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English title : Geometric structures on 3-manifolds and applications.

Abstract.

This thesis consists of three distinct parts.

In the first part, the cobordism group of surface diffeomorphisms is
computed. We use for this purpose geometric methods, in particular various
characteristic splittings of 3-manifolds into pieces equipped with geometric
structures. This computation, together with other geometric methods, is also
applied to a problem of knot cobordism.

The second part is devoted to elliptic structures, i.e. Riemannian metrics
of constant curvature +1, on 3-dimensional lens spaces. We show that these
elliptic structures are all isotopic. This amounts to computing the group of isotopy
classes of diffeomorphisms of any given lens space.

In the third part, we study the behaviour at infinity of hyperbolic manifolds
whose fundamental group is finitely generated and, say, does not split as a free
product. In particular, we show that these manifolds are "geometrically tame"
in the sense introduced by Thurston. A corollary is that these hyperbolic manifolds

satisfy the Ahlfors conjecture on the measure of their limit set.

Key-words : surface diffeomorphisms, cobordism,
fibered knot,
lens spaces, diffeotopy,
hyperbolic (geometry), limit set.
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INTRODUCTION

Outre 1'itinéraire personnel d'un mathématicien, cette these reflete
assez bien 1'évolution qui s'est produite ces dix dernieres années dans 1'étude
des variétés de petites dimensions. En effet, a la suite de la petite révolution
qu'ont constitué les travaux de W. Thurston et sous 1'impulsion de celui-ci,
1'étude de celles-cied de plus en plus passée par la considération de structures
géométriques sur ces variétés. Ceci a eu pour effet, a la fois de fournir de
nouveaux outils pour résoudre de vieux problemes, et d'ouvrir de nouveaux
horizons vers un monde mathématique neuf. Les trois parties de cette thése
illustrent trois approches successives de cette interaction entre topologie "molle"

et topologie "rigide" .

bEn effet, les topologues "classiques" ont d'abord commencé a utiliser ces
idées géométriques comme de simpies outils pour attaquer des problemes anciens.
Dans cet esprit, la combinaison du théoreme d'hyperbolisation de Thurston avec
le théoreme de rigidité de Mostow s'est avérée particulierement efficace, notam-
ment en théorie des noeuds (voir par exemple [BS3]) . Ici, dans la premiere
partie, nous appliquons ces techniques géométriques au calcul du groupe de cobor-

disme des difféomorphismes de surfaces et a un probléme de cobordisme de noeuds.

La deuxieme partie procede de 1'approche inverse, qui consiste a utiliser
de vieilles techniques pour démontrer des résultats sur les structures géométriques.
Par des méthodes initialement développées dans les années cinquante, on y montre
en effet que la structure elliptique des espaces lenticulaires (de dimension 3) est

unique a isotopie pres.

La troisieme partie se déroule entierement dans le monde développé par
Thurston, a l'intersection de la topologie, de la géométrie différentielle et des
systemes dynamiques. Il s'agit de bien comprendre le comportement a 1'infini
des variétés hyperboliques de dimension 3 . L'étude de ce comportement a 1'infini
joue en effet un rdle fondamental dans la preuve du théoreme d'hyperbolisation de
Thurston, et notre intérét initial était motivé par la volonté de comprendre enfin

la preuve de ce résultat, que nous avions comme beaucoup de gens utilisé sans
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scrupule pendant de longues années sans en avoir jamais vu une démonstration
(encore inexistante sous forme écrite a ce jour) ! Nous démontrons dans cette
troisieme partie 1'une des conjectures émises par Thurston sur ce sujet, que

1'on discutera plus loin de maniére un peu plus détaillée.

Avant d'aller plus loin, il est peut-étre temps de préciser de quoi 1'on
parle et de définir ce qu'est une structure géométrique. Une géométrie est la
donnée d'une variété X et d'un groupe de difféomorphismes G agissant transi-
tivement sur X de sorte que le stabilisateur d'un point (quelconque) soit compact.

Une structure géométrique de type (G,X) sur une variété M est un atlas différen-

tiable qui modele M sur des ouverts de X , dont les changements de cartes sont
des restrictions d'éléments de G, et qui est maximal pour ces propriétés. Si

1'on choisit une métrique G-invariante sur X , celle-ci induit une métrique
sur toute variété M munie d'une structure géométrique de type (G,X) . Cette
structure géométrique est compléte si la métrique ainsi définie sur M est com-
plete ; cette propriété est indépendante de la métrique G-invariante choisie sur
X . Quand X est simplement connexe, une structure géométrique sur M est
compléte si et seulement si elle est isomorphe & X/I', muni de la structure
géométrique évidente, pour un certain sous-groupe I' de G agissant librement
et proprement discontiniment sur X . On pourra consulter [Th2] , {Th3] ,

[Sco] pour plus de détails.

Les trois géométries les plus simples sont les géométries elliptique,

euclidienne et hyperbolique, dont les modeles X sont respectivement la sphere s" )

1'espace euclidien E" et 1'espace hyperboliqua H" , et dont les groupes struc-
turaux G sont les groupes d'isométrie correspondants. En dimension 3 ,
Thurston a montré qu'il n'y a essentiellement que 5 autres géométries "maximales",
ce qui fait 8 au total. Parmi celles-ci, c'est incontestablement la géométrie
hyperbolique qui est la plus riche, car les 7 autres ne peuvent apparaitre que
sur des variétés de type trés restreint (voir [Sco ] par exemple) et aisément
classifiables. L'une des contributions majeures de Thurston a été un résultat
d'existence de telles structures géométriques : Toute variété compacte de
dimension 3 qui est indécomposable en somme connexe et satisfait une certaine
condition technique (conjecturellement superflue, et toujours satisfaite par les
variétés a bord) admet une décomposition naturelle, unique a isotopie pres, en
morceaux admettant chacun une structure géométrique complete. De plus, les
structures géométriques que 1'on peut ainsi mettre sur chacun des morceaux

sont aisément classifiables a isotopie prés (voir par exemple [BSZJ), a condition
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du moins de réclamer que les structures hyperboliques soient géométriquement

finies (voir LThB ]), ce que 1'on peut toujours faire.

PREMIERE PARTIE. Cobordisme de difféomorphismes de surfaces et de

noeuds fibrés.

Cette partie est formée des deux articles [BOBj et [Bo 4]‘ , respectivement
parus aux Annales Scientifiques de 17 Ecole Normale Supérieure et aux

Mathematical Proceedings of the Cambridge Philosophical Society en 1983.

On considere les paires (F,f) ou F est une surface fermée orientée
et ou f est un difféomorphisme de F ne respectant pas forcément 1'orientation.
On dit que deux tels difféomorphismes (F 1) et (F 27 ) sont cobordants s'il
existe une variété compacte orientée M de dimension 3 et un difféomorphisme f
de M tels que oM = F1_II (—F2) et flaM = f1u_ f2 . Les classes de cobordismes
ainsi définies forment un groupe noté A2 , ou la loi de groupe est définie par
1'union disjointe 1l.. Le premier article est consacré a la détermination de ce

groupe A 5

Si 1'on remplace le mot "surface" par '"variété de dimension n" dans
la définition ci-dessus, on définit de méme un groupe de cobordisme An de
difféomorphismes de variétés de dimension n . Ce groupe a été calculé pour
n= 4 par M. Kreck ({Krﬂ , [Kr‘z]) et pour n =3 par M. Melvin ([Me]) , en
termes de groupes de cobordisme classique et d'un certain groupe de Witt. Comme
presque toujours en petite dimension, les méthodes utilisées s'effondrent comple-
tement pour le cas n =2 . Il a donc fallu se tourner vers des techniques plus
spécifiques, et notre article est un petit "festival" illustrant a peu pres toutes
les techniques disponibles en dimension 3 , en particulier : Une version renforcée
(due a M. Scharlemann) de l'unicité des décompositions en somme connexe, les
sous-variétés fibrées caractéristiques de K. Johannson ([Jo]), W. Jaco et
P. Shalen ([JS]), une autre sous-variété caractéristique développée pour les
besoins de 1} article, le théoréme d'hyperbolisation de Thurston et le théoréeme
de rigidité de Mostow, la théorie de Nielsen-Thurston des difféomorphismes de
surfaces (voir [Th1] , [FLP)), etc ... .

Le deuxieme article est consacré a un probleme de cobordisme de noeuds. Un

3

noeud K dans S~ = aB4 est dit rubanné s'il est le bord d'un disque D plongé

dans B4 de sorte que la restriction a D de la fonction rayon de B4 n'admette
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aucun maximum local. Pour un noeud fibré K, A. Casson et C. Mc A. Gordon
ont relié le probleme de savoir si K est rubanné ou non a une propriété de
cobordisme de son difféomorphisme de monodromie (ECG]) . Habituellement,

les problemes de cobordisme de noeuds sont traités avec des outils algébriques

et ce théoreme de Casson-Gordon n'apporte rien dans ce contexte. Nous avons
voulu montrer sur un exemple comment, en pratique, on peut effectivement utiliser
ce résultat pour montrer qu'un noeud fibré n'est pas rubanné, si on le combine
avec les résultats de 1'article précédent et d'autres méthodes géométriques,
notamment la théorie des difféomorphismes pseudo-Anosov de Thurston ([Th1]' ,
[FLP]).

DEUXIEME PARTIE. Unicité des structures elliptiques sur les espaces

lenticulaires.

Les espaces lenticulaires sont les exemples les plus simples de variétés
de dimension 3 admettant une structure elliptique ou, ce qui est équivalent, une
métrique riemannienne de courbure sectionnelle constante +1 . Nous démontrons

ici que cette structure elliptique est unique a isotopie pres.

En fait, le probleme se ramene aisément a celui de la classification a
isotopie prés des difféomorphismes d'un e space lenticulaire donnée. L'essentiel
de cette partie est donc constitué de 1'article [BOS] , paru a Topology en 1983,

qui détermine justement ces classes d'isotopie de difféomorphismes.

La difficulté technique provient du fait que les espaces lenticulaires ne
font pas partie des variétés dites "suffisamment grandes" ou "de Haken'" pour
lesquelles on sait que deux difféomorphismes sont isotopes des qu'ils sont homo-
topes. L'idée de la démonstration consiste a montrer qu'a isotopie pres 1'espace
lenticulaire L(p,q) posséde un unique scindement de Heegaard de genre 1 ,
c'est-a-dire un tore séparant L(p,q) en deux tores solides. Ce dernier résultat
a été ultérieurement généralisé aux scindements de Heegaard de genre g quel-
conque dans un travail commun avec J.-P. Otal ([BO1] , [BO2 1). Les techniques
que nous avons utilisées (pour g = 1) sont largement inspirées de 1'article [Sch |

de H. Schubert sur les noeuds a deux ponts, paru en 1956.
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TROISIEME PARTIE. Bouts des variétés hyperboliques de dimension 3.

On s‘intéresse dans cette partie aux variétés hyperboliques de dimension 3
dont le groupe fondamental est de type fini. L.'exemple le plus simple est formé
des variétés dites "géométriquement finies'", qui sont obtenues par recollement
des faces d'un polyedre convexe fini de [H3 . Ces variétés géométriquement
finies étant aujourd’hui relativement bien maitrisées, on veut mieux comprendre

les autres.

Etudiant, sous une certaine condition homotopique, les variétés hyperbo-
liques de dimension 3 qui sont des limites de variétés géométriquement finies,
Thurston a montré que celles-ci ont un certain comportement caractéristique a
I'infini et a qualifié les variétés possédant ce comportement de "géométriquement
sages" . Tous les exemples connus étant de ce type, il a conjecturé que toute
variété hyperbolique de dimension 3 satisfaisant cette condition homotopique est

géométriquement sage. (La condition homotopique est par exemple réalisée si

le groupe fondamental de la variété est indécomposable en produit libre.)

Cette troisieme partie est consacrée a la démonstration de cette conjecture.

Un corollaire est par exemple que toute variété hyperbolique de dimension 3 dont

le groupe fondamental est de type fini et indécomposable en produit libre satis-
fait la conjecture d'Ahlfors sur"la mesure de son ensemble limite, laquelle peut
étre énoncée de la maniere suivante : Imaginons un observateur situé dans une
telle variété, tournant la téte dans tous les sens et voyant ainsi une infinité
d'images de lui-méme ; alors, ou bien ces images sont denses sur la sphere
visuelle de 1'observateur, ou bien leur adhérence y est de mesure nulle. Cette
conjecture d'Ahlfors joue un rdle central dans la théorie des déformations quasi-
conformes des groupes kleindens, et c'est ainsi le premier cas ou elle est démon-

trée avec des hypothéses purement algébriques (et non géométriques).

Une version légerement remanide [Boéj de cette troisieme partie doit

paraitre a Annals of Mathematics.
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Ann. Sc. Ec. Norm. sup.
4° série, t. 16, 1983, p. 237 a 270.

COBORDISM OF AUTOMORPHISMS OF SURFACES

By Francis BONAHON

Topology is rich in problems whose solutions differ dramatically in high and low
dimensions. One of them is the cobordism of automorphisms of manifolds : The cobordism
group of orientation-preserving diffeomorphisms of closed oriented smooth #-manifolds has
been computed for n=4 by M. Kreck ([Kr,], [Kr,]), and P. Melvin [Me] proved that his
results extend to the case where n=3. When n=2, Kreck’s invariants are still defined, but
they are known ([Ca], [J]]) to be insufficient to determine this cobordism group. We study
here this last case and compute the cobordism group of diffeomorphisms of surfaces.

More precisely, in a ‘“‘geometric” category CAT (=TOP, PL, DIFF, .. .), let us consider
CAT-automorphisms f: F" — F" of closed oriented n-dimensional CAT-manifolds; we do
not require f to be orientation-preserving and abbreviate the notation f: F" — F" into
(F", ). Two such automorphisms (FY, f) and (F3, f,) are cobordant when there exists a
CAT-automorphism (M"*!, f) of a compact oriented (n+ 1)-dimensional manifold with
oM"*!= FilI (—F%) and of=f11 f,. The cobordism classes so defined form a group
A, (CAT), where the group law is induced by disjoint sum II. The group A,(CAT) contains
anatural subgroup A, , (CAT), consisting of those cobordism classes that are represented by
orientation-preserving automorphisms.

In [Kr,] and [Kr,], M. Kreck computes A, , (DIFF), for n=4, in terms of ordinary
cobordism groups of oriented manifolds and, when n is even, of the Witt group
W.(Z, Z2)=Z° ®(Z/2)* ®(Z/4)* of isometries of free finite-dimensional Z-modules
equipped with an e-symmetric unimodular bilinear form, where e=(—1)/2". P. Melvin
proved [Me] that the same formulas remain valid when n=3, where A, , (DIFF)=0. For
n=2, there subsists from Kreck’s invariants an epimorphism A, , (DIFF) > W_,(Z, Z),
defined by considering for every automorphism (F2, /) the induced automorphism f, of
H, (F), equipped with the intersection pairing; but A. Casson [Ca], K. Johannson and Dennis
Johnson [JJ] have independently shown that this morphism is not injective.

Omitting any reference to any category since smoothing theory and the Hauptvermutung
in dimensions 2 and 3 show that A,(TOP)~A, (PL)~A, (DIFF), we extend here some
partial results of M. Scharlemann [Sc] and prove :

THEOREM :

A =7 ®(Z2/2), A, =727 ®(Z2/2),

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. — 0012-9593/1983 237/$ 5.00
© Gauthier-Villars
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(where A denotes the direct sum of countably many copies of A the group A, (PL) has clearly
at most countably many elements).

As a conscquence, every clement of A, with Kreck's invariants of order 4 has infinite
order in A,.

Infact, we obtain some more information on the structure of A,.  Let A denote the group
of periodic (PL or DIFF) automorphisms of surfaces modulo cobordism by periodic
automorphisms of 3-manifolds. We introduce in paragraph 6 a certain set .o/ of
automorphisms of surfaces. defined modulo i1sotopy and oriented conjugacy (the strongest
equivalence relation that can reasonably be considered for the study of cobordism), for which
the following holds.

TueoreM. — The canonical map AS x.of — A, is bijective, and is an isomorphism for a
suitable group structure on ..

The group structure of ./ is simple cnough to be casily analized (§ 7) and the group A} is
completely determined by considerations on the fixed point set of the periodic
automorphisms (§ 8).  Both groups turn out to be isomorphicto Z* @ (Z/2)", whence the
computation of A, follows.

The proofs are geometric and ditter completely from those in higher dimensions (in
particular, there is no intervention of Kreck's invariants). The basic idea consists in
modifying any null-cobordism to get a new one in a simple form (§ S).  For this purpose, we
usc a few tools provided by the theory of the geometric splittings of Haken 3-manifolds,
namely Thurston’s hyperbolization theorem, the characteristic fibered submanifold of
Johannson-Jaco-Shalen (see § 3) and another (simpler) characteristic submanifold whose
theory 1s developped in paragraph 2.

The results in this paper were announced in [Bo] (with a few mistakes in the algebraic
computations). At the same time, A. Edmonds and J. Ewing informed us that they had
obtained similar results by slightly different methods, using in particular the G-signature
theorem instead of hyperbolic gcometry to prove the injectivity of the map A% — A, [EE].

Most of this work was carried out while I was visiting Princeton University; I would like to
thank here all the members of the Department of Mathematics and especially W. P.
Thurston, for their kind hospitality. I am also very indebted to L. Siebenmann for his
contribution by numerous advices to the improvement of the results, the proofs and the
manuscript.  Lastly, I would like to thank R. Penner for carefully reading a first version of
this paper.

(. Main definitions and conventions

We shall work exclusively in the category PL (= piecewise linear).  Nevertheless, the
proofs could easily be translated to the categories DIFF (=difterentiable C*) or TOP
(=topological); in this last case, however, periodic maps should be assumed to have a tame
fixed point set.



All manifolds will be compact and orientable.  This rule admits a unique exception,
almost always explicitly specified when needed. for non-orientable compact surfaces occuring
as bases of fibrations or quotient spaces of finite group actions on (orientable) surfaces.

An exponent often indicates the dimension of the manifolds considered.  But let the
reader be warned that, except for this extra information on the dimension, no difference has
to be made between the notations M7 and M. However, this exponent is never omitted for
traditional notations of some classical manifolds, such as the 2-sphere S?, the 2-torus T?, the
projective plane RP2, the hyperbolic plane £{2, etc.

When the opposite is not explicitly specified, every submanifold NeM of positive
codimension is assumed to be properly embedded, i.e. such that NnéM=¢N. For a
codimension 0 submanifold, it 1s required that its fronticr 3N = ¢N—¢M be a codimension 1
properly embedded submanifold of M.

A l-submanifold C' of a surface - is essential when, for every base point, the
homomorphisms n, (C) = n, (F)and n, (C. ¢C) -» n, (F, ¢F)areinjective.  Equivalently, C
is essential when there does not exist any disc D2 F with SD=2D—¢F a component of C
(with or without boundary).

A compression disc for F2cM? is 2 disc D* = M? with D n F =¢D; note that D is not
properly embedded in M. Such a compression disc 1s effective when ¢D is essential in F.

A surface F2<M? is incompressible when:

(1) F admits no effective compression disc.

(2) No component of F is a sphere bounding a ball.

Similarly, a &-compression disc for F2 <= M* is a disc D? < M?, not properly embedded, such
that D n F is an arc contained in ¢D and {D-F=Dn M. Again, D is effective when
D Fis essential in F.

A surface FZ< M? is houndary incompressible, or ¢-incompressible, when :

(1) F does not admit any effective ¢-compression disc.

(2) No component of F is a boundary parallel disc. i.e. there does not exist any ball
B* < M? with 8B a disc component of F2.

The surface F? < M? is essential when it is both incompressible and ¢-incompressible.

Two closed surfaces F? and G2 < M? are parallel when they are disjoint and separated by a
collar =F x1. This definition extends straightforwardly when F or G consists of
components of ¢M.

The manifold M? is irreducible when it does not contain any incompressible sphere, i. e.
when every sphere £2 < M? bounds a ball in M*. It is boundary-irreducible or d-irreducible
when M is incompressible (extending the definition of incompressibility to boundary
surfaces), 1. ¢. when no component of M is a ball and there does not exist any disc D? < M3
with ¢D essential in M.

Lastlv, we often make use of the following construction: Given a codimension |
submanifold N"= M"* ' compactify M — N by adjunction of a copy of the normal S°-bundle
of N in M, with the obvious topology. The new compact manifold so constructed is said to
be obtained by splitting M along N, or by cutting M open along N.
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1. A, (CAT) as a graded group

Fhe key resultof this paper will be Theorem 6.1 where we shall obtam a natural splituing
ol Ao by gecometric methods that are peculiar to the dimension considered. However, casy
connectivity considerations already provide a decomposition of A, (CAT ) into a direct sum of
“smaller™ cobordism groups.  This section is devoted to this last decomposition. The
corresponding results will have no effect on the geometrical part of our study of A,. and will
not be used until we resume algebraie computations in paragraphs 7-8.

For notational convenience, we agree to omit any explicit reference 1o a category CAT
{assuming a choice fixed for the whole section) and will hencetorth abbreviate A, (CAT)
by A,.

Consider an automorphism / of an oriented manifold . To characterize the action of f
on the components of I, we construct a weighted graph 7(F, /) in the following way: The
vertices of 7(F. /) correspond to the components of F: an oriented edge joins the vertex
associated to F, to the vertex associated to f(F,) and this edge 1s weighted by the
symbol + or —according as /| F| preserves or reverses the orientations induced by F. Note
that cach component of y(F. /) is homeomorphic to S' as a topological space and is
coherently oriented by the orientations of its edges: call such a graph (homeomorphic to S,
coherently oriented and with a weight + or — on cach edge) a weighted closed chain.

If there exists an automorphism (M"™ ', f)such that F"=¢M" ' and f = f | F, the natural
map 7(F, f) = 7 (M. f) is. above its image. a covering map respecting the orientations and
the weights of the edges.  Itis therefore natural to identify two weighted closed chains 7, and
¥, when there exists a covering map 7, — 7, respecting the orientations and weights of the
edges: let I denote the quotient of the set of weighted closed chains by the equivalence
relation gencrated by these identifications, 1.¢. the equivalence relation defined by the
property that ¥~ ¥ when they are joined by a sequence of weighted closed chains and
covering maps (respecting weights and orientations) such as:

~ ~

N N e LTINS
71 }’3 rd

n

;’t

Every automorphism (K", /) naturally splits into | [(!‘:.,/L,). where each component of
I

'}(F'.,, f)isintheclassyel. Foreveryve I let A,,',’ be the subgroup of those cobordism

classes in A, that are represented by automorphisms (F", /') where every component of
Y(F, f)isinyel. The definitions are designed so that, for the natural map:

Turorem 1.1:

Ax®4A,. O

el
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Call a weighted closed chain primitive when it is not a covering (respecting weights and
+ -

orientations) of another chain.  For instance. - m+ is primitive, and + m + 1s not

+
since 1t is a covering of <>

Lemma 1.2, — Each class in T contains a unique primitive weighted closed chain.

It will often be convenient to identify an element of I" with a primitive weighted closed
chain.

Proof of Lemma 1.2. — It is sufficient to prove that every weighted closed chain v is the
covering of a unique primitive weighted closed chain v, But such a v is naturally identified
with the quotient of ¥ by its (cyclic) symmetry group. O

The two simplest (primitive) weighted closed chains are Q* and @ -,
respectively denoted by + and —. Note that f'preserves (resp. reverses) the orientation of F
precisely when y(F,f)e + el (resp. y(F.f)e —€el). and that these notations are
compatible with the definition of A, . in the introduction.

If yeT 1s considered as a primitive weighted closed chain, let v(y) denote its number of
vertices and let its signature o (y)€ Z/2 £ be the number of its edges that are weighted by —
(mod 2).

Choose a vertex v of ¥ and consider an automorphism (F”, /') such that each component of
7(F" f) is in the class yel. There exists a covering 7(F, f)— y. which induces a
projection from F to the O-skeleton of 7; let G" be the inverse image of ¢ by this projection and
let g be "' G. Then, up to (oriented) conjugacy. F splits into the disjoint union of v(y)
copies of G, suitably oriented. where f sends the i-th copy 1o the (7 4 1)-th copy by the identity
(I <i<v(y))andthelastcopy to thefirstone by g Morcover, the orientations of the copies
of G are determined by the weights of the edges of v and g is orientation-preserving (resp.
-reversing) if o(y) =0(resp. 1).  Conversely, such a(G". g). with g orientation-preserving or
-reversing according as o(y)=0 or 1. is associated to a unique (F", f), up to oriented
conjugacy, where each component of y(F, f) is in yel".

This proves :

Turorrm 1.3 — The group A, is isomorphic to A,, when o(y)=0 and 10 A,. when
csly)=1. O

Remark. — For a ditferent choice of ¢ in the above construction, the isomorphism
A, ,=A,, or A, is just changed by composition with X— +X. When o(y)=1, this
isomorphism is even quite canonical since the orientation-reversing automorphism g realizes
a conjugacy between (G, g) and (-G, g).

By Theorem 1.1and 1.3, A, is the direct sum of infinitely many copiesof A, , and A, . If
we want to enumerate all these copies, or equivalently the elements of T, it is useful to know
for every m the number ¢, (m) [resp. ¢ (m)] of primitive weighted closed chains v for which
viv)=m and o(y)=0(resp. 1). Let ¢im) be ¢ (m)+c¢  (m).



LemMma 1.4, — The numbers ¢(m) and ¢ (m) are respectively determined by the induction
relations :

X de(d)=2",

o m

Y 2%de (2*d)=2" '. where m=2"1with | odd.

dil

Proof. — Just note that mc(m) [resp. mc¢ (m)] is the number of maps
11,20 ....m} - { +. — | without any period (resp. and with signature 1). O

Applying the Mobius inversion formula (see for instance [HW]. § 16) to the expressions of
1.4, we can get explicit formulas for ¢(m) and ¢ (m).  Recall that the Mobius function
u:N*—>{ —1,0,1}isdetined by the property that p(m) =0 when m1s a multiple of a square
and p(p, p,...p,)=(—1)" when the primes p,, p,, ..., p, are distinct (u(1)=(—1)°=1).

COROLLARY 1.5.

. __1_ * m:d
clm)= "3 w(d)2m,

dlm

1
c_(m)= =Y u(d) 2™, where m=2"l with  odd. O
2m

ProposiTion 1.6. — If(F", f') represents X € A,,, the minimum number of components of F is

@ v(y), wherep, : A, — A, is the projection defined by Theorem 1.1.

P, (X)#0
Proof. — The automorphism (F, /') naturally splits into U(F,,]',), where each component

Y
of?(F,, fisintheclassyel. Now, the number of components of F_ is a multiple of v(y)
and is non-zero when p (X)#0. The above expression consequently provides a lower
bound for the number of components of F.

To check that this lower bound is actually a minimum. assume. without loss of generality.
thatF =@ whenp (X)=0. IfF, #@,consider(G,, g,)associated to(F,, f,)asin the proof
of 1.3 and select in G, a finite number of disjoint pairs of points { x;, x;"} such that, after
isotopy, g, acts on these pairs by permutation (another property will be required for these
pairs later).

Let N"*! be the manifold obtained from G} xI by glueing a 1-handle along each pair
{xi, x} x{1}. The automorphism g, x I of G, xI extends to an automorphism g, of
N7* ! (here we use the fact that g, preserves or reverses the orientation of G,). Identifying
(G,, g,) with (=G, x {0}, g,1G,x {0}), let G, be ¢N,—G, and g/ be g,|G|. By
construction, (G, g.) is cobordant to (G,. g,)

Let (F:, /), with the property that each component ot'?(F’,. J/)isinyel, be associated
to (G, g,)asin the proof of 1.3. By 1.1,(F, f)is cobordant to (F,, f|). Moreover, for
a good choice of the pairs { x;, x;"}, G} is connected and F, consequently has exactly v(y)
components.
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When p,(X)=0, define F, to be . We have now constructed an automorphism
(K, )= [Al(li’,,_/;) representing X such that the number of components of (F7, /) is 0

1
if p (X)=0 and v(y) otherwise. This ends the proof. O

2. The characteristic compression body

Let a compression body be any 3-manifold V?, together with a partition ¢V=¢, VU 6,V of
the components of its boundary into an “exterior” and “interior” part, such that no
component of the interior part ¢; V is a sphere and the triad (V; ¢, V, ¢; V) admits a handle
decomposition with only handles of index 2 and 3. When F? is a closed surface, a
compression body for F is, by definition, a compression body V for which ¢, V=F.

Compression bodies occur naturally in the following fundamental example: In an
irreducible manifold M3, let D = M be a collection of disjoint compression discs for 6M.  If

V is the union of a regular neighborhood U of D « ¢M and of all the components of M — U
that are balls, then V is a compression body for ¢M; indeed, (V; éM, ¢V —éM) clearly admits
the required handle decomposition, and no component of ¢V—30M is a sphere by
irreducibility of M. This is the example that justifies the terminology for the exterior and
interior boundaries ¢,V and ¢, V.

Note that a handlebody (i. e. a “*pretzel ) is just a connected compression body with empty
interior boundary. As a matter of fact, the behaviour of compression bodies is very similar
to that of handlebodies, in that sense that many properties of handlebodies extend naturally
to compression bodies (see Appendix B).

THeOREM 2. 1. — Let M3 be irreducible.  There exists a compression body V3 = M for ¢M,
unique up to isotopy, such that M —V is ¢-irreducible (and irreducible).

Remarks. — (1) From the uniqueness of V, it follows that every automorphism of M
preserves V after isotopy. For this reason, in later sections, we shall call V the characteristic
compression body for ¢M in M, or simply the characteristic compression body of M (recall
that, in a group, for instance, a subgroup is characteristic when it is preserved by every
automorphism of the group).

(2) Theorem 2.1 does not assert that the decomposition of (V; ¢M, V) into 2- and 3-
handles is unique up to isotopy, or that one such decomposition is preserved by every
automorphism of M.  As a matter of fact, these properties notoriously fail when M=V is a
handlebody.

(3) The manifold M-V is obviously irreducible since M is irreducible and every
component of V contains a component of ¢M.

To clarify the notion of characteristic compression body, we give some equivalent
definitions before proving Theorem 2.1.
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PROPOSITION 2.2, — Let M? be irreducible and let V=M be a compression body for
M. The following conditions are equivalent :

(a) M=V is ¢-irreducible.

(b) The frontier 8V is incompressible in M.

(¢) Every surface in M that consists of discs can be isotoped inside V.

(d) Every compression body V' < M for ¢M can be isotoped inside V (i. e. V is ““universal).

Proof of (a) = (b) = (¢) <> (d). — We delay the proof of (d) = (b) until the end of that of
Theorem 2.1.

The equivalence (a) <> (b) follows from the fact that 8V =¢, V is incompressible in V, which
is easy to check [for every base point, the map n, (¢, V) — n, (V) is injective].

To prove (b)=(c), suppose 8V incompressible and let D be a surface in M whose
components are discs. After isotopy, we can assume that the intersection of D and 8V is
transverse, and that the number of components of D n 8V cannot be reduced by any such
isotopy. If DndV=0Q, then DcV (since (DccéMcV) and the conclusion sought
holds. Otherwise, there exists an innermost disc D’< D such that D'n8V=¢D’. The
curve ¢D’ bounds a disc D" in the incompressible surface 8V, and the sphere D’ U D" bounds
a ball B® in the irreducible manifold M.  But we should then be able to define, by *‘crushing”
B, an isotopy of D that decreases the number of components of D N3V, which would
contradict our hypothesis. The case D N8V # @ cannot therefore occur, and this ends the
proof of (b) = (c).

Any surface D in M whose components are discs is contained in a compression body
V' < Mfor dM (see the fundamental example at the beginning of this section).  Itfollows that
(d) = ().

To show that (¢) = (d), consider a compression body V'« M for ¢M and assume V satisfies
(¢). There exists disjoint balls B, inside V' and a disjoint union D of discs in V' such that

dD<éM and V' =(U B,) is a regular neighborhood of D U ¢M: For some decomposition of

(V'; 6M, 8V’)into haﬁdles of index 2 and 3, let the B,’s be the 3-handles and D consist of the
cores of the 2-handles (extended to #M). By (¢). D can be isotoped inside V and, after
isotopy, V' — (U B,) can therefore be assumed to be contained inside V. In particular, each

sphere 0B, is now in V. From the irreducibility of V (which we immediately prove in
Lemma 2.3 below) follows that the B;’s lie in V. Consequentely V'cV. [

LeMMa 2.3. — Let V be a compression body. Then V is irreducible and every closed
connected incompressible surface ¥ in V is parallel 1o a component of ¢, V.

Proof of Lemma 2.3. — There exists a surface Din V, with ¢D < ¢M, which consists of discs
and splits V into a manifold V isomorphic to the disjoint union of ¢, V x I and of some balls
(the components of D are the cores of the 2-handles for a decomposition of V into handles of
index 2and 3). By definition of compression bodies. no component of ¢, V is a sphere and V
is therefore irreducible (consider its universal covering). The proposition (1.8) of [Wa,]
then implies that V is irreducible.
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It F is a closed connected incompressible surface in V| it can be, as in the proof of (¢) = (¢)
in Proposition 2.2, isotoped so that F n D =0 (since Visirreducible).  Let Fstill denote its
image in V. By the classification of incompressible surfaces in ¢; V x 1({Wa,]}, Proposition
3.1), F is parallel to a component of ¢,V in V. and therefore in V. O

Proof of Theorem 2.1. — To establish the existence of a compression body V< M for ¢M
with M — V ¢-irreducible, begin with any compression body V, = M for ¢M (for instance, the
union of a regular neighborhood of ¢M and of the components of M that are balls). If
M —V,, is not ¢-irreducible, there exists a disc D properly embedded in M- V(; such that ¢D
does not bound any disc in 8V,,. Let then V] be a regular neighborhood of V,u D in M,
and let V| be the union of V| and of all the components of M — V; that are balls.  The triad
(V,;¢M, 8V ) has clearly a handle decomposition with only handles of index 2 and 3, and no
component of 3V, is a sphere (recall that M is irreducible); V| is therefore a compression
body for ¢M. By the same token, we can define a sequence VooV, cV,c... of
compression bodies for ¢M which stops only when we reach a compression body V , for ¢cM
with M =V ¢-irreducible (and irreducible).

Remark that 8V,  is “"simpler™ than 8V, in some sense.  To make this precise, we use a
well-known complexity of a closed orientable surface F, namely the x-tuple:

c(F)=(....c,(F), ..., c;(F), ¢, (F))eN™,

where ¢, (F) is the number of components of genus g of F. The complexity ¢(F)
characterizes the topological type of F.  Note that, when F is connected, ¢(F) is just the
genus of F for the canonical injection of N in N“ We order the complexities by
lexicographic order (from left to right). When the two surfaces F and ' are connected,
c(F)<c(F’) just means that F has smaller genus than F'.

Now. in the above situation, ¢(¢, V)<c(¢,. V).

Since the set of complexities ( =the set of finite N-valued sequences) is well-ordered, the
sequence (V) must needs stop, and there exists therefore some n for which M=V is ¢-
irreducible (and irreducible).

To prove the uniqueness, consider two compression bodies V and V' M for ¢M with
M -V and M = V' é-irreducible. By condition (d) of Proposition 2.2 [we have proved that
(a) = (d)], we may assume that V'<int V. The surface 3V’ is incompressible in M [since we
have proved (a) = (b) in Proposition 2.2}, and therefore in V; by Lemma 2.3, each of its
components is consequently parallel to a component of ¢; V=8V in V. Itfollows thenfrom
a connectivity argument that V— V' =8V x =8V’ x I; the compression bodies V and V' are
then isotopic. (O

Proof of Proposition 2.2 (end). — We only need to prove that (d)=(b). Consider V
satisfying condition (d).  We know that there exists in M a characteristic compression body
V' for ¢M which, by condition (d), we can assume contained in int V.  We have now two
compression bodies V and V' < M for ¢M, with V' <int V and 8V’ incompressible in M (and
V). Noting that this is exactly the situation we encountered in the proof of the uniqueness of
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V', the same argument as above shows that V and V' are isotopic. In particular, 8V is
isotopic to the incompressible surface 8V'. which ends the proof. [

3. Essential annuli and tori

We saw in the last section that there exists in an irreducible manifold M? a compact
codimension 0 submanifold which “‘engulfs” by isotopy all the discs in M. A similar
engulfing phenomenon occurs for essential tori and annuli, and involves the characteristic
submanifold defined by K. Johannson [Jo], W. Jaco and P. Shalen [JS].

ProposiTION 3.1. — Let M? be irreducible and O-irreducible. Then there exists a
submanifold W3, unique up to isotopy and called the characteristic fibered submanifold, for
which the following conditions hold.

(1) Every component W, of W can be equipped with, either a Seifert fibration for which
W, ndM is vertical, or an 1-bundle structure over a surface (possibly non-orientable or with
boundary) for which W, n dM is the total space of the corresponding 01-bundle; moreover, the
pair (W, W, ndM) is never isomorphic to (T* xI, T> x{0}).

(2) Thefrontier 8W is essential and none of its components is parallel to a component of OM.

(3) For every component M, of M —W, the union W u M, does not satisfy (1).

(4) Every submanifold W' satisfying (1) and (2) can be isotoped inside W. [

ProrposiTioN 3.2. — With the data of Proposition 3.1, the characteristic fibered
submanifold W satisfies also:

(5) Every essential annulus or torus which is not parallel to a boundary component can be
isotoped inside W.

(6) Each component of M — W which does not meet é(8W) and is different from T? x1 is
atoroidal and anannular.
(7) Every automorphism of M preserves W up to isotopy. [

Remarks. — (a) For property (6), recall a manifold is anannular if it contains no essential
annulus and is atoroidal if every incompressible torus in it is parallel to a boundary
component.

(b) Our characteristic fibered submanifold is, for convenience, slightly different from the
characteristic submanifold in [Jo] or [JS]: To recover the latter, add to the former regular
neighborhoods of the components of M that are tori.

Our interest in trying to confine in some submanifold all the essential discs, tori or annuli of
M? is motivated by the following corollary of Thurston’s Hyperbolization Theorem [Th;]
and of Mostow’s Rigidity Theorem ([Mo], [Pr1]).

ProposiTioN 3.3 (Thurston). — Let M? be irreducible, O-irreducible, atoroidal and
anannular. If, furthermore, each component of M contains an essential surface (which is
always satisfied by components with non-empty boundary), then every automorphism g of M is
isotopic to a periodic automorphism.
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Proof of Proposition 3.3. — Let ¢; M denote the union of the boundary components of M
which are tori.  Under the hypotheses of the proposition, Thurston’s Theorem asserts that
(M —¢; M) admits a complete hyperbolic structure with finite volume and totally geodesic
boundary. Consider then the double M obtained by glueing two copies of M along
(CM —¢; M).  The hyperbolic structure on (M —¢; M) defines then a complete hyperbolic
structure with finite volume on (M —¢; M), for which the exchange involution t is an
isometry.

Identify M with one “*half”* of M. The automorphism g lifts to an automorphism g of M
which commutes with t and coincides with ¢ on McM. By Mostow’s Theorem, g is
homotopic to a (unique) automorphismg’ that is isometric on (M—¢, M). The
automorphismg’ is periodic (the group of isometries of a complete finite volume hyperbolic
manifold is finite) and commutes with 1 (by uniqueness in Mostow’s Theorem). It defines
therefore a periodic automorphismg’ of M. Morcover, g andg’ induce the same outer
automorphism on nt, (M)<n, (M) and. by ((Wa,]. §7), g and g’ are therefore isotopic. [

4. Two lemmas on periodic maps

ProrosiTION 4.1. — Let V be a compression body and g be an automorphism of V which is
periodicon ¢ V. Then g can be deformed to a periodic automorphism by an isotopy fixing ¢ . V.

Proof. — Recall that the complexity of a closed orientable surtace F is the « -tuple:

c(F)=(..., t'g(F). con GUF) e (F)oep(F))eN™.

where ¢, (F) is the number of components of genus g of I, and that the complexities are
ordered by lexicographic order. It is easy to check that ¢(¢; V)< (¢, V). We will prove
Proposition 4.1 by induction on ¢(V)=c¢(¢, V) —c(¢; V), which measures the **difference”
between ¢,V and ¢, V. Note that ¢(V) belongs to the subset of the elements of ZV that
are 2 (..., 0, 0)for lexicographic order (from left to right) and that the induction is possible
since this set, albeit much larger that NV, is nevertheless well-ordered for lexicographic order.

If ¢(¢,V)=c(¢; V), then V is isomorphic to ¢,V x I, where ¢, V corresponds to ¢,V x { 0 }
by thisisomorphism. By ([Wa,], Lemma 3.5), g can be deformed to(g|¢;V x {1} ) xId, by
an isotopy fixing ¢, V=6,V x {1}, whence the property follows.

In fact, this argument also holds (by a classical result on balls) when ¢(V)e N{®** < Z™. In
this case, indeed, V is isomorphic to the disjoint union of ¢,V x1I and of ¢, (¢, V) balls.

Assume now Proposition 4.1 proved for every compression body V' such that
c(V')<c(V). The crucial step in the induction is the following.

LemMa 4.2, — Under the hypotheses of Proposition 4.1 and if ¢(V)¢ N i e. if V requires
at least one 2-handle in a handle decomposition of (V; ¢V, ¢, V), then there exists a simple
closed connected curve C in ¢,V which bounds a disc in V but not in ¢,V and such that, for
each n, either g"(C)=C or g"(C)n C=0.
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Weassume Lemma 4.2 for the while and go on with the proof of Proposition 4.1.  Let D
be 1osystem of disjoint dises in vV whose boundary 1+ (J g"(C). By the usual intersection

reduction methods, D is unique up to isotopy fixing(, V. The automorphism g can
therefore be deformed, by an isotopy fixing ¢, V, so that g(D)=D and g | D is periodic. Let
thea V be the manifold obtained by cutting V open along D and g be the automorphism of V
induced by ¢g. The manifold V is still a compression body (see Corollary B.3 in
Apoendix B), (¢, V)=¢(¢, V) and c(@,V)<c(é, V). Apply then the induction hypothesis
to 7 and glue back together the deformation of ¢ so obtained to conclude the proof of
Proposition 4.1, granting Lemma 4.2, (7]

Proof of Lemma 4.2. — Itis here useful to leave the PU category and equip V with a smooth
structure for which g is a diffeomorphism (after isotooy fixing ¢, V). To do this carefully,
begin with deforming g so that itis periodic on a neightorhood U of ¢, V, then equip U with a
smooth structure for which the restriction g|U iv a diffeomorphism (smooth first a
neihborhood of the fixed points of the non-trivial iterates of g| U, and lift afterwards an
apy ropriate smoothing of U/g), e<tend to V the smooth structure on U and, lastly, compose
g w thasmall PLisotopy fixing a reighborhood of ¢, V. Note that the existence of a smooth
rathier than PL curve C satisfying “he conditions of Lerima 4.2 provides a PL curve with the
san ¢ properties, by lifting to ¢,V a small perturbation of ({U g"(C))/g in (¢, V)/g.

n

There exists on ¢,V a Riemanman metric of locally constant curvature + 1,0 or — 1 for
which the restriction of g is an isometry (see for instance [Th,), Proposition 13.3.6; [the idea
consists in choosing a suitable sir gular metric on the quotient (¢, V)/g]).  For this metric,
cac1component ¢, V of ¢,V can be isometrically identified with the quotient of S%, R? or H?
by .ome discrete group of isometries isomorphic to n, (¢, V). If &,V is not a sphere, the
nuniber of closed geodesics in ¢, V with length smaller than K is finite for every constant
K > 0 [otherwise, using a fundamental domain, one casily checks that n, (¢, V) would not be
discrete as a subgroup of isometries of = or 217, There exists therefore a simple closed
geo desic Cin ¢,V which is length- nminuzing among ail the simple curves bounding a disc in
V tut not in ¢,V [such curves exist because ¢(V)e N ). We are going to show that C
satisfies the desired condition.

Since g is an isometry on ¢, V, the curve g"(C) is, fo: every n, a geodesic with same length
as ('; in particular, either g"(C)=C or the .ntersection of C and g"(C) is
trar sverse.  Considering n such that g"(C)# C, we 'want to prove that C does not mect
£"{C). By hypothesis, C bounds a disc D in V and g"(C) bounds D'=g"(D). By a slight
periurbation of D' [after which perhaps D' #g"(D))], the intersection of D and D’ can be
asstmed to be transverse.

Sappose in quest of a contradiction that C meets g"(C).  There exists then an arc &
com ponent of D~ D" which splits D into two half-discs D, and D, and D’ into D and
D5, Without loss of generality, we can assume the length of (D, —k minimum among all
the »ossible choices for A, D,. D,:in particular, this implies that D, meets no arc component
of 1D D' different from A, and that the length / (¢D, —k) is not greater than /(¢D, —k),
and therefore than 1/2/(cD). Consider then the two singular discs D, u D] and



D, uDj. By the above remarks, their boundaries are simple closed curves (with two
corners) and:

HAD, U D)) +IED, UDY))=21(ED, —k)+1(@D’) SIED)+1(CD)<21(C).

which imy lies that the length of one of them, say D, u D, is at most /(C). By considering
its lifting 1o the universal covering of the component of ¢,V that contains it, ¢(D, u DY)
cannot bo ind any discin ¢, V (otherwise, two distinct geodesics of R? or H? would meet in at
least two points); also, Dehn's lemma implies that ¢ (D; u Dv}) bounds a non-singular disc
in V. But, by rounding the two corners of ¢ (D, U D), one could then construct a smooth
simple closed curve, bounding a disc in V but not in ¢, V, that is shorter than ¢ (D, U DY),
and theretore than C. This would contradict the definition of C and shows therefore that
Cng"C)=Qif g"(C)£C. O

Prorosition 4.3. — Let F be a closed connected surface, possibly non-orientable, different
fromS? and RP? andlet F x Ldenote the orientation 1-bundle over F.  If g is an automorphism
of the manitold F x 1 that is periodic on the boundary, then one of the two following assertions
holds (possibly both).

(@) There exists a periodic automorphism g’ of F x 1 which coincides with g on the boundary.

(b) Fisc torus or a Klein bottle and, for every n and each boundary component preserved by
£". the restriction of g" to this torus is a translation (perhaps the identity).

Remarks. — (1) In (b), we mean by translation of a torus any automorphism that lifts to a
translation of R? for some identification of this torus with R2/Z2,

(2) In (a), one could moreover show that g’ is isotopic to g by an isotopy fixing the
boundary.

Proof. — Assume first that F is orientatle (F X I = F x I). that its genus is at least 2 and that
¢ does not exchange the two boundary components. let g, (resp. g,) denote the
automorphism of F defined by the restriction of g to F x { 0} (resp. F x { 1}), for the standard
identifications.  To prove (), it is sufficient to show that g, is conjugated to g, by an
automorphism isotopic to the identity. For this, equip F with a (smooth) conformal
structure 11, (resp. m;) for which g, (resp. g,) is conformal (by averaging some
metric). Teichmiiller theory ([Te,], [Te,]) asserts then that every homeomorphism f of F,
considered as a mapping from the Riemann surface (F, m,) to (F, m,), is topologically
isotopic to .1 unique homeomorphism @ ; with constant dilatation (which measures at each
point the distortion between the two conformal structures m, and @} m,). Since m,
(resp. m,) is preserved by g, (resp. g,) and since g, and g, are homotopic (and therefore
isotopic). it follows from the uniqueness of the Teichmiiller mappings that:

Du8o=0,, =@, =8 Pra-

The homeomorphism ¢, realizes therefore a conjugacy from g, to g,, and is isotopic to the
identity. By a small perturbation of @,, (consider the quotient spaces F/g, and F/g,), we
can lastly find a PL automorphism with the same properties. (I am indebted to
L.. Siebenmann for this short proof.)
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If F is a torus and still g does not exchange the boundary components, it is easy to classify,
up to conjugacy by isotopies, all the periodic automorphisms of F (consider the quotient
space, or more precisely the quotient ““orbifold ™. in the sense of {Th,], §13.3).  Since g, and
£, are homotopic, it then turns out that they are conjugate by an isotopy, unless they are both
homotopic to the identity, in which case (b) holds.  This ends the proof in this case.

Consider now the case where F is not orientable. [dentifying F with the section
Fx{1/2}cF X1, we can deform g by an isotopy fixing the boundary so that g(F)=F
([Wa,], Lemma 3.5; only the case where the base of the I-bundle is orientable is explicity
stated there, but the non-orientable case is similar).  Then, g defines outer automorphisms
of the groups below which preserve (up to inner automorphisms) the exact sequence:

0-n (Fxih-n (Fxhzn (F)>2/2-0.
Since g is periodic on F x ¢1L it follows that the outer automorphism of r, (F) defined by g,
has finite order. By Nielsen's Theorem [Ni1,]. g, is then isotopic to a periodic map and we
can therefore isotop g so that it perserves F x[1/4, 3/4] and that its restriction there is
periodic.  To end the proof. it is then sufficient to apply the study of the orientable case to
Fx(l- )1 4340 =(FxZ)x 1

The prool s similar when g exchanges the boundary components of F x 1 (F is then
orientable). By [Wa,], Lemma 3.5, we can assume that g (F)=F where F is identitied with
Fx{1/2!. Asabove. g can be made periodic on F x (1,4, 3/4] and we end the proof by
applying the previous case to Fx[0.1/4] and F x[1.4.3/4). (.

5. Splitting of cobordisms

The principal tool for our analysis of A, is Proposition 5.1 below. This section is
devoted to its proof.

Provosttion S. 1. = If(F2, f) is null-cobordant. it bounds an automorphism (MJ,_fj where
M splits into three picces V¥, M and M3, preserved by f. such that:

(1) V is a compression body for ¢M and M-V= MM,

(2) M, is an 1-bundle over a closed, possibly non-orientable, surface.

(3) The restriction of f to My is periodic.

Remark. — In Proposition S.1, there does not in general exist any handle decomposition
of V that is preserved by /. For instance A. Fathi and F. Laudenbach[FL] have
constructed an automorphism (F.f)=¢(V, f) where f is pseudo-Anosov and V is a
handlebody; if f preserved any handle decomposition of V, the automorphism f would be
reducible and could not be pseudo-Anosov.

To prove Proposition 5.1, we need some preliminary results.

LemMma S.2. — If (F2.f) is null-cobordant, it bounds an automorphism (M3, f) with M
irreducible.

Proof. — Sce Appendix A, O



Say that (F3, /,) compresses 1o (F3. f,) if (F, f,)U (=F,, /,) bounds an automorphism
(V3, f)such that V is a compression bodvfor F, (i.e. ¢, V=F and ¢, V= —F,). Note that
if (F,, f,) compresses to (F,. f,) and (F,. f,) compresses to (F ;. /). then (K, /) compresses
to (k. 1)

Lemsma 5230 — If (K3, /) is null-cobordant. it compresses to an automorphism (F3, f5)
bounding some (M3, f,) where M, is irreducible and C-irveducible.

Proof. — By Lemma 5.2, (F . f,) bounds (M3, f,) with M, irreducible. Consider then
the characteristic compression body V of M, (¢f. §2). which we can assume preserved by f,
(Theorem 2.1) and take (F,./,)=(-38 V. f,|8V). O

Recall that an automorphism (F=. /) is reducible when there exists an essential -
submanifold €' such that / (C) - C up to isotopy.

LeMya 5.4 Anv auromorphism (V5. 1) compresses to an automorphism (V3. f,) with f -
irreducible.
Proof. — 1t f, is reducible, it preserves after isotopy an essential submanifold C' of

F'. Let (F,, f,) be constructed from (F,,7,) by performing a 2-surgery along cach
component of ¢ and deleting the spherical components of the surface so obtained.  Then
(F,, fy)clearly compresses to(F,. f5).  Iff, s notirreducible, perform the same trick until an
irreducible automorphism is reached (this process must stop since the compressions decrease
the complexities of the surfaces). []

Proofof Proposition 5.1. — Using alternatively Lemmas 5.3 and 5.4, define a sequence of
automorphisms (F2, f,) where (F,, f,)=(F, f) and:

(1) for every i, (k. f;) compresses to (F, . . /.. )

(2) for every k21, f,, ., is irreducible and (F,,. f5,) bounds some (M,, .. /5, .,) with
M, ., irreducible and c-irreducible.

Since these compressions reduce the complexities of the surfaces, the ““compression
cobordism™ between (F,, f,) and (F, .. f;. ) consists, for i sufticiently large. of an
automorphism of a product compression body V, =}, x I, where F, corresponds to F; x ; 0!
and F,,, to F,x{1}. By[Wa,], Lemma 3.5./; and /,., are then isotopic for the above
identification F;=F,_,. Therecxists consequently an automorphism (F', f ") and, for every
i sufficiently large. an oriented isomorphism 4, : F;, — F’ such that f; is isotopic to h; ' f ' h,
[in other words, the sequence (F,f,) “stabilizes™ to (F',f’) up to conjugacy and
isotopy]. By construction, f ' is irreducible and (F', f ) bounds an automorphism (M, f )
where M’ is irreducible and ¢-irreducible.

Since (F, /') compresses to (F'. /). it is now sufficient to show that (F'. f ’) bounds after
isotopy some (M, My, /") where M, is an I-bundle and /7 is periodic on M,.

Consider the characteristic fibered submanifold W of M and isotop f " so that f "(W)=W
(Proposition 3. 1;recall M"is irreducible and c-irreducible).  The irreducibility of /7 implies
the following propertics.

Cram 5.5, — The surface W is closed: equivalently, W n M’ consists of components
of cM'. Moreorer, every component of W that meets CM” is a component of M and admits an
I-bundle structure over a closed surface.
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Proof of 5.5. The closed T-submanitold ¢ (0W) of F'=¢M’ is essential and preserved
by /7. Since f 7 asarreductble. it must be empty. - This proves the first statement.

By dehnition and since ¢ (W) = O, every component W of W is either an I-bundle over a
closed surface. in which case itis a component of M, or a Seitert manifold. It W is notsuch
an I-bundle. itis a Seifert manitold with non-empty boundary and differentfrom S' x D? and
TP <0 frecall that (W,. W, - (M) is by definition of W never isomorphic to (T? x 1.

T2« 0] [Wa,) implies then that /7 can be isotoped in order to preserve the Seifert

fibration on 0/ )"(W,). Then W, cannot meet <M Otherwise. f* would preserve the
) ) p

n

essential T-submanitold . (f )*(C) of F'.where Cis a fiber in W, ncM. [
n

Let M, consists of all the components of M that are I-bundles over closed surfaces, and let
M be M'--M,. Note that. by Claim 5.5. WA M7 =0 and W M consists only of
Seifert manitolds.  Weare now going to modify dramatically M [and (M. f )] so that f "be
periodic on M.

We may of course assume that no component of M’ is ciosed. By Propositions 3.2(6)
and 3.3,/ " can be isotoped so taat it is periodic on the components of M — W that are not
isomorphic to T2 x 1.

Consider a component W, of W =~ M " that is isomorphic to T* x 1. By condition (3) of
Proposition 3.1, no component of M"—=W meeting W, is isomorphic to
T x 1. Consequently. / "is periodicon . (/)"(CW,).  Now. by Proposition 4.3, f ' can
be assumed to be periodic on ' £ )" (W ). except possibly in the case where, for every m,

(, )" is a translation on cach (torus) component of i/ )"(¢W ) it preserves.

Apply the above process to cach component of W~ M thatis isomorphicto T? x . Let
tken M denote the part of M where we have so far been able to make f * periodic: It is the
urion of all the components of M —W that are not isomorphic to T* x I, and of some
components of W A M isomosphic to T* x L.

Forevery component W, of M — M 'that is a component of W, f ' preserves up to isotopy
the Seifert fibration of i (f )"(W,) [Wa,]. If G is a boundary component of ¢W, and if

()" respects G, then(f )" necessarily preserves a non-trivial isotopy class of simple closed
curves in G (consider the fiber). By definition of M| the same property holds for the other
k'nd of components of M. The automorphism (8M,. f '|6M}) consequently bounds
some (V. /1) where Vo consists of solid tori and £, is periodic (use the classification of
periodic automorphisms of T2, or an equivariant surgery argument).  Consider now the
manifold M, obtained by replacing M =M by (= V,)in M"", and let f, be the periodic
antomorphism (/"I M) C [ of M,. The automorphism (F'. /) then bounds (M, M,.,
(/"IMpU /). where M, is an I-bundle and f, is periodic. This ends the proof of
Proposition 5.1
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Remark. — In the statement of Proposition 5. 1. we did not require that M be irreducible
and that V be its characteristic compression body. or. equivalently. that M, be irreducible
and c-irreducible (and this is in general false for M and V provided by the above
proof). Using the Equivariant Sphere Theorem and Loop Theorem [MY], and some
cutting and pasting argument, it is nevertheless possible to add this extra condition to the
conclusions of Proposition 5.1, but this is of no use for the following.

6. The canonical decomposition of A,

For our purposes, it is natural to identify two automorphisms (F3. ;) and (F3, f,) when
there exists an oriented isomorphism it 8 | — F, such that if, A~ ' is isotopic to f5: we shall
then say that (F, f}) and (F,. f,) arc equivalent by conjugacy and isotopy.  Let.# be the set
of such equivalence classes of automorphisms of surfaces.  We often denote simply by (F. )
the class in .# of the automorphism (F. f).

In view of the applications to cobordism. an interesting subset of .# is .# . that consists of
the classes of automorphisms which cannot be written as(F. f)U (= F. /)U (F', /7), with F
non-ecmpty. There is an obvious retraction .# — . #, defined by removing all the pairs (F,
f)U (=F, f); it transtorms the monoid law LI on.# into a group law [I on .#, and factors
the canonical map .# — A, through a group homomorphism 7, — A,.

Define on .# the following relation <. which 1s a shght extension of the compression
cobordism of paragraph 3: (F, /) < (F'. /) when (= F. j)U (F’, /') bounds some (M",f).
where M* is the disjoint union of a compression body V and of an I-bundle W over a closed
(possibly non-orientable) surface, such that F= -7, Vand F'=cWU ¢ V. Note that < 1s
proper by [Wa,], Lemma 3.5.

Forany XeA,, let (F*, /*) be an automorphism representing the cobordism class X. with
the property that its class in .# is minimal for <: for instance, choose (F*. f¥) so that the
complexity of FX is minimum among all automorphisms representing X,

The automorphism /™ is clearly irreducible. A result of J. Nielsen ([Ni,].[Ni,]), expressed
with a terminology issued from [Th,], asserts then that (F*, /™) splits after isotopy into
(F3. /3)LI(EX #3). where  f) is periodic and /) is pscudo-Anosov. Here, an
automorphism (F2, f) is (homotopically) pseudo-Anosor when, for every n#0 and every
essential 1-submanifold C of F, /" (C) is never isotopic to C: equivalently, (F2. ) is pseudo-
Anosov in this sense if and only if it is topologically isotopic to a pseudo-Anosov
homeomorphism in the geometric sense of [Th,].

Let .o/ be the set of those elements of .# which may occur as the class of such a (F}, /),
1.c. the elements of .# that are represented by pseudo-Anosov automorphisms and arce
minimal for <. [t is clearly a subgroup of .# [note that if (F. f) and (F'. f")e.# arc
minimal for <. both belong to .#, and (F. /)IT(F'. /) is minimal for <.

Also, recallfrom the introduction that A is the periodic cobordism group, which consists of
periodic automorphisms of oriented surfaces modulo cobordism by periodic automorphisms
of 3-manifolds.
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Turorest 6.1 — The rule X - (Fy (3. (FX0 /3 induces a group  isomorphism
A AL @ </ whose inverse i the obvious homomaorphism.

Remark. - Theorem 6.1 asserts in particular that (F}, /}) is well-defined up to conjugacy
and isotopy.  If we had required /Y to be a geometric pseudo-Anosov homeomorphism (in
the sense of (Th,]). (F}. /}) would even be unique up to mere (topological ) conjugacy (two
geometric pseudo-Anosov homeomorphisms of the same surface that are isotopic are
conjugate).

Proof of 6.1. — To prove that the map A, —» A} @ </ is well-defined. consider another
automorphism (G, ¢%) =(Gp. gp) L (GYL ¢)) that represents X and is minimal for < (where
gy is periodic and g) 1s pscudo-Anosov). By definition, (FY. /MU (= GY, ¢) bounds
some (M*, f). By Proposition 5. 1. this null-cobordism can be chosen so that M splits into
three picces V. M, and M,.. preserved by 7. where V is a compression body for M. M, is an
I-bundle and /| M, is periodic.

Since both (F, /) and (G, ¢Y) are minimal for <. the compression body V is just a
regular neighborhood of ctMin M. Let M| (resp. M;.) denote the union of M, (resp. M) and
of the adjacent components of V.

Since no pscudo-Anosov surface automorphism is homotopic to a periodic one,
¢M;cFy UG} and f is consequently periodic on the boundary of the product I-bundle
M;—M,. By Proposition 4.3, f can therefore be assumed to be periodic on
M;=(M;—M;)u M, [case (h) of Proposition 4.3 cannot occur since (FX, f*) and
(GX, g¥) are minimal for <]. This provides a partition M = MLl M; of the components
of M such that M, is an I-bundle and f|M; is periodic.

No component of M, can have its boundary completely contained in FY or G : Otherwise,
(FX. %) or (G*, g*) would not be minimal for <. From this fact. it follows for homotopy
theoretic reasons that each component of My joins, either a component of Y to a component
of G}, or a component of F} to a component of G

Let M;" consist of the components of M; that meet F} (or G}). and let M, be
M—-M;". Note that M| =F} U G} and My =Fy U G}

The manifold M, is a product I-bundle. By [Wa,]. Lemma 3.5, f can be isotoped on M;’
so that it preserves the projection M — 1. It follows that (F%, /%) and (G%, g¥) are
equivalent by conjugacy and isotopy, i.e. represent the same element of .&/.

Applying Proposition 4.3 to the I-bundle M, — M;; f can be moditied to be periodic on
My =M; U (M; — M) [again, case (b) of Proposition 4.3 cannot occur by minimality of
(FX, f*) and (G*, g*)]. Hence (F§, /%) and (G}) g}) are periodic cobordant.

This ends the proof that the rule X —((F}, /%) (F%, f%X)) induces a map
©:A, > AS® . The map o is clearly a group homomorphism since, if (F, f) and
(F', f')e #, are minimal for <, so is (F. /) (F", /).

Let y : A @ .o/ — A, be the obvious group homomorphism. By definition of ¢, yo =1d
and o is therefore injective.

To prove that ¢ is surjective. we need to show that, for every automorphism (F,.. f,)U (F,.
/) where f, is periodic and the class of (F,. f,) in .# is contained in .o/, (Fp. f,) is periodic
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cobordant to a periodic automorphism (F}, /) such that (Fp, f5)U (F,, f4) is minimal for

<. By some homotopy theoretic remarks and the usual compatibility of (I with

minimality, this last property is equivalent to the fact that (F}, ) is minimal for <.
The proof of Theorem 6.1 is therefore achieved by Lemma 6.2 below.

LemMa 6.2. — Every periodic automorphism (F2, f') is periodic cobordant to a periodic
automorphism whose class in F is minimal for <.

Proofof6.2. — If (F2, f)is not minimal for <, there exists by definition an automorphism
(M3, f) and a partition M= VLI W of the components of M such that:

(1) Vis a compression body;

(2) W is an I-bundle over a closed surface;

(3) F=6,VUdéW and f'=f|F;

(4) M&F x L.

We would like £ to be periodic. Apply Proposition 4.3 to each component of W (and to
thefirstiterate of f that preservesit). When we getin case (b) of Proposition 4. 3, replace the
considered component of W (and its images by /) by one or two solid tori and add them to
V. Eventually, only case (a) holds and f can be assumed to be periodic on W. By
Proposition 4.1, f can also be isotoped so that it is periodic on V, and therefore on M.

Let now F, be —(0M —F) and let f, be 7| F,. The periodic automorphisms (F, /) and
(F, f;) are periodic cobordant and (F,, f;) <(F, f). If (Fy, f;) is minimal for <, the
property is proved. Otherwise, iterate this process and define a sequence (F, f;) of periodic
automorphisms periodic cobordant to (F, /) such that :

CFigys fin) <(Fy, ) <o <(Fy, f1) <(F, f).

Considering the complexities of the suiface F, this sequence must needs stop. which happens
when we reach a (F,, f;) that is minimal for <.

This ends the proof of Lemma 6.2, and therefore of Theorem 6.1. [J

An important remark for the following sections is that the proof of 6.1 is natural with

respect to the graded group structure of A, defined in paragraph 1. Consequently, for the
obvious definitions of .« and Af.;:

ProposiTiON 6.3. — For cach yel', A, ,=A} @, []

7. The group .o/

Let .o/ , = .o/ consist of the classes of automorphisms (F, /') where f acts transitively on the
set of the components of F [or, equivalently, (F, /) cannot be decomposed into (F’; f")U (F",
/") inanontrivial way]. Ifa : # — % istheinvolution (F, f) - (—F, /), let # denote the
fixed point set of o in ./, and choose a subset 4 such that .o/, =24U ¢U «(¥). Every
element (F, f) of .o/ can be written as a disjoint sum of elements of .«/,,, and this
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decomposition is unique: it e €./, et n, (1. f)e 73 denote the number of times ¢ appears in
this decomposition. From the defimtion of the group /.1t 1s then clear that:

ProvositioN 7.1, = The map «/ = (7 /2)* @ Z* dcfined by:
(F, )= (0 (B S Dy g 1 () =0 (L), )

is a group isomorphism. ]
Let # | (resp. .# _) be the subscet of the elements (F, f) of .# where /7 preserves (resp.
reverses) the orientation of .#, and define A, =An.F,,%6, =6 n.7,, cl.

Prorosition 7.2. — The sets B,,% ,, B _ are infinite, and 6 _ is cmpiy.
CororLary 7.3:

o, 2T@ENR, A =227,
A=@ ., =2"®Z/2)7. O

yel

Proof of Proposition7.2. — The set % . is empty since (F, f)=(—F, /)in & whenever f'is
orientation-reversing. To prove that #,, ¢, and 4 _ are infinite, it will be sufficient to
exhibitan infinite number of elements of cach among (pseudo-)Anosov automorphisms of the
torus T2, Note that such automorphisms always belong to & by uniqueness of meridian
discs in solid tori and of the “*neck’ of Klein bottles.  Since there are, up to conjugacy and
isotopy, infinitely many oricntation-reversing Anosov automorphisms of T?, the set #_ is
infinite.

The clements of # corresponding to orientation-preserving automorphisms of T+ are in
1-1 correspondence with the conjugacy classes of SL,(Z) [by considering H, (T?)=2Z?).
It is a pleasant exercice to show that each such conjugacy class is classificd by the data of a
number €€ Z/2 and of a sequence (a, a, . . .a,), defined up to cyclic permutation, of rational
integers with the following property: Either all the a;’s are non-null and a; and a;,, have
opposite signs (including a, and a,.,=a,), or the sequence is (0). (1) or (Oa). To
check this property, associate to cach such data the conjugacy class of:

2000

and use some arguments on developments in continued fractions (compare with [BS],
§ 12). Moreover, the conjugacy classes of SL, (Z) represented by Anosov automorphisms
are those whose classifying sequence is different from (0), (1) and (0a), and the involu-
tion defined by conjugacy with an eclement of GL,(Z) of determinant —1 is translated
in these data by keeping €€ Z/2 unchanged and replacing each a,eZ by —a,. With this
description, it is clear that Anosov automorphisms of T? define infinite subscts of 4, and €,
(sce also [Sc]. §3). (O
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8. The periodic cobordism group A"

This section is devoted to the computation of A}, and thus completes the computation
of A,.

Consider a periodic automorphism f of a closed oriented surtface F2. - To each point v€ FF
can be attached an element r(f. x) of &/Z in the following way: If n1s the smallest positive
integer for which /" preserves both x and the orientation of F near x, then f" is locally
conjugate to a rotation of angle 2t r(f, x)around x (the orientation is determined by that of
F).  Let Fix. f denote the (finite) set of points where r(f. v)#0.

ProposiTioN 8. 1. — If f is periodic, (V2. [ ) is periodic null-cobordant [i. ¢. the class of (F. })
in AY is O) if and only if Fix . | admits a partition into pairs | x,. X, | such that:

(1) r(f, x,)+r(f, x;)=0 for every i.

(2) Forevery i, f({x, x;})={x. x| for some j.

(3) f preserves the orientation of F near x, if and only if it preserves it near x..

Remark. — Since r(f, f(x))1s equal to r(f, x) or to —r(/f, x)according as f preserves of
reverses the orientation of f near x, the last condition is only relevant when
r(f, x,)=r(f, x;)=1/2 [otherwise. (3) follows from (1) and (2)]. It is also void if [ is
orientation-preserving or -reversing. which. by paragraph I. we could assume as well.

Proof. — If (F?, f)bounds(M?3, f), where f and fare both periodic, consider the set Fix . f
of the points x in M such that. for some n. f"fixes vand is a nontrivial rotation near x.  Itisa
I-submanifold of M, preserved by f, with boundary Fix. /. Moreover. if x, and x| are
the two boundary points of a component &, of Fix. f,r(f. x,)+r(f. x/)=0. We then get
the partition of Fix . / sought by letting k, range over all the arc components of Fix, f.

Conversely, if such a partition exists, choose a small disc d; (resp. d}) around cach x; (resp.
X;), such that all these discs are disjoint and their union is preserved by f- Let then V be the
manifold obtained from F x I by glueing a 1-handle along cach pair {d, x { 1 . d;x {1} }:it
is a compression body with interior boundary ¢,V=F x {0} and exterior boundary
¢, V=¢V—¢;V. Theautomorphism f x1d, of F x I extends to a periodic automorphism f
of V. Then, (F, f) can be identified with (¢, V, f|¢, V) and (F', /' )=(=¢. V, f|¢, V) is
such that Fix, f'=@. To complete the proof, it is now sufficent to apply Lemma 8.2
below to (F'. /7). O

LemMma 8.2. — If f is periodic and Fix . f =, then(F2, f ) bounds a periodic automorphism
of a disjoint union of handlebodies.

Proof. — We prove 8.2 by induction on the complexity of F. Assume the lemma proved
for every surface of lower complexity than F and consider the quotient space F f: it is a
surface, possibly non-orientable and /or with boundary if / does not preserve the orientation
of F. We may of course assume F// connected.

Consider first the case where the surface F//f is closed and dim H, (F/f; ©)22. The
projection p : F — F/f is a covering map and this cyclic regular covering is defined by some
morphism p: H, (F/f:Z)— Z/n. By the condition on H, (F,/ /. ) there exists an
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indivisible class x in H, (F/f; Z) such that p(x)=0. Since x is indivisible, it can be
represented by a simple closed curve Cin F/f [MP]. The inverse image of Cin F is a closed
1-submanifold C, which is essential since its components are non-separating. Then,
construct a manifold V from F xI by glueing a 2-handle along each component of
Cx | 1]. Forasuitable construction of V, the automorphism f x Id, of F x I extends to a
periodic automorphism f of V. Since C is essential, F'=¢V —(F x 10}) has smaller
complexity than F.  Moreover, because p(x)=0, each component of C preserved by some
/™ is in fact fixed by f™; it follows that Fix, /=@, where f'=f|F’. By induction
hypothesis, (F’,f’) bounds a periodic automorphism 7’ of a disjoint union V' of
handlebodies. If F is identified with F x { 0} =0V, (F, /') then bounds (V U (- V'), f U )
and each component of VU V' is clearly a handlebody.

When F/ f has non-empty boundary and is not a disc, there exists a properly embedded arc
k in F/f that is non-separating. Let C denote the inverse image of k in F; this is a closed
essential 1-submanifold, preserved by F.  Let then (F’, /") be constructed as above from (F,
f)and C. For each component C, of C and each f™ preserving C,, /™| C, is either the
identity or a reflection; it follows that Fix . f'=@. Then, apply the induction hypothesis to
(F’, /") to get the required property for (F. 1.

To start the induction, we now only need to study the cases where F/ f is a disc, a sphere,
a projective plane or a Klein bottle.  In the first three cases, F consists of spheres and f
therefore extends to a periodic automorphism of disjoint balls. ~ For the last case, note that
F consists of tori; then surger (F, /') along the inverse image C of an essential curve in F/f'to
get a periodic automorphism (F’, /) of a disjoint union of spheres; since (F’, /) bounds a
periodic automorphism of disjoint balls, it follows that (F, f) bounds a periodic
automorphism of disjoint solid tori. [J

The group A} naturally splits into @ A% (n), where A} (n) is the subgroup of periodic

cobordism classes of automorphisms (F. /') with f periodic of period n.  As in paragraph 1,

A5 (n) itself splits into @ A%, (n); note that A} (n)#0 only if v(y) divides n, and that

vel

A%, (n)= A%, (n/v(y)) or AS_(n/v(y)) according as o (y)=0 or 1.

ProrositTioN 8. 3:
Al; +(n)= AR l)J’

AS_(4k+2)=0,
AS_(4k)=(Z/2)"2 D=0 if k<2)
(here [ ] means “‘integral part”).

COROLLARY 8.4:
AS(n)=2"®(Z/2)",

1/ n
K=Y (m)[i(a_lﬂ

with:
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and

| I
-\ <-|) .
L — “”’.\2(41)1 }

am
where ¢ (my and ¢ Am) are determmed by Corollary 1.5 L
CORO:LARY 8.5 — For crery 7€l
A, =7 @ 2) and AS, = i ay)=0,
A, =4 2)
A= @S2y and AVl L

e

) and A‘:‘:;‘at ) f oy)=1.

1

e

Proof of Proposition . 3. — Consider (F=. f ). where f preserves the orientation of Fand is
periodic ol period n. - The projectionp - F = F fisaevelic branched covermg and (K. f )is
consequently determined up to oriented conjugacy by the closed oriented surtace F o f. the

ramification pomnts v, m b/ and the representation p - H, (F £ =3, 1) = 7 » defined

by the property that p ([ ypy=m tor exers path v bop (5 1y ) jomimg some v to

/™ (). Note that the rotation numbers r(/. x) can be casily recovered trom p: For the
natural mbedding Z/n= G, 7. r(f. vi=p((cd])) where d s a small dise around v=plv)in
Fof onented by the onentation of . Morcover. the number of points of the orbit of v iy
determined by r( /. v)(together with the period ). Since /s orientation-presersing. r( /. v)
depends only on v =p(x) and will also be denoted by r(f. ).

Let.#7 (n) denote the set of toriented ) conjugacy classes of automorphisms (1=, 1 ). where
f preserves the onientation of F and s periodic of pertod n. IWCn)=(Z:n)— 0] consider
the map @ @ #" (n) = N that “counts™ for cach ¢e Cn) the number v (1) of orbits
Vel fwihrt/ Vi=co 10 d s asmall dise in F £ around cach orbit X, with (/. 1) £ 0.
then L[('fl,] S0 H (F - and the image of @ s theretore contamed in the subset

1
Cam

of the clements ve fy that satsty the condinon:

(%) Y ovoe=0 oL

et
Conversely, every ve N '™ sauisfying (% ) can casily be realized by some (. f1e.#" (n)
(construct a suitable cyclic branched covering over S°).

Choose now A= C(n)such that C(n)=AU (- A)or ALL(=A)U | 1.2 ] according as n1s
oddoreven.  If Fix. f admits a partition into pairs ; x,. v, asin Proposition §. 1. note that
v, and x; belong to the same orbititand onlv it r (. x)=r(f. V) =1 2on=dkand v, =14
[recall r(f. f (xN=r(f. x)since / is oricntation-preserving]. [t consequently follows trom
Proposition ¥. 1 that the map . defined by:

v Fh -0 it n#2[4).
A VA VAL
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or:
Vi L S7@7/2 i n=2[4],

(F )= (v () =V Dueas Vi ()

induces a monomorphism A5, (n) > Z* or Z* @®(Z/2). By the characterization of the
image of ¢, the image of | is easily seen to be isomorphic to Z®“*  Since card
A=[1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>