) e*y" + (g U ) -y )y '  = 0, x e ( 0 , R ) ,

in which R  is a positive number, which may be infinite, and g a given function, which 
satisfies the hypotheses

Hg: g £ C 2(R+), g(0) = 0, g '(* )> 0  and g"(x)<0 for all * ^ 0 .

We are interested in solutions of (1.1) which satisfy the boundary conditions

(1.2 ) y (0 ) = 0,

(1.3) v(R) = k

in which k e (0, g(oo)) and R >  jc0, x 0 being the (unique) root of the equation g(x) = k.
In § 2 we shall sketch how problem (1.1 H I . 3) arises in the study of electrical 

discharges in an ionized gas. It will appear that y ' and g' are measures for, respectively, 
the electron and ion densities, and that the parameter e is proportional to the 
temperature of the gas.

In § 3 we begin the mathematical analysis of problem (1.1)—(1.3). We derive some a 
priori estimates and then prove the existence of a solution. Subsequently, in § 4 we 
prove that the solution is unique.

The main objective of this paper is the study of the dependence of the solution on 
the parameters e and R. In § 4 we prove that the solution is a monotone function of e 
and R. From the physical point of view the interesting regions of the parameters are 
small e and large R. In § 5 we analyze the limiting behavior of the solution when R  tends 
to infinity and e is kept fixed. It turns out that the solution converges uniformly in x to a 
function y which satisfies (1.1)—(1.2) and the limiting form of (1.3), i.e., y(oo) = k, if and 
only if e ^ g ( o o ) -k .  If on the other hand, this inequality is violated, then the solution 
converges uniformly on compact sub-sets to a function y which satisfies (1.1)—(1.2) and 
y (oo) = max {g(oo) -  e, 0}. In particular this implies that y is identically zero if e ^  g(oo).

In § 6 we analyze the limiting behavior of the solution when e tends to zero and R is 
kept fixed. It turns out that the solution y converges uniformly for x e[0 , R]  to the 
function y (*) = min {g(.t), k }, but that its derivative y ' converges uniformly to y ' only on 
compact subsets of [0, /?] which do not contain the transition point x().

In § 7 we discuss in greater detail the behavior of y' near the point jc0 as e J, 0 . By 
the standard method of matched asymptotic expansions we formally obtain in § 8 an 
approximation ya. In § 9 we prove that for each n >  1

_______  y - y a -  0 ( E n+U2), y ’~ y ’a -  0 { e n~1/2) a s e l o ,

* Received by the editors March 15, 1978, and in revised form July 9, 1979.
+ Mathematisch Centrum, Amsterdam, the Netherlands. 
t  Mathematisch Instituut, Rijksuniversiteit Leiden, Leiden, the Netherlands.
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uniformly on [0, R],  where n counts the number of terms included in the approxima­
tion. In this part of our treatment of the singular perturbation problem we derived much 
inspiration from reading bits and pieces of van Harten's thesis [9].

Since the limits e j 0 and R ->oo (for e ^ g (x ) - f c )  are interchangeable, the two 
separate limits give a complete picture of the limiting behavior with respect to both 
parameters.

Finally, in § 10, we consider problem (1.1)—(.1.3) under the much weaker condition 
on g:

Again, the existence and uniqueness of a solution v {x; e) is established and it is shown 
that y '> 0 .  In addition

uniformly on [0, R  ], where the function u, which is continuous, consists of pieces where 
wU) = gU ) and pieces where u{x) is a constant. The arguments we employ here are 
borrowed from the theory of dynamical systems and are somewhat unusual in this 
context.

Problems like the one treated in this paper have also been considered by Hallam 
and Loper [8], Howes and Parter [11] (also see Howes [10]), Clément and Emmerth [4] 
and Clément and Peletier [5]. Both of the first two papers deal with one particular 
equation and the second two papers deal with concave solutions yE of a general class of 
equations. In all of these limf ± 0 y£ is determined. In this paper we do the same by the 
method of upper and lower solutions, which was also used by Howes and Parter, and in 
addition we give precise estimates of the behavior of ye and y'e as f  j 0.

2. Physical background.
2.1. An electrical discharge. Marode et al. [14] consider an ionized gas between 

two electrodes in which the ions and electrons are presént with densities «,(/*) and ne(r) 
respectively, where r = (*i, jc2, jc3). The ions are heavy and slow, and the density n,(r) 
may therefore be regarded as fixed. The electrons are highly mobile and assume a 
spatial distribution in thermal equilibrium with the ions. The problem is then to find 
n€(r) for given n,-(r).

A special situation of practical interest is a so-called pre-breakdown discharge 
which spreads out in filamentary form (cf. Gallimberti [7] and Marode [13]). In this 
situation there is cylindrical symmetry about the jc3-axis and the particle densities 
depend on p := (x \ + x \ ) x/1 only. Using Coulomb’s law and a constitutive equation for 
the electric current, which contains both a diffusion and a conduction term, Marode et 
al. [14] derived that the electron density ne(p) should satisfy the equation

where f is a combination of physical constants which is proportional to the temperature. 
In addition nc has to satisfy the boundary condition

g(0) = 0, g ( R ) S k ,  

g has only finitely many local extrema on [0, R].

y(x; e)-* u(x) as s i  0,

(2 .1)

(2.2)
dp

Hg. g€  C'(fO, R]),

- x  -  - f i - f r  4~ne(p)) = n¡(p)-  ne(p), 
L p d p \ ne{p) dp /

d\nc
0 0

2.1. An
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and the condition

(2.3) {«,( p ) -  ne(P)} pdp = N >  0,
'()

where N  is a measure for the excess of ions.
In the experiment the ions are concentrated near the center of the discharge. 

Hence we shall take for rc, a function which decreases monotonically to zero as p tends 
to infinity. In this paper we study the solution ne of (2.1)—(2.3) and in particular its 
behavior as e j 0.

In order to cast (2.1) in a more convenient form, we make the change of variable

Thus, y(x) represents the number of electrons contained in a cylinder of unit height and 
radius x l/2. Analogously, we define

If we now multiply (2.1) by p, integrate from p = 0 to p = x 112 and use (2.4)-(2.6) we 
obtain (1.1). The boundary condition (1.2) is implied by (2.5) and the boundary 
condition (1.3), with R = oo, follows from (2.3):

where clearly k e (0, g(oo)).

2.2. The two-dimensional Coulomb gas. Equation (1.1) describes the equilibrium 
distribution of electrons interacting, via the Coulomb potential, with themselves and 
with a fixed positive background in a two-dimensional geometry. Theoretically one can 
generalize Coulomb’s law to a space of arbitrary dimension d and then the correspond­
ing equation would become

in which e is again a positive constant which is proportional to the temperature.
The behavior of an assembly of charges depends on the competition between the 

electrostatic forces, which tend to bind positive and negative charges together, and the 
thermal motion which drives them apart. By physical arguments one can show that for 
d >  2 the thermal motion wins: at no nonzero temperature are the electrons bound to 
the ions. For d <  2, the electrostatic forces win, and whatever the temperature the 
charges are bound together (see Chui and Weeks [3]).

For the model problem consisting of (2.7) supplemented with the boundary 
conditions (1.2) and (1.3), with R = oo, we find these matters reflected in the fact that for 
arbitrary positive e, no solution exists when d >  2 whereas, on the contrary, a unique 
solution exists when d <2 .  One can prove this along the lines indicated in § 5.

The marginal case d = 2 is of greatest interest. Presumably there is a critical value 
of the temperature at which a transition occurs from bound to unbound charges and 
recently there has been much interest in the precise nature of this transition (see 
Kosterlit/ and Thouless 112]).

(2.4) 2x = p

and we define the new dependent variable

(2.5) y(x) = ne(s)s ds.
o

(2 .6 )

y(oc) = k:=g{oo)-N,

(2.7)

OC

i

. X ’ '2

g(x)

* 1 / 2

'()
n¡{s)s ds.i

2.2. The two-

« 2iw-iw)y” + (g(i)-y)y' = 0
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In our study of the two-dimensional case we find indeed, in § 5, a critical value of e 

(and hence of the temperature)

£\  = g(°o)-fc  = Ar

at which the nature of the solution ne changes, corresponding to the loss (towards 

infinity) of part of the negative charge. Beyond a still higher value of e :

e 2 =  g(oo)

there appears to be no solution, indicating that the negative charge is no longer bound to 

the positive background.

2.3. Low temperatures. W e also have studied the equations in the low tem pera­

ture regime, i.e. for e jO. Physically one then expects all the electrons to gather in the 

region of lowest energy, that is in the center of the ion distribution. Indeed we have 

found that for e J,0 the solution of (2.1) exhibits transition behavior

¡ r i i ( p ) ,  p < p o ,
l i m  -  -  -
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r  t \l i m  n e ( p )  =  \ n
• io lU, P>Po,

where p 0 is determined by the boundary condition (2.3). There appears to be a 

transition layer of width of order e 1/2 which, according to Marode et al. [14], has the 

form of a D eb ye  shielding length.

3. A priori estimates and the existence of a solution. In this section w e consider the 

problem (1.1)—(1.3) for fixed values of the parameters e and R.  By a solution we shall 
mean a function y e C 2([0, R] )  which satisfies (1 .1)—(1.3). W e first derive som e a priori 
estimates for a solution and its first two derivatives. Subsequently we prove that a 

solution actually exists by constructing an upper and lower solution and by verifying the 

appropriate N agum o condition.
T h e o r e m  3.1. Let  y be a solution; then for all  x e  (0 ,  R )

(i) 0 < y ( x ) < m i n { g ( * ) ,  k}\
(ii) 0 < y ' 0 t ) < g ' ( 0 ) ;

(iii) -(g '(0 ))2/e  < y" (* )< 0 .
Proof.  Let us first prove that y'(jt) >  0 for all x e  (0, R) .  Suppose that y' (x\ )  =  0 for 

som e Jti >  0; then the standard uniqueness theorem for ordinary differential equations  
implies that y( x)  =  y (* i)  for all x. Since this is not compatible with the two boundary  

conditions we conclude that y ' is sign-definite. Invoking the boundary conditions once  
more, we see that the sign has to be positive.

The positivity of y' implies that 0 <  y (jc) <  k  for x e  (0, R ) .  N ext we shall prove that 

y ( x ) <  g ( x ). W e begin by observing that this inequality holds for x ^ x 0- Suppose there is 

an interval [* i,  x 2] ^  [0, jc0] such that y - g  is strictly positive in the interior of [ x if x 2] 

and y (x i )  — g ( x i) =  y ( x 2) ~ g ( x 2) =  0. Then y ;(x2) ^  g '(*2) <  g 'U i)  ^  ŷ '(xi).  On the other  

hand (1.1) implies that y " ( x ) >  0 for x e (xi,  x 2) and hence y f(x2) =  y 'U O  +  J^2 y"(f) d g >  

y 'U i) .  So our assumption must be false since it leads to a contradiction. Thus, 
y ( x ) ^ g ( x ) .  Now, let us suppose that y U i )  =  g(jti) for som e x i > 0 ,  then necessarily  

y'(*i) = g 'U i) .  H owever, because y"(*i) =  0 (by (1.1)) and g"(jcj)<0, this would imply 

that y ( * ) > g ( * )  in a right-hand neighborhood of jci, which is impossible. H ence the 

inequality is strict for x e  (0, R ] ,  and this com pletes the proof of (i).

From (i), y '( jc )> 0  and (1.1) we deduce that y " ( x ) < 0  for x g (0,/?) .  Hence 
y ' ( x ) <  y ' (0 )^ g ' (0 )  for x e  (0, R )  which completes the proof of (ii).

3. A priori e



II.5.

52 O. DIEKMANN. D. HILHORST AND L. A. PE LETTER

Finally, we note that H g implies that gU) ^  g'(0)x and hence that y"U) = 
(fjc)_1(y(.r)-g(j:))y'(A:) > -(fA:)~1g(jc)g'(0)^ - f _1(g'(0))2. This proves property
(iii). □

T h e o r e m  3 . 2 .  There exists a function y g C 2([0, R]) which satisfies ( 1 . 1 ) —( 1 . 3) .

Proof. We define two functions a and ¡3 by a(jc) := 0 and (5(x) := g(x)  for x e [0, R]. 
Moreover, we define a function /  by /(*, y, y') := (£Jt)_1(y -  g(x))y'. Then a"(x) = 0 ^
0 = f ix ,  a ( x ), a 'U ))  and (3"(x) = g"(x)<  0 = /(;c, (3{x), (3'(x)) for x e (0, R ). Hence a and 
P are, respectively, a lower and an upper solution of (1.1). The existence of a solution 
now follows from [1, Thm. 1. 5.1] if we can show that f  satisfies a Nagumo condition 
with respect to the pair a, /3. This amounts to finding a positive continuous function h on 
[0 , oo) such that | / ( j c , y, y')| ^  /z(|y'|) for all x e [0, /?], a(x)  ^  y ^  /3(jc) and y '€  R and, 
furthermore, such that

cf. [1, Def. 1.4.1]. The function h defined by h{s)'=e lg ’(0)(s +1) satisfies all these 
conditions. □

4. A comparison theorem. In order to emphasize that we are going to study the 
dependence of a solution on the parameters e and R, we introduce the notation P(e , R )  
for the problem (1.1)—(1.3). The main result of this section is a comparison theorem 
which is proved by standard maximum principle arguments. As corollaries we obtain 
that the solution is unique and that it depends in a monotone fashion on both e and R.

T h e o r e m  4.1. Let y, be a solution of r i e ^ R i )  for / = 1, 2 and suppose that 
R 2 = R i  > Xq and e2 = e\> Then yi(;t) ^  y2(jt) for 0 < x  < R x. Moreover, if  one of the 
inequalities for the parameters is strict, then so is the inequality for the solutions.

Proof. Let the function m be defined by m(x) '= ydx )  -  y2(x). Suppose that m 
achieves a nonpositive minimum on (0, R i )y i.e. suppose that for some jciG(0, R x), 
m{jc J^O , m \ x i) = 0 and m"(x i ) ^ 0 .  By subtracting the equation for y2 from the one 
for y x we obtain

However, all the terms on the left-hand side of this equality are nonnegative and if 
either e2> f i  or m(x  i) <  0 at least one of them is positive. If e i = e2 and m( x x) = 0 then 
the uniqueness theorem for ordinary differential equations implies that m (jc) = 0 for all 
x e [0, R i], which cannot be true if R 2 > R x. So we see that m cannot achieve a negative 
minimum and that m cannot become zero on (0, R 0 if one of the inequalities for the 
parameters is strict. Since m (0) = 0 and m(R\)  ^  0 this proves the theorem. □  

C o r o l l a r y  4.2. The problem P{e, R )  has one and only one solution.
Proof. We know that at least one solution exists (Theorem 3.2). Let both y x and y2 

satisfy P{ey R),  then Theorem 4.1 implies that yi(jc) ^  y2(x) but likewise that y2(*) = 
yi(x). Hence, y x{x) = y2(x) for * e [0, R]. □

C o r o l l a r y  4.3. Lety  = y{x\ ey R) be the solution of Pie, R). Then y is a monotone 
decreasing function of e each R > x () and each x e { 0 , R )  and y is a monotone 
decreasing function of R f '  . ich e > 0 and each x e (0, R).

5. The limiting beha * n>r as R  -* oo. In this section we study the limiting behavior as 
R  oo of the solution y = y ( x ; e, R)  of the problem Pie , R).  Since y is a bounded and 
monotone function of R , the definition y ( x ; f  )■= lim^^x yix; e, R ) makes sense for all
a , > 0 .  This definition implies at once that y(0, r »- 0 and that y is a nondecreasing 
function of .v and a nonincreasin£ function of /

e ix im " { x i ) - { e 2- e l)x iy2(x i) '-y[{xi)m (xi)  = 0

.  OC

'R~1

S

h(s)
ds ■ ß ( R) ,

S i R )

4. A con

5. The limiting

A, f

of e each
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From the estimates in Theorem 3.1 we obtain, via the Arzela-Ascoli theorem, that 
both y( - e ,  R)  and y'( •; e, R ) converge uniformly on compact subsets. Invoking (1.1) 
we see that the same must be true for y"( •; e , R).  It follows that y< •; e) belongs to 
C 2(!R+) and satisfies (1.1). Now it remains to determine y (x ,  e). We will estimate 
y (x ,  e) from below by constructing a more subtle lower solution for y. But first we 
prove a result which can be used to estimate v (x ,  e) from above.

L e m m a  5.1. Let z g C 2(!RJ satisfy (1.1) and z(0) = 0. Suppose that 
z ( x )  := l im ^ x  z{x) exists and satisfies 0 < z ( x ) < x .  Then z ( x ) ^ g ( x ) - f .

Proof. Both z and z' are positive on (0, oo) (cf. the proof of Theorem 3.1). For the 
purpose of contradiction, let us suppose that z ( x ) > g ( x )  — e. Let x\ be such that 
¡3 : = f -1( z ( j c i ) - g ( x ) ) > - l .  Then z ( x ) - g ( x ) ^ .  z (x i ) -g(oc)  = e(3 for all x ^ x x. 
Integrating (1.1) twice from J t i to i  we obtain

Since (3 + 1 > 0  this would imply that zU)-> oo as x -*oo. Hence the assumption that 
z (o o )> g (o o ) - f  must be false. □

We define a function s = six; A, x iy v) by

and we investigate which conditions for the parameters A, jci and v guarantee that 
s" =  f(x, 5, s') for x ^ x i  (recall that f(x, y, y') = U xT ^ y  -g(*))y').  A simple compu­
tation shows that this inequality holds indeed for all x ^ X\ if and only if g(x\) -  A - e v -

_1( g U i ) - A ) - 1. The latter inequality can be satisfied for 
some positive value of v if and only if A < g U i ) - e .  In its turn this inequality can be 
satisfied for sufficiently large x x and some positive value of A if and only if g(oo) -  s >  0.

We now have all the ingredients at hand to prove the following theorem.
T h e o r e m  5.2.

(i) Ife  =  g(°c) — k then y(oo, e) = kand  lim^oc sup0<*</? Iy(x\  e, R) -  y ( x ; e )| = 
0;

(ii) i f g ( o c ) - k  < 8  <g(OO) then y(oo; e) = g(oo) -e;
(iii) if e ^g(oc) then y{x; e) = 0 for all x^O.
Proof. (i) For any A < k we can choose x\ such that A <  gU i) -  e and subsequently v 

such that 0 < v ^ e ~ l( g ( x \ ) - \ ) - l .  For these values of the parameters, 5 is a lower 
solution on the interval [jti, /?]. The function t defined by t(x) := k is an upper solution 
and/satisfies a Nagumo condition with respect to the pair s, t and the interval [*i, /?]. It 
follows that the inequality

which holds for x = x\ and for x = R , actually is satisfied for all x € [*i, R].  By taking first 
the limit R  -> x  and then the limit x x  we obtain

s(x; \ , x u v)^ky(x\ e, R ) ^ k ,

A ^y(x; e)^k .

z U) > z' A'i)

i x

X\Í.
exp ß ln

*i
di

Xxz'(Xi)

ß

X

.xv

(3 +  1

- 1

Thus, foi x > x l!

z ( x )  =  z ( Xi )  +  z' (Xi )

■ X

*1
exp

' * 11
z(i

£T1
g V

di d t

€ \

(5.1) 5 (a:; A, .Vi , := A 1
x

UTl.

-  JA

+ 1

e 0, or equivalently, v < £
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Since this inequality holds for A < k, necessarily y(oo, e) = k. This result and the 
monot;onicity of y with respect to * together imply that the convergence of y to y is in 
fact uniform in x (we refer to [6, Lemma 2.4] for the proof of this statement).

(ii) If g(oo)- k < e  <g(oo), we can make s into a lower solution by a suitable 
choice of X\ and v if and only if A <  g(oo) -  e. The argument we used in the proof of (i) 
now shows that y(oo; f )^ g (o o ) -^ .  On the other hand, Lemma 5.1 implies that 
y(oo; £) =  g(oo)—e. So y(oo; e) = g(oo)-e.

(iii) From Lemma 5.1 we deduce that no solution of (1.1) with a positive limit at 
infinity can exist if e^g(oo). Hence y(oo;^) = 0 and consequently y(jc;e) = 0 for all 
x^O. □

The results of this section are at the same time results concerning the existence and 
nonexistence of a solution of the problem P(ey oo) defined by (1.1), (1.2) and 
limx_oo y(x) = k. By exactly the same arguments which we used before one can derive 
the bounds of Theorem 3.1 and one can show that there exists at most one solution of 
P(e , oo). For convenience we formulate this result in the following theorem.

T h e o r e m  5.3. There exists a function y e  C 2(R+) which satisfies (1.1), (1.2) and the 
condition Hindoo y(x) = k if and only if e ^ g(oo) - k .  If it exists, it is unique and it satisfies 
the inequalities given in Theorem 3.1.

6. The limiting behavior as e ¿0. Throughout this section R > x 0 will be fixed and 
we will suppress the dependence on R in the notation, because it is inessential. The 
solution y of (1.1)—(1.3) is a bounded and monotone function of e and we define 
y(jt):= lime!o yU ; e)- From Theorem 3.1 (i) and (ii) and the Arzela-Ascoli theorem we 
deduce that y is continuous and that in fact

lim sup |y(jc) —y(jc; e)| = 0.
e jO  O&x&R

T h e o r e m  6.1. y(jt) = min {g(jc), k).
Proof. From Theorem 3.1 (i) we know that y(jc)^min {g(jc), k}. Take any x <jc0, 

then y ( x ) <k .  We claim that this implies that limcj0 inf y \ x \  e )> 0 .  Indeed, suppose 
that the sequence {e,} is such that e, j 0 and y '{x; e,-) i  0 as / -+ oo, then by taking the limit 
/ oo in the relation

R

y'(i; £i) d g ^ y ( x ; e i )  + (R ~ x ) y ,( x \ e i),

we arrive at the conclusion that y ( x ) ^k ,  which is impossible.
Integrating (1.1) from 0 to j c  we obtain

(6.1) e(y'(x; e) — y'(0; e ) )=  f y ( ^ C? ~ g ( ~ V (£  e) d£.
Jo s

Suppose that x < x 0 and maxosi<, |y(f) - g(f)| >  0; then,sinceg'(0) >  y'(^; e) ^ y'(x ; e) 
for 0 < ^ ^ j c  and lim^oinf y'{x\ e ) > 0 ,  the right-hand side of (6.1) is bounded away 
from zero as e | 0 .  However, this is impossible since the left-hand side tends to zero as 
e | 0 .  So y(x) = gU ) for all x < x 0, and by continuity yUo) = k . The function y, being the 
limit of monotone functions, is monotone nondecreasing. Hence y(x) ^ k for x > x 0 and 
consequently y(x)  = k for x >  a*0. □

By taking e = 0 in (1.1) we obtain the reduced equation
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k = y(R\£i )  = y(x; e,-) + j

(6.2) (g(.v) -  y )v '  =  0.

6. The Kin
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The limiting function y satisfies the boundary conditions (1.2) and (1.3) and (6.2) except 
at the point x = x0, where y' is not defined. Motivated in part by the physical application 
(cf. § 2) we shall now investigate the limiting behavior of y'(x; e) as e ¿0. It will then 
become even more apparent that * = x0 is an exceptional point. The following lemma is 
needed in the proof of Theorem 6.3, but it is of some interest in itself.

L e m m a  6.2. Let 8 > 0  be arbitrary. For any e0>  0 there exists an M >  0 such that 
0 < g ( x )  — y(x: e ) < M e x  for all x £ [0, Jt0- 5 ]  and all e £ (0, e0)- 

Proof. Let 5 >  0 and e0>  0 arbitrary. We define

v = v(x\ e) be defined by v(x\ e) •= g(x) — y(x\ s ) - M e x ,  where the constant M > 0  is 
still at our disposal. Then v satisfies the equation

exv"-y' (x; e)v = £x{g"{x) + My'(x\ e))

and consequently exv"- ¡ jlv  > 0  if M >  y i i _1, e £ (0, e0) and x e  (0, Jt0 - 2 5 ] ,  where the 
positive numbers y  and /jl are defined by

So if M  >  yjji 1 and e £ (0, e0), then v cannot assume a nonnegative maximum on

[jc0- 5 ,  jco-25] in the point x = x ( e ) .  Then v(x(e); e) = m ( e ) - M e x ( e ) < 0  if M >  
U 0- 5 ) -1C3. Since r(0;£,) = 0, this implies that for M > m a x { y / i“1, (jc0~ 5 ) _1C3}, 
v{x\ 6,) < 0  for x € (0, x(e)) and a fortiori for x € (0, jc0- 5 ) .  □

T h e o r e m  6.3. Let 8 > 0  be arbitrary. Then
(i) limFiosupo x̂sxo-5 Ig'W-y'U; e)| = 0;

(ii) limeiosupXo+8*xsr |y'U; e)| = 0.
Proof, (i) From (1.1), Theorem 3 .l(ii) and Lemma 6.2 we deduce that -g '(0)M  <  

y"(x; e ) < 0  for x e [0, x0- 8 ] and e e (0, e0). By the Arzela-Ascoli theorem this implies 
that the limit set of {y'(*; e ) |e  > 0} as e i 0  is nonempty in C([0, xq — 5]). The result now 
follows from the fact that y tends to g on [0, x0- 8 ]  as e jO.

(ii) Integrating (1.1) from jc0 + 2<5 to x we obtain

m(e) .= min { g U ) - y ( x ;  e)}.
X q - S S x ^ x q - ^ S

Then there exist positive constants Q, i = 1, 2, 3, such that for e e (0, e0)

(see the proof of Theorem 6.1 and in particular formula (6.1)). Let the function

and

(0, Xq 2*5)• Let x(e)  be such that g (* )-y (;t;  e) achieves its minimum on the set

For x e [Xil +8, R]  the right-hand side is smaller than \ k  - g(xo + (8/2))).y'(x; e). 
Consequently 0 <  y 'U ; e ) <  2g'(0)t/?5~l(g(jc() -f (5/2)) - k  )~l. □

m ( e ) ë C i  í (g ( £ ) - y ( £ ; e ) ) d¿
J x o - 8

C°~s/2g(í)-y({■,£) , í r  = c 2 ------------------y (£; e) d í ^ C s e
"'xo-s £

y : = -  inf , .g"U)
0 < X ^ X o _ s 5

inf y ' ( * o - | ; e ) .
0<e<e0 \ 2 /

e(y'(x;e)-y'(jCo + i í ; e ) ) =  í e ) d i
• ' * 0  +  5 S  Ç

*o-ô/2

r  y(£; e ) - g ( í )
-------- --------- y ( t ; e ) d f

' xo+ÎS  Ç

í<5/¡

fi :
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In the next section we shall concentrate on a formal approximation for y and y' in 
the neighborhood of x = x0.

In § 5 it was shown that the problem P(e , oo) has a unique solution for e sufficiently 
small. The analysis of this section can be repeated, mutatis mutandis, to derive the 
analogous results concerning the limiting behavior of this solution as e i  0. In particular 
this implies that the limits e 1 0 and R -* oo are interchangeable.

7. The transition layer. In Theorem 6.3 we have shown that y' converges nonuni- 
formly on the interval [0, R]  as e 10. This feature is typical for a singular perturbation 
problem. In. this section we use the standard method of the stretching of a variable to 
obtain more information about the behavior of y' near the transition point x = x0.

By the stretching of the variable x near x0 we mean the introduction of a local 
coordinate f  according to x = x0 + e At the same time we introduce a local dependent 
variable tj according to

y ( x )  =  g ( x o) +  e 0v ( i ) -

If we make these substitutions in the equation, and subsequently only retain the terms 
of lowest order in £, it depends on the values of a and p  what the resulting equation will 
be. One easily verifies that the choice a = p  = \  leads to a significant equation, namely to

(7.1) W i  + (fg'(* o ) - V i W i = 0 ,

where we have introduced the subscript 1 to indicate that we consider in fact a first 
approximation. To this equation we add the condition that its solution should match the 
limits of y to the left and to the right of x0, respectively, up to the appropriate order in 
yJe. This amounts to the conditions

Vi(£) = g'Uo)£ + 0(l)  as f  -oo,
(7.2)

1 7 1 ( f )  =  o ( l ) ,  a s f - * + o o .

A straightforward application of the maximum principle (see Theorem 4.1) shows that 
the problem (7.1)—(7.2), which we shall denote by Eli, admits at most one solution.

The problem 111 is nonautonomous. However, if we set = z i ,  divide the 
equation by Z\ and then differentiate it, we formally obtain an autonomous problem, 
which we denote by fti:

(7.3) *0( j j )  + g '(* o ) -Z i= 0 ,

Zi(€) = g'(xo) + o( 1) as (-+ - 00,
(7.4)

z i(f)  = o(l)  asf-*+oo.

One should note that, at least formally up to first order in y/e, z 1 describes the shape of y' 
in the neighborhood of jc0. In the remainder of this section we shall discuss the existence 
of a family of solutions of problem fti, and we shall show how this family can be used to 
obtain the solution of problem ITi.

One way to handle problem fii is to write (7.3) as a two-dimensional first order 
system and analyze the trajectories in the phase plane. It turns out that the singular 
point (z 1, z i ) = (g'Uo), 0) is a saddle point and that one branch of the unstable manifold 
lies in the half-plane z \  < 0  and enters the (singular) singular point (0, 0). Hence flj has 
a one-parameter family of strictly decreasing solutions, where the parameter describes 
simply the translation of one particular solution.
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7. The ti

X =  Xo + £ a¿¡. i

Vi  -  Zu
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However, it so happens that fti can be solved explicitly for £ in terms of Zj. To this 
end we put
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Then v = v(£') has to satisfy

2v"+ l - e v = 0, 

u(—oo) = 0, u(+oo) = -oo, 

and we obtain, after multiplication by v' and one integration,

{v'? + v - e v = -1

and finally

dw
(7.5) “ 1

y yJew -  w -  1

where the parameter C  corresponds to the free translation parameter. From this 
expression we easily obtain the asymptotic behavior of the solutions:

where Z\ is the particular solution of fti which satisfies £i(0) =\g'{%0) (or, in other 
words, which corresponds with C  = 2g'(*o) in (7.5)). Using (7.3) we obtain after some 
manipulation

M ’+ (fe'Oto) - m ') ’ = 77 M " + (&(x o) -  *W),

where primes denote differentiation with respect to £ and where we have suppressed the 
dependence on C  in the notation. Hence

*o<A" +  ( £ g ' ( * o ) -  

Furthermore, we deduce from fti that

<A(£; C) = g'(*o)£ + ̂ 2  + 0 (l), £->-oo.

Since (A"/«/'' tends to zero as -oo it follows that K 2 = ~K\.
Of course the constants K i and K 2 depend on C  and it remains to show that we can 

choose C in such a way that they both become zero. We observe that

=  -Vo —

£\ (C)

2l ( C)

c

5 1(r) ¿7.

Z i g X q e u and f
'2g'(xo)

■f.
-to

z 1( i ) ~ g ' U o ) e x p ( - ^ ^ ( i - C ) 2), f^+oo.

As candidates for a solution of ill we take the functions

z  i( £ g X 0 ] exp i
V(*o)

Xo
: f - c £ - ► - 00,

f

K C Xq
<T(0;C)

«A
-<M0; C)

O C

V

<p I c
c

'oo
Z1T C T

i

'oo
*1 r ¿T,

4>’ K xf -
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From the known asymptotic behavior of z i we deduce that K x tends to m x  as C  tends to 
+ x .  Moreover
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Thus, K\  is a strictly decreasing function with range ( - x ,  x )  and we conclude that there 
exists a unique value of C, C\ say, such that K A C )  = 0 . Consequently t?i := <Al •; C\) is 
the solution of problem n x. Furthermore, the properties of i \  imply that (i) 771 is 
negative, strictly increasing and concave, (ii) faster than exponentially as
£ - » + x ,  (iii) the function m i ^ - g 'U o ^ ,  as well as all its derivatives, converge 
exponentially to zero as £ - x .

The idea of singular perturbation theory is that z i( • + C 1) describes the transition 
of y' near a = ,v0 for small values of e, and that one can approximate y' uniformly on 
[0, R]  by using the building-stones z i( • + C x) and y . In the following sections we shall 
elaborate this idea and we shall prove its correctness. It turns out that this will require 
the construction of at least five terms in a uniform asymptotic expansion. Since for us, as 
for many mathematicians, five is almost equal to infinity we shall first discuss the 
construction of a complete asymptotic expansion.

8. Matched asymptotic expansions. Throughout this and the next section we shall 
assume that g e C°°([0, /?]).

On the interval [0, x 0- 8 ]  we look for an asymptotic expansion of the form

(8 .1 ) y(x)=  I  e nyn(x).
n= 0

We find that >’oU) = gU ) and that y„ is defined recursively by

(8 .2 )
r n -1

y„U) = (>'iU))”1{x>'"-iU)- I  }’*(*)}’¿,-kU)
I A: =  1

In order to calculate the matching conditions for the transition layer expansion, we 
expand each yn in a Taylor series

y*U) = I  We) — r-— f  ,
* = o k !

where, as before, £ = ’(jc - x Q)/'Je. If we substitute this in the expansion for y and 
rearrange the resulting expression by collecting terms with like powers of Ve, we obtain

(8.3)

where, by definition,

[m/ 2 ]  (m - 2 r t W \

(8.4) uM)= I t — rrriw=o [m — 2n)\

On the interval [j c 0 + 8, R  ] one can also introduce a series expansion in powers of e , 
but it will quickly turn out that all the terms, except the one of zero’th order which is fc, 
are zero.

Next we introduce the transition layer expansion

(8.5) y (x )=  I  (VPyrUD,

dK 1
dC

c x0
7 1

1
c z i c xo < 0.

y lx)
x
I

m  = 0

£ mUm £

^ m —2n

n 1.

8. Matched a

V1 0 faster than exponentially as
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where 770(£) = g U 0) and 771 is the solution of the problem ill discussed in §7. 
Substitution in the equation yields an equation for each 7jn. Together with the matching 
condition which is obtained by formal identification of (8 .5 ), as 
yields for n ^ 2 a linear problem il„ defined recursively by

Xorin +  i g ' i x o j t - r i ^ T l n  — T717]n = q n,

(8 .6) rjn(0 = Mnlf ) + 0 ( 1) as - 00,

17* = 0 (1) as£-*+oo,

where

If... g'n,Uo) „ , „ "y1 , ( g k\ x  0 ) k \
(8 .7 ) qn( £ ) - = ------ — £ V i — —— £ - T)kj ■

As before the maximum principle implies that problem n„ can have at most one 
solution. In order to discuss the existence of a solution we first rewrite the equation by 
making use of (7 .1) for 771:
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V n \  qn
*ol —Vr71 / rji

Introducing z x := 17i, ( n ■= (zi) l r)'n and h„ := ((z0 1q„Y, we obtain by differentiation

(8 .8 ) x 0C n - z d n  =  h n.

At this point it is important to observe that we know a particular solution of the 
homogeneous equation x 0<t>"-Zi<t> = 0, namely

(8.9) <*(£):= —777
¿i(£>

(one can verify this by differentiation of (7.3)). Hence we can construct solutions of 
(8 .8) through the method of variation of constants, and we find

(8.10) £„(£; = I <t>~2(r) [ <f>(a)h„(a) d a  dr + C<j>{£)
Xo Jo • ' - O O

(note that we do not consider the general solution of the homogeneous equation since 
only <£ has the right asymptotic behavior as £ -oo). For any C, the function defined in

and behaves like g ,(x0)u,n as £ -> -oo. The last 
statement can be verified by working out the consistency relations between qn and un 
which follow from the identity

„ ,, , g (" W  „ , , „ "v ‘ , ( g ,k)(x0 ) k \
X0u n - g  {x0) un = -------- -— i  1 u n + i - k[ — —— £ - u k

n \  k=2 \ k \  /

and-by making use of the known asymptotic behavior of <f>.
Finally, we define

C*
(8.11) 77,, (£; C) = C) dr = Vn(£ ; 0 ) + Cr,i (f).

j X

Then r]n(£: C) -- un{$) + + £ 'Uo)C + o( 1), £ -  oo, where Bn is some number,  which 
docs not depend on C It follows that there exists a unique constant,  say Cn, for which 
tin* niau-bnu’ -t>ndinon is satisfied and consequently ?j. t C-. i is the unique so’a?ior. of

Un

Vn

n ,( V g (Xa) r n , , „ V  ' g (X° K k \
X0Un - g  ( x0) un = -------- ;--- f  g (Xo) -  è u n- \ -  L  U n + \-iA — —— £ - Uk

n i  * = 2 V a : !  /

(8 .10) is of polynomial growth as € + 00

(r; C) dr = r)n{^; 0 ) + Cr/l (£).

(8.10) M£-,C) = ̂ \  4>
Xo Jo

; Un (£ ) + Bn

with (8.3), this£ -» -oo, with (8.3), this

£-» —oo,



6 0 O. DIEKMANN, D. HILHORST AND L. A. PELETIER

To conclude this section we construct a uniform approximation of formal order 
2n + 1 in v e . We introduce two C x - functions H  and J  defined on U (so-called cut-off 
functions) with the following properties

fo if |.v - X {)\ ^ S U

H(x)  = \[1 if ( .v - .v o l^ y ,

11 i f | jc |^2S 2,

where <5i and 82 are suitable constants which do not depend on £. Then the formal 
approximation ya(x) is defined by

Apart from the cut-off functions this formula is the usual one, expressing a uniform 
approximation as the sum of approximations in the different regions minus the 
matching terms, which are contained in two approximations and hence should be 
subtracted in order to avoid double counting. The cut-off functions are used to achieve 
two ends: the approximation should satisfy the boundary conditions and it should be 
smooth at x = jc0. Moreover, the cut-off functions are harmless in the sense that they are 
multipled by factors which are small (if £ is small) in regions where the cut-off functions 
are different from one. In the next section we shall prove that ya and y'a are indeed 
uniform approximations of y and y' up to the order e n+{1/2) ancj e n~{l/2\  respectively.

9. A proof of the validity of the formal construction. We begin by deriving an 
estimate for the difference

(9.1) z U ) : = y U ) - y tJU).

It follows from the equation for y and from the construction of ya that z satisfies

f X z "  +  ( g - y ) : ' - v ' : + 2 z '  =  r,
(9.2)

z(0) = 0, z ( R)  = 0, 

where the remainder term r, defined by

(9.3) r (x) := -  (exy" + (g -  yfl )>V), 

can be shown, after an elaborate computation, to satisfy

(9.4) r(jt) = 0(x£  n) as s i 0 and/or x ¿0.

If we multiply the equation for z by z and integrate from 0 to R  we obtain after some 
integrations by parts and an application of the Cauchy-Schwarz inequality

fo if |.v - X {)\ ^ S U 

H { x ) = \ ■ 5,(l if |.V - .V o l^ y ,

, 0  i f l - v l i i j ,

11 i f | j c |^ 2 5 2,

8.12) >'a ,X

J
X -  X  o

£V,

n
V £ m

>'m X H x
2 n t - l

m ~ 1
y

i £ . m

m
x - x ' o

£

J
X - X q

V f

Um\
X-Xn'

£
for x < V(),

J
x - x {)

iv £
k 1 H

2n-l

m =  1

y y/£] m
Vm\

X - X o

>/£
for x > Xo-

£
R

o
jc( z ' U ) ) dx

1

2

R

'0
X dx < -r4- r I

x H x

J(x)

A V X Ik'2‘S't.v

II.13.
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where ||*|| denotes the L2-norm. Since g'U) + y '(x)£g'(R)  this implies, first of all, that
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and hence that

£ [  x ( z ' ( x ))2 ¿ J r + ^ - ^ l k | | 2 S - 7 ^ - | H | 2.
J () ^ g (a)

Now, fix S € (0 ,  *o).  The estimate above is easily translated into an estimate for the 
H l(S, jR)-norm of z, where H l denotes the usual Sobolev space of L2-functions which 
have a generalized derivative belonging to L2. Thus, by the continuous imbedding of H 1 
into the space of continuous functions we obtain

\z (x)\ =i C ( e - l\\rf)l/2 ^  C en~U2, S ^ x ^ R ,

where C  depends on S. Having established this estimate on the interval [S, R ] t we can 
extend it to the interval [0, R]  by means of the maximum principle in exactly the same 
way as we proved Lemma 6.2.

Next, it is advantageous to take explicitly into account the dependence on the 
parameter n, which counts the number of terms included in the approximation. So 
putting z = z n we write the estimate obtained so far as

\zn(x) \^Cxen- l/2, O ^ x ^ R ,  n e N .

Then, observing that

\zn+ i ( x ) - z n(x)\^Cxe  " + 1, 

we deduce the sharper estimate

. |z„u)| ^  \zn(x) -  Z,t + lU)J +  |Z n + iU ) |  ^  Cxen + U2

(This is the familiar “throwing away"' of terms which are needed in the proof, but do not 
contribute to the result.) We state this as a theorem.

T h e o r e m  9 . 1 . There exist constants eo> 0  and C >  0 such that

\ y ( x ) - y A x ) \ S C x e n* U2

for 0 <  e <  e0 and O ^ x ^ R .
Our next objective is to show that the derivative of ya is a good approximation for 

the derivative of y (recall that ya is more or less constructed through the integration of 
its derivative, and that in our application the derivative is the function which has a direct 
physical meaning). Our proof will be based on the following interpolation inequality.

L e m m a  9.2. There exist constants /jl0>  0 and D >  0 such that for any <t> e C 2([ 0, R]) 
and each ¡i e (0, ¿c0)

sup |<£'U)I =  .D{m sup \(f)"{x)\ + n ~ '  sup |<£(x)|},

where the suprema are taken over the interval [0 ,  R].
Proof. See Besjes [2]. The proof is based on a result to be found in Miranda [15, 33, 

III, p. 149]. □
T h e o r e m  9.3. There exist constants f o > 0  and C  > 0  such that

|y'U)-y,'iU)| = Ce n~{/2

for ()<£*< e ,, and 0 ^ x ^ R.

Ir <
2

g R
M

R
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Proof. From the equation for z (see (9.2)) we deduce that

where

C\ := sup
OS xSR

r(x)
+ Ci|z 'U) | + C2

z(x)

g U ) - y ( x )
C2 = sup ¡yu(x)|.

O ^ x ^ R

Next we apply Lemma 9.2 with ¡x = e{2CiD)~ to obtain

sup \z"(x) \^  2 ^ _1|sup  - + 2 (C iD ) 2̂ -1 sup \z(x)\ + C2 sup  ̂ | .

By Theorem 9.1 and the estimate (9.4) this implies that

sup k " u ) |  = 0 { s n~3/2).

Then a second application of Lemma 9.2, this time with p, = e, leads to the desired 
result. □

10. Some remarks about the case where g is neither everywhere increasing nor 
everywhere concave. In this section we shall discuss some extensions of our results to 
equations in which the conditions on the function g are considerably relaxed. In fact we 
shall merely assume that g satisfies the following hypotheses

H g: g e C \ [ 0 ,  Rl),  g(0) = 0, g ( R ) 2 k ,

g has only finitely many local extrema on [0, R].

Thus, in particular the sign conditions on g' and g" are dropped.
First of all we observe that the existence of a solution of (1.1)—(1.3) can be proved 

as in Theorem 3.2 by using zero as a lower solution and G  as an upper solution, where G 
is any increasing, concave and smooth function such that G (0) = 0 and G(x)  ^  g(*) on 
[0,*].

As before we find that if y = y ( x ; e ) is a solution then y ' >  0 and hence sign y" = sign 
(y —g); subsequently, reasoning along the lines indicated in the proofs of Theorem 3.1 
one can show that for any e >  0,

( 10. 1)
0 < y 'U ; ^) =  sup g'(f).

0

This in turn enables one to prove by means of the maximum principle that (1.1)—(1.3) 
can have at most one solution, and that the mapping e *-»y(-; e) is continuous from U+ 
into C  = C([0, R]).

By (10.1) the set {y( •; e)\e >0} is a precompact subset of C. Let X  denote its limit 
set, as e jO, in C. Taking into account the continuity with respect to e, we conclude that 
X  is a nonempty, compact and connected subset of C  (see Sell [16, p. 20]).

Any element u of X  is a nondecreasing function with u{0) = 0 and u{R) = k. Our 
first objective is to give further characteristics of the elements of X.

L e m m a  10 .1 . Let u e X. Then there exist a nonempty, open set A  and a closed set B  
such that

(i) u(x) = g(x) i f x e A ,
(ii) u is constant on each connected component of  B,

(iii) A D B  = 0 , A U J 9  = [0, R  ].

I «r X < s -1
X X

X

Z( x )

X

r (x)

x

10. Some re

0=££ë.R
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Proof. Since u e X ,  there exists a sequence {¿„} such that as n-* oo, £n| 0  and 
y( *; en) u strongly in C. By (10.1) {y (-; £„)} is bounded in H 1 = //^O, R)  and hence it 
is possible to pick a subsequence, again denoted by 
weakly in H l.

Next, we multiply (1.1) by an arbitrary function 4 > e H l, integrate from 0 to R , 
integrate the first term by parts and let n tend to infinity. This yields the identity

[ (g(*)-KU))w'U)<£U) dx = 0,
Jo

whence

(10.2) (g U )~  u{x))u\x)  = 0 a.e. on [0, R].

Define the sets A  and B  by

A  = {x £ [0, R]\ u = g in a neighborhood of x}9 B = [0, i?]\A,

then clearly u'(x) = 0 a.e. on B. In view of the continuity of g and u the sets A  and B 
have all the properties listed in the lemma. □

L e m m a  10.2. Let u e X a n d  let I  be a connected component of B such that I  c  (0, R).  
Then

(10.3) f l . W - g M ^ . 0
j/ J

Before proving this lemma, we prove an auxiliary result.
L e m m a  10.3. Suppose that, as n oo, £„J,0 and y(x\ en)~* g(x) uniformly on 

[fl,6]c=[0,/?]. Then

In y'U; £„)-*0 asn-*oo

uniformly on [a , b].
Proof Choose a subinterval [c, d] of [a, b ] and a positive constant 8 >  0 such that 

g'(x) ^  8 on [c, d]. Define for each n ^  1, a point

y\£n\ £n) = max{y'(x; e„)|c ^ x ^ d } .

Then it follows that there exists an Ni  ^ 1 such that

e„)^ 2  ̂ for«

If we divide (1.1) by xy’ and integrate from £n to x we obtain

..,t* x , f xy(r ; Sn)-g (r )  J In y (ac , en) £n In y , s n) + I dr.
4  r

Since the right-hand side tends to zero as n oo, the same must be true for the left-hand 
side and the result follows. □

Proof of Lemma 10.2. Let I  = (e,f), where, by assumption, 0 <  e < f < R .  Manipu­
lating as above we obtain

i * i '/r * (fy(r,en)~g(T) Jen In y {e\ en) - e n In y (/; en) = \  -------------------dr.
Je r

Applying Lemma 10.3 to a ieft-hand neighborhood of e and to a right-hand neighbor­
hood of /, we deduce that the left-hand side of this identity tends to zero as n -* oo. So 
taking the limit n oo leads to the desired result. □
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R

N,

Nu

£ n

£ n , such that as n ■00,y £n u

Sn

r x y (r; en)-g(r)

4  T

In G c, d such that

y'(Çn',En)



I I . 1 7 .

We now collect the information we have obtained about an arbitrary element u of 

X :  u is a continuous, nondecreasing function with w(0) =  0 and u { R)  = k,  which is 

com posed out of pieces where ¿*U) = g(x)  and pieces where u(x)  is constant. Moreover,  
if I  is a maximal interval on which u is constant, and /  does not contain 0 or R,  then
(10.3) has to be satisfied. For convenience of formulation we shall call the set of  
functions having all these characteristics Y.

Our next objective is to show' that Y  is finite. First we shall illustrate our approach  

by discussing one example in full detail.
Consider a function g  satisfying H g and such that g' vanishes at only two points b 

and c, b being a local maximum and c a local minimum. A ssum e that 0 <  b <  c <  R  and 

0 <  g(c)  <  g ( b ) < k .  Let g ^ 1 denote the inverse of g on [0, b]  and g 2 1 the inverse of g on

[ c , R l
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Define two points a and b by

a = g 7 1(g(c)), d = gV(g(b)) .

Then g([a, b ]) = g([c, d]). (See Fig. 1.)
On [a , b ] we define a mapping F  by

Then on (a , 6)

and F (a ) < 0 ,  F(6) >0 .  Consequently F  has a unique zero on [a , 6].
Let w be an arbitrary element of Y  Then w has to coincide with g on [0, a]  and 

[d, g 21 (¿)] and it has to be equal to k on [ g j 1 (k), R].  Since H’ is nondecreasing the 
inverse function of w must “jump'’ from a point on [a , b] to a point on [c, d]. In view of 
(10.3) this jump can only take place at the unique zero of F. Thus Y  consists of one and 
only one element.

Returning to a general function g satisfying HK we define E  to be the set of local 
maxima and minima of g and D  to be the closure of the set {x |g  is increasing in a

k

g

a b c d R x

F x
' x

■ R ; ! (g(.v)) g(x ) ~ g (r)
T

dr.

F' x g' i x
' x

11
2 dr

T
> 0
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neighborhood of x}. Let D c be one of the finitely many connected components of D. 
The set g~l(E) fl D c is finite. Take two successive points a 0 and (30 in this set. To [a0, /30] 
there correspond finitely many disjunct intervals [at, /?,]<= D  such that a, > a 0 and 
g([«0, Po]) = g([«„ Pi]). Define g • ' on [g(a0), g(/30)] as the inverse of g with range in 
[a,-, /3,]. On [a0, /30] we define mappings F, by

Since Fi is monotone, it has at most one zero.
As already noted above the condition (10.3) implies that a point where the inverse 

function of an element of Y  makes a jump should be a zero of some Fi for some 
connected component D c of D  and some pair of points a 0, Po- Hence the set of possible 
“jump” points is finite and likewise the set Y  is finite.

Thus X , being a subset of Y, must be discrete. Because it is also connected it can 
only consist of a single element. Consequently y (•; e) converges in C  to this function as 
e ¿0. We summarize the results in the following theorem.

T h e o r e m  10.4. There exists a function u e Y  such that

In some cases the conditions determine the limit uniquely. For instance, this 
happens in the example we discussed at length and, more generally if the local extrema 
are ordered in such a way that with each connected component of D  there corresponds 
precisely one possible “jump” point. In other cases our analysis is not constructive in 
the sense that, although we have shown that convergence occurs as e i  0, we are not able 
to describe the limit completely. (See Fig. 2.) We intend to investigate whether this 
ambiguity can be resolved by using variational principles. See note added in proof.

lim y ( x ; e ) =  u (jc ), uniformly on [0, R  ].
e |0

Fi(xx
* X(

g 7 l ig(x) )
Xg
7

g (■
dr.

g

a a b c 6 d x

F k ; .  2. Tw o possible conf igur a t i ons :  separate ju m p s  ia  -  b, c - d )  or a tw n - in - o n c  j u m p  i a  13).
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In conclusion we remark that the hypothesis g ( R ) ^ k  was made in order to obtain 
the uniform convergence on [0, R].  If g(R)  <  k the solution will exhibit boundary layer 
behavior near the right endpoint. However, outside a small neighborhood of this 
endpoint, the solution will behave in exactly the same way as we have shown for the case
g ( R ) > k .

Acknowledgment. This problem was suggested to us by E. Marode and I. Gallim- 
berti. H. J. Hilhorst patiently explained to us many physical aspects and suggested 
important improvements in the presentation. The comments and suggestions of M. 
Bakker, J. Grasman and E. J. M. Veling helped us to overcome several difficulties. The 
critical remarks of the referees have led us to a fairly substantial extension of the first 
version.

Note added in proof. It has been possible indeed to resolve the ambiguity connected 
with the limit e -» 0 by means of a variational formulation of the problem (O. Diekmann 
and D. Hilhorst, How many jumps? Variational characterization of the limit solution of a 
singular perturbation problem, Proceedings of the Fourth Scheveningen Conference on 
Differential Equations, 1979, Springer, to appear).
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A NONLINEAR EVOLUTION PROBLEM ARISING 
IN THE PHYSICS OF IONIZED GASES*

D. HILHORSTf

Abstract. We consider a Coulomb gas in a special experimental situation: the pre-breakdown gas 
discharge between two electrodes. The equation for the negative charge density can be formulated as a 
nonlinear parabolic equation degenerate at the origin. We prove the existence and uniqueness of the 
solution as well as the asymptotic stability of its unique steady state. Also some results are given about 
the rate of convergence.

1. Introduction. In this paper we study the nonlinear evolution problem

ut = exuxx + (g ( x ) - u )u x on D  = (0, oo) x (0, T),

P u (0 ,0  = 0 for t e  [0 ,7 ] ,

u(x, 0) = ifr(x) for x e (0, oo),

where e is a positive constant, g is a given function which satisfies the hypothesis 
Hg : g e  C 2([0, oo)); g(0) = 0; g'(*) >  0 and g"(x) <  0 for all x ^  0 and the initial function 
tf/ satisfies the hypothesis H «/,:

(i) t/r is continuous, with piecewise continuous derivative on [0, oo);
(ii) (¡HO) = 0 and tfr(oo) = AT e (0, g(oo));

(iii) there exists a constant 0) such that 0^</r'(*) =  M^ at all points x 
where ^  is defined.

In § 2 we briefly describe how the problem arises in physics and give the derivation 
of the equations.

In § 3 we present maximum principles for certain linear and nonlinear problems 
related to P; the uniqueness of the solution of P  follows directly from those principles.

In § 4 we prove that P has a classical solution which satisfies furthermore the 
condition

(*) u (oo, t) = K  for t £ [0, T], T <  oo.

The methods used here are inspired by those of van Duyn [7], [8] and Gilding and 
Peletier [13]. We also consider the limit case ejO  and prove that u tends to the 
generalized solution of the corresponding hyperbolic problem.

We then investigate the behavior of u as t oo and prove that it converges towards 
the unique solution 4> of the problem P0 defined as follows

« V  + (g(jc)-®)4>' = 0,
Po

4>(0) = 0, O(oo) = A0 =• min (max (g(oo) -  e, 0), K).

Qualitative properties of 4> have been extensively studied by Diekmann, Hilhorst and 
Peletier [6]. Here we analyze its stability. In § 5, following a method of Aronson and 
Weinberger [2] based on the knowledge about lower and upper solutions for the 
steady state problem P0, we prove that <l> is asymptotically stable.

In § 6 we investigate the rate of convergence of u towards its steady state. The 
function <l> turns out to be exponentially stable when the function g grows fast enough 
to infinity as *-*oo; the proof, based on constructing upper and lower solutions for 
the function u -4>, follows the same lines as that of Fife and Peletier [10]. We also

* Received by the editors December 23, 1980.
t Stichting Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands.
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consider the case when g increases less fast and show that provided e < g ( o o ) - K  and 
4> converges algebraically fast to K  as x -> oo the function u -4> decays algebraically 
fast; this is done by obtaining first that property for a weighted integral of u ~ 4> 
according to a method of Il’in and Oleinik [14] and van Duyn and Peletier [9]. Finally 
we consider the corresponding hyperbolic problem and obtain a similar result of 
algebraic convergence.

2. Physical derivation of the equations. The physical context of the present 
problem has been described in some detail by Diekmann, Hilhorst and Peletier [6]. 
Here we shall summarize it again and explain how one can obtain the time evolution 
problem P.

One considers an ionized gas between two electrodes in which the ions and 
electrons are present with densities n,-(r) and ne(r, t) respectively, where r = (jci, x2, 
j c 3 ) .  The ions are heavy and slow and the density r) may therefore be regarded as 
fixed. The electrons are highly mobile. The problem is then to find ne{r, t) for given 
H,-(r) and in particular to find out whether given an initial electron distribution, the 
electrons stabilize and if so to evaluate the time needed for such a stabilization.

A special situation of practical interest is a so-called pre-breakdown discharge 
which spreads out in filamentary form (cf. Marode [17] and Marode, Bastien and 
Bakker [18]). In this situation there is cylindrical symmetry about the x3-axis and the 
particle densities depend on r = (x\  4-x \ ) x/2 only. We thus have effectively a two- 
dimensional Coulomb gas with circular symmetry. The starting equations are

(i) Coulomb’s law for the electric field E,

in which the first term represents Ohm ’s law' and the second term is due to thermal 
diffusion, fjL being the mobility, k  Boltzmann’s constant and T  the temperature; and

(iii) the continuity equation for the electron density,

(2 .1)
r dr

where Cd is a fixed constant;
(ii) a constitutive equation for the electric current j,

(2 .2)

(2.3)
dne 1 d 

dt r dr n '

If we set

and

'0

we obtain, after redefining the constants, the equation

(2.4) u t =  e x u xx +  ( g ( x ) - u ) u x,

2. Physical

1 d
rE Cd e-nt

j neimE k l
dne
dr

u(x , t)
'o

ne Ir,t. r dr

g(x)

VT
rii(r)r dr,

rii{i) m;

i
-VT
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where e =  2 k T / ( f i C d), and the boundary condition

(2.5) w(0, t) =  0.

Furthermore one makes the hypothesis that the total charge is positive and fixed, that 
is

constitute the mathematical formulation of the problem which we propose to study 

in this paper. Furthermore the condition (2.6) will turn out to be satisfied at all finite 

times t and also, for low enough values of the small parameter e , at the time t =  oo. 
This latter property expresses the fact that all the electrons stay attached to the ions 

at low enough temperature; w e shall also see that if the temperature rises above a 

critical value then som e of the electrons escape to infinity, and if it rises even further 

above a second critical value then all the electrons escape to infinity.

3. Maximum principles for some degenerate parabolic operators-uniqueness 
theorem. In this section we prove maximum principles for som e linear and nonlinear 

operators which have a degeneracy at the origin; these principles hold for functions 

u e  C 2,1(D )D C (jD ) ,  where C 2 l ( D ) is the set o f  continuous functions on D  with two 

continuous x -derivatives and one continuous t - derivative. It will follow easily from  

those maximum principles that P  can have at m ost one solution u £ C 2,1( D ) D  C ( D )  

such that ux is bounded in D .
W e begin by defining a linear operator L  as follows

(3.1) Lu  =  exuxx +Z>(jc, t )ux +c(jc, t)u -  ut9

w here the functions b and c are continuous on D  and such that the quantities b / ( l  +  x)  
and c are bounded on D . First we consider the bounded domain D R := (0, R )  x  (0, T),  
where R  is a positive constant. In the sam e way as for a uniformly parabolic operator  

on e can prove the following maximum principle which holds in fact for a much wider 
class of degenerate parabolic operators (see, for exam ple, Ippolito [15] or Cosner [4])

T h e o r e m  3.1. Suppose c ^ O . L e t u  £ C 2,1( D R) n  C ( D R) satisfy Lu  ^ O o n  (0, R ) x  

(0, 7"]. Then if  u has a positive max im um  in D R, that m ax im u m  is at ta ined on ((0, R )  x  

{ 0 } ) U ( { 0 , i* } x [0 ,  7T).
N ext, following a m ethod due to A ronson and W einberger [2], we derive a 

com parison theorem  for a class of nonlinear evolution problems.
T h e o r e m  3.2. L e t  u a n d  v £ C 2'l ( D R)(~) C ( D R) an d  suppose that either ux or vx is 

bounded on D R. L et  u a n d  v satisfy

oo

from which we deduce the boundary condition at infinity;

(2.6) ii(oo, t) =  K  •= g(oo) — N.

Clearly K  £ (0, g(oo)).

Equations (2.4) and (2.5) together with the initial condition

(2.7) u(x , 0) =  (/K*)

L v  -  vvx ^ L u  -  uux on { 0 , R ) x  (0, T],

a n d  let

O ^ v ^ u ^ K  on (0, R ) x { 0 }  an d  {0, / ? } x [ 0 ,  T].

toI ( H i ( r ) - n e(r, t ) ) rd r N > 0,

3. Maxii



II I .4.

Then v £  u in (0 ,R )x (0 ,  T]\
Proof. Let

w = {v — u) e~at,

where

a = max. (c(jc, t) -  ux(x, t))
( x , t ) e D

(in the case where ux is bounded). Then w satisfies

exwxx + {b(x, t) — v)wx + (c(x, t ) - u x - a ) w  - w t ^ 0

and

w ^  0 on (0, R)  x {()} and {0, R }  x [0, T].

Thus we deduce from Theorem 3.1 that

w =  0 in (0, R ) x (0, T],

which completes the proof of Theorem 3.2. □
Now let us consider the unbounded domain D. To begin with we 

Phragmen-Lindelof principle which is a special case of a theorem due to Cosner [4].
T h e o r e m  3 . 3 .  Suppose that b / ( l  + x) and c are continuous and bounded in D. Let 

u e C 21(D ) fl C(D) satisfy L u ^ O  on (0, oo) x (0, T] and the growth condition

(3.2) lim inf e~Bgi[ max u(3l, f)] =  0
91-+ oo 0 g f S T

for some positive constant B. If u ^ 0 for t = 0 and on {0}x[0, T] then u ^ 0  in 
(0, oo) x (0, n

Making use of Theorem 3.3 one can prove a comparison theorem on the 
unbounded domain D.

T h e o r e m  3A._Let u and v e  C 2,1(D )n  C(D) be such that either ux and v or u and 
vx are bounded on D  and that

\u(x9 0|, \v(x, i)| =  C e B'x 

for some positive constants C and B\ and uniformly in t e [0, T \  Suppose that 

Lv — vvx ^  Lu — uux on (0, oo) x (0, T~\

and that

0 ^kvtku^kK on (0, oo) x {0} and {0} x [0, 7"].

Then v ^ u  in (0, oo )x (0, T].
Finally let us come to the question of uniqueness of the solution of problem P. 
D e f i n i t i o n . We shall say that u is a classical solution of problem P if it is such 

that (i) u e C 2A(D) fl C ( D ), (ii) u and ux are bounded in D , (iii) u satisfies the equation 
in D , (iv) u satisfies the initial and boundary conditions.

T h e o r e m  3 . 5 .  Problem P can have at most one solution.
Proof. Apply Theorem 3.4 twice to deduce that if u and v are two such solutions 

then their difference w = u - v  satisfies w ^ 0 and w ^  0 and thus w =  0. □

4. Existence and regularity of the solution. In order to be able to prove the 
existence of a solution of the nonlinear degenerate parabolic problem P, we consider

A NONLINEAR EVOLUTION PROBLEM 19
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certain related nonlinear uniformly parabolic problems on bounded domains and 
observe that they have a unique solution; we then deduce that P has a generalized 
solution, in a certain sense. It finally turns out that this solution is in fact a classical 
solution of P and thus the unique solution of P and that it also satisfies condition (*). 
Finally we consider its limiting behavior as e i0 .

4.1. Existence. Let us first introduce some notation. Let D n := (0, n) x (0, T). We 
denote by C2+«([0, n]) the space of functions v which are twice differentiable and 
such that v" is Holder continuous on [0, n] with exponent a. We also use the spaces 
Ca{Dn), C2+a(Dn) and C2+a(Dn), defined in Friedman [11, pp. 62, 63].

Consider the problem

ut = e (x +1 /n)uxx + (g(x) -  u)ux in D n,

Pn u (0 ,/) = 0, u(n,t) = K , i€ [0 ,  T],

k(*,0) = <M*), *6(0, «),

with n ^ g ~ l(K)  and where ijjn is such that

(i) <A„eC°°([0,oo]);
(ii) t/rn satisfies H # ;

(iii) <An(0) = 0 and i{/n(x) = K  for x e [n - 1, oo).
In what follows we shall denote by Hn properties (i) -  (iii). The following theorem holds: 

T h e o r e m  4.1. There exists a unique solution un e  C2+a(Dn) o f ¥ nforanya  € ( 0 , 1); 
furthermore un satisfies the inequalities

(4.1) 0 ^  un(x, 0  =  min (M^x, K),

(4.2) 0 ^ u nx(x, t ) ^ M t n,

for all (x, t ) e D n. ____
Proof The existence and uniqueness of unGC2+a(Dn) is a consequence of 

Theorem 5.2 of Ladyzenskaja [16, pp. 564-565]. The inequalities in (4.1) can be 
deduced by means of a comparison theorem analogous to Theorem 3.2. From the 
linear theory (Friedman [11, p. 72]) we deduce that the function w := unx e C2+a{Dn)\ 
thus w e C 2,1(Dn)fl C (D n). Furthermore w satisfies

wt = e (x + 1 /n )wxx + (g(x) - u „ + e ) w x + (g'(x)~ w)w,

(4.3) 0 ^  w(0, t )^ M ^ n9 0 ^  w(n> t )^ M # n, 

w(x, Q) = &n(x).

The bounds on the function w(n,t)  follow from the fact that the function 
max (0, M^n{x - n )  + K )  is a lower solution of the boundary value problem

e^x +^)<£" + (g(jc)-</>)<£' = 0, <M0) = 0, j ( n )  = K

and consequently a lower bound for un. Clearly the set

{w e C([0, n]) such that 0 ^  w ( x ) ^ M lPn}

is invariant with respect to the problem (4.3), and thus the inequalities (4.2) are 
satisfied.

Next we deduce, from Theorem 4.1, the existence of solution of P. We begin by 
approximating the initial function ^ by a sequence of smooth functions {il/n}.

4.1. Existence.

I I I . 5 .
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L e m m a  4.2. Let the function <A satisfy H .̂ Then there exists a sequence {&„} which 
satisfies the properties Hn given at the beginning of this section with M^n = 

as n -> oo, uniformly on [0 ,  oo).

Proof. Let n0 = g ~ \K )  be such that for all n ^ n Q the point x in defined by 
tlt(xin) is such that l /n  < x \ n = n  - 2  and the point x2n defined by 

X2 n = n ~2  + (K -i//(n -2))/Af#  satisfies n - 2 < x 2}l < n - 1. Also define

with 8n =min ( l /n,  X\n -  l /n,  n - 2 - X \ n, x2n- n  +2 , n - 1  - x 2n) / l 0.  We now show 
that </fn has the desired properties. Firstly i(/n e C°°([0, «]). The uniform convergence of 

follows from the continuity of <A*, uniformly in n and in x and the uniform 
convergence of i//* to as n -> oo. Finally properties (ii) and (iii) of Hn can be deduced 
for from the fact that also satisfies them.

Next we prove the following theorem.
T h e o r e m  4.3. P has a unique classical solution. Furthermore this solution also 

satisfies condition (*):

(*) lim u(x, t) = K  for each t £ (0, T*].
X-KX>

0,
1

-oo<jt
n

1
- < x ^ x ln,
n

xin < x  ^  n — 2, 

n — 2 < x  = x 2n, 

x2n < x  <  4-00.

Note that, for all x,

I (x) -  if/(x)I ^  max K - i / f { n -  2)^.

Next introduce the function

where the constant C  is such that \u p dx  = I, and let

Finally define

< M * )  =  Psn( x  ~  y)>Pt ( y )  d y ,  x e [ 0 , n ] ,  
J r

Proof. We rewrite the parabolic equation of problem PM as

( 4 . 4 ) ut = e(x  4-1 / n ) u xx +c(x,  t)ux,

n, such that <Pn •If

4> X*n
M* x

1

n)

p(x)

0

C exp
1

x 2 1

if X 1,

if X\ < 1,

Ps X
p ( x / 8 )

8

M «Af o r  a l l

<A
M, x  — n +  2 <A n - 2 ]

K,

'M*

n to <A
'A :

<A<A n

Ai x l n 1 n
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where

c(x, t) = g ( x ) - u n(x91).

From Theorem 4.1 we know that for all ( jc' ,  t), (x ", i) e D n and for all n ^ n 0

(4.5) I Unix', t ) - u n(x'\ 0|^M Jjc'-jc"|.

Now fix / ^ ai0; (4.4) and (4.5) enable us to apply a theorem of Gilding [12] about 
the Holder continuity of solutions of parabolic equations, and we obtain

\un(x, t ' ) - u n(x, t" ) \£C\t ' - t" \ l/2

for all n ^  J and for all ( jc, t'), (x, t”) e D h with \ t' - t ”\ ^  1. Here the constant C  depends 
on I  but not on n. The set {un(jc, t)}™=i is bounded and equicontinuous in D h and thus 
there exists a continuous function W /( jc, t) and a convergent subsequence {unk{x, t)} 
with nk such that unk(jc, t) w7 ( jc, t) as nk -> oo, uniformly on Di . Then, by a diagonal 
process, it follows that there exists a function u (jc, t) defined on D  and a convergent 
subsequence, denoted by { w/ ( jc, /)} such that u,(jc, t) -+ u(x, t) as j  oo, pointwise on D. 
Since this convergence is uniform on any bounded subset of D,  the limit function u is 
continuous on D.

It remains to show that u is a solution of P; to that purpose we shall proceed in 
twb steps: firstly we show that u is a generalized solution of P in a certain sense and 
then we conclude that it is in fact a classical solution. We shall say that u is a generalized 
solution of P if it has the following properties:

(i) u is continuous and uniformly bounded in D ;
(ii) u(0, t) = 0 for all t e [0, T]\

(iii) u has a bounded generalized derivative with respect to jc in D ;
(iv) u satisfies the identity

(4.6) [u<f>t - e ( x u x -  u)<t>x - ( g -  u/2)u(f>x -  ug’<f>] dxd t  + J* il/(x)<f>(x, 0) dx = 0

D

for all <f> e C l {D) which vanish for jc = 0, large jc and t = T.
Let us check that u satisfies those properties.

(i) We already know that u is continuous on D  and furthermore, since u(x, t) = 
lim7_>oo Uj(jc, t)9 we have that Q ^ u ^ K .

(ii) This property follows from a similar boundary condition in Pn.
(iii) Let (f> be an admissible test function and let L  ^  n0 be such that supp 4> c  D L. 

Since \uix\ is uniformly bounded with respect to j ^ L  for all ( jc, t ) e D L, it follows that 
there exists a subsequence {{ujk)x} and a bounded function p e L 2(DL) such that

(uik)x-^P in L 2(Dl ) as j k -» oo.

Now let C € C l  (D l ). Then

(4.7) ((«,J„f)->(p,f) as jk^oo,

where (•, •) denotes the inner product in L 2(Dl ). But since ujk u as jk -> oo, uniformly 
on D l, we have

22 D. HILHORST

(4.8) (ujk, ( x)->(u, £x) as jk oo.

Hence, combining (4.7) and (4.8), we find that p is the generalized derivative of u.
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(iv) Since ujk is a classical solution of P„ it follows that

(4.9) r L
+ i//jk(x)ct>(x, 0) dx = 0 .

Jo

The sequences {ujk} and {u2k} converge to u and u 2, respectively, strongly in L 2{Dl ) 
as jk -+oo. Furthermore since (ujk)x is uniformly bounded we have

{ujk )x(f>x d x d t ^ O  as jk -> oo.

dl

Thus letting / fc-> oo we obtain (4.6). Because <f> has been chosen arbitrarily, we may 
conclude that u is indeed a generalized solution of P.

It remains to show that u is a classical solution of P. One can do it by using a 
classical bootstrap argument (see, for example, Gilding and Peletier [13]) to show 
that for whatever 77, L >  0 there exists a  (77, L)  € (0,1) such that

(4.10) u g  C2+a((v, L)  x  (77, T)),

where a and ||w||c2+a may be estimated independently of T. In particular,

u e C 2A(D )r \C (D ).

Since furthermore u and ux are uniformly bounded u is a classical solution of 
problem P and by Theorem 3.5 it is the unique solution of P.

Finally let us analyze the behavior of u for large x ; since we have 0 ^  u ^  K  
and Wjc=0, «(oo, t) = limx_*oo u{x, t) is well defined for all ¿ g [0, T ] and such that 

0 ^w(oo, t ) ^ K .  Next we show that u(oo,t) = K  by constructing a time dependent 
lower solution for P. Consider the problem

ut = exuxx + (K ~ u ) uX9

(4.11) 11U 0, 0  = 0, x 0^ g ~ \ K ) ,

u(x , 0) = if/(x).

Since ux ^  0 we have that

exuxx + (g(x)~ u)ux -  ut = exuxx + (jK - u ) u x - u t + ( g ( x ) - K ) u x

^  exuxx + (K -  u)ux — ut for all x !^g~l (K).

Thus a lower solution u of (4.11) with ux ^ 0  is also a lower solution of P on 
[X o , °o) x [0, T]. We search such functions u k which satisfy furthermore

«fc(°o, t) = K  - k  for all t e [0, T] and with k e (0, K).

Writing

v = K - u ,

reduces this to finding an upper solution vk of

vt = exvxx + vvx,

A NONLINEAR EVOLUTION PROBLEM 2 3

v(x0, 0 = K, t>(oo, 0 = 0.

Dt

1

ik‘
g

W/k
2

U j k f i x Ujkg'<t> dx dt11 [«>„<£< -  «'((•'■ +7-)u',J.v -  U^4>x -

ìli
dl
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Next we look for such a function vk, also requiring that

vk( x , t ) = f k( ^ - ^ j .

Setting

24  D. H IL H O R S T

one can easily derive that f k should be an upper solution for the boundary value 
problem

sr?/" + ( /  + *7)/' = 0, 

f ( x 0) = K,  / ( oo) = 0.

Let Jt0> m ax  (f , g _1(^ )) , and take

f k (V ) = k  + ( K - k ) ( ^ - j  ° \

One can check that indeed f k is an upper solution for problem n  and consequently 
that t) = K  - f k ( x / ( t  + l)) is a lower solution for problem P on the sector {t ^  
0, x ^ x 0(t + 1)} provided that x 0 is large enough. Since k  can be chosen arbitrarily 
in (0, K )  it follows that u (oo, t) = K  for all t < oo. □

4.2. The limiting behavior as e 1 0. In this section we study the limiting behavior 
of the solution u of P as e i O.  To begin with, we consider the following hyperbolic 
problem:

ut = ( g ( x ) - u ) u x in a
H

h(x, 0) = tfr(x) for all x e (0, oo),

and make some heuristic considerations about the solution u of problem H; they are 
due to Wilders [23]. One possible configuration of g and i// is drawn in Fig. 1; the 
corresponding characteristics are represented in Fig. 2. Their equations are

^ = - ( g ( x ) - < l / ( x {  0))).

Along those characteristics u is constant, i.e., u = t(/(x(0)). Also, since <A(0) = 0 it 
follows that the line x = 0 is the characteristic passing through the point (0, 0) and

Fig . 1

l~x0/e

that iik(x9t)

y

K

8

x

V
x

f +  1’



I I I . 10 .

A NONLINEAR EVOLUTION PROBLEM 25

F i g . 2

consequently that u automatically satisfies a boundary condition of the form «(0, t) = 
0. Next we deduce from the fact that i/r is nondecreasing that two characteristics do 
not intersect. Suppose that there exist two characteristics issuing from the points x = a 
and x = b(a < b) on the initial line, intersecting each other at the point (j c , t) = (**, i*). 
Then if they would intersect transversally we would have - (g (x* ) - i f / (a ) )>  
-  (g(x*)- i//(b)) and hence 4/(a)> i//(b), which is impossible. Now if the characteristics 
would be tangent to each other at the point (**, t*) we would have -(g(x*)- i( / (a))  = 
“ (&(**)“ <A(£)) and consequently i//(a) = i(/(b)', both characteristics would then be 
described by the same differential equation dx jd t=  - (g (x ) - i l / (a ) ) ,  which, by the 
standard uniqueness theorem for ordinary differential equations, implies a = b. Finally 
we conclude that since the initial condition ifr is continuous and nondecreasing, no 
shock wave can occur and w( •, t) is continuous at all times.

In [19] Oleinik proved existence and uniqueness of the generalized solution of 
Cauchy problems and boundary value problems related to problem H but since the 
boundary line x = 0 is a characteristic for H (which is reflected in the relation 
g (0 ) -  m(0, 0) = 0), problem H does not satisfy all the assumptions made in [19]. 
This leads us to give here a proof of the existence of a solution of problem H, by 
showing that the solution u of problem P tends to a limit as ejO; the uniqueness is 
a consequence of [19]. Following [19, Lemmas 18 and 19], we say that u is a 
generalized solution of H if it satisfies

(i) u is bounded and measurable in D ;

for all points (*i, t), (x2, t ) e D \

(iii) u satisfies the identity 

(4.12) | |  ^u(f)t - [ g  -  -  ug' (f) j  d x d t - f - |  tj/(x)<f>(x, 0) dx = 0

D

for all 4> e C l (D) which vanish for large x and t = T.
Next we shall prove the following theorem.
T h e o r e m  4.4. The solution u(x ,t )  of  P tends uniformly on all compact sub- 

domains of D  to a limit u as e l 0, where w is the unique generalized solution of H. 
The function u is furthermore continuous, nondecreasing in x at all times i£ [0 ,  T] 
and satisfies the boundary conditions u(0, t) = 0 and u(oo, t) = K.

L

x

- (g(x*)- i lr(b))

(ii)
u X1? u X2 > t) < M1*X1 JC2

ü

2)
i«bx
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Before proving Theorem 4.4, let us introduce a class of upper and lower solutions 
for problem P which depend neither on e nor on time. They will turn out to be very 
useful both to prove that w(oo, t )  = K  in Theorem 4.4 and to study the asymptotic 
behavior of u as f-»oo in the next sections. Next we define

where the constants A e [0, K], v > 0  and j t i> 0  are chosen in the following manner:
(a) If e <  g(oo), we choose *i >  0 so that gU i) >  e, then A >  0 so that A <  g(x\) -  e 

and finally v >  0 so that

Thus if e <  g(oo), given any A <  A0 = min (g(oo) -  e, K),  one can find x i and v satisfying 
(4.13) and such that s~(*, A, x u £) =  tA- Applying the comparison Theorem 3.4 we 
deduce that $”(•, A, x lf v ) ^ u  (and thus that A0 =  w(°°, t) for all 
can check that u ^  s +.

Proof of  Theorem 4.4. The uniqueness of the solution of problem H can be proven 
along the same lines as in the proof of [19,Thm. 1, Lemma 21]. Next we show its 
existence. Fix J ^ l .  Since u and ux are bounded uniformly in e we deduce from 
Gilding [12] that u is equicontinuous on Di\  thus, there exists a subsequence 
{u£n}™=iof u and a function Wj e C(l5j), such that u£n ¿7/ as en i  0 uniformly in Di  and 
such that for all A <K ,  one can find Xi and v satisfying (4.13) and s ~(•, A, xi, v ) ^  
«/(*, 0  =  *y+(')- Then by a diagonal process, it follows that there exists a bounded 
continuous function ii and a converging subsequence denoted by {uEk} such that u£u -f u 
asefc 1 0, point wise on D  and uniformly on all compact subsets of D. Since 0 ^  (uek)x 
u is nondecreasing in the x -direction and satisfies (ii); wefc(0) = 0 implies the same 
property for w. The boundary condition u(oo,t) = K  follows from the inequalities 
5 ~(*, A, x\, t ) ^ s +(-) for all A <K .

It remains to show that u is a generalized solution of H. Let (f>eCl{D) vanish 
for large x  and t = T, and let L ^  1 be such that <f> vanishes in the neighborhood of 
x = L  and for x > L.  Because the functions uEk are classical solutions of P, we have

s +(x) := min (M^x, K )

and

(4.13) v ^ e  \ g ( x i ) - A ) - l .

(b) If e §  g(oo), we set A = 0, whicfi amounts to setting s =  0. 
It is easily seen that s~ satisfies the inequality

ex(s )" + ( g - s  ){s ) '^ 0  for all x e [0, oo)\{xi}, ê e (0, e).

Now letting jO we deduce that u satisfies (4.12); because <f> has been chosen 
arbitrarily we conclude that u is indeed the generalized solution of H and that {ue} 
converges to w as e 1 0. □

s x, A,*i, v max 0 A| 1
x

x v

v —

(b) If e

5  (*, A,*1, v ) ^ u

Dl
a

uEk

+
L

0
i//(x)<f)(x, 0) dx 0 ,i

t 00)Similarly one

< M

£k

k4>t £k{xUekx Uek)(j)x 2   ̂ Uekg (f)  ̂ dx dtMe¡c )^JC s - y ) “.A

(a) If e <
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5. Asymptotic stability of the steady state. Adapting a m ethod due to A ronson  

and Weinberger [2] we investigate the stability of the solution <J> of problem P0. To  

that purpose we consider the solution u of the corresponding evolution problem P;
plays a central role in what follows, we denote this solution  

by u(x, t, ip). W e show that for all the functions ip satisfying the hypothesis H # given  

in the introduction we have that

u{x, t, ip)-» O(jt) as ¿-»oo.

To begin with we prove two auxiliary lemmas.
L e m m a  5.1. (i) L e t  e < g { o o) an d  A, xu  v satisfy  (4.13). The function  

u (x , t, s ~ ( - , A, jfi, v)) is nondecreasing in time an d  such that

(5.1) lim u(x, t, s ~ ( ' , A, x u  v)) =  <t>k(x\
r->oo

where cfix is the unique solution of

(5.2) .
0) =  0, <M°°) =  A.

(ii) The function u (x , t, s +) is nonincreasing in time. Furthermore

(5.3) lim u (x , t, s +) =  <l>.
r-*oo

Proof. First note that it follows from the proofs in § 4 that problem P with initial 
value s~(x, A, x\,  v) has a unique classical solution u (x , i, s~ (* , A, x u  v))  with w(oo, t) =  

Applying repeatedly Theorem  3.4, one can show that 

u(x, t, s (  •, A, xu  v)) is nondecreasing in time and that u(x , t, s +) is nonincreasing in 

time; it also follows from Theorem  3.4 that

u(x, t, 5 ~ ( ‘ , A, Xu 0))^<t>k(x),

and that

u (x , t, S+) ^  <£(*)•

N ow  for each x , u{x, t9 s ~ ( - , A, x u v)) is nondecreasing in t and bounded from above. 
Therefore it has a limit r - ( x)  as f-»oo and one can use standard arguments (see for 
exam ple A ronson and Weinberger [2]) to show that r ” g C 2+a((0, oo)) D C ([0 , oo)) and 

satisfies the differential equation in (5.2) and the boundary conditions r ”(0) =  0 and 

r"(oo) =  A. Finally since (p\ is the unique solution of problem (5.2) w e have that r~ =  cph 

Similarly one can show that u (x , t , s ^ )  converges to a function r + e  

C 2+a ((0, oo)) f |  C ([0, oo)) which satisfies the steady state equation, the boundary condi­
tion r +(0) =  0 and the condition 3>(oo) ^  r +(oo) ^ K .  The fact that r +(oo) =  (J>(oo) follows  

from [6, Lem m a 5.1]. Consequently r  + =  4>.
L e m m a  5.2. (pi is an increasing an d  continuous function o f  A. More precisely if  

Ai ^  A2 we have

0 =  P̂k\ *Pk2 — A-! A2.

Proof. L e t  m = (pix- ( p i 2. It satisfies the differential equation

A NONLINEAR EVOLUTION PROBLEM 2 7

exm” + (g ~ ( p i ^ m 1 -  (p\2m = 0

A for all t = 1oo.

* <t> 0,e x ó '  +  ( e ( x ) - d > W  =  0,

4»

since its dependence on
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and the boundary conditions m(0) = 0 and m(oo) = Ai - A 2 =  0. Suppose that m attains 
a negative minimum at a certain point (0, oo); then ra(£)<0, m'(£) = Oand ra"(£)^0 
which is in contradiction with egm”(g) = <£i2(£)m (£)- Thus m^O. In the same way 
one can show that m cannot attain a positive maximum, which implies m ^  Ai -  k2. 

Finally we are in a position to prove the following theorem.
T heorem  5.3. Let <i>(jt) be the solution of problem P0. Suppose 

hypothesis H^, then for each x ^  0

lim u(x, r, if/) = <J>(x).
t-+OC>

If e ^g(oo) — K  the convergence is uniform on [0, oo); if e >  g(oo) — K  it is uniform on 
all compact intervals of [0, oo).

Proof. Since the functions u and ux are bounded uniformly in t, we apply the 
Arzela-Ascoli theorem and a diagonal process to deduce that there exists a function 
r e C([0, oo)) and a sequence {u(tn)} with u(tn) = «(•,  tn, if/) such that w(f„)-» r as tn -»oo, 
uniformly on all compact subsets of [0, oo). Let £<g(oo); then for each A<A0 = 
min (g(oo)-e, K )  one can find v and x\ satisfying (4.13) and such that 
s~(' , A, x\, v) ^  (A. Applying Theorem 3.4 we obtain

(5.4) u(x9 U s~(9, h  x u v))^u(x> ty if/)^u(x, t, s +).

Letting f-»oo in (5.4) and applying Lemma 5.1 we obtain

imply

0 =  t  =  O  == 0.

Thus also in this case we have that r = <t>. Finally we conclude that as t-> oo, «(•,  t, </i) 
converges to <J>, uniformly on all compact intervals of [0, oo). This convergence result 
can be made slightly stronger in the case that e ^  g(oo) - K  : since then 4>(oo) = K  and 
since u is nondecreasing in x one can apply Diekmann [5, Lemma 2.4] to deduce 
that the convergence is uniform on [0, oo). □

6. Rate of convergence of the solution towards the steady state. In this section 
we analyze the rate of convergence of the solution u of P towards its steady state 3>. 
The results which we are able to derive depend strongly on the behavior of g as x oo. 
If g tends to infinity fast enough, we can prove exponential convergence with a certain 
weighted norm. In the more general case, when e <  g(oo) -  K  we find that the solution 
converges algebraically fast towards its steady state on all finite jc-intervals. No results 
are available in the case e ^ g (o o )-  K, which coincides with the physical situation 
when some (or all the) electrons escape to infinity.

We write

2 8  D. HILHORST

u(x , t, (/f) =  4 >(;<) + v(x, t).

<1*satisfies the

<t>A< T£ i> for all A< Ao.

Next we deduce from Lemma 5.2 that

(£ — j < Ao' A for all A< Ao

and thus, that r = 3>. If e ^g(oo), then the inequalities

o x u X , f, 5

it£e((

£ u t,O S « ( i  t. é ) S u ( x .  t. s



I I I . 1 4 .

A NONLINEAR EVOLUTION PROBLEM 2 9

Then v satisfies the problem

v t =  exvxx + ( g - ® ) v x - & v -  vvx, 

(6.1) f (0 ,0 = 0,

v(x,  0) =  il/(x) — Q>(x).

N ow  let us m ake the change of function

v(x, t) = exp ^ -J  -----— ----- dCj v(x , t).

Problem (6.1) becom es

v t =  exvxx- q ( x ) v + h ( x ,  v, vx), 

(6.2) 5 ( 0 , 0  =  0,

where

and

/ x  (g0c)-4>(x))2 , g'(x)+<&'(*) g(x)-<Hx)

, w -------ÏT,— +— 2------------ 27—

In particular, there exists M  >  0 such that

|h(x, v, ^ ) |S M ( | | i j | |2 +  ||i;x||2), 0 < jc  < 00,

where the notation || • || indicates the sup-norm.
In what follows we shall distinguish two cases: (i) the case when liminf x_oo q (x )  =  

<5>0: this is so if g ( x ) ^ C 0y/x for all x ^ x 2 for som e positive constants C0 and jc2; 

(ii) the case when liminfx ĉ» q(x)  =  0.

6.1. Case when g tends to infinity at least as fast as \/x for
we give next is very similar in its form and in its proof to a theorem  of Fife and  

Peletier [10].
T h e o r e m  6.1. Suppose that there exist constants x 2, C o =  0 such that 

(6.3) g ( x ) ^ C 0\/x for a l l x  =  x 2.

Then there exist positive constants S, /jl, C  such that if

then

g{£)-<S>(C)ii / r  « - ®( i )  ^
l|eXPU o -----2e£----- d Cj(u{- ,t , t l))-^>)

where the notation || • || indicates the sup-norm.

g C e ' 11, ii?0,

V x, o; exp
X

0I

g £ £
2e£

d£ :* JC $ X

h< x, V, Vx -exp
, X

10
£ HC

2e{
-dt] v\ Vx

g X ■4>(Jc.
*2 ex

x 00.»The theorem

exp
0I

g :<r $ c.
2 e£

dC -A <ï> 8
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Proof. To begin with we note that with the hypothesis of Theorem 6.1 we have 

that v(oc, t) =  0 (since e <  g ( o o ) - K )  or equivalently

lim exp -  ----- — ----- d n v ( x ,  t) =  0.
*-*oo \  j 0  2 e£ J

Next let us consider the boundary value problem

(6.4) e x w " - ( q ( x )  +  A)w =  -0(4>'(5?)4- A) min (4>U), (x/ =  0, 

where

4>(*) =  e x p ( J  ----- — ----- d( )&(x ) .

The right-hand side of the differential equation in (6.4) has been chosen in a special 
manner so that one can exhibit upper and lower solutions for a problem closely related 

to (6.4); more precisely we shall prove in the appendix that this problem has at least 

one solution w e  C 2([0, oo)) with w,w' and w" bounded such that

* /x\ l'° ■»
0 <  w(x)  ^  min (4>U), y— J &(9l))

for all constants v0 > l  provided that the constants 0 € ( O , 1), £%>0 and \  < 0  satisfy 

certain conditions. W e adjust 6 such that ||w|| +  ||w'||^ 1.
W e are now in a position to prove Theorem  6.1. Let

z(x,  t) =  p ( w ( x )  +  y )

in which p,  y  and /x are positive constants still to be determined, and let

M z  = ex zxx - q { x ) z + h ( x , z , z x) -  z t.

(i) The function q is positive for x near zero and, because of condition (6.3), 
also for large x \ thus there exists q o > 0  and £i, ¿2 6 (0 ,  oo) such that q0 =  

min {q(x): x e  [0, £ i ] U [ £ 2, oo)} is positive; therefore

M z  ^ P  4-/x)w +  y ( -^ o  +  /i() +  4 -y )2).

Choose

0 < / z  < m in  (—A, q 0); 

assume that y  is known (we shall specify it later), and choose

D _  T(<7q~m)

P  M ( lH - r ) 2*

Then M z  ^  0 for all x  e  [0, ¿'i] U [¿T2, oo) and t ^  0,
(ii) Let C\ =  * since w (jc )> 0  on (0, oo), and since w is continuous we have

m  =m in{w (jc):  £\ ^ ^ 2} > 0 .

Therefore

M z  ^ P  +  fji)m 4- y ( - q  4- jjl) 4- M p ( \  4- y ) 2),

where q is an arbitrary constant such that

<7 < m in  {q(x): x s  [0, oo)}.

30 D. HILHORST

- fxt

M z ^ ß e  ^((A + fi)w + y( -q0 + ¡i) + Mß( l  + y)2).

= Çi

M z ^ ß e ' ^ d A + i i )

X :
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Mz =  ¡3 e ^((A 4- fx)m 4- y (—q 4- qo)).

Therefore if we choose

A 4- ¡l 
y  = ------------ m

- q + q o

we have

Thus for the above choice of ¡3, y  and ¡i the function z is an upper solution of the
equation Mv = 0. Let

sup v(x, 0) ^  8,
[O.oo)

where 8 = /3y. Then

v (jc, 0) ^  z  (jc, 0) for all jc g [0, oo), 

and hence by Theorem 3.4

v(x, ¿) =  z (jc, t) for all jc g [0, oo),

In a similar manner one can show that if

inf zJ(jc, 0) ^  - 8
[O.oo)

then

v(x, ¿) =  - z ( j c ,  t) for all jc  e [0, oo), t ^ 0 .

Hence if ||tT(-, 0)|| ^  8 then ||t?(-, t)|| where we define

C = /3( 1 4- y ) = (1 4-1 /  y  )8. □

6.2. Algebraic decay rate in the case that e < g ( o o ) - K .  Provided that e <  
g(oo) — K  and that the initial function converges algebraically fast to K  as jc-»oo, 
we prove that the solution u of P converges algebraically fasl to the steady state 
solution O for all finite values of jc. To that purpose we show that a certain weighted 
space integral of the function |w -<&|p, for some integer p ^  1, decays algebraically in 
time; a similar proof, with exponent p = 1, has been given, for example, by van Duyn 
and Peletier [9].

T h e o r e m  6 . 2 .  Provided that e < g(oo) — K  and that , K, xu v) for some
x u v satisfying (4.13) with A = K ,  we have that

f (g’(x) + (p -  l)d>'U))|«U t, <A) - <t>(x)\p dx 
Jo

(6 .5)

s[Jo ((i+-<D)p + («l>-i-)p) ^ ] / /

for ail t >  0 and p = [ l / i / ]4 - l .
Proof. Since \v(x, t)\p ^  (s+(x ) - s-(jc, K, x u v))P it follows that ¡o (v(x,t))p dx is 

defined for all t ^ 0 .  If p ^ 2  let us multiply the differential equation in (6.1) by v p~1

A NONLINEAR EVOLUTION PROBLEM 31

Hence

t^O.

Mz 0 for Ci JC Cl and t 0.

iWäCe-»'

«A S  I K, x u v for some
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and integrate with respect to x ; we obtain
^  I « 0 0  p  ^ p - |  o o

Jt.
p _  0 0  -  0 0  P  r  p  P +  1 - . 0 0

J
 i r  r wH f

— dx = [exvxv p~l]o’-  e — - e ( p - l )  xvp~2(vx)2 dx 
o P L p J 0 Jo

[
p _  0 0  -  0 0  p  r  p  p - ( - l n OO

g - 1  - [  (g' +  4 > ' ( p - l ) ) - ^ - [ 4 > - + - ^ — 1 
p Jo  Jo p L p P +  lJo

Since L' tends to zero at least as fast as x v as x -* oo, the equation above can be written 
in the simpler form

(6 .6)

1 »  OU p  p  -  WJ M  « J

— — dx = \ exvxv p~1\ ~ e ( p - 1) xvp~2(vx)2 dx 
dt J0 p L Jo Jo

- f  (g' 4- 4>'(p — 1)) — dx.
Jo P

Now let us define the functions v + and v~ as the solutions of (6.1) with initial values 
v +(x, 0) = 5+(jc)-4>(jc) and v~(x, 0) = s~(x, K, x u v)-<t>(x), respectively. By Theorem 
3.4 we know that v + ^ 0  and v~ ^ 0 .  Furthermore, it follows from Lemma 5.1 that 
v + is nonincreasing in time and v~ nondecreasing. Of course both v + and v~ satisfy 
(6.6) and in order to simplify this expression we use the following lemma which we 
shall prove later.

Lemma 6.3. Let e < g ( o o ) -K .  Then lim*_>oo jc4>'(x) = 0. If furthermore ip ^  
s~ (- , K, x\, v) for some Xi, v satisfying (4.13) with A = K  (we suppose furthermore 
that v > \  if e < ( g (o o ) -K ) /2 )  and ip e Ci,a([jt3, oo)) for some a, x3> 0 ,  then 
lim*-*«» xux(x, t) = 0 for all t g (0, oo).

From Lemma 6.3 and formula (6.6) we deduce that v + satisfies

j - f  {- ^ d x  = - e ( p - l) f  x(v+)p-2(v;)2d x - \  (g' + <&'(p-l)) —  dx. 
dt J0 p i  o Jo P

If p =  1, similar calculations yield

J
, OO - oo

v +dx = - \  g'v+ dx.
0 Jo

Since 0 <  g'(x) <  g'(0) and 0 <  <t>'(*) <  3>'(0), we have for all p ^  1 

and thus

f (g'(x) + ( p - m f(x))(v+(x,t))pdx 
Jo

^(g'(0) + ( p - i m 0 ) ) [  (v+(x,0))pdx 
Jo

-(g '(0 ) + ( p - l M 0 ) ) [  dr  f (g'(x) + ( p - l W ( x ) ) ( v +(x,T))p dx.
Jo Jo

In what follows we apply the following lemma that we shall prove later.

d_

dt ,

*

oo

0
V X dx

1

0g 1 P 11 <D' o:

oo

0
1s x p 1 d>' X V [x,t p dx,t )
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Lemma 6.4. Let y e C([0, oo)) with y' e L l ((0, oo)) and y '^ 0  such that

(6.7) 0 ^ y ( t ) ^ N  — M  [ y(r)dr
Jo

for some constants N ^ 0 , M > 0 .  Then

(6-8) y{ t )= w

Since the function ĵ ° (g'(*) + (p -  l)<E>'0t))(t>+(*, t))p dx is continuous and nonincreas­
ing (because v + is nonincreasing), we deduce from Lemma 6.4 that

r00 r00 \ /
jo (g'(x) + (p-l)<&'(*))(tf+(*, i))P^  =  ( j o (u+(*, 0))pdx^jt.

Similarly one can show that

r00 ✓ r00 \ /
j (g'(x) + (p-l)<I>'(*))(-i>_(x, (~v~(x ,0 ))p d x} j  t.

Formula (6.5) is then deduced from the fact that

|« (* .  i)|Pëm ax((t)+(jc, t))p, {-v~{x, r))p)S(t?+(.K, t)Y + (-v~{x, t)Y- 0

Proof of Lemma 6.3. We first show that limx-co x4>'(x) = 0. Since

ex<P'(x) = e<P(x)— f X( g ( 0 ~ M C ) m O d C ^ e K ,
Jo

we have

0 ^  jcd>'(jc)  ̂AT.

Furthermore

(*<!>')' = *<!>" + $ ' = -  g ^  e 3>'S0 for x large enough.
e

Since the function x &  is bounded and decreasing for large x, we deduce that there 
exists E  6 [0, K ]  such that

lim x&'(x) = E,
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X - f O C

which implies

<5(jc) ~  E  In x + C  as x oo.

Since

lim <t>(x) = K,
x-+oo

we deduce that E  = 0.
Next we show that l i m x_oo xux = 0 by making use of Bernstein’s argument, in a 

similar way as in Aronson [1] and Peletier and Serrin [21].
Let

Rn = ( f  ’ t )  x T n  > 3*3

t ) Y d x
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and let

, , ,  N r ( 4 - r )

where N  = supRnu-iniRnu. The function (f> increases from 0 to N  as r increases 
from 0 to 1. Note that (f>'{r) = 2N{2-r)/3>0  and <£"(/*) = -2N /3< 0  and define a 
new function w such that

Then w satisfies the differential equation

wt = exwxx + ex~T7~T (w* )2 + (g -  (f> (w) -  inf u) wx.
<l> ( w )  Rn

Set p = wx and differentiate the last equation with respect to jc; we get

0 "  2 <£" / < £ Y  3
Pt = expxx + epx+e — p +2ex — ppx + exi—J p

34 D. HILHORST

+ (g-< /»-inf u)px + (g'-<f>'p)p,
Rn

and thus

^ ( p 2)t~exppxx = e x ( ^ j  p4 + e ( ~ < £ ' ) p 3

(6'9)
+ 2ex —  p 2px + (g -  <f> -  inf u + e )ppx + g'p2. 

<t>

Let Rn = O n / 4, 5 n /4 ) x ( 0 , T], and let £ = 1 - 4 ( x - n ) 2/ n 2. Set z = £ 2p 2.
(i) If z  attains its maximum value at the lower boundary of R n we have

Hence,

_ Fnsup z ^ z (jc, 0) where jc € -, — .
^* LZ Z J

sup £|wx| ~£(x)\wx(x, 0)|.
Rn

Since £^3/4 in (3n/4, 5w/4) and since w* = <t>'(w)wx we find

(ii) If z attains its maximum value at an interior point (jc, f) of Rn we have at 
that point

zx = 2(('p2 + 2C2ppx = 0,
(6.10)

exzxx- z , S  0.

The last inequality can be cast in the more explicit form

£ 2( k p 2), -  exppxx) e x ( C 2p 2 +  U " p 2 +  H C p p x +  C2p l ) .

<f>"Mex

(ü) If  Z

u inf u +ó(w).
Rn

sup
Rn

ux
4
3

sup <t>'
inf <b* w X

8.

3
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Using (6.9), (6.10) and the inequality

\4tt'ppA^t2pl+H'2P2
we obtain

- f  ‘UJP s\~2‘a 7

A NONLINEAR EVOLUTION PROBLEM 3$

-[ç2̂ +3eÇ':+ ( t - + 3 e Ç ' 2- e a " - ë *  R" “ * -  ( C ) p 2-

Since (<t>"/<t>,y =  - 4, this implies

2c2p4̂ <€ip2 + (<€2\p\\

where the %’s are positive and depend only on N  and n. Since

& 2\p|3s f V + y p 2

it follows that

Therefore

z(x, t)

4<^/2> 3max|H’x| § — -— .
R* 3

Finally ux = <(>'(w)wx and <f>, ^ 4 N / 3  imply that

max|wx| g l 6 A ^ /2/9 .
R*

Rn(K -s~(x,  K, X u  v)) (which behaves as x , where v >  U) 
is furthermore such that v >  1 if e <  (g(oo) — K ) /2 .
Thus

{f 1 1 \ I I 1 ̂ ^ 1 / 2   ̂ Kf Xly J/))(6 .11) max |wx| ^  16^3 sup------------ ------------- .
«  R- 9

If e < ( g ( o o ) - K ) / 2  is bounded uniformly in n, and we deduce that jcwx tends to 
zero as jc->oo. If on the other hand ( g ( c o ) - K ) / 2 ^ e  < g (o o )-K , then we only have 
that v >  0 in (6.11) and sup rh(K -s~(x,  K, x u v)) tends to zero as x -> oo. However <#3/2 
tends to zero as 1/x  when x oo, which also yields the result. □

Proof of Lemma 6.4. Integrating by parts we get

[ y ( j ) d r  = t y ( i ) -  \ Ty'(r)dT^ty( t) .  
Jo Jo

r ‘  l . r r * "  1. . ? * ’  ?  A s

< max
Rn

z ( x 91 «
«>2

«3.
4

Note that N < sup

Also we deduce from (6.7) that
t

oi y ir) dr
N

M ’

and thus (6.8) follows.

«3
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Next we deduce from Theorem 6.2 that there is also pointwise convergence. 
More precisely we prove the following theorem.

T h e o r e m  6.5. Provided that e <  g (o o ) -K  and that i f /^s~(- ,K,  x u v ) for some 
JC1, v satisfying (4.13) with \ —K , w e  have that

and p =  [ ! /£ ] + 1 ,  where

Ce = [ 2( (k p~1p2 + K p^ - ) ( g ' ( 0 ) ) 2 + K p sup |g"(*)|)
L W  E /  xe[0,oo) /

(6.13)

•j ((s+-4>)p + (<Ii-s7)^]

36 D. H ILH O RST

l / 2 p

In particular, if e < { g ( o o ) - K ) / 2  and v > l , then p = 1 and formulas (6.12) and (6.13) 
simplify as follows

(6.14) | |g '( - ) (« ( - , / ,^ ) -® ) l |S -7  for all i > 0 ,
y/t

where

C = [2((g'(0))2+A: sup |g"(*)|)f (s+(x)-s~(*,-K,.*i, v) )dx\  .
L \  xe[0,oo) / J o  J

Proof. To prove Theorem 6.5 we need the following auxiliary lemma.
L e m m a  6.6. Let <f> be defined for 0 ^  x <  oo and satisfy the conditions

(i) <£(*) =  0 and </>(0) = 0\
(ii) <f> is Lipschitz continuous with constant /;

(iii) \o<f>(x) dx^tN.

Then

sup ¡0(jc)|^V2M .
0 = x « x >

We omit here the demonstration of this lemma since the main ideas of the proof are 
given in the proof of Peletier [20, Lemma 3].

Now let us apply Lemma 6.6 to the function (g' + (p-l)4>')|w-<t>|p; it is non­
negative, equal to zero at the origin and its derivative is continuous by parts and 
bounded by

j ( K p' 1p z + K p !-W (0))2 + K p sup |g"(jc)||
l \  E J  xe[0,oo) J

at all points where it is defined. Finally the bound on its integral is given in Theorem 
6.2. Inequality (6.12) follows. □

6.3. Asymptotic behavior of the solution u oi the hyperbolic problem H  as /  -» oo.
T h e o r e m  6.7. Let ip satisfy and be such that 

x i > 0 , v > l  satisfying (4.13) with A = K  and define 3>(x) = min (,gU)> K ). liien

||g'( • )(w (•, t, <p) -  5)|| S  for all t >  0,

(6.12) g' + p 1 !$' 1 u t, 4>
C

t 1 / 2  p /or a// i >  0,

. oo

'0

Hj,

C

St

1/2

<AP¡•)

•A= s K, X\, V for some

p - 1>
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where C  is the constant defined in Theorem 6.5.
Proof. Let e e (0, (g(po) — K )/2) jO in inequality (6.14), note that the constant C  

does not depend in e, and use the fact that <I> converges to uniformly on [0, oo) as 
£ j 0  (see [6]). □

Appendix. In what follows we shall prove the following theorem:
T h e o r e m  A 1. Suppose that there exist constants *2, C0 >  0 such that the condition 

(6,3) is satisfied. There exist 6 e (0, 1), 01 >  0 and A <  0 such that the Cauchy-Dirichlet 
problem (6.4) has at least one solution w e C 2([0, oo)) with w, w', w" bounded and

0 <  w(jc)^min (4>(*), ( x / m y ^ m )  for all x e  (0, oo).

Proof. Let n ^ l )  and consider the boundary value problem

v0>  1 is arbitrary and where the constants 6 e (0,1), 01 >  0 and A e (-<!>'(5?), 0) satisfy 
some additional conditions which will be given later. Obviously zero is a lower solution 
for the differential equation in (AI). We shall now construct an upper solution. Firstly 
we deduce from the asymptotic behavior of g that there exists 01 \ ^  1 and q o > 0  such 
that qn (x) ^  2 q0 for x ^  011. Also if A >  max (-¿7o, —4>'0#)) and 0 <  (g0 +A )/(<!>'($$) + A), 
then the function {x/0t)~v°Q>n(0l) is an upper solution of the differential equation (AI) 
for x =  0l := max (0tl9 2ev0(p0+ l)/qo)- Next we note that
(AI) on [0, £%] and thus that min (4>n(jt), (xI0t)~v°<bn(0t)) is an upper solution of (AI) 
on [0, oo). Finally we conclude that there exists at least one solution wn e C 2([0, oo)) 
of (AI), (A2) [3, Thm. 1.7.1], such that

(A l) e ( x + - \ w ”- ( q n(x) + \ ) w  = -0(<ï>'(â?)4-A) min ($>„(*), (x/0t) v°4>n(^)),
nl

(A2) w(0) = 0, 

where

and

(g(s)-q>U ))2 g'QQ+fr'Qc) g ( j t ) - < f r ( * )  

4e(x + l / n )  2 2(* + l / n ) ’

which, since i>„ ^  <I>, implies that

(A3)

Furthermore, the inequalities (A3) and

(A4)

yield, together with (A l),

| Wn(x)\ ^  C  for all x e [0, oo),

exp
! X

1
g I. <D £
2e 1 + 1, n.

'm x

Qr [x.

0 =S m min <ï>'n1X
X

m,

~v0
d > ,n m

0:g vWn' < min $
JC

~ v n

<ï>

4« JC < g 4> 2
g' &+

4 sjc 2

$

O êvv„U )êm in  <Ï>(jc), — <b{0l) .

<ï>„(xi =

4>n is an upper solution of

OëwJjc)
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where C  >  0 is independent of n. Now let us integrate (A l); we get 

w'n(x) = w'n(0) 

<A 5> , r (q J D  + \ ) WJ Q - e m m ) + A) min (<j>„(fl, ( { / » y ^ nm ) ) d (

Jo e(f+l//i), '

and again using-(A3) and (A4) we obtain

\wn(x)\ ^  C  for all x e [0, oo].

Using the Arzela-Ascoli theorem and a diagonal process, we deduce that there exist 
a function w e C ^O , oo)) and a subsequence {w„k} of {wn} such that wnk w as nk °o 
uniformly in C *([(), oo)) on all compact subsets of [0, oo). Also setting n = nk in (A5) 
and letting nk oo, we deduce that w satisfies the differential equation 

(A6) exw" - (q(x) + A)w = -tf  (<&'(«) ■+ A) min (d>(jt), (x /9 lT v°&(9l)) 

and the boundary condition

w(0) = 0.

It follows from (A6) that w e C 2((0, oo)), and since 

lim w”(x) = [(4>'(0) + A)w,(0)-  « (* '(» )  + A W ( 0 ) ] / e 9
X -*C O

we deduce that in fact w e C 2([0, oo)). Finally the strict inequality w > 0  is proven by 
means of a maximum principle argument. □  
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1. INTRODUCTION

Consider the two-point boundary value problem 

ey" + (g-y)y' = 0,

BVP

y (0) = 0, y (1) = 1,

2
where g € = 1^(0,!) is a given function and y € H is unknown. As we shall 

show, there exists for each e > 0 a unique solution y^, which is increasing. 

We are interested in the limiting behaviour of y£ as £ I 0.

Motivated by a physical application we previously studied a similar 

problem in a joint paper with L.A. PELETIER [2]. Using the maximum principle 

as our main tool we were able to establish the existence of a unique limit 

solution y^ under certain, physically reasonable, assumptions on the func­

tion g. In some cases we could' characterize y^ completely, in others, how­

ever, some ambiguity remained.

Here, inspired by the work of GRASMAN & MATKOWSKY [4], we shall resolve 

this ambiguity by using a variational formulation of the problem. The method 

we use is based on the theory of maximal monotone operators. It has been 

suggested to us by Ph. Clement.

During our investigation of BVP we experienced that it could serve as 

a fairly simple, yet nontrivial, illustration of concepts and methods from 

abstract functional analysis. In order to demonstrate this aspect of the 

problem we shall spell out our arguments in some more detail than is strict­

ly necessary.

The organization of the paper is as follows. In Section 2 we prove, by 

means of Schauder's fixed point theorem, that BVP has a solution y^ for each 

e > 0. Moreover, we show that BVP is equivalent to an abstract equation AE, 

involving a maximal monotone operator A, and to a variational problem VP, 

involving a convex, lower semi-continuous functional W.

In Section 3 we exploit these formulations in the investigation of the

limiting behaviour of y as e + 0. It turns out that y converges in L9 to
£  £  /

where g € L 2
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a limit Yq. Moreover, is abstractly characterized as the projection (in 

L^) of g on V(A). We conclude this section with some results about uniform 

convergence under restrictive assumptions.

In Section 4 we give concrete form to the characterization of y^. In 

particular we present sufficient conditions for a function to be y^ and we 

show, by means of examples, how these criteria can be used in concrete 

cases. The first part of the title originated from Example 4.

In Section 5 we make various remarks about generalizations and limita­

tions of our approach.
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2. THREE EQUIVALENT FORMULATIONS

In order to demonstrate the existence of a solution of BVP, let us 

first look at the auxiliary problem

u" + (g-w)u' = 0,

u(0) = 0, u(l) = 1,

where w e L^ is a given function. The solution of this linear problem is

given explicitly by

u (x) = C (w) exp( (w(0 - g(Ç))dÇ)dÇ

with

C(w) = ( exp( (w(£) -g(£))d£)d£) 1. 

0 0 

From this expression it can be concluded that u* > 0 and 0 < u < 1. So if 

we write u = Tw, then T is a compact map of the closed convex set

yo

X Ç

O o

1 ç
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{w € | 0 < w < 1} into itself and hence, by Schauder's theorem, T must 

have a fixed point. Clearly this fixed point corresponds to a solution of 

BVP. Thus we have proved

2
PROPOSITION 2.1. For each e > 0 th e re  e x i s t s  a s o lu t io n  y e H o f  BVP.
--------------------------- 2 0
Moreover3 any s o lu t io n  y e H s a t i s f i e s  (i) y' > 0 and (ii) 0 < y < 1.

The a priori knowledge that y* is positive allows us to divide the 

equation by y ’. In this manner we are able to reformulate the boundary value 

problem as an equivalent abstract equation

AE (I + eA) y = g

where the (unbounded, nonlinear) operator A: P(A)

(2.1) Au = - = - { I n  u') •
u'

with

(2.2) P(A) = {u e L2 | u e H^, u' > 0, u(0) = 0, u(l) = 1}.

proposition 2.2. The o p e r a to r  A i s  monotone. Henee th e  s o lu t io n  o f  AE (and 

BVPj i s  unique.

PROOF. Let u± e P(A) for i = 1,2 then

(Au1 - Au2, ^  - u2) = - ((£n uj) ' - (£n u p ,)(u1 - u2)

(Zn uj -  Zn u^) (uj -  u^) > 0

(because z h- Zn z is monotone on (0,°°); note that here and in the following

we write /<j> to denote / <j)(x)dx.) Next, suppose eAy. = g-y^, i = 1,2, then
1 2

0 < e(Ay1 -Ay2, Y1 ~Y2) = 0? " Yx " 9 + Y2' yl ~ y2) = ",yl “ y2* and hence 

yl = y2- D

We recall that a monotone operator A defined on a Hilbert space H is

L 2

->■ L
2
is defined by

u"
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is called m a x im a l m o n o to ne if it admits no proper monotone extension (i.e., 

it is maximal in the sense of inclusion of graphs). It is well known that 

A is maximal monotone if and only if R(I + eA) = H for each e > 0 (see 

BREZIS [1]). In our case, with H = and A defined in (2.1), this is just 

a reformulation of the existence result Proposition 2.1. Consequently we 

know

proposition 2.3. A i s  m a x im a l m o n o to n e.

In search for yet another formulation let us write the equation in the

form

(2.5) V( V)  =  {u £ | u is AC, u' > 0, u 1 Z n u' e , u(0) =  0,

u ( l )  = 1}

(here AC means absolutely continuous.) Also we define a variational problem

-e(£n y')' + y - g = 0

Hence, for  any <J> a H ,̂

e (f)'(^n y' + 1) + <(>(y -  g) = 0.

Motivated by this calculation we define a functional

(2.3) W(u) = e¥(u) + “  II u -  gll ^

where

(2.4)

otherwise,

and

VP In f  W.
2

2
We note that the mappings z z Zn z and z H- z are (strictly) convex (on

L
2

W: L
2 by

p(u:
+

U ' tn u 1 if u € h r

L
2

L
1

oo

3R
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C0,°°) and (-00,00) respectively) and that W inherits this property because 

V ( ' i ' )  is convex as well. Hence VP has at most one solution. For further use 

we observe that the convexity of z h - z  -in z  implies, for z >  0 and ç > 0, 

the inequality

z £n z - ç Z n  ç s (1 + £n ç)(z - ç).

PROPOSITION 2.4. y solves VP.----------------------------- J £

PROOF. Firstly we note that y£ e V(V). So for any u e V(V)

W(u) - W(ye) = e (u' Z n  u' - y^ £n yp  + ^ II u - gif ̂  - -jlly£ “ gH

à e (1 + In yp(u' - y ’) + (y£ “ g ) ( u - y £)

y e
(-e -r + y £ - g)(u - y£) = 0.

ye
□

by

We recall that the subgradient 3*? of the convex functional ¥ is defined

3¥(u) = {ç e L_ | ’i’(v) - 'F(u) > ( ç , v  - u) , Vv e iKf)}.

A calculation like the one above shows that, for u e V(A) and v e V(V),

V(v) - ¥(u) > (Au, v-u).

Hence A c dyr but, since 3'i' is monotone and A is maximal monotone, we must 

have A = 34*. Likewise it follows that 3W = eA + I - g. These observations 

should clarify the relation between VP and AE.

One can show that ¥ (and hence W as well) is lower semicontinuous and 

subsequently one can use this knowledge to give a direct variational proof 

of the existence of a solution of VP.

We summarize the main results of this section in the following theorem.

THEOREM 2.5.  The problems BVP, AE and VP are equivalent. In fact, for each
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e > 0, there eorlsts y£ e V(A) which solves each -problem and no problem 

admits any other solution.

3. LIMITING BEHAVIOUR AS e i 0

The fact that y£ solves AE can be expressed as

y£ = (I + eA) *g.

Subsequently, the observation that A is maximal monotone provides a key to 

describing the limiting behaviour. For, it is known from the general theory 

of such operators (see BREZIS [1, Section II.4, in particular Th. 2.2]) that

lira (I + eA) *g = Proj ____ g,
e+0 P(A)

where the expression at the right-hand side denotes the projection (in the 

sense of the underlying Hilbert space, hence L9 in this case) of g on the 

closed convex set V(A), or, in other words,

Proj____ g = yn
t?(A) 0

where yq denotes the unique solution of the variational problem

Min WQ
V(A)

with

WQ(u) = llu-gll2.

Below we shall give a proof of this result for this special case, using 

techniques as in Brezis1 book, but exploiting the fact that A is the sub­

differential of the functional

THEOREM 3.1.

lim ly - yJI = 0.
e+0 £

Y.



IV.7.

PROOF. First of all we note that Hy^H < 1. We shall split the proof into 

three steps.

Step 1. Take any z e V(A) then from

V(y£) - y(z) > (Az, y£ - z)

it follows that

lim inf e(H'(y ) - ^(z)) > 0. 
£  + 0 £

Step 2. By definition,

0 > W(y£) - W(z) = e (V (y£) - Y(z)) + y N g - y ^ 2 - l-llg-zll2.

Hence

l i m sup I g - y l l ^ < I g - z l l ^ ,  V z e  V ( A ) .
e + 0 E

But then, in fact, the same must hold for all z e 1?(A).

Step 3. Since II y II ^ 1, {y } is weakly precompact in L^. Take any {e } and

y such that y y in L2, then 
n

(*) II g-yll2 < lim inf Hg~y ®2 ^ lim sup Hg~y H 2 £ H g—zll2,
n “ n n n

Vz e 17(A).

Consequently y = y^, which shows that the limit does not depend on the 

subsequence under consideration. Hence y£ y^. Finally, by taking z ** yg 

in (*) it follows that in fact y^ y^. □

We note that

V(A) = {u £ | u is  nondecreasing, 0 :£ u £ 1}.L2
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So in general need not be continuous (nor does it need to satisfy the 

boundary conditions). However it is possible, as our next result shows, to 

establish uniform convergence to a continuous limit at the price of some 

conditions on g.

THEOREM 3.2. Suppose g e C1, g(0) < 0  and g(l) > 1. Then yQ e C and

lim sup |y (x)-y0(x)| = 0.
e^O 0<x<l

PROOF. The idea is to derive a uniform bound for y \  We know already that 

y^ > 0 and we are going to show that y^ < sup g1. To this end we first

observe that g(0) - y  (0) < 0 and g(l) - y  (1) > 0, which, combined with
G e

the differential equation, shows that y”(0) > 0 and y”0) < 0. Hence y^ 

assumes its maximum in an interior point, say x. Next, differentiation 

of the differential equation followed by substitution of y”(x)= 0, y^f(x) < 0, 

leads to the conclusion that y^(x) ^ g!(x). The uniform bound for y^ implies, 

by virtue of the Arzela-Ascoli theorem, that the limit set of in the

space of continuous functions is nonempty. Combination of this result with 

Theorem 3.1 leads to the desired conclusion. U

In Section 4 we shall show that y^ can be calculated in many concrete 

examples. Quite often it will turn out that Yq is continuous (or piece- 

wise continuous). This motivates our next result.

THEOREM 3.3* Suppose y^ is continuous. Then y^ converges to yq uniformly 

on compact subsets of (0,1).

PROOF. Let I c (0,1) be a compact set. Put 3(e) = max{y^(x)-yQ(x) | x € 1}

and let x(e) £ I be such that y£(x(e)) - yg(x(e)) = 3(e). Suppose

lim sup 3(e) = 3 > 0 and let {e } be such that 3(e ) 3 as n -> 00. 
erU n n

Choose 6 e (0,6,), where 6. denotes the distance of 1 to I, such that
1 3

|yQ(x) - yQ(5) | - ^ lx “ ?l - Also, choose n^ such that 3(en)  ̂^ 3

for n > n^. Then for x e [x(en), x(£n) + 5.] and n > n^ the following in­

equality holds:

yo

ye

ß i f 6
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y

However, this leads to

11 ye " yo"2 - i 6p2 
n

which is in contradiction with Theorem 3.1. Hence our assumption g > 0 must 

be false and we arrive at the conclusion that

lim sup^g max{y£(x) - Yq(x) | x e 1} < 0. Essentially the same argument 

yields that lim inf^^ min{y£(x) - yg(x) | x e 1} > 0. Taking both statements 

together yields the result. □

It should be clear that appropriate analogous results can be proved if

y^ is piece-wise continuous. In Theorem 3.3 the sense of convergence is

sharpened "a posteriori11, that is, once the continuity of y^ is established

by other means. Note that our proof exploits the uniform one-sided bound

y1 > 0. 
e

4. CALCULATION OF yQ

We recall that yn is the unique solution of the variational problem
2

m i n ^ -  WQ, where W^(u) = iu-gll . It is well known (for instance, see 

EKELAND & TEMAM [3, II, 2.1]) that one can equivalently characterize y^ as 

the unique solution of the variational inequality:

(4.1) find y € V(A) such that (y-g,v-y) > 0, Vv e P(A) .

Already from the reduced differential equation (g-y)yf = 0, it can be 

guessed that y^ is possibly composed out of pieces where it equals g and 

pieces where it equals a constant. Of course, if y^ = g in some open inter­

val, g has to be nondecreasing in that interval. The characterization of 

yQ by (4.1) can be used to find conditions on the ffallowedn constants.

En
x. y0

.X > yen
x en' y0

X en'
+) yo X en' ) yo

:x

> 3
4

e
i
4

3
1
2 e.
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THEOREM 4.1. Suppose y e V(A) has the following property: there exists a 

partition 0 = Xq < Xj < ... < xn_j xn = 1 °f [0,1] and a subset L of 

{0,1,...,n-1} suoh that:

(i) if i i L then y(x) = g(x) for x e [x^,x^+ j],

(ii) if i e L then y(x) = for x e [x^,x^+ j] and

xi+l

x

x

X.
1

(C^-  g(C))d5  ̂ o,

Vx e Cx£,x^+J], if C. e [0,1),

Vx £ [x̂ ,xj, + j], if e (0,1],

x.

Then y = yQ.

(so in particular, if C. e (0,1), f *"+ *(C. - g(£))d£ = 0).
X X •

1

PROOF. According to (4.1) it is sufficient to check that

I(v) = (y - g)(v - y) > 0, Vv e V(A).

In fact it is sufficient to check this for all v e P(A) n H (since this set

is dense in V(A) and I is continuous). We note that I(v) = ^(v), where

Xi+1

Ii(v) = (c.  - g(S))(v(D - Ci)dC.

If C. = 0  then 
l

I£(v) = -v(Xi)

Xi+ 1

X.
1

Xi+1
X
i+1

g v'(0 g

x.
l

If e (0,1) then

x. , 
x+1

Ii(v) =

Xi+1

v'(5) “ g(x))dxd£ > 0.

x.
l

If C. = 1 then 
1

X

C
i

C
i g X. dÇ > 0,

C
i

E
Î€L

i

K. dï x dxdÇ > 0.

C
i

€

C
i



I^v) = (v(xi+J) - 1) (C. -  g ( 5 ) ) d ?  - v'(0

X.
1

X .
1

(C^-g(x))dxd£ > 0 .

x.
l

Hence indeed I(v) ^ 0, Vv € P(A) n H • □

The sufficient conditions of the theorem can be used as a kind of al-

in concrete cases. We shall illustrate this idea by 

means of a number of examples (some of which are almost literally taken from 

C 2 ] ) .

EXAMPLE 1. Suppose g is nondecreasing, then

yo(x) =

0 if g(x) < 0, 

g(x) if 0 < g(x) < 1,

1 if g(x) > 1.

EXAMPLE 2. Suppose g is nonincreasing, then Yq (x) = C with

C =

0 if Jg < 0, 

Jg if 0 < Jg < 1, 

1 if Jg * 1.

EXAMPLE 3. Suppose that g e is such that g' vanishes at only two points 

b and c, b being a local maximum and c a local minimum. Assume that

0 < b < c < 1 and 0 < g(c) < g(b) < 1. Let g.^ denote the inverse of g on
-1 !

[0,b] and g£ the inverse of g on [c,l]. Define two points a and d by

a = gĵ gic)), d

Then g ( [ a , b ] )  = g ( [ c , d ] ) .  (See F igure  1).

x
i+1

X
i+1

gorithm to compute y 0

C
1

-1
g'2 g b)).

I V . 1 1 .
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ß x

Figure 1

On [a,b] we define a mapping G by

■1
g2 (gOO)

G(x) = (g(x) - g(£))d£.

x

Then G(a) < 0, G(b) > 0 and on (a,b)

s21(g(x))

G*(x) = g’(x) d£ > 0.

x

Consequently G has a unique zero on [a,b], say for x = a. The function yQ 

has the tendency to follow g as much as possible. However, it also has to 

be nondecreasing. So the inverse function of yq must "jump" from a point 

on [a,b] to a point on [c,d]. In view of Theorem 4.1 this jump can only 

take place between a and 3 = g2^(a). We leave it to the reader to verify 

(by checking a l l  requirements of Theorem 4.1)  th a t

g

a a b c d
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It should be clear that the differentiability of g is not strictly necessary 

for our arguments to apply. In fact the monotonicity of G follows from 

straightforward geometrical considerations and the condition G(a) = Ü has a 

corresponding interpretation (see Figure 1).

EXAMPLE 4. If g has more maxima and minima the construction of candidates

for yg can be based on essentially the same idea as outlined in Example 3.

However, it becomes more complicated since the number of possibilities

becomes larger (see [2] for some more details). For instance, if g has a 

graph as shown in Figure 2, looking at zeroes of functions like G above

leaves us with two possible candidates: one with two rfjumps11 (a-b,c-d) and

one with a "two-in-one jump11 (a-g).

F i g u r e  2

yo
,x.

o

g

g a.

g(x,

1

if x < a and g(x) ^ Ö,

if x < a and g(x) > 0,

if a < x < ß,

if x > ß and g(x) < 1,

if x ^ ß and g(x) > 1.

g

a a b c ß d x
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In [2] we were unable to decide in such a situation which was the actual 

limit. But now it can be read off from the picture that only the one with 

two "jumps" satisfies the requirements of Theorem 4.1, and hence this one 

must actually be y^. (The other one corresponds to a saddle point of the 

functional Wq restricted to V(A).) It is in this sense that y^ must have 

as many "jumps11 as possible.

5. CONCLUDING REMARKS

(i) In all our examples y^ satisfies the reduced equation (g-y)y' = 0. 

However this equation is by no means sufficient to characterize yg 

completely. Our analysis clearly shows that the reduced variational 

problem Min ^ —y Wq contains much more information than the reduced 

differential equation.

(ii) In [2] we were actually interested in a boundary value problem of the 

type

(5.1) exy" + (g-y)yf =0, 0 < x < 1,

(5.2) y(0) = 0, y(l) = 1,

which arises from the assumption of radial symmetry in a two-dimens ion- 

al geometry. This problem can be analysed in completely the same way 

as we did with BVP in this paper, by choosing as the underlying

Hilbert space the weighted L^-space corresponding to the measure
-1 ~ 

dy(x) = x dx. For instance, the operator A defined by

with

V(A) = {u e L^(dy) | u T e C(0,1], u f > 0, u(l) = 1,

• u " T ^ / j \ \l £ L (dy) } , 

where i denotes the function i(x) = x,

Au X -x
u It

X

u XI

u t
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is clearly monotone in this space. The surjectivity of I + eA can be 

proved with the aid of an auxiliary problem and Schauder’s fixed point 

theorem. (Note that some care is needed in checking that the functions 

which occur belong to the right space and that the solution operator 

is compact. This turns out to be all right. We refer to Martini's 

thesis [5] where related problems are treated in full detail.) Hence 

A is maximal monotone. Subsequently it follows that, for given 

g e L^Cdy), the solution y^ tends, as £ H ,  to a limit yg in L^idy) 

and that y^ is the projection in L^Cdy) of g onto the closed convex 

set

P(A) = {u € I^idy) | u is nondecreasing, 0 < u < 1}.
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1. INTRODUCTION

In this paper we study the nonlinear boundary value problem

BVP

in

dx = C

is constant (but unknown)

where

(i) is a bounded open subset of lRn with smooth boundary

(ii) e is a small positive parameter

(iii) h : 3R -*■ H  is a given continuous, strictly monotone increasing 

function with h(0) = 0

(iv) f is a given distribution in*H ' (ii)

(v) C is a given constant which satisfies the compatibility condition

h(-oo) |q| < c < h(+~)|ii|.

Here |ft| denotes the measure of Q.

1309

Copyright © 1982 by Marcel Dekker, Inc.

-Au + h
u,

e f

ft
h u X

e

u dft

dft

n
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The m o t i v a t i o n  f o r  s t u d y i n g  BVP p a r t l y  s te m s  from  t h e  p h y s i c s  o f  i o n i z e - l  

g a s e s  and i n  t h i s  r e s p e c t  we c o n t i n u e  e a r l i e r  work [ 1 8 ,  19 , 2 4 ,  2 5 ] .  We r e f e r  

to  [ 2 5 ]  and A p p en d ix  2 f o r  a  d i s c u s s i o n  o f  t h i s  c o n n e c t i o n .

Our b a s i c  t o o l s  a r e  t h e  c a l c u l u s  o f  v a r i a t i o n s ,  c o n v e x  a n a l y s i s  and t h e  

maximum p r i n c i p l e .

We p r o v e  t h a t  BVP a d m it s  f o r  e a c h  e > 0 a u n iq u e  s o l u t i o n  u£ w h ic h  c o n ­

v e r g e s  a s  e H  t o  a l i m i t  Uq . M o re o v e r ,  we g i v e  a v a r i a t i o n a l  c h a r a c t e r i z a ­

t i o n  o f  u« w h ic h  l e a d s  t o  t h e  c o n c l u s i o n  t h a t  u s o l v e s  a f r e e  b ou n d ary
0 0

p r o b lem .

Our f i n d i n g s  f i t  i n  w i t h  t h o s e  o f  BRAUNER & NICOLAENKO [ 8 ,  9 ]  i n  t h e i r  

s t u d y  o f  r e l a t e d  D i r i c h l e t  p r o b le m s  (we c e r t a i n l y  h a v e  b e e n  i n s p i r e d  by  

t h e i r  p a p e r ) .  In  t h i s  c o n n e c t i o n  i t  i s  a l s o  w o r th  m e n t i o n i n g  t h e  work o f  

FRANK & VAN GROESEN [ 2 1 ]  and FRANK & WENDT [ 2 2 ]  w h ic h  a n a l y s e s  i n  p a r t i c u l a r  

t h e  c o i n c i d e n c e  s e t .  I n  A p p en d ix  1 we g i v e  th e  a n a l y s i s  o f  t h e  hom ogen eou s  

D i r i c h l e t  p r o b le m .

I n  a  r e c e n t  p a p e r  [10]  BRAUNER & NICOLAENKO s t r e s s  t h e  f o l l o w i n g  p o i n t .  

Su ppose  one  w a n ts  t o  a n a l y s e  some f r e e  b ou n d ary  p r o b le m ,  t h e n  i t  may b e  p o s ­

s i b l e  t o  v i e w  t h i s  p r o b le m  a s  t h e  l i m i t  when e + 0  o f  a  p r o b le m  l i k e  BVP ( w i t h  

e o c c u r r i n g  i n  t h e  argum ent o f  a sm ooth  f u n c t i o n ) .  T h is  sm ooth  r e g u l a r i z a t i o n  

can  b e  u s e d  t o  s o l v e  p r o b le m s  o f  e x i s t e n c e ,  r e g u l a r i t y  and a p p r o x im a t io n  and  

i t  form s an a l t e r n a t i v e  v e r s i o n  o f  t h e  u s u a l  p e n a l i z a t i o n  m eth o d .,  ( s e e  a l s o

[ 7 ] ) .

I n  t h e  p h y s i c a l  p r o b le m  o f  A p p en d ix  2 t h e  p a r a m e te r  e n a t u r a l l y  a p p e a r s  

i n  t h e  same way a s  i n  BVP. I n  o t h e r  s i t u a t i o n s  on e  may a r r i v e  a t  t h e  e q u a t i o n

-eAv + h(v) = f.

Then ou r  r e s u l t s  b e a r  on e v £ and h ( v £ ) .  The m od el o f  a c o n f i n e d  p la s m a  

i n t r o d u c e d  by  TEMAM [ 2 9 , 3 0 ]  i s  o f  t h i s  t y p e  ( w i t h  f  = 0 )  b u t  w i t h  h d e c r e a s ­

i n g .  The l i m i t i n g  b e h a v io u r  o f  i t s  s o l u t i o n s  v^ a s  e H  i s  s t u d i e d  by  

CAFFARELLI & FRIEDMAN [ 1 5 ]  and BERGER & FRAENKEL [ 6 ] ,  I t  may b e  p o s s i b l e  

t h a t  an  a d a p te d  v e r s i o n  o f  ou r  d u a l i t y  a p p r o a c h  c * n  b e  a p p l i e d  t o  t h i s  p r o b ­

lem . One w o u ld  th e n  h a v e  t o  u s e  T o l a n d ' s  non c o n v e x  d u a l i t y  a s  g i v e n  by  

DAMLAMIAN [ 1 6 ] .

A f t e r  t h e s e  g e n e r a l  r em a rk s ,  l e t  u s  d e s c r i b e  t h e  c o n t e n t s  o f  t h e  p a p er  

i n  some more d e t a i l .  We s h a l l  i n t e r p r e t  BVP a s  t h e  s u b d i f f e r e n t i a l  e q u a t i o n

3V (u )  = 0 ,  w here  V i s  a p r o p e r ,  s t r i c t l y  c o n v e x ,  lo w e r  s e m i c o n t i n u o u s  and
. . e . 1

c o e r c i v e  f u n c t i o n a l  d e f i n e d  on  t h e  d i r e c t  sum o f  Hq (Q) and t h e  c o n s t a n t

f u n c t i o n s  on  ft. T h is  i s  r a t h e r  e a s y  i f  h s a t i s f i e s  c e r t a i n  gro w th  r e s t r i c -

V . 2 .

o

o
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t i o n s .  For t h e  g e n e r a l  c a s e  we h e a v i l y  l e a n  upon some r e s u l t s  o f  BREZIS [ 1 2 ] ,  

T hese  and some o t h e r  p r e l i m i n a r i e s  a r e  c o l l e c t e d  i n  s e c t i o n  2 .  The f u n c t i o n a l  

i s  d e f i n e d  i n  s e c t i o n  3 and from  i t s  p r o p e r t i e s  we d e d u ce  t h e  e x i s t e n c e  

and u n iq u e n e s s  o f  a s o l u t i o n  u £ f o r  e a c h  e > 0 .

The f u n c t i o n a l  V£ d e p en d s  m o n o to n o u s ly  on e and t h e r e f o r e  h a s  a w e l l -  

d e f i n e d  l i m i t  Vq . M o re o v e r ,  V£ i s  c o e r c i v e  u n i f o r m ly  i n  e and c o n s e q u e n t l y  

we d e d u ce  i n  s e c t i o n  4 t h a t  a s  £ H  u^ c o n v e r g e s  t o  Uq , th e  m in im iz e r  o f  V^. 

The s u b d i f f e r e n t i a l  £Vq i s  m u l t i v a l u e d .  We f i n d  t h a t  u^ s a t i s f i e s  an  o p e r a t o r  

i n c l u s i o n  r e l a t i o n  i f  h i s  bounded and a v a r i a t i o n a l  i n e q u a l i t y  i f  h i s  un­

b o u n d ed ,  We e m p h a s iz e  t h a t  u^ d e p e n d s  o n l y  on  f , C  and h ( ± « ) .

P rob lem  BVP h a s  t h e  form

Lu + N ( - )  -  f

w h e r e  b o t h  L and N a r e  m axim al m on otone  o p e r s f t o r s .  The v a r i a t i o n a l  a p p ro a c h  

s u g g e s t s  t h e  i n t r o d u c t i o n  o f  a  d u a l  f o r m u l a t i o n  ( i n  s e c t i o n  5 )  w h ic h  t u r n s  

o u t  t o  b e  o f  t h e  form

( e A  + I ) p  * g

w here  A i s  a m axim al m on otone  o p e r a t o r  on ( I ^ i f t ) ) 11 w i t h  a  s p e c i a l  s t r u c t u r e ,  

and w h e r e  g i s  r e l a t e d  t o  f  by d i v  g » f .  T h is  g i v e s  some f u r t h e r  i n s i g h t  

i n t o  t h e  c o n v e r g e n c e .  The l i m i t  p^ e q u a l s  t h e  p r o j e c t i o n  o f  g o n t o  th e  c l o s e d  

c o n v e x  s e t  t ) (A ) . D u a l i t y  t h e o r y  y i e l d s  a c h a r a c t e r i z a t i o n  o f  P ( A )  by  i n e q u a l ­

i t i e s  w h ic h  seem s d i f f i c u l t  t o  o b t a i n  d i r e c t l y .  D u a l i t y  t h e o r y  h a s  b e e n  

a p p l i e d  t o  r e l a t e d  p r o b le m s  b y  ARTHURS & ROBINSON [ 4 ]  and ARTHURS [ 3 ] ,  For  

t h e  b a s i c  t h e o r y  we r e f e r  t o  EKELAND & TEMAM [2 0 3

In  s e c t i o n  6 we assum e f  c L *(fl). We em p loy  maximum p r i n c i p l e  a r gu m en ts

and make some e s t i m a t e s .  We p r o v e  t h a t  u SJid uq b e lo n g  t o
£ 2 p — 

p ^ 1 and t h a t  u p c o n v e r g e s  w e a k ly  t o  Uq i n  W (0) f o r  e a c h  0 w i t h  0 c. ft.

i t s e l f ,  o r  a bou n d ary  l a y e r  d e v e lo p s

a s  e + 0 .  We p r e s e n t  c r i t e r i a  i n  te r m s  o f  t h e  d a t a  f ,  h(±«>) and C from  w h ic h

i t  ca n  be  d e c id e d  i n  many c a s e s  w h ic h  o f  t h e s e  two p o s s i b i l i t i e s  a c t u a l l y

o c c u r s .  I n  s e c t i o n  7 we b r i e f l y  d i s c u s s  t h e  o n e - d i m e n s i o n a l  c a s e .

Our a n a l y s i s  r e v e a l s  t h a t  BVP and t h e  hom ogen eou s D i r i c h l e t  p r o b le m  

have  e x a c t l y  t h e  same v a r i a t i o n a l  s t r u c t u r e .  I n  o r d e r  t o  e m p h a s iz e  t h i s  p o i n t  

we a n a l y s e  t h e  l a t t e r  p r o b le m  i n  A p p e n d ix  1. F i n a l l y ,  we d i s c u s s  t h e  p h y s i c a l  

b ack grou n d  o f  BVP i n  A p p e n d ix  2 .

V. 3 .
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0
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2. PRELIMINARIES

In this section we collect some definitions and results from the litera­

ture which we will use later. We state these in the form we need, which is 

not always the most general.

Let B be a Banach space and B* its dual. Let F : B (-»,+<»] be a proper 

(i.e. F t +»), lower semicontinuous (£.s.c.), convex functional. The polar 

(or conjugate) functional F* : B* (-0 0,+«»] is defined by

(2.1) F*(u*) = sup{<u*,u> - F(u) | u € P(F)} 

where

(2.2) P(F) = {u | F(u) < +»}

and where <•,•> denotes the duality pairing between B* and B. The subdiffer­

ential 3F is a, possibly multivalued, mapping of X into X* defined by

(2.3) u* € 3F(u) if and only if F(v) - F(u) > <u*,v-u>, Vv e B.

LEMMA 2.1.

u* £ 3F(u) if and only if F(u) + F*(u*) = <u*,u>.

LEMMA 2.2.

u* e 3F(u) if and only if u e 3F*(u*).

A convenient reference for these items is EKELAND & TEMAM [201.

If B is a Hilbert space one can identify B and B* and then 3F becomes 

a mapping of B into itself. It is well-known that 3F is maximal monotone.

LEMMA 2.3. Let H be a Hilbert space and A a maximal monotone operator on

H. Then, for each e > 0, (1+ eA) is a contraction defined on all of H and

lim (1+ eA) 1 h = projection of h on 0(A). 
e+0

For this standard result we refer to BREZIS [11].

Let, as before, ft be a bounded open subset of lRn with smooth boundary.

etc. to denote H ^ f i ) ^ ^ )  etc. Also, we write / u to 

denote / u(x)dx.

V . 4 .
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1
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L e t  j  : ]R ■+ C 0 ,+ » ]  be  a c o n v e x ,  l . s . c .  f u n c t i o n  s u c h  t h a t  j ( 0 )  = 0 .

The c o n v e x ,  l . s . c .  f u n c t i o n a l  J : -*■ [0 ,+«>] i s  d e f i n e d  by

PERTURBED FREE BOUNDARY PROBLEM 1313

|  j  (u )  i f  j  (u )  £ L,
( 2 . 4 )  J ( U) = J J J ' J ' '  ,

+00 o t h e r w i s e .

The f o l l o w i n g  two lemmas a r e  s p e c i a l  c a s e s  o f  r e s u l t s  due t o  BREZIS [ 1 2 ] .

LEMMA 2 . 4 . S u p p o s e  P ( j )  = ]R t h e n

* r j * ( w> W € H 1 n L a n d  j * ( w )  € L.
J (w) = j 1 1 1

+«> o t h e r w i s e .

LEMMA 2 . 5 . S u p p o s e  P ( j )  * ffi. t h e n  w c 8 J ( u )  i f  a n d  o n l y  i f  w e H 1 n L j ,  

w , u  € Lj a n d  w (x )  € 9 j ( u ( x ) )  f o r  a lm o s t  a l l  x  € ft.

F i n a l l y ,  we q u o t e  a s p e c i a l  c a s e  o f  a  r e s u l t  o f  BREZIS & BROWDER [ 1 3 , 1 4 ] .

LEMMA 2 . 6 . A ssu m e  w e H * n Lj a n d  u e a r e  s u c h  t h a t  w ( x ) u ( x )  £ g ( x )  

f o r  a l m o s t  a l l  x  € ft a n d  som e  g e L j .  T h e n  w .u  e Lj a n d

<w,u> = J w .u .

H ere  and i n  t h e  f o l l o w i n g  < • » • >  d e n o t e s  t h e  d u a l i t y  p a i r i n g  o f  H * and  

H^. We o b s e r v e  t h a t  L emma 2 . 6  i m p l i e s  t h a t  t h e  c o n d i t i o n  w .u  € Lj i n  Lenraa 

2 . 5  i s  a u t o m a t i c a l l y  s a t i s f i e d .

3 .  VARIATIONAL FORMULATION

L e t  X be  t h e  d i r e c t  sum o f  Hq and t h e  c o n s t a n t  f u n c t i o n s :

I f  u i s  some e l e m e n t  o f  X, we w r i t e  u a u + u L  f o r  i t s  d e c o m p o s i t i o n .  X i s ,
1

p r o v i d e d  w i t h  t h e  t o p o l o g y  i n h e r i t e d  o f  H , a  H i l b e r t  s p a c e .  M o r e o v e r ,  X i s  

i s o m o r p h ic  t o  hJ  x ir and t h e  H^-norm i s  e q u i v a l e n t  w i t h  t h e  norm  

lu l j j ]  + | I ° n  X. So we c a n  r e a l i z e  t h e  d u a l  s p a c e  X* by

* -1  X = H x »

H
1
0

H
1
0

X H,0 R .

i f

u aft

dn
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t h e  p a i r i n g  b e i n g  g i v e n  by
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3

C o n s id e r  t h e  f u n c t i o n a l  W d e f i n e d  on  X by

( 3 . 1 )  W(u)
■ {

H

w here  by d e f i n i t i o n

LEMMA 3 . 1 .

W
Lj a n d  j w = k +  C,

PROOF. The i d e a  i s  t o  t a k e  f i r s t  t h e  supremum w i t h  r e s p e c t  t o  t h e  Hq 

and t o  u s e  Lemma 2 . 4 .

s u p { <w, u> + k u | 3n -  |  H ( u + u | 9ft) + C u |  9 i i  J u € Hq, u |  € 1R } 

s u p { |  H*(w) -  u | 9fi |  w + ( k +  C) u | ^ € » }

i f  w € Lj n H 1 and H*(w) € Lj

+«> o t h e r w i s e

j H*(w) i f  w £ Lj n H ^, H*(w) € Lj and j w k + C

+oo o t h e r w i s e .

LEMMA 3 . 2 .

3W(u) =
r ' ( h ( u )  , |  h ( u )  -  C) i f  h ( u )  £ H_1 n L ]

I 0 o t h e r w i s e .

HILHORST

-c o m p o n e n t

< w ,k u
X

<w, u + ku Q

+00

c U aa i f  B iu )  £ L 1
o t h e r w i s e ,

»

( 3 . 2 ) H (y)

v

0
i

h ( T i ) d T i .

!w,k {
f

H 'w'

+00

i f  w £ L 1 n H
1 H* ;w) €

o t h e r w i s e .

u 3ft

uH (u)

dfi
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PROOF, ( i )  L et  (w ,k )  e 3W(u) t h e n

W(v + v | 3fi) -  W ( u + u | 9fi) > < w , v - u >  + k ( v - u ) | 3fi 

f o r  a l l  v  e and a l l  v |  £ ]R . By f i r s t  t a k i n g  v l .  -  u L  we s e e  t h a t
U dii on ofij ^ ^

n e c e s s a r i l y  w b e l o n g s  t o  t h e  s u b d i f f e r e n t i a l  o f  t h e  f u n c t i o n a l  u WCo+ii) 

d e f i n e d  on H^. H e n c e ,  by Lemma 2 . 5 ,  w = h ( u )  and w € L j . N e x t ,  a c o m b in a t io n  

o f  Lemma 2 .1  and Lemma 3 .1  shows t h a t  n e c e s s a r i l y  k = /  w -  C = /  h ( u ) -  C.

( i i )  C o n v e r s e l y ,  l e t  h ( u )  e H * n L j .  S i n c e  h i s  t h e  d e r i v a t i v e  o f  H we h ave

H (v)  -  H(u) > h ( u )  ( v - u )  = h ( u ) ( v - u +  ( v - u )  ( .

So i f  H (v )  and H(u) £ L j ,  we c a n  i n v o k e  Lemma 2 . 6  and c o n c l u d e  t h a t  

h ( u ) ( v - u )  € Lj and t h a t  t h e  i n t e g r a l  e q u a l s  t h e  d u a l i t y  p a i r i n g .  I n t e g r a ­

t i o n  o f  t h e  i n e q u a l i t y  t h e n  y i e l d s ,  a f t e r  a d d in g  a  te r m  - C ( v - u ) | ^ ,

W(v) -  W(u) > < h ( u ) , v - u >  + ( |  h ( u )  -  C) ( v - u )  | □

We remark t h a t ,  by  Lemma 2 . 2 ,  3H* = h S o ,  s i n c e  h i s  s t r i c t l y  mono­

t o n e ,

y
( 3 . 3 )  H * (y )  = I h ‘ 1 (n ) d n .

0

L e t  g £ O ^ ) 11 b e  s u c h  t h a t  d i v  g = f .  The f u n c t i o n a l  G : (L2 )11 3R 

d e f i n e d  by

( 3 . 4 )  G(p) = |  ( i p 2 + g . p )

i s  F r e c h e t - d i f f e r e n t i a b l e  w i t h  d e r i v a t i v e  p + g .  The p o l a r  f u n c t i o n a l  

G* : O ^ ) 11 1R i s  g i v e n  by

( 3 . 5 )  G*Cp) -  i  I  ( p - g ) 2

and i t s  d e r i v a t i v e  i s  p - g .

We d e f i n e  t h e  b ou nded  l i n e a r  m apping T : X -> ( L ^ )n by

PERTURBED FREE BOUNDARY PROBLEM 1315

( 3 . 6 ) T u = -  gr a d  u .

ü

2fi
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Its adjoint T*: (I^)11 ^ X* is given by

(3.7) T*p = (div p,0).

Clearly the functional u *+ G(-Tu ) defined on X is differentiable with deri­

vative -T*G'(-Tu) = (~Au - f,0).

Finally, let us put together the materials constructed above. Define 

V£ : X -*■ (-0°, +oo] by

(3.8) V£ (u) = G(-Tu) + eW(^).

Then

-(-Au-f + h(-), I h(-)-C) if h(-) £ H-1 n L,

(3.9) 3V (u) - J E 1 E E
L A otherwise■ { '

and, consequently, the problem BVP is equivalent with the variational problem

VP Inf V (u). 
U6X e

THEOREM 3.3. VP has a unique solution ug .

PROOF. G is convex, W is strictly convex and both functionals are l.s.c. (by 

Fatou's lemma). It remains to verify that V£ is coercive on X. It is con­

venient to rewrite the functional V ase

V£ (u) = |(I (gradu)2 + (g-a) . gradu + e H(^) - u)

where |ft| denotes the measure of ft and a is such that diva = C|ft|  ̂ (for in­

stance take a = C(n|ft|) * <Xj,...,xn>). Since C|ft| (h(-»),h(+«)), there 

exist positive constants <S and Mj such that

e H(f} ' W y a s|yl * V

By the inequalities of Holder and Poincare there exists a positive constant 

**2 = **2^ such that

| | u |  < /  |ft | < M2^grad uB ^ ■  M2ilgrad uBL

Hence, using Holderfs inequality once more, we find

c
n

L.2
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V£ (u) > grad u -Hg-aHL H grad u#L + 6 |ft| | u| ̂  | - 6 j |u| -  Mj

> JHgrad uB2 + 6 | ft | | u| ̂  | - M3

for some constant M^. It should be noted that the right hand side is inde­

pendent of e. □

4. LIMITING BEHAVIOUR OF u AS e + 0
e

In this section we show that u^ converges as £ 10. The limit Uq is 

characterized as the unique solution of a variational problem. Equivalently 

one can characterize Uq by an operator inclusion relation if h is bounded and 

by a variational inequality if h is unbounded. It turns out that u^ depends 

only on h(±°°), f and C.

As 0  + 0, the function h(^) converges to the multivalued function

( 4 . 1 )  h 0 ( y )  =

h(+°°), y > 0

Ch(-«),h(+«)], y - 0 

h(-°°) , y < 0.

in the sense that each point on the graph of h^ is the limit of points on 

the graph of h(-). We define

j" h(+°°)y, y > 0| 0 .
[ h(-°°)y,

(4.2) H0 (y) = j 0 , y = 0

y < 0

LEMMA 4.1. e H(^) converges monotonously increasing to  H^(y).

PROOF. h(^) increases towards hg(r0 for n > 0 and decreases towards 11q(ti) 

for n < 0. Since e H(^) = /q h(^)dn «we can use Lebesgue's monotone conver­

gence theorem. □

We note that, by Dinifs theorem, the convergence is uniform on compact 

subsets if h is bounded and, for instance, uniform on compact subsets of 

(-«»,0) if h(-°°) > -® and h(+®) = +®. Motivated by Lemma 4.1 we define

(4.3) WQ (u) = |

f Hq (u ) - C u|3iJ if Hq (u) £ L, 

+«> otherwise

L2

2
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and we introduce the reduced variational problem

RVP Inf G(-Tu ) + W (u). 
ueX

Exactly as in the proof of Theorem 3.3 it follows that RVP has a solution.

The functional G(-Tu ) + Wq (u ) is convex, but not strictly convex. Still we 

have

LEMMA 4.2. RVP has a unique solution Uq.

PROOF. Since G(gradu) is strictly convex on H^, two minimizers can only 

differ by a constant. For arbitrary u e X define

ft+ (u) = {x | u(x) > 0}, £2q(u) = {x | u(x) = 0}, u) = {x | u(x) < 0}.

Then

lim |(W0 (u+6)-WQ (u)) = h(+<»)|f!+ (u)l+h(+~)|fi0 (u)|+h(-»)|!2_(u)l - C

and

lim - (Wn (u+6)-Wn (u)) = h(+®) (u) l+h(-«>) (u) |+h(-°°) (u) I “ C.

s + o  0  + 0

So if Wq(u+£) is constant for \t\ < n then necessarily for those values of t

h (+") ! G+ (u+£) | + h (+«>) [ (u+1) | + h (-oo) | (u+l) 1 =

b(+°°) |fi+ (u+£) I + h(-®> |ftQ(u+^) | + h(-®) Jft_(u+£) | * C.

Since h(+«>) > h(-~) this implies that

{x | -n < u(x) < n>

has measure zero. Then, however, u has to be sign-definite (this follows, 

for instance, from the connection between Sobolev and Beppo Levi spaces; 

see DENY & LIONS [17]) and we arrive at the conclusion that either 

h(+°°)|ft| = C or h(“°°) Iftl * C. Finally, the compatibility condition excludes 

both of these possibilities. □
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THEOREM 4.3.

lim Bu - unBv = 0.
f /-V £  V  A

e4-0

<5+0

n

ft_

a
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PROOF.

S tep  1 . We know t h a t  V£ i s  c o e r c i v e  u n i f o r m ly  i n  e ( s e e  t h e  p r o o f  o f  Theorem  

3 . 3 ) .  Hence -  M f o r  some c o n s t a n t  M in d e p e n d e n t  o f  e a n d ,  c o n s e q u e n t l y ,

t h e  weak l i m i t  s e t  o f  i u £ } i s  non em pty .

S te p  2 . Su p p ose  u £ —^ u a s  n  .-*■ +«  and s u p p o s e  t h a t  h(+<») -  + » .  We c l a i m  

t h a t  u < 0 .  D e f i n e  = { x  | S ( x )  a 6 > 0 }  and = {x  e Q® | u £ ( x )  a j i } .  

Then

— 6 6 
H en ce ,  s i n c e  u £ u s t r o n g l y  i n  L2, n e c e s s a r i l y  IQ̂] -*■ IQqI* F u r t h e r m o r e ,

PERTURBED FREE BOUNDARY PROBLEM 1319

Uen  6
S in c e  e /  H ( ) i s  bounded u n i f o r m ly  i n  n  and s i n c e  e H( -x—  ) -*■ +°° a s

n n g n n 5
n ■> +<*>, n e c e s s a r i l y  IQ^I ->-0 a s  n -►  +°°. So we m ust h a v e  |Qq | * = 0 .

S in c e  6 > 0 was a r b i t r a r y  we c o n c lu d e  t h a t  u < 0 .  S i m i l a r l y ,  h ( -°° )  =

i m p l i e s  u > 0 .

S te p  3 .  S u ppose  u r —=* u a s  n +®. We c l a i m  t h a t  VP (u P ) Vn ( u ) .
------------  ^n n Ln u
From Ve n (u en ) -  V£n (u )  ^ <3VEn( u ) ,  u^ -  u>x  we o b t a i n ,  u s i n g  s t e p  2 ,

V ( u  ) -  V (u )  > (grad  u + g ) ( g r a d  u -  grad  u)  
n n  n '  n

) ( u  -  u ) )  -  C (u E -  S ) | 8a  
n n n* N

S in c e  t h e  r i g h t - h a n d  s i d e  c o n v e r g e s  t o  z e r o  a s  n  ■+ +« we f i n d

l im  i n f  V (u ) ^ l i m  V (u )  = V _ ( u ) .  e e £ u
n-> +°° n  n n-*» n

On t h e  o t h e r  h an d , s i n c e  u c m in im iz e s  V_ and s i n c e  V ( v )  i s ,  f o r  f i x e d  v ,
bn n e

m on otone  w i t h  r e s p e c t  t o  e (Lemma 4 . 1 ) ,  we h a v e

V£ (u e ) < V£ (u )  < v0(5).
n n n

X

0
5
0 Q

6
n

I’ue
n

u
2 >

!
Q0
.fix Q

.6

u
e

n
u

2 > 62

4 Q
6,
0 T1

6

e
n I H

u■en
e
n

> e
n

Qs
n

I H
6

2:e
n

e
n

H
6

2 e
n

Q
5
n

u
e
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Step 4 . Suppose u u as n -+ +». Then 
n
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and therefore v q (u ) ^ Vq (Uq ). Hence u = Uq .

and thus u — ^ u~ as e 4- 0. From 
e 0

and Step 2 we conclude that

lim inf

It then follows from the weak l.s.c. of G and Step 3 that necessarily

Hgrad u I H grad unL  as e  + 0. Consequently u converges in fact strong-
e L« u L« e

ly in X to Uq . □

In order to get more information about Uq we first determine Wq and 3Wq. 

We write u ^ 0 for some u e X if and only if u(x) £ 0 for almost all x e fi.

Let C denote the closed, convex, positive cone corresponding to this ordering. 

By duality C induces a cone C* in X*: we write (w,k) £ 0 if and only if 

<(w,k),u>^ 0 for all u € C. For any u e X we define u+ = max(u,0) and

“ max(-u,0). Then u+ e X, u_ € X and at least one of these belongs to Hq 

(see, for instance, KINDERLEHRER & STAMPACCHIA [26, Ch. II, Proposition 5.3]).

In the following we slightly abuse notation if h(+°°) = +» and/or h(-«>)

= -«>. However this should not lead to confusion.

LEMMA 4.4.

(h(+»)-w,h(+«>) |ft| - C-k) e C*
0 if both

(w- h(-«) ,k- h(-«>) | ft | + C) € C

W~(w,k)

+« otherwise.

PROOF.

W*(w,k) « sup{<(w,k),u>x - | h(+«)u+ + |  h(-«)u_ .+ C u|3fì | u e X} 

= sup{<(w-h(+«>),k~ h(+») |ft| + C), u+ >x

- < (w-h(-°°) ,k- h(-«) |ft | + C) ,u_ >x | u € X}. □

V
e
n

:u
e
n

< V
e
n

u0 < V0 u0

Step 5 . We now know that Uq is the only point in the weak limit set of

e i :h

ue
e

H
u0
e )) >

i
h

u0
G U G U.*0

.ue

e 0 Í
eH

ue
e

>
[ O' 0



V. 13.

LEMMA 4 . ,5 . S u p p o s e  -°° < h(-«>) < h(+® ) < +*> th e n

aWQ(u )  = { (w ,k )  | w € L j ,  w (x )  € h 0 ( u ( x ) )  f o r  a , e .  x  e £ ,  k  = Jw  -  C }.

PROOF, < i )  S u p p ose  (w ,k )  e 3W ^(u). As i n  t h e  p r o o f  o f  Lemma 3 . 2  i t  f o l l o w s

t h a t  w c  L, and w (x )  e h A( u ( x ) )  a . e . .  L e t  v  be t h e  s o l u t i o n  o f
1 u n

* A v  + v  == 0

PERTURB®) FREE BOUNDARY PROBLEM 1321

n >dQ

Then £ 0  a n d ,  a s  n  ®, c o n v e r g e s  s t r o n g l y  i n  L^ t o  z e r o .  By 

Leantas 2 .1  and 4 . 4  we know t h a t

and

< ( h ( + « ) - w ,  h ( + « )  | n |  -  C - k ) ,  v  > £ 0
n x

< ( h ( - » )  -  w , h ( - ® )  | f l |  -  C - k )  , v n >x  < 0 .

T a k in g  i n t o  a c c o u n t  t h a t  w e L^ ( s i n c e  w e h ^ ( u ) ) ,  we r e w r i t e  t h e s e  i n e q u a l i -

ta .e s  a s

and

|  ( h (+ » )  -  w ) ( v ^ - 1) + h ( + » ) | f i1  -  C -  k £ 0 

|  (h ( - ° ° )  -  w ) ( v ^ - 1 )  + h ( - « 0 ) 0 |  -  C -  k  < 0 .

Upon p a s s i n g  t o  t h e  l i m i t  n  ■+ + »  we f i n d  t h a t  J w - C - k ^ O  and  

/  w - C - k ^ O .

( i i )  i s  e x a c t l y  t h e  same a s  t h e  s e c o n d  p a r t  o f  t h e  p r o o f  o f  Lemma 3 . 2 ,  □

COROLLARY 4 . 6 . S u p p o s e  < h ( - ® )  < h<+«») < + •  th e n  RVP i s  e q u i v a l e n t  w i t h  th e  

r e d u c e d  b o u n d a r y  v a lu e  p r o b le m

RB VP

Au + f  € h g ( u )

J(A u + f )  *  C

u  |  ̂ i s  c o n s ta n t  ( b u t  u n k n o w n ).

F i n a l l y ,  l e t  u s  c o n s i d e r  a  f u n c t i o n  h  w h ic h  i s  un b ou n d ed . We c o n c e n t r a t e  

on  t h e  c a s e  h ( - ~ )  > -®  and h (+ ® ) «  +®. From t h e  p r o o f  o f  Theorem  4 . 3  we know  

t h a t  Uq < 0 .  C o n s e q u e n t ly  RVP i s  e q u i v a l e n t  t o  m in im iz in g  a d i f f e r e n t i a b l e  

f u n c t i o n a l  on  t h e  c o n e  -  C a n d ,  t h e r e f o r e ,  w i t h  t h e  v a r i a t i o n a l  i n e q u a l i t y :

— 00

Then v
n

> 0 V
n
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Find u e -C such that for all v e -C

1322 DIEKMANN AND HILHORST

VI

r r m a  u e - c  sucn cn at  ror  a n  v  ,e 

* < ( -  Au + h ( - « )  -  f ,  h ( - » ) | f t !  ~ C) ,  v - u>x *  °*

Unfortunately we cannot use Lemma 2.5 in this situation (see, however, [23]) 

but still we have

LEMMA 4.7. Suppose h(-«0 > and h(+°°) ■ ■*». Then

awQ(u)

{(w,k) I (w-h(-«>), k ■- h(-«>)|i2| + C) e C and . 

<(w-h(-«), k- h(-»)tft| + C),u >x * 0} if -u e C

0 otherwise.

PROOF. This follows directly from Lemma 2.1, Lemma 4.4 and the fact that W^ 

is linear on the negative cone. Q

5. THE DUAL FORMULATION

So far we have used polar functionals repeatedly, but we have not 

yet given a systematic presentation of duality theory as applied to our 

problem. This will be done now. We follow closely EKELAND & TEMAM [20, Ch. Ill, 

section 4, in particular Remarque 4.2].

The dual formulation of VP, corresponding to the splitting ve(u) =

= G(-Tu) + eW(^), is given by

VP* Inf e W*(T*p) + G*(p). 
pe (I»2)n

Since VP is stable (use [20, Proposition III.2.3]), VP* has a (unique) solu­

tion p£. Furthermore, the infima are equal to each other and u£ and p£ are 

related by the so-called extremality relations

(5.1) T*pe = aw( ^  )

(5.2) pe - 3G(-Tug).

By Lemma 3.2 and (3.4) these can be rewritten as

u f u

(5.3) div p e - h( ) and h( ) » C

(5.4) Pe Ä g + grad u£.

—00

u
e

u
e

e£
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N o te  t h a t  g i s  n o t  u n i q u e l y  d e te r m in e d  by d i v  g = f  b u t  t h a t  ( 5 . 3 )  and ( 5 . 4 )  

d e f i n e  p £ -  g and d i v  u n a m b ig u o u s ly .  One can  v i e w  ( 5 . 3 )  and ( 5 . 4 )  a s  a  

c a n o n i c a l  s p l i t t i n g  o f  BVP i n t o  f i r s t  o r d e r  . e q u a t i o n s .  I n d e e d ,  e l i m i n a t i o n

o f  p l e a d s  t o  BVP. On t h e  o t h e r  h an d , we c a n  a l s o  e l i m i n a t e  u t o  f i n d  t h e
e e

s u b d i f f e r e n t i a l  e q u a t i o n  s a t i s f i e d  by p^:

( 5 . 5 )

o r ,  mare e x p l i c i t l y ,

PERTURBED FREE BOUNDARY PROBLEM 1323

£ T(3W) ' (T * P e ) + P £ = g

BVP

- e  g r a d ( h  1 ( d i v  p £ ) )  + p^ =  %

d i v  p = C 
r e

h 1 ( d i v  p. ) e X

By Lemmas 2 . 2 ,  3 . 2  and [ 2 0 ,  P r o p o s i t i o n  1 . 5 . 7 ]  t h e  o p e r a t o r  A from  i n t o

i t s e l f  d e f i n e d  by

( 5 . 6 )

Ap = - g r a d ( h  ^ ( d iv  p ) )

V(A) = {p £ (L2 ) 111 d iv  p € L j , I  d iv  p -  C, d iv  p -  h (u )  f o r

some u £ X}

^  - «Up

i s  t h e  s u b d i f f e r e n t i a l  o f  t h e  c o n v e x  l . s . c .  f u n c t i o n a l  p «■ W (T p ) .  C onse ­

q u e n t l y ,  A i s  m axim al m o n o to n e .  (S ee  Weyer [ 3 1 ]  f o r  r e l a t e d  r e s u l t s ) . Re­

w r i t i n g  ( 5 . 5 )  a s

( 5 . 7 )  (eA + I ) p £= g

and i n v o k i n g  Lemma 2 . 3 ,  we f i n d  t h a t  p^ c o n v e r g e s ,  a s  e 4  0 ,  s t r o n g l y  i n  

(L2)11 t o  t h e  p r o j e c t i o n  o f  g o n t o  f l ( A ) . I t  d o e s  n o t  seem  e a s y  t o  c h a r a c t e r i z e  

V(A)  d i r e c t l y  fro m  ( 5 . 6 ) .  T h e r e f o r e  we u s e  d u a l i t y  t h e o r y  o n c e  m or e ,  b u t  

now f o r  t h e  r e d u c e d  p r o b le m .

The d u a l  f o r m u l a t i o n  o f  RVP i s  g i v e n  by

RVP* I n f  W*(T* p ) +  G * ( p ) .  
p e ( L 2 ) n  °

if
By ( 3 . 5 )  an d  4 . 4  t h e  s o l u t i o n  o f  RVP i s  t h e  p r o j e c t  i o n  o f  g o n t o  t h e

c l o s e d  c o n v e x  s e t

pe

:l'2
n

i n t o

Lemma
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(5.8) Q * {p € (L2)n | (h(+«>) - div p, h(+»)|ft| - C) e C*

and (div p - h (-«>), C - h(-«>)|ft|)£ C*}

Denoting the (unique) solution of RVP* by p^, we have the extremality rela­

tions

(5.9) T* p0 £ 3W0 (u0)

(5.10) p0 = 3G(-Tu0).

The second one, Pq = g + grad u^, is identical to the extremality relation 

Pe " g + grad u^. Hence the fact that u^ converges strongly in X to u^, im­

plies that p£ converges strongly in (I^) to p^. So we find that p^ converges 

to a limit which is at the same time the projection of g onto t)(A) and onto 

Q. Since g is an arbitrary element of (I^)11» necessarily V(A) * Q. Thus we have 

shown that (5.8) gives an explicit characterization of P(A).

The extremality relation (5.9) is easy to work with only in the case 

that h is bounded (see Lemmas 4.5 and 4.7). It then follows that RBVP is 

equivalent to (5.9) - (5.10). Likewise one can, by elimination of u^, derive 

a subdifferential equation for p^ similar to BVP*.

If h(-») > -® and h(+») * +00 we deduce from Lemma 4.7 that u^ is the 

solution of the following variant of VI:

Find u € - C such that

* (i) < (-Au+ h(-«>) - f, h (-’-•») I ft |-C) , v>x < 0, Vv € C,

(ii) <(-Au + h (-«>) - f, h(-oo) Ift |-C) , u>x = 0.

6. THE REDUCED PROBLEM AS A FREE BOUNDARY PROBLEM

In this section we assume that f c L^. We shall deal with the regularity 

of Uq (and u^), with the free boundary value problem satisfied by u^ and 

with sharp convergence results versus the occurrence of boundary layers. We 

shall write C^,a to denote the Holder space C*,a(ft) and W2,P to denote the 

usual Sobolev space. We recall that W^*^ is imbedded into C*,a if p(l-a) £ n.

THEOREM 6.1. If h is bounded, u£ converges to uQ weakly in W2,p for each 

p > 1 and strongly in C 1,a for each a c [0,1).

V. 16.

n
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PROOF.

II Au H < m ax{-ii(-«>) , h ( + » ) } + II f  II Q
£ L . L

00 CO

We can  now i n t e r p r e t  RBVP a s  a f r e e  b o u n d ary  p r o b le m .  The dom ain ft c o n ­

s i s t s  o f  t h r e e  su b d o m a in s :

f t +  =  {x  €  ft | U q ( x )  >  0 } w h ere  “ Au^ +  h ( + « )  =  f  a . e .  

ft_ = {x  e ft | Uq (x ) < 0 } w here  “ Auq + h ( - » )  = f  a . e .  

ft^ = {x  € ft | Uq (x ) = 0 } w h ic h  h a s  t o  b e  a  s u b s e t  o f

{ x  € ft | h(-«>) < f ( x )  < h ( + » ) } .

T h ese  subdom ains  a r e  unknown, p o s s i b l y  em pty and s u c h  t h a t  

h ( + » ) | n + | + h ( - “ ) |£2_| + |  f  = C.

%

From t h e  p r o o f  o f  Theorem 4 . 3  we know t h a t  Uq = 0 i f  h(±°°) = ± « .  So i n  

t h a t  c a s e  we c a n n o t  h a v e  c o n v e r g e n c e  i n  W2 , p ' u n l e s s  / f  = C.

N e x t ,  we c o n c e n t r a t e  on th e  m o st  i n t e r e s t i n g  c a s e  i n  w h ic h  h i s  bounded  

from  on e  and o n l y  on e  s i d e .  In  t h e  r e m a in in g  p a r t  o f  t h i s  s e c t i o n  we assum e  

t h a t  hC-00) > and h(+«>) = +°°. We e m p h a s iz e  t h a t  a l l  th eo r e m s  b e lo w  ha v e  a 

c o u n t e r p a r t  i n  t h e  c a s e  h (-°°) = - »  and h ( + » )  < +°°.

THEOREM 6 . 2 . u £ € W2 ,P  f o r  e a c h  p > I .

PROOF. We s h a l l  show t h a t  Au_ i s  bounded by  f i n d i n g  an u p p er  bound f o r  u _ .
1 e G 

L e t  C € Hq be  th e  s o l u t i o n  o f  -A C + h (-« > )  = f .  T hen ,  i n  f a c t ,  s i n c e  Ac i s

bo u n d ed ,  we h a v e  C e C^, a . D e f i n e  ifr e H^ b y  i); s  u -  u | ^ n “ C* Then
U £  C ost

U

Alp = Au£ -  AC = h (  .) -  h(-oo)  > 0

and h e n c e ,  by  t h e  weak maximum p r i n c i p l e ,  ip < 0 .  So u £ i s  bou nded from  ab ove  

by t h e  bounded f u n c t i o n  u I + C* □£ oft

THEOREM 6 . 3 . I f  C < / f ,  u £ c o n v e r g e s  t o  u^ w e a k ly  i n  W f o r  e a c h  p £ 1 a n d  

s t r o n g l y  i n  C^,ct f o r  e a c h  a  e [ 0 , 1 ) .

u
PROOF. We show t h a t  h (  — ) and h e n c e  Au i s  b o u n d ed .  C hoose  6 > 0 and d e f i n e---  e e

u (x)
ft£ = {x  e ft |h (  — - —  ) > I f l ^  + 6 } .

—00

ue
e
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ue (x)
The points of 9ft£ either belong to 9Œ or are such that h( — -— ) = I! f H L + 6.

If |fi£ | f 0 and 9fi£ n 9iî = U, we find that simultaneously Au^ > 0 in ^  and 

u£ assumes, with respect to its maximum in an interior point. Since this 

is impossible we conclude that either |iî | = 0 or 9fi n 9ÎÎ ^ 0 and u assumes
U I ^ E E £

its maximum at 9ft with h( ) > H fHT +6 .
£  ■L,w

Suppose / 0. Let be a domain with boundary 9fi u T and

strictly contained in We define u^ to be the solution of Au = 6, u(x) = 

u (x), x e 9ft . Then u attains its maximum on 9ft and it follows from the £ £ £
Hopf maximum principle [27, Thm 7, p. 65] that — ÉL | > 0. Also we have that 

^ uE ~ 9n
A ( u - u ) = 6  - h(— ) + f < 0 and therefore u - u > 0  and, finally,£ £ £ £ e J '

9u 9u
— L  I > — E. I > o .
9n !9ft 9 n 1 3 

This leads to the contradiction
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ue
The proof above shows that, if h( —  ) blows up somewhere, it does so 

at the boundary. If u q |^^ < 0 this can not happen, so we also have

THEOREM 6.4. If

THEOREM 6.5. uQ € W2,P for each p > 1.

PROOF. If u0 [ ^  < 0 we can apply Theorem 6.4. If uQ |9fi = 0, then uQ is com­

pletely characterized by the restriction of RVP to H^. The result then fol­

lows, for instance, from Appendix 1. □

THEOREM 6.6. u^ is completely characterized by

-Au q + h(-«>) - f < 0 a.e.

Uq < 0 a.e.

4 Uq (-Au q + h(-°°) - f) * 0 a.e.

/(AuQ+f) - C < 0

U0l3!2(/ (ûV f )  '  C) = °-

PROOF. Because of Theorem 6.5 we can rewrite the variant of VI given at the 

end of section 5 in the form

c
I

f
í

Au
e J

du
e

3n
> 0.

9a
6

u0 9ft< 0 then uE converges to u0 weakly in W
2. P

P > 1, and

strongly in C
1 a

a € 0 , 1).

e
aE

Q
e

'e3,
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| ( A u 0 - h ( - ■ » ) + £ ) v +  ( C -  [ (A u n + f ) ) v | g fi a 0 ,  Vv e C, 

j ( A u 0-  h ( — ) + f ) u Q + (C -  | ( A u 0 +  f » u 0 l 3n = 0 ,

and from  t h i s  f o r m u l a t i o n  t h e  r e s u l t  e a s i l y  f o l l o w s .  □

I f  / f  > C t h e n  Theorem  6 . 3  i m p l i e s  t h a t  a c t u a l l y  / (A u^ +f) = C. We em­

p h a s i z e  t h a t  / f  < C d o e s  n o t  p r e c l u d e  t h e  p o s s i b i l i t y  t h a t  u-J' < 0  and
»  9 Si» ^

/ (A u^+f) =  C. H ow ever , i f  / ( Au^+f) < C we c a n n o t  h a v e  w eak c o n v e r g e n c e  i n  W 

N e x t ,  we p r e s e n t  some c o n d i t i o n s  on t h e  d a t a  h ( - » > ,  f  and C u n d er  w h ic h  t h i s  

h a p p e n s .

THEOREM 6 . 7 . A n y  o f  t h e  t h r e e  a s s u m p t io n s

( i )  f ( x )  < h ( - ® )  a . e .

( i i )  f ( x )  > h ( - « >  a . e .  a n d  [ f  < C

( i i i )  /  f  < C f o r  a l l  Q c  ft 

ft

i m p l i e s  t h a t  / ( A u Q + f )  < C.

PROOF, ( i )  L e t  v  e  H^ b e  t h e  s o l u t i o n  o f  Av -  h(-«>) -  f .  Then v  £ 0  and  

/ ( A v  + f )  = h ( -* « ) | f t |  < C. By Theorem 6 . 6  = v .

( i i )  A g a in  b y  Theorem 6 . 6 ,  u^ = 0 .

( i i i )

| ( A u 0  + f )  = I  h ( — ) + I  f  = h ( — ) | 0 |  + |  f < C

¡i\n n\n

w here  ft = { x  | u ^ ( x )  < 0 } .  D

In  t h e  p r o o f  o f  Theorem  6 . 3  i t  w as  a l r e a d y  shown t h a t  i f  u£ d i s p l a y s  a  

l a y e r  o f  r a p i d  ch a n g e  som ew h ere ,  i t  c e r t a i n l y  d o e s  s o  n e a r  t o  t h e  b o u n d a r y .  

N e x t  we p r o v e  t h a t  i t  c a n  do s o  o n l y  n e a r  t o  t h e  b o u n d a r y .  The e s t i m a t e s  

b e lo w  h a v e  b e e n  i n d i c a t e d  t o  u s  by  H. BREZIS.

THEOREM 6 . S . A ssu m e  h  i s  C1 ,  T h e n  u g c o n v e r g e s  t o  Uq w e a k ly  i n  Ŵ * ^ (0 )  f o r  

a n y  o p e n  s e t  0  w i t h  0  <= ft a n d  a n y  p > 1.

PROOF.

S te p  I . S i n c e  h ( y )  > h ( - » >  we h a v e

|  | h (  > | £ |  h (  -Z - )  -  2 h ( - » ) | Q l  -  C -  2 h ( — ) | Q | .
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S tep  2 . S i n c e  i s  bounded u n i f o r m l y  i n  e i n  H^, i t  f o l l o w s  from  t h e  S o b o le v

im b ed d in g  th eor e m  ( s e e ,  f o r  i n s t a n c e ,  ADAMS [ 1 ,  p .  9 7 ] )  t h a t  u i s  bounded
2n  ̂

u n i f o r m l y  i n  e i n  Lr ( f t ) ,  w here  r  = i f  n > 2 and r  > 1 i f  n < 2 .
u

S te p  3 . (P r o o f  by r e c u r s i o n ) .  We s u p p o s e  t h a t  h (  —  ) i s  bounded u n i f o r m l y

i n  e i n  L ^(U j)  f o r  some q £ 1 and Uj s u c h  t h a t  c  Q.  L e t  ? b e  a C - f u n c t i o n

w i t h  compact s u p p o r t  i n  U. . We m u l t i p l y  t h e  d i f f e r e n t i a l  e q u a t i o n  by  
i u e i t - 2  u e t
| h (  —  ) |  h (  —  ) I d  and we i n t e g r a t e .  Thus we o b t a i n
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I n t e g r a t i n g  t h e  f i r s t  term  by  p a r t s  and u s i n g  t h e  i n e q u a l i t y  ab < -  a a +
1 8  1 1  ^

+ -  b w i t h  a , b  > 0 , a ,  3 > 1 and -  + -  = 1 , f o r  t h e  term  a t  t h e  r i g h t  hand  
p a  p

s i d e  we d ed u ce

t

We o b s e r v e  t h a t  t h e  f i r s t  te r m  a t  t h e  l e f t  hand s i d e  i s  n o n n e g a t i v e  ( s o  we 

d e l e t e  t h i s  t e r m ) .  Now l e t  y ( x )  = | h ( x )  | 11 2 h ( x )  and T (x )  = / *  y ( T ) d x .  Then  

T (x)  ^ x y ( x )  f o r  a l l  x  and h e n c e

So f i n a l l y

We now d i s t i n g u i s h  d i f f e r e n t  c a s e s :

1 s t  c a s e  q = 1 . I f  n  > 2 ,  we c h o o s e  t  = 1 + i n  (6 * 1 )  and a p p ly  H o l d e r ’ s 

i n e q u a l i t y  w i t h  c o n j u g a t e  e x p o n e n t s  — ^ and a l s o  u s i n g  t h e  r e s u l t s  o f

S t e p s  1 and 2 we d e d u ce  t h a t  / | h (  ) c | t  i s  bounded u n i f o r m l y  i n  e .  I f  n ^  2 ,

we c h o o s e  t  = 1+  — -  f o r  some r  > 1 and a p p l y  H o l d e r ' s  i n e q u a l i t y  w i t h  c o n -
^ r  .

j u g a t e  e x p o n e n t s  r  and — r t o  o b t a i n  a s i m i l a r  r e s u l t .  So we know m  b o t h
UP r t 

c a s e s  t h a t  h (  —  ) i s  bounded u n i f o r m l y  i n  L ( I L )  f o r  some t  > 1 and any
 ̂ _____  ̂ 2 t  

o p e n  s e t  w i t h  c  . C o n s e q u e n t ly  u^ i s  bounded u n i f o r m l y  i n  W * (U^)

( c f .  AaiON [ 2 ] ) .
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2nd c a s e  q > I t  f o l l o w s  from  t h e  S o b o le v  im b ed d in g  th eo r e m  t h a t  i s  

bounded u n i f o r m ly  i n  e i n  Lw (U ^ ).  C h o o s in g  t  * q+1 i n  ( 6 . 1 ) ,  we d e d u ce  t h a t  

h (  ) i s  bounded u n i f o r m ly  i n  € i n  L*1* 1 ^ ) .  The r e s u l t  o f  t h e  th eo r e m  f o l ­

lo w s  th e n  from  a b o o t s t r a p  ar g u m e n t .

3rd  c a s e  q < By t h e  S o b o le v  im b ed d in g  th eo r e m  u^ i s  bounded u n i f o r m ly  i n

L * ( U . )  w i t h  (o r  - *  = -  -  a f o r  any a e ( 0 , - )  i f  q = - ) .  L et  q**
q* 1 q* q n v q q J v H n '  M

be t h e  c o n j u g a t e  e x p o n e n t  o f  q* and c h o o s e  t  = 1 + — . A p p ly in g  H o l d e r ' s
 ̂ u

i n e q u a l i t y  ( w i t h  e x p o n e n t s  q and q ) t o  ( 6 . 1 )  we d e d u ce  t h a t  h (  ) i s  

bounded u n i f o r m ly  i n  L ^ l ^ ) .  Now a b o o t s t r a p  argum ent e i t h e r  y i e l d s  t h e  

r e s u l t  o r  l e a d s  t o  t h e  2nd c a s e .  □

7 .  THE ONE DIMENSIONAL CASE

A g a in  we assum e t h a t  h ( - « 0  > -® and h (+ «0  = +®. The r e s u l t s  o f  s e c t i o n

5 im p ly  t h a t  p^ i s  t h e  p r o j e c t i o n  o f  g o n t o  t h e  s e t

0 ( A )  = {p € L2 | (p ’ -  h ( - ° ° ) , C -  h ( - » ) |  f t |)  € C *} .

A s im p le  c a l c u l a t i o n  show s t h a t ,  w i t h  Q = ( - 1 , + 1 ) ,

P(A) n H1 = {p | p '  > h(-«0 and p ( l )  -  p ( - l )  ^ C}.

We fo u n d  i n  s e c t i o n  6 t h a t  p^ e 0 ( A )  n Ĥ  i f  f  e L^. So we c a n  f i n d  p^ by  

m in im iz in g  t h e  L2~ d i s t a n c e  t o  g s u b j e c t  t o  two c o n s t r a i n t s :  an  i n e q u a l i t y  f o r  

t h e  d e r i v a t i v e  and a bound f o r  t h e  t o t a l  v a r i a t i o n .  T h is  i s  more o r  l e s s  a 

c o m b i n a t o r i a l  p r o b le m  w h ic h  i s  r a t h e r  e a s y  t o  s o l v e  f o r  some g i v e n  sm ooth  g, 

b u t  w h ose  g e n e r a l  s o l u t i o n  i s  cum bersom e. We r e f e r  t o  [ 1 9 ,  s e c t i o n  4 ]  f o r  a  

more d e t a i l e d  d i s c u s s i o n  o f  t h e  s y m m e tr ic  c a s e ,  n o t i n g  t h a t  t h e  r e s u l t  p r e s ­

e n t e d  t h e r e  c o v e r s  t h e  g e n e r a l  c a s e  a f t e r  some m in o r  m o d i f i c a t i o n s .  F i n a l l y ,  

we rem ark t h a t ,  o n c e  p^ i s  fo u n d ,  Uq c a n  b e  c a l c u l a t e d  from  t h e  e x t r e m a l i t y  

r e l a t i o n s .
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APPENDIX 1. THE HOMOGENEOUS DIRICHLET PROBLEM

In this appendix we present some results about the problem 

-iu + h(2) 3 f,

where by assumption h is the subdifferential of a convex, l.s.c. function 

H : H  [0,«>), with H(0) = 0 and H(y) < +» for all y e 1R . Here f e H 1 is 

given and u e H^ is sought. We use some of the notation defined in the pre­

ceding pages and omit all proofs since these are similar to (and in fact 

easier than) those already given. In contravention of prior definitions we 

now have:

T : Hq (L2)n , Tu = -grad u

T*: (L2)n ->• H_1, T*p = div p

f / H(u) if H(u) £ L 

W : Hi [0,»], W(u) = |
 ̂ +«> otherwise.

The problem can be rewritten as

3V£ ( u ) 3 0

where

V£(u) = G(-Tu) + e W(^).

2
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It admits a unique solution u^ which converges as e + 0 strongly in to Uq , 

the unique solution of

Inf G(-Tu) + W (u).

U‘ H0

If h is bounded Uq satisfies 

-Au + h^(u) 3 f

and if, for instance, h(-°°) > and h(+°°) = +« then Uq solves the varia­

tional inequality: find u < 0 such that

<-Au+ h(-»)- f, v-u> > 0, Vv < 0.

The dual formulation is obtained by the transformations

p = g - Tu 

u e eh 1(T*p) 

f = T*g

and reads

E T(h_ '(T*p)) +  p 3 g 

or, equivalently,

(eA + I)p 3 g 

where A : (L2)n -► (L2)n is defined by 

Ap = T(h_'(T*p))

D(A) = {p s C ^ ) 11 | T*p £ Lj and there exists u £ such that T*p £ h(u)}.

As e + 0, p£ converges to the projection of g onto

PERTURBED FREE BOUNDARY PROBLEM 1333

T JW  = {p £ (1^)" I h(-~) < T*p < h(+»)},

where the inequalities are defined by the positive cone in Hq and the duality 

of Hq and H_1.

1
o

1
o

H

H
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I f  f  e L , u c o n v e r g e s  t o  u n w e a k ly  i n W2’!» f o r  e a c h  p > 1 and s t r o n g l y

i n  C^,a  f o r  e a c h  a e [ 0 , 1 ) .  T h is  f o l l o w s  m ost  e a s i l y  from  t h e  o b s e r v a t i o n  

t h a t ,  by t h e  maximum p r i n c i p l e ,  u^ e q u a l s  t h e  s o l u t i o n  o f  t h e  " tr u n c a t e d "  

p r o b le m

-Au + h ( - )  3 fe
where

h ( y )  =

"f , L̂00
h ( y )  

-R f # T

i f  h ( y )  > B f  It
CO

i f  -B fit < h ( y )  < BfB
00 OO

i f  h ( y )  < -B f I  .
Loo

For s h a r p e r  e s t i m a t e s  un d er  a d d i t i o n a l  a s s u m p t io n s  we r e f e r  t o  [ 8 l ,  [ 9 ] ,  [ 5 ]  

and [ 2 8 ] .

APPENDIX 2 . THE PHYSICAL BACKGROUND OF THE PROBLEM

2 3
C o n s id e r  a bounded dom ain ft i n  H  o r  1R and a c h a r g e  d i s t r i b u t i o n  

i n s i d e  ft w i t h  two c o m p o n en ts :

( i )  a f i x e d  i o n i c  c h a r g e  d e n s i t y  en^

( i i )  a m o b i l e  e l e c t r o n i c  c h a r g e  d e n s i t y  - e n e  s u c h  t h a t

( A . l )  ( n e = N e .

Here e  i s  t h e  u n i t  c h a r g e ,  n .  and n a r e  number d e n s i t i e s  and N i s  a number.
l  e  e

Ng and n^ a r e  g i v e n ,  b u t  n g i s  unknown.

L e t  t h e  r e g i o n  o u t s i d e  ft b e  a c o n d u c t o r .  Then we h a v e  t h e  c o n d i t i o n

( A . 2)  t h e  p o t e n t i a l  $ i s  c o n s t a n t  o u t s i d e  ft.

P h y s i c a l l y  t h i s  c o n d i t i o n  i s  r e a l i z e d  by t h e  f o r m a t io n  o f  a s u r f a c e  c h a r g e  

d e n s i t y  w h ic h ,  h o w e v e r ,  w i l l  be  o f  no f u r t h e r  c o n c e r n .

The e q u a t i o n  f o r  t h e  p o t e n t i a l  $ i n  ft c a n  b e  d e d u ce d  from  two p h y s i c a l

l a w s :

( A . 3 )  A$ = - 4 i r e ( n ^ - n ^ ) , P o i s s o n ' s  e q u a t i o n ,

and
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(A* 4 ) n Boltzm annV s fo r m u la .

H ere K i s  a n o r m a l i z a t i o n  c o n s t a n t ,  T i s  t h e  te m p e r a tu r e  o f  t h e  s y s te m  and

k i s  B o ltz m a n n 's  c o n s t a n t .
15

S u b s t i t u t i n g  ( A .4 )  i n t o  ( A . 3) and ( A . 1) we o b t a i n  t h e  p r o b le m

w h ic h ,  up t o  a r en am in g  o f  t h e  c o n s t a n t s  and v a r i a b l e s ,  i s  t h e  s p e c i a l  c a s e  

o f  BVP i n  w h ic h  h ( y )  = e ^ -  1.

A l t e r n a t i v e l y ,  one  c an  a r g u e  t h a t  n £ s h o u ld  be  s u c h  t h a t  th e  f r e e  e n e r g y  

F o f  th e  s y s t e m  b e  m in im iz e d  u n d er  th e  c o n s t r a i n t  ( A . I ) .  The f r e e  e n e r g y  i s  

d e f i n e d  by

So i f  E. d e n o t e s  t h e  e l e c t r i c  f i e l d  c r e a t e d  by t h e  i o n s  and E t h e  e l e c t r i c
l  e

f i e l d  c r e a t e d  b y  th e  e l e c t r o n s ,  i t  comes t o  s o l v e  t h e  m i n i m i z a t i o n  p r o b le m

i s  c o n s t a n t  (b u t  unknown)

F = U -  TS

w here U i s  th e  e l e c t r o s t a t i c  e n e r g y  g i v e n  by

U

T i s  t h e  t e m p e r a tu r e  and S t h e  e n t r o p y  g i v e n  by

S

I n i

s u b j e c t  t o  t h e  c o n s t r a i n t

C l e a r l y  t h i s  p r o b le m  c o r r e s p o n d s  t o

e
K e

k
B

T
e $

-A $ + 4TreK e 4t t€ n l
kBT
e $

K
f

e

e $
kBT

N
e

$ ft

1
8IT i

gra d
2

k
B i

n
e

I n n
e

Ee

kBT i d i v E
e

I n [d iv Ee
+ 1
8tt [

E
i

E
e

2

I d iv E
e

N
e

VP
*
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The main results of this paper concern the limiting behaviour of the 

potential $ and the electrical field Efi due to the electrons, as the temper­

ature T tends to zero. For instance, we find that at 3ft no boundary layer 

occurs if the total charge density / n^ of the ions exceeds Ng . In the limit 

T -* 0 there may be regions where electrons are absent. If such a region ft 

is strictly contained in ft it necessarily must be such that /- n^ = 0. For 

such a region which extends up to 3ft there is a more complicated condition. 

If n, > 0 and / n^ < Ne> necessarily a boundary layer arises: the electrons 

are repelled against the conductor.

V . 2 8 .
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VI.1.

1. Introduction.

In this paper we consider the nonlinear partial differential equation

(1.1) u = (D (u) <f> (u ))
t x x

where the functions D and $ satisfy the hypotheses

H. : * e C1 ([-1,13) n C2((-l,l)), 4> CO) - 0, (-1> = 4> * (1) = 0,
<P

(f)w > 0 on (-1,1) .

and

HD : D e C1([0,1]) n C2((0,1)), D > 0 on (0,1), D(0) = D(l) = 0,

D" < 0 on (0,1).

The main difficulty in studying equation (1.1) is that it has two kinds 

of degeneracies, namely one in points where u = 0 or 1 and one in points

where u = 1 or -1. An equation of type (1.1) arises in the theory of
X 2 

hydrology, with D(s) = s(l-s) and <j>(s) = s/d+s ). We give its deriva­

tion in section 2.

o, <p -1 <rti O,
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We are interested in the following three problems related to equation

(1.1) : the Neumann problem on (-1,1) with the natural boundary con­

ditions D(u)<|>(ux) (±l,t) = 0 f or t > 0, the Cauchy problem and a 

related Cauchy Dirichlet problem on (O,00) with the boundary condition 

u(0,t) = A for t > 0, A e (0,1). For each problem we assume that the 

initial function u^ is Lipschitz continuous and such that 0  ̂u^ ^ 1

and -1 < Uq  ̂1 a.e. in the corresponding domain. For the precise assumptions 

we refer to section 3.

In section 4, we show that solutions of the three problems satisfy a 

contraction property in L*. It then follows immediately that each 

problem has at most one solution.

Considering related uniformly parabolic problems and using the monotony 

of the function <|> , we prove that there exists a solution of each 

problem (for the Cauchy-Dirichlet problem under some extra assumptions 

on the data). This is done in section 5.

In section 6 we study the large time behaviour. In the case of the 

Neumann problem, we show with the help of a suitably chosen Lyapunov 

functional that the solution converges to a constant as t 00 . For 

the Cauchy problem, we give conditions on the initial function under 

which the solution converges to a similarity solution as t •* 00 in the 

case that D(u) = u(l-u). Finally, we show by means of a method based 

on the comparison principle that the solution of the Cauchy-Dirichlet 

problem converges to the unique stationary solution as t 00 .

Other doubly degenerate problems, with differential equations of the 

form

(1.2) u =(iM(<Mu)) ))
Z  X x

have been considered by several authors : in the case of the Cauchy 

problem, Kalashnikov [15,16] gives a method for studying the existence 

of a solution and proves some properties related to the support of u. 

Bamberger [4] constructs a solution of the Dirichlet problem and remarks 

that it has at most one solution such that ufc € L*. For the study of the 

semi-group solution we refer to Benilan & Crandall [ô] and Cortazar [7] .
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Atkinson & Bouillet [2,3] study similarity solutions for the Cauchy- 

Dirichlet problem and give a comparison principle for solutions satis­

fying ufc e L*. We remark that the methods used in this paper to study 

the large time behaviour of solutions could also be applied to solu­

tions of the differential equation (1.2).

Acknowledgement. The authors are very grateful to M.Bertsch for the 

many discussions which have been at the origin of this paper. They 

wish to thank Ph. Clément for pointing out the contraction property, 

R.Kersner for showing the articles of Kalashnikov and L.A.Peletier 

for many inspiring comments.
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2. The physical derivation of the problem.

Consider the two-dimensional flow of fresh and salt groundwater in a

homogeneous coastal aquifer, which is vertically confined (with height

H) and horizontally extended. The fresh and salt groudwater have a

different specific weight, y and y respectively. In addition to external
r s

factors, the difference in specific weight induces a flow and thus a 

movement of both fluids.

It is common practice in hydrology to assume that the fluids are separated 

by a sharp interface, e.g. see Bear [5 ]. Adopting this assumption, it 

is then sufficient to know the evolution of this fresh-salt interface in 

order to determine the movement of the fluids.

In this section, a derivation of a differential equation is given which 

describes the fresh-salt interface as a function of position and time.

The analysis is based on the work of de Josselin de Jong [14], further 

references are given there.

Fig.1. The distribution of fresh and salt water in an aquifer.

Let the flow take place in the xz-plane. The height of the interface is 

denoted by £(x,t) : when 0 < z < £(x,t)only salt water is present, when 

£(x,t) < z < H only fresh water is present. Here t denotes the time.

z

H

Yf

n

salt-waterI
a

fresh-water

i
V,rs

o X



Further, let a denote the angle of the tangent at the interface 

with the horizontal and let n ands i denote the local orthogonal 

coordinates, normal and tangential to the interface (see fig.l). 

In both fluids, the specific discharge, q , the pressure p and 

specific weight y are related through Darcy's law as :

7” q. + grad p. + v*e = 0 /  i = f,s, 
k * l z

where y is the dynamic viscosity of the fluids (which is assumed

here to be the same for both fluids) , k is the intrinsic per­

meability of the porous medium and e^ is the unit vector in the 

positive z-direction.

If the fluids are incompressible, the following continuity condition 

is required at the interface :

q. - q = 0  at z = Ç. 
f s
n n

At the interface, the fluids must also be in equilibrium. This means 

that the pressure on either side of the interface must be equal : 

p^ - Ps = 0 along the interface. This implies that

9P f  9PS
- ^ - - ^ = 0  at z = Ç.

c £ o I

Equations (2.2) and (2.3), written out in x and z coordinates 

become

(q_ - q ) sina - (q_ - q )cosa = 0 
f s f s
X X z z

and

( 3pf 3P_ \ ( 3pf 9P„ \
^ - w  - s ï  Jcosa -Vir--5r>lslno -°

Substituting Darcy's law in (2.5) yields

VI-5

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2 . 6 ) :qf
X

q*s
X

)
y

k
c o s a + q

Lf
z

q
s

z

)
U

k
s i n a s i n a :ys

Y
f ‘
)
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Then from (2.4) and (2.6), the unknown (q_ - q ) can be solved:
f s 
X x

. m . _ tan oi , f.
(2.7) q - q = T ----- 5- at z = {,

x x 1+tan a

where r = — (Yg - Y^). Here (2.7) represents the x-component of

the discontinuity which occurs in the tangential component of 

q^ - at the interface : this is the shear ftow observed by de 

Josselin de Jong.

The total fresh water discharge through the aquifer in the positive x- 

direction is given by

H
(2 .8 ) Q- (x,t) = / q (x,z,t)dz

x Ç(x,t) x

The corresponding expression for the saltwater is 

5(x,t)
Q (x,t) = f q (x,z,t)dz.
s s

0

When the aquifer is confined in the sense that qf = qg = 0  when
z z

z = 0 or z = H then the following continuity equations hold:

3Qf
x 3£

(2‘9) “3x~ = n 3t

and

8Qs
___X _
3x n 8t

where n denotes the porosity of the medium. Consequently, the total 

discharge

( 2 .1 0 )  Q = Qf  + Qs f
x x

does not depend on x : it is considered here as a given constant.

q
s

H

aç
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(2.11)

(2 .12)

(2.13)

(2.14)

(2.15)

Next a simplification is being made which is related to the Dupuit-

approximation in hydrology : it is assumed here that the horizontal

components of the specific discharges and q are constant over
x x

the height of the aquifer. Thus

qf (x,z,t) * qf (x,5,t) for 5 ^ z £ H
X X

and

q (x,z,t) = q (x,Ç,t) for 0 < z < Ç
s s
X X

Strictly speaking, this simplification is only valid when the inter­

face is rather flat : thus for large angles a we expect this model 

to break down.

The total discharge can now be written as

Q = Qf + Qg = qf (x,Ç,t)(H -Ç) + qg (x,Ç,t)Ç

From equations (2.7) and (2.13)the unknowns q^ (x,£,t) and qg (x,£,t)
x x

can be solved : for qf one finds,
x

/ » . » » « tan oc 
qf (x,ç,t) = Q + r ç ---- j-

x l+tan a

Finally, expression (2.14) is substituted into equation (2.8) and the 

result into equation (2.9). This gives the partial differential 

equation

Çx
nÇ = { (H - Ç)Q + r(H- Ç)Ç — ^  }

1+Ç x

qf s
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(2.16)

where the subscripts t and x denote differentiation with respect

to these variables and tana = £ is used.
x

Setting n = H = T =  1, Q = - A and £(x,t) = u(x,t), (2.15) becomes

u . (u(1.u)̂ _)x+xux 
1+u

X

Observe that in the case of the Cauchy problem, the term Xu^ can

be eliminated. We set x = x + Xt and u(x,t) = u(x,t). Then since

u,_ = + Xu + u^, we have that 
t x t

In this paper, we study the following problems : the Cauchy problem

for (X,t) € R  * ]R+

the Neumann problem which is interesting in its own right and which 

is useful for understanding Problem C

u. = (u(l-u) — 2L_ \ for (Xft) e (-1,1) x K
V 1+u '

X X

u
N { U(l-U) — ^r = 0 

1+U
for (x,t) e {-1,1} x ]R+

u(x,0) = Uq (x ) x e ( - 1 , 1 ) ,

and th e  Cauchy D ir ic h le t  problem

u
t

u 1-u
u

X

1+u
X

X

C

u
t

u 1-u
u

X

1+u
2
X X

u X ,  0 u
0
x) for X e ]R ,



with A > 0 and A € (0,1)•

Instead of studying these three problems with this specific dif­

ferential equation, we consider the more general case where the

nonlinear term has been replaced by (D(u)<j>(u )) r where D and <|>
x x

are given real functions such that D defined on the interval [0,1]

and <\> on [-1,1] satisfy the hypotheses H and H . .
D <p
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CD

u
t

u 1 - U

u
X

1+u
2
X X

u(Oft) A

u(x,0) u
0

+ Au
X

for x,t e JR X JR

t 6 B

X € ]R
+

+

(X)
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3. Definitions.

Let us first give a definition of a solution of the three problems and 

state for each of these problems the precise hypotheses on the initial

function u
0

The Neumann problem

N

u
t

:d u; * (u
X X

D u (UX
0

u x, 0 u
0

x]

where u
0

satisfies the hypothesis

x t: e -1 i: x 1R
+

x t: -1 1 X
+

x € -1 1

H
ON 0

6 w*
,1 oo

-1 1 0 < u
0

< 1 r -1 < U
0
i < 1 a.e.

Definition 3.1. We say that u is a weak solution of Problem N if 

it satisfies for every T > 0

(i) u € L“ (0,T;W1,O#(-l,l)),ut € L2 ^ )  with Qm  := (-1,1)* (0,T);

(ii) 0 £ u £ 1 , -1 £ ux £ 1 a.e. in .

(iii) ai.,0) - u  (.) ;

(iv) / / i u  4* + D(u)<|>(u ) } = 0 for all ip e (0,T ; H* (-1,1)).

0 x  x
NT

The Cauchy problem

C
u = (D (u) <f> (u )) 
z x v

u(xf0) = uQ (x)

(x,t) e ]R x ]R+

X € 3R ,

where

HQC : uQ e W lf"(]R) , 0 £ uQ < 1 , -1 < S 1 a.e. and uQ - H € L1 (3R)

where H denotes the Heaviside function: H(x) =1 when x>0 and 

H (x) = 0  when x£0.

IR

: u r

"NT

L
2

u
0

satisfies

u
‘O
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Definition 3.2. We say that u is a weak solution of Problem C 

if it satisfies for every T > 0

(i) u e L°°(0,T; W1 (HR )) , ut €l2( (-R,R) x (0,T)) for all R>0;

(ii) 0 < u < l , - l ^ u x ^ l  a.e. in Qct where Q^, := 1  x (0,T);

(iii) u(.,0) = uQ (.) ;

(iv) // {u *+ D(u)+(u ) ♦ } - 0 for all i|> e L2(0,T ; H1(»))
_ t X X

2ct

such that ip vanishes for large | x |.

The Cauchy-Dirichlet problem

ufc = (D (u) ip (u^)) + X u^ (x,t) € ]R+ * ]R+

CD ^ u(0,t) = A t e 3R+

u(x,0) = uQ(x) x € ]R+ ,

where the constants X and A are such that A > 0 and 0 < A < 1 and 

where u^ satisfies the hypothesis

H0D : uo e n I^ iO ,00) , o S uQ £ 1 , -1 £ u^ * 1 a . e . ,  uQ(0) = A.

Definition 3.3. We say that u is a weak solution of Problem CD if 

it satisfies for every T > 0

(i) u r- A e L~(0,T ; V) where V := (v € W1 f“ (»+), v (0) = 0} and 

ufc € L2((0,R) x(0,T)) for all R > 0;

(ii) 0 £ u S 1 , - l S u  5 1  a.e. in Q„m where 0__ := lR+ x(0,T) ;
x DT DT

(iii) u 5,,0) = Ug(.);

(iv) // {u + (D(u)<f>(u ) + Xu) ijj }= 0 for all e (0 ,T ? H?. (0,°°))
o x x  u
DT

such that ip vanishes for large x.

We remark that if u is a solution of any of the three problems th<_
1-00

u(t) € w (ft) for all t > 0, where Q denotes either (-1,1) or 

1R or 3R . This is a consequence of a result given by Temam [19,

Lemma 1.4 p.263].

1 .°0
0,00w

* L
2
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(4.1)

4. Contraction property and uniqueness of the solution.

In this section we show how solutions of each problem satisfy a contrac­

tion property in L^. The uniqueness of the weak solution follows immedia­

tely.

Lemma 4.1 . Let u be a solution of any of the three problems. Then 

D(u)<}>(ux)(t) € C(i2) for a.e. t>0 where Q denotes either (-1,1) or 1R or3R+.

Proof. We prove Lenina 4.1 in the case of Problem N. By Definition 3.1
2

ufc € L (-1,1) and ufc ■ (D(u)<f>(ux)) for a.e. t >0. Thus

(D(u)(j>(ux))x € L2(-1,1) for a.e. t > 0 

and consequently

D(u)<f>(ux) £ C([—1,1]) for a.e. t > 0 . □

Remark 4.2. Let t be such that D(u)4>'(u )(t) € C(fl). Then ux(t) is 

continuous as a function of x in every point x such that u(x,t) € (0,1).

Theorem 4.3. Let u and v be solutions of Problem N with initial 

conditions Uq and Vq respectively. Then

IIu(t) - v(t)|| < ||uQ-v II . for all t > 0 .
L (-1,1) 0 0 L (-1,1)

Proof. Let W denote either u or v. By Definition 3.1 W satisfies for

a.e. t > 0

Wt € L2 (-1,1) and Wfc = (D(W)<|>(Wx))x

and

D(W)<J)(Wx)(±1,t) = 0 .

Multiplying by sgn(u-v) the difference of the equations for u and v yields

•1 f 1 
(u-v) sgn(u-v) =

•1 C J -1
(4.2) [ (u-v) sgn(u-v) = [ {D(u)<}>(u ) - D(v)<f>(v )} sgn(u-v)

J — 1 c J —1 X X X

for a.e. t > 0
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where sgn s = -1 if s < 0, 0 if s = 0 and 1 if s > 0.

Next we use the following lemma, given for instance by Crandall & Pierre 

[ 8] .

Lemma 4.4. Let G : 1  K  be a Lipschitz function. If w£  ̂(0,T;L^ (-1,1)),

then G(w) £ W^’^(0,T;L^(-1,1)) and G(w) = G'(w) ~  a.e.
at at

It follow from Lemma 4.4 that

(u-v) sgn(u-v) ** |u-v| t a.e. 

so that (4.2) implies that

(4.3) :nr|lu“vll 1 = [ {D(u)<J)(u ) - D(v)<}>(v )} sgn (u-v)
dt L (-1,1) J-1 X X X

for a.e. t > 0.

We show below that the right hand side of (4.3) is nonpositive for a.e. 

t > 0. This corresponds to the accretivity in L^(-1,1) of the operator 

Au = -(D(u)<j>(u')) ' when defined on a suitable domain.

Let t be such that (4.1) holds ; since u(t) and v(t) are Lipschitz conti­

nuous the open interval (-1,1) v. {x|u(x,t) - v(x,t) ® 0} is the union of 

open intervals where either u-v > 0  or u-v < 0 . Since the proofs for 

both kinds of intervals are similar, we only consider the intervals where 

u-v > 0. In order to simplify the notations, we omit the variable t in 

what follows.

(i) if [a,b] c (-1,1) is such that u-v > 0  on (a,b) and u = v in 

a and in b then

rb
(D(u)<j>(ux) “ D(v)<}>(vx))x sgn (u-v)

(4.4) 3

= (D(u)(<(i(ux) - <f>(vx))}(b) - (D(u)(<J>(ux) - <J>(vx))}(a) .

w1 , 1

d
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Then if u(b) = 0 or 1 the first term on the right-hand side of (4.4) 
is equal to zero and if 0 < u(b) < 1 it follows from Remark 4.2 

that u (b) and v (b) are well defined? then u (b)  ̂ v (b) and this
X X  X X

term is nonpositive; similarly one can see that the second term on 

the right-hand-side of (4.4) is also nonpositivev

(ii) if (—1 #c] c (—1,1) is such that u - v > 0 in (-l,c.) and 

u(c) = v(c) then, in view of the boundary condition,

c

D(u)<f>(ux’) - D(v)<f>(vx)^ sgn(u - v) = |d (u) (4> (û ) - ♦(vx))| Cc)

which, similarly as in the case (i)/is nonpositive.

Finally, one finds that

-T— J|u — VII < 0 for a.e. t > 0.
(-1,1)

and thus

IIU(t) - v (t) || < IIu - v II for all t > 0. □
L ( - 1 , 1 )  L ^ - M )

Corollary 4.5. The solution of Problem N is unique.

In what follows, we prove similar properties for the problems C and 

CD.

Lemma 4.6. Let u be a solution of Problem C.

Then u(t) - H €.L* (2R) for all. t>0.

/
-1

L
1
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Droof . We s h o w  b e l o w  t h a t  f u ( t ) ^ 00. T h e  p r o o f  t h a t  f ( l ' - u ( t ) )  <  09
-  00 0

is similar. It follows from Definition 3.2 (iv) that u satisfies

/  u(t)<J> = J  u ni|> +  J  J  ( d ( u )  <J>(u ) )  

M  m  0 ]R ' X / x

for all ip e H*(]R) with compact support and all t > 0. Let R > 0

be arbitrary. The characteristic function Xr D ni of the interval
2 1

[-R,0] can be constructed as the limit in L (E) of H functions 

with compact support. Thus

4 u(t)x:-R,o] *  I uo xc-R,o: + I ¿ ( D(u,* (ux) ) xxc-ii,o:
IR

which implies that

/
x  =  0  

x  =  - R

Finally applying Lebesgue's monotone convergence theorem one finds

O O
/ u(t) £ / uQ + Ct.

. 0 0  . 0 0

Corollary 4.7. L e t  u  b e  a  s o l u t i o n  o f  P r o b l e m  C. T h e n ,  f o r  a l l  

t > 0 ,  u ( x , t )  0  a s  x  - 00, u ( x , t )  -* 1 a s x - >  +°°.

o
4-00

t

t

*

IR
u X -R,0

<
o

/
—00

u,
o
+

t

/
O
D u u

X

□

u(t,
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Proof. Corollary 4.7 follows from Lemma 4.6 together with the 

fact that u(t) is Lipschitz continuous for all t > 0. Q

We are now in a position to show that the solution u of Problem C 

defines a contraction in L*(H) .

Theorem 4.8. Let u and v be solutions of Problem C with initial 

functions Uq and .respectively. Then

|u(t) - v(t) || £ ||u - v || . for all t > 0.
L (]R) L (3R)

Corollary 4.9. The solution of Problem C is unique.

Proof of Theorem 4.8. Let R > 1 be arbitrary. Then, for a.e. t > 0

d R
■rr 11 u - v II = / (D (u) <|> (u ) - D (v) <J> (v ) ) sgn (u-v) .
dt L (—R,R) -R X X x

Using the proof of Theorem 4.3 we deduce that for all t

+00 t  f
/ |u(t) - v(t) |( |D(u)<j)(ux) I + ID (v) (#> (vx) |) (R,t) +

(4.5)

+ ( |d(u)<)>(u v ) I + | d ( v ) < H v  v ) | ) ( - R v t ) ^ d t  + || u n -  v  || .
X X J °  °  L X (]R)

Let us denote by f the integrand in the first term at the right-

hand-side of (4.5). Since by Corollary 4.7r f tends to zero as
R

R -* » for a.e. x e (0,t) and since ||f || s c , it follows
R L (0,t)

from the dominated convergence theorem that ^ f tends to zero
0 R

as R -*■ 00 , which completes the proof. a

V
O

— 00

Xi ■R,,r :

t

f
0
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Similar results hold for the Cauchy-Dirichlet Problem CD, 

namely that

(i) u(t) e L*(]R+) for all t > 0 ;

(ii) u (x,t) -> 0 as x +€» for all t > 0 ;

(iii) If u and v are solutions of Problem CD with initial 

functions u^ and v^, then

11 u (t) - v(t)|| + < 11 u q - vQ|| for all t > 0 .
L ( ]R ) L ( HR )

Since the proof of properties (i) - (iii) is very similar to the 

one given above, we omit it here.
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5. Existence of solution.

In this section, we adapt a proof of Kalashnikov [17] in order 

to show that there exists a solution of each of the three problems 

(in the case of Problem CD under an extra assumption relating D,<(),A 

and A). We first consider the Cauchy and the Neumann problem; we 

then show how one can modify the proof in order to obtain the 

existence result for the Cauchy Dirichlet problem as well.

We consider the following problems, with n e U  large enough

in QnT := (~n'n) * (0'T)

where

2
D € C (R) is such that D (s) = D(s) for s e 
n n

and ~ inf D < D < sup D on ]R J

2 [ifi.i] n ^
n n

ri. i-ii[n nj

and

<f) € Ĉ (]R) is such that <f> (s) = <f>(s) for s € [-1+— , 1 - — ] 
n n n n

and — inf <t>' < £ sup <J>' ,

n n

and where

H0n : u0n e C" ,E) ' S  S U0n S 1 ‘  ¡7 ' '“¿n '5 1 ’  b  a0n M  '  °
for |x| > n, u ^  converges uniformly to u^ on all compact subsets 

of 1R as n ■* °°.

We show in the appendix that given u^ satisfying the hypothesis

* or struct a sequence of functions iUQn} satisfying Hq . 

First we prove a comparison principle.

p
n

u
t

u
X

D
n
u <f>n

u
x X

-n t 0 u
X
n, t 0

u x,0 u
On

x, for x € -n

for t £ 0,T]

9

0,1

[-1+1,1 -i] 
n n

H
OC

-1 1]

d>
n
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Lemina 5.1. Let u, and € C ' (Q ) be two solutions of Problem
1 2 nT

P^ with corresponding initial functions u^^ ^ u q2# T^en ui ^  ~ u2 ^  

for every t > 0.

2 1 -

Proof. The function z := u^ - satisfies the problem

z t  ■  ( v w i‘ ' t , z x ) !! * ( Bn (x ' t ) *n !u2x>2 \ in  V

z (-n,t) = 0  z (n,t) = 0 for e (0,TÏ
x x

z (x, 0) = u qi (x) - uQ2 (x) for xe (-n,n)

where

1
An (x,t) = / <J>̂ (0ulx(x,t) + (1 - 0) u2x(x,t))d0

and

\  *
B (x,t) = J D (Ou.(x,t) + (1 - 0) u_(x,t))d0
n 0 n 1 2

Since z(0)  ̂0 , it is a consequence from the standard maximum 

principle that z(t) ^ 0 for all t e (0,T]. □

Lemma 5.2. Problem P^ has a unique classical solution

u € C^+a(Q ) for each a e (0,1). Furthermore we have that 
n nT

1 1 1 1 -
—  < u < 1 ---and -1 + —  < u < 1 -----in Q m .
n n n n nx n nT

Proof. The existence and uniqueness of the solution of Problem

P follows from [18, Theorem 7.4 p.491 and a remark at the end of 
n 1 1  

Section 7 p. 492]. Also we remark that both — and 1 ---satisfy
n 1 n 1

problem P^ which, by Lemma 5.1 implies that ~  < u^ < 1 - — . Next

we show that |u I < 1 - — . We set w = u . Using the linear
1 nx1 n nx  ̂ 2+a

theory (see for instance in [12, p.72]) we deduce that w € C ^ nT̂  *
2 1

Thus w e C(QnT) n C ' ^ nT)• Differentiating the differential 

equation in P^ yields

t
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w. = D(u )(j>'(w)w + ^D(u )<{i"(w)w + 2D' (u )w<f>' (w) 
t n n xx \ n n x n n

+ D' (u ) (w) )w + D" (u ) <i> (w)w^ in Q
n Tn / x  n n *nT

w(-n,t) = 0 w(n,t) =0 for t e (0,T]

w(x,0) = ul (x) for x € (-n,n) .
On

In order to simplify the notation, we rewrite the equation above as

= a(*c,t)wxx + b(x,t)wx - c(x,t)w

where a,b,c are continuous functions and a > 0, c > 0.

The function w - 1 + — satisfies
n

a (x,t) (w - 1 + —) + b(x, t) (w - 1 + —) - c (x, t) (w - 1 + —) - (w - 1 + — ) > 0 
n xx n x n n t

in Q mnT

w(-n, t) - 0 w(n,t) - 1 + i s o  for t e (0,T]

w(x,0) - 1 + ^ < 0 for x € (-n,n)

Thus by the maximum principle w- 1 + —  ̂0, that is u < 1 - — .
2 1 n nx n

The bound u > - 1 + — follows in the same way. □
nx n 2

Lemma 5.3. / / u < C(R,T) for all R < n - 2
0 -R

where the constant C(R,T) does not depend on n.

Proof. Let m^ncUsuch that 0<m<n. Set

1 x < m - 1

m - x  m - 1  ̂x S m

0 x > m

C (-x) x £ 0
\  m

c

w
t

1
n

1 +

2
A

m
x)
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o
We multiply the differential equation for u by C u . to obtain

n m nt
the equality

/ / =  //( D(u )(j>(u )) u Ç 
' J nt m ft \  “ nx /x nt
Q Q
nT *nT

that is, after integration by parts

Thus

f/u2 = - if D(u ) -r— F(u ' )C2 - 2 ff D(u )<f>(u )u ç Ç ' 
nt Tn n 9t nx m n nx nt m m

Q Q Q
nT nT nT

s

w h e r e  t h e  p o s i t i v e  f u n c t i o n  F i s  d e f i n e d  b y  F(s) = / < f > ( T ) d x .

0
Thus

2 2 ? 2
UrvH + J D(UJT>>F<U (T)>£m_ nt m n nx m

nT -néi

£ / D(u )F(u' )ç2 + ,Î2 sup D sup <t>( ff Ì + sud D'sup F 
-n 0n 0n m I [0,1] C-l,l]' QnT m } [0/i] C-l?l]

ff

Finally, we find that 

T m-1
/  /  un t S C ( m , T )
0 -m+1

which concludes the proof of Lemma 5.3.

2
m

m m
I

which we rewrite as
nT

C,
2
m

A
f f

QnT

u
2
nt

ç
2'

’m

/ /

Q.nT

u
2
nt C,

2

m
Q,nT

D u
n <t>:unx

u
nx t

2
m

2 //
QnT

D u
n cP u

nx
u
nt

//
QnT

u
2

n t

2
Ç'm

< C
1
m + C,

2
/mT II

ssnT
u

2
nt Ç

2
m

i
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Theorem 5.4. There exists a solution of Problem C.

Proof. Fix R > 0. Since 1/n < u < 1 - 1/n and since 
n

I | ^ 1 - 1/n, it follows from Gilding [13] that

|u (x,t') - u (x,t)| < c|t - t' I*5 
n n

for all n > R and for all (x,t), (x,tf) e QRT := [-R,R] x [0,T].

Here the constant C depends on R but does not depend on n. The

set (u } « i s  bounded and equicontinuous in Thus there
n n> R ^ RT

exists a continuous function u and a subsequence {u }, with n > R
R nK K

such that u , converges uniformly to u in Q as n, 00 . Then by a 
nx x\ ki x

diagonal process there exists a function u e C ({?CT) anc* a converging 

subsequence {u_.}such that u^ converges to u as j -* 00 , pointwise on 

Q and uniformly on all bounded subsets of Q . Also it follows from
C 2

the estimates above that u . -> u and u. u weakly in L (0 ) for
j x x t T̂ T

all R > 0 as j -> 00 . Thus u satisfies conditions (i) , (ii) , (iii) of 

Definition 3.2. In what follows we check that u also satisfies (iv).

The function u^ satisfies for j sufficiently large:

(5.1) n {»jt* +D(u. ) <(> (u )
J J X "J -0

CT

for all \p e V : = {v e L2(0,T ; H1(]R)) such that v = 0 for large |x|}

Since || <f>(u. ) || ^ sup |<|>|, there exists x e L°°(Q„m) and
3X L (0CT) C-1,1]

a subsequence of {u^}, that we denote again by {u^.}such that

2
<(>(ujx) “>x weakly in L (2rt) ' 

for any R>0 as j-*00 . Letting now j-*» in (5.1) yields

(5.2) // {u \p + D(u)x  ̂ } = 0 for all \p e V
0 X 
CT

ext we show that

u
nx

o
C T
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(5.3) JJd (u ) (x - $(u )) <J> - 0 for all * e V .
Q x x
CT

We first write an inequality which is based on the monotonicity of the 

function d> and which involves the functions u . . This was also done by
J

Kalashnikov [17], for example.

Let us extend $ on JR such that <p(s) = (f)(1) for s > 1 and

♦ (s) = (f>(~l) for s < -1 and let v be such that v - u £ V. We have, with

m < n * Q m '•= (-m,m) x ( 0 ,T ) a n d  6 e ( 0 , 1 ]  
mT

// D(u) (<|>(u. ) - <KV ) )( ¿ ( 11. - v) ) = // r? D(u) (<|> (u ) - <j>(v )) (u - v )
Q J *  X \  111 J / X  O ^ J X X
CT mT

2 / / *m
D(u) (<Mu. ) -

j X + (vx))(uj ■
V)

mT

z If,m D(»)(*(uJx) -+(vx))(uji!- v K)

mT

- 6// c D(u) (<f>(u. ) - <fr(v ))
O m 3X x
mT

- jii °(u) <uj - v)

mT

> (1 - 6sup (f)' ) / / ? 2  D(u) (̂ >(u. ) - <|>(v ) )  (u . - v ) - 4 / / d ( u )  (u. - v)2 
[-1,1] Qm T m x Dx x 6 q 3

Setting 6 = 1/sup yields
[ - 1 , 1 ]

(5.4)
J/D(u)U(u ) - <Mv ) )(V>. - v)) ä -C // D (u) (u - v)2 .
f) \  J X  X /\ m j /x 3q x J /x Q
mT *mT

Since u satisfies the differential equation in Problem P , we also have 
n ^ n

+

2
Cm



Letting j -> 00 while keeping m fixed in (5.4) and (5.5) yields

(5.6) - JfD(u)<f.(v ) ((C2 u) - (S2 v) ) > - C JJd (u ) (u - v)2
*J x m x  m x  ^

Q QmT mT

2
Replacing iJj by u in (5.2) yields

(5.7) // (ufc (C2 u) + D(u) X u) ) = 0 
m m x

mT

Next we add (5.6) and (5.7) to obtain

JJd (u ) (x - <(>(vx)) (C2 u)x - (C2 v)x) > -C JJd (u ) (u - v )z

®mT ®mT

2 1
We set v = u - with y > 0, Cel* (0,T ; H (3R)) with 5 (x) 

for Ixl s m - 1. Then

//d(u)( x-<i>(u - y£ )) y£ >-y C JJb(u) £
. X X X

^CT ^DT

Dividing by y and letting y I 0 yields

JJd(u) (X - c()(u )) F > 0
Q X X
*CT

which in turn implies (5.3).

VI-24

(5.5) /J’D(u)<*,(ujx) U m uj}x

ömT

-  / / » < ”' -  D<Uj >>* V <Î  Uj>* -  ^ Uj t  i "j •

JJ
Q.mT

u
t
u

2
m JJD u

Q.mT

X K
2
m

V
x

2
i
m

ve



In section 4 we proved that u(t)-H€ L*(]R) . We show below

some extra invariance properties of Problem C, namely that if
2 2 2 

u' e L (]R)) , u (t) e L (3R) for all t > 0 and that u e L (Q__) •
U X t v*I

We suppose that the approximating functions u^n are such that

(it follows from the appendix that the construction 

of such functions is possible)

2 2 2 
Lemma 5.5. Let u' € L (]R) . Then / u (t)<J u' for all t>0.

U X o
3R TR

Proof. We multiply the differential equation

u = (d (u )<f> (u ) ) 
nxt \ n T nx /xx

by u and integrate on Q  ̂ := (-n,n) x (0,t) to obtain 
nx * nt

J/u . u
nxt nx

nt

= //fD (u )(t>(u ) ) u • _ V n nx / nx
nt

that is

J u (t) - J u' = -2 J/(d(u )<f>(u u J nx ■'On J1 V n nx / nxx
-n -n Q ^ x

nt

-  - 2 ¡J D’ (un),>(unx)unx unx* ‘  2 +' ("„x > “L x
n t nt

(5.8)

limsup
2u.

0
3R

£
2

On
n
u.

-nn-v«>

n n

Q.
/ / D u

n

VI-25
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Next we define the monotone function 

from (5.8) that

f uLlt) -  ? "On25  -  2 S ? *<un*’
-n nt

£ 2 ff D" (u )$(u )u < 0. 
JJ n nx nx

« n t

Thus

n o n o
f u z (t) < f ul
i nx J On
-n -n

2
Since the L -norm is w.l.s.c., this implies that

R 2 2 
J u (t) £ j u' for all R > 0 
-R x 0

TR

and finally that ||û (t) || - £ |f.u ' llT2 /10v
L  ( H )  0  L  ^

2 2 
Lemma 5.6. Let u^ e L (]R) . Then ufc e L (QCT)

Proof. The proof is close to that of Lemma 5.3. Here one multiplies 

the equation for u^ by

2
Remark 5.7. If one assumes that u^ e L (2R) , it is not necessary 

to use the cut-off function £ in the proof of Theorem 5.4.

Theorem 5.8.There exists a solution of Problem N.

Proof. The proof is very similar to that of Theorem 5.4. It uses 

the same auxiliary problem P^, but now on the fixed domain D

$ ,s
s

;
u

T dT . It follows:= J cb (T ) T dT .

//D* u
n

u
nt

Q,•NT
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We shall now study the existence of a solution of Problem CD. An 

essential problem here is to find a lower bound on u^iOjt), which 

is obtained by considering a suitable lower solution for the problem. 

Therefore, we first study the corresponding stationary problem

Definition 5.9. A function ŷ  is said to be a weak solution of 

Problem if it satisfies

Remark 5.1u. ix y^ is a weax solution or Fro Diem S^, then y^ 

satisfies the differential equation a.e.

Lemma 5.11. Let y^ be a weak solution of Problem for A>0.

On the set where y^ is positive, it satisfies:

(i) y^ is continuous, (ii) y^ is strictly decreasing, (iii) y^ is 

convex.

Proof. If y is a weak solution of S. for A>0, then it satisfies
A A

!
D(ŷ )<t>(yp + Xŷ  = 0 in ]R+

(0) = A ŷ (°°) = 0

sX

D :y :yf + Xy' 0 in 3R
+

y o A r y 00 0 if A > 0

(i) ŷ  e H* (0,R) for ail R > 0

(ii) 0 S ŷ  £ 1 , -1 < yĵ £ 1 a.e. in (O,00)

(iii) yx(0) = A ; y^(“} = 0 if X > 0

(iv) J+ (d(ŷ ) 4> (ŷ ) + = ° for a11 ÿ 
]R

such that * vanishes for large x .

y\

r D y  d. v M

s.
A

Ay )ÿf = 0 for all ÿ e H n (3R+) 
A U

sX
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(5.9)

Thus

at points where 0 < < 1 , which implies that is continuous 

and strictly negative in those points. Next, we show that y^ is

convex in a neighborhood of each point where it is positive. We
x x D(x) - xD'(x) 

define d(x) = - tt-t— . on (0,1). Since d'(x) --------- -̂------ ,
D (x)

it follows from the concavity of D tha!t d is nonincreasing on (0,1). 

Let 0 < Xj < * 2  be such that ' ^x(X2̂  £ T^en

yx(x2) < yx(xi) 

and thus

-yX(*2> 2 -yX(xl>
D(y^(x2)) Diy^tXj))

which yields

<p (ŷ  (x2)) >. <p (y^ (Xĵ )) 

and finally

yX (x2) * yX (xlK

Lemma 5.12. Suppose X > 0. Problem S^ has a unique Weak solution if

and only if X < X := (-<M-D) .
max A

♦ yx
t

yxx
D yx

o A

yx yx

yx X
1

D A
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(5.10)

(5.11)

proof. It follows from (5.9) that has no solution if the con­

dition X £ (-<(>(-1)) is not satisfied. Next we supppose that 

this condition holds and construct a solution y^ which will turn out 

to be the unique solution of Problem .

We deduce from Lemma 5.11 that if y^ is a solution, there exists 

e (0,»] such that y^ is positive and strictly decreasing on 

( 0 , )  and that y^(L^) = 0. In order to calculate and on 

the interval (0, ) we take as new unknown on that interval the inverse 

function x := a(y^). It coines to solve

D(yX} ( 1 \
X -------- ♦( ■■■, .• • . on (0,A)

f yx ^ (*x> >
a (A) = 0

Thus

t \ f d s  o ( y J  -  -  J
x yx «i»-1 (-xs/d (s) )

and

L = a ( 0) = -  J  d s
0 <j>_1 (-Xs/D(s) )

so that ,which by (5.11) has a finite value, and the function 

y^ on the interval (0,L^) are uniquely determined. Note that = 0

for all x > L. since otherwise there would be a point x such that

0 < yx(x) < 1 and (x) > 0 which contradicts (5.9). a

Corollary 5.13. Let 6 e [0,L. ] be such that y1 > -1 on (6,L.).
ry  A A

Then € C ( ( 6 , ) .

Proof. Corollary 5.13 follows from the fact that the elliptic equation 

in Problem is non degenerate in (<5 ,L̂ ) . Q

S
X

D(A)

S
X

L
'X

L
X x

A

L
'X

A

L
A

yx x = O

yx

y\

s
A
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We remark that if X < X , then y'(0) > -1 and y e C ([0,L )).
max A A A

Lemma 5.14. If X = 0, the unique solution of Problem jbs Yq = A.

Proof. Integrating the differential equation in yields 

| D (yQ) $ (ŷ ) = C in 3R+

y0(0) = A .

If C = 0, then y^ = A. We claim that C must be equal to zero.

Suppose not and let C > 0. Then y^ e C*([0,+ «))f 0 < y^ < 1 and

y^ > 0. Since y^ is increasing and bounded from above, it tends

to a constant as x ■> w . Hence there exists a subsequence i*n}

such that y'(x ) -> 0 as x -> «».This is in contradiction with 
U n n

the differential equation. Similarly, one can show that C cannot 

be negative. D

Lemma 5.15. (i) y. is decreasing in X .
A

(ii) Let X := X - 1/n ; as n + ® , y, converges to 
n max A

uniformly on compact subsets of 3R+ .

max

Proof. Property (i) follows from (5.10). As n -* 00 , y ^  decreases
r * j

to a limit y, which satisfies Properties (i), (ii) and (iii) of

Definition 5.9. In order to show that y = v , one also has to 
^ 2 X̂-max

show that y satisfies the integral relation (iv) in Definition 5.9. 

This is done in a similar way as in the proof of Theorem 5.4. □

We are now in a position to prove that there exists a solution of 

Problem CD, however with some extra assumptions on X, A and Uq .

2

s
'x

s
X
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CD

f ' 0 < X < X  = ^ ■ ) (-<f>(-D) ; u. £ A on M + ; 
max A T 0

if A = 0, A < s sup {s 6 (0,1) such that D'(s) = 0} ;

H,if X > 0, uQ > y x.
max

on 3R+ .

Next we consider the regularized problems, with n e XI large enough

CD
n

'Ut = (Dn (u)<t>n (V ) X + *nux in := (0'n) * (0' 

u(0,t) = A ux (n,t) = 0 for t e (0,T]

T)

l̂u (x, 0) = uQn(x) for x e (0,n)

where X := min (X,X ) and where u.. satisfies 
n n 0

n 00 +
: u_ £ C (]R ) , u~ (x) = A for x in a neighborhood of zero, un < A, 

U On Un Un
U q ( x ) = 0  f o r  x  > n ,  u ^  c o n v e r g e s  u n i f o r m l y  t o  Uq o n  c o m p a c t

subsets of ]R+ as n -* 00. If X > 0, then u. > maxi A(l+y\ (0)),
Onun An

y^ }and |u^n | < -y^ (0); if X = 0, then u0n > 1/n and |u^n | < 1-1/n
n

On On1

We show in the appendix that, given an initial function u^ which satis­

fies H and H , 
0D CD

one can construct a sequence {u qr } which

satisfies the above properties.

As in the case of Problem P^, one can show that a comparison principle

holds and that Problem CD has a unique solution u which is such that
n ^ n

A (1+y.! (0)) ^ u  ̂A and u ^ -y.! (0) if X > 0(resp. 1/n < u < A and 
Aĵ n nx n ^

u  ̂ 1-1/n if X = 0). In order to show that u > y' (0) if X > 0 (resp. 
nx nx A

1 n 
u > -1 + — if X = 0) a lower bound for u (0,.) is necessary, 
nx n nx

Lemma 5.16. Suppose that X > 0. Then u > y in , which implies
n a i-

that u (0,t)  ̂y 1 (0) for all t e Co ,t ]. n 
nx A

H

Q,T
n

H
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Proof. Assume that n is large enough so that L < n. Since
n

u ^ 0  in o!i , we have that u  ̂y-v in Cl, , n] * [0,T]. Also, 
n T n An An
since y, satisfies 

n

(D(y. )+ (yi ))' + X y* = (A - X )y * > 0  for x e (0,L. )
Xn n n n n n An n

yx (0) = u (0,t) = A Y x  (Lx ) = 0 < ,t) for t € (0,T]
n n n n n

y, < U- for x e (0,L. )
XR On Xn

it follows from a comparison principle argument that u > y on
n n

[0,L. ] x C0fT ]. □
n

Lemma 5.17.If X = 0f un > y := max (A-(l - l/n)xf 0) in q£.

Proof. Again suppose that n is large enough so that n > A/(l - 1/n). 

Obviously u^ > y for x € Ca/(1 - 1/n),n]. It remains to show that

(D (y) <f> (y ’1)) 1 > 0 for x < A/ (1 - 1/n)

that is

D 1 (y) <f> (1/n - 1) (1/n- 1) > 0 

which follows from the assumption that A < s.

Theorem 5.18. There exists a solution of Problem CD.

Proof. From Lemma 5.16 (resp. Lemma 5.17 if X = 0) , it follows that

u - y-! (0) (resp u  ̂ 1/n - 1 if X = 0) . In particular, |u I < 1 
nx ^Xn ^ nx * 1 nx1

on Q , thus there exists a sequence {n, } and a function u e C(Q )
I K *DT

such that u tends to u as n -► °° uniformly on compact subsets of 
n, x 

___ k
Qdt. It follows at once that u satisfies condition (i)-(iii)of the 

definition of a solution of Problem CD (Definition 3.3). The proof

u
n

L
À.
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that u also satisfies the integral condition(iv) of Definition 3.3 

is quite similar to that of Theorem 5.4. However it is convenient 

to consider the function u := u-y^ as the new unknown function, in 

order to have a homogeneous boundary condition in the point x = 0. □

Note that the following results hold .

Theorem 5.19. Let u be the solution of any of the three problems. 

Then u e C(Q) where Q denotes either (-1,1) x B + or E  x 3R+ or 
+ +

E  x E  .

Theorem 5.20. (Comparison principle) .

(i) Let u^ and u be the solutions of any of the three problems with 

initial functions u^^ ^ U02* T^en ul ̂  “ u2 ̂  ^or >

(ii) Let X € [ X n,X„]c[o, X ] and let u be the solution of Problem
1 max

CD. Then if y. < u < y. , y, £ u(t)  ̂y. for all t > 0.
1 0 2 1 2

Finally we remark that the hypothesis D"  ̂0 is necessary to obtain

the uniform bounds on u in the proof of Lemma 5.2.
nx *

for all t > 0.
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6. The large time behavior

6.1. The case of the Neumann problem. Convergence to a constant.

In this subsection, we show that the solution of Problem N converges 

to a constant as t -* 00 ; we adapt a proof of Alikakos & Rostamian [ 1 ] 

and Dafermos [9] based on the use of a suitable Lyapunov functional .

We first give a result in the case that u is bounded away from 0 and 1.

We denote by u(tfu^) the solution of Problem N with initial function Uq .

Theorem 6.1. Let 6 < u^ < 1 - 6 for some 6 e (0,1/2). Then there 

exist constants K > 0 and a = a(6) > 0  such that

u

L (-1,1)
00

< Ke
-at

t > 0.

Proof. We first consider the solution u of the problem N
n ^ n

u in

N
n

u (-l,t) = 0  u (l,t) = 0 for t e (0,T]
X X

u(x,0) = uQn(x) for x e (-1,1) ,

where u_ satisfies 
On

U0n e C°°<E-1,1]), 6 ^ u0n - 1-6 ' K J  " 1 _1/n'

u * (-1) = u' (1) =0, converges to u_ as n
On On On  ̂ 0

uniformly in [-1,1].

Using the methods developped in section 5, one can show that the

solution u of Problem N converges to the solution u of Problem N 
n n

uniformly in Q
NT

Let v = u - — i u. . Then v satisfies the problem 
n n 2 : On n

t, u
0

1
2

1

;
-i

u
0

t
D U <f> u

X
X

QNT

-1

1
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1
and is such that / vn (t) = 0 for all t e [0,T]. We multiply

-1

the equation for and integrate by parts. This yields

1 A 1 2 1
— —  / v = - J D(u )<f>(v )v
2 dt n ' n nx nx

Now since <j>' > 0 with <p’ (0) > 0, there exists p > 0 such that 

14> (s) | S yi|s| for s € [-1,1]. Thus

1

which implies that

Letting n -> 00 , we obtain

(6.1) ||v(t) || < K e-0^
L (-1,1)

where a. = j- inf D. Next, observe that since v(t) is Lipschitz
1 4 C6fl-6]

continuous with respect to the space variable, it satisfies the inequality

v
t D un v

X X
in QNT

v
X

-1 t: o V
X

l,t) 0 for t e (0, T

v x,0 v
On

x u
On

x
1
2

1
J

-i

u,
On

for x e (-1 91) »

by v
n

2
d
dt

1
;

-i

V
n

< -y inf
6 1 - 6

D

1

;
- i

V
2
nx

< y
4

inf
6 1 - 6

D /
- i

v
2
n

V
n

/
-1

2
v
n

<
1

;
x- i

V
2
On

e

u
2 inf D t

6 1 - 6
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1 ? 1
\ ilvtt)h 2œ < ;iv(t)i £ Vi||v(t)II

L (-1,1) L (-1,1)

which combined with (6.1) yields

o/zi “0«t/2
Il v ( t )  II „  s 2 ViÇe

L (-1,1)

Theorem 6.2. Let 6 < u^ < 1 for some 6 > 0. When t 00 , u(t,ug)

! 1
converges to the constant o' / un uniformly on[-l,l].

-1 U

Proof. Since (u(t), t > 0} is precompact in C([-l,l]), there exists 

a sequence it } and a function q e C([-l,l]) such that

u(tn) q as t^ ->• 00 uniformly on [-1,1]

In particular u (tn) converges to q in L*(-l,l). Defining the co-limit 

set of Uq by

co (û ) = (w e L^ (—1,1) : there exists a sequence t 00 such that 
u n

i

u(t ) + w in L (-1,1) as t -*<*>} 
n n

we conclude that w(Uq) is not empty. Define V : L*(-l,l) + R  by

- ess inf v(x) if - ess inf v(x) < +°° 
x e (-1,1) x e (-1,1)

otherwise.

Since u(tg) > ess inf u(tg), we have that, for t > t^, 
xe(-1,1)

u(t) > ess inf u(t ). This follows from the comparison principle 
x (-1,1) U

and the fact that constants are solutions of Problem N. Thus

V(u(t)) < V(u(tg)) for all t,tg such that t £ tg

V v

+ 00
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which shows that V is a Lyapunov functional for Problem N. Since 

this functional is lower semi-continuous in L*(-l,l) and since the 

orbits are Lyapunov stable (because u satisfies a contraction 

property in L*(-l,l)) , it follows from DaFermos [9, Proposition

4.1] that V is constant on oj(Uq), say V = -W. Next, we show that 

for any w^ e ü)(Uq)

( 6 . 2 )  wo^x  ̂ = W ^o r  x € ( - 1 / 1 ) •

Since

1 1 

. {  "0 -  “ 0 '  2

and since w^ < 1, it follows that W < 1. Now suppose that (6.2) is 

not true. Then for sufficiently small y e (0,1-W) the set

= {x € (-1,1) : wQ(x) > W + y} 

has a positive measure. Define

if Wq (x ) < w + y 

if Wq (x) > w + y

and let w and w be the solutions of Problem N with intial values 

Wq and Wq respectively. Since 6 < w g < w + y < l , w e  have that 

6 < w  < W + y <1. Thus, by Theorem 6.1, w(t) converges to 

! 1
— / Wq as t -* 00 , uniformly on [-1,1].

V x)
J V X)

*W + u

for all

1

/
-1

n
u

-1
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Hence for given n > 0, there exists T(n,y) such that

« 1
w(t) > 2  J Wq - n for t > T(n,y)

Since Wq < Wq , the comparison principle implies that w  ̂w. 

Therefore for t > T(ri,y)

Thus

w(t)  ;> J  (2 -  | a  |)w + J  |ft | (w + y) -  n = W -  n+ -̂ —1  y.

For fixed y , we choose n sufficiently small so that 

w(t) > W + v for some v > 0.

Then

V(w(t)) < - W, for t sufficiently large, 

which is a contradiction.

j 1
Theorem 6.3. When t •+ » , u(t,ug) converges to the constant ^ / u q  

uniformly on [-1,1].

Proof. We now take as the Lyapunov functional

w(t) ^ / w o " n = i  * ï o  +  i  /  2Î0  -  Ti*

( - 1, i )\£2 n-
' y y

-1
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if ess sup v(x) < + ® 
x e (-1,1)

otherwise

Then V is constant on oj(Uq) , say V = W. The reasoning then follows as 

in the proof of Theorem 6.2. The auxiliary function is now defined as

if wQ (x) > W - ÿ 

if wQ (x) < if - y

with y e (Q,W) * Then wq > 0 and by Theorem 6.2 the solution w of Problem 

N with initial function w^ converges to ~ } w^ as t ■> 00, which in turn 

implies the contradiction *

V (w (t) ) < W

for t sufficiently large. □

Corollary 6.4. There exists t^ > 0; K> 0 and a = a (tg) > 0 such that

1 1
llu(t'u0} " 2 f Uoll « 5 Ke_a for a11 - V

° 2 -1 ° L (-1,1) °

wo (x)
' r.7

WQ (x)

W - u

ess sup v(x) 
x e (-1,1)

+ oo
V ( v )  =  B

Proof. Corollary 6.4 follows from the uniform convergence of u(t)

1
/ uQ e CO, 1) as t -> <».

6.2. The Cauchy problem in the case that D(u) = u(l - u). 

Convergence to similarity solutions.

In this section, we first construct a class of similarity solutions and 

then give a convergence theorem.

-1
to 1

2
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Following de Josselin de Jong C14 D and van Duyn [10H , we look for 

a similarity solution of Problem C of the form

(6.3) u (x,t) = f(n) = 
s

if n

i

1

if

if

with n = x/g(t) where the function g is still unknown and has to be 

determined. Substituting (6.3) in equation (1.1) with D(s) = s(l-s), 

we formally deduce that g must satisfy the differential equation

(6.4) g 1 (t) =2<f>
1

which we solve below together with the initial condition 

g(0) = g Q ^ 1 .

Note that l/gn corresponds to the slope of the initial value u (x,0) 
u s

for x e (-gQ/2,gQ/2).

We set

* , T )  = / - S i -  .  /  f o r  T i  1.
! *(j) 1/t *(u )u

Remark that since * (0) > 0, $ (+00) = +00. Thus the function $ , which 

is strictly increasing,maps [l,00) on to [0,“). Integrating the differential 

equation (6.4) yields

$(g(t)) = 2t + i>(!g0) 

and thus

g(t) = $-1 (2t + $(gQ)).

O

2

< 1

2

1
2

< n < i
2

n > l
2

g t:

,(T) . / _ Î 5 _  , I ----for T * !.

¡ + ( ÿ  1 / t  $ < u ) u
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The function u is such that 
s

u (x,t) = 0 for x ^ S-(t)
s £

0 < u (x,t) < 1 for S-(t) < x < S (t)
s f s

u (x,t) = 1 for x s s (t)
s s

where

S_(t) = -g(t)/2 and S_(t) = g(t)/2 
X s

and the velocity of the two fronts is given by

It remains to show that u is a weak solution of Problem C. It is
s

immediate that ug satisfies properties (i) and (ii) of Definition

3.2. Since (u (1-u )<f>(u )) £ L^(Q ) and since u satisfies equation
 ̂S S SX J CT S

(1.1) a.e., it easily follows that ug satisfies the integral equation

(iv) of Definition 3.2.

Next, we give a convergence theorem which extends a result of van Duyn 

[11] in the case that <f>(s) = s.

Theorem 6.5. Suppose that D(u) = u(1-u).Let u^ be such that u^(x) = 0 

for x < and U q (x ) = 1 for x > with -00 < x^ < < +00. Then there 

exists C > 0 such that

u(tfun) - f(./g(t))|| ^ < C/g(t) for all t > 0.
L (]R)

Proof. We choose g^ = 1 ; then g(t) = $ * (2t) . In view of the hypothesis 

on Uq , there exists d > 0 such that

f(x-d)  ̂Uq (x ) ^ f(x + d) for x e iR .

S
f
i t *

1
:t

and S
s
t i=

l

g t:

X
2

x
2

Ver t

X
1
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Then by the comparison theorem

f ((x - d)/g(t)) < u(x,t) £ f ((x + d)/g(t)) for all (x,t) € Q ^,

which implies that

|u(x,t) - f (x/g (t)) | < |f ((x + d)/g(t)) - f ((x - d)/g (t)) | <; 2d/g(t)

□

6.3 The Cauchy-Dirichlet problem : convergence to the stationary 

solution.

In what follows, we show that the solution of Problem CD stabilizes as t-*00. 

The idea of considering sets of the form ]R+ x(t,t+T) was suggested to us 

by M.Bertsch.

Theorem 6.6.(i)If A> 0 and if satisfies the hypothesis Hc d  and is such 

that U q < y- for some X e (0,A], then the solution u(t,ug) of Problem CD

converges to the stationary solution as t , uniformly on HR .

and Uq satisfies HCD, u(t,ug) converges to A as t + ® , 

uniformly on compact subsets of 3R+ .

Proof, (i) It follows from the comparison theorem 5.20 that

Yx < u(t,yx ) <u(t,uQ) < u(t,y_) < y_ for all t > 0. 
max max  ̂ ^

The proof will be completed if we show that u(t,y^ ) and u(t,y^) converge 

to the stationary solution y^ as t -*■ 00 . Since both proofs are similar, 

we only show the convergence result for u(t,y. ) .
max

for all x € IR and 0 < < T < CO #

u
O

(ii) If X 0

max

yx
00

t
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Using again the comparison principle we deduce that

u (x ,ŷ  ) <u(t+x,y^ ) for all t, x > 0 
max max

and thus that u(.,y. ) is nondecreasing. Since furthermore u(.,y. )
Amax o 1 — x- max

< A, there exists a function q e C ' (]R+) such that

) ■> q as t 00
max

uniformly on compact subsets of 3R+ . It remains to show that q = y^. 

Obviously q(x) = 0 for large x and q satisfies properties (i),(ii),(iii) 

of Definition (5.9). Next, we show that q also satisfies the integral 

relation (iv). In order to have a homogeneous boundary condition in 0, 

it is convenient to make the change of functions

u = u - y^ and q = q - y^.

Then u satisfies the differential equation

(6.5) ut = ^D(u + y^) <f> (ux + yĵ )) + + 

for (x,t) € 2R+ x 3R+ . Set

w ^  (x,s) = u(x,s + t).

Then w ^  satisfies the differential equation (6.5) as well as the boundary 

condition w ^  (0,.) = 0. Let x > 0 be given. Then

(6.6) / w (t) (x)iMx) - / w (t) (0)<M0) =
]R+ ]R+

u t yx

ût  = ( d (u + y^) ♦  (üx + y - ) ) x + X(5x + y¿)



(6.7)

(6.8)

(6.9)

(6 .10)
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= f  /+ {w(t)*t -(D(w(t) + yx)<f>(w(̂ +  y^) + A(w(t) + yx)) *x }
0 IR

0 1 O
for all \f> £ L (0, t;Hq (]R+)) such that ip̂ e L (]R+ x (0,t)).

Note that

(i) w ^  -»• q as t -* 00 , uniformly in ]R+

— 00
(ii) there exists a function X € L ((O,00) * (0,x)) and a sequence

(t } such that 
n

(V  -  2 2
<f> (w + y') -*• x weakly in L (0,T; L (O,00))

X A

Letting t -> 00 in (6.6) and setting ip = ip(x) yields

JT /  (D(q + y ) x + Mq + y-v))^' = 0 for a l l  <fi e H*(!R+ ). 
0 3R+ A A 0

We show below that

JT J D(q + y^) (x - <f>(q' + y{))<K = 0 for a l l  ip e H* (1R+) 
0 3R4

2 1
Let v e L (0,t ;Hq (3R+) ) . Since if> is monotone, we have thàt

(t ) (t )
J / D(q + y ) (4> (w n + y') - <p(v + y') ) (wx - v ) > 0
0 A X  A X A X X

(tn) (V
and since w satisfies (6.6) , we also have, putting ip = w

It) (t ) (t )
J / {D (q + y,) <{>(w + y') + A (w + y )}w
0 3R+ A x  A A x



(6 .11)

(6 .12)
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(t ) (t ) (t )
J J {D(q + y ) - D(w + y,)H(w + yi)wv

0 ]R+ A A x A x

1 ( t n >  9  1 ( t J  91 ft 1 r . n . _ NXz
- y  J (w (t)) + ^  J ( w  (0))

]R+ ]R+

Letting t^ tend to infinity in (6.9) and (6.10) yields

~ JT / (D(q + y ) x v + A (q + y,)q'} 
0 JR+ X x A

~ fT I + D(q + yA)<Mv + yp(q' - vx) > 0.
0 ]R

Replacing i|i by q in (6.7) gives

JT / (D(q + y.) X+A(q + y )}q' = 0
0 M +

Next we add (6.11) and (6.12) to obtain

J T J D (q + y ) (x -  <(> (v + y ' ) )  (q' -  v  ) S 0
0 ]R A x  A x

We set v = q -y£ with y > 0 and 5 e Hq (]R+) . 

Then

r  I  D ( q  +  y x ) ( x  -  <l>(q' +  y{  -  m £ ' )  mC'  £  o
0 ]R+

TR*
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Dividing by y and letting y + 0, we obtain

f  J D(q + y ) (x - <J>(5' + y^)5’ 2= 0 for all I € H*(]R+)
0 ]R+

which in turn implies (6.8). Combining (6.7) and (6.8) we obtain

JT f (D(q + y ^ M i*  + y p  + X(q + y^))ifr' = 0 for all i/j e H*(]R+)

0 3R+

from which we deduce that q = q + y^ satisfies the integral relation

(iv) of Definition 5.9. Thus q = y^ and q = 0.

(ii) The proof of (ii) is quite similar to that of (i). However, since 

we do not suppose here that u has compact support, one has to use cut­

off functions in several formulas. □
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A P P E N D I X

We prove below two approximation lemmas

Lemma A1 . Let u„ satisfies H„„. Then there exists {u_. } satis-0 2 OC On
fying H- . If u' e L (3R) , {urt } satisfies in addition 

On 0 On

n  2  2
limsuo / u* £ f u'

" 0 n  ^  0n-x» -n ]R

Proof. Set

„ O n  -  ( 1  -  2 / „ ) u 0  +  1 / n

and

u_ (x) = On

I'maxt— , (1-—)(x + n/4) + u (-n/4)) if x £ -n/4 , 
n n Un

uQn(x) if IxI £ n/4 ,

m i n ( l (1-—) (x - n/4) + un (n/4)) if x S n/4
* n n Un

Using the function

0 if |x| > 1 ,

C exp(l/(|x|2 - 1)) if | x | < 1 ,
p(x) = { 2

I- r exn (1 / ( x I

where C is a constant such that / p(x)dx = 1, we define the sequence
3R

uQn (x) = n Jp (n(x - y) )uQn(y)dy .
]R

Then one can check that if n is large enough,u^ satisfies the hypothesis 

Also if u^ e L2(]R) , then

where lim C(n) = 0. □
n-x»

H
On

+n

/
-n

u
2

On
<

n

/
-n

2
u
On

< u
0

2

L
2

i r :

+ C n
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Lemma A2. Let satisfy Hqd and Hcr). Then there exists ^uQn  ̂

satisfying Hq .

Proof, (i) The case X = 0. Set

U0n = (1 - 1/(An))(uQ - A) + A

and

u max(-(1 - 1/n)(x - 1/n) + A, u (x))
On

max(-(1 - 1/n)(x - n/4) + un (n/4), 1/n)
Un

if x £ 1/n 

if 1/n < x < n/4 

if x > n/4

a ~
where we assume that n is large enough so that u ^  = u ^  in an interval 

of positive measure. Let

u (x) = 2n J p (2n(x - y)) u (y)dy for x > 0
On ' On

3R

Then one can check that u satisfies the hypothesis for n sufficiently

large.

(ii) The case X > 0. We first construct an approximation of ŷ
Amax

We set

y^ = max(y^ , A(l+yj^ (0))) 
n n

and

if x < 1/n
:„,x) - {

yn (x - ̂ ) if x i 1/n.

u
0

On
x

u
On

H
n
O

yn

A
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Let (e } be such that e > 0 and e + 0 as n 00 and let 
n n n

y (x) = -7- / p(^r^) y (z)dz for x s 0
“ ~  TD \ ^  “n 3R n

Then one can check that for n large enough and for small enough

y satisfies the hypothesis H_ in the case that u^ = y. 
n 0 0 Amax

In the general case that u^  ̂^Xmax °n ^  ' We Set

■ {

max (ŷ  (x) , - y  ̂ (0)(uQ(x) - A) + A) if x S n/4

max(A(l+y^ (0)), yĵ (0) (x - n/4) + uQn(n/4)) if x ' n/4 
n n

and

A
U

if x < l/n

u (x - l/n) if x ^ l/n
Un

Again one can check that the function u^, defined by

for x S 0

which is such that u ^  ^ y^ , satisfies the hypothesis for n large 

enough and small enough. 11

u
On

x

On
x

A

u
On

x
1

e
n IR

P
x-y
e
n

A
u
On Y dv

H
n
0

e
n

e
n
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1. INTRODUCTION
N

Let ft be a bounded domain in IR (N > 1) with smooth boundary 3ft. We con­

sider the nonlinear evolution problem

u^ = &p(u) + div(u grad v ) in ft x IR+

(P) 7—  tp (u) + u 7— • = 0  on 3ft x l  +
3v 3v

u(x,0 ) = Uq(x) in ft.

Here v denotes the outward normal at x e 3ft, the function (p is a smooth 

function such that tp(0 ) = 0 , (p* (s) > 0  for s > 0 and cp* (0 ) = 0 , the
OO 1 OO

initial function Uq e L (ft) is nonnegative and v e W ' (ft) is a given 

function (for the precise assumptions we refer to section 3).

In section 2, we show how Problem P arises in the theory of population
2

dynamics in the case that tp(s) = and interpret some of our results 

in terms of the geographical location of two biological populations.

This paper is divided into two main parts.

In part I we discuss the large time behaviour of the solution of Problem 

P. In part II we collect the basic results about Problem P: existence, 

uniqueness and regularity of the solution.

In part I we prove that the solution u(t;uQ) of problem P stabilizes to 

equilibrium. Let E denote the set of equilibrium solutions; then there 

exists a function q e E such that

where q satisfies

u (t;Uq ) q in C(ft) as t

/ qdx = /u~dx.
ft ft

In addition we give a characterization of E: we show that E coincides 

with the set

ip(s) = hs2

-> 00
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S = {w £ C(i!) :w i 0 in fi, and for every x e ft either w(x) = 0
\ 1 • X )

or $(w)+v = constant in a neighbourhood of x}.

Here
g

$ (s) = I ? dXf s > 0. (K2)

0 T

The proof of these results is given in the sections 4 and 5. In section 

4 we show that solutions of Problem P satisfy a contraction property in 

L*(ft). In section 5 we follow an idea of Osher and Ralston [18] and 

exploit this contraction property, combined with the structure of the 

set S, to Construct a Lyapunov functional.

A remarkable detail of the proof is that we do not study the elliptic 

problem to prove that E = S. Also this fact follows from the contraction 

property and the structure of the set S.

In section 6 we extend the above results to the case when the natural 

boundary condition is replaced by a homogeneous Dirichlet condition.

In part II, we show that Problem P has a unique solution in some gener­

alized sense. In section 7 we construct a solution u(t;u^) of Problem P 

as the limit of solutions of related uniformly parabolic problems. It 

turns out that the set {u(t?uQ) ?t £ 1} is precompact in C (ft), thanks to 

a regularity result of DiBenedetto [7].

In order to show that the solution of Problem P is unique, we are led to 

use another sequence of regularized problems, following closely a method 

of Kalashnikov [12,13]. This is done in section 8.

Finally, in section 9, we give the corresponding results about the 

Dirichlet problem.

Studies concerning the existence and uniqueness of the solution of 

problems related to Problem P have also been done by Aronson, Crandall 

and Peletier [3], Diaz and Kersner [6], Gagneux [10], Madaune [17] and 

Toure [21].

There exists an extensive literature about the large time behaviour of 

solutions of degenerate parabolic equations. However there are not many 

articles where one constructs a Lyapunov functional in order to establish 

the stabilization to equilibrium. We have already mentioned the work of 

Osher and Ralston [18]. Such a method is also used by Aronson, Crandall 

and Peletier [3], Schatzmann [20] and Alikakos and Rostamian [1,2].

, , , f tp* (-c) ,
$ (s) = / —---- dr,

0 T
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2. BIOLOGICAL CONTEXT

Problem P arises in the theory of population dynamics. Conside^f a popu­

lation in a finite habitat ft which consists of two different groups, 

for instance age groups. Let u(x,t) and v(x,t) denote the density of 

these groups. In order to model their evolution with time, Gurtin and 

Pipkin til] propose the following system of equations

u. = div(u grad (u+v)) in ft * 1R+
t A

v = k div(v grad (u+v)) in ft * IR ,

where k is some positive constant. The flow of the populations is de­

scribed by the dispersal velocities: grad(u+v) for the u-individuals 

and k grad (u+v) for the v-individuals. In particular, when the para­

meter k is small, the v-individuals disperse much slower than the u- 

individuals.

In this article, we study the problem in the limit k = 0. The second 

equation yields at once that v is constant in time; remains the equa­

tion in u which coincides with the differential equation in Problem P
2 ^

if we set cp(s) = *3S . The boundary condition expresses the fact that no 

individuals can leave or enter the habitat.

An interesting consequence of our results is the following.it follows 

from (1.1) that, for any non-constant function v(x), the set E = S 

contains a non-trivial function q(x) such that

q — 0 m  f t Q  ci f t  f  q > 0 m  ft\ft̂

for some nonempty subset ftg. If Uq £ q in ft, then u(t;ug) ^ q in ft 

for all t > 0. In particular

u (t;Uq ) S 0 in ftQ for t ^ 0.

From a biological point of view this phenomenon of lo c a l i z a t i o n  is 

interesting: the v-iridividuals can stop the spread of the u-individuals.

A detailed analysis of this model in one space dimension was given in

[4].



Let us first state the precise hypotheses on cp, Uq and v and give a 

definition of a solution of Problem p.

HI. (pe C3(m+ ) n c1 (1R+ ) , cp(0) = ip' (0) = 0, / T_1cp' (T)dT < “ ,

(p* (s) > 0 for s > 0, cp" (s) > 0 for s e (0fs^)^for some Sq > 0.
1 CO ^

H2a. v e W ' (ft) for some smooth domain ft => ft, and Av > -M in ft in the 

sense of distributions for some M > 0.

H2b. If N > 2, v e W2'P (ft) for some p > N.

H2c. v has finitely many local strict minima.
2 1 

H3. If N = 1 either tp(s) = ^s or v" e L (ft) .
00

H4. Uq e L (ti), Uq > 0 a.e. in Q.

We use the notations Q̂_ = ft*(0,t] for t > 0 and Q = Ü * 3R+ .

DEFINITION 3.1. Afe say that a fimction u : [0,°°) -> L* (ft) is a geneic- 

alized solution of Problem P if it satisfies:

( i) u € C([0,t]; L*(£2)) n L (Qfc) for all t > 0;

(ii) /u(t)ip(t) = /uQt}j(0) + //{cp(u)A4> + ui|>t - u grad v gradi|<}

ü Qt 
for all t > 0 and all ij/ec2'* (Q) suoh that ip >0 in Q and = 0 on

uV
xIR .

A generalized subsolution (reep. supersolution) of Problem P is defined 

by (i) and (ii) with equality replaced by <(resp. >).

In the sequel we shall often omit the word generalized.

In part II, we shall prove the following results.

We suppose that the hypotheses Hl-H2a-H4 are satisfied.

proposition 3.2. There exists a unique solution of Problem P. 

PROPOSITION 3.3. (Regularity). Let u be the solution of Problem P. 

Then u e C(Öx(0,°°)) and the set (u(t); t > 1} is bounded and equi- 

continuous. Furthermore if e c (Ö.)} then u e c (ftx[0,°°)) . 

proposition 3.4. (Comparison Principle). Let u(t) and u(t) be respect­

ively a subsolution and a supersolution of Problem P with initial 

functions Uq and u^ such that Uq ^ u^. Then u(t) ^ u(t) in 0. for 

t > 0.

. PRELIMINARIES

VII .4 .

3

1

8iii

9Í2

u,
O
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PART I

CONTRACTION IN L*(ft).

In this section we prove a contraction theorem which turns out to be our 

main tool when studying the asymptotic behaviour of u(t) as t -*■ 00 .

THEOREM 4.1. L e t u^ (t) and (t) be th e  s o lu tio n s  o f  Problem  P w ith  

i n i t i a l  fu n c tio n s û  ̂and u^2 r e s p e c t i v e l y  and suppose th a t  th e  hypo­

th e s e s Hl-H2a-H4 a re  s a t i s f i e d .  

( i) Then

1|u±(t)-u2 (t)|| j £ IIu01-u02|| j f o r  any t > 0.
I* (£2) L (ft)

(ii) L e t v s a t i s f y  in  a d d it io n  th e  h ypo th eses H2b and H3. I f  uQ1 and 

uQ2 e c(ft) and i f  th e re  e x i s t s  a  con n ected  subdomain u c ft such th a t  

and

u0i > 0 uQ2 > 0 in U (4.1)

uQ1 - uQ2 changes s ig n  in  U, 

then

||Ul(t)-u2(t)11 < ||u -u || f o r  any t > 0.
L (ft) L (ft)

REMARK 4.2. Condition (4.1) is necessary because the parabolic equation 

in Problem P is degenerate at points where u = 0.

Due to the degeneracy of the equation and the fact that v is not smooth, 

the proof of Theorem 4.1 is fairly technical. The idea of the proof is 

due to Osher and Ralston [18].

PROOF OF ( i ) . I n  p a r t  I I  o f  t h i s  a r t i c l e  w e  s h o w  t h a t  w e c a n  a p p r o x i m a t e  

u ^ ( i  =  1 , 2 )  b y  s o l u t i o n s  o f  u n i f o r m l y  p a r a b o l i c  p r o b l e m s :  l e t  u ^ X e  > 0 )  

b e  t h e  c l a s s i c a l  s o l u t i o n  o f  t h e  p r o b l e m

u = Acp (u) + div(u grad v ) in ft x 3R+

a £ 8v E +
——  cp (u) + u T— ~ = 0 on .9ft x IR
3v e 3v

u(x,0) = un . (x) in ft,
Oie

where cp is a smooth function such that <P* (s) > c(e) > 0  for s £ 0 and
e e

cp (s) (p(s) uniformly on compact subsets of [O,00) and where v and un .
£  ̂ c 2 Uifc

are smooth functions such that v ->• v in H (ft) and u^. un. in L (ft) as
e u ie  u i

4.

01 02

u.
2
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e j 0. In part II we show that {u^}is uniformly bounded and equicontinu- 

ous in compact s u b s e t s of ft* (o,°°) . Using in addition the uniqueness of 

the solution u^(i = 1 , 2 ) ,  we conclude that

u. (t) -> u. (t) in C(ft) as £ +  0 for t > 0, i = 1 , 2 .  (4.2)
i£ 1

We d e f i n e

z (x,t) = u4 (x,t) - u^ (x,t), x e ft, t > 0.
£ le Ze

Then is the solution of the linear problem

(L )
£

z ^  =  A ( a  z )  +  d i v ( z  g r a d  v  ) i n  ft x IR+
' t £ £

3 9ve +
t—  (a z) + z -—  = 0  on 3fl x ]R
9v e 3v

z(x,0) = z q £ (x) = uoie x̂  ̂ “ u0 2 e ^  in

where

1
a (x,t) = / cp1 (Ou. (x,t) + (l-0)u (x,t))d0. 
e i e le 2e

For smooth initial functions z^ which satisfy the compatibility con-
2 1 —

ditions at 8ft x {0}, the existence of a unique solution z^ € C ' (Q) of 

Problem. is proved in [16, p. 320 Th. 5.3]. Below we shall need an 

existence and uniqueness result if z^^ is merely continuous in ft.

To obtain this result we can proceed in the same way as we sketched 

above (and as we shall prove in section 7) for the more difficult non­

linear and degenerate Problem P: we approximate z^^ uniformly by smooth 

initial functions ZQ^ t n  = 1,2....). Then the corresponding solutions 

z ^  are uniformly bounded and equicontinuous in ft x [0,t] for t > 0 

and z converges uniformly to a generalized solution z^e C(ft*[0,t])

o f  P r o b l e m  L a s  n  ->■ 00. B y  s t a n d a r d  r e g u l a r i t y  r e s u l t s  [16, 8],
2,1 e

z^ € C (ft * (0,t]). In addition these solutions satisfy the comparison 

principle; in particular they are uniquely determined by the initial 

function. The proof rests on the same testfunction argument which is 

used in section 8 for the nonlinear problem and which is extremely easy 

in this linear case.

F o r  a n y  i n i t i a l  f u n c t i o n  z^€C(ft), w e  d e n o t e  t h e  u n i q u e  s o l u t i o n  o f

Problem L by z (t) = T (t)z_. We set a+ = max {a,0} and a = max{-a,0}.
£ £ £ 0

T h e n  for a n y  t > 0

L
e

z
en

z
£

n.



V I I . 7

llze(t)ll i -Ilz0jl 1 = ' K (t)V  " T e(t)ZoJI 1 " K J I  1 
£ l/(ft) °e L (ft) £ £ °c Lx(ft) U£ i/ifl)

= /{max T (t)z* - min T (t)z* } dx - || z ||
fl+ ,_ e +f_ e ue UE LX(fi)

= /{max T£(t)z*e+ min T_(t)Zge} dx - / (z*£ + z”£)dx 
ft + , “ + , “ ft

~2{  ^  Ts<t)Z°edX i iT€ tt>ZOe+ Te<t)z0e ‘ 20e " z0t} dx

t  +  f  +

-2 J min T (t)z^ dx = -2 / min T (t)z_ dx,
a + , -  £ 0E a * , -  E ° E

since

r — r ±
I T (t)z^ dx = I zA dx.
a E 0e ft ±

It follows from the comparison principle that T (t)z~£ >0. Thus for any

e > 0

llulE(t)-'i2e(t>|lTl,o.-||u01e-u02jltl,m S °‘ !4'3)
Xi L vft)

Clearly Theorem 4.1 (i) follows from (4.2) and (4.3).

PROOF OF (ii). Let u. (i = 1,2) and z be defined as above. Since
is e

u„. e C(ft) we may assume that u„. = u-. . Let 6 > 0, and write
Oi Oie Oi

*
z (t) = T (t)z (6) for t > 6.

e e e

Then, by the proof of (i),

I Iz (t) J I 1 - ||z (6) I I . = -2 / min (T5 (t)z+(6)) , t £ 6,
£ L (ft) E L (ft) ft +,- E G

and it is enough to prove that, for sufficiently small values of 6, there

exists a tj = tj(6) > 6  such that

/ min (T (t)z+(6)) > n(t,S) > 0 for t € (6,t.) 
' e e i
ft + ,-

for all small e >0.

C onsider th e  C au ch y -D irich le t problem

- 2  /  m n  T£ ( t ) Z¿e dx = /{ T £ V ^ Ö e  -  -  z ^ J  a*
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~6
(L£)

z = A(a£z) + div(z grad v ) in U x ({,“)

z = 0 on 3 U x ( 6, °°)

z (•■, <5) = z~( 6) in U,

where U c U is such that dist(u,6u) > 0 and zn = u - u changes sign
6 U t U1 uz

in U. We denote the solution of Problem L by
£ 2

z“(t) = T^(t)z”(6) in U x (<$,«>).
£ £ £

Then, by the maximum principle,

T<S(t)z“(6) < T^ (t) z~ ( 6) in U x (6,00).
£ £ £ £

Thus, it is enough to prove that

f min (T^(t)z”(S)) > n (t,6) > 0 for t e (6,t.) (4.4)
Cf+, -  e e 1

for every ee (0,£q) for some £^ > 0.

This will be done by means of the following lemma, which is an immediate 

consequence of Harnack's inequality [16, p.209-210].

LEMMA 4.3. Let £Q > 0 and tj>6>0 be constants, and let the following 

assumptions be satisfied for all ee(0,e^)i

(b) When n -  I, then | |aj |L“({jti,Hl (u) C and I |vj |„l,-(u) sc,

(c) When N 2 2, then | |a£ | lL“ ({_ t f c and I lve I lw2.P(0) s c'

for some constants m0 >0, c > 0  and p>N. Then3 for all ee(0,e0),

T6(t) Z±(6) >y(x,t;6)>0 in lJx(6,t1]
£ £ 1

for some function y which does not depend on £.

Assuming that (a), (b) and (c) are satisfied for small <5>0, (4.4) fol­

lows. Thus, to complete the proof we need to verify these conditions.

In view of Proposition 3.3 and the assumption uQ^C(^)f we have 

u. eC(Qx [0,oo)). Hence there exists a t~ > 0 such that u. >0 in 
-1 0  ~  1  

U x [0,tQ] and z(t) = u^(t)-u2(t) changes sign in U for t^ [o,tg].

TV

e
O

(a) T6
£
t Z

£
6 L

oo
u

>
0
> 3 for te 6 t

1
(S)

then I l»J iL'lS.tjiW1'"?«,50 <J”d H v£
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Since u. -*u. and z + z in C(ft x [0,trt]) there exist positive numbers y_., 
xe 1 e 0 0

Vq and Eg such that for all ee (0,eq)

u. Sv in U x [0,t ] , i = 1,2, (4.5)
ic 0 0

and

(4.6)

Let S e (0,tg) be fixed.

When N = 1, Lemma 7.7 below, combined with (4.5), implies that u is uni-
4

00 1

formly bounded in L (6,t^;H (U)). Hence it follows from the definition of 

a£ that condition (b) is satisfied for all tj € (6,tg] (The hypothesis H^ is 

necessary in the proof of Lemma 7.7).

When N ^ 2 we may assume that v£ is uniformly bounded in W^'^(iJ). it fol­

lows from (4.5) and [16, Th 3.1, p.437] that uig is uniformly bounded in 

L ^ ^ t Q j W 1'00̂ ) ) . Thus condition (c) is satisfied for all (6,tQ].

It remains to show that for some tje ($,tg] condition (a) is satisfied. In 

view of the conditions (b) and (c), which we proved to be satisfied for 

tj€ (6,tg] we deduce from [16, Th.7.1, p.181] that T^(t) z*($) is uniformly 

bounded in tj x [fijt̂ ]. In addition, (4.5) and [ 16 » Th.1.1, p.419] imply 

that u. (6) is uniformly Holder continuous in U. Finally it follows from 

[16, Th.10.1, p.204J that Tg(t) z“(6) is Holder continuous in U x [6,tQ], 

uniformly with respect to ee (0,Cq ). Hence, by (4.6), there exists 

a tj £ (i,tg] such that condition (a) of Lemma 4.3 is satisfied for all 

e e (0, eQ).

This completes the proof of Theorem 4.1.

5. STABILIZATION TO EQUILIBRIUM

In the present section we prove the main result of this paper, namely 

that u stabilizes to equilibrium as t

Let the set E be defined by

E = {q£C(fi) : q >0 and J (<p(q) An - q grad v grad n) = 0

9 ^
for all n eC (ft) with ■—  = 0 on 3ft}.

u,

z
e

+
t

L
00

u
r s j > 2

0
for t € .0 t'0

t
1

i£
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It follows from the definition of a solution of Problem P (Definition

3.1) that

E = {q € C(ft) : q > 0  and u(t;q) = q for t > 0}. (5.1)

Let S be defined by (1.1) .

theorem 5.1. If the hypotheses Hl-H2abc-H3-H4 are satisfied. Then 

( i) E = S;

(ii) There exists a function q G E such that 

u (t;Uq) h» q in c(ft) as t 

where q satisfies

J qdx = J u~)dx (5.2)

ft ft

REMARK 5.2. For some functions v and initial functions Uq , condition

(5.2) characterizes q completely (see [4]).

The main tools in the proof of Theorem 5.1 are the contraction property 

which we proved in section 4, and the following Lemma about the struc­

turé of the set S .

lemma 5.3. Let q G c(ft) be nonnegative. Then either q G s3 or there 

exists a function w G s such that w-q changes sign in a connected sub- 

domain U c: ft such that w,q > 0 in U.

Thus S is a continuum in the space of nonnegative continuous functions

on ft.

PROOF OF LEMMA 5.3. Suppose that there is no w 6 S such that w-q changes 

sign in some connected subdomain U ^  ft such that w,q > 0 in 0. We shall 

prove that q € S .

If q 5 0 in ft, then q G S. So let q(x^) > 0 for some x^ € ft. We set 

-= $ (q (x^) ) + v(x^) , where the function $ is defined by (1.2). Letc
1

oo
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P^ cz iJ be the connected component of the set { x £ : v(x) < Ĉ } which 

contains x^. We claim that

$ (q(x)) = Cj - v(x) in P1. (5.3)

Suppose that P^ contains a point where $(q) < C^-v. Then

$(q(x)) + v(x) = Cj - eQ and q(x) > 0

rw» rsj
for some x 6 P^ and £^ > 0. Let Pg c p^ (0 < £ < Eg) be the connected 

component of the set {x € ft: v(x) < - e} which contains x. We fix 

£ 6 (0,£n) so small, that P contains x.. Define w by

$ (w (x)) = <

C. — £ — v(x) for x € P
X C

for x € iNP^, 
£

Then w € S. Let T be a curve in P^ which connects x and x^. Since w > 0 

on r, and since, by construction, w-q changes sign on T, there exists 

a connected closed subset c: r such that

w,q > 0 on Tq and w-q changes sign on

_ /V
Hence there exists a neighbourhood U of Tn in P , where w,q > 0 and

u &
w-q changes sign. Thus we have a contradiction and P^ does not contain 

points where $(q) < C^-v.

A similar, but easier proof yields that P^ does not contain points 

where $(q) > C^-v, and (5.3) follows.

If P^ = ft or if q s 0 in ftSP̂ , then q € S. So suppose that q(*2) > 0 in 

£Np^. Set C2 = $(q(x2)) + v(x2) and let P^ c: ft be the connected compo­

nent of the set {x 6 ft: C2 - v(x) >0} which contains x2. Then again we 

conclude that

$ (q(x)) = C2 - v(x) in P2

0:

c1

o

<v

/V

r
o

r
o
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Continuing this process, we construct sets P^, i = 1,2,... Since v has

a local strict minimum in each connected P. and since the number of
1

local strict minima of v in ft is finite, this process is finite. Thus 

q € S.

PROOF OF THEOREM 5.1. (i) . We first show that S C E. Let w £ S. Since v 

has a finite number of local strict minima, it follows from (1.1) that 

there exists a finite number of continuous functions <K(x) (i = l,...,ig) 

with connected and mutually disjoint support such that

10
$(w(x)) = I (x) (5.4)

i=l 1

and

1 °°
for some constants C.. Since v € W (ft) it follows from a standard

1  r n 1 » 00
result (see for instance [14, Th. Al, p. 50] that $(w(*)) 6 W (ft) and

- gradv in {x: w(x) > 0 }

grad $(w) = <

elsewhere

1 30
Next we show that tp(w(0) 6 W (ft) and that

grad cp(w) = *

-wgradv in {x: w(x) > 0}

elsewhere.

(5.5)

To do so we first; prove that cp(w(*)) is a Lips chi tz continuous function.
X CO

Then, by Rademacher's theorem [19], <p(w(*)) 6 W ' (ft) as well. Let

I Iwl I oc T -̂en/ f°r x i i  ^ we have that
L (ft)

a n d  c l e a r l y P
1

n p,
2

0.

$i

$
L

x) C
i

v\X for x e supp
1

0

0

< D, X
k2

n,
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w(x2) w(x2)

jtpiwiXj)) -tp(w(x2))| = | J tp'(s)dsj < D  J / 2 L i i L a J
wiXj) w(Xj)

= D JiiwiXj)) - $(w(x2))j < C dist (Xj,x2)

since $(w(-)) is Lipschitz. Thus cp(w(*)) is Lipschitz. It follows from 

[14, Lemma A.4, p. 63] that grad <p(w) = 0 a.e. in {x: w(x) =0}. Let 

x € {x: w(x) >0} and let U be a neighbourhood of x where w(x) 6 > 0.
1  GO

Then, by (5.4), w 6 W (U). Thus

grad tp(w) = tp* (w) grad w = w grad $(w) in {x: w(x) > 0}

and (5.5) follows.
2 -

Let n € C (fi) with 9n/9v = 0 on 3Q. Then, by (5.5),

/  (cp(w)An -  wgradvgradn) = -  /  (gracKp(w) + wgradv)grad n = 0. 
n SI

Thus w 6 E .

Next we show that E c: s. Let q € E and suppose that q £ S. Then, by 

Lemma 5.3, there exists a w G S such that w-q changes sign in a connect­

ed subdomain Dc!l in which w,q > 0. Since q 6 E and w € S c e , it fol­

lows from (5.1) and Th. 4.1 (ii) that

I|q-w|| . = ||u(t;q) - u(t;w)I I . < llq-wlI . , t > 0.
L (ft) L (Q) L (fi)

Thus we have obtained a contradiction and q € S.

REMARK 5.4. When N = 1, Th. 5.1(i) follows at once by integrating the

differential equation (see [4]).

PROOF OF THEOREM 5.1.(ii). We define the w-limit set

a)(u_) = {w € L1(n) : there exists a sequence t -* «> such that
1 ^ 

u(t ) -* w in L (ft) as t-»«}. 
n
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By Proposition 3.2, the set {u(t;u ) ; t > 1} is precompact in C(ft) (and

1
hence in L (ft)) . Thus o)(Uq) is nonempty and (jq(Uq) c: c(ft) .

Let q £ 03(Uq) . We show first that q satisfies (5.2) , then that q £ E, 

and finally that o)(Uq) = {q}.

Setting ^(x,t) s 1 in Definition 3.1, we find that

/ u ( t ; u ) = / u for all t > 0

ft ft

and (5.2) follows.

In order to show that q £ E, we argue by contradiction: suppose that 

q f E. Then, by Theorem 5•1(i), q ? S. Thus, by Lemma (5.3), there exists 

a function w £ S such that q-w changes sign in a connected subdomain 

U c: ÇI in which q,w > 0. We use w to define the functional V: L*(ft)

[0,0°) :

V(u) =  I lu-wiI . ,  u £  L * ( f t ) .

L (fi)

Since w £ E, it follows from Theorem 4.1(i) that the solution u(t) of 

Problem P satisfies

V(u(t1)) < V(u(t2)) for all t1 > t2 > 0.

Thus V is a Lyapunov functional for Problem P. Since u £ C([0,°°) : L*(ft)) 

and V is continuous, it follows from [5, Prop. 2.1 and 2.2] that u(t;q)

£ M U q ) and that V is constant on ^(Uq ) • Hence

V(u(t;q)) = V(q) for all t > 0. (5*6)

On the other hand, since q and w £ C(ft), it follows from the choice of 

w and Theorem 4.1(ii) that

V(u(t;q)) < V(q) for all t > 0
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which contradicts (5.6)• Thus q € E.

Finally we show that a)(u ) s {q}.
a/ U rv

Suppose that q € w(Ug) and that u(tn;ug) -*■ q as tR -♦ <® and u(sn;ug) -* q

as s -» 00 where the sequences (t } and {s } are chosen such that s < t 
n ^ n n n n

for all n 1. Then, using Theorem 4.1(i), we find that

Ilq-qlI i = lim Ilu(t ;u ) - q|| <
L (Q) n-w> n l (Q)

< lim Ilu(s ;un) - q|I =0.
nr*» n L (0)

rsj
Thus q = q, which coupletes the proof of Theorem 5.1-

6. THE DIRICHLET. PROBLEM

In this section we show how the results about Problem P can be extended 

to the case of homogeneous Dirichlet boundary conditions. We consider 

the problem

P.

We define a (generalized) solution u(t;ug) of Problem PD in a similar 

way as for Problem P, taking testfunctions 4* £ *(Q ) such that 

+  = 0 on x]R+. The Propositions 3.1, 3.2 and 3.3 as well as Theo­

rem 4.1 remain valid in the case of Problem P^. In particular

u(t?ug) € C(H) and u(t;Ug) = 0 on 3Œ for t > 0. (6.1)

Let the set of steady-state solutions, E^, be defined by

E = iq € c(H) : q > 0 and / ((p(q)An - qgradvgradn) = 0 
D Q

9 «

for all n 6 c (fl) such that n = 0 on 80}.

LEMMA 6.1. L e t E be d e f in e d  a s  in  s e c t io n  5. Then

d '

u

u

u [x,0

0

u

A(P(u: + div ugradv in a x 1R
+

on 3!a X JR
+

in f i .

3a

ED
c E.

v x >

2,1
C'
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PROOF. Let q € EQ . Then

u(t;q) = q for t > 0. (6.2)

Let u(t;q) denote the solution of Problem P with initial function q. 

Since, by (6.1) and (6.2),

u(t;q) > u(t;q) = q = 0 on 3ft x 3R+,

u(t;q) is a supersolution of Problem P^. Hence, by (6.2),

u (t;q) > q in ft x 3R+. (6.3)

On the other hand we have that

J u(t;q)dx = J qdx, t > 0.
ft ft

Combined with (6.3) this yields u(t;q) = q for t > 0. Thus q € E.

We define S by 
D J

Sp = (q £ S, such that q = 0 on 3ft},

where S is defined by (1.1) . In what follows we prove the following 

theorem.

THEOREM 6.2. L e t th e  h ypo th eses  Hl-H2abc-H3-H4 be s a t i s f i e d . Then 

<i> ED = SD;

(ii) ed c o n ta in s  a maximal elem ent (3max/ i.e. q > c3max in  ft f o r  any

q € Ed ;

(iii) There e x i s t s  a fu n c tio n  q £ E^ such th a t  u(t;u^) -» q in  C(ft) as  

t °°.

I f  in  a d d i t io n  u^ < q ^ y, then  q s a t i s f i e s  / ^ x  = J u^dx.
ft ft

PROOF„ (i) By Lemma 6.1 and Theorem 5.1(i) , Ed c S . Hence Ed cr s . The 

proof of the inclusion S^ c E^ is identical to the proof of S c e, given 

in section 5. Thus E^ = SD .
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(ii) Let C > I IvI| be constant and let w € S be defined by 
L?ft)

3»(w(x)) = C - v(x) , x £ ft.

Then w > 0 in ii and it follows from the definition of the set S that
D

q _< w in ft for any q € S^. Hence, by (i),

q < w in i! for any q £ Ep. (6.4)

Since w £ S = E, w i s a  supersolution of Problem P ^  Hence the solution 

u(t;w) of Problem Pß is nonincreasing in t and we may define

0 < p(x) = lim u(x,t;w), x £ ft. 
t-w>

By (6.4) and the comparison principle

q < p in ft for any q £ Ep. (6.5)

Below we prove that p £ Ep. Then the result follows at once from (6.5),

u l t h  v *  ‘ p '
Let n(x) > 0 be a smooth testfunction on ft such that n = 0 on 3ft.

Then u = u(-;w) satisfies

/ u(t) n = / wn + JJ ((p(u)Ari - ugradvgradn) . 
ft ft Qt

Thus

—  / u(t)n = / (ip(u(t))An - u(t) gradvgradri) . (6.6)
ft ft

Since u(t;w) decreases to p as t ■+ «, the left-hand side of (6.6) is non­

positive and there exists a sequence t^ -* «> such that

4— f u(t )n -» 0 as t ■♦« . (6.7)
dt a n n

On the other hand, the right hand side of (6.6) converges to

/ (tp(p)An - pgradvgradri) as t -+ <*> .

ft n



Hence, by (6.6) and (6.7),

J  cp(p)Ari -  p g r a d v g r a d n )  = 0

ft

a n d  t h u s  p  6  E ^ .

( i i i )  . G i v e n  a n  i n i t i a l  f u n c t i o n  u ^ ,  o n e  c a n  f i n d  a  f u n c t i o n  

w €  S s u c h  t h a t  u^ <  w i n  ft * U s i n g  t h e  a b o v e  a r g u m e n t  a n d  t h e  c o m p a r i s o n  

p r i n c i p l e ,  w e  f i n d  t h a t

l i m s u p  u ( x , t ; u . J  <  q  ( x )  , x  £  f t .
U — m a x

t - * »

Hence

q  €  ^ ( u n ) i m p l i e s  t h a t  q  <  q  ( 6 . 8 )^ 0 ^ ^ — ̂ max

I n  o r d e r  t o  p r o v e  t h a t  u ( t ; u ^ )  s t a b i l i z e s  t o  e q u i l i b r i u m ,  w e  u s e  t h e

s a m e  a r g u m e n t s  a s  f o r  t h e  p r o o f  o f  T h e o r e m  5 . 1  ( i i )  , b u t  n o w  b a s e d  o n

t h e  f a c t  t h a t  i s  a  c o n t i n u u m  b e t w e e n  z e r o  a n d  q  , o n  ( 6 . 8 )  , a n d  o n  
D ^ m a x

t h e  c o n t r a c t i o n  p r o p e r t y  o f  u .  I f  f u r t h e r m o r e  u^ <

t i o n  u ( t ; u ^ )  o f  P r o b l e m  P s a t i s f i e s  • u ( t ; u - J  <  q _
0  0  — m a x  —

r j  (V i

p a r t i c u l a r  u ( t ; u ^ )  =  0  o n  9ft x  3R . T h u s  u ( t ; u ^ )  c o i n c i d e s  w i t h  t h e  s o ­

l u t i o n  u ( t ; Uq ) o f  P r o b l e m  P ^  ( s e e  Lemma 9 . 4  b e l o w ) . T h e n ,  i f

q  =  l i m  u ( t ; u Q) , w e  h a v e »  b y  T h e o r e m  5 . 1  ( i i )  
t - * »

/  q d x  =  J u  d x .

ft fi

PART I I

EXISTENCE AND REGULARITY

I n  t h i s  s e c t i o n  w e  p r o v e  t h e  e x i s t e n c e  o f  a  s o l u t i o n  o f  P r o b l e m  P w h i c h  

s a t i s f i e s -  t h i s  p r o b l e m  i n  a  s o m e w h a t  s t r o n g e r  s e n s e  t h a n  t h a t  o f  D e ­

f i n i t i o n  3 . 1 .  We f i r s t  r e c a l l  s o m e  u s u a l  d e f i n i t i o n s  a n d  t h e n  g i v e  a n  

a l t e r n a t i v e  d e f i n i t i o n  o f  a  s o l u t i o n ,  i n v o l v i n g  t h e  g r a d i e n t  o f  cp( u) .

T h e  e x i s t e n c e  p r o o f  i t s e l f  i s  b a s e d  o n  t h e  s t u d y  o f  u n i f o r m l y  p a r a b o l i c  

p r o b l e m s  w h i c h  a r e  r e l a t e d  t o  P r o b l e m  P .

q^ax, then the solu- 

for t > 0 and in

V I I . 18

s.

(iii). Given



V I I . 19

2 1
We denote by L (0,T; H (£2) ) the Hilbert space with inner product

(U'V) 2 1 = H  uv + // gradugradv
L (0,T;H (0))

and by V2 (0,̂ ) the Banach space with norm

2 2 2 
lu| v (Q ) = ess sup J u (t) + JJ (gradu) .

2 T 0 < t < T fi

definition 7.1. We say that u: [0,°°) -* L*(fi) -is a weak solution of 

Problem P if it satisfies

1 CO
( i) u € C([0,t]; L (fi)) fi L (Qfc) for all t € (0,«>) ;

(ii) cp(u) € V2(Qt) for all t €t(0,<») ;

(iii) f u(t)tp(t) = I u_tj)(0) + J J {uij> - (gradsp(u) -ugradv) gradip}
“ i - n fi
for all ip € c (Q) and all t € (0,«>).

lemma 7.2. A weak solution of Problem P is a generalized solution as 

well.

PROOF. Take ip 6 C^'^(Q) with = 0 on 3fi x 1R + and integrate by parts.

In what follows, we show that Problem P has a weak solution. To that 

purpose, we consider the problems

where

cp £ C°°(3R+), (p (0) = 0, tpc’(s) > C(C) > 0 for s € [0,k]
O u & —

—1 1 — 1 1 oo
(tp (s) ) < (ip (s) ). for s € [0,tp(2K) ] where K is the uniform L -bound
w "

aT

2T

dé
3v

u
t

A
e
u] + div ugradve4

3
3-v €

u + u
3v£
3v

0

u<X 0 u x;

in Q,T Q x o

on 3a X o

in fi

■t :

aT

T



of u that we find in the proof of Lemma 7.4 below and cp and cp con-
£ G c

verge to (p and cp1 on all compact subsets of 3R as 6^0,

where

v £ C°°(il) , | | v II < C for some constant C > 0

e C^f i )

L
co

and I|v£ - vi I 0  as C'J'O

and where

u0e e  / 0 1  u0e 1  I luo * 1u Q£. s a t i s f i e s  t h e  c o m p a t i b i l i t y

condition -5 7 7 <i> (u_ ) + u
3v ^8 oe

as e+O

S i n c e  i t  i s  s t a n d a r d  t h a t  o n e  c a n  c o n s t r u c t  t h e  a p p r o x i m a t i o n s  <p o f  t h e  

f u n c t i o n  cp h a v i n g  t h e  p r o p e r t i e s  i n d i c a t e d  a b o v e ,  w e  d o  n o t  d o  i t  h e r e .  

On t h e  o t h e r  h a n d  w e  c o n s t r u c t  e x p l i c i t e l y  i n  A p p e n d i x  A a p p r o x i m a t i o n s

T o  b e g i n  w i t h  w e  g i v e  a  c o m p a r i s o n  p r i n c i p l e ,  w h i c h  t u r n s  o u t  t o  b e  

b a s i c  i n  t h e  s t u d y  o f  P r o b l e m s  a n d  P .

with initial functions uQ1 < uQ2. Then u1(t) < u2 (t) .

PROOF. Let z = u^ - u^. Then z satisfies the linear problem L which 

we discussed in section 4 and Lemma 7.1 follows from the comparison 

principle for that problem.

Before proving the existence of a solution of Problem P, we first give 

some a priori estimates.

2 1 -
LEMMA 7.4. Let u G c ' (Qm) be a solution of Problem P . Then 

£ T £

v  a n d  u^ o f  t h e  f u n c t i o n s  v  a n d  u, 
e 0£ I

2 1 —
l e m m a  7.3. Let u 1 and u 9 € c ' (o ) be two solutions of Problem P1 Z 1 c

0 < u < K in O
— t — T

where the constant K does not depend on T.

(7.1)
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v
e c Ü)

< v

H
1

n

L
co

n:

o

v
e
v

o on n and u
Oe

u.
O

L
2

n
o

*0-

p
e

e

H ifi)

u,
Oe

e c
oo

:n u
oe
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PROOF. We first note that zero is a solution of Problem P£. Consequent­

ly, since >0, we have that > 0. In order to find an upper bound 

for u , we now search for a large enough stationary solution of ProblemO
P. Let a_ = II u_ I | .We define

L '(G)

? cp-(T) ? cp,e(T)
$ (s) = J — -—  dT and $ _ (s) = J ------ dx for s > a .
0 s x 0,e J t —  0

ao ao
The function

3 = 4»”1 (I Ivl I - v )
£ °'C L~(fi) £

is a solution of Problem P^ and it is such that

Also, since converges uniformly to cp* on compact subsets of 3R+ as
-1 -1 

e+0, we have that $ converges uniformly to $ on compact subsets
+  U * c  0

of 3R as c+0. Thus there exists C > 0 such that

(I Ivl I > + c
Xj \ /

which completes the proof of (7.1).

lemma 7.5. Problem P has a unique classical solution u 6 C2+ct(Q_)
c £ T

for each a € (0,1).

PROOF. See [16, Th. 7.4, p. 491].

In what follows we give some more a priori estimates for u .

lemma 7.6. L e t 0 < t-x < t < T. Then th e r e  e x i s t s c (t ) > 0 such th a t  

t
r
t-T Q 

In  p a r t ic u la r  th e  c o n s ta n t c(t) does n o t depend on T o r  on e.

J J (gradtp̂  (ue)) 2 < C(t) .

vi.
Oe

u
e

u.oc
< ße

< $
-i

O,£
V

L
oo

ß)

Oe
< ße

< $
-i
O

v
L
oo

n:
+ c

<í>e
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PROOF. We m u l t i p l y  t h e  d i f f e r e n t i a l  e q u a t i o n  b y  ip ( u  ) a n d  i n t e g r a t e  b y
6  £  S

p a r t s  o v e r  Q x ( t ,  t + T )  . T h i s  y i e l d s ,  s e t t i n g  F  ( s )  =  J  ( t ) dx

5 0 e 

t+T ?
J  F ( u  ) ( t + T )  -  /  F ( u  ) ( t )  +  /  /  ( g r a d c p  ( u  ) )

a c ft £ £ t ft £ £

t+ T

-  -  f  f  g r a d  v c u f  s r a d  t<)c ( u c )  • 
t  ft £ £ e £

Since 0 < u < C, we deduce the result by applying the C a u c h y - Schwarz 

i n e q u a l i t y .

Next we give an estimate which is useful for the proof of Theorem 4.1

(ii); we adapt a proof from Gagneux [10],

lemma 7.7. We suppose th a t  e i th e r  cp(s) = o r  Av £ L1(ft) . Then

1 |(pe (u£) 1 * co i < C(t) , 0 < t < T. (7.2)
L (T-T,T;H (ft))

The c o n s ta n t  C(t) does n o t depend on T.

PROOF. We first show that for 0 < t-x < t < T, the following estimate 

holds

t  2
f  f (p£ (V  (grad u ) <C(t). (7.3)
t-T Q

F o r  that purpose we multiply the differential equation by u^ and inte­

grate by parts; we obtain

J  f up(t) - i f  Up(t-T) + f J tp’ (u ) (grad u )2
Z ft £ f t £ t~ T ft £

^ 2 
= / / grad v grad(^).

t - T  ft

23
W hen ( i )  : c p ( s )  =  — , w e  h a v e

s s
2
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f  J  g r a d  v  g r a d ( ^  ) <  c V t  I | c p ( u j  I I <  c V t

t - T  ft L ( t - T , t ; H  ( f t ) )

by Lemma 7.4; and when (ii): Av 6 L*(ft), then

which completes the proof of (7.3).

In order to prove (7.2) we multiply the differential equation by 

(s-t+T) (cp (u )) and integrate by parts. We obtain
O t  u

/ / (s-t+T) tp̂ (u£) (u£t)2 + J f (grad (P£ (u£) (t)) 2 
t-T ft ft

(7.4)
t

= - J / (s-t+T)u£ grad v£ (grad tp£(u£)) fc. 
t-T ft

Integrating the right-hand side of (7.4) by parts and applying the 

Cauchy-Schwarz inequality we obtain

I ^
iRHSl = + J / grad v£(u£ + (s-t+T) u ) grad<P£ (u£) 

ft t-T

-  T /  g r a d  v  u  ( t )  g r a d  cp ( u  ) ( t )
_ G O  t  £
1»

< Vt II grad v I I 0 I |tp (u ) I I

L (ft) L (t-T.t;H (ft))

t

I Iu  M +  l l g r a d  v  II  ( J  J  ( s - t + T )  < p ' ( u  )

£ L ^ t ^ )  £ L (ft) t - T  ft £ £

( u  J 2 )*5 ( J  J  ( s - t + T )  cp ^ (u £ ) ( g r a d  u ^ . ) 2 ) 3* 

t - T

t 2V

t

J
t-T

/ grad v gradi l u
£

t

J
t-T

r

9

2
u

B
2

31v

8v

t

J
t-T

f
n

A
t

U
2
£
2

< C T

t

fi
v

e t

n
e t

2 h
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This i n e q u a l i t y  c o m b i n e d  w i t h  ( 7 . 4 )  i m p l i e s  t h a t

J I (grad ip£ (u£) ) 2 < C ( x )

t - T  ~

a n d  t h e  p r o o f  o f  Lemma 7 . 6  i s  c o m p l e t e .

We s h a l l  n e e d  a  r e s u l t  o f  D i B e n e d e t t o  [ 7 ,  T h .  6 . 2 ]  t o  d e d u c e  a  s t r o n g  

e s t i m a t e ,  n a m e l y  t h e  e q u i c o n t i n u i t y  o f  u  .

lemma 7.8 (i). For every x > 0 there exists a continuous nondecreasing 

function id (*) , <*>T(0) = 0 such that

f o r  a l l  (x , t ±) € Q x [ t , t ] ,  i  = 1 , 2 .

The function o)T does not depend on T and e.

(ii) If uQ € c(ft), then {u£}is equicontinuous on ft x [o,t].

We are now in a position to prove the existence theorem.

theorem 7.9. We suppose that Hi and H4 are satisfied and that
1 oo •

sf € w ' (ft). Then there exists a weak solution of Problem P which

satisfies

0 < u < c on qt

and is continuous in any set ft x [ t , t ]  with x >  0 .  The constant C

arid, the modulus of continuity do not depend on T.

PROOF. From the estimates above we deduce that there exist a function
OO —

u £ L (Q ) n C(ft x (0,Tj) and a subsequence of iu } which we denote
-L O

again by {u^} such that

+ T grad
£

L
2

:n

u
£

L
oo

ft ft
/ grad <P£

u
£

t
2 2

t

Q

U
e

X
1 t u

e
x

2
t

2
< 03

T
X

1
■X

2 t
1

t
2 s
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and Lebesgue's dominated convergence theorem cp (u ) -» ip(u) strong- 
2 £ e

(i) u -* u uniformly on all sets of the form fi * {t,t] with t > 0 (by
w

Lemma 7.8);
2

(ii) u^ -* u strongly in L (Q^ and a.e. (this is a consequence of (i)
CO

and the uniform bound of u in L (ft)) ;
2 1

(iii) cp̂ iû ) cp(u) weakly in L (0,T?H (ft)) {this follows from Lemma

7.6; one checks that the limit is (p(u ) by observing that by (ii)

and Lebesgue^s

ly in L2 (QJ ) ;
1

( iv) u^ grad v^ u grad v strongly in L (Q̂ ) .

It remains to check that u is a solution of Problem P. Is Is easy to 

deduce from (i) - (iv) that u satisfies the intergral equation in De­

finition 3.1 since uc satisfies a similar equation* Also u € C((0,T];
I °

L (ft)) . In order to show that I lu(t)! I 1 is continuous at zero we use
L  ( f t ) r w

the contraction Theorem 4.1 (i) . Let û  be a solution of Problem
£

P with initial function u^^ obtained as a limit of solutions of Problem

P • Then 
£

l | u , t >  -  u 0 M l 1 ( b )  <  1 1 . »  ♦  l ' V * >  -  V t l {B)

Let > 0 be arbitrary. Since Uq£ converges to u^ in L*(i2), one can fix

e such that IIiL.,, - u.|| , < n/3. Then by Theorem 4.1 
^  ue u L1(p,) —

I |u(t) - u (t) I I . < n/3 . Finally we deduce from Lemma 7.8 (ii) that
lrjm

one can find t such that | |u (t) - H  , < tj/3 for all t < tn.
° € 0c l\q) -  -  0

REMARK 7.10. If the function (p is defined on 3R with <P' (s) > 0 for 

s < 0, the condition u^ ^  0 is not necessary to obtain the results of 

section 7.

" U(t) '  -  " U<t) - "‘ “ ’ " lV ,  + " ^ ,tí '

+ u
Oe

u
O

L fl]

r\



In  o rd e r  to  show t h a t  the  s o lu t io n  o f  Problem P is  u n iq u e , we app ly  a

UNIQUENESS OF THE SOLU TION

s o lu t io n  o f  Problem  P w ith  a .s o lu t io n  o b ta in e d  as th e  l i m i t  o f  a se­

quence o f  c la s s ic a l  s o lu t io n s  o f  the  p a ra b o lic  e q u a tio n  in  Problem  P.

We do so below  and fo r  te c h n ic a l reasons which w i l l  appear l a t e r  we im­

pose the  c o n d it io n  Av > -M in  th e  sense o f  d is t r ib u t io n s .

We approxim ate  Problem  P in  two s te p s , f i r s t  by th e  problem

m e t h o d  d u e  t o  K a l a s h n i k o v  [ 1 3 ]  w h i c h  c o n s i s t s  o f  c o m p a r i n g  a n  a r b i t r a r y

ut = Acp(u) + div(u grad v) in  Q,
T

o n  9ft x ( 0 , T ]

in  ft

w hich in  tu rn  we approxim ate by the  problem

ut = Acp(u) + div(u grad v̂ )

o n  8ft x  ( o , t ]

in  ft

where

v .  G C ° ( ü )  , l l v . l l  . <  C 1 f o r  s o m e  c o n s t a n t  C 1 >  0  

3 3  C (fi)

Av. >  -M  a n d  llv. -  vil, -> 0  a s  j  00 
3 -  3 H1 ^ )

where th e  c o n s ta n t A is  such t h a t  A and

U Q j  £ l+%) , 0 < for some constant > 0 ,

u satisfies the compatibility condition 
0j

V I I . 26

8 .

p
n

a
d

cp u + u
3v
3v

A

n
e

- M t

u x,o; u
On

x u
O

X +
1
n

in Q,T

p
n i

8
d <P u, + u

8v

8v
A

n
e

- M t

u x,0 u
oj

X +
1
n

V

9

> c
1

u
oj

e c
2+a-

fi) t 0 < u
Oj

< c,
2

f o r  s o m e  c o n s t a n t C
2

>

V
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and is such that Ilu - u I I -» 0 as j
7 L (fl)

We show in the appendix that one can construct such functions v^ and

uoj*

We first give uniform upper and lower bounds for the solution u ^  of

Problem P .; the fact that u . turns out to be bounded away from zero 
n} n3 J

ensures that Problem P ^  is uniformly parabolic.

2 1 -
lemma 8.1. L e t un_j £ c ' CQ^ be  a s o lu t io n  o f  Problem P^. Then, f o r  

n la rg e  enought

1 —Mt —

—  e < u .(x,t) < C for all (x,t) £ O . 
n —  n} —  T 1

where th e  c o n s ta n t C does n o t depend on tim e .

The main tool of the proof is the following comparison principle which 

is an immediate generalization of Lemma 7.3.

2 1 -
lemma 8.2. L e t u^ and u2 £ c ' (Q^i and assume th a t u^ and u2 a re  p o s i ­

t i v e  on I f

Uj) + divtUj grad vj - uJfc > &P(u2) + div(u2 grad vj - u2fcttiZkp(

3 3vi  3 3vi
"3v <p(ul ) + U1 ~ 3 ^  ±  3^ tP(u2 ) + U 2 9 T '  OR 3n * ( 0 ' T]

u ^ X jO) < u2(x,0) i n t i .

Then

’*1 -  “2
u, < u„ tn

— 1 -Mt
PROOF OF LEMMA 8.1. We first observe that the function s (x,t):= — e

n
is a lower solution of Problem P . since it satisfies

n;j

<p* u
Oj

+
1
n'

3u
oj

3v
+

v.

3V
u.

Oj
+

1
n

3v
j

3v a : o on 3û

01 j •*

in o
T*

T

fiT



1 -Mt
Thus, by lemma 8.2, un > —  e . Next we seek an upper solution in the 

form

+ -1 -Mt
s (x,t) = $ (C - v_. - e h(x))

where h is a smooth function such that 1 < h < 2 and the constant C is 

choosen large enough so that

C 2  + 1 < $-1(C - C x -  2)

and hence

s+ (x,0 ) > u..(x) + ~  for all n > 1 , j > 1 .
—  Oj n —  —

Thus we must choose the function h such that

•f" “t* —

Acp(s ) + div(s grad v.) - s < 0 in Q (8.1)
U t T

and

8v.
—  <P(S+), + s+ ^  e Mt on 8 ft * (0,t]. (8.2)

We rewrite (8.1) as

div [s+ grad($(s+) + v.) ] - s* < 0
D t

and we substitute the expression for s+ to obtain

-1 -Mt $ 1(C-^ _e Mth)
-div[i> (C - v. - e h) grad h] < Mh(x) ----- r-3----:-------- .

(O' [$ (C-v_.-e M rt) ]

This inequality is satisfied if

V I I . 2 8 .

Aip(s ) + div(s grad v.) - s ^ =  —  e Mt (Av. + M) > 0 in Q
j  t n 3 —  T

„ 9v. -Mt 9v.
-r—  (P(S ) +  S -jT— 2- =  — --------<  —  e
9v 9v n 9v —  n

on 9Í2 x (0,t ]

s” (x,0) = ¿ < u 0j (x) + Ì in f i  ,

M t

3
av dv

rMth)
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I Ah I + | grad hi + I grad hi2 < in (8.3)

for a sufficiently small constant C^. On the otherhand condition (8.2) 

is equivalent to

-e"Mt $_1(c - v - e_Mt h) |^ > - e_Mt on 9ft * (0,t ]
3 ov —  n

which holds if

<8-4)

/ V  r s #  / V

Let h be defined by Ah = -1 in Si, h = 0 on 9ft, and set h = 1 + ah where
rsj

a is a positive constant such that ah < 1 and (8.3) is satisfied.
3h

Since < 0 on 3ft, (8.4) is satisfied . for n large enough. Thus we 

have found a function h such that s+ is a supersolution. It follows that 

unj 1  s+ < $_1(C) in Qt .

By the method of section 7 one can obtain further a priori estimates

for solutions of the problems P . and P and use them to show that a
nu n

subsequence ^unj^ solutions of Problems P converge to a generalized 

solution of Problem Pr as j »  and then that a subsequence of so­

lutions of Problems P^ converge to a solution of Problem P. In additionf

following DiBenedetto again, we find that the sequence {u _;} is equi­
na

continuous. In particular one can show that there exists a solution u

of Problem P and a subsequence of the solutions u of Problems P (which
n n

we denote again by iun )̂ which converges to u as n -* 00.

Below we use this construction to prove the following result.

theorem 8.3. We suppose that the hypotheses Hl-H2a-H4 are sa tis f ie d .  

Let u be the solution o f  Problem P obtained above and l e t  u (resp. uj 

be a subsolution (resp. supersolution) o f  P with in i t ia l  function  u^ 

(resp. uQJ. Then for every t € (0,t ] we have that

/  ( U ( t )  -  U ( t ) ) +  <  /  (Uq -  u q ) +

ft ft
(8.5)

C.
•3 Q,T

dh
d1V

>
A

C
2
+1 n

of

ir*.
n

3v
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and

J ( u ( t )  -  u ( t ) ) +  <  J  ( u  -  u  ) + ,

a n
( 8 .6 )

c o r o l l a r y  8 . 4 .  I f  th e  h ypo th eses  H l - H 2 a - H 4  are  s a t i s f i e d ,  Problem  P has 

a unique s o lu t io n .

c o r o l l a r y  8 . 5 .  L e t  u ( t )  and u ( t )  be r e s p e c t i v e l y  a s u b s o lu t io n  and a  

s u p e r s o lu t io n  o f  Problem  P w ith  i n i t i a l  fu n c t io n s  and u  ̂ such th a t  

u^ <  u Q. Then u ( t )  <  u ( t )  f o r  e v e ry  t  £  ( 0 , t ] ,

PROOF OF THEOREM 8 . 3 .  T h e  p r o o f  f o l l o w s  c l o s e l y  t h a t  o f  D i a z  a n d  K e r s n e r  

[ 6 ] ,  L e t  <|> b e  a  t e s t  f u n c t i o n .  T h e n

J  ( u  -  u  ) ( t )  ( t )  -  /  (u ^  -  u  ) ip ( 0 )

ß “ n n ~° 0n
t

<  J  /  { ( u  -  u  ) ( t )  ip +  (cp ( u )  -  tp ( u  ) )  Aip -  ( u  -  u  ) g r a d  v  g r a d  i p )  
0 Q n n n

- £  J J e'Mt *n
o an

< / / (u - u ) {ij) + A Aip - grad v grad ip}
0 a n t n

w h e r e

A ( x , t )  =  /  t p ' ( 0 u ( x , t )  +  ( 1 - 0 )  u  ( x , t ) ) d © *

1 - M t
S i n c e  u  >  — e  , t h e r e  e x i s t s  £ ( n )  >  0  s u c h  t h a t  A >  £ ( n )  >  0 .  We 

n  — n  n  —

n o w  d e f i n e  a  s e q u e n c e  o f  s m o o t h  f u n c t i o n s  A ^  >  £ ( n )  s u c h  t h a t

-* An  s t r o n g l y  i n  L (Q^) a s  j  «>.

b e  t h e  s o l u t i o n  o f  t h e  p r o b l e m

i n  fi x  ( 0 , t )

u
■O

t

1

o

2

L e t ip
n j

L
nv

* t
+ A

n j
Aup g r a d v

j
g r a d 0

3t
3v

O

11) X,t X X.

ni

o n  3fì x  [ 0 , t )

in fi,

4>
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where x is a smooth function such that 0 < x ^ l - & s a consequence of 

the maximum principle we have that 0 < < 1. We set ip - Then

I (u - u >X £ J (So - V  +

“ t° (8.7)

+ f / (u - u ) {(A -A .)A4> . - (gradv - gradv.) gradil* }.
0 Q ~~ n n n] fn] vy * j * V f

In what follows we first keep n fixed. In order to show that the second 

term of the right-hand side of (8.7) vanishes as j -♦ it is sufficient 

to prove that there exists a constant C(n,t) such that

t 2 t 2
j J (grad $ .,) < C(n,t) and J J (AiJj .) < c(n,th (8.8)
o q n] o n " 3

These estimates follow from multiplying the differential equation in 

Problem by ^ nj and integrating it on ft x (0fT) . For details we re­

fer to Aronson, Crandall & Peletier [3] where a similar calculation is 

made. Inequality (8.7) together with (8.8) yields

J (u(t) - U_(t))x < /  %  - tu> +
ft ft ^  U11

for all smooth x such that 0 < x < 1 and hence, since u ^  u^ in C(ft) 

and un u in C|Q^) we have

/ (u(t) - u(ti)x < / ( « « -  un*+* *8*9*
n n

Next we consider a sequence of smooth functions Xm such that conver­

ges in L̂ (ft) to a limit x defined by

Taking X - XB in (8.9) and lotting m -  »  *eia (8.5) . Finally one oan 

show (8.6) in a similar way.

n j n j

ODf

L
n j

X

X x

1

0 e l s e w h e r e

i n x u X , t > u x.t
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9. SOME REMARKS ABOUT THE DIRICHLET PROBLEM

In this section we shall discuss the existence, uniqueness and regulari­

ty of solutions of Problem P^, which we introduced in section 6.

t h e o r e m  9.1. (E x is ten ce  + R e g u la r i ty ) . L e t  Hi and H4 be s a t i s f i e d ,  and
1 °°

l e t  v £ w ' (fi) . Then Problem  PD p o s s e s s e s  a s o lu t io n  u which i s  u n i­

fo rm ly  bounded in  Q and which i s  con tinuous in  any s e t  H  x [ t , t ]  w ith  

t  > 0. The modulus o f  c o n t in u i ty  does n o t depend on T .

The proof of Theorem 9.1 is quite similar to the proof of Theorem 7.9 

and we omit it.

\

t h e o r e m  9 .2. (Uniqueness + Comparison P r in c ip le )  L e t  Hl_, H2a and H4 be  

s a t i s f i e d .  

( i) Problem  PQ p o s s e s s e s  a t  most one s o lu t io n .  

(ii) L e t  u(t) and u(t) be r e s p e c t i v e l y  a su b s o lu t io n  and a s u p e r s o lu t io n  

o f  Problem  PQ w ith  r e s p e c t  to  th e  i n i t i a l  fu n c tio n s  Uq and u^. I f  

Uq < uQ in  iJj then  u(t) < u.(t) in  ft f o r  t > 0.

In order to prove Theorem 9.2 we proceed as in section 8. Let u be a 

solution of Problem PQ which is obtained as the limit function of a 

sequence iun }, where un is the solution of

ufc = Atp(u) + div(u grad v) in Q

(Pp. ) < D , n

—  M+- +
u = (l/n)e on 3ft x jr

u(-,0) = Uq + 1/n in ft,

such that

- M t
(1/n) e < u r < C in Q. (9.1)

Then it is sufficient to prove that for any t > 0

/ (u(t) - u(t)}+x < J ( U q  -  U  )+ (9.2)

ft ft
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and

J {(u(t) - u(t)}+x < / (u_ - u_)+,
ft ft

(9.3)

for any x £ C (ft) with compact support in ft such that 0 < x < 1 in ft.

The proof of (9.2) follows the same lines as the proof which we gave in

section 8 . However, the proof of (9.3) requires handling a boundary term

which was absent in section 8 . This aspect we discuss below.

Let + . be the solution of 
nD

< V <

+t + AnjA+> - grad v^ . grad +  = 0

+ = 0

+(• >t) = x

in ft x [0 ,t)

on 3ft x [0 ,t)

in ft,

where A . •* A in L (Q J as 1 ■+ 
nj n t

f  i<P(un
A = « 
n

with

) - (p(u) }/ (u - u)
n

<P' (un)

i f

if u = u, 
n

ind where v^ is as in section 8 . Then (cf. (8.7))

+ / / (u - u){(A -A .)£+ . - (grad v - grad v.)grad + .}. (9.4)
0 ft n n nJ n3 3

As in section 8 , the third term at the right-hand side vanishes as j-* 00 

for fixed n. In order to handle the second term, we need the following 

lemma.

lemma 9.3. Let + . be the solu tion o f  Problem L„. I f  0 < e(n) < A . < K.
nj J D —  n] —  1nj

in  Q and I grad v.| < K0 in  ft, then 
t 3

u
n

u

/
n

(ii
n

b) ul t )
+

X <

Q
fu

On
u
O
+

t

J
0 3

/ <P n
1
e

-M t.
»L

n i

3v

t

ìfì

°°/
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-3+ .
nj

3v —
>  -  C / e ( n )  on  3 f t  x  [ 0 , 1 ] ,

where  c  depends on  f t ,  X /  a n d  k 2<

The proof of Lemma 9.3 is lengthy but fairly standard. For completeness, 

we give it in Appendix B.

Since cp* (0) = 0 and tp" (s) > 0 for 0 < s < s^, we deduce from (9.1) that

,1 -Mtx 7/l -Mtx . ^
An -  ̂ n  0 ) e J in 2t

if n is big enough. Since we may assume that A ^  :> A^, it follows from 

Lemma 9 . 3 that

3+

cp(—  e Mt) -~ 3 - > - -  e Mt on 3ft x [0,t) . 
n 3v —  n

Hence (9.3) follows if we let first j -> oo and then n -+ <» in (9.4) . 

Finally we give a result which we used in section 6.

l e m m a  9.4. If the solution u(t;uQ) of Problem P satisfies u(t;uQ) = 0 

on 3ft for any t > 0* then u(t?uQ) is a solution of Problem p .

2 1 - +
PROOF. Let +  GC ' (Q) with +  = 0 on 3ft x OR . Then u(t;u^) satisfies

the integral equality (iii) of definition 7.1. Integrating by parts

yields

t JV. t
J u(t)'Wt) = / u +(0) - J / cp(u) "§77 + / / (<P(U)A+ + u+
ft ft 0 3ft 0 ft

- u grad v grad +}.

Since cp(u) = 0 on 3ft x ]R+ , the second term at the right-hand side 

vanishes. Thus u(t;u^) is a solution of Problem P^.
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APPENDIX A

In this appendix we collect various approximation results which are used 

in this article.

Al. APPROXIMATION OF v

lemma Al. Let v € w 1,co(fl). Then there exists a sequence iv }c c°°(£2)
V

such that I Iv 11 . < c, I |v I l_,x. < I Ivl I and
II  II c'li».“ £ C(n> "  L-(0)
11v — v11 . o as e+0.

iT(£2)

PROOF. Let £2 3 £2 with dist(£2,3£2) >0. Then one can extend v by a func­

tion v € W*'°°(£2) such that v = v in £2 and I Ivl I < IIvlIoo ^  — co
, . L (£2) L (£2)
define the function

We

P (x) =

C exp {— ^ —  } 
lxl-1

if I x I > 1

if !x| < 1

where C is a constant such that / P(x)dx = 1. Let
1_ n 
JR

v (x) =£ N J v(y)dy for x £ ft,
c c

rs/
£2

In particular note that I I vf I Ic >q) —  ^ m  ' Let us suEPose that
* L (ft)

e <disfc(ft,8ft). Then it is a standard result (see for instance Kufner

et.al. [15]) that

grad v (x) = N / p (— )̂ grad v(y)dy for x € ft . (A.l)
o o

r*J
£2

Then I I grad v I I < I I grad v| I and I I v — v II 1 -* 0 as e+0
I /r(Q “  L°°(£2) C W (£2)

for every p £ [1 ,«>) .

lemma a2 . Let v € w 1,0°(S2) be such thatbv>_ -M in the sense of distri­

butions in £2 => £2 with dist(i2,3£2) > 0. Then there exists a sequence 

{V(;} <= c°°(£2) such that I Ive 11  ̂ <C, Av£ > -M in £2 and 

11 v — v 11 . -* 0 as e+0. c ^
£ H (£2)

o

x-Yx

V

e
- N
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PROOF. In  view  o f  the p ro o f  o f  Lemma A l ,  i t  remains to  show t h a t

Av > -M . From ( A . l )  we deduce th a t  
C —

Av (x) = £ N < Av(y) , p (̂ — )̂ > for x €ft
£ £

where <•,• > denotes the duality pairing between and H (ft). In

particular, since Av > -M we have that for x € ft

Av (x) > -£-Bm f dy = -E-"m J P A  du - -M
£ £ _ £

n ®

which yields the result.

A2. APPROXIMATION OF UQ

lemma A3. Let u £ h°(Si) with u > 0  a.e. and let v , v. € c°°(ft) be such
U U o ^

that I Iv I I 1 _ , I Iv.I I < C. Then
C (Si) 3 C (fl)

• f oo —
( i) there exists a sequence iu„.} c: c {Si) such that 0 < un < I Iu_ I I ,

L°°(Q)
uQe satisfies the compatibility condition 

8u0s 9v<-
^ (u0.c) I T  + U0£ = 0 0n and 1 |u0£- V  1 2, ^  0 aS e+0‘

L (ft)

oo —

(ii) there exists a sequence {uq^J <=■ C (SI) such that 0 < uQ  ̂ < Cj û .. 

satisfies the compatibility condition

3u . 3v. 3v .

(u0j + n> " T T  + 3^T u0j + " A)/n = 0

where A is a given constant and II u. . - un I I . 0 as j ■* «.
UJ U L ( SI )

PROOF. Since (i) is practically a special case of (ii) we only prove

(ii). We define

uQ;.(x) = jn J p( j (x-y)) Uq (y) dy

and note that 0 < u_ . < I |u* I I . Let B be a positive constant. It
-  0:1 - ° L“ (B)

1
H
O

x-yP

3u0e 9vs
'pé ( u O e ) 3 v  +  u 0 e  3\J ~

n

an

Bv
cp»
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follows from Friedman [9, p. 39] that one can find a function w^ € C (ft)
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such that w.
J an

3w.
B and -t— -

3v
3ft

, 3 v . 3 v .

------“------ r  B + " A^ n ) * A l s o ’
tp' (B+n ) 3V 3V

since grad Vj is bounded in C(ft) uniformly in j we have that

I Iw. I I < C. Since B > 0, there exists ft . c: ft with dist(ft., 9ft) > 0
D ci«j ^ J j

such that w. > 0 on ft>*ft.. Finally we choose ft. . c: ft eft, such that 
D D 13 2j

dis(ft ., 3ft) > 0, distift. . ,3ft~ .) > 0 , ft. . => H. and mea s (ftvft .) « 1/j .
¿ 3  id ¿j  13 3  13

We define

V * ’ m<

V * ’
if x 6 ft^

5 (x)u (x) + (l-£. (x) )w. (x) if x € ft -"ft
3 Oj  3 ]  2]  1]

Wj (x) if x G iM2 .
Z J

where ^  is a C function such that

[ 0 , 1 ]

if x £ !2, ,
id

if x € ft- .M2. .
2]  I ]

i f x 6 ÍM?. .
¿3

We have that u ^  € C (ft) . Also

llu - u I| can be made arbitrarily small by choosing j large
. °  L (ft) 

enough.

The term Ilu.. - u..I I _ is bounded by 4(Ilu I I + I|w. I I )

„ * ,, ?  3 1 2 <0) . 3 X.~(0) 3 L (0)which tends to zero as j -* 00.

APPENDIX B

Here we give the proof of Lemma 9.3. It is a generalization of the 

proof in the case N = 1, which is given by Diaz and Kersner [6].

1

o

Ç.
j
x)

u
Oj

u.O
L

2
a:

< u
Oj

u
0:3 L

2
ft

+ u
Oj

u.
0

L
2

ft
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PROOF OF LEMMA 9 . 3 .  S i n c e  3ft i s  s m o o t h ,  ft s a t i s f i e s  t h e  e x t e r i o r  s p h e r e  

c o n d i t i o n ,  i . e .  t h e r e  e x i s t s  a  n u m b e r  R^ >  0  s u c h  t h a t  f o r  a n y x ^ £  9ft 

t h e r e  e x i s t s  a  p o i n t  x^ £  1R n\ f t  s u c h  t h a t

B (x"1 ; R x ) fl ft = { XQ }

w h e r e  B ( x ^ ; R ^ )  =  { x  £  HR n  : | x - x ^ |  <  R ^ } .  S i n c e  x  h a s  c o m p a c t  s u p p o r t  

i n  ft ,  t h e r e  e x i s t s  a  n u m b e r  R^ >  R^ ( w h i c h  d o e s  n o t  d e p e n d  o n  x ^ )  s u c h  

t h a t

X = 0 i n u s n n  B(x 1(-R2). (B.l)

We f i x  Xq €  3i2 a n d  w e  d e f i n e

w ( x , x )  =  4 ” .(x,t) +  0 ( | x - x n | )  i n  U x  [ 0 , t ] ,
n j  0

2
H e r e  t h e  f u n c t i o n  a  £  C ( [ R j / R 2 ] )  w i l l  b e  c h o s e n  b e l o w  s u c h  t h a t  w 

a t t a i n s  i t s  m a x im u m  o n  U x  [ 0 , t ]  i n  x  [ 0 , t ] .  We a s s u m e  t h a t

o '  <  0  a n d  a"  >  0  i n  ( R ^ , R2 h  ( B . 2 )

T h e n  w s a t i s f i e s  i n  U x  [ 0 , t )

w^ + A .Aw -  g r a d  v .  g r a d  w >  
t  n j  * D ~

>  £ ( n )  a"  ( I x - x ^  I ) +  (K^ +  K2 ) a 1 ( | x - x ^  I ) = 0

i f  w e  c h o o s e

a ( r )  =  C j C i n j K - 1  e _ K r / e ( n ) f R j  <  r  <  R2#

w h e r e  i s  a n  a r b i t r a r y  c o n s t a n t  a n d  K =  K ^ ( N - 1 ) R  J + N o t e  t h a t

o  s a t i s f i e s  ( B . 2 ) . H e n c e  w a t t a i n s  i t s  m ax im u m  o n  t h e  p a r a b o l i c  b o u n ­

d a r y  o f  U x  [ 0 , t ) . On t h i s  b o u n d a r y  w e  h a v e

X
O

N-l
R
1

c
'1

K
2



w(x,t) = a ( Ix-XQ I ) + x(x) < cfiRj) , X € u

w(x,x) = a(|x-x0 l) < atR^, x € 9u PI 9ft, x € [0,t]

•<

w(x,x) = a (|x-xQ I) + + n;.(x,x) < a(R2) + 1, x € 9u fl 9B(xx ;R2),r€[0,t]

w(^,x) = aiRj) , x € [0,t],

where we vised (B.l) and the facts that a'< 0 and 0 < + , < 1 in 0 . If
— — nu — t

we choose

C[ = K(c|n)(e-KEl/C(n)-e-KR2/'(”>)} _1

then

cf( r 2 ) +  1 =  a ( R 1 ) .

Hence

w(XfT) < w (Xq ,t) in U x [0,t]

and

> 0 on x [0/t].

Thus

a ' ( R 1 ) =  - K { e ( n )  ( l - e " K ( R 2 " R l ) / e ( n ) ) } - 1  >

> -K/e(n) on {xQ} x [0ft].

This completes the proof of Lemma 9.3

9w
9v

3+
nj
3v

X
O
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O n interacting pop ulations that d isperse to  avoid  
crowding: T he effect o f  a sedentary co lony

M. Bertsch1, M. E. Gurtin2, D. Hilhorst1, and L. A. Peletier1

1 Department of Mathematics, University of Leiden, Leiden, The Netherlands
2 Department of Mathematics, Carnegie-Mellon University, Pittsburgh, PA 15213, USA

Abstract. An analysis is given of a model for two interacting species, one 
mobile and the other sedentary, in which the mobile one disperses to avoid 
crowding. The spatial distribution of the mobile species over the habitat, as 
it evolves with time, is studied. In particular it is shown that a colony of the 
sedentary species can form an effective barrier against the spreading mobile 
species, and prevent it from entering certain parts of the habitat.

Key words: Population dynamics — dispersal — interacting species — spatial 
segregation

1. Introduction

One of the first persons to propose a continuum model for the dispersal of 
biological populations was apparently Skellam [14], whose assumption of random 
dispersal led to the partial differential equation

p, = Ap+cr(p)

with p the spatial density and a(p)  a function which represents the supply of 
individuals due to births and deaths. (Here the subscript t represents differenti­
ation with respect to time, while A is the Laplacian.) There are, however, many 
biological species for which dispersal — rather than being random — is a response 
to population pressure1. To model this phenomenon Gurney and Nisbet [6] and 
Gurtin and MacCamy [7] introduced a model based on the equation

Pt = M pm) + cr(p\

with m ^  2. The tendency of individuals to avoid crowding is reflected by the 
nonlinear diffusion term A(p m).

1 Field studies and experiments demonstrating the effects of population pressure on dispersal are
discussed in detail by Okubo [9] and Shigesada [12]

N o k w
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Recently, Gurtin and Pipkin [8] extended the theory of [6, 7] to include a 
finite number of interacting biological groups2; these groups might consist of 
different species or of different age classes of the same species. In the model of 
[8] the densities p„, n = 1 , 2 , . . . ,  N, are related through the system

pnt = kn div(pnV U) + o-M(p,, p2, . . . ,  pN) (1)

in which

U = Pl + P 2  +  * * * + P n

is the total density, while the coefficients kn are nonnegative constants. As is clear 
from (1), the dispersal velocity for species n is - knVU , so that each species 
disperses locally toward lower values of total population; in this sense the 
dispersal is a response to population pressure (cf. the discussion of [8] and the 
references quoted therein).

In this paper we shall analyze, in some detail, a simple example of (1). We 
consider two species, one mobile (fc, >  0) with density p x = m, the other sedentary 
(k2 = 0) with density p2 = v ; we neglect births and deaths, so that cr, = cr2 = 0; and 
we assume a one-dimensional habitat. Under these hypotheses the Eqs. (1) reduce 
to

U, =  [ u ( u + l > ) * ] x ,

(2)V = v ( x ) ,

where x designates the spatial coordinate.
In biological terms, the assumption underlying (2) is that the dispersal of 

^-individuals — as well as the supply, due to births and deaths, of both species
— takes place on a time scale much longer than that characteristic of the dispersal 
of w-individuals.

We shall suppose that both groups live in a finite habitat

i2 = (-L,L), L >  0,

that individuals are unable to cross the boundary of 12,

u(u + v)x = 0 atx  = ±L, t > 0 9 (3)

and that initially the mobile species is distributed according to

u(x, 0) = u0(x), - L ^ x ^ L  (4)

Finally, we shall assume throughout that u0 and v are continuous nonnegative 
functions on i l  = [ -L ,  L].

In Sect. 2 we study the set % of equilibrium solutions of (2) and (3). In 
particular, we show that % consists of a continuum of continuous functions: each 
q e %  is either a function which is positive on Q and for which q + v is constant, 
or it has intervals over which q = 0 interspaced by intervals over which q + v is 
constant (the constant may vary from interval to interval).

2 See also Busenberg and Travis [3]. An alternative theory was developed by Shigesada, Kawasaki 
and Teramoto [13]. A detailed discussion of this theory is given in [8]. See also our remark in 
Sect. 4.

2 M. Bertsch et al.
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Interacting populations

Fig. 1. The initial distributions -a

In Sect. 3 we turn to the full initial-value problem (2), (3), (4). We define the 
notion of a weak solution — a notion necessitated by the fact that solutions will 
generally not be smooth — and we state three theorems: a theorem of existence 
and uniqueness due to Bertsch and Hilhorst [2], a comparison theorem also due 
to [2], and a stabilization theorem. The latter theorem shows that the solution 
u(x, t) of (2), (3), (4) satisfies

u(-, t)^> q e  % as i-»oo.

As a consequence of this result we show that when the mobile population is 
sufficiently large relative to the sedentary population, the mobile species eventually 
populates the entire habitat.

In Sect. 4 we consider the converse question: are there circumstances under 
which the sedentary colony blocks the migration of mobile individuals? Here we 
shall be interested in the following situation (Fig. 1): the sedentary colony is 
localized around the center of the habitat, i.e.

d(jc) = 0 for 0 <  a ^  |x| ^  L;

and initially the mobile species lies to one side of this colony, i.e.

u0(x) = 0 for - a  ^  x ^  L.

We show that when
max Uq ̂  max v,
n n

mobile individuals do not reach the portion of the habitat that lies to the other side 
of the sedentary colony; that is,

u(x, t) = 0 for a ^  x ^  L, t ^  0.

Finally, in Sect. 5 we present a proof of the Stabilization Theorem.

2. Equilibrium solutions

We assume throughout this section that v^  0 is nonnegative and continuous on Ü. 
Let q(x) be a time-independent solution of (2) and (3). Then, clearly

[q(q + vy]' = 0 on Ci,

q(q + v)' = 0 on d/2,

3

uo
V

V

uo.V

-L O a L
x
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or equivalently (for q(q + v)' absolutely continuous on O)

q(q + v)' = 0 on Q

(prime denotes differentiation). This should motivate the following definition. 
An equilibrium solution is a nonnegative function q on O with:
(i) q + v absolutely continuous on O ;

(ii) q(q + v)' = 0 on i l
The next proposition gives a useful decomposition of the set % of equilibrium 
solutions.

Proposition 1. Let

Then

with

v = max v.
n

g  =  g ,  U  g 2

= {q e q + v >  v on i2},

%2 = {q e  %: q + v ^ v  on O}.

Proof: Let q e % and let 9  be a connected component of the set

{x e O : q(x) + v(x) >  v}.

Then q >  0 on and (ii) yields

q(x) -I- i?(x) = c >  v on 9,

with c constant. Thus, since q + v is continuous on 0 9 9  must coincide with its 
closure, a possibility only if 9  = ¡2 or 0 > = 0 .  Since q belongs to %x or 
according as 9  -  Cl or 9  = 0 ,  this completes the proof.

It is clear from the proof above that

%j —{ c -  v: c = constant >  £?}

(cf. Fig. 2a). The specification of %2 is not so simple; we can, however, give a 
complete characterization when the set

Oc = { x e  fl : v(x)>  c}

is connected for each c e [0, v). In this instance, if we let v(x) = v and define, for 
b9ce  [0, v],

I. ^_finax{0, A-»(*)}, -L^x^x,

q(x’b’c} ImaxRc-»(*)}, x^x^L, (5)

it follows that (cf. Fig. 2b)

%2 = {q(' ,b ,c ):  b , c e [ 0, v]}.

In the event the set Oc consists of two or more disjoint subsets for some 
values of c e [0, v) the set of equilibrium solutions becomes more complicated. 
An example is given in Fig. 3.

». %

9,

w
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Interacting populations

Fig. 2a. q e

b. q e %2 \ connected for every c e [0, v)

Fig. 3. q e %2 &c connected for 
some c g [0, v)

3. General results

Stabilization

We now turn to the evolution of the distribution of mobile individuals and 
consider the solution u(x, t) of the problem:

ut = [u (u + v)x]x for x e i 2 , t >  0, (2)

(1) < u (u + v)x = 0 for x ed f l ,  t > 0 ,  (3) 

[ u(x, 0) = u0(*) for x e O. (4)

Equation (2) is a degenerate diffusion equation. If we write w = u+ v9 thcit
(2) becomes

wt = uwxx+ u xwx,

5
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an equation for w which — for fixed u — is parabolic when u >  0, hyperbolic 
when u = 0. Further, for v = 0, (2) reduces to the porous media equation

and equation which has been studied extensively in recent years. (We refer to 
the survey article of Peletier [11].)

Because of the degeneracy of Eq. (2), Problem I may have solutions which

introduce the notion of a weak solution, a notion inspired by its analog for the 
porous media equation (cf. [1]).

and for any function /(x , t) let f ( t ) =  / ( • ,  t).

Definition. A (weak) solution w(x, t) of Problem I is a bounded continuous function 
on Q with the property

for any t >  0 and if/ e C \ Q ) such that ^ O o n  Q and ÿ x(±L, t) = 0 for all t ^ 0. 
If we take tf/(x, t) =  1 in (6), we arrive at the conservation law

which asserts that the total number of mobile individuals does not change with 
time. This is consistent with the assumption that individuals do not cross the 
boundary of thè habitat.

We now state two general results for Problem I. The first states existence and 
uniqueness, the second gives a comparison principle which we will use repeatedly 
in what follows. These results, which are due to Bertsch and Hilhorst [2], are 
based on the following assumptions:

Al. There exists a constant K  >  0 such that

Proposition 2. Let v satisfy A l, and let u0e C(O) be nonnegative. Then Problem
I has a solution u on Q. If in addition, A2 is satisfied, the solution is unique.

Proposition 3 (Comparison Principle). Let v satisfy Al and A2. Let u and ü be 
solutions of Problem I with initial data m0, ü0e C (il), u0, mo^0. Then

u, = 3(«2)xx,

are not smooth (cf. the equilibrium solutions sketched in Fig. 2). We therefore

Let

Q  = f l  x ( 0 ,  oo),

for all t ^  0, (7)

\v(x )-v(y)\  ^  K \ x - y \  for all x, y e Û.

A2. There exists a constant M such that

v \ x ) - v \ y )

x - y
^ - M  for almost all x, y  e O, x ^ y.

Üq^U q in i l  => ü ^ u  in Q.

f w(í)«A(í)= í «O^(0)+f í (5u2<lfXx+uil/,-uvxif/x) (6)
Jn Jn Jo Jn

u(r)= u0 
Jn Jn
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A direct consequence of the Comparison Principle is that solutions of Problem
I are nonnegative.

The next theorem asserts that solutions stabilize. The proof, which is a bit 
technical, will be given in Sect. 5.

Stabilization Theorem. Let v satisfy A1 and A2, and let u0e C(O) be nonnegative. 
Let u be the solution to Problem I. Then there exists an equilibrium solution q such 
that

The following corollary of the Stabilization Theorem shows that if the mobile 
population is large enough, this species will eventually populate the entire habitat.

Corollary. Assume, in addition to the hypotheses of the Stabilization Theorem, that

Proof: By the Stability Theorem u(t) tends to a limit q e  g, and by (9) and (10),

We may therefore conclude from Proposition 1 that q e  g,, and hence that

Thus, since u(t)-* q in C(i2), there exists a t0 such that (11) is satisfied.
To conclude this section consider the situation described in Fig. 1. Let

u ( t )^ q  in C (ii)  a s t ^ o o. (8)

Moreover,

(9)

(10)

Then for some t0 >  0,

w(x, t) >  0 for a l l x e i i , t  5* t0. (io

q >  v - v ^ O  on/2.

v = max v
n

(12)

(13)

f f  -
Jn Jn

u0>  (v - v ). 
Jn Jn

(q + v - v ) >  0.
Jn

m0 = max m0,
n

and suppose that

ü0 v̂.

Then q(x, ü09 0), defined by (5), is an equilibrium solution in %2, and

u0(x)  ̂  q(x, m0, 0) for x g il.

Thus, by the Comparison Principle,

0 ̂  m( x, t) ̂  <y(x, m0, 0) for x g il, t ^  0 , 

and hence, since by the Stabilization Theorem u(t)^>qe % as i-»oo,

0 ̂ q(x)^q(x9 m0, 0)
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(cf. Fig. 2b). Since q e% 9 q must belong to %2 \ hence

q(x) = q(x, b, 0)

for some b e (0, u0], which — using the Stabilization Theorem again — can be 
determined uniquely from the relation

q(x, b, 0) dx = u0(x) dx.
Jn in

In a similar manner, if (10) holds, then q e  ^,-and hence

q(x) = c - v ( x )

for some C>V, which can be determined uniquely from (9); the result is

4. The Barrier Theorem

In view of the corollary to the Stabilization Theorem, if the mobile population 
is large enough this species will eventually populate the entire habitat. This 
motivates our asking whether there are conditions under which the sedentary 
colony blocks the migration of mobile individuals. The next theorem gives such 
a condition for the situation sketched in Fig. 1. In particular, it is shown that if 
max Uq ̂  max v then the mobile species never reaches that portion of the habitat 
which lies to the other side of the sedentary colony.

Barrier Theorem. Let v satisfy Al, A2, and the condition

max Uq ̂  max v,
n n

(14)

The Barrier Theorem gives a condition on u0 which insures that mobile 
individuals do not disperse completely through the sedentary colony. In a similar

c

v(x) = 0 for 0 <  a ^  |x| ^  L. 

Let u0e C(f2) be nonnegative and satisfy

u0(x) = 0 fo r -  a ^  x ^  L.

Then if

it follows that

u(x, t) = 0 for a ^  x ^  L, t ^  0.

Proof: Let

x0 = sup{x e  Q : i; ^  u0 on [ -  L, x]}.

Then, by (5) and (13),

m(x, i) = 0 for x0 ̂  x =ss L, t ^  0. 

Since x0< a , the theorem is proved.

\

2 L Jn
u0(x) + v(x)] dx.
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manner, one can prove that given the right distribution of sedentary individuals
— for example the one sketched in Fig. 3 — the mobile species may get trapped 
inside the sedentary colony.

Granted the hypotheses of the Barrier Theorem, it seems reasonable to ask 
how far into the sedentary colony the mobile species will penetrate. To make 
this idea precise, note that

xu = sup{x e Q : m ( x , t) >  0 at some t >  0}

represents the furthest point reached by mobile individuals, while

xv = sup{x e i l  : v = 0 on [—L, x]}

marks the start of the sedentary colony. We define the depth of penetration d(u) 
by

d(u) = xu- x v.

This definition makes sense for m0#  0. Indeed, since each equilibrium solution 
q is continuous on Q and constant on [-L , xv], each nontrivial q satisfies q^O  
in (xw L); it therefore follows from the Stabilization Theorem that xu>  xw and 
hence that d(u )>  0.

By (14),

d ( u ) ^ x 0- x w

and it is clear from Fig. 4 that the steeper the v- distribution to the right of xw 
the smaller the value of this upper bound. With this in mind, consider the situation 
shown in Fig. 5, in which v has a jump discontinuity of magnitude larger than

Fig. 4. The points x0 and xv

Fig. 5. The case x0 =

uo
V

u

-L xv Xo L
X

u

Uo
V

-L Xv Xo L
X

V'O'

0',v

:XV
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Uq. Of course, discontinuous functions v do not fit into the framework studied 
here, but an obvious limiting argument leads us to expect that if a solution u 
exists, its depth of penetration is zero. Such a result would be interesting as it 
yields segregation of the two species for all time.

Remark: An alternative model for species which disperse to avoid crowding is 
given by Shigesada et al. [13]. (Cf. the discussion of [8].) For two species, one 
mobile and one sedentary, their model leads to the partial differential equation

ut = [m(w+ iOLx, x e i l ,  t >  0,

and the boundary condition

[u (u+v)]x = 0, x e d i l , t >  0.

For this model one can show, using a stabilization theorem analogous to ours, 
that the mobile species always spreads through the entire habitat.

5. Proof of the Stabilization Theorem

We assume throughout this section that v satisfies Al and A2, and that all initial 
data referred to are continuous and nonnegative on il. Further, we will use the 
notation (12).

Lemma 1. The solution u of Problem I satisfies

Our proof of stabilization is inspired by an approach due to Osher and Ralston 
[10]; it is based on a contraction property which we state as Lemma 2. To state 
this lemma concisely, we write

for the L\i2)-norm 9 and we say that two functions /  and g on i l  intertwine if 
there is an interval I c  Q such that

/  > 0 and g >  0 on J,

f —g changes sign on I.

Lemma 2. Let u, and u2 be solutions of Problem I with initial data u0l and u02. Then

| | u , ( 0  -  u 2 ( / ) | |  ^  I K i  -  W 02 I I  for t &  0 .

m (x , t) ^  c -  v(x) for -  L ̂  x ^  L, t ^  0,

where

c =  u0 +  v.

Proof: Let g(x) = c -  u(x). Clearly, g is an equilibrium solution and 

q(x)^  u0^ u0(x) for - L ^ x ^ L .

Hence, by the Comparison Principle,

m (x , t )^ q (x )  for - L ^ x ^  L, t ^0.

ii/ ii = [ i/wi
Jn

dx
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If  in addition u0l and u02 intertwine, then

l h ( 0 -  «2(011 < I I « 0 1 - « 0 2 | |  f o r t > 0 .

Because the proof of this lemma is quite technical, we shall not give it here; 
it can be found in [2].

Proof of the Stabilization Theorem: It is useful to view the solution u of Problem 
I as tracing out a continuous orbit

y  = {u(t): is*0}

in the space C(Q). The omega-limit set w of y  is defined by

w = { w e  C(O): 3{tn}, tn->o0  as « -» 0 0 ,

such that

u(tn)~* w in C(/1) as n-»oo}.

By a result of DiBenedetto [5], the set

7 r =  { « ( < ) :  t ^ T >  0 }

is precompact in C(D)  for any t > 0 .  Hence a) contains at least one element.
Let weo).  We shall show that w e %. Suppose wg %. We shall construct an 

element q e % which intertwines with w. We choose q from the family of functions

qc(x) = max{0, c -  i>(x)}, c ^  0.

By Lemma 1,

0 = q0(x)  ̂  w(x)  ̂  qs(x) for —L ^ x ^ L .

Hence there exists a d  € (0, c) such that qd and w intertwine. We take q = qd. 
Consider the function V : C (i7)-»[0,00) defined by

V(z) = \\z-q\\.

Because u e  C(Q), V(u(t)) is a continuous function of t which by Lemma 2, is 
nonincreasing. Thus V is a Lyapunov function.

Let w(x91) denote the solution o f Problem I with initial data w(x). By the 
invariance principle, w is an invariant set and hence w(t)e <0 for all t ^  0. Because 
V is constant on w (cf. [4]), it follows that

V(w(t))= V(w) for all i ^  0.

On the other hand, since q and w intertwine, we conclude from Lemma 2 that

V(w(t))<V(w)  for all i >  0,

and we have a contradiction. Thus w e % and hence co
We show next that co consists of one element only. Suppose that wu w2eoj 

and u(tin)-*Wi(i=  1,2) as 0 0 . Suppose further that the sequences {iln} and

« C ? .

n  -
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{t2n} are so chosen that t]n< t2n for all n ^  1. Then, using Lemma 2 we find that

l|w2 — w,|| = Iim||w(i2„) — w,||
n -*oo

*£ lim||u(i,„) — Will
n-K X )

=  0 .

Thus W\ = w2. Hence w consists of one element.
Writing a) ={#}, we are led at once to (8), and this result combined with the 

conservation law (7) yields (9). This completes the proof.
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1. Introduction

In th is  paper we consider the nonlinear d if fus ion  problem 

c ( z) t  = ( I I m_1 z ^  in Q: = (-L,L) * 1R+

(I)   ̂ 2 ( -L ,t )  = -U , a (+L,t)  = V for  t  > 0

z (x ,0 )  = Zq(x) for x e (-L,L)

where F + = (0,°°), L, U and V are p o s i t iv e  constants , m > 1 , and

c”s for s < 0

for s  ̂ 0 ,

c ( s )  =

( 1 . 1 )

+
c s

with c" > 0 . The i n i t i a l  function Zq s a t i s f i e s

HI. zQ e C ([ -L ,L])  , zn(-L) = -U, zn(+L) = V, zn ' > 0  on [-L,L] ,
0 V

and the s e t  {x e [ _L,L] : Zg'(x) = 0} i s  empty or con s is t s  o f  a f i n i t e  number 

of  non-empty closed connected subsets o f  [-L,L].

Problem I ar ises  in  the theory o f  population dynamics. Let u ( x , t )  

and v ( x , t )  denote the d en s i t ie s  o f  two populations.  Following Gurtin and 

Pipkin [18] , we assume that the dispersal v e l o c i t i e s  o f  u and v are 

proportional to -(u+v) , i . e .  the dispersal i s  a response to the population
A
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pressure. Neglecting birth and death processes ,  and assuming that no individuals  

can leave the habitat (-L,L) , we arrive at the problem

Here and k2  are p o s i t iv e  constants (the case k-j > 0 , = 0 was 

discussed in [ 7 ,9 ] ) ,  and the i n i t i a l  d is tr ibu t ion s  Uq and Vq are given  

nonnegative functions .

The connection between the Problems I and II i s  as fo l low s .  

Consider the special  case o f  Problem II where i n i t i a l l y  the two populations  

are segregated : for  some a € (-L,L)

The question i s  whether Problem II has a so lut ion  pair (u ,y)  such that  

u ( . , t )  and v ( . , t )  are segregated for  a l l  la te r  times. To answer th is  question  

we introduce the function

Using that the tota l  d en s i t ie s  o f  both populations are conserved, i . e .

ut  = ¥ u<u + v >x >*
in Q

u(u + v) = v(u + v) = 0 for X = ± L, t > 0
A  A

V u(x,0) = Uq (x), v (x ,0) = Vq (x) for x € (-L,L) .

Uq(x) e 0 for  x > a  and vQ(x) eO  for  x < a  .

fx
z (-X » t  ) : = -U + J { u ( s , t )  + v ( s , t ) }  ds , ( x , t ) e  TJ .

and -L

L

-L

L

-L

v(x,t)dx = V : = Vg(x)dx , 

-L

we find that formally z s a t i s f i e s  Problem I , with

m = 2 , c '  = 2 /k1 , c+ = 2 /k2 ,

Vt = k2(v(u + y ) x ) x

(II)

L

u(x,t)dx = U : =

L

uQ(x)dx

k
2

-L
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z0(x) = -U + } Liu0(s) + vo(s)} ds •

For more d e ta i l s  about the re la t ion  between the Problems I and II , we 

refer  to [8 ] .

The purpose o f  the present paper i s  to study Problem I in d e t a i l .

The resu lt s  are used in [8 ] to construct a pair  o f  segregated so lutions  

of Problem II .

Two mathematical d i f f i c u l t i e s  ar ise  from the d i f fe re n t ia l  equation (1 .1 ) .  

f i r s t  we observe that the equation i s  of  degenerate parabolic type : at points  

where z = 0 , i t  looses i t s  parabo l ic i ty .  In addition, when c+  ̂ c” , the 

function c(z )  i s  not d i f fe re n t ia b le  at  z = 0 . To prove the ex istence  o f  a 

unique so lu t ion  z o f  Problem I , there are more or le s s  standard methods to 

overcome these d i f f i c u l t i e s .  The basic  r esu l t s  are given in sec t ion  2 ; 

the proofs are postponed to the appendix.

Since Zq' > 0 in (-L,L) , i t  fo llows e a s i l y  that the so lu t ion  z

s a t i s f i e s

z > 0 and -U < z < y in Q (1 .2  )
X

The purpose of  th is  paper i s  to give a deta i led  description o f  the se t s  

Q" = { ( x , t )  e T? : -U < z ( x , t )  < 0 and z (x , t )>  0}
X

and

Q+ = { ( x , t )  e l ? :  0 < z ( x , t )  ^ V and z^,(x,t) > 0} .
A

In view of  (1 .2 )  , Q" and Q+ are completely determined by th.e se ts  

N(z) = { ( x , t )  e ^  : 2 ( x , t )  = 0 }

and

and

x

N(zx ) = i ( x , t )  e : zx (j<,t) = 0 }ïï
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Observe that a l l  these se ts  are in tere s t in g  in view o f  Problem II :

Q~ (resp. Q+) i s  the s e t  where u > 0 and v = 0 (resp. v > 0 and u = 0) , 

W(z) i s  the s e t  which separates the regions where u > 0  (Q~) and v > 0 (Q+) , 

and W(zv ) i s  the s e t  where both u = 0 and v = 0 . Furthermore we notice
A

that W(z) and N(zx ) are prec ise ly  the s e t s  where equation ( 1 . 1 ) i s  not 

regular.

In th is  paper we shall  descrihe N(z) and W(z ) in d e t a i l .  For the
V\

precise re su l t s  we refer  to sec t ion  3 . As an i l l u s t r a t i v e  example we describe  

here the resu lt s  in the case that the interval {x e [-L,L] : Zq (x ) = 0} has 

a p o s i t iv e  measure, which implies that the s e t s  where Zq = 0  and Zq' = 0  

overlap. F irs t  we obserye that ,  s ince z > 0  , there e x i s t  functions  
+ x 

5  : [0,a>) -+(-L,L) such that

N(z) = { ( x , t )  e TJ : < f ( t )  < x < £+( t )  , t  > 0 } .

In th is  paper we shall  show that and c+ are continuous and that there  

e x i s t s  a time T* > 0 such that

?"(t) < ?+( t )  for t  e [0,T*)

and

? (t )  : = c~(t )  = ?+( t )  for  t  > T* .

In addition i s  nondecreasing and c+ i s  nonincreasing on [0 ,T *] ,  and 

zx ( s ( t ) , t )  > 0  for t  > T*,

i . e .  N(z) n N(z ) = i ( x , t )  € JJ : Z~(t)  < x < C+( t )  , 0 < t  < T*}
A  "  “  "  “

Ç~
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FIGURE 1 .

We prove the main r e su lt s  in the sect ion s  4 , 5 and 6 . In section  5 

we characterize the sets. w(z ) and fj(z) n w ( 0  . In sec t io n  6 we study
A  A

the leve l s e t s  o f  z in the region where zx > 0 and in particu lar  the s e t  

W(z) ^ W(zx) .

In sec t io n  4 we introduce the jnost important tool in the proofs,  

which i s  o f  independent in te r e s t  and which we discuss here in some d e t a i l .  We 

consider an approximating sequence o f  regularized Problems I , whose so lutions  

?n are such that znx > 1/n . Hence the level s e t s  o f  z n are ac tu a lly

curves : x = .Xn(p ,t )  , defined by

for p c  [-LjL] .

In th is  way we have introduced a coordinate transformation in TJ : (x,t)-> (p , t )  .

t

t = T *

- L

'Z X o:

z - U '

G f

2•X 0

z 0

X E l t

z X' 0

z a

z.•X ■>

x E t;

zf mm 0

cr

z x > 0

z > 0

x E* t :

L x

>

<

t

z,n n'
p,t; , t z

n
p^o
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Following an idea by Gurtin, MacCamy and Socolovsky [17] , we show that the 

function X (p , t )  s a t i s f i e s  a parabolic d i f f e re n t ia l  equation in Q . Using 

th is  equation we derive in sect ion  4 the estimate

where the constant does not depend on^ n . These and other estimates  

for  Xn are important for the analysis  in the sect ions  5 and 6  .

In sect ion  7 we discuss the large-t ime behaviour o f  the so lu t ion  z . 

We show that z ( . , t )  converges exponentia lly  to the unique s teady-s ta te  so lut ion  

of Problem I .

Finally  we remark that nearly a l l  the resu l t s  carry over to the case
m-1

that the function s -> | s |  s in equation ( 1 . 1 ) i s  replaced by a more 

general function tp , which i s  smooth enough and s a t i s f i e s  tp(0 ) = <P'(0) = 0  , 

ip1 ( s )  > 0  for s * 0  , and

Only the est imate (1 .3)  cannot be e a s i l y  generalized to th is  case ,  but when 

we assume that ($(Zq '))' i s  bounded on (-L,L) , where

|Xn t | < <g/t for t  > 0 , (1 .3)

m— 1
or, a l t e r n a t iv e ly ,  i f  we assume in addition that ((Zq ') )' i s  bounded

in (-L,L) ,

|Xn t | < V  for t  > 0 , (1 .4)

ds < oo

then the est imate (1 .4)  follows e a s i l y .

1

0

I
<P s

si,

$ s

s

0

tp' T

T
dx ,

9g
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First  we give the d e f in i t io n  of a (weak) so lut ion  of Problem I .

The unique s teady-s tate  so lut ion  o f  Problem I i s  denoted by z :

U + V
z(x) = --------  (x + L) -U , -L < x < L .

2L

We shall  use the notation

ft = (-L,L) and QT = Si x(0,T] .

D e f in i t io n  2.1 . A fu n c tion  z £ C( £0,«,) : lJ(ft)) i s  a s o lu t io n  o f  Problem I  

i £

( i )  z -  z £ L°°((0 ,~) : M1 »00̂ )  n H j( f i ) )  ;

( i i )  ẑ . e L^(Qy) f o r  a l l  T > 0 ;

( i i i )  z(0) = z 0 ;

( iv )  f o r  a l l  \p £ C^(Q) w ith  i|f(±L,t) = 0 f o r  t  > 0 , z s a t i s f i e s  

f o r  a l l  T > 0

2 . Pre l iminar ies

Observe that i f  z i s  a so lut ion  o f  Problem I , then i t  s a t i s f i e s  equation (1.1)  

a .e .  in Q .

We shall  prove the ex is tence  of a unique so lut ion  of Problem I under 

s l i g h t l y  more general conditions on the i n i t i a l  function Zq .

H2 . z0 £ W1>0°(-L,L) , Zq(-L) = -U, zq(+L) = V , zQ' *0 a . e .  in (-L,L) .

Theorem 2.2 . L e t  Zq s a t i s f y  h y p o th e s is  H2 .

( i )  Problem  I has a unique s o lu t io n  z ;

( i i )  z £ C{T}) , z £ C( x (O,00) ) ,  and z > 0  in  Q ;
X X ”

( i i i )  th e  s e t  { z ( . , t )  : t  > 1} i s  precom pact in  (U) ;

(iv) i f  zn £ C1(H) 3 then z £ C(Q) , and the se t  i z ( . , t )  : t  > 0} ¿s
V 1 _ A ' ”

precompact in  C (ft) .

for alt

T > O

ilQT

:c 'z t
+ z.

X
I m-1 z.

X x } 0 ., }= o .

n
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We give the proof of  Theorem 2 . 2  in the appendix. There we shall  a lso  show 

that z can be approximated by so lutions  zn o f  more regular problems. Since 

we need th is  approximation in the r e s t  of  th is  paper, we give some d e ta i l s  here 

already. For a l l  proofs we refer  to the appendix.

F ir s t  we approximate the i n i t i a l  function Zq .

Lemma 2 .3  . Let Zq sa tis fy  hypothesis H2 . Then there e x is ts  a sequence 

o f functions {zQn, n = 1 , 2 , . . . }  c r ( f  (Q) such that

( i)  ZQn(-L) = -U, Zgn = 0 in  :g neighbourhood o f  x = -L , and 

1 /n  < Zgn < || Zq ¡1 ^ + c/n vn_ iV for some c> 0  ;

( i i )  ZQn -» Zq 'in C(Q) as_ n

(H i)  if_ Zq € (f2) , then Zq  ̂ -» Zq in_ (U) as_ n -» 00 j

Uv) i l  £ L” (n) ,  then | | )'  l l „  * flC<*i)"'_1) ' L  •

Here ||.|| denotes the norm in (1 < p <°°) .

Consider for  T > 0  the problems

' cn^z ^t = d zxl in ^T

( I n) J  z ( -L , t )  = -U ; z ( L, t )  = Vn for  0< t<_ T

I z ( x , 0 ) = zQn(x) for x € Q ,

where z 0 n i s  given by lem a  2 , 3i  Vn = W L) * and cn 6  s a t i s f i e s

c n -* c uniformly on ]R as n - * 00 ,

c^ -* c 1 uniformly on compact subsets o f  K>io> as n - * 00 , 

min {c+ ,c } < c  ̂ < max {c+ ,c~} on 1R .

n -»°0;

c1

z
0

m- 1

LP,

m-1 z. y.x

C
00

R
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Lemma 2.4  . For all T > 0 Problem I has a unique (classical) solution

where does not depend on n 3 and where c is given by Lemma 2.3 (i) .

In the appendix we shall  prove that the sequence zn converges to  

the unique so lu t ion  z o f  Problem I :

Remark. Theorem 2.2  can be proved without the rather r e s t r ic t iv e  condition  

Zq > 0 in hypothesis H2 . In that case however we need a d i f feren t  

approximation o f  Problem I , s ince  the sequence zQn in Lemma 2.3  no longer 

e x i s t s .  Instead one can choose an approximation in which equation (1 .1 )  i s  

replaced by

n

(2.1)

and (2.2)

-» z in C(T?y) as n -* °° ,

and, for  x e (0,T) ,

znx zx in c (fìxIT»T )̂ as n (2 .3 )

F in a l ly ,  when Zq € C (ß) , then

2nx zx  in C^ tV as n “  • (2 .4 )

In th is  paper we have chosen the approximation by Problem In , because i t  w il l  

be more convenient to work with in the following s ec t io n s .

2+a, 1+7ja

zn e C ( QT> for each a e 0,1 In addition z satisfies

1 < znv < Il znll + £  in— ” nx - il u i* oo n —  n

Q.
T

hnt
2

< 9g 9

cn(*)'t = « I * * ! " " 1 + ïï> ' A  1n « ■

u'T

S?

z'n

°o .

-X
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In th is  sec t ion  we describe our main r e s u l t s .  Theorem 3.1 character i ­

s e s  ^(z ) , the s e t  where z = 0 . In Theorem 3.2 we describe the level
X X

se t s  o f  z in the region where z > 0 , in particular  the s e t  N(z)''- N(zv ) .
X X

Theorem 3.3 deals with the large time behayiour o f  z .

F ir s t  we introduce some notation. We s e t  

1 = N(zv ) n { t  = 0} , i . e .
A

I = (x € 12 : Zq ( x ) = 0} .

I f  Zq s a t i s f i e s  hypothesis HI , we can write for  some £ € { 0 , 1 , 2 , . . . }

3 . The main results

(3 .1 )

are nonempty closed connected subsets o f  ft ; i f  I = 0 , we mean

by (3 .1 )  that 1 = 0 .

Since 2 q > 0 , we can rearrange the in terva ls  I .  such that for

Zq (x ) = ©j for  x € Ij . (3 .2 )

+
0 < t  • < T

J i

and con tinuous fu n c tio n s

J = 1 » 2 , . . . , £  .

such that

£
U W

I
I
u

j = l

I
j

Theorem 3 . 1  . L et z s a t i s f y  h y p o th e s is  HI 3 and l e t  th e  s o lu t io n

o f  Problem  I . Then i^ iere e x i s t  d o n sta n ts

Ni z.
x

j=l
3

where I
j

ft

some constants -U < 0.
1

< 0,
2

< < 0
I

< y

0
2 t be

’j

+

0 , T.
j

ft
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z = 0. on N. , (3.3)
J J

where

Nj : = {(x, t ) eT) : q ( t ) < x  < ^ t ( t )  , 0  < t  < Tj}

+
Here th e  fu n c tio n s  r .  s a t i s f y  :

J

5 . (resp. ^t) i s  c o n s ta n t on [0 , t . ]  (resp. [0 , t t ] )
J J 1 J J

and s t r i c t l y  in c r e a s in g  on ( t . ,  T •) ( r e sp . s t r i c t l y  d ecrea s in g
J J

H  e c l ( ( V Tj ^  •

Theorem 3.2 . L e t  Zg s a t i s f y  h y p o th e s is  HI 3 and l e t  z( t )  be th e  s o lu t io n  

o f  Problem  I .

( i )  L e t  p e ft Ij i . e . Zq(p) > 0 . Then th e re  e x i s t s  a con tinuous

fu n c tio n  X(p,.) : [0,°°) -*■ ft 3 such th a t  th e  curve  x = X(p,t) i s  a l e v e l  

s e t  o f  z :

{(x, t )  € : z(Xjt) = zQ(p)} = {(x, t )  : x = X(p, t ) ,  t  > 0} .

In a d d i t io n  z^(X(p, t) ,  t )  > 0  f o r  t  > 0 , X(p,.) € Ĉ (]R+) , X(p,0) = p ,
’ A

and  X(p,.) s a t i s f i e s  f o r  t  > 0 :

and

f o r j 1

+.

j

on t
+

'j
T
j'

9

I .

+

■j
T
J J

T
j
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m -,

Xt (p, t )  = : +-------  (Hxm-l) x(X(p , t ) , t )  i£ 0 < e 0 ( p k V  ( 3 . 5 )
c (m-1 )

(ii) Let

Then there exists a continuous function X(p . , . )  : [T. , 00) _» ft
J J

such that

{(x, t )  e ^  : z(j{,t) = 0 j ,  t  > 1.} = {(x, t)  : x = .X(Pj,t),  t  > T^} .

In addition 2  (X(p > 0  for t  > T.,  X(p. , . )  e C^T-.eo ) ,
X j  *-----  J J J

X(Pj’Tj) = Pj * and ^ (P j »•) satisfies the equations ( 3 . 4 ) ,  (3.5) and (3.6)

for t  > T. 3 with p replaced by p. . If T. > 0 , then J((p. , . )  is 
J J J J

Lipschitz continuous down to t  = T. .
J

m m l
--------------(z„ )„ (X(p , t ) , t )  i £  -U <z0(p)<0 (3.4)

c (m-1) x x u

m -i
-  — ----------U m  ( z x " ) x ( * > t )  = 

c (m‘ 1) xîX(p.t)
(3.6)

m m 1
- - -p------ »!■ ( S  )x<x’t) il ' 0(P)=0-

c (nH) xiX(P.t)

:0± 1

Pj j
T
J ’J

+ , T
j ' j 1 , 9 Sip , = ç . u j  = ç , u n-;

In addition 2 (X(p. »t) »t) : 
x J



FIGURE 2 . The shaded areas are the se t s  where z„ = 0
A

Remark . Since the curves x = X(p,t) (p £ j )  and x = X(p^,t) are level
J

curves o f  z , i t  fo llows at once that they do not in t e r s e c t ,  and that they 

f i l l  up completely the region where z > 0  .
A

Theorem 3 . 3 (Large tim e b e h a v io u r ) . L e t  z be th e  unique s te a d y - s ta te  s o lu t io n  

o f  Problem  I . For any i n i t i a l  fu n c tio n  which s a t i s f i e s  h y p o th e s is  H2 (see  

s e c t io n  2 ) s th e re  eocist c o n s ta n ts  M> 0 and y  > 0 such th a t

| | z ( t  ; zQ) -  z|| , < Me"y t  f o r  t  > 1
U c ' ( ^ )
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t

Ti'1 t 1

t
1

♦

- L

x Xi Pï
t

A E i
t ;

X e :
ï

t u ï

' Z e
T

P.
1

1

P

X X P , t

P
2

X X P 2 ‘
t

Z 0 2

' À 2

Z © 2;

x E
2

♦
t ;

X E’3
t

A 3

•Z e 3

&3
L

x
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In this section we study a coordinate transformation for the 

approximating Problem I , which we introduced in section 2 .

Let zn : I? _» R be the solution of Problem In . Since zn is 

a smooth function on TJ , and since, by Lemma 2.4 , z > — in TJ ,
IIX *” M

it follows from the implicit function theorem that there exists a smooth function 

such that

(4.1)

i.e. x = Xn(p,t) are the level curves of zn .

Theorem 4.1 . Let be defined by (4.1) . Then there exists a constant

which does not depend on n , such that

IXnt| < in q x  (0,oo) .

Proof . We follow [17] and deriye a parabolic equation for Xn . First we 

observe that it follows from (2.1) that Xnp : = -|- Xn satisfies

0 < Y(n) < xnp < r(n) in TJ 

for some y(n) and r(n) .

In order to simplify the notations we omit the subscripts n from

now on.

From the relation 

(z(X(p,t),t)} = 0
dt

4 . A coordinate transformation

X
n Q f t

z
n

r x .
n !P»t

t z
On' P P e f t t > o ,

9g >

t

X.
n

o

«yt

3,
P

d



and the equation for  z , we derive that

Xt (p , t )  = - { c l (z (X (p , t ) , t ) ) r1 m(m-l)“l ( ( z x ( X ( p , t ) , t ) ) m"l ) x (4.2)

and thus

Xt (P .t )  = -  ( C ^ r V m - l ) ' 1 {(*o)n H (Xp)-<l"-1>}p X'1 , 

where Zq i s  considered as a function o f  p : zQ = zQ(p) = z ( X ( p , t ) , t )  . 

Thus X s a t i s f i e s  the parabolic equation

Xt  = -  (C1 ( * 0) ) _1 i ( ^ ) n,‘ 1((Xp) - n,)p + ra(rn-1)-1( ( ^ ) m- 1) ' ( X p) ' n,> .

D if feren t ia t in g  th is  equation with respect  to  t  we find that  

Xj. s a t i s f i e s

( X t ) t  -  < c ' ( z 0))_1 " K < * o > l" ' 1< ( y ' m' 1( X t ) p > p  +

+ m(n>-lf1 ( ( ^ ) " H )' (XpC™-1 (Xt ) p} . (4 .3 )

We introduce the auxil iary  function  

q (p , t )  = tXt (p , t )  - K_X(p,t) , (p , t )  e TJ , 

where the constant K w i l l  be determined below. Using (4 .3)  , we arrive at  

qt  = (l-K)Xt  4 t(Xt )t  =

*  ( l -K)Xt  + ( c ' ( ! 0 ) ) ' 1m { ( l i ) m‘ 1((Xp) ' " - 1(q+KX)p) p +

+ m(n.-lf, ( ^ ) m- 1)' (Xp)-""1 (q+KX)p> =

= (c 1(20 ))"^rai ( zo)m~1( (Xp)"ra"^qp)p +

+ m i n n ) ' 1^ ) 1"’ 1)' (X p l '^ 'q p )  + ( l - ( iw l)K )Xt  .

-  IX. 1 5
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Choosing K = (m+l)"1 , i . e .  1 - (m+l)K = 0  , i t  follows that q a tta ins  

i t s  maximum and minimum at the parabolic boundary o f  Q . Since tXt  = 0 

at the parabolic boundary, Theorem 4.1 fo l low s .

The following theorem shows that when Zg i s  more regular, then 

X t  i s  uniformly bounded down to t  = 0 .

Theorem 4.2  . Suppose that ((zQ)m )̂' £ L°°(ii) .

Then

Ixnt! ^ ^  in.

which does not depend on n .

Proof . Since X^ s a t i s f i e s  (4 .3 )  , the maximum princ ip le  implies that Xn .̂ 

atta ins  i t s  extrema at  the parabolic boundary of  Q . At the la tera l  boundaries, 

x = ±L , Xnt = 0 . By (4 .2)

and thus, by Lemma 2.3 ( iy )  , Xn t ( . , 0 )  i s  uniformly bounded on (-L,L) .

This proyes Theorem 4.2  .

5. The s e t  where z„ = 0 : proof o f  Theorem 3.1 .
T B ̂ J\  ̂L' ' 'T “ “ ' ' "

In th is  sec t ion  we shall  describe the s e t  where z = 0 .
X

F irs t  we remark that the variable  w = z s a t i s f i e s  porous media 

equations ( [21 ,1 1 ] )  in the se ts  where z < 0 and z > 0 :

c “wt  = (wm) xx i f  z < 0

and

c+wt  = (wm)xx i f  z > 0 .

If

for some constant

X.nt ,0
CXD

< c On
m-1

oo
5
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For the porous media equation many properties are known about the se t s  where 

w = 0 , which correspond to the sets  where zx = 0 [3] . These properties  

w il l  be frequently used in the proof o f  Theorem 3.1 .Herefore however, we 

need f i r s t  more information about the se ts  where z < 0 and z > 0 . In th is  

context,  the following lemma w il l  be useful : i t  t e l l s  us that the boundaries 

z = - e and z = e of  the se ts  where z < -e and z > e , are, for small e > 0 , 

smooth curyes, where zx > 0  .

Lemma 5.1 . Let © j(j=l ......... £) be defined by (3 .2)  , and let Eq > 0

be so small that ± ©j (j=l,...,£) /or all e € (0,Eq) • Then for all e€ (0,£q)

there exist continuous functions ç+£ : [0,°°) -* ft such that

{(x»t)  e TJ : z ( x , t )  = -e}  = { ( x , t )  € TJ : x = C+e(t)> .

In addition ç € C°°(0,co) and z (ç ( t ) , t ) >  0 for t  > 0 .
• o  -A i t

We need two auxil iary  lemmas for the proof o f  Lenina 5.1 .

Lemma 5.2 . Let 2  be the solution of Problem I and suppose that for some

x0 e ft

Then

Proof .

and 0  < tq < tg

zx (x0 j t ) = 0  fo r  t  e (T0 »t0 ] . (5 .1)

z(xQ, t )  = z0 (x0 , t 0 ) fo r  t  e [T0 »tQ] . (5 .2 )

Let ?n be the so lu t ion  o f  Problem In . Then, for tg  < t c t g ,

M

for

for

f t n

V V V  •  ' [ / V * )  '  j t  I nt<x0 , s >ds =

t
0

Ít
C

n' n
-1

nx
{m

x ds
x=x0
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From Theorem 4.1 and equality (4.2) we find tha t

V  t <  to  (5 .3 )

By (2*3) » znx “*■ zx ln c ( f l ^ . t Q ] )  for x0< t < ^  and thus, by (5.1) 

and (5.3)

z(x0, t )  = z(x0, t Q) for tq< t< t Q .

Finally , by continuity of z, also z ( X q , T q )  = z (xq»^o  ̂ *

Lemma 5 . 3  . L e t z be th e  s o lu tio n  o f  Problem  I and l e t  f o r  some Xq € ft 

and tg > 0  ,

Proof . Without loss of generality we may assume tha t  z(xQ,tg)< 0 . Then 

there exis ts  a neighbourhood N(xg,tg) of ( X g , t g )  where z < 0  and where 

w = z is  a (weak) solution of the porous media equation c~w. = (wm)
-X "C XX

I t  is  a well-known property of a solution w of a porous media equation, tha t  

the se t  where w >0 is  expanding in the course of time [10,11], i . e .  i f

(xQ,t) e N(x g , t Q )  for t-j < t  < t g  , then w ( X g , t g )  = 0 implies tha t

zx ( x 0 ’ V  = 0 —  Z( * 0 > W  * 0 *

Then, f o r  some j  G {1 5 • • • 9£

zx (x0 , t )  = 0 and z(xQ, t )  = fo r  0 < t  < t Q ,

zx(x0? t ) = w(xos t ) = 0 for t  e [ t p t g ]  .

Hence, i f  we se t

whére 0 .  i s  d e f in e d  by  ( 3 . 2 )  . 
J

m

m-1

t
'0

t
c n zirv

-1
z

nx
znx

km-l
x
ds

x=x

z
n
x

0 ! t,0-
z
n x-V(T

t 1 < t

±
0it z

nx
x,
'0 :

s

} ,

0.’j

ds9g
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tq = in f  ■Ct1 G [ 0 , t Q] : zx(x0>t)  = 0  for  t  e ( t j . t g ] }  ,

then tg < tg and, by Lemma 5.2 ,

z (xQ, t )  = z (x0 , t Q) < 0  for t  € [T0 , t Q] .

In part icu lar ,  s ince  z 6 C((J) ,
X

zx (x0 ’ V  = 0 and z (x 0 ’ V  < 0 *

Suppose that Tq > 0 . Then we can repeat the above argument with 

(x0 , t 0) replaced by (Xq, t0) > which contradicts the d e f in i t io n  o f  t q .

Hence tQ = 0 and xQ £ I. and 2 q(Xq)

This proves Lenina 5.3 .

Proof o f  Lemma 5.1 . F ir s t  we show that z„ > 0 on the leyel  se t s
' ” ~~ A

{ (x , t )  e TJ : z ( x , t )  = e} , e e  ( 0 *e0) •

We argue by contradiction. Suppose there e x i s t  an e e (0>Eq) and a point  

( x0 »t0 ) e such that

V v V  = 0 and z (xo ’V  = G *

Then, by Leirona 5.3 ,

^ ( x 0 ) = 0 and z0 (xQ) = e ,  

which implies the contradiction that 0 .  = e for  some
v

By the im p l ic i t  function theorem there e x i s t s  a function Ce £ C ([0 ,“ )) 

such that x = ££ ( t )  i s  the level  curve {z  = e} . T o  prove that

i t  i s  s u f f i c i e n t  to show that z i s  C00 in a neighbourhood of any point

( C £( t g ) >  tQ),with tg > 0 . This follows from standard theory, i f  we choose

a neighbourhood where z > 0 and z > — e ,  and thus where z i s  a c la s s ic a lx ~
+ 2 

so lu t ion  o f  c z. = ( (z  ) ) .
U A  7\

The proof for  the level  s e t s  {z = - e }  with e € ( 0 ,£q) i s  s im ilar .

0
j

for some j e {1, }

j e l, }

X,ee C
■fio

0
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Now we are ready to prove Theorem 3.1 .

Proof of  Theorem 3.1 . F ir s t  we prove the resu lt s  in the s e t  where z > 0 .

Let e € ( 0 ,£q) , where i s  determined by Lemma 5.1 .

The function w = z i s  a weak so lu tion  o f  the porous media equation

c+wt  = ( * %  in Q£ : = { (x , t )  : t  > 0 , 5  ( t )  < a  < L} ,

is  giyen by Lemma 5.1 . Since e can be chosen arbitrary sm all,  

all  the properties which we have to prove about the s e t  where z = 0  ,
A

fo l low , i f  we r e s t r i c t  ourselves to the s e t  where z > 0  , from known r e su l t s  

about the behaviour of the in terfaces  o f  so lutions o f  the porous media equation, 

which are proved by Knerr [19] and C affare l l i  and Friedman [12] (for  a survey 

o f  the resu lt s  we refer  to [3]) . However, both Knerr and C affare l l i  and 

Friedman consider the Cauchy Problem, and they assume that the s e t  where w> 0 

i s  i n i t i a l l y  connected. But s ince  the main part o f  th e ir  analysis  i s  l o c a l ,  the 

r esu lt s  carry over to our s i tu a t io n .  The main non-local part in th e ir  proofs
m —1

i s  a lower bound for  (wn " ) for t  > 0 , which does not depend on n .

Here wn : = z and zn i s  the approximating sequence which we introduced  

in sec t ion  2  .

The required lower bound i s  giyen by the following lemma.

Lemma 5.4 . For any 6 € (0,T) and e € (0*£g) there exists a constant 

k(6 ,e )  which does not depend on n , such that

^ Znx  ̂ )xx - " k(6 ’£ ) HI *

where

Q̂ t = { ( x , t)  e Q : c£ ( t )  < * < L , 6 < t  < T} .

We postpone the proof of  Lenina 5.4 to the end o f  th is  s ec t io n .

In the same way we can prove the required r esu lt s  in the s e t  where 

z < 0 . I t  remains to consider the s e t  where z = 0 .

where
£

X X

nx

m-1
Q
6
feT

É¡=0
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F irs t  we consider the case that

Z q ( x ) = 0 and Zq ( x ) > 0 fo r  some x € ft •

Then, using Lemma 5.1 , there exists an e e (0 ,6q 3 such th a t  * x > 0 

on the parabolic boundary of the set

{ ( x , t )  e (T : = C ( * )  < x < C ( * )  » t > °>  »

and thus, by the maximum p r in c ip le ,  z > 0  in th is  se t .  In p a r t ic u la r  zx > 0 

on the level set {z = 0} .

F in a l ly  we consider the case tha t

0 . = 0 fo r  some j  e { 1 , 2 , . . .
J

We define the functions Wq-| and Wq2 on ft by

i f

and

O I f  *0  i °

w

z

i .e .

Let w-,(t) be the solution of the problem

c'wt  = (J")xx in Q

w(x,0) = Wq-|(x ) fo r  x e fi ,

>£ }

i f  * 0 < 0

W,
01

X

z
0'

x

0

i f

fx
z0(x) = -  U + j  (w01(s) + wQ2(s ) )  ds .

2
O

> O

'02 'x

0
x 2

O >
o 9

-L

PMV (wm) v ( - L , t )  = 0  fo r  t  > 0
A
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and w2 ( t )  the so lut ion  of

f c+wt  = (w\ x  m  Q

(PM2 ) , (w )x ( L*t) = 0 for t  > 0

I w(x ,0 ) = wQ2 (x) for  x e a

(a so lut ion  o f  Problem PM., i s  again defined in a weak sense , see  e . g .  [51 

for the existence  and uniqueness o f  a so lu t ion  ; i t  i s  known that w. i s  

conti nuous on q x  ]R )

We define T. > 0 by
J

Tj = sup {t  > 0 : P-j(t) n P2 ( t )  = 0} , (5 .4 )

where

P ^ t )  = {x e [-L,L] : w.(jc ,t)> 0} , t  > 0 ,  i = 1 , 2  ,

i . e .  Tj i s  the time that the supports o f  w-|(t) and w2 ( t )  meet. Observe 

that T. < <».
J

We use the following lemma, which we shall  prove below.

Lemma 5.5 . L e t ©. = 0 f o r  some j ç { ! , . . . £ }  and l e t  T. he d e f in e d
J  J

by ( 5 . 4 ) . Then, up to  tim e  T . 3 th e s o lu t io n  o f  Problem  I i s  g iven  by
J

rx
z ( x , t )  = - U + J (w-j( s , t )  + w2 ( s , t ) )  ds , x e çi , t  < Tj .

In part icu lar ,  i f  we define for  t  e [0 ,T .]
u

çT(t) = sup {x : x e P-j ( t ) } and ç t ( t )  = i nf { x : x e P 2 ( t ) }  (5 .5 )

i t  follows from the resu l t s  about the interfaces  o f  w-|(t) and w2 ( t )  that  

çî haye the required properties .
J

F in a l ly ,  the proof o f  Theorem 3.1 i s  completed by another lemma,

which describes the s i tu a t io n  for  t> T. .
J

'-L
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Lemma 5.6 . L e t  ©. = 0 f o r  some j £ and l e t  T. be d e f in e d
J J

by (5 .4 ) .  Then

z > 0  on_ J : = { (x , t )  E iy : t  > T. and z ( x , t )  = 0 } .
X J

The remainder o f  th is  s ec t ion  i s  devoted to the proofs of  the Lemmas 5.5 , 5.6 

and 5.4 .

2
Proof o f  Lemma 5.5 . Here we shall  prove that z+ e L (QT ) and, for any

+ j  
(iyT ) with ^ ( -L, t)  = 0 for 0 < t  < T. ,

‘j J

{C(l) t * + (% )” *x ) = o . (5 .6 )

Let the t e s t  function i|> be f ixed .  The functions w-j and 

s a t i s f y ,  for a l l  with

and

[ w] ( t ) x ( t )

+ f w ,( t )  X(t)

t  = T.

t  = 0 ''j.
J

t  = T..

.m
{C W, Xt  + W, Xx x }

if  w2 x t  + " 2  Xxx}
t  = 0 J «T,

We subs t i tu te  X(x , t)  =
-L
4i ( s , t )d s  into  these equations.  Defining

y = ? i ( Ti)  = ? i ( Ti)  ( see (5 .5 ) )  , and using that
J v J J

ry
w^(x,t)  = 0 for x > y ; J w^(x,t)dx = U

and

w ^ x . t )  s 0 for x < y ; w, ,(x,t)dx * V ,

1 I}i

Q

c
l

Q.
T.

j

j
c"

c

rXc>

Jy

rL

X
x

+
L,t 0

ft Q

ft
j

c
+

t e c

x e C'
2, 1

75-‘T
j'
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we obtain a f ter  integration by parts

' t  = T\

- c" [y z ( t ) ^ ( t )  = f J’ [y {-c"z^. + (w, + w2 )mé } .
“L t  = 0  J0 J-L

and

Adding these equations y ie ld s

[ c ( ï ( t ) ) ÿ ( t )
t = Tj

t  = 0

{c(*)i|»t -  (zx )m ipx } (5 .7 )

Now (5 .6 )  follows at  once,proyided we show that  c (z ) .  e L (QT )
X J

I t  i s  standard that (wJJl)x and (w1̂  are in L^Qj j and
J

.nix

since  (2x )ra = w™ + w2 in V  » a l s o  ( ( z x )m) x e Lt (QJ ) . S i n c e  by (5 .7 )
J J

c ( z ) t  = ( ( zx ) \  in  the sense o f  d i s tr ib u t io n s ,  i t  follows that  c ( z ) t e L2 (QT ),
J

This completes the proof.

Proof o f  Lemma 5.6 . I f  zx > 0 at  some point (Xq^q) e J , the maximum 

p r in c ip le ,  applied to the s e t  { ( x , t )  : z, ( t )  < x < x, . ( t )  , t  > t n}—G — t£ — U

for some e € (0 ,£ Q )  (see  Lemma 5 . 1 ) ,  implies that

vlTls

zx (x>t) > 0 for ( x , t )  € J  with t  > tj

Hence, arguing by contradict ion,  we may assume that  for some t ,  > T.
* J

zx ( x , t )  = 0 in J fi { ( x , t )  : T . < x <_ t-j} .

L t  = Tj T. L
- C+ f 2(t)<|,(t) = Í J'[ {-C % t  + (W1 + W2) > x } .

Jy t = o 0 y

h

X ) 'x

T , fy•y

jq.
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tj. : [-L,L] x [0,t-, ] -► [0,oo) (i = 1 , 2 )  by

i f  z ( x , t )  < 0

i f  z ( x , t )  > 0

i f  z ( x , t )  < 0 

i f  z ( x , t ) ' > 0 .

We claim that n-| and n2 are so lutions  o f  rep ec t ive ly  Problem PM-j and 

Problem PM2 on [0 , t - j ] ,  i . e .  n-j = w-j and n2 = w2 on Qt  . Accepting

th is  for the moment, i t  follows that P-j(t) n P2 ( t )  = 0 for  0 < t  < t-j ,

which i s  a contradiction with the fa c t  that t ,  > T. .
* J

We show below that n2 i s  a so lut ion  o f  Problem PM2 . The proof 

that n-| i s  a so lu t ion  o f  Problem PM-j i s  s im ilar .  From now on we denote

n2 by n .

Up to t  = Tj , n i s  c lea r ly  a so lu t ion  o f  Problem PM2 . Thus 

i t  i s  enough to show that

C+ f „ ( t )  x ( t )  -  c+ f n (T .) X(T.) =

We d ef in e  the funct ions

fo r  a l l  t  € ( T - , t , ] and a l l  functions X e C ^ ( T L  ) with x (~ L , t )  = 0
J • X

fo r  t  > 0 .

We f i x  the tes t  function X . Let £q be given by Lemma 5.1 and

l e t  0 <£.|< e2< £q • We w rite  £-|(t )  : = ?e l ( t )  and ?2( t )  : = ce2( t )  .

n^x.t) =
i xJ
\
i 0

zv( x , t )

and

n2( x , t )

‘ 0

za (x,t)

f f (c+ nj  ̂ +n Xxx  ̂
JT, h t

J

(5 .8 )

’ft 'Q,
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Then there e x is t  functions ^  and in  C ’ (TĴ . ) such th a t
2 1

U1

T . < t  < t ,  
J  -  -  1

Since lo c a lly  in  the set { ( x , t )  : z ( x , t ) > 0 }  , n is a solution o f Problem PM2> 

( 5 .8 )  follows a t  once fo r  X = X2 , and i t  remains to prove (5.8)  fo r  X-| , 

which we denote by x •

Let us f i r s t  consider the functions 5 fo r  e > 0  . Since c . is
£ _

monotone in e and bounded from below there ex ists  a function %, : [ 0 ,<»)-» n 

such th a t £e \  IF as e \  0 fo r  t  > 0 .

Then E ( ^ ( t ) ,  t )  = lira 2 ( 5  ( t ) ,  t )  = 0  and by Theorem 4.1
e  + 0  e

€ C ^ ( [ T . , c o ) )  i f  T . >  0 and l ; e C ^ ( ( 0 , o o ) )  i f  T.  = 0 ; in th is  l a s t
J J J

case the continu ity  o f z implies th a t  5 is continuous down to t  = 0 .

Since n s 0 fo r  2 < 0 , i t  is s u f f ic ie n t  to show th a t fo r  tg  ( T * , t | ]

c+ f ' z ( t )  n(t) x (t)  - c+ fC2 (TJ) „(T ) X(T )

JC( t )  * ( T j )

(5 .9 )

Let T.  < s < t  < t-j . Since n is a c lassical so lution  o f the porous 

media equation in  the set

{ ( x , t )  : c£ ( t )  < -x < ^2 ( t )  , s < t  < t-j} fo r  a l l  e e ( 0 »e2 ) and since 5 

is  smooth, we fin d  th a t

X
2

X X
1

+ X
2

in Qt
1

supp X.j ( t )  c  [ -L ,  c 2 ( t ) )  ,

supp X2 ( t )  c  ( 5, ( t ) ,  +L ] , T  , t < t l  .

■t[T
j

1i
Cl T

T
C
.+

nx t + n
m

X xxJ
dT 0 (5 .9 )

c
+ •Ç

’2
t

Ç.e
Ít

n t x t
+

c
■Ç2

ç'£
S

S

n ' s X s c
+ t1s d

d*t

■ç
2I

'e
T

T

T] T X T d r

tis!
%2' T í

ç.è
s

c
+

n x
t

+ n
m,

XX
X c

+ tÍ
S

n* x
ç.e

t ' t d iT
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= f* [?2(t) (c+n x, + n ” Xx,)  + I (s , t )  (5.10)
JS j^ t ) e

for a l l  e e ( O ^ )  where

I e(s . t )  - I* {(n"xx - ( ^ / X c ^ t J . t )  - c+4 ( T)(nx)(ce(T),t))  dr 

Since n = z i s  a c la s s i c a l  so lu t ion  in
A

{(x,t) : ?e/ 2 (t) < X < 2̂( t ) , s < T < t}  , i t  follows as in (4 .2)  , 

from the relation z (^ ( t )» t )  = e that

c+?: (t) = - —  ((*x)ra' 1)x (c ( t ) . t )  = ( i T ' ) x k ( t ) , t )  .
e rarl x x e m-1 x e

Hence

I

Next, using the expression aboye for  I£ , we l e t  e 1 0 in (5 .10)  

Since z (^ (T) ,x )  = 0 , we deduce that nCs(T).T) = 0 . Hence ^ ( ^ ( t)>r) ■+ 0 

as e i  0 for x € ( s , t )  . Then (5.10) becomes

+ r M * )  + r M s )
c I 2 n(t) X(t) - c j 2 n(s) x(s)

JC(t) Jc ( s )

= [* [?2(t) (c% xt  +nmX )
s J?(T) xx

Finally  l e t t i n g  s 1 Tj in  the equali ty  above, one obtains ( 5 .9 ) .

Proof o f  Lemma 5.4 . Let zn be the extension o f  zn on [-L,3L] x [0,T] , 

defined by

z n( x , t )  = 2z0n(L) - z n(2L -  x , t )  in  [L,3L] x [0,T]

= f* (c+n x t  +nmx )
s Jç(t) XX

e
s j t

t

ÍS

n
m

Xx Ç’e
T x dx



Then, res tr ic te d  to the s e t  Qey , defined by
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ÎL- = { (x , t )  : ç ( t )  < x< 2L - ç  ( t )  , 0 < t  < T} ,
b 1 £ 8

zn i s  the so lut ion  of  the problem

%
in QeT

* ( ç £( t ) , t )  = Bn( ç e( t ) , t )

e ( 2L - ç£( t ) , t )  = ^n(2L - ç£( t ) ft )

for t  € (0 ,T]

z (x ,0 )  = &n(x ,0)  for çe( 0 ) < x  < 2L - ç (0) .

*\i \̂j
To prove Lemraa 5.4 , i t  i s  enough to show that w = z s a t i s f i e s

11 IIA

(5 .11)

where

Qg,y -  Q£t  fl i(x>t)  I § < t  < T} .

We define

Since z i s  a c la s s i c a l  so lut ion  on the level  l in e  x = ££( t )  for 0< t < T ,

1 m l  1
pn ra(ra-l)" ( (zx ) " )xx on sfi = { ( x , t ) ; x = ç ( t ) ,  jS  < t  < T} as n -* «  ,

and, on the other hand,

- ( - i r 1 ( ( ^ ) n,_1)xx

for some constant M^(6,e) . Hence there e x i s t s  a constant 1 ^ (6 ,e) which 

does not depend on n, such that

Pn > “ 1^2(5,e) on the la tera l  boundary o f  ?£$ (5.12)

C
+

z.t X

jn
x

wn
Vn-1

XX
> k 6 e, in -s

eï

pn
m

m-1
vy
m-1
n XX

i n ï,£T

> M
'1 6 !e! on S

6



-  IX. 2 9

We follow Aronson and Bénilan t 4 ^  and introduce the d i f fe r e n t ia l

operator

L(q) .  , t  - .  w " ;-1 , xx - an2 wnm' 2 S nx qx -  (m + l ) q 2 .

Then

where

L(p ) = 0 and l  ( --------- 1—  ) < 0  in Q ,
n t  - -  6 eT

2

max ((m + l ) ' 1 , M2( j>E)( T -  l ä )) .
¿ 2

1
1 'v5r<$

By (5.12) , pn > -M3 (6 ,e )  /  ( t  - -j-g ) on the parabolic boundary o f  Q ^

Thus, by the maximum princip le

and inequ ality  (5 .11) follows with k ( 6 ,e) = 2(m-l) Mg (g .e )  /  6m 

This completes the proof o f  Lemma 5.4 .

6 . The leve l  curves o f  z in the s e t  where z^> 0 : proof of  Theorem 3.2

In th is  sec t io n  we shall proye Theorem 3 .2 .  In the s e t  where both 

z  ̂ 0 and z f  0 , equation (1 .1)  i s  regular and the r esu lt s  fo l low  e a s i ly .
A

The main d i f f i c u l t y  i s  to prove the smoothness o f  the level  curve z = 0 in  

Proof o f  Theorem 3 .2  .

Theorem 3.1 and the im p l ic i t  function theorem imply the ex istence  

of  the continuous functions X(p, . )  : [ 0 , < x > )  ft for p e ft ^ I and the

continuous functions X( p . , . )  : (T.,«>) - » f t  f o r .  j  = 1 , 2 , . . .  ,£ .  At t  = T. ,
J J J

x (P,->-) i s  given by X(p. , T. )  = p.  , and the continuity  of  X( p . , . )  down
J J J J J

m 3(s.e) 1 A

M
'3 <5>Ei

P,n >
M'3 6» e

t
1

2
6

in Q
1
CZ6

e T

the region where z
x>

0 .
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to T. follows from the continuity  o f  z .
J

I f  2q(p) j4 0 (resp. 0. f  0 ) ,  then z i s  a c la s s ic a l  so lut ion  

near x = X(p,t) for t>  0 (resp. near x = X (p . , t )  for t>  T.) . Hence
J J

X(p,.)  e C°°(0 ,oo) (resp. X ( p . , . )  eC°°(T.,co)) . The expressions (3 .4 )  and (3 .5 )
J J

follow from equation ( 1 . 1 ) and the equali ty

—  ( z ( X ( p , t ) , t ) )  = 0 . 
dt

Finally  we consider the smoothness o f  the level  curye z = 0 in  

the region where z > 0 , and prove expression (3 .6 )  for Xf  . We do th is
A U

here in the case that  q. = 0 for some j  = 1,...,£. In the other case
J

( i . e .  Zq(x) = 0 for some x e t-L,L] with Z g(x )> 0)  the proofs are 

s imilar  and we omit them here.

So assume that ©. = 0 and l e t  p. be defined by z ( p . ,T . )  = 0 .
J J J J

Let t > T. be arbitrary . We shall  construct neighbourhoods o f  the point
J

(X(Pj>T)>r) which are rectangles in a new coordinate system, which i s  a local  

variant o f  the coordinate system which we introduced in sec t ion  4  .

Let x = C+ ( t )  denote the level  curyes z = ± e  for  e € (0 » £ q ) , 

where Gq i s  given by Lemma 5.1 . Let 0 < e" < e 1 < and T j < t ' < t " < T  

We define  the s e t s  Q" cr Q 1 <=. Q by

Q' = { ( x , t )  :£ _£ , ( t ) < x < c £ i ( t )  , t '<  t  < T}

and

Q" = i ( x , t )  : 5 _e „ ( t ) < x < c £.. ( t )  , t" < t  < r} .

Obserye that the point (X (p . , t ) ,T )  £ Q" c  Q1 .
J

By Theorem 3.1 and Lemma 5.1 , 

z >0 in Q' .
A
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Hence we can introduce the coordinate transformation ( x , t )  -» ( p , t )  fo r  

( x , t )  e Q '» defined by

x = X (^ , t )

and

z ( X ( jy , t ) , t )  = z ( f ^ t ' )  .

In the ( p , t )  -plane the sets Q1 and Q" correspond respectively  to the 

rectangles

C_e> ( f )  < <C£> ( * ' )  » t ' <  t  < T} 

and

W" = { ( f c t )  : C „ ( f )  < ^ <c ii ( f )  , t ” < t  4 T ) .
- £  £

We define the functions X on ¥ '  by
n

j i n(Xn( f , t ) , t )  = « „ ( f r f )

1 x n ( 5 r , f )  -  pr ,

where z is  the solution o f  Problem I . 
n n

^ 1
Lemma 6.1 . (i) The functions -X are uniformly bounded in C ( W ) .

%  ' , ,  __
(ii) The functions X £ are .uniformly Haider continuous in W" .

Before proving Lemma 6.1 , we complete the proof of Theorem 3.2 . By Lemma

6.1 ( i )  , there ex is t  a function X on ¥ '  and a subsequence X such that
n k

X„ X in  C( W)  as n.-* ~ .
n ^  oo v > k

We claim that

%

X = X i n W .  ( 6 . 1 )
oo ' J

W' t f rW' = í p\t
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Si nee

i t  follows from the uniform convergence of zn to 2  in compact subsets  

of JJ and the continuity  o f  z in TJ that

2  (X (fr,t ) , t)-> z(X ( i h t ) , t )  as n._* 00 . 
k k 05 K

Since zx > 0 in Q1 , (6 .1 )  fo l low s ,  and we obtain that  

% _
Xn -► X in C(W') as n-» 00 .

Combined with Lemma 6.1 ( i i )  , th is  implies that

as n -> 00. (6 .2)

Observe that ,  for (fr,t) e ¥ JJ ,

Xt ( p , t )  = Xt (^ , t )  i f  X(p,t)  = X(p,t)  . (6 .3)

Hence, when X(fr,t) = X(p,t)  and z(X(fr,t) ,t)  ^0 , X.(fr,t) i s  given by (3 .4)

and (3.5) . Since Xt  i s  continuous on W” th is  implies that when

X (f t t )  = X(p,t )  and z(X(fr,t),t) = 0 , Xt (?f,t) i s  given by (3.6) , and thus,  

by (6.3) , xt (p , t )  i s  given by (3.6) .

I t  remains to prove Lemma 6.1 .

Proof o f  Lemma 6.1 . ( i )  Since z > 0 in TJ1 and 2  -*z  in C(iy')
.. x n x x

as n -» 00 , the functions

are uniformly bounded with respect to n in W' .

(6.4)

'z.
n'k

X
n
■k

%

P
SSj t t z X P

a.
,t , t <

X.‘nt

%
Xt i n C W"

%
X

np P t ’ z nx P t' / z
"nx

X
n P t

z
n'k

x nk
P
A* t t z

%
Xn,'k

P' t t + Z X
n.k
Pt , t z X00 p t t 5
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On the other hand, by Theorem 4.1 , | | < C /  t '  , and thus Xn is  

uniformly bounded in c \ w )  .

*\j
( i i )  We show below that the functions Xntp are uniformly Holder continuous 

in W". This property implies the r e s u l t  o f  Lemma 6.2 ( i i )  .

%
Xnt s a t i s f i e s  equation (4 .3)  with p replaced by $  and ZQn(p) 

replaced by zn(p',t') . Next we d i f fe r e n t ia te  th is  equation with respect to ^  . 

Omitting a l l  the t i l  das again we obtain

< W t  = » r / P - W W p  + bn(p,t)  Xntp> p

where

an( p . t )

and

bn( p . t )

Since z i s  uniformly bounded and uniformly bounded away from
I I

zero in IT , the functions Xnp( p , t )  and znp(p , t )  are bounded and uniformly 

bounded away from zero in W and so i s  a . In order to show that b i s
_ N . m—l ^

uniformly bounded in W' , i t  remains to prove that ( ( znp(P»t‘ )) ) p an<* 

( (X n p (p ,t ) ) -rn "*) are uniformly bounded in W . This follows e a s i ly  from 

Theorem 4.1 , equality  (4 .2)  and (6 .4 )  .

Multiplying the d i f fe r e n t ia l  equation for  X  ̂ by 

integrating  by parts ,  we deduce that Xntp i s  bounded in L (W1) uniformly 

in n .

---- 2--- - ( U p , ‘ (X-Jp.t))'1"’1
c ' n( z „ (P . t ' ) )  np np

------2------ iCz (p.f))™-1 ((XnDe>*t» ’n,'1>n
O' (2 (p.f)) "P "P P

+
ra

m-1
z p

Nm-1

P
X

np ! P » t -JO-1

jn-1

ntp

•Vj

Xnt

np

nt and
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I t  then follows from [20 , Thm. 8.1 p. 192] and [ 2 0 ,  Theorem 10.1

at  X . i s  i 
ntp

the proof o f  Lemma 6.1

p. 204] that Xntp i s  uniformly Holder continuous in lüT" . This completes

7 . The 1arge t i  me behaviour

In th is  sec t ion  we prove that  the so lu t ion  z ( t )  o f  Problem I 

s t a b i l i z e s  as t  -» oo .

Lemma 7.1 . L et Zq£C^(œ) s a t i s f y  h y p o th e s is  H2 j and l e t  z ( t )  he 

th é  s o lu t io n  o f  Problem  I . Then

J .  ( ( F ( * ) ) t )2 + V ( f ( t ) )  < V(l0)

«t

where

c
F(z) = [ f : ' ( s )  ds .

Jo

Proof. Let zn( t )  be the so lu t ion  o f  Problem I . Multiplying the equation 

for  zn by f  t  , we obtain

Fn( i )  " | 0 / c 'n ' s > ds ’

lira i n f  | |  ( (Fn( i n) ) t )2 + V ( i ( t ) )  i  V(î q)

n -» oo
(7 . 3 )

We define the functional V C
1

ü R by

Vi q [m+1
-1

I fq’
m+l

f o r t > 0 5 7 - 1 )

II Qt

c
n

z
n t znt

1

m+l ft
Z,

nx
t ,m+l

zOn
m+l

[7 .2)
' f t

« t

We introduce

and we l e t  n -* «> in (7 .2)  . Then we arrive at

,z
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p
Since, by Lemma 2.4 , (Fn(2n) ) t  is  uniformly bounded in  L (Q^) and since 

Fn( f n) -» F(z) uniformly in Qt  as n _»<», we conclude th a t

((Fn(zn) ) t ( F ẑ^t weakly 1n l2(Qt) *

’1> lBf I « W » /  - £  ((F(*))t)Z
-* 00 JW4- J>*t Vt  

and (7.1) follows from (7.3) .

Lemma 7 . 2  . Let Zg satisfy hypothesis H2 and let z ( t ; Z q )  he the 

solution of Prohlem I . Then

z ( t *Zg) -> z w  C^(i]) as t  -> oo .

Proof . By Theorem 2.2 ( i i )  , z (t ;zg)  e (ft) fo r  t> 0 and hence we 

may assume without loss of generality  th a t  zQ c Ĉ Cft) . By Theorem 2.2 (iv)

the o rb i t  {z(t;zg) : t  > 0} is  precompact in C1(ft) and hence the w-lirait
I —

se t  w(2q) , which we define with respect to the topology of C (ft) , is 

non-empty. Thus i t  is  su f f ic ien t  to prove tha t

q e w(Zq) implies tha t  q = ¥  . (7.4)

Since z ( t ;zg )  is  continuous in (ft) and V is  continuous, 

i t  follows from standard s ta b i l iz a t io n  theory (see Dafarm os [14]) th a t  :

( i )  i f  q e w(Zg) , then z ( t ;q )  € w(zQ) for t  > 0 ;

( i i )  V is constant on w(Zg) .

This implies th a t  V(z(t;q)) = V(q) fo r  a l l  q e w(Zq) , and, using (7.1) , 

we find tha t

F (z ( t ;q ) ) t  = 0 a .e .  in Qt

Since the functional P
jjQt

P
2

is conyex and lower serai continuous in

L‘2 0.
t 9 i t  is also weakly lower serai continuous. Hence

c
1
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Hence z ( t ;q )  = q for t  > 0  , i . e .  q i s  a steady s ta te  so lu t ion  o f  Problem I. 

Now (7 .4) follows from the uniqueness o f  z .

To prove Theorem 3.3 , we have to show that the convergence in 

Lemma 7.2 i s  exponential.  Our proof follows the same l in es  as a proof by 

Alikakos and Rostaroian [2] .

Proof o f  Theorem 3 .3  . Again we may assume that Zq e C^(^) . By Lemma 7.2 , 

z ( . , t ) >  0 for t  large enough, and hence we may a lso  assume without loss
X

of genera l i ty  that

z^(x) > 6> 0 , :x e ft •

To prove Theorem 3.3  i t  i s  s u f f i c i e n t  to show that

|z ( x , t )  - i ± l |  < Me"^ in Q . (7 .5 )
x 2L

for some M >0 .

Let zn be the so lu t ion  o f  Problem I , where

z0n(x ) - 6> 0 » x 6 ft *

The function w„ = z„„ s a t i s f i e s  the problem n nx r

in Q (7 .6 )

/ w^(-L,t)  = 0 for  t > 0  (7 .7 )

V w(x,0) = *on(x) for  x e ft • (7 *8)

By the maximum p r in c ip le ,

w ( x , t )  > 6  in Q .

we obtain

I f  we multiply equation (7 .6)  by. wn and integrate  by parts ,

wt c' n z
n*

-1
w x x
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which implies that

1 d_ 

2 dt Si

2
wn * w

nx

We define wn( x , t )  = wn( x , t )  - (U + Vn) /  2L .

Using that [ w (x , t )dx  = 0 for t  > 0 , we find from 
Jo

—  [ ft < - C, [ f t  for t  > 0
dt Jn n - 1 Jn "

where C, = m 6m" /  (2L2 max (c+ ,c~))  , and thus

_fl K  S C2 e - C1* fo r t  > 0 .

for  some constant C2 . Since (7 .10)  holds for  a l l  n ,

2

zv(t) -
U + V 

2L
< C2 e ' V  for t  > 0

Following the proof which Alikakos and Rostamian 

give in s im ilar  cases ,  i t  fo llows that  (7 .11)  implies (7

(7 .9)

(7 .9 )  that

(7 .10)

we arrive at  

I . (7.11)

[2] and Alikakos [1] 

' .5) .

ol»“l t
- <S ni f 

max(c+ ,c~)
9

2

1
2

d

dt
w

2

n Í
n

m

c
n rr

w,
n

m-1
w

2

n x
9

ii

2 2

2

n
-c,t
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APPENDIX

In th is  appendix we prove Theorem 2.2 .

F irs t  we show that c (z )  s a t i s f i e s  a contraction property in lJ(ft) . 

which implies at  once that Problem I has at  most one so lu t ion .

Lemma A.l . L e t  ^ ( t )  and *2 (t )  be s o lu t io n s  o f  Problem  I w ith  

i n i t i a l  fu n c tio n s  Zq-j and Zq2 r e s p e c t i v e l y .  Then

Hc(z-, ( t ) ) - c ( z 2 ( t ) ) | 1 < | | c ( z 01) - c (z 02)[[1 f o r  t  > 0 .

C o ro lla ry  A.2 . Problem  I has a t  m ost one s o lu t io n .

Proof o f  Lemma A.l . We follow the raain l in es  o f  a proof by Bamberger [6] .

Define the function

and i t s  approximation

2
Since (c(z^) - c(-z2) ) t  e L (QT) , we can multiply the d if ference o f  the equations 

for z-j and z 2 by sgn^(z-| - z2) and integrate  by parts .  This y i e l d s ,  using  

Lemma A3 below, that for a l l  t  > 0

sgn

-1 i f s < O

O i f s O

+1 i f s > O >

sgn
n

-1 i f s < n

s, n

1

i f "H < S < n

i f s > n-

s

s
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m-1 m-1
■lxl *lx ■ î z2xl *2x> $9nn <Z1 ■ '2><l lx ■  *2x> S 0

and thus,  by the dominated convergence theorem,

(c(z.j) - c ( z 2) ) t  sqn (z ] - z2) < 0 for  t  > 0

Since sgn (c(z-j) - c ( z 2)) = sgn(z-| - z2) , we find that

j  (c(Z|) - c ( z 2 ) ) t  sgn (c(z1) - c ( z 2)) < 0  for  t  > 0 , 

t

which, again by Lemma A3 , implies that

This completes the proof o f  Lemma A.1 .

Lemma A. 3 . L e t  G : ]R -»]R he à L ip s c h i tz  fu n c t io n .

J£ w G W1 »1 (0,T : l V ) )  , then G(w) € W1#1(0,T : L1 (ft)) 

and

a.e.

The proof i s  given in [13] .

Next we show that Problem I has a so lu t ion .  We construct th is  

so lu t ion  as the limit function o f  the sequence zn , the so lutions  o f  the 

approximate problems I which we introduced in sec t ion  2 .

We f i r s t  prove the lemmas' 2.3 and 2.4 o f  sec t ion  2 .

t
c z l c z

2 t sgn
n
z
■1

z
2 ‘

t

Iz-

* t

t

k

cl z.
1

c t < 0

J)

(*2)

dG w

dt
G1 w dw

dt

JJq,
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a.
Proof o f  Lenina 2 . 3 .  We d efin e  Zgn on IR by

- U

Let the function p be defined by

fi(x) =

where C > 0 i s  a constant such that ||pj[-| = 1 , and l e t

*0n(x) = 2n ^  p( 2n( x " y ) )  W y )dy * *  6 R '

Then one e a s i l y  checks that zQn s a t i s f i e s  Lenina 2.3 ( i )  and ( i i )  .

In the case that Zq e (q) we construct the sequence Zq0 in a 

d i f fe re n t  way. We s e t

and

Finally  we define

i f X < - L + 1
n

z,On
% x

1
n x + L + 2

0
x Z,0 -L + 1

n'
U i f x e -L

i

n
■h 9 L

1

n

z
0

L 1
n- z ,0

-L + 1
n U i f x > L 1

n

0 i f x! à 1

C exp 1 / x2
1] i f X < 1 9

C

.x

V
On

A
X

V,On L 1,
n

■ vj
VOn'
a.

x

V,On ’-L + 1
n'

i f x > L 1
n

i f x e -L + 1
n

L 1
n

i f x < -L + 1
n

v
'On x 2n

K•I
P 2nl x y VOn

A

dy 9 X e R 9Yn- l y)

t On x 2
■O

x JTl-l + 1
n

m-1
9 e a 9



Again one e a s i l y  checks that Zgn s a t i s f i e s  the required properties .

Proof o f  Lemma 2 .4 .  The function wn : = z s a t i s f i e s  (7 .6)  , (7 .7)  

and (7 .8)  . I t  fo llows from the máximum princ ip le  and c la s s ic a l  ex istence  

and uniqueness theory [20, Th. 5.2 , p. 564] that Problem I has a unique 

so lu t ion  which s a t i s f i e s  (2 .1)  . Inequality (2 .2)  follows at  once from (7 .2)

We need two more lenroas for the proof o f  Theorem 2.2 .

Lemma A.4 . There e x i s t s  a co n s ta n t C > 0 which does n o t depend on n 

such th a t

i y * - 1') - Intx,t'M s C [t‘ - t"!172

f o r  a l l  ( x , t ' )  , ( x , t u) € "Qy such th a t  | t '  -  t" | < 1 .

Proof. This r e s u l t  follows from (2 .1 )  and Gilding [16] .

Lemma A .5 . ( i )  For e v e ry  t  > 0 3 th e  fu n c tio n s  ŵ  = z^x are  e q u io o n ti-

-nuous on ft x [t»T] 3 and th e  modulus o f  c o n tin u ity  does n o t depend on T .

( i i )  Tf £ C1 (ft) 3 th e  fu n c tio n s  wn = Znx are  equ icon tin u ou s on TJy , 

and th e  modulus o f  c o n tin u ity  does n o t depend on T .

Proof . The function pn = w™ s a t i s f i e s  the equation

and the boundary condit ions p ( - L , t )  = 0 for  0 < t  < T .
A “ “

The resu lt s  follow a t  once from Di Benedetto [15]
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and

zOn x U +

x

-L

vOn s
1 m-1 ds » x E ]R

P
1 rm

t
c

n n
-1

Px x

1/2



-  IX. 4 2

Proof of  Theorem 2.2 . By the lemmas 2 .4  , A.3 and A.4 , there e x i s t  

a subsequence o f  { z n> which we denote again by { 2n} > and a function

z e C(Q) with z e C(i  ̂ x 1R+) and z > 0 in Q , such that z -» z
x a n

in C(UT) as n oo and, for any T e ( 0 ,T) , znx -► zx in C(n x [ t  ,T]) 

as n -»oo. I f  zQ e C1^ )  , then z nx-> zx in C(^T) as n ->«>.

We claim that z i s  a so lu t ion  o f  Problem I . For a l l  T > 0 

and p £ [ 1 ,«>)

2 I d .
zn -* z weakly in L (0,T : w (ft)) as n -»<».

In addit ion ,  i t  fo llows from (2 .2) and the uniform convergence of  c n(zn) 

to c (z )  in Qy as n oo that

2
c n(zn) t  -♦ c (z ) t  weakly in L (QT) as n -> «> .

Using these propert ies ,  i t  follows that z s a t i s f i e s  the integral equation ( iv )  

of  D ef in it ion  2.1 , hy writ ing a s imilar  integral equation for zn in which 

we l e t  n -> oo.

Finally» because z e L2 (0,T : H1 (ft)) and z^ £ L2 (0,T : L2 (ft)) for  

T > 0, we obtain [22, Lemma 1 .2 ,  p. 261] that  z e C([0^>) : L2 (ft)) c  

C([0,«) : L^(ft)) . Hence, s ince  z s a t i s f i e s  the conditions ( i ) ,  ( i i ) ,  ( i i i )  

and ( i v )  o f  D ef in it ion  2 . 1  , z i s  a so lut ion  o f  Problem I .

The other properties in Theorem 2 .2 .  fo l low at  once ; the uniqueness 

o f  z follows from Corollary A.2 , and the properties ( i i i )  and ( iv )  of  

Theorem 2.2 are a consequence o f  Lemma A .5.
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C H A P I T R E  X

On INTERACTING POPULATIONS THAT DISPERSE 

TO AVOID CROWDING : PRESERVATION OF 

SEGREGATION,

par

M. Bertsch, M.E. Gurtin 

D. Hilhorst et L.A. Peletier





1. Introduction

Consider two interacting biological species with populations 

sufficiently dense that a continuum theory is applicable, and 

assume that the species are undergoing dispersal on a time scale 

sufficiently small that births and deaths are negligible.

Granted these assumptions, conservation of population requires 

that

ut ■ -div(uq),

(1.1)

vt = -div(vw),

where u(x,t) and v(x,t) are the spatial densities of the 

species, while the vector fields q(x,t) and w(x,t) are the 

corresponding dispersal velocities.

We restrict our attention to situations in which dispersal 

is a response to population pressure and express this mathematically 

by requiring that the dispersal of each of the species be driven 

by the gradient V(u+v) of the total population,1 u+v. We 

therefore assume that

^For a single species this type of constitutive assumption was 
introduced by Gurney and Nisbet [1], Gurtin and MacCamy [2].

X.1.



w = -k2V(u+v) r

strictly-positive^ constants, and this leads to 

the system2

ut = k^div[uV(u+v)],

(1.3)

k^div[vV(u+v)].

For convenience, we limit our attention to one space-dimension 

and we choose the time-scale so that k^ = 1. Then writing k = k2 

we have the system

u t  =  [ u ( u + v ) x l x ,

(1.4)

vfc = k [v (u+v) x3 x -

We shall suppose that the two species live in a finite habitat

n = (-L, L), L > 0; 

that individuals are unable to cross the boundary of 0,

u(u+v)x = v(u+v)x = 0 for x = +L, t > 0; (1.5)

and that the two populations are prescribed initially,

q = -k1V(u+v),

(1.2)

^The system (1.3) with k2 = 0 was studied by Bertsch and 
Hilhorst 13] and by Bertsch, Gurtin, Hilhorst, and Peletier [4].

Gurtin and Pipkin [5]. See also Busenberg and Travis [6]. An 
alternative theory was developed by Shigesada, Kawasaki, and 
Teramoto 17]. This theory is discussed in [4] and [5].

2

X.2.

with k1 k
2

v
t



X.3.

u(x, 0) = uQ (x), v(x, 0) = v Q(x) fo r  x 6 fi. (1.6)

In this paper we shall study the problem (1.4)-(1.6) 

for initial data which are segregated in the sense that, for

Uq (x ) = 0 fo r  x > a ,

As our main result we establish the existence of a solution

in which the two species are segregated for all time. This

result is quite surprising"1" as it is independent of the

2
initial distributions of the species and of the ratio k of 

their dispersivities.

A c t u a l l y , G u rt in  and P ip k in  [5] gave a p a r t ic u la r  s o lu t io n  to
(1 .2 )  -  corresponding to  i n i t i a l  D ira c  d is t r ib u t io n s  -  in  which 
the  two species are  segregated f o r  a l l  t im e . Being a s p e c if ic  
s o lu t io n ,  i t  is  n o t c le a r  from t h is  r e s u l t  whether "p re s e rv a tio n  
o f s eg reg atio n "  is  a g en e ric  p ro p e rty  o f  the equations ( 1 . 4 ) .

Granted they  are  segregated .
2

some a £

V0 x 0 for x < a. (1.7)



2. The problem. Results.

We shall use the notation

IR+ =  (0, œ ) , Q =  0  x ]R+ , QT = 0  x ( 0  , T )  ,

and, for any function f: Q -♦ 3R,

Q+ (f) = interior[(x,t) € Q: f(x,t) > 0}.

Our problem consists in finding functions u(x,t) and v(x,t) 

on Q such that

at = tu(u+v)x] x
\ i n  Q,  ( 2 . 1 )
) v t = k[v(u+v)x ]x 

(I) \  +
u(u+v)x ®.v(u+v)- = 0 on ôQ X 3R , (2.2)

^u(x,0) = u Q (x), v(x,0) = vQ (x) in Q. (2.3)

We shall assume throughout that:

(Al) k > 0, u0,vQ >_ 0, u Q, v Q € C (“H) ;

(A2) the initial data are segregated, so that (1.7) holds

for some a € Q;

(A3)1 each of the sets {x: uQ (x) > 0] and {x: vQ (x) > Oj 

is connected.

The purpose of this paper is to establish - for such segregated 

initial data - solutions of (I) which are segregated for all time.

^We make this assumption for convenience only.

X . 4 .



Proceeding formally, let (u,v) be a segregated solution. Then 

the sets Q+ (u) and Q+(v) are disjoint; hence (assuming 

u,v > 0)

u * 0 in Q+ (v), v s 0 in Q+ (u),

and, by (2.1),

ut “ (uV x  in Q+*U>' Vt “ k <vvx>x in Q+(v*' (2,4*

Thus where positive u and v obey porous-media equations.

As is well known,1 solutions of the porous-media equation may not 

be smooth, and for that reason it is advantageous to work with a 

weak formulation of Problem (I). This is reinforced by the 

observation that (I) is a free-boundary problem and conditions 

at the free boundary are generally indigenous to a weak formulation, 

not required as separate restrictions. (The free boundary is the 

set

3 - idQ+ (u) U 5Q+ (v)3 n Q (2.5)

which separates the region with u(x,t) > 0  from that with 

u(x,t) = 0 and separates the region with v(x,t) > 0 from 

that with v(x,t) =0.)

With this in mind, assume for the moment that (u,v) is a 

smooth solution of (I). If we multiply (2.1) by an arbitrary 

smooth function ^(x,t), integrate over Q^, and use (2.2)

^Cf., e.g., the survey article of Peletier [8].

X . 5 .
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J tu(T)if(T) - uni|i(0)3 = J* (u* - u(u+v) *„},
0 ° Qt

(2 .6)

J £v(T) lli(T) -  Vq* (0)3 = J {v^t  -  kv(u+v)x +x 3,

° T

where we have used the notation u(t) = u(*,t), etc. We shall 

use (2.6) as the basis of our definition of a weak solution.

Definition. A (weak) solution of Problem (I) is a pair 

(u,v) with the following properties:

(i) u,v € L̂ iOrp) for T > 0; u(t) ,v(t) € L°°(fl) for t > 0; 

(u+v) 2 € L2 (0 ,T; H^fl)) for T > 0;

(ii) u(t),v(t) > 0 almost everywhere in 0 for t > 0;

(iii) u and v satisfy (2.6) for all i|i € C^tQ) and T > 0. 

If, in addition, there is a continuous function §: [0,oo) ■+ ft 

such that, given any t > 0,

v(x,t) = 0 for -L < x < §(t),
(2.7)

u(x,t) = 0 for §(t) < x < L,

then (u,v) is segregated. We will refer to § as a separation 

curve.

and (2.3), we arrive at the relations
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Remarks,:

1. The terms u(u+v)x‘ and v(u+v)x in (2.&) mrm 

as follows:

, f j i &  l < « « ) 2 ) x «  " > *
u(u+v)x = <

(_ 0 if u * 0

and similarly for v(:U+v) . Then, since u/(u+v) 1, whil«

[ (u+v).2]x € L2(QT) , we have 

u(u+v)x € L2 (Qt) for T > 0. 

2. The integral identities (2.6) imply that, as t -♦ 0, 

u(t). -» uQ, v(t) Vq weekly in L2 (0) ; 

i.e., that 

£ [u(t)-u0]* - 0, J Iv(t)-v0l* -♦ 0 (2.8)

2
for all i|i € L ( Q) . To verify (2.8) we simply apply (2.6) with

€ C1 (T5) (independent of time) . This yields (2.8) for # € cV(T5)

2
and hence - using a standard argument - for  ̂ € L IQ) .

3. The choice 2 1 in (2.6) leads to the global 

conservation laws

J u (t) - J un, J* v(t) » J Vn (2.9)
Q Q u Q f i u

for t > 0.

■rnrm ámfinmá



We close this section by stating our main results; the 

corresponding proofs will be given in Section 3.

Theorem 1. Problem (I) has exactly one segregated solution.

Remark. It is important to emphasize that we have established 

uniqueness only within the class of segregated solutions. Thus 

we have not ruled out the possibility - for segregated initial 

data - of solutions which mix. We conjecture that this cannot 

happen.

Theorem 2. Let (u,v) be the segregated solution of 

Problem (I). Then:

(i) u + v € C(Q);

(ii) ut « (uux^x classically1 in Q+ (u);

(iii) vt = k ( w  ) classically in Q+ (v) .

1 oo +
That is, u is C on Q (u) and there satisfies u = (uu )
pointwise. t x x

X.8.



Our next theorem is concerned with the free boundary 3 

(cf. (2.5)). In view of (2.4), the portion of 3 along which 

the two species are not in contact should have properties 

similar to those of the free boundary for the porous-media problem:

Cpt - (PPX)X in Q,

(pm) J pp = 0  on an x jr+ ,

(J5(X,0) ■ PQ(X) in

As is known,^ when the initial data have the form

PQ(x ) > 0 in (a1,a2), Pq (x ) * 0 otherwise,

-L < a^ < a2 < L, the free boundary Q fi dQ+ (p) consists of 

two continuous, time-parametrizable curves, one emanating from 

a^, one from a2. If b(t), 0 £ t < Tfa, designates the curve 

from a^ (resp., a2) , then:

(F̂ ) b(t) * b(0) on (0,t )̂ for some € [0,Tbl;

(F2) b(t) is C1 and strictly decreasing (resp., strictly 

increasing) on ( ^ );

(Fs) b(T^) € dQ.

This discussion should motivate the following definition in which 

”FB" is shorthand for "free boundary".

^Cf., e.g., the review article by Peletier [8]. See also 
Aronson and Peletier [9].

X . 9 .

n.

Tb
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F igure X. b i s  a l e f t  free-boundary curve exten d in g  

to  dft. £ i s  an in te r n a l free-boundary  

curve th a t i s  r ig h t  up to  t in e  T^.

t

T,b

b

T.b

-  L L
x

T
C

C

T
C



Definition. An FB curve is a continuous function

b: [0,tb) -> ft

(t̂  may be co) . Moreover;

(i) b is internal if t^ * &>,

(ii) b is left (resp., right) up to time € {0# 

if (F1),(F2) hold;

(iii) b extends to dft if b is right or lift up to time 

tb with th < co, and b(t~) € dft.

Let b: [0,tb) -►ft be an FB curve and let q: Q -♦ 3R. Then 

FB conditions with velocity q hold from the left (resp., right) 

on b if given any t € (Oft̂ ) at which b is C*,

b'(t) = q(b(t)+, t) (resp., b'(t) - q(b(t)t)).

Theorem 3. Let (u,v) be the segregated solution of Problem 

(I). Then there exist FB curves bu,bv,Cu*Cv with the 

following properties;

(i)1 bu < Cu < Cv < bv with bu Cu forming the 

boundary of Q+ (u) in Q, by and forming the boundary 

of Q+ (v) in Q;

(ii) bu and bv extend to dft, with bu left and bv 

right;

^Here each inequality is assumed to hold at those times at* which 
the underlying functions are defined.

X.11.

b is € O

b

cv

and



X. 12.

(iii) cu and Cv are internal, and there is a time 

T € [0 ,co) such that Cu is right up to tiroe T, Cy i>

left up to time T, and

with C € C1 (T,oo) ; in addition,

(u+v)(C(t),t) > 0 for t > T; (2.10)

(iv) F3 conditions with velocity -ux hold from the

right on b>u, from the left on £u;

(v) FB conditions with velocity ~kvx hold from the

right on Cv> from the left on bv .

Remarks.

1. The curve £ marks that portion of the free boundary on 

which the two species are in contact. By (2.10), the functions 

u and v suffer jump discontinuities across C; more precisely 

for t > T,

u(C(t)“,t) > 0, u(C(t)+#t) « 0,

v(£(t)~,t) = 0, v(C(t)+,t) > 0.

Further, (iii)-(v) of Theorem 3 in conjunction with the continuity 

of u+v imply that, for t > T,

u(C(t)”, t) = v(C(t) + , t) , 

ux(C(t)", t) = kvx(C(t)+ , t) (2.11)

£u t C,v t: c tj on [T

1. The curve Ç marks

C' (t) .

IT,CO)
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Figure 2. The free boundaries. The shaded a re a s  
correspond to u * v ■ 0.

t

-  L

Q [u:
+

u > 0 , v * 0

b
u Ç.M

C'v

Q
-f

vX>, u*0

b▼

L *
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Figure 3. The functions u(*,t) and v(*,t) 

at a fixed time t > T.

u ( t  )

v(t )

v ( t )

-L Ç(t)

u ( t )

h
X
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(iv) and (v) assert that each of the "fronts”

bu (t)' Cu (t)' £v (t)' bv (t) ProPa9ates with the velocity of 

individuals situated on it? condition (2.11) is the requirement 

that at the contact front £(t) the two species move together.

Our final result concerns the asymptotic behavior of segregated 

solutions. Proceeding formally, suppose that ^ q(x ) , v^x) is an 

equilibrium solution of Problem (I). Then (2.1) and the boundary 

conditions (2.2) yield

'to<Hx-+vco>' “ voo('^+vcc>' = 0 in n'-

hence

[ (1̂ +  v^) 2V * 0 in 0

and

1̂ +  vQCj = constant.

and v^ are segregated with habitats in 

and [x^,!.], respectively, then there exists a constant p 

such that

2. The results

If -bs [-L, x
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v

Moreover, if the equilibrium solution (i^, v^) is reached from 

the initial data (uq,Vq), the conservation law (2.9) implies 

that

where

That these formal calculations are indeed correct is a 

consequence of the following theorem.

Theorem 4. Let (u,v) be the segregated solution of (I). 

Then, as t -♦ oo,

Ut)

the latter two limits being pointwise in 

C (t) iŝ  the contact front (cf. Theorem 3) , while 

are defined in (2.12),(2.13).

(2 .1 2 )

2.13)

2.14)

uto ' X

oo x

P

1
2 P

,0

if x € - L , bo

if X x;uC

if X € “OO 9 L

0 if x € [-L, x;bd
1
2 P if x bc

P if x € x. L!

p
u + v
2L 9 bc

U - pL
P

/

U J*
n

U O' V X
Q
v0*

u t) bo' v t t o '

ti bo Here

oo '

t o '

x'to'

and v.to
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3. Reformulation of the problem.

Let (u,v) be a sufficiently smooth segregated solution of 

Problem (I) and define

X
z(x,t) « -U + J [u(y,t) + v(y,t)]dy; 

-L
(3.1)

z(x,t) represents the total population, at time t, in the 

interval [-L,x]. In view of the conservation laws (2.9),

z(-L,t) = -U, z(§(t) , t) »0, z(L,t) - V, (3.2)

where U and V are defined in (2.14), so that separation curves 

§(t) (cf. (2.7)) are level curves z(§(t), t) * 0; in fact,

z(x,t) < 0 for x < 5(t), 

z(x,t) > 0 for x > §(t) .
(3.3)

Further, if we differentiate (3.1) with respect to t and use

(2.1), (2.2), and (2.7), we find that

zt =

zxzxx for

_kzx2xx for x > §(t).
(3.4)

Thus defining c: 3R-» 3R by

c ( s )  =
s, s £ 0 

s/k, s > 0,
( 3 . 5 )

X < § t
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we may use (3.3) to reduce (3.4) to the single equation

on all of Q. Therefore, if we write

x

z0(x) = -U + J' (u0+v0), (3.6)
-L

we are led to the following problem for z(x,t):

r c <*>t -  v x x  i n  Q*

(10 < z (-L, t) = -n z(L,t) -V, t > 0,

|_z(x,0) = zQ(x) in Q.

We assume, for the remainder of the section, that c

and zQ are defined b£ (3.5) and (3.6), and that (Al)-(A3)

are satisfied.

Problem (H) under hypotheses more general than ours, has 

been analyzed in [10] . We shall siinply state, without proof, 

a version of the results of [10] appropriate for dur use. With 

this in mind, we first define what we mean by a solution; in that 

definition, and in what follows, designates the unique

equilibrium solution of fH) :

_ (U+V)(x+L) n 
2L

c ( 2 )
t Z

X
z
XX

z
t o '
,(x)

Z,‘CO(X)



X.19.

Definition. A (weak) solution of Problem (I) is a function

1 OO
z 6 C([0,°o); W ' (0)) with the following properties:

(i) z(-,t) - 2̂  € hJ(0) for t > 0;

(ii) 2t € L2(QT) fo r  T > 0;

(iii) for all ♦ 6 C*(Q) with i|i * 0 on dfl x (0,oo) 

and all T > 0,

J  £ c ( 2 (T)) t|i(T) -  c ( z Q) * ? 0 ) 3  ■  J* i c  <z) ♦  -  ? ( 0 2 0 .
0 0 qt  1 * x x

Theorem 5 ([10]). Problem (H) has exactly one solution z. 

Moreover:

(i) 2X € C(Q) with zx > 0;

(ii) c(z)t - zxzxx ‘classically in Q+ (zx);

(iii) Q+(zx) is the union of the sets

Qx {(x,t) € Q: -0 < z(x,t) < 0 3,

Q2 := {(x,t) € Q: 0 < z(x,t) < v3,

and there exist free-boundary curves b ^ , b suc^ that 

(i) - (v) of Theorem 3 hold with Q+(u),Q+ (v),bu,bv ,Cu/Cv

'®2,t>l'b2, ’̂l'^2' resPectivelV> with u+v in (iii) 

replaced by zx, and with ux and vx in (iv) and (v) replaced

zxxJ

(iii) for all ♦ € C (Q) with \> * 0 on òfì x (0,œ)

( 3 . 7 )

by

replaced by Q1
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(iv) z(t) in C1(n) as t -» oo,

Xq 6 0 with z^tXg) >

£ continuous function §: [0,00) -»ft such that

{(x,t) € Q: z(x, t) = z0(x0)] = {(x,t) € Q: x = §(t)3;

moreover, g € C*(0,oo) and, for t > 0,

5•(t) = -Kzxx(5(t), t),

where K = 1 or k according as Zq (xq) < 0 or Zq (Xq) > 0.

The next result asserts the equivalence of Problems I and 

®  and, when combined with Theorem 5,.

yields the validity of Theorems 1-4.

Theorem 6. Problems (I) and (2) are equivalent:

(i) Let z be a solution of Problem (H) and define u 

and v on Q by

u (x,t) = zx (x,t), v (x,t) = 0 if z(x,t) < 0, 

u(x,t) = 0, v (x,t) = zx (x,t) if z(x,t) > 0, (3.8)

u (x,t) = v(x,t) = ~ zx (x,t) if z(x,t) = 0.

Then (u,v) is a segregated solution of Problem (I).

(ii) Conversely, let (u, v) be a segregated solution of Problem 

(I) and define z on Q b^ (3.1). Then z solves Problem CU).

TDO

(V) given any n there exists

1
2
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(i) Let z be a solution of (H) and define (u,v) through 

(3.8). By Theorem 5(i), the only nontrivial step in showing that 

(u,v) solves (I) is proving that u and v satisfy the integral 

identities (2.6). We shall only verify the first of (2.6); 

the verification of the second is completely analogous.

For convenience, we write b * b^, C * 

curves established in Theorem 5, and we extend b(t) continuously 

to [0,co) by defining b(t) = -L for t 2 

and (3.8) ,

supp u (t) « [b(t), C(t)].

Choose e > 0 sufficiently small and let b£(t) and C£(t), 

respectively, be the level curves z = -U + e and z = -e 

(cf. Theorem 5(v)). Then, by Theorem 5(ii) and (3.8), 

u^ » (uux)x classically and v s 0 must both be satisfied 

in a neighborhood of any (x,t) such that k£(t) <. x £ Ce (t) 

and t > 0. Further, Theorem 5(v) yields

b^(t) = -ux (b£(t), t) , (t) = -ux (Ce(t) , t) 

for t > 0. Thus, choosing 6 > 0, the identity

t
J f ' (T)dT = f (t) - f (6)
6

P ro o f .

applied to

C1 for the FB

t
b ’

By Theorem 5(iii)

Ce
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yields, when ÿ € C^(Q)

Ce (6> t r C t <T» ,

J  u(6)y(ô) = J* J (u* -  u(u+v) * ) d x [ â T .

b £ ( ô )  ô l b e , T )  i  ( 3 . 9)

Next, since b£(t) * b(t) arid C£(t) t C(t) as e 4 0 for each 

t € [(1,0 0 ), it follows from Lebesgue's dominated convergence theorem 

that (3.9) holds with b£ and Ce replaced by b and C- Also, 

since zx € C (Q) , it follows that 2X (&) Zq in C (T5) as 

6 4 0 and

and, since u(t) = 0 on Q\(b(t) , C(t)), the first of (2.6) 

follows.

(ii) Let (u,v) solve (I). We are to prove that z - defined

CCÔ) C CO)
J U ( 6 ) * ( 6 )  -♦ J Uff* ( 0 )  as 6 I 0.  

b  ( 6) b ( 0 ) ü

Thus a second application of Lebesgue's theorem yields

OO
by (3.1) - solves (XL) . Choose T > 0. Then u,v € L (Q ) and 

hence, by (2.9) and the definition of , z(*,t) - € Hq(0). 

Note also that, since zx = u + v and (u+v)2 6 L2(0,T;H1(Q)), 

it follows that

f T

Ce [t ;

;
b e

T
U T * T

1

Ce t :

b e
J

t
u t * t

c l t }  c l 0 )  t  r e m  •)
J u ( t ) i | i ( t )  -  J u o i j i (0 ) =  j  (ui|i  - u ( u + v )  * ) d x l d T ,  

b ( t )  b ( 0 ) u 0 L b ( T )  T x  x  j

z,b e  ' z .“oo

X rx
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2 2 where zx = (zx) .

Our next step will be to establish the integral identity (3.7).

Thus choose X € C^(Q) with X ® 0 on dO x (0,co) and take

x
* ( x , t )  =  f. X ( y , t ) d y  

-L

in (2.6); in view of (2.7), (3.1), and (3.6), the result is

§(0) T Up) , 2 ,
f  ZX (T)*(T) -  J* z^♦  (0) = J S C*x*t '  I (V x x3dxdt'
-L -L 0 -L

(3.11)
L L T L . -
J zv (T)*(T) - J zA♦ (0) a j  J - o l O y X ) ^ .

§(T) X 5(0) u 0 |(t) x z * x x

Since t ■ Xf t(-L,t) = 0, and X(±L,t) = 0, while z(x,t) satisfies

(3.2) and (3.3), if we integrate (3.11) by parts and then add the 

first of the resulting relations to k~* times the second, we arrive 

at (3.7) (with ♦ replaced by X).
2

We have only to show that € L (Q^). But this follows from

1 2
(3.10) and the fact that, by (3.7), °(z) ̂  ■ 2^zx*x in the sense 

of distributions on QT. This completes the proof of Theorem 6.

z2 6 L2(0,T;H1(n)), (3.10)

S(T)

zt
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4. Remarks. Open problems. Conjectures.

1. Problem (I) with nonsegregated initial data is open. Here 

the problem does not reduce to a free boundary problem for a single 

scalar field z, as one must solve the system (2.1) in regions of 

interaction (cf. Remark 2).

2. The system (2.1) with k = 1 is far simpler to analyze. 

There the total density p = u + v satisfies (PM) with initial 

data -Pq = u0 + v0' and once P is known (2.1) are linear 

hyperbolic equations for u and v:

ut = (upx )x , vt  = <vpx ) x

(cf. [5]). Using this reduction one can prove uniqueness within 

the class of all solutions (as opposed to all segregated solutions), a 

one can show that solutions which begin mixed remain mixed for all 

time, including t = œ. (Details will appear elsewhere.)

3. Assume, in place of (1.2), that the dispersal of each

of the species is driven by a weighted sum of the densities; i.e., 

that (in one space-dimension),

g = -(kn u + k12v)x

w = -(k21u + k22v)x
(4.1)

with all

(4.2)kij > °-
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This constitutive assumption, when combined with the conservation 

law (1.1) and corresponding zero-flux boundary conditions, leads 

to the problem

\  = tu(kn u + k12v)x]x

in Q, (4.3)

jvt = lv(k21u + k22v)xJx
(nr)

|u(kn u + k12v)x = v(k21u + k22v)x = 0  on 5Q x iR+, 

u(x,0) = u Q(x), v(x,0) = vQ(x) in £1.

This formulation is greatly simplified if we define new independent 

variables

a(x,t) “ k^uixjt), P(x,t) = k12v(x,t) 

and new constants

_ k 22 .. k12k 21 
lr 9 r1 “ v *

12 11 22

for then (m) reduces to

(X3Z)

t a ( a + p)x ] x

Pt = k[p(|aa + p)xJx
in Q, (4.4)

with

I a  ( a  + ß ) x  =  ß ( n a  + ß ) x  = 0 o n  òQ x jr+ , 

a ( x , 0)  =  a Q ( x ) , ß ( x ,  0 )  =

a0 = kllu0' k12v0'

u t

k

a t

ß0 x i n Q

ß0

t
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P r o b l e m  ( m ) ,  o r  e q u i v a l e n t l y  (137) . T h e  t e r m s  o n  

t h e  r i g h t  s i d e  o f  ( 4 . 3 )  i n v o l v i n g  s e c o n d  d e r i v a t i v e s  a r e

W r i t i n g  A = A ( u , v )  f o r  t h e  c o e f f i c i e n t  m a t r i x  i n  ( 4 . 5 )  a n d  

c o n f i n i n g  o u r  a t t e n t i o n  t o  u  > 0 ,  v  > 0 ,  w e  c o n c l u d e  f r o m  ( 4 . 2 )  

t h a t  t h e r e  a r e  e x a c t l y  t h r e e  p o s s i b i l i t i e s  f o r  t h e  e i g e n v a l u e s

^ 1 — ^ 2  A /  n a m e l Y :

( i i i )  X1 < 0 ,  X 2  > 0 .  

M o r e o v e r ,  w r i t i n g  K f o r  t h e  m a t r i x

i t  i s  n o t  d i f f i c u l t  t o  v e r i f y  t h a t

> 0 ,  X2 > 0 < = »  d e t  K > 0 ,

( i i )  X>1 = 0 ,  \ 2  > 0 < = i>  d e t  K = 0 ,

< 0 ,  ^2  ̂ 0 <•■” > d e t  K < 0 .

We c o n s i d e r  t h e  t h r e e  c a s e s  s e p a r a t e l y .

C a s e  ( i )  ( d e t  K > 0 ) .  H e r e  t h e  s y s t e m  ( 4 . 3 )  i s  d e g e n e r a t e  p a r a b o l i c y 

a s  i t  i s  p a r a b o l i c  w h e n  u  > 0 a n d  v  > 0 ,  b u t  n o t  w h e n  u v  = 0 .  

B e c a u s e  o f  t h i s  p r o p e r t y ,  w e  e x p e c t  t h a t  i n i t i a l l y - s e g r e g a t e d  

s o l u t i o n s  w i l l  e v e n t u a l l y  m i x .  We a l s o  e x p e c t  t h e m  t o  m i x  f o r  

a n o t h e r  r e a s o n .  I n d e e d ,  a s s u m e  t o  t h e  c o n t r a r y  t h a t  P r o b l e m  (HE)

(4.5)

4. Consider

'uk 11

v k 21

u k 12

v k 22>

fu
XX

y XX4

K k
i j '

$

o f

( i ) X1 > 0, X2 > 0; ( i i ) X1 0, X2 > 0;

K =

( i ) X

( i i i ) X1
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has a segregated solution (u,v). For such a solution we would 

expect the two populations to spread until they meet, and then 

to remain in contact along a contact front C(t) (cf. Theorem 3 

and Remark 2 following it). From (4.2) one might expect that

k^v and ^21u + ^22v wou -̂̂ be continuous across 

t, and hence both zero along £, a condition which cannot generally 

be satisfied (cf. Remark 1 following Theorem 3). We are therefore 

led to the following conjecture: for det K > 0 there are no 

segregated solutions of Problem (m). In this regard it would be 

interesting to look at (m) with1

e > 0; in particular, the limit e -» 0.

Finally, within the context of the biological model, the 

off-diagonal elements of K drive the segregation of the species, 

while the diagonal elements, by themselves, result in the usual 

diffusive behavior. Since det K > 0 yields kllk22 > k12k21' 

it would seem reasonable that in this case the two species 

ultimately mix.

Case (ii) (det K * 0) . Here |i = 1 and Problem (337) is identical 

to Problem (I). Thus all of our results generalize trivially to 

populations whose interaction is described by (4.1) with K 

singular.

^This choice of K arose in discussions with R. Rostamian.

both k11u +

K
1+e 1

1 1
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For the case det K = 0 we would like to call the system (4.3) 

degenerate parabolic-hyperbolic. Indeed, if we set w * a + 0, 

then, assuming k ^ 1, (4.4) can be written as

wfc = liw + (k-l)3}wxlx,

* t  = k(V > x

i.e., as a system composed of a degenerate-parabolic equation and 

a hyperbolic equation. The presence of this last equation makes 

the discontinuity of u and v at the contact front less 

surprising.

In this case one can speak of "passive segregation": if 

the species start segregated, they may remain segregated, as we 

have seen in the previous sections, and if they start mixed, 

then, when k = 1, they remain mixed for all t >_ 0 (see 

Remark 2 of this section).

Case (iii) (det K < 0). The system (4.3) is now not parabolic, 

and Problem (II) is probably not well posed. Since the off-diagonal 

terms in K dominate in this case, one might expect a tendency 

towards segregation, even in a mixed population.
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(2.1) with k ■ was studied in [3] and [4]. 

There v(x) s v q (x) an(* the Pr°blem reduces to solving (2.1)

(2.2) ̂ , and (2.3)^. In this case, even with segregated initial 

data, solutions eventually mix, an apparent contradiction in 

behavior. The limit k ■+ 0 in Problem (I) would therefore be 

interesting.
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