# THÈSES D'ORSAY

#### CHRISTIAN LÉONARD

#### Sur la limite en loi et les fluctuations de certains modèles dynamiques d'interaction

Thèses d'Orsay, 1984

<a href="http://www.numdam.org/item?id=BJHTUP11">http://www.numdam.org/item?id=BJHTUP11</a> 1984 0148 P0 0>

L'accès aux archives de la série « Thèses d'Orsay » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.





**ORSAY** 

nº d'ordre: 3738

## UNIVERSITE DE PARIS-SUD CENTRE D'ORSAY

## THESE

présentée

Pour obtenir

| LeTITRE de DOCTEUR3° CYCLE SPECIALITE : STATISTIQUES |
|------------------------------------------------------|
| PAR                                                  |
| M. LEONARD Christian                                 |
|                                                      |

× 40565 K

SUJET: "SUR LA LIMITE EN LOI ET LES FLUCTUATIONS DE CERTAINS MODELES DYNAMIQUES D'INTERACTION"

soutenue le 4 Juillet 1984 devant la Commission d'examen

MM. RUGET Gabriel Président

METIVIER Michel Rapporteur

BRETAGNOLLE Jean

DACUNHA-CASTELLE Didier

PRUM Bernard



#### ABSTRACT:

First, a variational principle is used to give a characterization of the Gibbs measure of thermodynamical system, then a spin system with mean field interactions (namely, the Curie-Weiss model) is studied. Considering the empirical probability measures, a law of large numbers for the equilibria is proved, as the number of spins tends to infinity, and an explicit computation of the critical temperature for the phase transition is given. A law of large numbers for interacting diffusion processes, which generalizes the dynamical Curie-Weiss model, and a result dealing with the fluctuation process in the non-critical case, are given.

Key-words : Gibbs (measure)

Curie-Weiss (model)
Phase transition
Law of large numbers

Fluctuation (process)

Empirical probability (measure) Non-linear diffusion (process).



Je veux, avant tout, vivement remercier Michel Métivier, qui m'a aidé et conseillé lors de la réalisation de ce travail.

Anatole Joffe et Donald Dawson, qui m'ont accueilli chaleureusement au Canada, m'ont permis d'achever cette thèse dans les meilleures conditions possibles. Je leur en suis très reconnaissant.

Je remercie également Gabriel Ruget pour avoir accepté de présider le jury de cette thèse, ainsi que Messieurs Bernard Prum, Jean Bretagnolle et Didier Dacunha-Castelle, pour avoir bien voulu s'associer au jury.

Martin Goldstein et Anatole Joffe ont généreusement financé mon voyage en France, lors de la soutenance de cette thèse.

Je dois enfin exprimer toute ma gratitude à Mesdames Francine Houle-Miller, Cynthia Callard, France Prud'Homme, Lucie Leblanc et Jeanne Bailleul, pour le soin avec lequel elles ont pris part à la réalisation matérielle de ce travail.



## Table des Matières

|                                                                                                                                      | Page |
|--------------------------------------------------------------------------------------------------------------------------------------|------|
| Notations                                                                                                                            | 1    |
| O - INTRODUCTION                                                                                                                     | 3    |
| I - RAPPELS ET PRESENTATION                                                                                                          | 11   |
| 1. Rappels de thermodynamique statistique                                                                                            | 13   |
| 2. Présentation d'un système de Curie-Weiss                                                                                          | 27   |
| 3. Quelques résultats d'échangeabilité                                                                                               | 33   |
| II - LE SYSTEME A L'EQUILIBRE                                                                                                        | 45   |
| 4. Le comportement asymptotique $(N \rightarrow \infty)$ de $\rho_N^\beta$ , h                                                       | 47   |
| 5. Multiplicité de phases ; grandes déviations.                                                                                      | 65   |
| III - QUELQUES GENERALITES CONCERNANT LES PROCESSUS                                                                                  | 71   |
| 6. Processus markoviens non-linéaires                                                                                                | 73   |
| 7. Le problème des martingales                                                                                                       | 81   |
| IV - LE SYSTEME DYNAMIQUE                                                                                                            |      |
| <ol> <li>Une loi des grands nombres pour des systèmes de<br/>diffusions avec interaction et à coefficients<br/>non bornés</li> </ol> | 101  |
| 9. Un résultat de fluctuation                                                                                                        | 143  |
| APPENDICE : Deux simulations du modèle d'Ising sur le tore.                                                                          | 165  |
| REFERENCES                                                                                                                           | 177  |

#### Notations

- Si (S,T(S)) est un espace mesurable muni de la tribu T(S),
- $\mathsf{M}_\mathsf{b}(\mathsf{S})$  est l'ensemble des fonctions numériques de  $\mathsf{S}$  , bornées et mesurables.
- M(S) est l'espace des mesures signées sur S.
- Si S est un espace topologique :
- $C_b(S)$  est l'ensemble des fonctions numériques de S , continues et bornées.
- B(S) est la tribu des ensembles boréliens.
- B(S) est l'ensemble des fonctions boréliennes de S.
- $B_b(S)$  est l'ensemble des fonctions boréliennes bornées de S .
- $\Pi(S)$  est l'ensemble des probabilités sur (S,B(S)).
- S' est le dual topologique de S.
- <.,.> désigne le crochet de dualité.
- L\* est l'adjoint de l'opérateur linéaire L .
- $f \circ \rho$  est l'image de la mesure  $\mu$  par l'application mesurable f .
- $\delta_{v}$  est la mesure de Dirac au point x .
- $\mathcal{L}(Y)$  est la loi de la variable aléatoire Y .
- $C_K^k(\ \mathbb{R}^n)$  (où  $k\in\{0,1,\ldots,+\infty\})$  est l'ensemble des fonctions numériques de  $\mathbb{R}^n$  , k fois continûment dérivables et à support compact.
- $C(IR^+, IR^n)$  est l'ensemble des trajectoires continues de  $IR^+$  dans  $IR^n$ .

#### INTRODUCTION

Signalons avant tout, que l'origine de ce travail est un article de D. Dawson [Daw].

#### O.1 - A QUOI NOUS INTERESSONS-NOUS ?

La motivation de cette thèse est l'étude de la statique et de la dynamique d'un système électromagnétique composé d'aimants dont les moments magnétiques (les spins) sont portés par une même direction : la droite réelle R. L'espace géographique sur lequel sont situés ces aimants (l'ensemble des sites) n'est pas précisé. (Pour visualiser le modèle, on peut imaginer que cet ensemble de sites est inclus dans un plan). L'évolution d'un spin est déterminée par un potentiel extérieur : le potentiel propre, par un potentiel d'interaction avec un champ électrique extérieur et par un potentiel d'interaction avec l'ensemble des autres spins. De plus cet ensemble d'aimants interagit avec le reste de l'"univers" ; cette contrainte est décrite par la température du système. L'agitation thermique et le temps caractéristique de changement de signe d'un spin isolé étant d'un ordre très inférieur à celui d'une observation physique, la dynamique du système de spins est en général traitée par une description probabiliste.

Si on appelle i  $\in \{1,\ldots,N\}$  un site du système de N spins, et  $x_i^N \in \mathbb{R}$  la valeur du spin en ce site, l'énergie d'interaction avec les autres aimants est : -J  $x_i^N$   $\frac{1}{N}$   $\sum\limits_{j=1}^{N}$   $x_j^N$  ,  $J \ge 0$ . Un tel système s'appelle un système de Curie-Weiss. Contrairement au modèle d'Ising (voir par exemple [Spi] et

l'appendice A2), la géométrie de l'ensemble des sites n'intervient pas (il n'y a pas de notion de voisin). En outre, nous imposons aux potentiels extérieurs, aux constantes d'interaction J et à la température d'être les mêmes pour tous les sites, de sorte que la loi de  $(x_1^N, \dots, x_N^N)$  est symétrique. Autrement dit,  $(x_1^N, \dots, x_N^N)$  est une suite échangeable. Au chapitre 2, nous décrivons une dynamique physiquement acceptable. Tout au long de cet exposé, composé de quatre parties, nous nous intéresserons au comportement du système lorsque le nombre d'aimants N tend vers l'infini.

#### 0.2 - DESCRIPTION DE NOTRE TRAVAIL

#### 0.2.1. Contenu de la partie I

Au chapitre 1, nous faisons des rappels de thermodynamique statistique. On peut se reporter à [Gro] pour avoir une présentation agréable de ce sujet. Notre présentation n'est pas entièrement classique dans la mesure où nous prouvons au théorème 1.14 l'existence d'une unique probabilité qui, sous certaines contraintes, maximise l'entropie (second principe). Cette probabilité est la mesure de Gibbs.

Les techniques de démonstration de ce théorème proviennent essentiellement des grandes déviations ([Bre], [Aze]).

Le chapitre 2 est consacré à la description du système de N spins :  $x^N = (x_1,\dots,x_N^N) \quad \text{lorsque N est fini. L'équilibre est décrit par la mesure}$  de Gibbs :  $\rho_N \text{(cf.(2.6))} \text{ et la dynamique est définie de telle sorte que sa}$  mesure invariante soit  $\rho_N \text{. Nous choisissons} \quad t \to x^N(t) \text{, comme étant la solution}$  de l'équation différentielle stochastique dans  $\mathbb{R}^N$ :

$$dx_{i}^{N}(t) = \frac{1}{N} \sum_{j=1}^{N} b(x_{i}^{N}(t), x_{j}^{N}(t))dt + \sigma dw_{i}(t)$$
;  $i = 1,...,N$ ;  $w_{i}$ : brownien.

où  $\frac{1}{N} \sum_{j=1}^{N} b(x,y_j)$  dérive des potentiels d'interaction et des potentiels propres et  $\sigma$  représente la température. Les fonctions b(x,y) ne satisfont pas en général.

aux hypothèses usuelles de croissance à l'infini des théorèmes d'existence et d'unicité d'une solution d'équation différentielle stochastique; le théorème 2.16 donne une condition (de type monotonie) qui est mieux adaptée à la situation.

Si la condition initiale  $x^N(0)$  est échangeable, il en est de même pour tout le processus. L'échangeabilité est une propriété fondamentale pour l'étude des lois des grands nombres, autant statique que dynamique, c'est pourquoi nous rappelons au chapitre 3, les résultats d'échangeabilité dont nous avons besoin par la suite. A peu de chose près, la présentation de ce chapitre est celle d'Aldous([Ald]). Notons, qu'en particulier, l'échangeabilité exprime l'idée intuitive qu'un système symétrique  $x^N$  est parfaitement décrit par sa loi empirique  $\frac{1}{N}\sum\limits_{i=1}^{N}\delta_{x_i}$ .

#### 0.2.2. Contenu de la partie II

Dans cette partie nous étudions le comportement de  $\rho_N$ , lorsque N tend vers l'infini. Une "bonne" manière de regarder cette limite est de s'intéresser à la loi de la limite de  $\frac{1}{N}\sum_{i=1}^{N}\delta_{x_i}$ .

Ellis et Newman ont montré ([EN1]) que la loi de la magnétisation moyenne  $\frac{1}{N}\sum_{i=1}^{N}x_i^N$  tend étroitement vers une probabilité de la forme  $\sum\limits_{\ell=1}^{k}\alpha_{\ell}\delta_{m_{\ell}}$ , où  $1 \leq k \leq \infty$ ,  $\alpha_{\ell} \geq 0$  et  $\sum\limits_{\ell=1}^{k}\alpha_{\ell}=1$ . Au théorème 4.6 du chapitre 4, à l'aide d'une généralisation de leur méthode et de résultats d'échangeabilité, nous obtenons la limite de la loi de  $\frac{1}{N}\sum\limits_{i=1}^{N}\delta_{N}$  (considéré comme probabilité aléatoire). Cette loi limite est de la forme

$$\sum_{k=1}^{k} \alpha_{k} \delta_{p_{k}}$$

où les  $\, lpha_{\ell} \,$  sont les mêmes que précédemment et les  $\, \, {
m p}_{\ell} \,$  sont des probabilités

d'espérance  $m_{\chi}$ . Autrement dit,  $x^{\infty}=(x_1^{\infty},x_2^{\infty},\ldots)$  est un mélange de suites indépendantes identiquement distribuées de loi  $p_{\chi}$ . (Pour cette notion, se reporter au chapitre 3). Ce résultat est à rapprocher de celui concernant les solutions du problème de Dobrushin-Landford-Ruelle (DLR) qui énonce que les solutions DLR sont des combinaisons linéaires convexes de probabilités extrêmales (les phases pures) ([Dob]). Nous dirons qu'il y a multiplicité de phases si k est strictement plus grand que 1 . Pour clore ce chapitre, nous étudions les limites des fonctions thermodynamiques usuelles.

Au chapitre 5, nous nous intéressons à la multiplicité de phases.

Le théorème 5.3 nous donne une condition nécessaire et suffisante pour qu'il y ait multiplicité de phases à une température T et sous un champ électrique h<sub>o</sub>, à savoir que l'énergie libre limite h → F(T,h) n'est pas dérivable en h = h<sub>0</sub>

Il est heureux de retrouver ce résultat, car c'est un phénomène général des coexistences de phases (à ce sujet, se reporter à la remarque 1.34). Au théorème 5.5, nous donnons une condition suffisante sur la température et les différents potentiels, pour qu'il y ait multiplicité de phases. Si, de plus, le potentiel propre vérifie l'inégalité GHS ([EN2]), il est alors possible d'obtenir une condition nécessaire et suffisante sur la température et les potentiels. C'est ce que nous faisons au théorème 5.7. Quelques techniques utilisées pour les démonstrations des théorèmes précédents, ainsi que la formule de Chernoff énoncée par Dacunha-Castelle ([Dac]), nous permettent de donner, sans difficultés supplémentaires, au théorème 5.10, un résultat de grandes déviations pour la magnétisation moyenne, en dehors de la "zone de phases multiples".

Les parties III et IV sont consacrées à la dynamique. Dans la partie
III nous donnons quelques généralités sur les processus markoviens non-linéaires
et les problèmes de martingales. Dans la partie IV nous étudions la limite de

 $t\mapsto \frac{1}{N}\sum_{i=1}^{N}\delta_{x_{i}^{i}(t)}$  et nous entamons l'étude de la limite du processus de

fluctuations:

$$t\mapsto N^{\frac{1}{2}}\left(\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{i}^{N}(t)}-\lim_{K\to\infty}E\left(\frac{1}{K}\sum_{j=1}^{K}\delta_{X_{j}^{K}(t)}\right)\right)$$

#### 0.2.3. Contenu de la partie III

Au chapitre 6 nous donnons des résultats concernant les processus de Markov non-linéaires. Bien que cette notion, qui généralise celle de Markov linéaire, fut introduite en 1966 par Mac Kean ([MK1]), et souvent reprise par la suite, par exemple en [MK2], [Tan], [Szn], [Daw], [TaH] (cette liste est loin d'être exhaustive), dans un cadre proche du nôtre, ou bien dans l'étude probabiliste de l'équation de Boltzmann, il n'existe pas à notre connaissance d'exposé formel la concernant. A partir de [MK2], nous en donnons une définition formelle et nous prouvons les résultats qui sont énoncés sans démonstration au début de cet article. De manière à éviter les réflexes acquis avec le markov ordinaire (linéaire), nous nous efforçons de faire apparaître le lien entre ces deux notions.

Nous rappelons au chapitre 7, des résultats classiques sur les problèmes de martingales. Ces résultats sont généralement énoncés dans le cadre  $C(\mathbb{R}^+,\mathbb{R}^d)$  ([Pri], [StV]), nous les démontrons lorsque les trajectoires sont à valeurs dans un espace polonais. En particulier, la démonstration du théorème 7.8 ne fait pas intervenir de martingales exponentielles. Puis nous précisons ce

qu'est une diffusion à valeurs dans un espace de Hilbert réel séparable.

(Notre présentation est différente de celle de [Yor])

#### 0.2.4 Contenu de la partie IV

Au chapitre 8 (on pourra se reporter à l'introduction de ce chapitre pour plus de détails ) nous nous intéressons à la limite lorsque N tend vers l'infini de  $\overline{X}_N = \frac{1}{N} \sum_{i=1}^N \delta_{X_i}^N$ , en tant que variable aléatoire dans  $\pi[C(\mathbb{R}^+,\mathbb{R}^d)]$  ( $\pi(S)$  est l'ensemble des probabilités sur S) où  $x_i^N$  est la trajectoire donnée par:

$$dx_{i}^{N}(t) = \begin{bmatrix} \frac{1}{N} & \sum_{j=1}^{N} b(x_{i}^{N}(t), x_{j}^{N}(t)) \end{bmatrix} dt + \begin{bmatrix} \frac{1}{N} & \sum_{j=1}^{N} \sigma(x_{i}^{N}(t), x_{j}^{N}(t)) \end{bmatrix} dw_{i}(t)$$

Nous munissons  $\pi[C(\mathbb{R}^+,\mathbb{R}^d)]$  d'une topologie plus fine que la topologie étroite, de sorte que nous obtenons la convergence de fonctionnelles comme:

$$E\left(\frac{1}{N}\sum_{i=1}^{N}\sup_{0\leq t\leq T}|x_{i}^{N}\left(t\right)|^{q}\right) \text{ ou bien } E\left[\left(\sup_{0\leq t\leq T}|x_{i}^{N}\left(t\right)||x_{j}^{N}\left(t\right)|\right]^{q/2}\right], (i\neq j)$$
 pour  $q\geq 0$ , pas trop grand.

Nous obtenons au théorème 2.2 du chapitre 8, la convergence de la loi de  $\overline{X}$  vers  $\delta_p$ , où P est la loi de l'unique solution trajectorielle de l'équation différentielle stochastique non-linéaire dans  $\mathbb{R}^d$ :

$$\begin{cases} dx(t) = \left[ \int_{\mathbb{R}^d} b(x(t),y) X_t oP(dy) \right] dt + \left[ \int_{\mathbb{R}^d} \sigma \tau(x(t),y) X_t oP(dy) \right] dw_t \\ P = loi de X = \mathcal{L}(x) \end{cases}$$



x ainsi défini est un processus markovien non-linéaire et  $P = \mathcal{L}(x)$  est une solution de l'équation aux dérivées partielles non-linéaire:

$$\frac{\delta \zeta}{\delta t} (t, dx) = A*(\zeta(t))(dx)$$
 où:

$$A*(5)(dx) = -\frac{\delta}{\delta x} \left[ \left( \int_{\mathbb{R}} db(x,y) \zeta(dy) \right) \zeta(dx) + \frac{1}{2} \frac{\delta^2}{\delta x^2} \left[ \left( \int_{\mathbb{R}} d\sigma(x,y) \zeta(dy) \right)^2 \zeta(dx) \right] \right]$$

Au chapitre 9, nous abordons le problème des fluctuations et plus particulièrement l'étude de la limite en loi des processus :

$$U_N(t) = N^{\frac{1}{2}}(X_N(t) - P(t))$$
 (on note  $P(t) = X_t o P$ )

La méthode utilise à nouveau un problème de martingales. Tanaka a prouvé en <code>[Tan]</code>, par une méthode différente, que lorsque la fonction b est régulière et bornée et lorsque  $\sigma$  est une constante,  $U_N$  converge en loi vers un certain processus gaussien. Notre motivation est d'obtenir un résultat, lorsque la fonction b n'est pas bornée. La question de la bonne normalisation (et donc celle de la tension) n'est pas résolue. Par contre, nous donnons au théorème 9.16 quelques résultats concernant le processus limite éventuel. Sous certaines hypothèses, ce processus limite est l'unique solution du problème de martingales sur  $\mathcal{F}'$  (l'espace des distributions tempérées), associé à la famille de générateurs  $(G_t^{(1)})_{t \geqslant 0}$ , où, pour toute fonction test  $\widetilde{\psi}$  de la forme  $\widetilde{\psi}(.) = \psi(\langle \varphi_1,. \rangle, ..., \langle \varphi_k,. \rangle)$  et tout élément v de  $\mathcal{F}'$ :

$$(G_t^{(1)})\widetilde{\psi}(v) = \sum_{j=1}^k \frac{\partial \psi}{\partial y_j} (\langle \varphi_1, v \rangle, \dots, \langle \varphi_k, v \rangle) \langle C_t \varphi_j, v \rangle$$

$$+\frac{1}{2}\int_{\mathbf{j},\mathbf{j}=1}^{\mathbf{k}}\frac{\partial^{2}\psi}{\partial y_{\mathbf{j}}\partial y_{\mathbf{j}}}(\langle \varphi_{1}, \vee \rangle, \ldots, \langle \varphi_{\mathbf{k}}, \vee \rangle) \langle \varphi_{\mathbf{j}}^{!}, (\int_{\sigma}(\cdot, y) P(t, dy))^{2}, P(t) \rangle.$$

L'opérateur  $C_t$ , qui intervient dans le terme de dérive, est l'adjoint de la partie linéaire de  $A^*$  autour de P(t). Ce processus limite diffère d'un processus de Ornstein-Uhlenbeck généralisé (voir [HSt]) du fait que  $(C_t)_{t \geq 0}$  est opérateur intégro-différentiel. Par conséquent,  $(C_t)_{t \geq 0}$  n'est pas le générateur d'un semi-groupe markovien. Ce défaut de dissipativité provient des interactions.

Finalement, nous présentons à l'appendix A2, des résultats de simulations numériques concernant le modèle d'Ising sur le tore.

### I - RAPPELS ET PRESENTATION

#### 1. RAPPELS DE THERMODYNAMIQUE STATISTIQUE

1.a UN BREF APERÇU DU LIEN ENTRE LA MECANIQUE CLASSIQUE ET LA THERMODYNAMIQUE STATISTIQUE

La thermodynamique statistique, dans le cadre de la mécanique classique, se retrouve à l'aide de l'hypothèse d'ergodicité (1.10). Considérons un système formé de N particules i, appartenant à  $\{1,2,\ldots,N\}$ , confinées dans un domaine  $\Lambda\subset\mathbb{R}^3$ . Notons  $q_i(t)\in\Lambda$ ,  $p_i(t)\in\mathbb{R}^3$  et  $(q,p)(t)\in(\Lambda\times\mathbb{R}^3)^N$  la position, la quantité de mouvement de la particule i, et les coordonnées du système global à l'instant  $t\in\mathbb{R}^+$ .  $(\Lambda\times\mathbb{R}^3)^N=P$  s'appelle l'espace des phases et  $\Lambda^N$  l'espace des configurations.

Le mouvement du système est régi par le système d'équations déterministes de Hamilton:

(1.1) 
$$d(q,p) = (\dot{q},\dot{p})dt, \quad \frac{\partial H}{\partial p} = \dot{q}, \quad \frac{\partial H}{\partial q} = -\dot{p}$$

(coordonnée par coordonnée) où

$$H: \begin{cases} P \times \mathbb{R}^+ & \to \mathbb{R} \\ (q,p,t) & \mapsto H(q,p,t) \end{cases}$$

est dérivable. H s'appelle le hamiltonien. Nous ne nous intéressons qu'au cas:  $\frac{\partial H}{\partial t} = 0$ .

<u>Remarque</u>. On retrouve les équations de la mécanique classique en prenant:

(1.2) 
$$H(q,p) = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + U_{pot}(q)$$

où  $m_i$  est la masse de i,  $\sum\limits_{i=1}^{N}\frac{p_i^2}{2m_i}$  est l'énergie cinétique, et  $U_{pot}(q)$  est l'énergie potentielle. Sous de bonnes conditions de régularité de H et  $\Delta$  et de bonnes conditions aux frontières, l'évolution du système est unique, on peut alors définir le semigroupe  $T_t$ :

$$T_{t} : \begin{cases} B_{b}(P) \rightarrow B_{b}(P) \\ f \mapsto T_{t}f \end{cases} \quad \text{où} \quad T_{t}f(q(0),p(0)) \equiv f[(q,p)(t)] \quad \text{et} \quad T_{t}^{*} \quad \text{qui}$$

$$\text{est la restriction de son adjoint } \tilde{a}J_{s}(P).$$

La proposition suivante donne les invariants de l'évolution.

PROPOSITION 1.3.  $\frac{d}{dt} T_t H = 0$ ,  $\frac{d}{dt} T_t^* \lambda_p = 0$  où  $\lambda_p$  est la mesure de Lebesgue sur P. Ces solutions stationnaires sont uniques aux constantes près.

Idée de la démonstration:

$$\frac{dT_{t}f}{dt}(q,p) = \left(\frac{\partial f}{\partial q}\dot{q} + \frac{\partial f}{\partial p}\dot{p}\right)(q,p)(t)$$

$$= \begin{vmatrix} \frac{\partial f}{\partial q} & \frac{\partial H}{\partial q} \\ \frac{\partial f}{\partial p} & \frac{\partial H}{\partial p} \end{vmatrix} (q,p)(t) = AT_{t}f(q,p)$$

donc

$$f = H \Rightarrow \frac{dT_t f}{dt} = 0.$$

$$A*\mu = -\frac{\partial}{\partial q}(\frac{\partial H}{\partial p} \mu) + \frac{\partial}{\partial p}(\frac{\partial H}{\partial q} \mu) = \frac{\partial H}{\partial q}(\frac{\partial H}{\partial p} - \frac{\partial H}{\partial p}(\frac{\partial H}{\partial q} \mu))$$

donc 
$$\mu = \lambda_p \Rightarrow \frac{d}{dt} T_t^* \mu = 0$$
.

L'unicité provient du fait que A et A\* sont des opérateurs du premier ordre.

DEFINITION 1.4.  $\lambda_p$  s'appelle la mesure de Liouville.

Pour tout E réel appartenant à l'image de H:  $\operatorname{Im}(H)$ , on note  $\operatorname{C}_F$  le sous-ensemble de P défini par:

(1.5) 
$$C_F = \{(q,p) \in P: H(q,p) = E\}$$
.

On définit  $a_{\rm E}$ , probabilité sur  ${\rm C}_{\rm E}$  par

(1.6) 
$$\forall A \in (P), \quad \alpha (A \cap C_E) = E_{\lambda_p}(1_A | H=E)$$

ce qui signifie

$$(1.7) \qquad \forall A \in (P), \quad \forall \phi \in B(\mathbb{R}),$$
 
$$\phi \circ H \in L^{1}(\lambda_{p}) \Rightarrow \int \phi \circ H(q,p) d\lambda_{p}(q,p) = \int \phi(E) \alpha_{E}(A \cap C_{E}) dH \circ \lambda_{p}(E).$$
 
$$Im(H)$$

L'existence et l'unicité de  $\{\alpha_E\}_{E\in Im(H)}$  provient d'un théorème de désintégration.

REMARQUE 1.8. Une consequence de (1.3) est (1.8)  $T_t C_E \subset C_E$ .

Le théorème ergodique nous permet d'écrire que si  $T_t$  est ergodique sur  $C_E$ , ce qui a un sens du fait de (1.8) (c'est-a-dire: si pour tout A element de.  $(C_E)$  tel que pour tout t réel positif  $T_t A = A$  alors  $\alpha_E(A) = 0$  ou  $\alpha_E(A) = 1$  alors pour tout f de  $B_b(C_E)$  et tout  $(q_0, p_0)$  de  $C_E$ :

(1.9) 
$$\lim_{T\to\infty} \frac{1}{T} \int_{0}^{T} T_{f}f(q_{0}, p_{0})dt = \int_{C_{E}}^{T} f(\gamma)d\alpha_{E}(\gamma) .$$
Les échelles de temps sent telles que teute mesure physi

Les échelles de temps sont telles que toute mesure physique est de la forme (1.9) .

1.10. L'HYPOTHESE ERGODIQUE. Bien que dans la plupart des cas nous ne savons pas si  $T_{\mathbf{t}}$  est ergodique, le physicien fait l'hypothèse que le systeme se comporte comme s'il l'était. Cette hypothèse est en accord

avec les resultats expérimentaux.

Du fait de cette hypothèse,  $\alpha_{\text{E}}$  décrit le comportement statistique du système sur  $\mathbf{C}_{\text{E}}$  .

#### 1.b UN CADRE PLUS GENERAL

Ce qui suit dans ce paragraphe est une abstraction obtenue à partir du paragraphe a. On se donne

- (1.11.1) un borélien  $\mathbb{P}$  de  $\mathbb{R}^n$ , (n  $\in \mathbb{N}$ )
- (1.11.2) une mesure positive  $\sigma$  sur (P, (P)), bornée ou non
- (1.11.3) une fonction borélienne  $H: \sqrt{P \rightarrow R}$  $p \mapsto H(p)$

Par analogie avec le paragraphe a, on appelle IP l'espace des phases, σ la mesure de Liouville, H le hamiltonien. A partir des données l.ll, nous construisons le système microcanonique (définition l.l2) et le système canonique (définition l.l3).

DEFINITION 1.12. Le système microcanonique est  $\{(C_E, (C_E), \alpha_E)\}_{E \in Im(H)}$  où  $C_E$  et  $\alpha_E$  sont définis (comme en 1.5 et 1.6) par:

(1.12.1) 
$$E \in Im(H)$$
,  $C_E = \{p \in IP, H(p) = E\}$ 

$$(1.12.2) \quad \alpha_{\mathsf{E}} \in \Pi(\mathsf{C}_{\mathsf{E}}), \quad \forall \mathsf{A} \in \P(\mathsf{P}), \quad \alpha_{\mathsf{E}}(\mathsf{A} \cap \mathsf{C}_{\mathsf{E}}) = \mathsf{E}_{\sigma}(\mathsf{1}_{\mathsf{A}} \mid \mathsf{H} = \mathsf{E}) \text{ (voir 1.7)}.$$

REMARQUE. La donnée de 1.11, définit le système microcanonique de manière unique. C'est une conséquence d'un théorème de désintégration. (Voir par exemple [Bou].

L'hypothèse physique de départ, est que le système microcanonique décrit le comportement statistique du système physique étudie. Dans le cadre de la mécanique hamiltonienne, l'ergodicité permet de 'justifier cet axiome'.

Nous notons  $\sup(\widetilde{H}\circ\sigma)$  pour l'intérieur de l'enveloppe convexe du support de la mesure  $H\circ\sigma$ .

DEFINITION 1.13. Le système canonique est  $\{(P, \mathbb{C}(P), \rho_{\mathbb{C}})\}\ U \in \text{supp}(H \circ \sigma)$  où  $\rho_{\mathbb{C}}$  est l'unique probabilite sur P vérifiant les conditions 1.13.1, 1.13.2 et 1.13.3 suivantes.  $\rho_{\mathbb{C}}$  s'appelle la mesure de Gibbs d'énergie  $\mathbb{C}$ .

REMARQUE. L'unicité de  $\rho_{\text{U}}$  énoncée dans cette définition est démontrée au théorème 1.14.

La condition l'impose au système d'avoir une énergie moyenne U donnée (1.13.1)  $\rho_U \in \Pi_U^1 = \{ \nu \in \Pi(IP) : \int_P H(p) d\nu(p) = U \}$  où  $U \in Supp(H \circ \sigma)$ .

La condition 2 est la relation de cohérence entre les systèmes microcanonique et canonique.

(1.13.2) 
$$\rho_U \in \Pi^2 = \{ \nu \in \Pi(IP) : \forall A \in \mathcal{N}(IP), \nu(A) = \int_{Im(H)} \alpha_E(A \cap C_E) dH \circ \nu(E) \}$$

La condition 3 est le second principe de la thermodynamique.

Notons  $I(\nu,\mu)$  l'information de Kullback de  $\nu$ , probabilité sur  $(F,\psi(F))$ , par rapport à  $\mu$  mesuré sur  $(F,\psi(F))$ , défini par:

$$\forall \nu \in \Pi(F), \ I(\nu,\mu) = \begin{cases} \int\limits_{F} \ln(\frac{d\nu}{d\mu}) d\nu \ (\text{\'eventuellement } +\infty), \ \text{si } \nu << \mu \end{cases}$$

Definissons la fonction  $s: \widetilde{supp}(H \circ \sigma) \times \Pi(P) \to \overline{\mathbb{R}}$  par:

$$\forall U \in \widehat{supp(H \circ \sigma)}, \quad s(U,.): \begin{cases} \prod_{U} \bigcap \Pi^{2} \to \overline{\mathbb{R}} \\ v \mapsto -I(v,\sigma) \end{cases}$$

Nous verrons plus loin que s a un statut d'entropie. La condition 3 est  $(1.13.3) \quad s(U,\rho_U) = \sup_{v \in \Pi_U} s(U,v).$ 

THEOREME 1.14. Il existe une unique probabilité  $\rho_U$  sur (P,  $S_{\bullet}(P)$ ) vérifiant (1.13.1), (1.13.2) et (1.13.3). Elle est donnée par:

(1.14.1) 
$$\frac{d\rho}{d\sigma}(p) = \frac{\exp(\Theta H(p))}{2(\Theta)}$$
,  $p \in P$ , où

(1.14.2) 
$$\widetilde{Z}(\theta) = \int_{\Omega} \exp(\theta H(p)) d\sigma(p)$$

pour  $\theta \in \Theta = \{y \in \mathbb{R}, \ \widetilde{Z}(y) < +\infty\}$  et  $\theta$  est l'unique solution en  $\eta$  de  $\frac{d}{d\eta} \ln \widetilde{Z}(\eta) = U \ (1.14.3).$ 

La démonstration de ce théorème utilise les lemmes 1.15, 1.17 et 1.18 suivants.

LEMME 1.15.  $\forall \nu \in \Pi^2$ ,  $\nu \ll \sigma \Rightarrow \frac{d\nu}{d\sigma}(p) = \frac{dH \circ \nu}{dH \circ \sigma}(H(p))$   $\sigma$ -presque partout. En particulier,  $I(\nu, \sigma) = I(H \circ \nu, H \circ \sigma)$ ,  $\forall \nu \in \Pi^2$ .

DEMONSTRATION. a)  $\forall A \in \mathcal{C}(\mathbb{R})$ ,  $H \circ \sigma(A) = 0 \Rightarrow \sigma(H^{-1}(A)) = 0 \Rightarrow \sigma(H^{-1}(A)) = 0$ 

b) 
$$\forall \nu \in \Pi^2$$
 tel que  $\nu \ll \sigma$ ,  $\forall f \in B_b(P)$ :

A partir de maintenant, on note  $e = H \circ \sigma$ .

REMARQUE 1.16. Compte tenu du lemme 1.15 et de la condition (1.13.2), la recherche de  $\rho_U$  est équivalente à celle de  $e_U$ , probabilité sur  ${\rm Im}({\rm H})$ , telle que:

$$(1.16.1) \quad I(e_{U},e) = \inf_{\substack{m \in \widetilde{\Pi}_{U}^{1} \\ m \in -I(m,e)}} I(m,e) \quad \text{où } \widetilde{\Pi}_{U}^{1} = \{m \in I(Im(H)): \int_{Im(H)} Edm(E) = U\}.$$

$$\text{Nous notons } \widetilde{s}(U,.): \begin{cases} \widetilde{\Pi}_{U} \to R \\ m \mapsto -I(m,e) \end{cases}.$$

LEMME 1.17. On pose (1.17.1)  $h(U) = \sup_{\theta \in \Theta} (U\theta - \ln \tilde{Z}(\theta))$ . Si  $U \in \sup_{\theta \in \Theta} (U\theta - \ln \tilde{Z}(\theta))$  supp(e) alors  $\sup_{\theta \in \tilde{\Pi}_U} \tilde{S}(U,m) = -h(U)$ . Si  $e_U$  est une probabilité  $\sup_{\theta \in \tilde{\Pi}_U} Im(H)$  telle que  $\frac{de_U}{de}(E) = \frac{\exp(\theta_U E)}{Z(\theta_U)} \quad \text{or p.p. ou } \theta_U \text{ est}$  l'unique solution de  $\frac{d}{d\eta} \ln \tilde{Z}(\eta) \big|_{\eta = \theta_H} = U \ (1.17.2)$  alors

(1.17.3) 
$$\mathfrak{T}(U,e_U) = \sup_{m \in \Pi_U} \mathfrak{T}(U,m) = -h(U)$$
 et  $e_U \in \widetilde{\Pi}_U$ .

DEMONSTRATION. 1° Montrons que  $\sup_{m \in \Pi_{U}} \tilde{s}(U,m) \leq -h(U)$ . On note

 $\tau_{U}(e)(dE) \equiv e(U+dE)$  et  $\tau_{U}(m)(dE) \equiv m(U+dE)$ .

$$\forall \theta \in \Theta, \quad U\theta - \ln \tilde{Z}(\theta) = U\theta - \ln \exp(\theta E) de(E) = -\ln \exp(\theta E) d\tau_{U}(e)(E)$$

$$\leq -\ln \exp[\theta E - \ln(\frac{d\tau_{U}(m)}{d\tau_{U}(e)}(E))] d\tau_{U}(m)(E)$$

(vaut éventuellement + $\infty$ )  $\leq \int [\ln(\frac{d\tau_U(m)}{d\tau_U(e)}(E)) - \theta E] d\tau_U(m)(E) \qquad \text{(Jensen)}$  = I(m,e)

(car  $I(\tau_U(m), \tau_U(e)) = I(m,e)$  et  $fEd\tau_U(m)(E) = 0$ ).

2° Montrons que 
$$\sup_{\mathbf{m} \in \widetilde{\Pi}_{\mathbf{U}}} \widetilde{\mathbf{s}}(\mathbf{U},\mathbf{m}) = \widetilde{\mathbf{s}}(\mathbf{U},\mathbf{e}_{\mathbf{U}}) = -h(\mathbf{U})$$
 et  $\mathbf{e}_{\mathbf{U}} \in \widetilde{\Pi}_{\mathbf{U}}$  (1.17.3).

Il suffit de vérifier que  $I(e_{U},e) = h(U)$  et  $e_{U} \in \widehat{\Pi}_{U}$ .  $\theta \to ln\widetilde{Z}(\theta)$  est strictement convexe sur  $\Theta$  car  $(ln\widetilde{Z})$ " $(\theta) = Var(e_{U}) > 0$ .

D'autre part,  $\theta \to U$  -ln $\widetilde{Z}(\theta)$  atteint son sup fini, si U appartient à  $\widehat{\sup_{\varphi}(e)}$  [Aze] en  $\theta_U$  et  $\frac{d}{d\eta}$  ln $\widetilde{Z}(\eta)$   $\Big|_{\eta=\theta_U}$  = U.

 $\theta_U$  est l'unique solution de cette équation car  $(\ln \hat{Z})'$  est strictement croissante. Donc:  $h(U) = U\theta_U - \ln \hat{Z}(\theta_U)$ .

De plus, 
$$\int E \, de_U(E) = U \, car \, \phi(t) = \int exp(tE) de_U(E) = \frac{\widetilde{Z}(t+\theta_U)}{\overline{Z}(\theta_U)}$$

et  $\varphi'(0) = (\ln \hat{Z})'(\theta_U) = U$ . Finalement,

$$I(e_{U},e) = \int \ln(\frac{\exp(\theta_{U}E)}{Z(\theta_{U})}) de_{U}(E) = U\theta_{U} - \ln\tilde{Z}(\theta_{U}) = h(U).$$

LEMME 1.18.  $\tilde{s}(U,.)$  est concave.

DEMONSTRATION. 1°  $\widetilde{\Pi}_{IJ}$  est un ensemble convexe.

2° Si m et  $\mu$  sont des probabilités, m  $\mapsto$  I(m, $\mu$ ) est convexe [Bre].

3° Si m est absolument continu par rapport à e, alors:

$$I(m,e) = \int \ln(\frac{dm}{de}) dm = \int \ln(\frac{dm}{d\mu} \cdot \frac{d\mu}{de}) dm = I(m,\mu) + \int \ln(\frac{d\mu}{de}) dm$$

où  $\mu$  est choisi tel que:  $\forall m \in \Pi(Im(H)), m \ll e \Rightarrow m \ll \mu \ll e,$  ce qui est possible en prenant  $\mu$  vérifiant:  $\mu \ll e$  et  $\frac{d\mu}{de} > 0$ , epresque partout. Or,  $m \mapsto \int \ln(\frac{d\mu}{de}) dm$  est linéaire (à valeurs  $\overline{R}$ ) et  $\{m \in \Pi(Im(H)): m \ll e\}$  est convexe, donc:  $m \mapsto I(m,e)$  est convexe.  $\square$ 

DEMONSTRATION DU THEOREME 1.14. Compte tenu du lemme 1.17 et de la remarque 1.16, il reste à prouver que  $e_U$  est l'unique solution de (1.17.3).

D'après le lemme 1.18, l'ensemble des solutions de (1.17.3) est convexe. Supposons qu'il contienne deux éléments distincts  $e_1$  et  $e_2$  alors  $\frac{1}{2}(e_1+e_2)$  est aussi solution et:

$$I(\frac{1}{2}(e_1+e_2),e) = \int \phi[\frac{1}{2}\frac{de_1}{de}(E) + \frac{1}{2}\frac{de_2}{de}(E)]de(E) \qquad (\phi(x)=x\ln x)$$

$$< \frac{1}{2}(I(e_1,e)+I(e_2,e)) = \inf_{m \in \Pi} I(m,e) \quad (\phi \text{ est strictement convexe})$$

Il apparait une contradiction, ce qui prouve l'unicité.

Finalement, la propriéte (1.13.2) permet de construire  $\rho_{\rm U}$  à partir de  ${\rm e}_{\rm H}.$   $\Box$ 

COROLLAIRE 1.19. (de la démonstration) s(U,.) est concave.

DEMONSTRATION. C'est une conséquence des lemmes 1.15, 1.18 et de la convexité de  $\Pi_1^U \cap \Pi_2$  .

#### 1.c LA DEFINITION DES FONCTIONS THERMODYNAMIQUES ET QUELQUES REMARQUES

On note  $\langle f \rangle_{II} = \int_{IP} f(p) d\rho_{II}(p)$ .

DEFINITIONS 1.20. On pose  $\theta = -\beta = -\frac{1}{kT}$  où k > 0 est la constante de Boltzmann.

Température:  $T = -\frac{1}{k\theta}$ 

Energie interne:  $U(\beta) = \langle H \rangle_U$  (1.13.1) (voir 1.32)

Entropie:  $S(U) = -kh(U) = -kI(\rho_{U}, \sigma) = -k<1n \frac{d\rho_{U}}{d\sigma}$ 

Fonction de partition:  $\beta \rightarrow Z(\beta) = Z(-\beta)$ 

Energie libre:  $F(\beta) = -kT \ln Z(\beta) = -\frac{\ln Z(\beta)}{\beta}$ 

REMARQUE 1.21. Sur la définition de T. Elle permet a priori de définir des temperatures dans  ${}_{1}$  $\bar{R}$ . Les systèmes physiques sont constitués d'un grand nombre de particules (N=+ $\infty$ ). N=+ $\infty$  ne permet de donner un sens qu'aux températures positives si H est de la forme (1.2) et  $U_{\rm pot}$  est borné inférieurement.

Les températures négatives apparaissent, par exemple, dans les systèmes antiferromagnétiques (où l'entropie augmente lorsque l'energie interne diminue, voir (1.28.2)).

REMARQUE 1.22. Sur l'entropie. Parmi les informations, entre deux probabilités P et Q, de la forme  $(\phi;P,Q)=E_p(\phi(\frac{dP}{dQ}))$  où  $\phi$  est continue,  $\phi(1)=0$  et est telle que  $\phi(1)=0$  Cette propriété s'appelle  $\phi(1)=0$  et est telle que  $\phi(1)=0$  est la seule fonction telle que  $\phi(1)=0$  et est telle que  $\phi(1)=0$  et est telle que  $\phi(1)=0$  est la seule fonction telle que  $\phi(1)=0$  et est telle que  $\phi(1)=0$  est telle que  $\phi(1)=$ 

REMARQUE 1.23. h est convexe et  $-h(U) = \sup_{v \in \Pi_U^1 \cap \Pi^2} s(U,v) = \widetilde{s}(U,e_U^5)$  avec s(U,.) concave, se traduit par:

 $U \rightarrow S(U)$  est une fonction concave

et

$$s(U,.): \begin{cases} \prod_{U}^{1} \cap \prod^{2} \to I\overline{R} \\ v \mapsto s(U,v) \end{cases} \text{ est une fonction concave qui atteint}$$

son maximum S(U) à l'équilibre  $\rho_{\text{U}}$  .

Notons L(f) la transformée de Legendre de la fonction f de domaine Df

$$L(f)(x) = \sup_{y \in Df} (yx - f(y))$$

(1.17.1) s'ecrit

$$(1.24.1) h(U) = L(1n\tilde{Z})(U) = \theta_{\parallel}U - 1n\tilde{Z}(\theta_{\parallel})$$

avec

$$(1.25.1) (1n\tilde{Z})'(\theta_{U}) = U$$
.

Comme  $\ln \widetilde{Z}$  est convexe nous obtenons par dualité de Legendre

$$(1.26.1) \quad \ln \widetilde{Z}(\theta) = L(h)(\theta),$$

$$(1.27.1)$$
  $\ln \widetilde{Z}(\theta_{U}) = U\theta_{U} - h(U)$ 

(1.28.1) 
$$h'(U) = \theta_U$$
.

(1.25.1) et (1.28.1) sont les relations de dualité entre l'énergie

et la température et donnent

(1.25.2) 
$$U = -\frac{d}{d\beta} \ln Z(\beta)$$
,

$$(1.28.2)$$
  $\frac{\partial S}{\partial H} = \frac{1}{T}$ .

(1.26.1) et (1.27.1) donnent:

$$(1.26.2) - \frac{F}{T} = L(-S)(-\frac{1}{T})$$
 et

$$(1.27.2)$$
 F = U-TS

ce qui prouve que la définition de F est cohérente avec celle de la thermodynamique classique.

On vérifie aisement que

(1.29) 
$$F(T) = -L(S \rightarrow U(S))(T)$$
 (d'apres 1.26.2).

REMARQUE. Pour T  $\neq \pm \infty$ , (1.28.2) et le théorème des fonctions implicites nous permettent de donner un sens à (1.29).



REMARQUE 1.30. La convexité de lnZ et la relation (1.25.2) prouve qu'il y a bijection entre U et  $\beta$ . On peut donc écrire  $\rho_{U(\beta)} = \rho^{\beta}$ , (\*) ce qui permet de donner une définition plus claire de l'énergie interne:

(1.31) 
$$U(\beta) = \langle H, \rho^{\beta} \rangle = \langle H \rangle^{\beta}$$
.

Avec ces nouvelles notations:

(1.32) 
$$\rho_{U(\beta)} = \rho^{\beta(U)}$$
 et  $\frac{d\rho^{\beta}}{d\sigma}(p) = \frac{\exp(-\beta H(p))}{Z(\beta)}$   $\sigma$ presque partout.

REMARQUE 1.33. Sur le nombre de particules N. Les résultats énoncés précédemment n'ont de l'intérêt que si  $\Theta \neq \phi$ . Or un hamiltonien H ayant un sens physique est une variable extensive, donc  $|H_N|$  tend vers  $+_{\infty}$  lorsque N tend vers  $+_{\infty}$ . La fonction de partition  $Z_N$  n'est définie que si N est fini, soit n fini où  $|P_N| \subset |R^n|$ . Le problème N  $\rightarrow +_{\infty}$  nécessite des renormalisations ainsi que la définition d'une limite thermodynamique qui dépend de la forme des  $|P_N|$  et des  $|H_N|$ .

REMARQUE 1.34. Sur la pression et la multiplicité des phases. On indice par N les variables qui correspondent à un système de N particules. Supposons que  $H_N$  dépende d'une variable extérieure P (la pression pour un gaz, le champ électrique extérieur pour un système électromagnetique), et que  $P \mapsto H_N(P)$  soit dérivable.

 $V_N$  , défini par  $V_N = -\frac{\partial U}{\partial P}N$ , est le volume ou la magnétisation, alors:

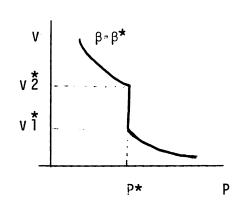
$$V_N(\beta,P) = \langle -\frac{\partial H_N}{\partial P} \rangle^{\beta} = \frac{1}{\beta} \frac{\partial}{\partial P} \ln Z_N(\beta,P) = -\frac{\partial}{\partial P} F_N(\beta,P).$$

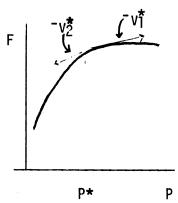
Pour étudier le système  $N = +\infty$ , on regarde entre autres les limites:

$$U^{\beta} = \lim_{N \to \infty} \langle \frac{H_N}{N} \rangle^{\beta} \quad \text{et} \quad \lim_{N \to \infty} \frac{1}{N} F_N(\beta, P) .$$

(\*)  $\beta$  est un indice

Supposons que ces limites existent, et que pour tout N et tout  $\beta$ ,  $P\mapsto F_N(\beta,P)$  soit concave (c'est souvent le cas). Alors  $P\mapsto F(\beta,P)$  sera concave, mais pourra ne plus être dérivable en certains points. (Voir le Th. 5.3.). Nous illustrons ce phénomène par les courbes isothermes  $\beta = \beta^*$  correspondant à un gaz inffni.





On dit alors qu'il y a multiplicité de phases en  $(\beta^*,P^*)$  car en ce point (U,V) n'est pas entièrement defini. En résume la multiplicité de phases n'a lieu que si une variable extérieure autre que  $\beta$  intervient et si  $N = \infty$ , puisque lorsque  $N < \infty$ ,  $F_N$  est dérivable.

1.35 LA MESURE DE GIBBS POUR UN SYSTEME DE N SPINS. La mesure de Liouville est de la forme  $\sigma_N(dp) = \underset{i=1}{\otimes} \alpha_i(dp_i)$  (1.35.1) où  $\alpha_i$  est une probabilité (sur R, R<sup>2</sup>, R<sup>3</sup>, S<sup>1</sup>, S<sup>2</sup>, etc.).

Le hamiltonien H est de la forme  $H_N(p) = \sum\limits_{i=1}^{N} U_i(p)$  (1.35.2) où  $U_i(p)$  est le potentiel d'interaction du spin i avec les N spins 1,...,N.

On remarque que  $\rho_N^0=\sigma_N$  (en  $\rho=0$ ), c'est-à-dire dans le cas des systèmes ferromagnétiques que  $\sigma_N$  est l'état d'équilibre lorsque  $T=+^\infty$ . L'entropie  $S_N(U)=s(U,\rho_N^{\beta(U)})$  mesure la "proximité" de l'équilibre  $\rho_N^{\beta(U)}$  et de  $\sigma_N=\rho_N^0$ .  $\rho_N^0$  peut être interprété comme l'état du système le "plus désordonne autorise par la nature" (en fait par le modèle). 1.32 s'écrit

(1.36) 
$$\rho_{N}^{\beta} = Z_{N}^{-1}(\beta) \exp(-\beta \sum_{i=1}^{N} U_{i}(.)) \bigotimes_{i=1}^{N} \alpha_{i}.$$

# 2. PRESENTATION D'UN SYSTEME DE CURTE-WEISS DYNAMIQUE

#### 2.a DESCRIPTION D'UN SYSTEME DE N SPINS

i appartenant à {1,...,N} s'appelle un site. En chacun de ces sites "vit" un processus à valeurs réelles. Soit:  $x_i^N(\omega,t) \in R$ , (i  $\in$  {1,...,N}, t  $\in$  R<sup>+</sup>,  $\omega \in \Omega$ ) la réalisation de ce processus au site i et à l'instant t pour l'évenement  $\omega$ .  $x_i^N(t)$  s'appelle le spin en i, à l'instant t. On appelle  $x^N$  le processus à valeurs  $IR^N$  défini par:

$$x^{N} : \begin{cases} \mathbb{Q} \times \mathbb{R}^{+} \to \mathbb{R}^{N} \\ (\omega, t) \mapsto (x_{1}^{N}(\omega, t), \dots, x_{N}^{N}(\omega, t)). \end{cases}$$

#### 2.b LES EQUILIBRES

On appelle *équilibre* toute probabilité invariante  $\rho_N \in \Pi(\mathbb{R}^N)$ . Pour que le modèle soit physiquement acceptable il faut que  $\rho_N$  soit une mesure de Gibbs de la forme (1.38). Avec les notations du paragraphe 1: (2.1)  $\rho_N = \mathbb{R}^N$ .

On dira qu'un système de N spins et un *système de Curie-Weiss* si en outre, le hamiltonien H<sub>N</sub> est de la forme:

(2.2) 
$$H_{N}: \begin{cases} \mathbb{R}^{N} & \to & \mathbb{R} \\ (x_{1}, \dots, x_{n}) & \mapsto -h_{\sum_{i=1}^{N}} x_{i} - \frac{J}{2N} (\sum_{i=1}^{N} x_{i})^{2} & (h \in \mathbb{R}, J \in ]0, +\infty[) \end{cases}$$

h est un champ électrique extérieur,  $-\frac{J}{2N}(\sum\limits_{j=1}^{N}x_{j})^{2}=-\frac{J}{2}(\frac{1}{N}\sum\limits_{j=1}^{N}x_{j})\sum\limits_{j=1}^{N}x_{j}$  est l'énergie d:interaction,  $\frac{J}{2}\frac{1}{N}\sum\limits_{j=1}^{N}x_{j}$  a la dimension d'un champ electrique, c'est le champ moyen.

(\*) On demande à un équilibre de réaliser le maximum de l'entropie.

Compte tenu de (1.38) et du fait que J>0 et  $\beta>0$ , si h=0 on voit que  $d\rho_N^\beta/d\sigma_N$  est maximal lorsque les spins sont de mêmes signes. C'est un systeme ferromagnétique.

On impose à la mesure de Liouville d'étre de la forme (1.35), avec en outre: pour tout i de  $\{1,\ldots,N\}$ ,  $\alpha_i=\alpha$ , soit

(2.3) 
$$\sigma_{N}(dx) = \underset{i=1}{\overset{N}{\otimes}} \alpha(dx_{i}), dx = \underset{i=1}{\overset{N}{\prod}} dx_{i} \in (\mathbb{R}^{N}),$$
$$dx_{i} \in (\mathbb{R}^{N}), \forall i \in \{1, ..., N\}.$$

De manière à pouvoir effectuer tous les calculs par la suite,  $\alpha$  doit vérifier la condition

$$(2.4) \qquad \forall N \in \mathbb{N}^{*}, \quad \forall \beta > 0, \quad \forall h \in \mathbb{R}, \quad \forall J > 0,$$
 
$$Z_{N}(\beta,h) = \int_{\mathbb{R}^{N}} \exp\left[\beta\left(h \sum_{i=1}^{N} x_{i} + \frac{J}{2N}(\sum_{i=1}^{N} x_{i})^{2}\right] \underset{i=1}{\overset{N}{\otimes}} \alpha(dx_{i}) < +\infty$$

qui est équivalente à

(2.5) 
$$\forall y \in [0,+\infty[, \quad \int_{R} \exp(yx^2)\alpha(dx) < +\infty.$$

Finalement

(2.6) 
$$\rho_{N}^{\beta,h}(dx) = Z_{N}^{-1}(\beta,h) \exp[\beta(h\sum_{i=1}^{N}x_{i} + \frac{J}{2N}(\sum_{i=1}^{N}x_{i})^{2})] \stackrel{N}{\underset{i=1}{\otimes}} \alpha(dx_{i})$$

où  $\alpha$  est une probabilité sur  $\mathbb{R}$  qui vérifie (2.5).

#### 2.c LA DYNAMIQUE

Etant donnée une probabilité  $_{fN}$ , il y a à priori plusieurs dynamiques qui l'admettent comme équilibre. Nous choisissons une dynamique du type diffusion de la forme: (voir [Daw], [DZw])

$$(2.7) \qquad dx_i^N(t) = (v(x_i^N(t)) + \theta \overline{x}^N(t) + h) dt + \sigma dw_i(t), \ i \in \{1, \dots, N\}$$
 où  $\overline{x}^N = \frac{1}{N} \sum_{j=1}^N x_j^N$ ,  $\sigma$  est une constante strictement positive et  $w = (w_1, \dots, w_N)$  est un brownien de  $IR^N$  à coordonnées indépendantes. On note  $A_N: C_K^2(IR^N) \to B_b(IR^N)$ , l'opérateur d'évolution (backward) défini par

(2.8) 
$$\forall f \in C_K^2(\mathbb{R}^N), \quad A_N f(x) = \sum_{i=1}^N (v(x_i) + \theta \bar{x} + h) \frac{\partial f}{\partial x_i}(x) + \frac{\sigma^2}{2} \sum_{i=1}^N \frac{\partial^2 f}{\partial x_i^2}(x)$$

 $\sigma$  sera choisi tel que le problème des martingales associé à  $A_N$  ait une solution unique. Soit  $\{P_i\}_{X \times \mathbb{R}^N}$  la solution du problème des martingales

$$(2.9) \qquad \forall f \in C_K^2(I\!R^N), \ \forall x \in I\!R^N, \quad E_x f(\ X(t)) = f(x) + E_x \int\limits_0^t A_N f(\ X(s)) ds \ .$$
 On note  $P_{N,x}^{t} = X(t) \circ P_{N,x} \quad p_t = \int\limits_R^t P_{N,x}^t P_0(dx) \quad \text{pour} \quad p_0 \in \Pi(I\!R^N) \quad (\text{intégrale faible}) \ \text{et } A_N^* \ 1' \text{adjoint formel de } A_N \ .$ 

$$\forall f \in \mathcal{C}^{\infty}_{K}(\mathbb{R}), \quad \langle f, p_{t} \rangle = \langle f, p_{0} \rangle + \langle f, \int_{0}^{t} A_{N}^{\star} p_{s} \mathrm{d}s \rangle \qquad \text{s'écrit:}$$

$$(2.10.1) \quad \frac{\partial P_t}{\partial t} = A_N^* P_t \quad (\text{au sens des distributions}) \quad \text{où}$$

$$(2.10.2) \quad \forall \mu \in \Pi(R^N), \quad A_N^* \mu(dx) = \sum_{i=1}^N -\frac{\partial}{\partial x_i} \left[ (v(x_i) + \theta \bar{x} + h) \mu(dx) \right]$$

$$+ \frac{\sigma^2}{2} \sum_{i=1}^N \frac{\partial^2}{\partial x_i^2} \mu(dx) .$$

(2.11) 
$$\rho$$
 est une probabilité invariante  $\Leftrightarrow \forall t \in \mathbb{R}^+$ ,  $p_t = p_0 = \rho$  (2.10) et (2.11) donnent:

(2.12) 
$$\rho$$
 est une probabilité invariante  $\Leftrightarrow \begin{cases} \rho \text{ est une probabilité} \\ A_{N}^{\star} \rho = 0 \text{ (au sens des distributions)} \end{cases}$ 

En effectuant un calcul formel on obtient:

$$(2.12) \Leftrightarrow \frac{d\rho}{dx}(x) = C_N^{-1} \exp\left[\frac{2}{\sigma^2}\left(\frac{\theta}{2N}\left(\sum_{i=1}^N x_i\right)^2 + h\sum_{i=1}^N x_i\right)\right] \prod_{i=1}^N \exp\left(\frac{2}{\sigma^2}V(x_i)\right)$$

où  $V(x) = \int_0^x v(y) dy$ ,  $C_N$ : constante de normalisation. Pour identifier  $\rho$  et  $\rho_N$  (2.6), on pose:

(2.13.1) 
$$\beta = \frac{2}{2}$$
,  $J = \theta$ .

De manière à ce que la mesure de Liouville  $\alpha^{ ext{NN}}$  soit indépendante de  $\beta$  on impose à v d'être de la forme:

(2.13.2) 
$$v(x) = \frac{\partial^2}{\partial x^2} \tilde{v}(x)$$
, donc:

(2.13.3) 
$$\frac{d\alpha}{dx}(x) = z^{-1} \exp \int_0^x \tilde{v}(y) dy > 0$$
 où

$$z = \int_{-\infty}^{+\infty} \exp(\int_{0}^{x} \widetilde{v}(y) dy) dx = \int_{-\infty}^{+\infty} \exp(\frac{2}{\sqrt{2}} V(x)) dx$$
.

La condition 2.5 est alors équivalente à

(2.13.4) 
$$\forall y \in [0,+\infty[, \int_{-\infty}^{+\infty} \exp(yx^2 + \int_{0}^{x} \widetilde{v}(u) du) dx < +\infty]$$

(ce qui implique que z est fini).

Par la suite nous nous intéressons donc à l'équation différentielle stochastique dans  $\mathbb{R}^N$  (e.d.s. dans  $\mathbb{R}^N$ )

(2.14) 
$$dx_{i}^{N}(t) = (\frac{\sigma^{2}}{2} \tilde{v}(x_{i}^{N}(t)) + \theta \tilde{x}^{N}(t) + h) dt + \sigma dw_{i}(t), \quad i \in \{1, ..., N\}$$

où  $w^N = (w_1, ..., w_N)$  est un brownien à coordonnées indépendantes de  $\mathbb{R}^N$ .

### EXISTENCE ET UNICITE D'UNE SOLUTION DE 2.14:

#### Théorème 2.15

Si b:  $\mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$  est mesurable et localement borné

Si a:  $\mathbb{R}^{N} \to \{\text{matrices N x N}\}\$ est continu et vérifié:

$$\forall x \in \mathbb{R}^N$$
, inf  $\langle a(x)y, y \rangle > o$   
 $y \in \mathbb{R}^N$ 

et s'il existe une constante K telle que:

$$\forall x \in \mathbb{R}^{N}, |||a(x)||| \ge K (1+||x||^{2})$$
 et

Alors le problème des martingales dans C(  $\mathbb{R}^+$ ,  $\mathbb{R}^N$ ) associé au générateur  $G_N$ :  $\forall f \in C_K^2(\mathbb{R}^N)$ ,  $\forall x \in \mathbb{R}^N$ ,  $G_N^f(x)$ 

$$G_{N}f(x) = \sum_{i=1}^{N} b_{i}(x) \frac{\partial f}{\partial x_{i}}(x) + \frac{1}{2} \sum_{i,j=1}^{N} a_{ij}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)$$

admet une solution unique

démonstration: Voir [STV], Thm 10.2.2.

Le théorème 2.15 est un théorème d'existence et d'unicité des solutions faibles de l'e.d.s 2.14. Le théorème 2.16 nous donne

un résultat d'existence et d'unicité des solutions fortes de 2.14.

#### Théorème 2.16

Si v est localement lipschitzieme et s'il existe deux constantes  $K,\ r\,\geq\,0\ telles\ que\colon\ \forall\ x,z\ ,$ 

$$\vec{v}(x) - \vec{v}(z) \le K(x-z), \quad x\vec{v}(x) \le K(1+|x|^{1})$$

alors 2.45 admet une unique solution trajectionelle.

démonstration: Voir la proposition 3.1 du chapitre 8.

2.17 RECAPITULATION. Nous étudions  $(x^N)_{N\geq 1}$  la suite d'équations différentielles stochastiques,  $x^N\in C(\mathbb{R}^+,\mathbb{R}^N)$ .

(2.17.1) 
$$dx_i^N(t) = (v(x_i^N(t)) + \theta \overline{x}^N(t))dt + \sigma dw_i(t), i=1,...,N, \theta>0, \sigma>0,$$

où 
$$v^N = (w_1^N, \dots, w_N^N)$$
 est un brownien à coordonnées indépendantes et  $\forall x \in \mathbb{R}$ ,  $v(x) = \frac{\sigma^2}{2} \widetilde{v}(x) + h$ ,  $h \in \mathbb{R}$ ;  $\overline{x}^N = \frac{1}{N} \sum_{i=1}^N x_i^N$ .

De manière à pouvoir appliquer le théorème 2.16, nous imposons a la fonction  $\tilde{\mathbf{v}}$ :

$$(2.17.2) \quad \forall x \in \mathbb{R}, \quad \widetilde{v}(x) = x.\widetilde{v}_{1}(x) + \widetilde{v}(0) \quad \text{avec} \quad \sup_{x \notin \mathbb{R}} \widetilde{v}_{1}(x) < +\infty$$

de plus:

(2.17.3) 
$$\forall y \in \mathbb{R}, \int_{\mathbb{R}} \exp(yx^2 + \int_0^x \widetilde{v}(u)du)dx < +\infty$$
 (condition 2.5).

REMARQUE. Au chapitre 8, nous étudions la loi des grands nombres par un Famille d'e.d.s plus générale que 2.17.1, à savoir:

$$dx_{i}^{N}(t) = [v(x_{i}^{N}(t)) + \frac{1}{N} \sum_{i=1}^{N} f(x_{i}^{N}(t), x_{j}^{N}(t))]dt + \frac{1}{N} \sum_{i=1}^{N} \sigma(x_{i}^{N}(t), x_{j}^{N}(t))dw_{j}(t)$$

où v, f et  $\sigma$  vérifient les hypothéses (H) du théorème 2.2 du chapitre 8.

# 3. QUELQUES RESULTATS D'ECHANGEABILITE

 $ho_N$  donné par (2.6), de même que la loi du système (2.14) si sa condition initiale est échangeable, sont des lois de suites finies échangeables (à valeurs respectivement dans  $\mathbb{R}^N$  et  $(C(\mathbb{R}^+,\mathbb{R}))^N$ ). L'échangeabilité est une propriete essentielle du système de Curie-Weiss, à l'équilibre ou dynamique.

Les résultats que nous enonçons dans ce paragraphe, se trouvent pour la plupart dans [Ald]. Nous reppelons la démonstration des résultats importants pour la suite de l'exposé.

Les propositions 3.5 et 3.8 formalisent l'idée intuitive que la loi d'un échantillon échangeable (fini ou infini) est entièrement déterminée par celle de sa probabilité empirique.

Le lemme 3.9 est fondamental pour obtenir des conditions necessaires et suffisantes de tension de suites d'échantillons echangeables. Les lemmes 3.11 et 3.12 ainsi que les corollaires 3.13 et 3.14 n'apparaissent pas explicitement dans [Ald]. La proposition 3.15 et la seconde partie du Théorème 3.18 sont dûes à Kallenberg [Ka1]. Le théorème 3.18 est fondamental dans notre exposé car il décrit la limite thermodynamique.

DEFINITION 3.1. Une suite finie  $(Z_1, \ldots, Z_N)$  de variables aléatoires est dite échangeable (ou N-échangeable pour indiquer le nombre de variables aléatoires), si:

 $(Z_1,\ldots,Z_N) \stackrel{\mathcal{L}}{=} (Z_{\Pi(1)},\ldots,Z_{\Pi(N)})$ , pour toute permutation  $\Pi$  de  $\{1,\ldots,N\}$ . Une suite infinie  $(Z_1,Z_2,\ldots)$  est dite *Echangeable* si

 $(Z_1, Z_2, \dots) \stackrel{\mathcal{L}}{=} (Z_{\Pi(1)}, Z_{\Pi(2)}, \dots)$ , pour toute permutation finie  $\Pi$  de  $\{1, 2, \dots\}$  c'est-a-dire toute permutation  $\Pi$  telle que  $\# \{i, \Pi(i) \neq i\} < +\infty$ .

#### 3.a LES SUITES INFINIES ECHANGEABLES

Le théorème fondamental concernant les suites infinies échangeables est le théorème de De Finetti, qui dit que toute suite infinie de variables aléatoires réelles est un "mélange" de variables aléatoires indépendantes identiquement distribuées (i.i.d.). La réciproque est évidente. On étend sans difficulté ce théorème lorsque les variables aléatoires sont à valeurs dans un espace de Borel:S. Avant de définir les mélanges d'i.i.d., nous avons besoin de la notion de probabilité aléatoire.

DEFINITION 3.2.  $a:(\Omega, \Im(\Omega)) \to (\Pi(S), \Im(\Pi(S)))$  est une *probabilité* aléatoire si elle est  $\Omega(\Pi(S))$ -mesurable, ou  $\Omega(\Pi(S))$  est la plus petite tribu rendant toutes les applications

$$\begin{cases} \Pi(S) \to \mathbb{R}, & A \in \mathbb{C}(S) \text{ mesurables.} \\ \theta \mapsto \theta(A) \end{cases}$$

Soit  $\alpha$  une probabilité aleatoire, il est possible de construire  $(Y_i)_{i\geq 1}$  tel que conditionnellement à  $\alpha=\theta$  ( $\theta$  probabilite génerique),  $(Y_i)_{i\geq 1}$  est i.i.d.  $(\theta)$ .

Lorsque S = [R]. On note  $F(\theta,t) = \theta(]-\infty,t]$  et  $F^{-1}(\theta,x) = \inf\{t,F(\theta,t)\geq x\}$ . Si  $\xi$  est uniforme sur [0,1] (U(0,1)) alors  $F^{-1}(\theta,\xi)$  a pour loi  $\theta$ . Si  $(\xi_i)_{i\geq 1}$  est i.i.d. (U(0,1)) alors  $(F^{-1}(\theta,\xi_i))_{i\geq 1}$  est i.i.d.  $(\theta)$ . Soit  $\alpha$  une probabilite aleatoire independante de  $(\xi_i)_{i\geq 1}$  et posons  $\hat{Y}_i = F^{-1}(\alpha,\xi_i)$  ( $i\geq 1$ ), alors  $(\hat{Y}_i)_{i\geq 1}$  vérifie la propriete requise. (\*)

Lorsque S est de Borel, la propriéte suivante est verifiee. Soit  $\xi$  de loi U(0,1), pour toute  $\mu$  probabilité sur S, il existe  $f:[0,1] \to S$  tel que  $f(\xi)$  a pour loi  $\mu$ .

DEFINITION 3.3. Soit  $(Y_i)_{i\geq l}$  une suite de variables aleatoires a valeurs dans un espace de Borel S, soit a une probabilité aléatoire sur S, on dit que  $(Y_i)_{i>l}$  est un mélange d'i.i.d. dirigé par a si:

$$(\alpha, Y_1, Y_2, ...) \stackrel{\cancel{*}}{=} (\alpha, \hat{Y}_1, \hat{Y}_2, ...)$$
, pour  $(\hat{Y}_i)_{i \ge 1}$  construit plus haut.

Notons  $(Y_1,Y_2,...) = Y$ ,  $\mathcal{X}(\alpha)$  la loi de  $\alpha$  et  $\mathcal{C}(S)$  la tribu sur S. Il est clair que:  $P(Y \in A) = \int\limits_{\Pi(S)} \theta^{\otimes m}(A) \mathcal{X}(\alpha) (d\theta)$ ,  $\forall A \in \mathcal{C}(S^m)$ ,  $\Pi(S)$  est le mélange canonique d'i.i.d. dirigé par  $\alpha$ .

Il est maintenant possible d'énoncer correctement le théorème de De Finetti.

THEOREME 3.4. (De Finetti) Soit Z une suite infinie échangeable à valeurs dans un espace de Borel S, alors Z est un mélange d'i.i.d.

DEMONSTRATION. Voir [Ald].

Dans ce qui suit, nous nous interessons à des problemes de convergence; nous supposons que S est polonais.

$$\Lambda_N: S^N \to \Pi(S)$$
 est défini par  $\Lambda_N(x_1, \dots, x_N) = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$ 

$$\Lambda\colon \text{S}^{\infty}\to \Pi(\text{S}) \text{ est defini par } \Lambda(\textbf{X}) = \begin{cases} \lim \text{ etroite } \Lambda_{N}(x_{1},\ldots,x_{N}) \\ N\to\infty \end{cases}$$
 
$$\delta_{0}, \text{ si la limite n'existe pas .}$$

La proposition 3.5 suivante est une consequence immediate de la définition 3.3 et du theorème de Glivenko-Cantelli.

PROPOSITION 3.5. Si la suite infinie  $\chi$  est un mélange d'i.i.d., alors ce melange est dirigé par  $\alpha = \Lambda(\chi)$  et cette probabilité aléatoire dirigeante est unique presque surement.

#### 3.b LES SUITES FINIES ECHANGEABLES

Dans ce cadre le theoreme de De Firetti ne peut pas se géneraliser, une suite finie echangeable n'étant pas necessairement la "restriction" d'une suite infinie échangeable (si cela arrive, il se peut aussi qu'elle soit la restriction de plusieurs suites infinies échangeables distinctes). Toutefois, le lemme 3.8 suivant est l'analogue partiel du théorème de De Firetti.

Prenons N constantes appartenant à  $S:y_1,...,y_N$  non necessairement distinctes, et mettons-les dans un ordre aléatoire:

(3.6) 
$$\hat{y} = (Y_1, ..., Y_N) = (y_{\hat{\Pi}(1)}, ..., y_{\hat{\Pi}(N)});$$

 $\boldsymbol{\hat{\Pi}}$  est la permutation aléatoire sur {1,...,N} de loi uniforme.

La distribution empirique de  $\chi$  est une distribution fixe

$$\Lambda_{N}(y) = \frac{1}{N} \sum_{i=1}^{N} \delta_{y_{i}} = \Lambda_{N}(\underline{Y})$$
 (3.7). Réciproquement, il est clair que si  $\underline{Y}$ 

est N-échangeable et satisfait (3.7) alors  $\chi$  a pour loi (3.6).  $\chi$  s'appelle un processus d'urne.

PROPOSITION 3.8. Soit  $U_N$  l'ensemble des lois  $\mathcal{L}(X)$  où X est un processus d'urne. Soit  $U_N^*$  l'ensemble des distributions empiriques

$$\frac{1}{N} \sum_{i=1}^{N} \delta_{y_{i}}. \text{ Soit } \Phi \colon \mathsf{U}_{N} \to \mathsf{U}_{N}^{*} \text{ la bijection naturelle } \Phi(\chi,(\underline{Y})) = \Lambda_{N}(\underline{Y}).$$

Soit  $Z = (Z_1, \ldots, Z_N)$  une suite finie N-échangeable à valeurs dans un espace espace de Borel S. Alors  $\Phi^{-1}(\Lambda_N(Z))$  est une probabilité conditionnelle régulière pour Z sachant  $\Lambda_N(Z)$ .

DEMONSTRATION. Voir [Ald].

Ce qui signifie que conditionnellement à la distribution empirique, les N valeurs intervenant dans la distribution empirique apparaissent dans un ordre aléatoire uniforme. Ou bien de manière moins précise qu'une suite N-échangeable est un melange de processus d'urne.

#### 3.c DES RESULTATS DE CONVERGENCE

S est un espace polonais.  $S^{\mathbb{N}}$  et  $S^{\mathbb{N}}$  sont munis de la topologie produit.

LEMME 3.9. Soient  $(\alpha_n)_{n\geq 1}$  des probabilites aléatoires sur S  $(E\alpha_n)_{n\geq 1}$  est tendu dans  $\Pi(S)$  si et seulement si  $(\cancel{x}(\alpha_n))_{n\geq 1}$  est tendu dans  $\Pi(\Pi(S))$ .

DEMONSTRATION. ([Ald]).

Condition nécessaire. Fixons  $\epsilon>0$ . Par hypothèse il existe un compact  $K_{\bf j}\subset S$  tel que:  $E\alpha_n(K_{\bf j}^C)\leq \epsilon 2^{-2{\bf j}}, \ \forall {\bf j}, n\geq 1.$ 

L'inegalité de Tchebichev donne:

(3.9.1) 
$$P(\alpha_n(.,K_j^C) > 2^{-j}) \le \varepsilon 2^{-2j}/2^{-j} = \varepsilon 2^{-j}, \forall j,n \ge 1.$$

En posant  $\Theta = \{\theta \in \Pi(S), \theta(K_j^C) \le 2^{-j}, \forall j \ge 1\}$ , on a d'après (3.9.1):  $P(\alpha_n \in \Theta) \ge 1 - \epsilon, \forall n \ge 1. \text{ On conclut en remarquant que } \Theta \text{ est un compact de } \Pi(S).$ 

La condition suffisante est immédiate en vertu de:

 $< \phi, E\alpha_n> = E<\phi, \alpha_n>$ ,  $\forall \phi \in C(S)$ . Ce qui implique la continuité de :

$$\mathcal{L}(\alpha_n) \mapsto E(\alpha_n)$$

Le lemma 3.9 va nous permettre d'énoncer un résultat de compacité faible, à la proposition 3.13.

CAS 1.  $\underline{Z}^k$  ( $k \ge 1$ ) sont des suites infinies échangeables Par définition de la topologie de  $S^\infty$ , nous avons:

$$(3.10) Z_{k\to\infty}^{k} Z \Leftrightarrow (Z_{1}^{k},\ldots,Z_{m}^{k}) \xrightarrow[k\to\infty]{k} (Z_{1},\ldots,Z_{m}), \forall m \geq 1.$$

Il est clair que Z est echangeable.

On note 
$$\alpha_k = \Lambda(\underline{Z}^k)$$
 et  $\alpha = \Lambda(\underline{Z})$ .

LEMME 3.11.  $Z^k$   $(k \ge 1)$  sont des suites infinies echangeables.  $(Z^k(Z^k))_{k\ge 1}$  est tendu dans  $\Pi(S^\infty)$  si et seulement si  $(Z^k(Z^k))_{k\ge 1}$  est tendu dans  $\Pi(S)$ .

DEMONSTRATION.  $(\mathcal{L}(\mathbf{Z}^k))_{k\geq 1}$  tendu  $\Leftrightarrow \forall m \geq 1$ ,  $(\mathcal{L}(\mathbf{Z}_1^k, \ldots, \mathbf{Z}_m^k))_{k\geq 1}$  tendu.

La condition nécessaire est évidente.

Condition suffisante:

$$\begin{array}{lll} (\cancel{X}(Z_1^k))_{k\geq 1} & \text{tendu} & \Leftrightarrow & \forall \epsilon > 0 \,, \; \exists K \in S \,, \; \; K \; \text{compact tel que:} \forall k \geq 0 \,, \\ P(Z_1^k \in K) \geq 1-\epsilon \,. & \; \hat{\mathcal{Z}}^k \; \text{ est la suite canonique associee a} \; \, \mathcal{Z}^k \; (\text{voir 3.3}) \\ P\{(Z_1^k,\ldots,Z_m^k) \in K^m\} = P\{(\alpha_k,\hat{\mathcal{Z}}_1^k,\ldots,\hat{\mathcal{Z}}_m^k) \in \Pi(S) \times K^m\} \\ & = \int\limits_{\Pi(S)} P\{(Z_1^k,\ldots,Z_m^k) \in K^m | \alpha_k = 0 \} \mathcal{Z}'(\alpha_k) (\text{d}\theta) \\ & = \int\limits_{\Pi(S)} \theta(K) \mathcal{Z}(\alpha_k) (\text{d}\theta) \\ & \geq \left[\int\limits_{\Pi(S)} \theta(K) \mathcal{Z}(\alpha_k) (\text{d}\theta)\right]^m \quad (\text{inegalite de Jensen}) \\ & = P(Z_1^k \in K)^m \\ & \geq (1-\epsilon)^m \geq 1-m_{\mathcal{E}}. \end{array}$$

LEMME 3.12. Si Z est  $\infty$ -echangeable et  $\alpha = \Lambda(Z)$  alors  $\mathcal{L}(Z_1,\ldots,Z_m) = E(\alpha^{\otimes m})$ ,  $\forall m \geq 1$ .

DEMONSTRATION.  $\forall \phi \in C_b(S^m)$ ,

$$E(\alpha, \varphi(Z_{1}, ..., Z_{m})) = \int_{\Pi(S)} E[(\alpha, \varphi(Z_{1}, ..., Z_{m})) | \alpha = \theta] \chi(\alpha) (d\theta)$$

$$= \int_{\Pi(S)} (\theta, \langle \varphi, \theta^{\otimes m} \rangle) \chi(\alpha) (d\theta)$$

$$= (E\alpha, \langle \varphi, E\alpha^{\otimes m} \rangle).$$

D'autre part  $E(\alpha, \varphi(Z_1, ..., Z_m)) = (E\alpha, \langle \varphi, \mathcal{X}(Z_1, ..., Z_m) \rangle)$ .

En particulier,  $\boldsymbol{\mathcal{Z}}(\boldsymbol{Z}_1^k) = \boldsymbol{E}(\boldsymbol{\alpha}_k)$  et le lemme 3.9 permettent d'énoncer la PROPOSITION 3.13. Les  $\boldsymbol{\mathcal{Z}}^k$   $(k \geq 1)$  étant des suites infinies échangeables.  $(\boldsymbol{\mathcal{Z}}(\boldsymbol{Z}_1^k))_{k\geq 1}$  est tendu dans  $\boldsymbol{\Pi}(S)$  si et seulement si  $(\boldsymbol{\mathcal{Z}}(\Lambda(\boldsymbol{\mathcal{Z}}^k)))_{k\geq 1}$  est tendu dans  $\boldsymbol{\Pi}(\Pi(S))$ .

COROLLAIRE 3.14. Une probabilité aléatoire  $\alpha$  sur S est entièrement déterminée par  $\{E(\alpha^{\otimes m})\}_{m\geq 1}$ .

DEMONSTRATION. C'est une conséquence directe de 3.5 et 3.12.

PROPOSITION 3.15. Les  $\underline{Z}^k$  ( $k \ge 1$ ) étant des suites infinies échangeables. La suite  $(\underline{Z}^k)_{k\ge 1}$  converge en loi vers  $\underline{Z}$  si et seulement si la suite  $(\Lambda(\underline{Z}^k))_{k\ge 1}$  converge en loi vers  $\Lambda(\underline{Z})$ .

DEMONSTRATION. [Kal,Ald]. S est un espace polonais métrisé par d, alors  $\Pi(S)$  est un espace polonais métrisé par  $\hat{d}$ , où

$$\forall \mu, \nu \in \Pi(S), \ \widetilde{\mathbf{d}}(\mu, \nu) = \inf\{ \mathrm{Ed}(X, Y, \mathcal{L}(X) = \mu, \mathcal{L}(Y) = \nu \}.$$

On peut montrer plus precisement qu'il existe  $g:\Pi(S)\times\Pi(S)\to\Pi(S^2)$  mesurable tel que:

(3.15.1) 
$$\vec{d}(\mu, \nu) = \int_{S^2} d(x,y)g(\mu, \nu)(dx,dy)$$
.

Condition suffisante. D'après le théorème de représentation de Skorohod on peut supposer que  $\Lambda(\mathbf{Z}^k) = \alpha_k \xrightarrow[k \to \infty]{} \alpha = \Lambda(\mathbf{Z})$  p.s., alors

(3.15.2) 
$$\tilde{d}(\alpha_k, \alpha) \rightarrow 0 \text{ p.s.}$$

Pour tout k,  $(v_i^k, w_i^k) = ((v_i^k, w_i^k))_{i \ge 1}$  est la suite  $\infty$ -échangeable dirigée par  $g(\alpha_k, \alpha)$ . Alors:

(3.15.3) 
$$\mathbf{y}^{k} \stackrel{\not \mathbf{z}}{=} \mathbf{z}^{k}$$
;  $\mathbf{y}^{k} \stackrel{\not \mathbf{z}}{=} \mathbf{z}$ ,  $\forall k \ge 1$  et 
$$\mathbb{E}(\mathbf{d}(\mathbf{v}_{1}^{k}, \mathbf{w}_{1}^{k}) | \mathbf{g}(\alpha_{k}, \alpha)) = \widehat{\mathbf{d}}(\alpha_{k}, \alpha)$$
 (en raison de 3.15.1), donc

(3.15.4)  $\operatorname{Ed}(V_1^k, W_1^k) \xrightarrow[k \to \infty]{} 0$  (3.15.2 et convergence dominée).

3.15.3 et 3.15.4 impliquent 
$$Z^k \underset{k\to\infty}{\overset{\times}{\longrightarrow}} Z$$
.

Condition nécessaire: Supposons  $Z_{k\to\infty}^k \overset{\cancel{\times}}{\to} Z$ .  $E(\alpha_k) = \cancel{\times}(Z_1^k)$  (3.12) et 3.9 montrent que  $(\alpha_k)_{k\geq 1}$  est tendu. Si  $\hat{\alpha}$  est une limite etroite, la condition suffisante implique  $\hat{\alpha} \overset{\cancel{\times}}{=} \alpha$ . Donc  $\alpha_k \overset{\cancel{\times}}{\to} \alpha$ .  $\square$ 

CAS 2.  $Z^k$  est une suite  $N_k$ -echangeable  $(k\geq 1)$  et  $\lim_{k\to\infty}N_k=+\infty$ . Nous dirons que  $Z^k$  tend en loi vers Z lorsque k tend vers l'infini si 3.10 est vérifie. Z est alors une suite  $\infty$ -échangeable.

LEMME 3.16. Si Z est N-echangeable alors  $\mathcal{L}(Z_1) = E(\Lambda_N(Z))$ .

DEMONSTRATION.  $\forall \phi \in C_b(S)$ ,  $E_{\phi}(Z_1) = \int\limits_{U_N^*} E(\phi(Z_1)|\Delta_N(Z) = \theta)(\Delta_N(Z))(d\theta)$  (en raison de 3.8). Si  $\theta = \frac{1}{N}\sum_{i=1}^{N}\delta_{y_i}$ 

alors 
$$E(\phi(Z_1)|\Lambda_N(Z) = \theta) = \frac{1}{N} \sum_{i=1}^N \phi(y_i) = \langle \phi, \theta \rangle$$
. Donc:  $\langle \phi, \mathcal{L}(Z_1) \rangle = E\phi(Z_1) = \langle \phi, E(\Lambda_N(Z)) \rangle$ .

PROPOSITION 3.17. Y est N-échangeable.

Si  $\mathbb{Z}$  est la suite  $\infty$ -échangeable dirigée par  $\Lambda_{\mathbb{N}}(\mathbb{X})$ , alors:

$$\forall 1 \leq m \leq N, \quad ||\chi(Y_1, \ldots, Y_m) - \chi(Z_1, \ldots, Z_m)|| \leq \frac{m(m-1)}{2N}$$
.

DEMONSTRATION. Voir [Ald].

La proposition 3.17 permet d'étendre immédiatement 3.15 au cas 2. Le lemme 3.16 permet d'étendre immédiatement 3.13 au cas 2. Nous

avons le:

THEOREME 3.18.  $Z^k$  est  $N_k$ -échangeable  $(k \ge 1)$  et  $N_k \xrightarrow[k \to \infty]{} +\infty$ 

- $\begin{array}{ll} \{\textbf{X}(\Lambda_{N_k}(\textbf{Z}^k))\}_{k\geq 1} & \text{est tendu dans } \Pi(\Pi(S)) \text{ si et seulement si} \\ \{\textbf{X}(\textbf{Z}_1^k)\}_{k\geq 1} & \text{est tendu dans } \Pi(S). \end{array}$
- (3.18.2)  $Z^k$  tend en loi vers Z au sens 3.10, lorsque k tend vers l'infini, si et seulement si  $\Lambda_{N_k}(Z^k)$  tend en loi vers  $\Lambda(Z)$ , dans  $\Pi(S)$ .

Le lemma 3.19 suivant apparait dans des articles de Sznitman et Tanaka.

LEMME 3.19. Si  $q_N$  est la loi d'une suite N-echangeable sur un espace de Borel S alors:  $\forall k \in \{1,2,\ldots\}$ ,  $\forall f_k \in M_b(S^k)$ :

$$E_{q_{N}}(\langle f_{k}, \Lambda_{N}(X^{N})^{\otimes k} \rangle) = \langle f_{k}, E_{q_{N}}(\Lambda_{N}(X^{N})^{\otimes k}) \rangle$$

$$= \langle f_{k} \otimes (N-k), q_{N} \rangle + O(\frac{1}{N})$$

DEMONSTRATION. U $^{\star}_{N}$  est defini en 3.8:

$$(3.19.2) < f_k \otimes \mathbb{T}^{\otimes (N-k)}, q_N > = E_{q_N}(f_k(X_1^N, \dots, X_k^N))$$

$$= \int_{U_N^*} E_{q_N}(f_k(X_1^N, \dots, X_k^N) | \Lambda_N(X_k^N) = \theta) \times (\Lambda_N(X_k^N)) (d\theta).$$

On note 
$$I_{N,k} = \{(i_1,...,i_k) \in \{1,...,N\}^k : i_1,...,i_k \text{ tous distincts}\}$$
  
 $\#I_{N,k} = A_N^k = N(N-1)...(N-k+1).$ 

Si 
$$\theta = \frac{1}{N} \sum_{i=1}^{N} \delta_{y_i}$$
,  $y_i \in S (\forall i \in \{1,...,N\})$ , alors

$$\langle f_k, \theta^{\otimes k} \rangle = \frac{1}{N^k} \sum_{\substack{(i_1, \dots, i_k) \in \{1, \dots, N\}^k}} f_k(y_{i_1}, \dots, y_{i_k})$$

et

$$\mathsf{E}_{\mathsf{q}_{\mathsf{N}}}(\mathsf{f}_{\mathsf{k}}(\mathsf{X}_{1}^{\mathsf{N}},\ldots,\mathsf{X}_{\mathsf{k}}^{\mathsf{N}})\,|\Lambda_{\mathsf{N}}(\mathsf{X}^{\mathsf{N}})\,=\,\theta)\,=\,\frac{1}{\#\mathsf{I}_{\mathsf{N},\mathsf{k}}}\,\,(\mathsf{i}_{1},\ldots,\mathsf{i}_{\mathsf{k}})\,\in\!\mathsf{I}_{\mathsf{N},\mathsf{k}}\,\,\,\mathsf{f}_{\mathsf{k}}(\mathsf{y}_{\mathsf{i}_{1}},\ldots,\mathsf{y}_{\mathsf{i}_{\mathsf{k}}})$$

d'après 3.8. Donc

$$|E_{q_{N}}(f_{k}(X_{1}^{N},...,X_{k}^{N})|\Lambda_{N}(X_{N}^{N})=0)-\langle f_{k},\theta^{\otimes k}\rangle|$$

$$\leq \frac{1}{N^{k}}\sum_{\substack{(i_{1},...,i_{k}) \in \\ \{1,...,N\}^{k-1}\},k}}|f_{k}(y_{i_{1}},...,y_{i_{k}})|$$

$$+\frac{1}{N^{k}}\sum_{\substack{(i_{1},...,i_{k}) \in I_{N-k}}}\frac{(N^{k}-1)|f_{k}(y_{i_{1}},...,y_{i_{k}})|}{A_{N}^{k}-1}|f_{k}(y_{i_{1}},...,y_{i_{k}})|$$

$$2\|f_{k}\|_{\infty} \left(1 - \frac{A_{N}^{k}}{N^{k}}\right).$$
Si  $k = 1: 1 - \frac{A_{N}^{k}}{N^{k}} = 0$ ,  $\forall k = 2$ ,  $1 - \frac{A_{N}^{k}}{N^{k}} = 1 - \frac{K-1}{N} \left(1 - \frac{j}{N}\right) = 0\left(\frac{1}{N}\right).$  En effet: 
$$\ln \frac{K-1}{j=1} \left(1 - \frac{j}{N}\right) = -\frac{k(k-1)}{N} + 0\left(\frac{1}{N^{2}}\right) \text{ et } 1 - \exp\left(-\frac{k(k-1)}{N} + 0\left(\frac{1}{N^{2}}\right)\right) = 0\left(\frac{1}{N}\right).$$

Finalement,  $\forall N \geq 1$ ,  $\forall k \geq 1$ ,  $E_{q_N}(f_k(X_1^N,\ldots,X_k^N) \mid \Lambda_N(X_1^N) = \theta)$  =  $\langle f_k, \theta^{\otimes k} \rangle + O(\frac{1}{N})$  ce qui avec 3.19.1 et 3.19.2 achève la démonstration.  $\Box$ 

II - LE SYSTEME A L'EQUILIBRE

# 4. LE COMPORTEMENT ASYMPTOTIQUE (N $\rightarrow \infty$ ) DE $\rho_N^{\beta}$ , h

Dans ce paragraphe  $\rho_N^{\beta,\,h}$  est donné par 2.6 et vérifie 2.5.

NOTATIONS.  $\rho_N^{\beta,h}$  est la loi de  $X^N = (X_1^N, \dots, X_N^N)$  a valeurs dans  $IR^N$  Nous notons

$$S_N = \sum_{i=1}^N X_i^N$$
,  $M_N = \frac{S_N}{N}$  (magnétisation)  
 $S_N = \sum_{i=1}^N X_i^N$ ,  $m_N = \frac{S_n}{N}$ 

 $M_N$  a pour loi  $v_N \in \Pi(IR)$ 

# 4.a RAPPEL DE CERTAINS RESULTATS DE ELLIS ET NEWMAN ([EN 1])

Les principaux arguments probabilistes permettant la démonstration du théorème 4.5 suivant sont la remarque 4.1 et le lemme 4.2.

REMARQUE 4.1. La loi de  $S_N$  est  $Z_N(\beta,h)^{-1} \exp[\beta(hs + \frac{J}{2N} s^2)]\alpha^{*N}(ds)$  où \* désigne le produit de convolution.

LEMME 4.2. Si W est une variable aléatoire réelle de loi normale  $\mathcal{N}(0,\frac{1}{\beta J})$  indépendante de  $S_N$ , pour tout  $N \geq 1$ , alors, étant donnés  $\gamma$  et miréels

$$(4.2.1) \quad \frac{W}{N^{\frac{1}{2}-\gamma}} + \frac{S_N - Nm}{N^{1-\gamma}} \quad \text{a pour loi} \quad \frac{\exp[-Ng_{\beta,h}(\frac{S}{N^{\gamma}} + m)]ds}{\int_{\mathbb{I}R} \exp[-Ng_{\beta,h}(\frac{S}{N^{\gamma}} + m)]ds}, \quad \text{ou}$$

$$(4.2.2) g_{\beta,h}(t) = \frac{\beta J}{2} t^2 - \ln \varphi[\beta(h+Jt)], \quad \forall t \in \mathbb{R} \text{ et}$$

(4.2.3) 
$$\varphi(t) = \int_{IR} \exp(tx)\alpha(dx)$$
,  $\forall t \in IR$ .

DEMONSTRATION. Voir [EN1], Lemme 3.3.

4.2.2 et 4.2.3 ont un sens en raison de la première partie du lemme suivant.

LEMME 4.3. Si  $\alpha$  vérifie 2.5 et  $g_{\beta,h}$  est defini par 4.2.2 et 4.2.3, alors:

- (4.3.1)  $g_{\beta,h}$  est analytique réelle
- (4.3.2)  $\lim_{|t|\to+\infty} g_{\beta,h}(t) = +\infty$
- (4.3.3)  $g_{\beta,h}$  admet un nombre fini de minima globaux
- $\text{(4.3.4)} \quad \int_{IR} \exp(-Ng_{\beta,h}(t)) dt < +\infty, \quad \forall N \in \{1,2,\dots\} \ .$  DEMONSTRATION. Voir [EN1], lemme 3.1.
- (4.4) NOMENCLATURE. Soient  $\ell$  un entier strictement positif,  $\ell$  réels distincts:  $m_1, \ldots, m_\ell$  et  $\ell$  entiers strictement positifs  $k_1, \ldots, k_\ell$ , on dit que  $(m_1, k_1; \ldots; m_\ell, k_\ell)$  est admissible pour  $(\alpha, \beta, h)$  si l'ensemble des minima globaux de  $g_{\beta,h}$  est  $\{m_1, \ldots, m_\ell\}$  et si pour tout  $i=1,\ldots,\ell$ :  $g_{\beta,h}(t)=g_{\beta,h}(m_i)+\lambda(m_i)[(t-m_i)^{2k_i}/(2k_i)!+o((t-m_i)^{2k_i})]$  lorsque  $t\to m_i$ , ou  $k_i$  s'appelle le type du minimum  $m_i$ .

 $\lambda$  (m<sub>i</sub>) est un réel strictement positif et s'appelle la force du minimum m<sub>i</sub>. ( $\alpha$ , $\beta$ ,h) est dit pur si  $g_{\beta}$ ,h admet un unique minimum global. ( $\alpha$ , $\beta$ ,h) pur est dit centré en m si  $g_{\beta}$ ,h atteint son minimum en m.

THEOREME 4.5. (4.5.1) Si  $(m_1, k_1, \ldots, m_\ell, k_\ell)$  est admissible pour  $(\alpha, \beta, h)$ , alors

$$\mathcal{L}(M_N) = v_N \xrightarrow{\acute{e}t^{\underline{t}}} v_{\infty} = \sum_{i=1}^{\ell} \bar{b}_i \delta_{m_i}$$
 où

$$\bar{b}_{i} = \frac{b_{i}}{\ell} \quad \text{et} \quad b_{i} = \begin{cases} \left[\lambda(m_{i})\right]^{-1/2k_{i}} & \text{si } k_{i} = \max_{j} \{k_{j}\} \\ 0 & \text{sinon} \end{cases}$$

(4.5.2) Si  $(\alpha,\beta,h)$  est pur et centré en m, (m,k) étant admissible pour  $(\alpha,\beta,h)$  alors

$$\mathcal{L}(N^{1/2k} \frac{S_N^{-Nm}}{N}) \quad \frac{et^{\frac{t}{L}}}{N \to +\infty} \begin{cases} \mathcal{N}(0,\lambda(m)^{-1}-1) & \text{si } k=1 \text{ (alors } \lambda^{-1}-1>0) \\ z^{-1} exp(-\frac{\lambda(m)x^{2k}}{(2k)!}) & \text{si } k \geq 2 \end{cases}$$

DEMONSTRATION. [EN1].

#### 4.b. UNE LOI DES GRANDS NOMBRES

Le théorème 4.6 donne la loi de  $\Lambda$  ( $\chi$ ), où  $\chi$  est la limite au sens 3.10 des  $\chi^N$  et  $\Lambda(\chi)$  = lim étroite  $\frac{1}{n}\sum_{i=1}^n \delta_{\chi_i}$  est la probabilité aléatoire dirigeante du mélange d'i.i.d.  $\chi$ . (Voir 3.4 et 3.5).

THEOREME 4.6. Si  $(m_1, k_1; \dots; m_\ell, k_\ell)$  est admissible pour  $(\alpha, \beta, h)$  et.si  $(1n_\phi)''$  est bornée, alors  $\Lambda_N(\overset{\circ}{X}^N) \overset{\checkmark}{\underset{N\to\infty}{\longrightarrow}} \Lambda(\overset{\circ}{X})$  dans  $\Pi(R)$ , et  $\mathcal{A}(\Lambda(\overset{\circ}{X})) = \sum\limits_{i=1}^{\ell} \bar{b}_i \delta_{p_i} \ (\in \Pi(\Pi(R)))$  où  $\bar{b}_i$  est defini en 4.5.1 et  $\mu_i(\mathrm{d}x) = \wp[\beta(\mathrm{J}m_i + h)]^{-1} \exp[\beta(\mathrm{J}m_i + h)x]\alpha(\mathrm{d}x)$ .

Le reste du paragraphe 4.b est consacré à la démonstration du théorème 4.6. Avant d'effectuer cette démonstration, nous en exposons le plan en 47 et nous énonçons le lemme 4.8. Pour démontrer 4.6, nous supposons que 4.8 est vérifié. La démonstration de 4.8, qui utilise les lemmes 4.9, 4.10 et 4.11, est faite à la fin du paragraphe 4.b.

4.7. PLAN GENERAL DE DEMONSTRATION D'UNE CONVERGENCE EN LOI. Soit Y<sup>N</sup> une suite de variables aléatoires, on veut montrer  $(4.7.1) \quad \cancel{X}(Y_N) \quad \overset{\text{et}^{\frac{t}{N}}}{\underset{N \to \infty}{\longrightarrow}} \cancel{X}(Y).$ 

Soit  $\mathcal{A}$  l'ensemble des valeurs d'adhérence de  $\{\mathcal{X}(Y_N), N\geq 1\}$ 

$$(4.7.1) \Leftrightarrow \{X(Y_N)\}_{N\geq 1}$$
 est tendu et  $A = \{X(Y)\}.$ 

La condition est clairement nécessaire. Elle est aussi suffisante, en effet: Supposons  $\chi(Y_N) \to \chi(Y) \Leftrightarrow \exists \epsilon > 0$ ,  $\forall N, \exists M(N,\epsilon)$  tel que  $M(N,\epsilon) \geq N$  et  $d(\chi(Y_{M(N,\epsilon)}), \chi(Y))) \geq \epsilon$ . Mais on peut extraire de  $\chi(Y_{M(N,\epsilon)})$  une suite convergente, cette suite converge vers  $\chi(Y)$  et il y a contradiction. (Nous avons utilisé d(.,.), mais l'argument est topologique). Les démonstrations se feront en trois étapes.

- 1. TENSION.  $\mathcal{L}(Y_N)$  est tendu ( $\Rightarrow \mathcal{A} \neq \phi$ ).
- 2. IDENTIFICATION de  $\mathcal A$ . Condition nécessaire que tout élément de  $\mathcal A$  doit verifier:  $\mathcal A \subset A$
- 3 UNICITE A 1'aide de 2) on montre que # A = 1. (La condition 2) etait suffisante.)

Notations

$$s_k = \sum_{j=1}^k x_j; \quad Z(\beta, h_{k,N}) = \int_{\mathbb{R}} \exp[\beta(h_{k,N}s + \frac{J}{2N}s^2)]\alpha^{*(N-k)}(ds) \text{ et}$$

$$h_{k,N} = h + J(s_k/N).$$

LEMME 4.8

(4.8.1) 
$$Z_{N}(\beta,h)^{-1}Z(\beta,h_{k,N}) = \sum_{i=1}^{\ell} \hat{b}_{i} \varphi [\beta(h+Jm_{i})]^{-k} \exp(\beta Jm_{i}s_{k}) + o_{N}$$
 (1)

$$(4.8.2) \quad \exists a,b,c \in \mathbb{R} \text{ telk que } \forall s_k \in \mathbb{R}, \quad \forall N \in \{1,2,\ldots\},$$
 
$$Z_N(\beta,h)^{-1}Z(\beta,h_{k,N}) \leq \exp(a|s_k|+bs_k^2+c).$$

DEMONSTRATION de 4.8: Voir plus loin.

DEMONSTRATION du théorème 4.6:

On suppose que 4.8 est vérifié. Nous suivons le plan de démonstration exposé en 47.

TENSION. Nous allons utiliser le critère de tension suivant: Soit  $\Lambda$  une famille de probabilités absolument continues par rapport à une même  $\mu$ . Soit  $\Phi:\mathbb{R}^+\to\mathbb{R}^+$ , telle que  $\lim_{X\to+\infty}\frac{\phi(X)}{X}=+\infty$ . Alors si  $\sup_{X\to+\infty}\int\Phi(\frac{d\lambda}{d\mu})d\mu<+\infty,\quad \Lambda \text{ est relativement compacte. D'après le theoreme }\lambda\in\Lambda$  3.18, il nous suffit de verifier le critère precedent pour la famille de probabilites  $\{X_1^N\circ\rho_N\}_{N\geq 1}: \forall N\geq 1,\quad X_1^N\circ\rho_N<<\alpha$  et

$$\frac{d(X_1^N \circ \rho_N)}{d \alpha} (x_1) = Z_N(\beta, h)^{-1} Z(\beta, h_{1,N}) \exp[\beta(hx_1 + \frac{J}{2N} x_1^2)]. \qquad \text{Prenons}$$

$$\Phi(x) = x \ln(x) \vee 0, \quad \Phi \quad \text{est croissante.}$$

Une consequence de 4.8.2 est:

$$\exists a,b,c>0$$
,  $\forall N\geq 1$ ,  $\forall x_1\in R$ ,  $\frac{d(\chi_1^N\circ\rho_N)}{d\alpha}(x_1)\leq exp(a|x_1|+bx_1^2+c)$ .

Comme 4 est croissante:

$$\forall N > 1, \quad \int_{\mathbb{R}} \frac{d(x_1^N \circ \rho_N)}{d\alpha}(x_1))\alpha(dx_1) \leq \int_{\mathbb{R}} (a|x_1| + bx_1^2 + c) \exp(a|x_1| + b(x_1^2) + c)\alpha(dx_1)$$
$$\leq +\infty \quad \text{(d'après l'hypothèse 2.5)}.$$

Par consequent  $\{\chi(\chi^N)\}_{N\geq 1}$  est relativement compact dans  $\Pi(\Pi(R))$ . IDENTIFICATION.

$$(4.6.1) \quad \forall k \in \{1,2,\ldots\}, \ \forall f_k \in B_b(R^k):$$

$$\lim_{N \to +\infty} \langle f_k \rangle | \otimes (N-k), \rho_N \rangle = \langle f_k, \sum_{i=1}^{\infty} \overline{b_i} \rho_i \rangle \rangle.$$

En effet:

$$\langle f_k \otimes I^{\otimes (N-k)}, \rho \rangle = \int_{\mathbb{R}^k} Z_N(\beta,h)^{-1} Z(\beta,h_{k,N}) \exp[\beta(hs_k + \frac{J}{2N} s_k^2)] f_k(x_1,...,x_k) \int_{j=1}^k \alpha(dx_j)$$

4.6.1 est alors une consequence de 4.8 et du theorème de convergence dominée.

Nous avons montré que  $\{ \not \preceq (\land_N (\not X^N)) \}_{N \geq 1}$  est tendu. Soit  $\mu$  une valeur d'adhérence quelconque de cette suite et  $\{ \not \preceq (\land_{N_m} (\not X^m)) \}_{m \geq 1}$  une suite extraite de limite  $\mu$ . Alors, d'apres 4.6.1 et le lemme 3.19:

$$\forall k \in \{1,2,\ldots\}, \forall f_k \in B_b(R^k), \langle f_k, \int_{\Pi(R)} \theta^{\otimes k} \mu(d\theta) \rangle = \langle f_k, \sum_{i=1}^{\ell} \overline{b}_i p_i^{\otimes k} \rangle.$$

Soit: toute valeur d'adhérence de  $\mathcal{L}(\Lambda_N(\chi^N))$  $_{N\geq 1}$ : $\mu$ , vérifie

(4.6.2) 
$$\forall k \in \{1,2,\ldots\}, \quad \int_{\Pi(R)} \theta^{\otimes k} \mu(d\theta) = \sum_{i=1}^{\ell} \overline{b}_{i} p_{i}^{\otimes k}.$$

UNICITE. Le corollaire 3.14 nous dit que  $\mu$  est déterminé de manière unique par 4.6.2) On vérifie que  $\mu = \sum_{i=1}^{\infty} \overline{b}_i \delta_p$  est solution de 4.6.2. Ce qui achève la demonstration du théoreme 4.6.

LEMME 4.9. Il existe  $\delta>0$  suffisamment petit tel que, pour tout i de {1,...,?} lorsque N tend vers l'infini,  $\forall t, \ |t| < \delta N^{1/2k} i$ 

$$(4.9.1) \qquad H(g(\frac{t}{1/2k_{i}} + m_{i}) - g(m_{i})) = \lambda(m_{i}) \frac{t}{(2k_{i})!} + 0_{N \to \infty} (\frac{2k_{i}+1}{1/2k_{i}}) + o_{N \to \infty} (1)P_{1}(t)$$

$$(4.9.2) \qquad \mathbb{N}(g(\frac{t}{1/2k_{i}} + m_{i}) - g(m_{i})) \geq \frac{1}{2} \frac{\lambda(m_{i})}{(2k_{i})!} t^{2k_{i}} + P_{2}(t)$$

où  $P_1$  et  $P_2$  sont des polynômes de degrés respectifs  $2k_i$  et  $2k_i-1$ .

DEMONSTRATION. Facile. Voir [EN1]

LEMME 4.10 ·

5i: (4.10.1) 
$$\sup_{N} \int_{R} \exp(-g(t)) |f_{N}(t)| dt < +\infty$$
,

#lors: (4.10.2) 
$$\exp(N_{\Upsilon}) \int_{V} \exp(-Ng(t)) f_{N}(t) dt = 0_{N \to +\infty} (\exp(-N\epsilon)).$$

Si (4.10.3): les  $f_N$  sont continues et  $f_N \xrightarrow[]{\to}$  f uniformément sur tout compact et si (4.10.4):il existe F, tel que

$$\forall N, \ \forall t, \ |f_N(\frac{t}{N^{1/2k}} + m)| \le F(t) \ \text{et} \ \int_{\mathbb{R}} F(t) \exp[-\frac{1}{2} \frac{\lambda(m)}{(2k)!} t^{2k} + P_2(t)] dt < +\infty.$$

Abrs: (4.10.5) 
$$N^{1/2k} \exp(N_Y) \int_{0}^{m+\delta} \exp(-Ng(t)) f_N(t) dt$$
  
=  $f(m) \lambda(m)^{-1/2k} \int_{1R} \exp(-\frac{t^{2k}}{(2k)!}) dt + o_{N\to\infty}(1)$ .

DEMONSTRATION: a) 4.10.1 → 4.10.2

$$|\exp(N\gamma)| \int \exp(-Ng(t)) f_N(t) dt | \leq \exp(N\gamma) \exp[-(N-1)(\gamma+\epsilon)] \int \exp(-g(t)) |f_N(t)| dt \\ \leq \exp(-N\epsilon) \exp(\gamma+\epsilon) \int \exp(-g(t)) |f_N(t)| dt,$$

b) 
$$(4.10.3 \epsilon 4.10.4) \Rightarrow 4.10.5$$

Pour tout i de  $\{1, ..., \ell\}$  (on omettra l'indice i)

$$N^{1/2k} \exp(N\gamma) \int_{-\delta}^{m+\delta} \exp(-Ng(t)) f_{N}(t) dt =$$

$$= N^{1/2k} \int_{-\delta}^{\delta} \exp\{-N[g(t+m)-g(m)]\} f_{N}(t+m) dt$$

$$\int_{|t|<\delta N} 1/2k \exp\{-N[g(\frac{t}{N^{1/2}k} + m) - g(m)]\} f_{N}(\frac{t}{N^{1/2}k} + m) dt$$

Alors 4.9.2 et 4.10.4 nous permettent d'appliquer le théorème de convergence dominée et avec 4.9.1 et 4.10.3 nous obtenons 4.10.5 

LEMME 4.11 Posons  $m = \int x \alpha(dx)$ . Si  $\alpha$  est non degenerée  $(\alpha \neq \delta_m)$ , alors

(4.11.1) 
$$\psi(t)^{-1} = o_{t \to +\infty}(\exp(-mt)), \forall m;$$

si m=0,  $\exists a > 0$ ,  $p(t)^{-1} = o_{t \to \pm \infty}(\exp(-a|t|))$ . Si de plus  $\alpha$  vérifie 2.5, alors

(4.11.2) 
$$(\ln \varphi)'(t) = 0_{t \to \pm \infty}(\frac{t}{y}), \quad \forall y > 0.$$

REMARQUE Si 2.5 est affaiblie et seulement 4.11.3 est vérifié (4.11.3)  $\exists \bar{y} > 0$ ,  $\forall y \leq \bar{y}$ ,  $\int_{\Omega} \exp(yx^2)\alpha(dx) < +\infty$ .

Alors 4.11.2 est vrai avec  $y \le \overline{y}$ .

DEMONSTRATION. Notons  $\overline{\alpha}^{\text{m}}(dx) = \alpha(dx+m)$  de sorte que  $\int x \overline{\alpha}^{\text{m}}(dx) = 0$ ,  $\psi_{\alpha}(t) = \exp(tm) \psi_{\alpha}(t)$  et  $(\ln \psi_{\alpha})(t) = mt + (\ln \psi_{\alpha})(t)$  (4.11.4). Puisque  $\alpha$  n'est pas dégeneree  $\alpha^{\rm m}$  charge un borélien de  $\mathbb{R}^+$  et de  $\mathbb{R}^-$ .

On en déduit 4.11.1.

Pour démontrer 4.11.2, en raison de 4.11.4, il suffit de considérer m=0.

$$(\ln \varphi)'(t) = \frac{\int x \exp(tx)\alpha(dx)}{\varphi(t)} \leq \frac{\left[-\theta(t), \theta(t)\right]}{\int \exp(tx)\alpha(dx)} = \frac{\left[-\theta(t), \theta(t)\right]}{\left[-\theta(t), \theta(t)\right]} \times \exp(tx)\alpha(dx) + \frac{\left[-\theta(t), \theta(t)\right]^{C}}{\varphi(t)}$$

(si  $t \ge 1$  et  $\theta(t) > 0$ )

$$\leq \theta(t) + \frac{\int_{-\infty}^{-\theta(t)} |x| \exp(x) \alpha(dx)}{\varphi(t)} + \frac{\int_{\theta(t)}^{+\infty} x \exp(tx - \frac{y}{2}x^2) \exp(\frac{yx^2}{2}) \alpha(dx)}{\varphi(t)}$$

$$\text{or} \int\limits_{\theta(t)}^{+\infty} \text{xexp}(-tx-\frac{y}{2}x^2) \exp(\frac{yx^2}{2}) \alpha(dx) \leq \sup_{x \geq \theta(t)} (\text{xexp}(tx-\frac{y}{2}x^2)) \int\limits_{\theta(t)}^{+\infty} \exp(\frac{yx^2}{2}) \alpha(dx) \text{ .}$$

Nous choisissons  $\theta(t)$  tel que,  $\theta(t) > 0$  et  $\sup_{x \ge \theta(t)} (xexn(tx - \frac{y}{2}x^2)) =$ 

$$\theta(t) \exp(t\theta(t) - \frac{y}{2}\theta(t)^2)$$
. Soit  $\theta(t) = \frac{t}{2y}(1 + (1 + \frac{4y}{t^2})^{1/2})$  et

$$\frac{\int x \exp(tx) \alpha(dx)}{\theta(t)} \leq \frac{\theta(t)}{\phi(t)} \exp(t\theta(t) - y\theta(t)^2) \int_{\theta(t)}^{+\infty} \exp(yx^2) \alpha(dx) = \theta(t) \quad \text{car}$$

 $t\theta(t)-y\theta(t)^2 < 0$ ,  $\phi(t)^{-1}$  a une décroissance exponentielle (4.11.1)  $\alpha$  vérifie 2.5.

Finalement  $(\ln \phi)$ '(t) =  $0(\frac{t}{y})$  lorsque t  $\to +\infty$ . La démonstration est identique lorsque t  $\to -\infty$ .  $\Box$ 

Nous sommes maintenant en mesure de démontrer le lemme 4.8

DEMONSTRATION du lemme 4.8 :

Par un calcul analogue à celui de 4.2.1, on obtient

$$Z(\beta, h_{k,N}) = (\frac{\beta JN}{2\pi})^{1/2} \int_{\mathbb{R}} \exp[-(N-k)\tilde{g}_{k,N}(t)]dt$$
 avec

$$\tilde{g}_{k,N}(t) = \frac{N}{N-k} \frac{\beta J}{2} t^2 + \ln \phi [\beta (h_{k,N} + Jt)]$$
 donc

$$Z_{N}(\beta,h)^{-1}Z(\beta,h_{k,N}) = \frac{\int_{\mathbb{R}} \exp[Ng(t)-(N-k)\widetilde{g}_{k,N}(t)]\exp(-Ng(t))dt}{\int_{\mathbb{R}} \exp(-Ng(t))dt} ; \text{ or }$$

$$Ng(t)-(N-k)\widetilde{g}_{k,N}(t) = -N\ln\varphi[\beta(h+Jt)]+(n-k)\ln\varphi[\beta(h+Jt)+J-\frac{s_k}{N}] =$$

$$\frac{\ln \phi \left[\beta \left(h+Jt\right)+\ \beta J\frac{s_{k}}{N}\right]-\ln \phi \left[\beta \left(h+Jt\right)\right]}{\beta J\ s_{k}/N}\ \beta Js_{k}\ -\ k\ln \phi \left[\beta \left(h+Jt\right)+\frac{\beta Js_{k}}{N}\right]\ donc$$

(4.8.1) 
$$Z_N(\beta,h)^{-1}Z(\beta,h_{k,N})$$

$$= \frac{\int_{\mathbb{R}^{\phi}} [\beta(h+Jt)]^{-k} exp\{\beta Js_{k}(1n\phi)'[\beta(h+Jt)]\}\psi_{N}(s_{k},t)exp(-Ng(t))dt}{\int_{\mathbb{R}^{\phi}} exp(-Ng(t))dt}$$

$$\begin{array}{lll} \text{ou} & \psi_{N}(s_{k},t) = \exp\{\frac{1}{N}(\beta J s_{k})^{2} \int_{0}^{1} d\theta_{1} \int_{0}^{\theta_{1}} d\theta_{2} (1 n_{\phi}) \| [\beta (h+Jt) + \theta_{2} \beta J - \frac{s_{k}}{N}] \\ & + \frac{1}{N} \beta J s_{k} \int_{0}^{1} d\theta (1 n_{\phi}) \| [\beta (h+Jt) + \theta \beta J - \frac{s_{k}}{N}] \} \ . \end{array}$$

Notons 
$$\tilde{k} = \max_{i \in \{1, ..., \ell\}} \{k_i\} \text{ et } h(s_k, t) = \phi[\beta(h+Jt)]^{-k} exp\{\beta Js_k(1n_{\phi})'[\beta(h+Jt)]\}$$

4.8.1 s'ecrit:

$$\begin{array}{ll} (4.8.3) & Z_{N}^{-1}(\beta,h)Z(\beta,h_{k,N}) \\ & = \exp(N_{\gamma}) \big[ N^{\frac{1}{2k}} \int_{V} h(s_{k},t) \psi_{N}(s_{k},t) \exp(-N\alpha(t)) dt \\ & = \frac{(\frac{1}{2k} - \frac{1}{2k_{i}}) \frac{1}{2k_{i}} \frac{m_{i} + \beta}{m_{i} - \delta}}{\sum\limits_{i=1}^{k} h(s_{k},t) \psi_{N}(s_{k},t) \exp(-N\alpha(t)) dt} \\ & = \frac{1}{\exp(N_{\gamma}) \big[ N^{\frac{1}{2k}} \int_{V} \exp(-Ng(t)) dt} \\ & + \sum\limits_{i=1}^{\ell} N \frac{(\frac{1}{2k} - \frac{1}{2k_{i}}) \frac{1}{2k_{i}} \frac{m_{i} + \delta}{N}}{\sum\limits_{m_{i} - \delta} \exp(-Ng(t)) dt} \\ & + \sum\limits_{i=1}^{\ell} N \frac{(\frac{1}{2k} - \frac{1}{2k_{i}}) \frac{1}{N} \frac{m_{i} + \delta}{N}}{\sum\limits_{m_{i} - \delta} \exp(-Ng(t)) dt} \\ \end{array}$$

La limite du dénominateur de 4.8.3

Dans ce cas  $f_N = 1$  pour tout N, 4.10.1, 4.10.3, et 4.10.4 clairement vérifies et:

(4.8.4) 
$$\exp(N\gamma)N^{2\overline{k}} \int_{R} \exp(-Ng(t)dt)$$

$$= \int_{R} \exp(-\frac{t^{2\overline{k}}}{(2\overline{k})})dt \sum_{\substack{1 \le i \le \ell \\ k_i = \overline{k}}} \lambda(m_i)^{-\frac{1}{2\overline{k}}} + o_{N \to \infty}(1).$$

La limite du numérateur de 4.8.3.

Nous allons maintenant vérifier les conditions 4.10.1, 4.10.3 et 4.10.4 lorsque

$$f_N(t) = h(s_k, t) \psi_N(s_k, t).$$

Une conséquence de 4.11.1 est:

(4.8.5) 
$$\exists a_1, b_1 \ge 0, \forall t \in \mathbb{R}, \varphi[\beta(h+Jt)]^{-k} \le \exp(a_1+b_1|t|)$$
.

Une conséquence de 4.11.2 est:

$$\exists a_2 \ge 0$$
,  $\forall b > 0$ ,  $\forall t \in \mathbb{R}$ ,  $|(1n\phi)'(t)| \le a_2 + b|t|$  donc

(4.8.6) 
$$\exists a_3 \ge 0$$
,  $\forall b \ge 0$ ,  $\forall t$ ,  $s_k \in \mathbb{R}$ , 
$$\exp \{\beta J s_k (ln\phi)'[\beta(h+Jt)]\} \le \exp(a_3 |s_k|+b|s_k||t|).$$

De même,  $\forall b > 0$ ,  $\forall t$ ,  $s_k \in \mathbb{R}$ ,  $\forall N$ ,

$$\left|\frac{1}{N}\beta J s_{k} \int_{0}^{1} d\theta (1n\phi)' \left[\beta(h+Jt) + \theta\beta J \frac{s_{k}}{N}\right]\right| \leq a_{2}\beta J \frac{\left|s_{k}\right|}{N} + 2b\left|\beta(h+Jt)\right|\beta J \frac{\left|s_{k}\right|}{N} + b(\beta J)^{2} \frac{s_{k}^{2}}{N^{2}}$$

qui avec l'hypothèse  $(0 \le )$  sup  $(\ln \phi)$ "(t) < + $\infty$  donne:

(4.8.7) 
$$\exists a_4, b_4 \ge 0$$
,  $\forall b > 0$ ,  $\forall t$ ,  $s_k \in R$ ,  $\forall N \in \{1, 2, ...\}$ ,  $\psi_N(s_k, t) \le \exp(a_4 \frac{|s_k|}{N} + b_4 \frac{s_k^2}{N} + b \frac{|s_k|}{N} |t|)$ .

VERIFICATION DE 4.10.1

$$\int_{\mathbb{R}} \exp(-g(t)) |h(s_k,t)\psi_N(s_k,t)| dt$$

= 
$$\int_{\mathbb{R}} \varphi[\beta(h+Jt)]^{-(k-1)} \exp{\{\beta Js_{k}(1n\phi')[\beta(h+Jt)]\}} \exp{(-\frac{\beta Jt^{2}}{2})} dt$$

4.8.6, 4.8.5 et 2.5 prouvent 4.10.1 pour tout  $s_k$ .

VERIFICATION DE 4.10.3 Evident, avec pour tout  $s_k$ :  $h(s_k,t) \psi_N(s_k,t) \xrightarrow[N \to \infty]{} h(s_k,t) \text{ uniformément sur tout compact, en t.}$ 

VERIFICATION DE 4.10.4. C'est une consequence de 4.8.4, 4.8.5 et 4.8.7.

Nous venons de prouver:

$$(4.8.8) \quad \forall s_{k} \in \mathbb{R}, \quad \exp(N\gamma)N^{\frac{1}{2\overline{k}}} \int_{\mathbb{R}} h(s_{k},t) \psi_{N}(s_{k},t) \exp(-Ng(t)) dt$$

$$= \int_{\mathbb{R}} \exp(-\frac{t^{2\overline{k}}}{2\overline{k}!}) dt \sum_{\substack{1 \leq i \leq \ell \\ k_{i} = \overline{k}}} \lambda(m_{i})^{-\frac{1}{2\overline{k}}} h(s_{k},m_{i}) + o_{N \to \infty}(1)$$

De plus:  $\forall N \in \{1,2,...\}, \forall h > 0, \forall s_k \in \mathbb{R}$ :

$$0 \le h(s_k,t) \psi_N(s_k,t) \le \exp(a_3|s_k| + a_4 \frac{|s_k|}{N} + b_4 \frac{s_k^2}{N}) \phi[\beta(h+Jt)]^{-k} \exp(b|s_k| |t|)$$
et  $|s_k| |t| \le \frac{1}{2} (s_k^2 + t^2)$ , donc:

$$\exists a_5, b_5 \ge 0$$
,  $\forall N \in \{1,2,...\}$ ,  $\forall b > 0$ ,  $\forall s_k \in \mathbb{R}$ ,  $\frac{1}{|\exp(N\gamma)N^{2k}|} h(s_k,t) \psi_N(s_k,t) \exp(-Ng(t)) dt$ 

$$\leq \exp(a_5 |s_k| + b_5 s_k^2) \exp(N\gamma) N^{2k} \int \varphi[(h+Jt)]^{-k} \exp(bt^2) \exp(-Ng(t)) dt.$$

Il est possible de choisir b suffisamment petit pour que

 $\frac{1}{2k} \int \phi [\beta(h+Jt)]^{-k} \exp(bt^2) \exp(-Ng(t)) dt$  ait une limite (on vérifie a nouveau 4.10.let4.10.4), donc:

 $\begin{array}{ll} \exists a_5, b_5, c_5 \in |R, \quad \forall N \in \{1,2,\ldots\}, \quad \forall s_k \in |R, \\ |\exp(N_Y)N^{2k} fh(s_k,t) \psi_N(s_k,t) \exp(-Ng(t)) dt| \leq \exp(a_5|s_k| + b_5 s_k^2 + c_5). \end{array}$ 

4.8.1 est une conséquence de 4.8.4, 4.8.3 et 4.8.8 et du fait que  $g'(m_i) = 0 \Leftrightarrow (\ln \phi)'[\beta(h+Jm_i)] = m_i$ .
4.3.2 est une consequence de 4.8.1, 4.8.4 et 4.8.9

#### 4.c QUELQUES LIMITES DE FONCTIONS THERMODYNAMIQUES

NOTATIONS. Si  $(m_1, k_1, ..., m_\ell, k_\ell)$  est admissible pour  $(\alpha, \beta, h)$ , on note:

(4.13) 
$$_{c}M(\beta,h) = \{m_{i}, i \in \{1,...,\ell\}: \bar{b}_{i} > 0\}$$
  
et  $\bar{b}_{\beta,h}(m_{i}) = \bar{b}_{i}, \forall m_{i} \in \mathcal{A}(\beta,h).$ 

On note L(f): la transformée de Lengendre de f.

THEOREME ET DEFINITION 4.14. Les limites suivantes existent:

$$\lim_{N\to+\infty} \frac{1}{N} H_N, \rho_N^{\beta,h} > \equiv U(\beta,h): \qquad \text{énergie interne}$$

$$\lim_{N\to +\infty} -\frac{\ln[Z_N(\beta,h)]}{N\beta} \equiv F(\beta,h): \qquad \text{energie libre}$$

$$\lim_{N\to+\infty} -\frac{1}{N} \ k< \ln(\frac{d\rho_N^{\beta,h}}{d\alpha^{\otimes N}}), \rho_N^{\beta,h}> \equiv S(\beta,h): \quad \text{entropie}$$

$$\lim_{N\to +\infty} \langle M_N, \rho_N^{\beta,h} \rangle \equiv M(\beta,h)$$
: magnétisation .

De plus:

(4.14.1) 
$$U(\beta,h) = -\sum_{m \in \mathcal{M}(\beta,h)} \bar{b}_{\beta,h}(m) (hm + \frac{J}{2}m^2)$$

(4.14.2) 
$$F(\beta,h) = \frac{1}{\beta} \inf_{t} g_{\beta,h}(t) = \frac{1}{\beta} g_{\beta,h}(m)$$
  $(\forall m \in \mathcal{H}(\beta,h))$   
 $h \to F(\beta,h)$  est convexe.

(4.14.3) 
$$F(\beta,h) = U(\beta,h)-TS(\beta,h)$$

(4.14.4) 
$$M(\beta,h) = \sum_{m \in \mathcal{M}(\beta,h)} m \bar{b}_{\beta,h}(m)$$
.

DEMONSTRATION.

$$\lim_{N\to +\infty} \frac{1}{N} H_N, \rho_N^{\beta,h} = \lim_{N\to +\infty} \int -(hm + \frac{J}{2}m^2) \nu_N^{\beta,h}(dm) .$$

On obtient 4.14.1 à l'aide du théorème de convergence dominée

$$-\frac{\ln(Z_{N}(\beta,h))}{N\beta} = -\frac{1}{2\beta N} \ln(\frac{\beta JN}{2\pi}) - \frac{\ln_{\int \mathbb{R}} \exp[-N_{g_{\beta},h}(t)]dt}{N\beta}$$

Une limite simple de fonctions convexes est convexe. On en deduit 4.14.2.

$$\lim_{N\to +\infty} -\frac{1}{N} k_{<} \ln\left(\frac{d\rho_{N}^{\beta,h}}{d\alpha^{\otimes N}}\right), \rho_{N}^{\beta,h} > = \lim_{N\to +\infty} \langle -\beta k(hm_{N} + \frac{J}{2}m_{N}^{2} + \frac{k \ln Z_{N}(\beta,h)}{N}, \rho_{N}^{\beta,h} \rangle$$

$$= \beta k[U(\beta,h) - TS(\beta,h)]$$

Ce qui prouve 4.14.3

$$\lim_{N\to +\infty} \langle M_N, \rho_N^{\beta,h} \rangle = \lim_{N\to +\infty} \langle x, \nu_N^{\beta,h} \rangle$$

4.14.4 s'obtient sans modification de la démonstration du théorème 4.5, en vérifiant qu'on peut appliquer le théorème de convergence dominée.

PROPOSITION 4.15.

(4.15.1) 
$$F(\beta,h) = \inf_{t} V_{\beta,h}(t)$$
 avec  $V_{\beta,h}(t) = -ht - \frac{Jt^2}{2} + \frac{\phi(t)}{\beta}$ 

où  $\phi = L(\ln \phi)$  est la transformee de Cramer de  $\alpha$ . 4.15.1 s'ecrit aussi

(4.15.2) 
$$F(\beta,h) = -L(V_{\beta,0})(h)$$

(4.15.3) 
$$F_{h_0}(\beta,h) = F(\beta,h_0+h) = -L(V_{\beta,h_0})(h)$$
.

DEMONSTRATION. C'est une consequence du lemme 4.16 suivant en prenant dans ce lemme  $g(t)=\frac{Jt^2}{2}$  et  $f(t)=\frac{1}{\beta}\ln \phi \left[\beta(h+Jt)\right]$ .

LEMME 4.16. Si f est convexe, 
$$F = L(f)$$
 et  $G = L(g)$  alors

inf  $(g(x)-f(x)) = \inf_{X} (F(x)-G(x))$ 

DEMONSTRATION.

4.17. UNE REMARQUE SUR LA FONCTION  $V_{\beta,h}$ .  $V_{\beta,h}(t) = u(t)-T(-k\phi(t))$  où k est la constante de Boltzmann,  $u(t) = -h.t - \frac{Jt^2}{2}$  est l'energie interne pour la magnetisation t et  $-k\phi(t)$  a la dimension d'une entropie.  $V_{\beta,h}(t)$  est l'énergie libre pour la magnétisation t.  $+k\phi(t)$  "mesure la difficulte" qu'a la magnetisation t pour s'eloigner de  $m = \int x\alpha(dx)$ . En particulier  $t \to k\phi(t)$  est minimal en t=m et  $k\phi(m)=0$ .

Plus precisement, si  $(Z_i)_{i \ge 1}$  est i.i.d. (a), alors pour tout  $\Delta > 0$ :  $N = \sum_{\substack{\Sigma \\ N \to +\infty}} Z_i$   $\lim_{\substack{N \to +\infty}} \frac{1}{N} \ln[P(\frac{i=1}{N} > m+\Delta)] = -\phi(m+\Delta); \lim_{\substack{N \to +\infty}} \frac{1}{N} \ln[P(\frac{i=1}{N} < m-\Delta)] = -\phi(m-\Delta)$ avec b(m) = 0, et:

$$\begin{cases} iR^{+} \to iR & \begin{cases} iR^{+} \to iR \\ \Lambda \mapsto -\phi(m+\Lambda) & \begin{cases} \Lambda \mapsto -\phi(m-\Delta) \end{cases} \end{cases}$$

sont des fonctions négatives decroissantes.

PROPOSITION 4.18. Pour tout h admettant un voisinage sur lequel  $F(\beta,:)$  est derivable:

(4.18.1) 
$$M(\beta,h) = -\frac{\partial}{\partial h} F(\beta,h)$$
.

DEMONSTRATION. 
$$\langle M_N, \rho_N^{\beta,h} \rangle = \frac{1}{N\beta} \frac{\partial}{\partial h} \ln Z_N(\beta,h)$$
.

4.18 est une conséquence du theorème d'analyse convexe suivant. 🗆

THEOREME 4.19. Soit C un convexe, f une fonction convexe finie, différentiable sur C.  $\{f_n, n \ge 1\}$  est une suite de fonctions convexes, finies, différentiables sur C, telle que:  $\forall x \in C$ ,  $\lim_{n \to +\infty} f_n(x) = f(x)$ . Alors  $\lim_{n \to \infty} f_n'(x) = f'(x)$ ,  $\forall x \in C$ , et cette convergence est uniforme sur tout compact.

DEMONSTRATION. Voir [Roc].

# 5. MULTIPLICITE DE PHASES; GRANDES DEVIATIONS

#### 5.a MULTIPLICITE DE PHASES

DEFINITION 5.1. On dit qu'il y a multiplicité de phases sous le champ  $h_0$  et à la température  $\beta$  si le cardinal de  $\mathcal{K}(\beta,h_0)$  (voir 4.13) est strictement superieur à 1.

LEMME 5.2.  $V_{\beta,h}$  a le même nombre de minima locaux que  $g_{\beta,h}$ .

DEMONSTRATION.  $V_{\beta,h}^{\dagger}(t) = 0 \Leftrightarrow \beta(h+Jt) = \phi'(t) \Leftrightarrow g_{\beta,h}^{\dagger}(t) = 0$  car  $\phi' = (\ln \phi)^{\dagger -1}$ , et  $g_{\beta,h}^{\dagger}(t) \geq 0 \Leftrightarrow t \geq (\ln \phi)^{\dagger}[\beta(h+Jt)] \Leftrightarrow \phi'(t) \geq \beta(h+Jt)$  car de plus  $\phi'$  est croissante.  $\Box$ Le théorème 5.3 suivant permet de faire le bien entre la définition 5.1 et celle donnée en 1.34.

THEOREME 5.3. Il y a multiplicité de phases sous le champ  $h_0$  et à la temperature  $\beta$  si et seulement si  $F(\beta,.)$  n'est pas dérivable en  $h_0$ .

DEMONSTRATION. C'est une conséquence du lemme 5.2 et 4.15.3. En effet,  $V_{\beta,h_0}$  admet plusieurs minima locaux si et seulement si elle differe de sa convexifiée  $V_{\beta,h_0}$  qui admet une partie affine de pente nulle. Or  $F_{h_0}(\beta,h) = F(\beta,h_0+h) = -L(V_{\beta,h_0})(h) = -L(V_{\beta,h_0})(h)$ . Il y a donc multiplicité de phases si et seulement si  $F_{h_0}(\beta,.)$  n'est pas dérivable en h=0.

La proposition 5.4 suivante, precise la proposition 4.18 et le theorème 5.3. Rappelons qu'une fonction convexe admet toujours une derivee à droite et a gauche.

PROPOSITION 5.4. Max 
$$_{o}\mathcal{M}(\beta,h) = \frac{\partial^{+}F}{\partial h}(\beta,h)$$
 (derivée à droite)

Min  $_{o}\mathcal{M}(\beta,h) = \frac{\partial^{-}F}{\partial h}(\beta,h)$  (dérivee à gauche)

DEMONSTRATION. C'est une conséquence de 5.2 et de 4.15.3. 🗆

THEOREME 5.5.  $\alpha$  verifie 2.5 et est non-degeneree. On note  $m=\int_{\mathbb{R}}x\alpha(dx)$ ,  $\overline{\alpha}$  la probabilite definie par:  $\overline{\alpha}(dx)=\alpha(dx+m)$ ,  $(\forall dx\in\mathcal{L}(\mathbb{R}))$  et  $Var(\alpha)=\int x^2\alpha(dx)-m^2$ . Si  $\beta J>\frac{1}{Var(\alpha)}$ , il existe un champ  $h(\beta)$  sous lequel il y a multiplicité de phases.

Si de plus  $\bar{a}$  est symetrique, le champ  $h(\beta)$  = -mJ convient.

DEMONSTRATION. Les extrema locaux de  $g_{\beta,h}$  sont donnés par l'equation  $g_{\beta,h}^{\dagger}(t)=0 \Leftrightarrow t=(\ln \phi_{\alpha})^{\dagger}[\beta(h+Jt)] \Leftrightarrow t-m=(\ln \phi_{\bar{\alpha}})^{\dagger}[\beta(h+Jt)].$  Prenons  $h=h_{\alpha}=-mJ$  et posons u=t-m, alors

(5.5.1) 
$$g_{\beta,h_{\alpha}}^{\prime}(t) = 0 \Leftrightarrow u = (\ln \varphi_{\overline{\alpha}})^{\prime}(\beta l u)$$

u=0 est toujours solution car  $\int x \tilde{a}(dx) = 0$ . Compte tenu de 4.11.2,5.5.1 admettra des racines autres que u=0, si

$$\frac{d}{du}(\ln \varphi_{\alpha})'(\beta Ju)|_{u=0} > 1 \Leftrightarrow \beta JVar(\alpha) > 1.$$

Remarquons que la plus petite racine > 0 et la plus grande < 0 correspondent à des minima locaux de  $g_{\beta,h_\alpha}$ . Le lemme 5.2 nous permet alors d'énoncer que  $V_{\beta,h}$  admet au moins deux minima locaux si  $\beta J > \frac{1}{Var(\alpha)}$ , donc:

(5.5.2) 
$$V_{\beta,h_{\alpha}}$$
 differe de sa convexifiée  $V_{\beta,h_{\alpha}}$ , si  $\beta J > \frac{1}{Var\alpha}$ .

Nous allons montrer maintenant qu'il existe un point en lequel  $F(\beta,.)$  n'est pas derivable.

D'apres 4.15.3,  $F(\beta,h) = F_{h_{\alpha}}(\beta,h-h_{\alpha}) = -L(\sqrt{\beta,h_{\alpha}})(h-h_{\alpha}).$ 

D'apres 5.5.2,  $\widehat{V_{\beta,h_{\alpha}}}$  admet au moins une partie linéaire, soit  $h_1$  sa pente. Alors  $F_{h_{\alpha}}$  n'est pas dérivable en  $h_1$ , ce qui equivaut a: F n'est pas dérivable en  $h = h_1 + h_{\alpha}$ . Ce qui demontre la premiere partie de 5.5.

Si  $\overline{\alpha}$  est symétrique,  $V_{\beta,h_{\alpha}}$  (m+.) est une fonction paire. En effet  $\phi_{\alpha}(t) = \phi_{\overline{\alpha}}(t-m)$  et  $\phi_{\overline{\alpha}}$  est paire. Or

$$V_{\beta,h_{\alpha}}(t) = mJt - \frac{Jt^2}{2} + \frac{\phi_{\alpha}(t-m)}{\beta} = -\frac{J}{2}(t-m)^2 + \frac{1}{\beta}\phi_{\alpha}(t-m) + \frac{Jm^2}{2}$$

donc  $V_{\beta,h}$  admet au moins deux minima globaux si  $\beta J>\frac{1}{Var(\alpha)}$ , et elle differe de sa convexifiée qui admet une partie lineaire de pente  $h_1=0$ .

Il existe une classe de probabilités  $\alpha$ , pour laquelle nous avons un resultat plus precis que celui du theorème 5.5, ce sont les probabilités verifiant l'inegalite G.H.S. (Griffiths, Hurst, Sherman). Ellis et Newman ont montre dans un cadre beaucoup plus genéral le theorème suivant.

THEOREME 5.6. Inégalité G.H.S., hypothèses simplifiées. Soit a une probabilite symétrique sur IR, verifiant 5.6.1 ou bien 5.6.2

(5.6.1) 
$$\alpha = \frac{1}{2}(\delta_{-y} + \delta_{+y}), \quad (y \ge 0)$$

(5.6.2)  $\alpha$  est absolument continue et il existe I positif (eventuellement  $+\infty$ ) tel que:

$$\frac{d\alpha}{dx} = \begin{cases} constante & exp-\int_0^x G(y) dy, & x \in ]-I, I[\\ 0 & x \notin ]-I, I[ \end{cases}$$

ou G(0) = 0 et G est convexe sur [0,1[.

Soit M  $\ge$  0, tel que Z(h) =  $\int_R \exp(hx+Jx^2)\alpha(dx) < +\infty$ ,  $\forall h \in \mathbb{R}$ ,  $\forall J < M$ . Alors l'inégalite suivante est verifiee:

$$\forall J < M, \forall k \ge 0, \frac{\partial^3}{\partial h^3} \ln Z(h) \le 0.$$

DEMONSTRATION. Voir [EN2].

THEOREME 5.7. m,  $Var(\alpha)$  et  $\overline{\alpha}$  sont définis comme en 5.5.  $\alpha$  verifie 2.5. Si  $\overline{\alpha}$  verifie 5.6.1 ou bien 5.6.2, alors

### Sous le champ h=-mJ

si 
$$\beta J > \frac{1}{Var(\alpha)}$$
 il y a multiplicite de phases et #/( $\beta$ ,h) = 2

si  $\beta J \leq \frac{1}{Var(\alpha)}$  il n'y a pas multiplicité de phases (# $\mathcal{H}(\beta,h) = 1$ )

### Sous un champ h ≠ -mJ

Il n'y a jamais multiplicité de phases.

DEMONSTRATION. (Faite pour m=0). La première partie est une consequence de la demonstration de 5.5 et du fait que 5.6 implique que  $\ln \phi_{\overline{a}}$  est concave à droite de 0 et convexe à gauche.

La seconde partie: 
$$V_{\beta,0}^{\text{M}}(t) = -J + \frac{\phi''(t)}{\beta}$$
 . Or  $5.6 \Rightarrow \phi'''(t) \geq 0$ ,  $\forall t \geq 0$ .

Donc  $V_{\beta,0}$  est convexe à droite de son minimum le plus grand. Comme elle est analytique, elle n'a pas de zone linéaire et  $F(\beta,h)$  est dérivable pour h>0. De même pour h<0.

REMARQUE 5.8. Lorsque  $\alpha$  vérifie 5.6.1 ou 5.6.2, l'hypothèse  $(1n\Psi)$ " bornée qui apparait dans le theoreme 4.6 est vérifiee.

#### 5.b UN RESULTAT DE GRANDES DEVIATIONS

Une inspection précise de la preuve de la formule de Chernoff donnée par Dacunha-Castelle [Dac], permet de l'enoncer, sans modification de la démonstration, sous la forme suivante:

THEOREME 5.9. Formule de Chernoff. Soit  $({}^Y_N)_{N\geq 1}$  une suite de variables aléatoires. On suppose que  ${}^Y_N$  verifie les trois hypothèses suivantes

(5.9.1) EexptY<sub>N</sub> = 
$$\phi_N(t) < +\infty$$
,  $\forall t \in \mathbb{R}$ 

(5.9.2) 
$$\frac{1}{N} \ln \phi_{N}(t) \rightarrow \psi(t)$$

simplement sur ]0,+ $\infty$ [,  $\psi$  est dérivable sur ]0,+ $\infty$ [

(5.9.3)  $Y_N$  n'est pas asymptotiquement dégénérée.

Alors, si 
$$a > \psi'^+(0)$$
:  $\lim_{N \to +\infty} \frac{1}{N} \ln P(Y_N > Na) = -L(\psi)(a)$ .

REMARQUE. L'hypothèse 2 est équivalente à la condition apparamment plus forte:

$$\frac{1}{N} \ln \phi_N(t) \xrightarrow[N \to \infty]{} \psi(t)$$
 et  $\frac{1}{N} (\ln \phi_N)'(t) \to \psi'(t)$ 

uniformément sur tout compact de ]0, +[. Ceci est du au fait que les fonctions  $\frac{1}{N} \ln \phi_N$  sont convexes. (Voir le théorème 4.19, par exemple)

PROPOSITION 5.10. Si  $\alpha$  vérifie 2.5 et l'une des hypothèses de l'inegalité G.H.S.:5.6.1 ou 5.6.2, alors:

$$\forall a > \max \mathcal{M}(\beta, h_0), \lim_{N \to \infty} \frac{1}{N} \rho_N^{\beta, h_0}(M_N > a) = -\beta [V_{\beta, h_0}(a) - \inf_t V_{\beta, h_0}(t)].$$

Rappelons que  $\inf_{t} V_{\beta,h_0}(t) = V_{\beta,h_0}(m), \forall m \in \mathcal{M}(\beta,h_0).$ 

DEMONSTRATION. Nous allons appliquer 5.9 avec  $Y_N = S_N$ 

$$\phi_{N}(t) = Z_{N}(\beta, h_{0})^{-1} \int_{\mathbb{R}^{N}} \exp(t \sum_{i=1}^{N} x_{i}) \exp[\beta(h_{0} \sum_{i=1}^{N} x_{i} + \frac{J}{2N} (\sum_{i=1}^{N} x_{i})^{2})] \alpha^{\otimes N}(dx)$$

$$= Z_{N}(\beta, h_{0})^{-1} Z_{N}(\beta, h_{0} + \frac{t}{\beta})$$

$$\frac{1}{N} \ln \phi_N(t) \xrightarrow[N \to +\infty]{} \psi(t) = -\beta F_{h_0}(\beta, \frac{t}{\beta}) + \beta F(\beta, h_0).$$

Comme  $\alpha$  vérifie 5.6.1 ou 5.6.2,  $\psi$  est dérivable en tout point différent de 0. Les hypothèses de 5.9 sont bien vérifiées. D'autre part,  $\psi^{+}(0) = -\frac{\partial^{+}F}{\partial h}(\beta,h)\big|_{h=h_{0}} = \max(\beta,h_{0}) \quad \text{(voir 5.4). Finalement, en conséquence de 4.15.3:}$ 

$$L(\psi)(a) = \sup_{t} \left[at - \psi(t)\right] = \sup_{t} \left[at + \beta F_{h_0}(\beta, \frac{t}{\beta})\right] - \beta F(\beta, h_0)$$

$$= \sup_{t} \left[at - \beta L(V_{\beta, h_0})(\frac{t}{\beta})\right] - \beta \inf_{t} V_{\beta, h_0}(t)$$

$$= \beta \sup_{t} \left[au - L(V_{\beta, h_0})(u)\right] - \beta \inf_{t} V_{\beta, h_0}(t)$$

$$= \beta (\widehat{V_{\beta, h_0}}(a) - \inf_{t} V_{\beta, h_0}(t)) .$$

$$Mais \quad a > \max_{t} (\beta, h_0) \Rightarrow \widehat{V_{\beta, h_0}}(a) = V_{\beta, h_0}(a) . \quad \Box$$

| 111 | - | MARTMAR2 | GENERALITES | CONCERNANT |
|-----|---|----------|-------------|------------|
|     |   |          |             |            |

LES PROCESSUS

### 6) Processus markoviens non-linéaires

Le cadre: (S,  $\mathcal{C}(S)$ ) est un espace mesurable.  $\pi$  est muni de la plus petite tribu rendant mesurables toutes les applications:

$$\begin{cases} \pi(S) \to \mathbb{R} \\ \mu \to \mu(A) \end{cases} \text{ où } A \in \mathcal{C}(S).$$

$$\Omega = S \mathbb{R}^+$$

$$\Omega = S^{\mathbb{R}^+}$$
On note X le processus canonique défini par:  $X = (X_t)_{t \ge 0} : \begin{cases} \mathbb{R}_{x}^+ \Omega \to S \\ (t, \omega) \to X_t(\omega) = \omega(t) \end{cases}$ 

 $\Omega$  est muni de la famille croissante de tribus  $(F_{t})_{t\geq0}$ 

$$F_t = \sigma(X_s, 0 \le s \le t); F = V_{t \ge 0} F_t$$

Notations: 
$$X_t \circ P = P^t, \quad \forall P \in \pi(\Omega)$$

 $(\theta_{\text{t}})_{\text{t}\geq 0}$  est la famille d'opérateurs de translation définie par:

$$\forall \texttt{t} \geq \texttt{0}, \ \theta_{\texttt{t}} : \begin{cases} \Omega \rightarrow \Omega \\ \omega \rightarrow \theta_{\texttt{t}}(\omega), \end{cases} \ \forall \texttt{s} \geq \texttt{0}, \ \texttt{X}_{\texttt{s}} \circ \theta_{\texttt{t}} = \texttt{X}_{\texttt{t} + \texttt{s}}$$

# Définition 6.1

Un processus de Markov non-linéaire sur S est une famille de probabilités sur  $(\Omega, F)$ :  $\{P_{\mathfrak{U}}, \mu \in \pi(S)\} \subset \pi(\Omega)$ , satisfaisant aux conditions suivantes:

(Mnl 1) 
$$\forall B \in F$$
,  $\{ \begin{array}{c} \pi(S) \rightarrow \mathbb{R} \\ \mu \rightarrow P_{\mu}(B) \end{array} \ \text{est mesurable.}$ 

(Mnl 2) 
$$\Psi_{\mu} \in \pi(S)$$
,  $P_{\mu}^{0} = \mu$ 

(Mnl 3) 
$$\forall t$$
,  $u \ge 0$ ,  $\forall f \in M_h(S)$ ,  $\forall \mu \in \pi(S)$ ,

$$E_{P_{\mu}}[f(X_{t+u})|F_{t}] = E_{P_{\mu}}[f(X_{t+u})|X_{t}] = E_{P_{pt}}[f(X_{u})|X_{0}] \circ \theta_{t}$$

Remarque 6.2: Mnl 3 est équivalent à:

$$\forall t, u \ge 0, \forall f \in M_h(S), \forall \mu \in \pi(S)$$

$$\mathbb{E}_{\mathbf{p}_{\mu}}[f(\mathbf{X}_{t+\mathbf{u}})|F_{t}] = \mathbb{E}_{\mathbf{p}_{\mu}}[f(\mathbf{X}_{t+\mathbf{u}})|\mathbf{X}_{t}] = \mathbb{E}_{\mathbf{p}_{\mu}}[f(\mathbf{Y}_{\mathbf{u}})|\mathbf{Y}_{o} = \bullet](\mathbf{X}_{t})$$

où  $\forall t \geq 0, Y_t$ :  $\begin{cases} \Omega' = \Omega \to S \\ \omega' \to \omega'(t) \end{cases}$  et  $(Y_t)_{t \geq 0}$  est une copie indépendante de S La première égalité de Mn & 3 est la propriété de Markov, tandis que la deuxième donne la nature de l'inhomogénéité temporelle. Comme nous le verrons plus loin au chapitre 8. , un exemple de processus continu markovien non-linéaire est obtenu lorsqu'on cherche la solution de:

$$\begin{cases} dx_t = b(x_t, p^t)dt + \sigma(x_t, p^t)dw_t \\ p = \mathcal{L}(x) \end{cases}$$

La proposition 6.3 et la corollaire 6.5 donne le lien entre le Markov ordinaire et le non-linéaire.

Rappelons qu'un processus de Markov ordinaire (voir par exemple: [Dyn]) est donné par une famille de probabilités sur  $(\Omega,F)$ :  $\{P_{\delta_{\mathbf{v}}},\mathbf{x}\in S\}\subset\pi(\Omega)$ ,

satisfaisant aux conditions suivantes:

(M1) 
$$\forall B \in F$$
,  $\begin{cases} S \to \mathbb{R} \\ x \to P_{\delta_x} \end{cases}$  est mesurable.

(M2) 
$$\forall x \in S$$
,  $P_{\delta_x}^0 = \delta_x$ 

(M3) 
$$\forall t, u \ge 0, \forall f \in M_b(S), \forall x \in S$$

$$E_{P_{\delta_{\mathbf{x}}}}[f(X_{t+u})|F_{t}] = E_{P_{\delta_{\mathbf{x}}}}[f(X_{t+u}|X_{t})] = E_{P_{\delta_{X_{t}}}}[f(X_{u})]$$

M1 permet de donner un sens a  $P_{\mu} \equiv \int_{S} P_{\delta_{\mathbf{x}}} \mu(d\mathbf{x})$ , pour tout  $\mu$  de  $\pi(S)$ 

Alors  $P_{u}$  , ainsi défini, vérifie M2 et M3, où  $\delta_{\mathbf{x}}$  est remplacé par  $\mu.$ 

#### Proposition 6.3

Un processus de Markov non-linéaire est un processus de Markov ordinaire, si et seulement si:

(6.3.1) 
$$P_{\mu} = \int_{S} P_{\delta_{x}} \mu(dx), \quad \forall \mu \in \pi(S)$$

Remarque: 6.3.1 a un sens en raison de Mnl 1.

Par la suite nous emploierons des versions conditionnelles régulières dans les démonstrations, par commodité d'écriture. Les résultats énoncés dans ce chapitre sont vrais, même sans l'existence de ces v.c.r.

#### Démonstration de 6.3:

a) condition nécessaire: par hypothèse: 
$$E_{P}[f(X_{u})|X_{o}]o\theta_{t} = E_{P}[f(X_{u})]$$

Prenons t = 0, alors:

$$\langle f, P_{\mu}^{u} \rangle = \mathbb{E}_{P_{\mu}} [f(X_{u})] = \mathbb{E}_{P_{\mu}} \mathbb{E}_{P_{\mu}} [f(X_{u})|X_{o}] = \mathbb{E}_{P_{\mu}} \mathbb{E}_{P_{\delta}X_{o}} [f(X_{u})]$$

$$= \mathbb{E}_{P_{\mu}} \langle f, P_{\delta}^{u} \rangle = \langle f, \int_{S} P_{\delta}^{u} \mu(dx) \rangle$$

b) condition suffisante:  $\forall \phi \in M_b(S)$ :

$$E_{P_{u}^{t}} \{ \phi(X_{o}) E_{P_{u}^{t}} [f(X_{u})|X_{o}] \} = E_{P_{u}^{t}} [\phi(X_{o}) f(X_{o})]$$

$$= \int_{S} E_{P_{\delta_{x}}} [\phi(X_{o}) f(X_{u})] P_{\mu}^{t} (dx) \qquad (par hypothèse)$$

$$= \int_{S} \phi(x) E_{P_{\delta_{x}}} [f(X_{u})] P_{\mu}^{t} (dx)$$

$$= E_{P_{u}} \{\phi(X_{o}) E_{P_{\delta_{x}}} [f(X_{u})]\}, \qquad donc$$

 $E_{P_{\mu}}[f(X_{u})|X_{o}] = E_{P_{\delta_{X_{o}}}}[f(X_{u})]$  et par conséquent, d'après Mnl 3:

$$E_{P_{\mu}} [f(X_{t+u}) | X_{t}] = E_{P_{\mu}} [f(X_{u}) | X_{o}] \circ \theta_{t} = E_{P_{\delta}} [f(X_{u})]$$

#### Proposition 6.4

Si  $\{P_{\mathbf{u}}, \ \mu \in \pi(S)\}$  est un Markov non-linéaire et si on définit:

$$\forall t \geq o$$
,  $\forall \mu \in \pi(S)$ ,  $U_t(\mu) = P_u^t$ 

alors  $(U_t)_{t\geq 0}$  est un semi-groupe d'opérateurs (éventuellement non

linéaires) sur  $\pi(S)$ 

démonstration: Pour effectuer les calculs suivants, nous utilisons la remarque 6.2.

$$\forall \texttt{t, } \texttt{u} \geq \texttt{0, } \forall \texttt{f} \in \texttt{M}_{\texttt{b}}, \ \forall \texttt{\mu} \in \pi(\texttt{S}),$$

$$\langle f, U_{t+u} \rangle = E_{P_{\mu}} [f(X_{t+u})] = E_{P_{\mu}} E_{P_{\mu}} [f(X_{t+u})|X_{t}]$$

$$= E_{P_{\mu}} E_{P_{\mu}} [f(Y_{u})|Y_{o} = X_{t}] = \int_{\Omega} P_{\mu} (d\omega) \int_{\Omega'} (Y_{u}(\omega'))P_{\mu} (d\omega'|Y_{o} = X_{t}(\omega))$$

$$= \int_{\Omega'} f(Y_{u}(\omega')) [\int_{\Omega} P_{u}^{t} (\cdot|Y_{o} = X_{t}(\omega))P_{\mu} (d\omega)](d\omega')$$

où 
$$\int\limits_{\Omega} P_{\mu}^{t}$$
 (•|Yo = X<sub>t</sub>( $\omega$ )) $P_{\mu}$ (d $\omega$ ) =  $\nu$ (•) est défini faiblement.

Il est clair que  $\nu$  est une probabilité. Il reste à prouver  $\nu$  =  $P_{u}^{t}$ , car

si c'est le cas

$$\langle f, U_{t+u}(\mu) \rangle = \langle f(Y_u), v \rangle = \langle f, P_u^u \rangle = \langle f, U_u(P_\mu^t) \rangle = \langle f, U_u \circ U_t(\mu) \rangle$$

Preuve de  $v = P_{\mu}t$ :

$$\begin{array}{l} \forall \ A \in F', \ \nu(A) = \int\limits_{\Omega} P_{\mu}^{t} \ (A|Y_{o} = X_{t}(\omega)) \ P_{\mu}^{t}(d\omega) \\ \\ = \int\limits_{\Omega} P_{\mu}^{t} \ (A|Y_{o} = X_{t}(\omega)) \ P_{\mu}^{t} \ (d\omega) \ (Mn\&\ 2 \Rightarrow \cancel{X}(Y_{o}) = P_{\mu}^{t}) \\ \\ = P_{\mu}^{t} \ (A) \end{array}$$

Corollaire 6.5  $(U_t)_{t\geq 0}$  est un semi-groupe d'opérateurs linéaires (pour les combinaisons convexes) si et seulement  $si\{P_{\mu}, \mu \in \pi(S)\}$  est un Markov ordinaire.

<u>démonstration</u>: C'est une conséquence immédiate de 6.3 et 6.4 6.4 s'écrit: (6.6) \text{ \text{V}}t, s \geq 0, \text{\text{V}}\mu \in \pi(S), \quad P\_{\mu}^{t} = P\_{\mu}^{t+s} P\_{\mu}^{s}

Corollaire 6.7 
$$\forall t \geq 0$$
,  $\forall \mu \in \pi(S)$ ,  $\theta_t \circ P_{\mu} = P_{\mu}^t$ 

<u>démonstration</u>: C'est une conséquence de 6.6 et de la propriété de Markov 

De manière imprécise, on peut dire qu'un processus markovien strictement 

non linéaire garde la mémoire de sa condition initiale. Si U n'est 

pas linéaire, il n'est pas possible de considérer son adjoint T comme



dans le cas du markov ordinaire. Toutefois, c'est une notion partielle d'adjoint de  $(\mathbf{U}_{\mathbf{t}})_{\mathbf{t} \geq 0}$  qui va nous permettre de démontrer la proposition 6.12.

Lemma 6.8 Définissons:  $\forall o \leq s \leq t$ ,  $\forall \mu \in \pi(S)$ ,  $\forall f \in M_h(S)$ ,  $\forall x \in S$ 

(6.8.1) 
$$T_{P_{\mu}}^{t} f(x) = E_{P_{u}}[f(X_{t-s}) | X_{o} = x]$$

alors  $\forall o \leq s \leq t, \forall \mu \in \pi(S)$ 

$$(6.8.2) T_{\mu}^{t} T_{\mu}^{u} = T_{\mu}^{u}$$

Remarque D'après 6.8.2, pour  $\mu$  donné, (T<sup>t</sup>) est un semi-

groupe généralisé d'opérateurs linéaires (pour cette notion, voir [Nev])

Remarque Une conséquence immédiate de 6.8.1 est que si on note

$$v = P_{\mu}^{s}$$
, alors  $T_{\mu}^{t} = T_{\nu}^{t-s}$ , ce qui signifie que  $T_{\mu}^{t}$  ne dépend de s

que par Ps.

Tt  $\phi$  -  $\phi$  En particulier,  $\lim_{t \to s} \frac{p^s}{t-s}$  (limite forte dans  $M_b(S)$ ) ne dépend

de s que par  $P_{11}^{S}$ , ce qui permet de définir:

(6.9) 
$$G(v)\phi = \lim_{h \to 0} (T^{h}\phi - \phi)h^{-1} = \lim_{t \to s} (T^{t}\phi - \phi)(t-s)^{-1} (ou v = P^{s}\mu), \forall s \ge 0$$

$$\text{si } \phi \in D(G(v)) = \{\phi \in M_b(S), \lim_{h \neq 0} (T_v^h \phi - \phi)h^{-1} \text{ existe dans } M_b(S)\}$$

# Le cas $S = \mathbb{R}^d$

 $C_{\nu}^{\infty}(\mathbb{R}^d) = \mathcal{D}(\mathbb{R}^d)$  est muni de sa topologie usuelle.

 $\mathcal{D}$ ' ( $\mathbb{R}^d$ ), son dual, est l'espace des distributions.

### Proposition 6.10

 $G(\mathbf{v}) \text{ $\acute{e}t$ ant $d\acute{e}fini$ comme en 6.9, $si$ pour tout $\mathbf{v} \in \pi(\mathbb{R}^d)$, on a:} \\ C_k^{o}(\mathbb{R}^d) \subset D(G(\mathbf{v})) \text{ $\acute{e}t$ } G(\mathbf{v}) \colon \quad \mathcal{D}(\mathbb{R}^d) \to B_b(\mathbb{R}^d) \text{ $\acute{e}st$ continu,} \\ alors: \quad \forall \mu \in \pi(\mathbb{R}^d), \quad \forall t \geq o, \quad \frac{d}{dt} \left( U_t \mu \right) = A^*(U_t \mu) \; (dans \; \mathcal{D}'(\mathbb{R}^d)) \text{ où} \\ A^*(\mathbf{v}) = G(\mathbf{v})^*(\mathbf{v}) = \lim_{h \to o} \frac{U_h \mathbf{v} - \mathbf{v}}{h} \; (dans \; \mathcal{D}'(\mathbb{R}^d)), \quad \forall \mathbf{v} \in \pi(\mathbb{R}^d) \\ h + o \; \text{ $\acute{e}t$ and $\acute{e}t$ of $\acute{e}t$ and $\acute{e}t$ of $\acute{e}t$ o$ 

et  $G(v)^*$ :  $(B_b(\mathbb{R}^d))' \rightarrow \mathcal{D}'(\mathbb{R}^d)$  est l'adjoint de G(v).

The preuve:  $\forall \phi \in C_K^{\infty}(\mathbb{R}^d)$ ,  $\lim_{u \neq t} \frac{P_t^t}{u - t} = G(P_{\mu}^t)(\phi) \in B_b(\mathbb{R}^d)$ , et:

 $\forall o \leq s \leq t, \frac{\partial}{\partial t} T_{p_{\mu}}^{t} \Rightarrow T_{p_{\mu}}^{t} G(P_{\mu}^{t}) \phi \left( \frac{\partial}{\partial t} = \frac{\partial}{\partial t^{+}} \text{ car nous avons des limites} \right)$  fortes de  $\frac{1}{2}$ -groupe)

$$\begin{aligned} \forall \mathbf{q} \in (\mathbf{B}_{\mathbf{b}}(\mathbf{R}^{\mathbf{d}}))', &< \frac{\partial}{\partial \mathbf{t}} \mathbf{T}_{\mathbf{p}_{\mathbf{u}}}^{\mathbf{t}} \boldsymbol{\phi}, \mathbf{q} > \mathbf{B}_{\mathbf{b}}, \mathbf{B}_{\mathbf{b}}' = <\mathbf{T}_{\mathbf{p}_{\mathbf{u}}}^{\mathbf{t}} \mathbf{G}(\mathbf{P}_{\mu}^{\mathbf{t}})(\boldsymbol{\phi}), \mathbf{q} > \mathbf{B}_{\mathbf{b}}, \mathbf{B}_{\mathbf{b}}' \end{aligned}$$

$$= <\boldsymbol{\phi}, \mathbf{G}(\mathbf{P}_{\mu}^{\mathbf{t}})^{*} \mathbf{U}_{\mathbf{p}_{\mathbf{u}}}^{\mathbf{t}}(\mathbf{q}) >_{\mathcal{D}, \mathcal{D}}'$$

Nous avons noté  $U_{p_{\mu}}^{t}$  pour l'adjoint de  $T_{\mu}^{t}$ .

La dernière égalité a un sens car  $\mathtt{G}(\mathtt{P}_{\mu}^{t})$  est continu et  $\mathfrak{D} \to \mathtt{B}_{b}$  dense

Or: 
$$\langle \frac{\partial}{\partial t} | T_{\mu}^{t} | \phi, q \rangle_{B_{b}, B_{b}} = \langle \phi, \frac{\partial}{\partial t} | U_{P_{\mu}}^{t} q \rangle_{B_{b}, B_{b}}, \text{ où } :$$

 $\frac{\partial}{\partial t}$   $U_{P_{M}}^{t}$  q est défini au sens faible.

Comme  $(B_b(\mathbb{R}^d))' \to \mathcal{D}'(\mathbb{R}^d)$ , on déduit:

$$\forall 0 \leq s \leq t, \forall \mu \in \pi(\mathbb{R}^d), \forall q \in (B_b(\mathbb{R}^d))', \frac{\partial}{\partial t} U_{p_{\mu}}^t q = G(P_{\mu}^t)^* U_{p_{\mu}}^t (q)$$

(dans  $\mathcal{D}'(\mathbb{R}^d)$ )

La proposition sera donc démontrée en prenant  $q = P_{\mu}^{t}$ , si on prouve que:

$$U_{P_{\mu}}^{t}(P_{\mu}^{s}) = P_{\mu}^{t}$$

Or: 
$$\forall f \in B_b(\mathbb{R}^d)$$
,  $\langle f, U_{\mu}^t (P_{\mu}^s) \rangle = \langle T_{\mu}^t f, P_{\mu}^s \rangle = E_{\mu} E_{\mu} [f(X_{t-s}) | X_0]$ 

$$= \langle f, P_{\mu}^{t-s} \rangle = \langle f, P_{\mu}^t \rangle$$

Remarque Contrairement au cas linéaire, on ne peut rien conclure sur la densité du domaine de A\*. Même si le processus est continu à droite (dans ce cas D(G(v)) est dense, pour tout  $v \in \pi(S)$ ) rien ne permet d'assurer, dans un cadre général, que  $v \in D(G(v^*))$ .

Observons finalement que, lorsque le processus est markovien linéaire (ordinaire),  $G(\nu)$  ne dépend pas de  $\nu$ .

# 7) <u>Le problème des martingales</u>

a) <u>Le Cadre</u> S est un espace polonais

L'espace canonique est  $\Omega = C(\mathbb{R}^+, S)$ On note  $X = (X_t)_{t \ge 0}$  le processus canonique  $\Omega$  est muni de la famille croissante de sous-tribus  $F_t = \sigma(X_s, o \le s \le t)$ ,  $F = \underset{t \ge 0}{\mathsf{v}} F_t$ On munit  $\Omega$  de la topologie de la convergence uniforme sur tout borné de  $\mathbb{R}^+$ .

Proposition 7.1 
$$F = B(\Omega)$$
 
$$\forall t \geq o, F_t = \sigma \{ B \in \Omega : \{ \omega_{|[o,t]}, \omega \in B \} \in (C([o,t],S)) \}$$

Proposition 7.2 Si S est polonais alors  $\Omega$  est polonais Les démonstrations sont classiques

b) Le problème des martingales

G:  $C_b(S) \supset D(G) \rightarrow B_b(S)$  est un opérateur <u>linéaire</u>, de domaine D(G), sous-espace vectoriel de  $C_b(S)$ . G est éventuellement <u>non borné</u>

Définition 7.3 On dit que 
$$P: \begin{cases} S \to \pi(\Omega) \\ x \to P_x \end{cases}$$
 résoud le problème des

<u>martingales</u> sur  $\Omega$ , de générateur (G,D(G)) si:

(7.3.1) 
$$\forall x \in S, P_x^O = x_O \circ P = \delta_x$$

 $(7.3.2) \quad \forall x \in S, \ \forall \psi \in D(G), \ M_{\psi}(t) = \psi(X(t)) - \int_{O}^{t} G\psi(X(s)) ds \ est \ une$   $P_{x}\text{-martingale pour } (F_{t})_{t \geq O}$ 

On écrit  $P_x$  résoud PM(x,G,D(G)) et P résoud PM(G,D(G))

Remarque 7.4 Pour tout  $\psi$  de D(G) et tout x de S, M $_{\psi}$  est continue en t et  $\{M_{\psi}(t,\omega), \omega \in \Omega\}$  est borné.

### c) La propriété de Markov

Nous donnons au théorème 7.8 une condition suffisante pour que le processus X soit fortement markovien.

Remarque 7.5 Puisque  $\Omega$  est métrisable et séparable, pour tout temps d'arrêt  $\tau$ ,  $F_{\tau}$  est une sous-tribu de F qui possède un système dénombrable de générateurs. (CF [Pri])

Remarque 7.6 Puisque  $\Omega$  est polonais, Q étant un élément de  $\pi(\Omega)$ , il existe une version régulière de  $Q(|F_T)$ , c'est à dire un noyau  $N(\omega,A)$  tel que:

- 1)  $\forall A \in F$ ,  $N(\cdot,A)$  est  $F_{\tau}$ -mesurable.
- 2)  $\forall \omega \in \Omega$ ,  $N(\omega, \bullet) \in \pi(\Omega)$
- 3)  $N(\cdot,A) = Q(A,F_T)$  Q-presque surement.

Notation: Les opérateurs de translation sur  $\Omega$ 

$$\theta_{t}: \quad \Omega \rightarrow \Omega \qquad \qquad \theta_{t}\omega(s) = \omega(t+s)$$

$$\theta_{\tau}: \quad \Omega \rightarrow \Omega \qquad \qquad \theta_{\tau}\omega(s) = \omega(\tau(\omega)+s)$$

<u>Proposition 7.7</u> Soit  $P = \{P_x, x \in S\}$  une solution de PM(G, D(G))Supposons:

 $(7.7.1) \quad \text{Il existe un sous-ensemble } \underline{\text{dénombrable}} \ \Delta(G) \ \text{de D}(G), \ \text{tel que}$   $\forall \psi \in D(G), \ \exists \{\psi_n, \ n \geq 1\} \subset \Delta(G), \ t.q. \ \psi_n \xrightarrow{n \to \infty} \psi \ \text{et } G\psi_n \xrightarrow{n \to \infty} G\psi$   $\text{et } \{||\psi_n||, \ ||G\psi_n||, \ n \geq 1\} \ \text{est borné}.$ 

Soit  $\tau$  un temps d'arrêt borné. Soit  $\omega \to Q^x(\omega)$  une version régulière de  $P_x(|F_\tau)$ 

Alors, il existe un sous-ensemble N $_x$  de  $\Omega$  qui est P $_x$ -négligeable et tel

que:

(a)  $\forall \omega \notin N_x$ ,  $\forall \psi \in D(G)$ ,  $\Delta M_{\psi}(\tau,t) \equiv M_{\psi}(\tau+t) - M_{\psi}(\tau)$  est une  $Q_{\omega}^x$ -martingale par rapport aux  $\theta^{-1}(F_t)$ 

(b) Si on pose 
$$H_{\omega}^{x}(\cdot) = Q_{\omega}^{x}(\theta_{\tau(\omega)}^{-1}(\cdot))$$
 (Yw \(\ell N\_{x}\))
$$H_{\omega}^{x} \text{ est une solution de } PM(X_{\tau}(\omega), G, D(G))$$

Remarque: Nous verrons plus loin que 7.7.1 n'est pas très restrictif dans les applications.

 $\frac{\text{démonstration de (a)}:}{\text{(7.7.2)}} \quad \text{On veut:} \quad \forall \omega \notin N_{X}, \ \forall \text{ ossst}, \ \forall A \in \theta_{\tau}^{-1}(F_{s}),$   $\text{(7.7.2)} \quad \text{E}_{Q_{\omega}^{X}} \left[ 1_{A}(\bar{\omega}) \Delta M_{\psi}(\tau(\bar{\omega}), t) \right] = \text{E}_{Q_{\omega}^{X}} \left[ 1_{A}(\bar{\omega}) \Delta M_{\psi}(\tau(\bar{\omega}), s) \right]$   $\forall B \in F_{\tau}, \ \text{E}_{P_{X}} \left[ 1_{B}(\omega) \text{ E}_{Q_{\omega}^{X}} (1_{A}(\bar{\omega}) \Delta M_{\psi}(\tau(\bar{\omega}), t)) \right]$   $= \text{E}_{P_{X}} \left[ 1_{B} 1_{A} (M_{\psi}(\tau+t) - M_{\psi}(\tau)) \right]$   $= \text{E}_{P_{X}} \left[ 1_{B} 1_{A} (M_{\psi}(\tau+s) - M_{\psi}(\tau)) \right]$   $= \text{E}_{P_{X}} \left[ 1_{B} \text{ E}_{Q_{\omega}^{X}} (1_{A}(\bar{\omega}) \Delta M_{\psi}(\tau(\bar{\omega}), s)) \right]$ 

L'avant dernière égalité est due au fait que  $\vec{\theta}_{\tau}^{l}(F_{s}) \subset F_{\tau+s}$ , donc  $l_{B}l_{A}$  et  $M_{\psi}(\tau)$  sont  $F_{\tau+s}$ -mesurables et comme  $\tau$  est borné on peut appliquer le théorème d'arrêt à la martingale  $M_{\psi}$ .

D'après le théorème d'existence de v.c.r dans un polonais (Remarque 7.6), il existe un ensemble  $N_{s,t}^{A,\psi}$ ,  $P_x$ -négligleable tel que:

Pour tout  $\omega$  n'appartenant pas à  $N_{s,t}^{A,\psi}$  , 7.7.2 est vérifié.

Notons  $F_s$  un système dénombrable de générateurs de  $\theta_{\tau}^{-1}(F_s)$  (Remarque 7.5)

et posons 
$$N_x^1 = \bigcup_{\psi \in \Delta(G)} U_{s,t} \in \mathbb{Q}^+$$
  $A \in F_s$   $N_{s,t}^{A,\psi}$ 

Compte tenu de 7.7.1,  $N_s^1$  est  $P_x$ -négligeable et:

$$\forall \omega \in \mathbb{N}^1_{\mathbf{X}}, \quad \forall \psi \in \mathbb{D}(\mathbb{G}), \quad \forall o \leq s \leq t, \quad \forall A \in \mathbb{H}^{-1}_{\mathbf{T}}(\mathcal{F}_s), \ 7.7.2 \text{ est vérifié.}$$

En effet, si:  $\forall n \ge 0$ ,  $s_n$ ,  $t_n \in \mathbb{Q}^+$ ,  $s_n + s$ ,  $t_n + t$ ,  $s_n \le t_n$ ,  $A_n \in F_{s_n}$ 

$$^{1}A_{n} \xrightarrow{P_{x}.p.s} ^{1}A$$

et 7.7.1: 
$$\psi_n \in \Delta(G)$$
,  $\psi_n \xrightarrow{\pm} \psi$ ,  $G\psi_n \xrightarrow{\pm} G\psi$ ,  $\{||\psi_n||, ||G\psi_n||, n \ge 1\}$ 

est borné alors

$$1_{A_n} \Delta M_{\psi_n}(\tau+t_n) \xrightarrow{P_{\mathbf{x}}.p.s.} 1_{A} \Delta M_{\psi}(\tau+t)$$

$$I_{A_n} \xrightarrow{\Delta M_{\psi_n} (\tau + s_n)} \xrightarrow{P_{\chi}, p.s.} I_{A} \xrightarrow{\Delta M_{\psi} (\tau + s)}$$

et on peut appliquer le théorème de convergence dominée, de sorte que (a) est démontré.

Remarque 7.7.3 Pour la convergence dans L $^1(P_X)$  il est nécessaire et suffisant d'avoir les convergences en  $P_X$ -probabilité  $\psi_n \to \psi$ ,  $G\psi_n \to \psi$  et la  $P_X$ -équi-intégrabilité de  $\{\Delta M_{\psi_n}, n \ge 1\}$ . Mais ceci doit être vérifié pour

tout  $P_x$ ,  $(x \in S)$ , de sorte que dans le cadre d'un thèorème général où  $\{P_x, x \in S\}$  n'est pas précisé, la condition 7.7.1 n'est pas très restrictive.

démonstration de (b) Prenons B 
$$\epsilon$$
 F<sub>s</sub> et A =  $\theta_{\tau}^{-1}$  (B)

$$E_{Q_{\omega}^{\mathbf{X}}} \quad (1_{\mathsf{A}} \Delta \mathsf{M}_{\psi}(\tau, \mathbf{v}) = \int 1_{\mathsf{A}} (\bar{\omega}) \Delta \mathsf{M}_{\psi}(\tau(\omega), \mathbf{v}) (\bar{\omega}) Q_{\omega}^{\mathbf{X}} (d\bar{\omega})$$

$$=\int_{B} \left(\theta_{\tau(\omega)}(\bar{\omega})\right) \left[\psi(X_{v}(\theta_{\tau(\omega)}(\bar{\omega}))) - \psi(X_{o}(\theta_{\tau(\omega)}(\bar{\omega}))) - \int_{o}^{v} G\psi(X_{u}(\theta_{\tau(\omega)}(\bar{\omega}))) du\right] Q_{\omega}^{x}(d\bar{\omega})$$

$$= E_{H_{\omega}^{\times}} (I_{B} \Delta M_{\psi}(o,v))$$

D'autre part, il existe  $N_x^2$  élément de F, tel que  $P_x(N_x^2)$  = 0 et pour tout  $\omega$  n'appartenant pas à  $N_x^2$ :

$$H_{\omega}^{\mathbf{X}}\{\bar{\omega}, X_{o}(\bar{\omega}) = X_{\tau(\omega)}(\omega)\} = Q_{\omega}^{\mathbf{X}}\{\bar{\omega}, X_{o}(\theta_{\tau(\omega)}(\bar{\omega})) = X_{\tau(\omega)}(\omega)\}$$
$$= P_{\mathbf{X}}\{\bar{\omega}, X_{\tau}(\bar{\omega}) = X_{\tau}|\tau\}(\omega) = 1$$

Finalement on prend  $N_x = N_x^1 \cup N_x^2$ 

Théorème 7.8 Supposons que PM(G,D(G)) admette une solution unique, que (G,D(G)) vérifie 7.7.1 et que  $\begin{cases} S \to \mathbb{R} \text{ soit mesurable pour tout} \\ x \to P_x(B) \end{cases}$ 

B de F.

Alors  $\{P_x, x \in S\}$  est fortement markovien.

démonstration: . L'unicité est évidente.

. Soit  $\tau$  un temps d'arrêt borné alors:

Markov forte pour tout temps d'arrêt.

$$\forall A \in Fs$$
,  $\forall x \in S$ ,  $P_{x}[\theta_{\tau}^{-1}(A)|F_{\tau}](\omega) = Q_{\omega}^{x}(\theta_{\tau}^{-1}(A)) = H_{\omega}^{x}(A)$ ,  $P_{x}.p.s.$ 

Mais d'après l'unicité de la solution de  $PM(P_{\mathbf{x}}^{\tau(\omega)}, G, D(G))$ :

$$\forall \omega \notin N_{x}, H_{\omega}^{X}(A) = P_{x}^{T(\omega)}(A)$$

donc  $\forall \omega \notin P_{\mathbf{x}}^{\tau(\omega)}(\mathbf{A}) = P_{\mathbf{x}}[\theta_{\tau}^{-1}(\mathbf{A})|F_{\tau}](\omega)$ , qui est la propriété de Markov

forte pour tout temps d'arrêt borné et qui implique la propriété de

On définit la famille d'opérateurs linéaires  $(T_t)_{t\geq 0}$  par.

$$\forall t \geq 0, T_{t}: \begin{cases} B_{b}(S) \rightarrow \mathbb{R}^{S} ; \forall x \in S, T_{t}\psi(x) \equiv E_{p_{x}}[\psi(X_{t})] \\ \psi \rightarrow T_{t}\psi \end{cases}$$

Il est clair que:

(7.9) 
$$\forall \psi \in D(G), T_t \psi(x) = \psi(x) + \int_0^t T_s(G\psi)(x) ds$$

Remarque:  $T_t \psi$  est borné mais n'est pas a priori mesurable.

Proposition 7.10 Considérons les deux propriétés:

(7.10.1) 
$$\forall t \geq o, x \Rightarrow P_x^t \text{ est mesurable.}$$

(7.10.2) 
$$\forall t \geq 0, x \rightarrow P_x^t \text{ est continu}$$

où  $\pi(S)$  est muni de la topologie de la convergence étroite et de la tribu des boréliens correspondante

$$(7.10.1) \quad \Longrightarrow \quad \forall t \geq o, \quad \forall \psi \in B_b(S), \quad T_t \psi \in B_b(S)$$

$$(7.10.2) \implies \forall t \geq 0, \ \forall \psi \in C_h(S), \ T_t \psi \in C_h(S)$$

<u>démonstration</u>:  $x \rightarrow P_x^t \rightarrow \langle \psi, P_x^t \rangle = T_t \psi(x)$  où la deuxième application

est continue si  $\psi \in C_b(S)$  (par définition de la topologie de  $\pi(S)$ )

et mesurable si  $\psi \in B_b(S)$  (car S est métrisable séparable donc normal à base dénombrable d'ouverts)

Si la condition 7.10.1 (resp 7.10.2) est vérifiée,  $T_t$  est une contraction positive dans  $B_b(S)$  (resp  $C_b(S)$ ). En conclusion:

Sous les hypothèses de 7.8  $(T_t)_{t\geq 0}$  est un semi-groupe markovien sur  $B_b(S)$  A partir de maintenant les hypothèses de 7.8 seront supposées vérifiées

#### d) Le Théorème de Hille-Yosida

Du fait que les trajectoires sont continues (à droite suffirait),  ${\rm (T}_t)_{t\geq 0} \mbox{ est fortement continu. L'intérêt de cette propriété est qu'elle } \\ \mbox{permet de caractériser le semi-groupe par son générateur (cette caracté-$ 

risation ne peut se faire que sur  $\{f, T_t f \rightarrow f\}$ )

Appelons 9 et  $\mathcal{D}(g)$  le générateur de  $(T_t)_{t\geq 0}$  et son domaine:

$$\mathcal{D}(g) = \{ f \in B_b(S), \lim_{t \neq 0} \frac{T_t f - f}{t} \text{ existe et appartient à } B_b(S) \}$$

$$\forall f \in \mathcal{D}(g), gf = \lim_{t \downarrow o} \frac{T_t f - f}{t}$$

### Théorème 7.11 (Hille - Yosida)

Soient B un espace de Banach et g un opérateur linéaire sur B.

Pour que g soit le générateur infinitésimal d'un semi-groupe de contractions sur B, il est nécessaire et suffisant que les conditions suivantes soient satisfaites:

- a) Le domaine  $\mathcal{D}(q)$  de q est dense dans B.
- b) L'équation  $\lambda f-g(f)=h$  a une solution  $f\in \mathcal{D}(G)$  pour tout h de B et tout  $\lambda>0$ .
- c)  $||\lambda f g(f)|| \ge ||\lambda f||$ ,  $\forall f \in \mathcal{D}(g)$ ,  $\forall \lambda > 0$

démonstration: Voir [Dyn], [Yos], [Nev]

Remarque: Lorsque (g, $\mathcal{D}$ (g)) vérifie 7.11.c on dit que g est dissipatif sur  $\mathcal{D}$ (g)

7.9 nous permet d'écrire (7.12)  $\forall \psi \in D(G)$ ,  $g\psi = G\psi$ . Par conséquent (G,D(G)) est dissipatif. Il se peut que  $\overline{D(G)} \subseteq B_b(S)$ , alors la condition 7.11.a n'est pas vérifiée pour G. Toutefois  $(T_t)_{t\geq 0}$  est entièrement déterminé par la donnée (G,D(G)) si:

(7.13) 
$$\{ \psi \in D(G), ||\psi|| \le 1 \} = \{ \psi \in B_b(S), ||\psi|| \le 1 \}$$

où  $\bar{A}$  simple est l'adhérence de A pour la topologie de la convergence simple. En effet, c'est une conséquence de la définition de  $(T_t)_{t\geq 0}$  et du théorème de convergence dominée. Nous précisons cette remarque au théorème 7.19.

# e) Des résultats de dualité

Nous appelons  $\mathcal{N}(S)$  l'ensemble des mesures  $\sigma$ -additives signées bornées sur S.  $\mathcal{N}(S)$  est muni de la norme de la variation sur S.  $\mathcal{M}(S)$  est son dual.

<u>Proposition 7.14</u>  $B_b(S) \rightarrow C(S)'$  l'injection est isométrique.

$$\frac{\text{démonstration}:}{\text{f}} \quad B_b(s) \rightarrow \mathcal{I}(s) \quad \Box$$

Nous appelons <u>faible</u> (w) la topologie  $\sigma(\sqrt[n]{(S)})$ ,  $\sigma(\sqrt[n]{(S)})$ , et w-lim la limite correspondante.

<u>Proposition 7.15</u>  $B_b(S)$  est **w**-fermé

démonstration: facile □

Proposition 7.16 
$$\forall \mu \in C^{\prime\prime}(S), \forall t \geq 0, U_t \mu \equiv \int_S P_x^t \mu(dx)$$

 $(U_t)_{t\geq 0}$  est un semi-groupe de contractions positives sur (S).

$$\forall t \geq o$$
,  $U_t(\pi(S)) \subset \pi(S)$ 

Le semi-groupe adjoint de  $(U_t)_{t\geq 0}$  coincide avec  $(T_t)_{t\geq 0}$  sur  $B_b(S)$ .

démonstration: facile □

Nous appelons  $\widetilde{g}$  le générateur faible de  $(T_t)_{t\geq 0}$ , et  $\mathcal{D}(\widetilde{g})$  son domaine,

définis par:

$$D(\widetilde{g}) = \{ \psi \in B_b(S), w-\lim_{t \downarrow o} \frac{T_t \psi - \psi}{t} \in B_b(S) \}$$

$$\forall \psi \in \mathcal{D}(\widetilde{g}), \ \widetilde{g}\psi = w-\lim_{t \downarrow o} \frac{\mathsf{T}_t\psi = \psi}{t}$$

Il est clair que  $(\tilde{g}, \mathcal{D}(\tilde{g}))$  prolonge  $(g, \mathcal{D}(g))$ 

Proposition 7.17  $\tilde{g}$  caractérise  $T_t$ 

démonstration: Voir [Dyn] □

### Proposition 7.18

$$\Psi\{f_n, n \geq 1\} \subset B_b(S), \ \ \Psi f \in B_b(S), \ \ f_n \xrightarrow{n \rightarrow +\infty} f < \Rightarrow \begin{cases} f_n \ \ \overline{simplement} \ f \\ \{||f_n||, \ n \geq 1\} \ \ \text{est horné} \end{cases}$$

démonstration: classique □

Ce qui permet d'écrire:

7.7.1  $\iff$  Il existe un sous-ensemble dénombrable  $\Delta(G)$  de D(G), tel que.

$$\forall \psi \in D(G), \exists \{\psi_n, n \ge 1\} \subset \Delta(G), \qquad \begin{matrix} \psi_n & \to & \psi \\ G\psi_n & \to & G\psi \end{matrix}$$

7.13 
$$\iff$$
  $\overline{D(G)}^{W} = B_b(S)$  (on a utilisé 7.15)

Finalement nous obtenons le théorème de caractérisation de la loi de X en fonction de (G,D(G)):

Théorème 7.19 Si • PM(G,D(G)) admet une solution unique  $\{P_x, x \in S\}$ 

• (G,D(G)) vérifie 7.7.1 • D(G) vérifie 7.13 •  $\forall t \geq 0$ ,  $x \rightarrow P_x^t$  est mesurable Alors  $(T_t)_{t \geq 0}$  est un semi-groupe fortement markovien sur  $B_b(S)$ , dont

le générateur faible  $\tilde{g}$  est la cloture faible de G dans  $B_h(S)$ 

 $\frac{\text{démonstration}\colon}{\text{d'un semi-groupe fortement continu (<=> faiblement continu) est faiblement clos}$ 

#### Proposition 7.20

$$Si S = \mathbb{R}^{d} \quad et \quad G: \quad D(G) = \begin{cases} C_{K}^{k} (\mathbb{R}^{d}) & \longrightarrow & C_{K}(\mathbb{R}^{d}) \\ f & \longmapsto & Gf = \sum_{j=0}^{k} a^{(j)} D^{j}f \end{cases}$$

$$o\tilde{u} \quad a^{(j)} D^{j} f(x) = \sum_{\substack{\ell \in \{1, \dots, d\}^{j}}} a^{(j)}_{\ell_{1}, \dots, \ell_{j}} \frac{\partial^{j}}{\partial x_{\ell_{1}} \dots \partial x_{\ell_{j}}} f(x)$$

et  $a_{\mathbf{l}}^{(j)}$  est mesurable et bornée sur tout compact

Alors les propriétés 7.7.1 et 7.13 sont vérifiées

Remarque: La proposition 7.20 est démontrée dans le cadre général  $k \in \mathbb{N}$ , mais la condition de dissipativité de G n'est vérifiée sur un domaine D(G) suffisament grand (au sens 7.13) que pour k = 1,2.

La proposition 7.20 est vraie lorsque  $D(G) = C_K^{\infty} (\mathbb{R}^d)$ <u>démonstration</u>: 7.13 est une conséquence du fait que  $C_K^{\infty} (\mathbb{R}^d)$  est faiblement dense dans  $B_b(\mathbb{R}^d)$ 

7.7.1 est une conséquence immédiate du lemme suivant.

#### Lemme 7.21

$$(C_{K}^{k}(\mathbb{R}^{d}), ||| |||_{k})$$
 est séparable, où  $|||f|||_{k} = ||f||_{\infty} + \sum_{j=1}^{k} \sum_{\ell \in \{1, \ldots, d\}^{j}} |\frac{\partial^{j} f^{\ell}}{\partial x^{\ell}}|_{\infty}$ 

On peut construire A dénombrable et  $|\cdot|\cdot|_k$ -dense dans  $C_K^k$  (  $\mathbb{R}^d$ ) de sorte que:

$$\forall f \in C_K^k (\mathbb{R}^d), \quad \exists \ \textit{K compact de } \mathbb{R}^d, \ \exists \{f_n, \ n \ge 1\} \subset \textit{A}, \ \textit{t.q.}$$
 
$$\forall n \ge 1, \ \textit{supp}(f_n) \subset \textit{K et} \quad f_n \xrightarrow[n \to +\infty]{||| \ |||_k} f$$

Ce lemme nous permet d'obtenir une propriété plus forte que 7.7.1, où les convergences (w) sont remplacées par des convergences uniformes.  $\frac{\text{démonstration du lemme}}{\text{demonstration du lemme}}: \quad \text{Pour simplifier les notations nous prenons}$   $\text{d} = 1. \quad \text{On pose } K_n = [-n,n], \ n \geq 1. \quad \text{Fixons } n \geq 1 \text{ pour le moment}.$ 

On note  $C_{K_n}^j$  ( IR) = {f, f  $\in$   $C^j$ ( IR) et supp(f)  $\subset$   $K_n$ }

On sait que  $(C_{K_n}^O(|R), || ||_{\infty})$  est un espace de Banach séparable, il en est de même pour  $([C_{K_n}^O(|R)]^{k+1}, \sum\limits_{j=0}^k || ||_{\infty}).$ 

où 
$$W_n = P(C_{K_n}^k(R)) \hookrightarrow [C_{K_n}^o(R)]^{k+1}$$

Par le théorème de l'application ouverte, et du fait que  $(W_n, \sum_{j=0}^k || \ ||_{\infty}) \text{ est complet (classique), } W_n \text{ est fermé dans } [C_{K_n}^o(\mathbb{R})]^{k+1},$  c'est donc un Banach séparable et il en est de même pour  $(C_{K_n}^k(\mathbb{R}), ||| \ |||_k) = P^{-1}(W_n, \sum_{i=0}^k || \ ||_{\infty}).$  En outre:  $\forall f \in C_K^k(\mathbb{R}), \ \exists n \geq 1 \ t.q. \ f \in C_{K_n}^k(\mathbb{R}).$ 

Finalement, si  $A_n$  est dénombrable et dense dans  $C_K^k$  ( IR ), alors  $A = \bigcup_{n=1}^k A_n$  est dénombrable et dense dans  $C_K^k$  ( IR ).

#### S de dimension infinie

#### Le cadre

S = H' est le dual topologique d'un espace de hilbert séparable: H. On peut considérer deux topologies naturelles sur H'. On note  $H'_{\beta}$ ! H' muni de la topologie forte (de la norme) et  $H'_{\sigma}$ , H' muni de la topologie faible  $\sigma(H',H)$  H' n'est pas identifié à H, par contre  $(H'_{\beta})' = H''$  est identifié à H. On note  $\Omega_{\beta} = C(R^+, H'_{\beta})$  et  $\Omega_{\sigma} = C(R^+, H'_{\sigma})$ 

Remarques: En dimension infinie,  $\mathbf{H}_{\sigma}^{1}$  n'est pas complet et par conséquent  $\Omega_{\sigma}$  n'est pas complet, contrairement à  $\Omega_{\beta}$  qui est polonais.

Bien que  $\pi(H'_{\beta}) = \pi(H'_{\sigma})$  (on montre facilement que  $\mathfrak{B}(H'_{\beta}) = \mathfrak{B}(H'_{\sigma})$ ), en dimension infinie  $\pi(\Omega_{\beta}) \neq \pi(\Omega_{\sigma})$ , puisque  $\Omega_{\beta} \subseteq \Omega_{\sigma}$ .

<u>Définition 7.22</u> On appelle <u>opérateur de diffusion</u> sur H', tout opérateur linéaire L, de domaine D(L): un sous-espace vectoriel de  $C^2(H'_R)$  de la forme:

L:  $\hat{D}(L) \rightarrow B(H')$   $f(\cdot) \rightarrow Lf(\cdot) = \langle b(\cdot), Df(\cdot) \rangle_{H',H''} + \frac{1}{2} \langle a(\cdot), D^2f(\cdot) \rangle_{H'\hat{\mathbf{Q}}_1H',(H'\hat{\mathbf{Q}}_1H')'}$ où Df et  $D^2f$  désignent les dérivées première et seconde de f.  $H'\hat{\mathbf{Q}}_1H'$  est le produit tensoriel nucléaire de H' par lui-même.  $b: H' \rightarrow H' \text{ est mesurable, } a: H' \rightarrow H'\hat{\mathbf{Q}}_1H' \text{ est mesurable symétrique et positif.}$ 

a et b sont fortement bornés sur tout borné de H' $_{eta}$ 

La définition 7.22 est choisie de manière à être cohérente avec la formule d'Ito énoncée à la proposition 7.23. On note  $L(H^{^{\prime}})$  l'espace des opérateurs linéaires continus sur  $H_{\beta}^{\prime}$ . $\sigma_{2}^{\prime}$ (H') est celui des opérateurs de Hilbert - Schmidt sur  $H_{\beta}^{\prime}$ , muni de sa norme  $|\cdot|\cdot|_{2}$ .

 $\sigma_1^+(H')$  est l'ensemble des opérateurs nucléaires positifs sur  $H'_{\beta}$ .  $(B^1(t))_{t\geq 0}$  est un brownieu sur H', de covariance  $W\in \tau_1^+(H')$ 

 $(B^{2}(t))_{t\geq 0}$  est un brownien cylindrique sur H'.

b: 
$$\mathbb{R}^+ \times \mathbb{Q} \to \mathbb{H}'; \quad \phi_1 \colon \mathbb{R}^+ \times \mathbb{Q} \to L(\mathbb{H}'); \quad \phi_2 \colon \mathbb{R}^+ \times \mathbb{Q} \to \sigma_2(\mathbb{H}')$$

sont des processus  $(F_t)_{t\geq 0}$  - bien mesurables tels que:

$$\forall T \geq 0, \ E[\int_{0}^{T} ||b(s, \cdot)||_{H^{1}}^{2} ds] < +\infty, \ E[\int_{0}^{T} ||\phi_{1}(s, \cdot)||_{2}^{2} ds] < +\infty,$$

$$E[\int_{0}^{T} ||\phi_{2}(s, \cdot)||_{2}^{2} ds] < +\infty$$

### Proposition 7.23 (Formule d'Ito)

Soit  $x_t^i = x_o + \int_o^t b(s)ds + \int_o^t \phi^i(s)dB_s^i$ ; i = 1, 2.  $x_o \in L^2(\mathbf{Q}, \mathbf{F}_o, \mathbf{P})$  et  $f: \left\{ \mathbb{R}^t \times \mathbf{H}' \to \mathbb{R} \right\}$ ,  $C^1$  en t,  $C^2$  en x, et telle que f,  $\frac{\partial f}{\partial t}$ ,  $D_x f$  et  $(t, x) \to f(t, x)$ 

 $D_x^2 f$  soient bornés sur tout borné de  $\mathbb{R}^+ \times H'$ . Alors:

$$\begin{aligned} \forall t \geq o, \ f(t, x_t^i) &= \int_o^t < \phi_i(s) (dB_s^i), \ D_x f(s, x_s^i) >_{H', H''} \\ &+ \int_o^t \left[ \frac{\partial f}{\partial s} \left( s, x_s^i \right) + \langle b(s), \ D_x f(s, x_s^i) >_{H', H''} \right. \\ &+ \frac{1}{2} \langle a^i(s), \ D_x^2 f(s, x_s^i) >_{H' \widehat{\mathbf{Q}}_1^{H'}, (H' \widehat{\mathbf{Q}}_1^{H'})}, ] ds, \ i = 1, 2 \end{aligned}$$

Si  $(h_j)_{j\geq 1}$  est une base orthonormée de H et  $(h_j^*)_{j\geq 1}$  sa base duale dans H', alors:

$$a_{1}(t) = \sum_{j\geq 1} (\phi_{1}(t) \circ W \frac{1}{2}) (h_{j}^{*}) \otimes (\phi_{1}(t) \circ W \frac{1}{2}) (h_{j}^{*}) \in H^{*} \widehat{\mathbf{s}}_{1} H^{*}$$

$$a_{2}(t) = \sum_{j\geq 1} \phi_{2}(t) (h_{j}^{*}) \otimes \phi_{2}(t) (h_{j}^{*}) \qquad \epsilon \quad H^{*} \widehat{\mathbf{s}}_{1} H^{*}$$

<u>preuve</u>: pour une démonstration rigoureuse (avec H = H'), voir [Yor] L'idée est la suivante: (on prend  $\frac{\partial f}{\partial t}$  = o)

$$df(x_{t}) = \langle dx_{t}, Df(x_{t}) \rangle_{H',H''} + \frac{1}{2} \langle dx_{t}, D^{2}f(x_{t}) (dx_{t}) \rangle_{H',H''}$$

$$= \langle \phi(t) (dB_{t}), Df(x_{t}) \rangle_{H',H''} + \langle b(t), Df(x_{t}) \rangle_{H',H''} dt$$

$$+ \frac{1}{2} \langle \phi(t) (dB_{t}), D^{2}f(x_{t}) (\phi(t) (dB_{t})) \rangle_{H',H''}$$

or, le dernier terne s'écrit:

$$\frac{1}{2} < \phi(t) (dB_t) \otimes \phi(t) (dB_t), \ D^2 f(x_t) >_{H' \widehat{\otimes}_1 H'''}, (H' \widehat{\otimes}_1 H'''))$$

et pour  $\phi \in {\binom{\sigma}{2}}(H')$ :

$$\phi(t)(dB_t) \otimes \phi(t)(dB_t) = \sum_{i,j} (\sum_{\ell} \phi_{\ell} \phi_{\ell}) h_{i}^* \otimes h_{j}^* dt =$$

$$\begin{split} \sum\limits_{\textbf{i,j,l}} &<\textbf{h}_{\textbf{i}} \otimes \textbf{h}_{\textbf{j}}, \ \phi(\textbf{h}_{\mathring{\mathbb{Q}}}^{\star}) \otimes \phi(\textbf{h}_{\mathring{\mathbb{Q}}}^{\star})> \\ &\quad \text{H}\otimes \textbf{H}, \ \textbf{H}'\otimes \textbf{H}' \\ \end{split} \\ \text{lorsque } \phi \in \ L\left(\textbf{H}'\right), \quad \phi \circ \textbf{W} \ \frac{1}{2} \in \sigma_{2}(\textbf{H}') \,. \end{split}$$

On considère les classes suivantes de fonctions:

$$C_b^2 = \{f: H_\beta' \rightarrow \mathbb{R}; f \text{ est de classe } C^2, \text{ et } f, Df, D^2f \text{ sont bornés sur} \}$$

 $C^2_{loc} = \{f\colon H_\beta^i \to IR; f \text{ est de classe } C^2, \text{ et } f, Df, D^2f \text{ sont bornés sur tout borné de } H_\beta^i\}$ 

 $C^{2,n} = \{f: H_{\beta} \to \mathbb{R}, \exists Q_{n}, \text{ projecteur orthogonal de } H', \text{ de dimension } n, \}$ tel que:  $f(x) = f(Q_{n}(x)) \text{ et } f \text{ est de classe } C^{2}\}$ 

Lemma 7.24 Toute fonction de  $C^{2,n}$  est la forme:  $x \to f(x) = \widetilde{f} \left( \sum_{i=1}^{n} \langle v_i, x \rangle_{H,H}, v_i^* \right) = \widehat{f} \left[ \left( \langle v_i, x \rangle_{H,H}, \right)_{1 \le i \le n} \right], \ \widehat{f} \in C^2(\mathbb{R}^n)$ 

où  $(v_i)_{1 \leq i \leq n}$  est un système linéairement indépendant dans H, et

$$\langle v_i, v_j^* \rangle = \delta_{ij}, \forall i, j \in \{1, \dots, n\}. \quad \text{De plus:}$$

$$\forall x \in H', \quad Df(x) = \sum_{i=1}^n \partial_i \hat{f} \left[ (\langle v_k, x \rangle_{H, H'})_{1 \le k \le n} \right] \quad v_i \in H \cong H''$$

$$D^2 f(x) = \sum_{i,j=1}^n \partial_{ij}^2 \hat{f} \left[ (\langle v_k, x \rangle_{H, H'})_{1 \le k \le n} \right] \quad v_i \in H \otimes H \subset (H' \widehat{\otimes}_1 H')'$$

preuve: facile

Il arrive souvent qu'un problème de martingales apparaisse naturellement sous la forme cylindrique suivante:

$$\begin{array}{l} \chi(o)_{O} \; P_{\chi} \; = \; \delta_{\chi} \; \text{et} \\ \\ \forall n \; \geq \; 1, \; \forall \hat{f} \; \in \; C^{2}(\; \mathbb{R}^{n}), \; \forall v_{1}, \ldots, v_{n} \; \in \; H, \\ \\ \hat{f}(<\!v_{i}, \!\chi(t)\!>_{1 \leq i \leq n}) \; - \; \int_{O}^{t} \; \sum_{i=1}^{n} \; \partial_{i} \; \hat{f}(<\!v_{k}, \!\chi(s)\!>_{1 \leq k \leq n}) \; <\!v_{i}, b(\chi(s))\!>_{H, H^{i}} ds \\ \\ -\frac{1}{2} \; \int_{O}^{t} \; \sum_{i, \, i=1}^{n} \; \partial_{i, \, i=1}^{2} \; \hat{f}(<\!v_{k}, \!\chi(s)\!>_{1 \leq k \leq n}) <\!v_{i} \otimes v_{j}, \; a(\chi(s))\!>_{H \otimes H, H^{i} \otimes_{1} H^{i}} ds \\ \end{array}$$

est une  $P_{\mathbf{x}}$ - martingale locale continue.

Ce qui, compte tenu du lemma 7.24, est équivalent à la forme(1) du théorème 7.25 suivant:

Théorème 7.25 Soit  $P_x$  une loi de probabilité telle que  $X(a)oP_x = \delta_x$ .

Les cinq propositions suivantes sont équivalentes:

- (1)  $\forall n \geq 1, \ \forall f \in C^{2,n}, \ H_t^f = f(X(t)) f(X(o)) \int_0^t Lf(X(s)) ds$ est une martingale locale continue.
- (2)  $\forall f \in C_b^2$ ,  $H_t^f$  est une martingale continue.
- (3) If  $\epsilon C_{loc}^2$ ,  $H_t^f$  est une martingale locale continue.
- (4)  $\forall v \in H, M^{v}(t) = \langle v, X(t) X(o) \int_{o}^{t} b(X(s)) ds \rangle_{H,H}$ , est une martingale locale de processus croissant  $A^{v}(t) = \int_{o}^{t} \langle v \otimes v, a(X(s)) \rangle ds$
- (5)  $\forall v \in H$ ,  $\chi^{v}(t) = exp\{M^{v}(t) \frac{1}{2}A^{v}(t)\}$  est une martingale locale.

### démonstration: Voir [Yor]

Proposition 7.26 Si l'un des problèmes de martingales associé à 7.25.1, 2, 3, 4 ou 5 admet une unique solution  $\{P_x, x \in H'\}$  et si:  $\forall t \geq 0, x \rightarrow P_x^t$  est mesurable, alors  $\{P_x, x \in H'\}$  est fortement markovien, et le générateur faible de ce processus de Markov est la cloture faible de L dans  $B_b(H')$ . Ce processus de Markov s'appelle une diffusion dans H'.

preuve: D'après le lemma 7.24 et la démonstration de 7.25 il est possible de ne considérer que 7.26.1, à la place de 7.25.1, avec:  $(7.26.1) \quad \forall n \geq 1, \ \forall f \in \widetilde{C}^2, ^n, \ H_t^f \text{ est une } P_x\text{-martingale locale continue}$  où  $\widetilde{C}^2, ^n = \{f\colon H^r \to \mathbb{R}, \ f(\cdot) = \widehat{f}[(\langle v_i, \cdot \rangle)_{1 \leq i \leq n}], \ \widehat{f} \in C_b^2(\mathbb{R}^n)$ 

et  $\{v_j, 1 \le i \le n\} \subset \{h_j, j \ge 1\}$ : base orthonornée de  $H'\}$ De plus, la suite de temps d'arrêt  $(\tau_p)_{p\ge 1}, \tau_p = \inf\{t, ||X(t)||_{H}, \ge p\}$ ,

est tolle que:  $Xp \ge 1, Xp \ge 1, Xf \in C^{2}, n$   $H^f$  est upe martingale.

est telle que:  $\forall p \ge 1$ ,  $\forall n \ge 1$ ,  $\forall f \in C^{2,n}$ ,  $H_{t \land T}^f$  est une martingale

continue. Considérons la famille de fonctions  $\{\phi_{\mathbf{p}}, \mathbf{p} \geq 1\}$ , définie

par: 
$$\forall p \geq 1, \ \forall x \in H', \ \phi_p(x) = \psi_p(||x||_{H'}^2) \text{ où}$$

Clairement: 
$$\forall p \geq 1$$
,  $\forall n \geq 1$ ,  $\forall f \in \widetilde{C}^{2,n}$ ,  $H_{t \wedge \tau}^{f} = H_{t \wedge \tau}^{f \cdot \phi} p$ 

On note  $C_{\mbox{\footnotesize B}_{\mbox{\footnotesize p+1}}}$  : l'ensemble des fonctions continues à support dans

$$B_{p+1} = \{x \in H', ||x||_{H}, \le p + 1\},$$

par conséquent 7.25.1 est équivalent à:

(7.26.2)  $\forall p \geq 1, \ \forall n \geq 1, \ \forall f \in \widetilde{C}^{2,n} \cap B_{p+1}, \ H_{t \wedge \tau_p}^f \text{ est une } P_x\text{-martingale continue.}$ 

Il reste à prouver que:  $\forall p \geq 1$ ,  $(L,D(L) = U \quad \widetilde{C}^{2,n} \cap C_{B_{p+1}})$  vérifie 7.7.1 et 7.13, pour pouvoir appliquer 7.19. Or  $U \cap \widetilde{C}^{2,n} \cap C_{B_{p+1}}$  est une réunion dénombrable de fonctions faiblement continues à support faiblement compact et de dimension finie. Le raisonnement de 7.21 peut donc s'appliquer, ce qui prouve la propriété 7.7.1.

Finalement, il est clair que l'ensemble des restrictions à B  $_p$  de tous les éléments de  $\underset{n\geq 1}{\text{U}}$   $\widetilde{\text{C}}^{2,n}\cap\text{C}_{B_{p+1}}$  est vaguement dense dans

l'ensemble des fonctions faiblement boréliennes sur  $\mathbf{B}_{\mathbf{p}}$ . Mais les fonctions fortement boréliennes sont les fonctions faiblement boréliennes.

IV - LE SYSTEME DYNAMIQUE

## 1. Introduction

Nous considerons le système de N équations différentielles stochastiques suivant:

(1.1) 
$$d\mathbf{x}_{\mathbf{i}}^{N}(t) = \left(\frac{1}{N} \sum_{j=1}^{N} b(\mathbf{x}_{\mathbf{i}}^{N}(t), \mathbf{x}_{\mathbf{j}}^{N}(t))\right) dt + \left(\frac{1}{N} \sum_{j=1}^{N} \sigma(\mathbf{x}_{\mathbf{i}}^{N}(t), \mathbf{x}_{\mathbf{j}}^{N}(t))\right) d\mathbf{w}_{\mathbf{i}}(t)$$

$$i = 1, ..., N$$

où pour tout  $1\leq i\leq N$  ,  $x_i^N(t)$  appartient à  $\mathbb{R}^d$  et  $(w_i)_{1\leq i\leq N}$  est une famille indépendante de mouvements browniens à valeurs dans  $\mathbb{R}^d$  .

Une telle équation intervient dans la description de certains systèmes de spins avec une interaction de type champ moyen. ([Daw], [Léo]). 1.1 peut aussi décrire l'évolution dans  $\mathbb{R}^d$  d'un système de N particules identiques. La variation à l'instant t , du ième spin (ou de la position de la ième particule) dépend non seulement de  $\mathbf{x}_1^N(t)$ , mais aussi du système global:  $\mathbf{x}^N(t) = (\mathbf{x}_1^N(t), \ldots, \mathbf{x}_N^N(t))$ . Une forme possible de la fonction  $\mathbf{b}(\mathbf{x}_i, \mathbf{x}_j)$  est  $\mathbf{b}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{v}(\mathbf{x}_i) + \mathbf{f}(\mathbf{x}_i, \mathbf{x}_j)$  , où  $\mathbf{v}$  est un champ de forces extérieur, dans lequel se trouve le système, et  $\frac{1}{N}\sum\limits_{j=1}^{N}\mathbf{f}(\mathbf{x}_i, \mathbf{x}_j)$  est la force que l'ensemble du système exerce sur i (du fait de sa forme, c'est un champ moyen). Si  $\sigma$  modélise l'agitation thermique, la température thermodynamique est de l'ordre de trace ( $\sigma$   $\sigma$ \*).

Nous nous intéressons à la limite du système 1.1, lorsque N tend vers l'infini. Puisque les N spins sont identiques, il est naturel d'étudier la limite en loi de la variable aléatoire

 $\bar{x}_N = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i}^N$  à valeurs dans les probabilités sur  $C(\mathbb{R}^+, \mathbb{R}^d)$ :
l'ensemble des trajectoires continues de  $\mathbb{R}^+$  dans  $\mathbb{R}^d$ . (Pour une justification de cette idée intuitive, voir le théoreme 4.2).

Le résultat principal est énoncé au théorème 2.2 De nombreux auteurs se sont interessés à une telle limite, comme par exemple Mac Kean ([McK]), Sznitman ([Szn]), Dawson ([Daw]) ou Oelschläger ([Oel]) (cette liste n'est pas exhaustive). Dans [McK], [Daw] et [Oel], la limite est étudiée à l'aide du processus:

$$(1.2) \begin{cases} \mathbb{R}^{+} & \rightarrow \text{ {probabilit\'es sur }} \mathbb{R}^{d} \text{ } \\ \mathsf{t} & \rightarrow & \frac{1}{N} \sum\limits_{i=1}^{N} \delta \mathbf{x}_{i}^{N}(\mathsf{t}) \end{cases}$$

ce qui donne une convergence moins puissante que celle obtenue dans [Szn] à l'aide de  $\bar{X}_N$ . Comme dans [Szn], nous utiliserons des résultats d'échangeabilité (voir, par exemple: [Ald]) pour obtenir la convergence en loi de  $\bar{X}_N$ . D'autre part cette convergence permet de garder une formulation "backward" (problème de martingale) moins exigeante sur la régularité des coefficients b et  $\sigma$ , que la formulation "forward" à laquelle on aboutit en étudiant 1.2 En particulier, nous n'avons pas besoin d'approximation par des coefficients réguliers (comme en [Oel]). Nos hypothèses sur les coefficients b et  $\sigma$  (en particulier sur leur croissance) permettent de généraliser les résultats de [Daw] et [Oel].

Finalement, nous obtenons une convergence plus fine que celle de la convergence en loi des variables aléatoires à valeurs dans

les probabilités sur C ( $\mathbb{R}^+$ ,  $\mathbb{R}^d$ ), ce qui nous permet, par exemple, d'avoir la convergence de fonctionnelles comme:

$$E\left(\frac{1}{N}\sum_{i=1}^{N}\sup_{0\leq t\leq T}|x_{i}^{N}(t)|^{q}\right) \quad \text{ou} \quad E\left(\sup_{0\leq t\leq T}|x_{i}^{N}(t)|x_{j}^{N}(t)|^{q/2}\right)$$

pour  $q \ge 0$ , pas trop grand.

#### 2. Notations. Résultat principal. Plan

#### 2a) Les notations

- $|\cdot|$  et  $\langle \cdot, \cdot \rangle$  désignent la norme et le produit scalaire de  $\mathbb{R}^m$
- $\sigma^*$  est l'adjoint de l'opérateur linéaire  $\sigma$ . tr( $\sigma$ ) est sa trace.
- ${ t C}^2({ t I\!R}^m)$  est l'espace des fonctions numériques de  ${ t I\!R}^m$  , deux fois continuement dérivables
- $C_K^2(\mathbb{R}^m)$  est le sous-espace de  $C^2(\mathbb{R}^m)$  constitué de ses éléments à support compact.
- $\mathbf{S}_{\mathbf{m}}$  est l'ensemble des opérateurs symétriques, définis, positifs sur  $\mathbf{R}^{\mathbf{m}}$  .
- ${\tt C}({\tt R}^+$  ,  ${\tt R}^d$ ) , l'espace des trajectoires continues de  ${\tt R}^+$  dans  ${\tt R}^d$  , est muni de la topologie de la convergence uniforme sur tout compact.
- $\mathbb{R}^d$ , est muni de la topologie de Skorokhod.

 $\boldsymbol{\delta}_{\mathbf{x}}$  est la mesure de Dirac au point  $\,\mathbf{x}$  .

fo  $\mu$  désigne l'image de la mesure  $\mu$  par la fonction mesurable f .

Si Y est une variable aléatoire &(Y) désigne sa loi.

Si M est un espace topologique:

♪(M) est sa tribu de Borel

C(M) est l'ensemble des fonctions continues de M dans IR.

 $C_{h}(M) = \{f, f \in C(M), f \text{ bornée}\}\$ 

 $\Pi(M)$  est l'ensemble des probabilités sur  $(M, \mathcal{S}(M))$ 

 $\mathcal{H}_b^+(M)$  est l'ensemble des mesures positives bornées sur  $(M,\mathcal{B}(M))$   $\Pi(M)$  et  $\mathcal{H}_b^+(M)$  sont munis de la topologie étroite (affaiblie par  $C_b^-(M)$ ).

Si f est une fonction numérique sur M et  $\mu$  est une mesure sur M on note:  $\langle f, \mu \rangle = \int\limits_M f(x) \mu(dx)$ 

Si  $\phi$  est un élément strictement positif de C(M):

$$C_{\phi}(M) = \{F \in C(M), \sup_{\mathbf{x} \in M} \frac{F(\mathbf{x})}{\phi(\mathbf{x})} < + \infty \}$$

 $\Pi_{\varphi}(M) \ = \ \{P \ \in \ \Pi(M) \,, \quad <\varphi \,, P> \ < \ + \ \infty\} \ \ \text{est muni de la topologie}$  affaiblie par  $C_{\varphi}(M)$  .

2b) Un sous-espace topologique de  $\pi\{\pi[C(\mathbb{R}^+, \mathbb{R}^d)]\}: \overset{\sim}{\mathcal{G}}_p$ 

On se donne  $p \ge 0$  et on considère famille  $(\phi_{T,p})_{T\ge 0}$  d'éléments de  $C[C(\mathbb{R}^+,\mathbb{R}^d)]$ , définie comme suit:

Pour tout 
$$T \ge 0$$
,  $\phi_{T,p} : \begin{cases} C(\mathbb{R}^+, \mathbb{R}^d) \to \mathbb{R}^{+*} \\ x \mapsto 1 + \sup_{0 \le t \le T} |x(t)|^p \end{cases}$ 

On definit pour tout 
$$T \ge 0$$
,  $\phi_{T,p} : \begin{cases} \mathcal{G}_p & \to \mathbb{R}^+ \star \\ P & \mapsto & < \phi_{T,p} \end{cases}$ 

$$\widehat{\widehat{\mathcal{G}}}_p = \prod_{T \geq 0} \Pi_{\widehat{\phi}_{T,p}} (\widehat{\mathcal{G}}_p) \quad \text{est muni de la topologie affaiblied}$$

$$T \geq 0 \quad C \underset{T,p}{\widehat{\phi}} (\widehat{\mathcal{G}}_p) .$$

## 2c) Le cadre probabiliste

L'espace probabilisé de base est  $(\mathfrak{A},(\mathcal{F}_t)_{t\geq 0},\mathcal{F},\,\mathbb{P})$  où  $(\mathcal{F}_t)_{t\geq 0}$  est une famille croissante de sous-tribus de et  $\mathbb{P}$  est une probabilité sur  $(\mathfrak{A},\mathcal{F})$ . On suppose que pour tout  $t\geq 0$ ,  $\mathcal{F}_t$  contient les ensembles  $\mathbb{P}$ -négligeables de  $\mathcal{F}$  et que  $(\mathcal{F}_t)_{t\geq 0}$  est continu à droite .  $(w_i)_{i\geq 1}$  est une suite de mouvements browniens indépendants, à valeurs  $\mathbb{R}^d$ , construits sur  $(\mathfrak{A},(\mathcal{F}_t)_{t>0},\mathcal{F},\,\mathbb{P})$ .

On se donne b:  $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$  et  $\sigma \colon \mathbb{R}^d \times \mathbb{R}^d \to S_d$  Pour tout  $N \geq 1$ ,  $\mathbf{x}^N = (\mathbf{x}_i^N)_{1 \leq i \leq N}$  est une variable aléatoire sur  $C(\mathbb{R}^+, \mathbb{R}^{dN}) \cong C(\mathbb{R}^+, \mathbb{R}^d)^N$  solution de l'équation différentielle stochastique:

$$(2.1) \quad x_{\mathbf{i}}^{N}(t) = x_{\mathbf{i}}^{N}(0) + \int_{0}^{t} b \left[ x_{\mathbf{i}}^{N}(s), \overline{x}_{\mathbf{N}}(s) \right] ds + \int_{0}^{t} \sigma \left[ x_{\mathbf{i}}^{N}(s), \overline{x}_{\mathbf{N}}(s) \right] dw_{\mathbf{i}}(s) , \quad 1 \leq i \leq N$$

$$ou \quad \overline{x}_{\mathbf{N}} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{N}} \in \mathbb{I}[C(\mathbb{R}^{+}, \mathbb{R}^{d})]$$

$$et \quad f[\mathbf{x}, \mu] \equiv \int f(\mathbf{x}, \mathbf{y}) \mu(d\mathbf{y}) , \quad \forall f \in \mathbb{R}^{d} \times \mathbb{R}^{d} \to \mathbb{R}^{d} \text{ ou } S_{d} ,$$

$$\forall \mu \in \mathbb{I}(\mathbb{R}^{d})$$

On note pour tout 
$$N \ge 1$$
,  $P_N = \mathcal{L}(\mathbf{x}^N) \in \mathbb{I}[C(\mathbb{R}^+, \mathbb{R}^d)]$  
$$\overline{P}_N = \mathcal{L}(\overline{\mathbf{x}}_N) \in \mathbb{I}[\mathbb{I}[C(\mathbb{R}^+, \mathbb{R}^d)]]$$

X est le processus canonique sur  $C(\mathbb{R}^+, \mathbb{R}^d)$ .

## 2d) Les hypothèses (H) sur les fonctions b et σ

 $H_1: \forall x \in \mathbb{R}^d$ ,  $b(\cdot,x)$  est localement lipschitzienne.

Il existe une constante  $K \ge 0$  , telle que les conditions  $H_2$  à  $H_8$  suivantes soient vérifiées.

$$H_5: \quad \forall x \in \mathbb{R}^d, \quad \langle x, v(x) \rangle + |x|f_1(x) \leq K(1 + |x|^2)$$

$$H_6: \forall x \in \mathbb{R}^d, f_2(x) \leq K(1 + |x|)$$

$$H_7: \exists r \ge 0, \forall x \in \mathbb{R}^d, |v(x)| + f_1(x) \le K(1 + |x|^r)$$

$$H_{\Omega}: \forall x,y \in \mathbb{R}^d, tr[\sigma\sigma^*(x,y)] \leq K(1 + |x|^2 + |y|^2)$$

## 2e) Le résultat principal

#### Théorème 2.2

On suppose que les hypothèses (H) sont vérifiées. Alors si

(2.2.1) pour tout 
$$N \ge 1$$
,  $\mathcal{L}(X^N(0)) \in L^4(0,\mathcal{F}, \mathbb{P})$ 

l'équation différentielle stochastique 2.1 admet une unique solution trajectorielle dans  $C(\mathbb{R}^+,\mathbb{R}^{dN})$ . De plus, si pour  $\mu \in \Pi(\mathbb{R}^d)$ 

(2.2.2) 
$$\mathcal{L}(\bar{x}_N(0)) \xrightarrow{\delta} \delta_{\mu}$$
 (étroitement dans  $\text{II}(\mathbb{R}^d)$ ), et si

$$(2.2.3) \quad pour \quad p \geq \max(4,2r), \quad \sup_{N\geq 1} E \int |x|^p \left[ \overline{X}_N(0) \right] (dx) < + \infty$$

 $(r apparait dans H_7)$  , alors

(2.2.4) pour tout  $0 \le q < p$ ,  $\mathcal{L}(\bar{X}_N) \to \delta_P$  dans  $\widetilde{\mathcal{G}}_q$  (pour la topologie de  $\widetilde{\mathcal{G}}_q$ ) où P est la loi de l'unique solution trajectorielle continue de l'équation différentielle stochastique non-linéaire dans  $\mathbb{R}^d$ , suivante:

$$\begin{cases} x(t) = x(0) + \int_{0}^{t} b[x(s), X(s) \circ P] ds + \int_{0}^{t} \sigma[x(s), X(s) \circ P] dw_{s} \\ P = \mathcal{L}(x) \\ \mathcal{L}(x(0)) = X(0) \circ P = \mu \end{cases}$$

Preuve: La première partie du théorème est démontrée à la proposition 3.3. Compte tenu de la proposition 3.4, on peut supposer que pour tout N > 1,  $\mathbf{x}^N$  est échangeable dans  $C(\mathbb{R}^+, \mathbb{R}^d)^N$ . Pour prouver 2.2.4, il suffit de prouver que la famille  $\{\bar{P}_N, N \geq 1\}$  est relativement compacte dans  $P_p$ , ce que nous faisons au lemme 5.10, et qu'elle admet une unique valeur d'adhérence, qui est  $\delta_p$ . Au lemme 6.1, nous prouvons que si  $\bar{Q}$  est une valeur d'adhérence de  $\{\bar{P}_N, N \geq 1\}$ , alors  $\bar{Q}(\mathcal{C}_\mu) = 1$ , où  $\mathcal{E}_\mu$  est l'ensemble des solutions du problème de martingale non-linéaire associé à 2.2.5. Au lemme 6.2, nous prouvons que  $\mathcal{E}_\mu$  =  $\{P\}$  ce qui achève la démonstration de 2.2

Remarque: La convergence 2.2.4 implique en particulier:

$$\forall \mathtt{T} \geq \mathtt{0}, \ \forall \mathtt{0} \leq \mathtt{q} < \mathtt{p}, \ \lim_{N \to \infty} \ \mathtt{E} ( \ \frac{1}{N} \sum_{j=1}^{N} \ \sup_{0 \leq t \leq \mathtt{T}} \ \big| \ \mathtt{x}_{j}^{N}(\mathtt{t}) \, \big|^{\mathtt{q}}) = \int_{0 \leq t \leq \mathtt{T}} \sup_{0 \leq t \leq \mathtt{T}} | \ \mathtt{x}(\mathtt{t}) \, \big|^{\mathtt{q}} \ \mathtt{P}(\mathtt{d}\mathtt{x})$$

#### 2f) Plan de la suite

Au chapitre 3, nous prouvons l'existence, l'unicité et l'échangeabilité des systèmes finis décrits par l'équation 2.1.

Au chapitre 4, nous rappelons des résultats importants d'échangeabilité, en particulier le théorème 4.2, dù à Kallenberg, nous donne l'équivalence de la convergence de  $(x^N)_{N\geq 1}$  (au sens 4.2.1) et de celle de  $(\bar{x}_N)_{N\geq 1}$ . Le théorème de de Finetti nous permettra au chapitre 7, d'étendre le résultat du Théorème 2.2. Nous rappelons aussi dans ce chapitre un critère de tension des  $\mathcal{D}$ -semi-martingales, dù à Métivier, qui nous servira au chapitre 5, pour obtenir la relative compacité de  $\{\bar{P}_N, N\geq 1\}$ . A la première partie du chapitre 5, nous établissons une condition suffisante de relative compacité dans un sous-espace topologique de  $\Pi[\Pi(S)]$ , où S est un espace polonais. Dans la seconde partie, nous appliquons ce résultat pour établir la relative compacité de  $\{\bar{P}_N, N\geq 1\}$ .

Au chapitre 6, nous obtenons l'unicité de la valeur d'adhérence,  $\{\bar{P}_N,\ N\ge 1\}\ ,\ \text{et nous l'identifions}.$ 

Finalement, nous donnons quelques résultats supplémentaires, au chapitre 7. Nous y obtenons, en particulier, un résultat de propagation du chaos.

#### 3. Existence, unicité et échangeabilité des systèmes finis

On considère l'équation différentielle stochastique à valeurs dans  ${\rm I\!R}^m$  :

$$E(\xi_0, \tilde{b}, \tilde{\sigma}): x(t) = \xi_0 + \int_0^t \tilde{b}(s, x(s)) ds + \int_0^t \tilde{\sigma}(s, x(s)) dw_s$$

où  $\hat{b}: \mathbb{R}^+ \times \mathbb{R}^m \to \mathbb{R}^m$ ,  $\tilde{\sigma}: \mathbb{R}^+ \times \mathbb{R}^m \to S_m$  et  $(w_t)_{t \geq 0}$  est un mouvement brownien à valeurs  $\mathbb{R}^m$ , construit sur  $(\mathfrak{A}, (\mathcal{F}_t)_{t \geq 0}, \mathcal{F}, \mathbb{P})$ 

#### Proposition 3.1

Si b et ö vérifient les hypothèses suivantes:

$$\begin{aligned} \mathtt{H}_{1}^{\prime} : \quad & \forall \, \mathtt{R} \geq \mathtt{0} \,, \quad \exists \, \mathtt{K}_{\mathtt{R}} \geq \mathtt{0} \,, \quad \forall \, \mathtt{t} \geq \mathtt{0} \,, \quad \forall \, \mathtt{x}, \mathtt{y} \in \mathbb{R}^{\mathtt{m}} \,, \\ & (|\mathtt{x}| \leq \mathtt{R} \, \, \mathsf{et} \, \, |\mathtt{y}| \leq \mathtt{R}) \, \Rightarrow \, |\widetilde{\mathtt{b}}(\mathtt{t}, \mathtt{x}) - \widetilde{\mathtt{b}}(\mathtt{t}, \mathtt{y})|^{2} + \mathsf{tr}[\, (\widetilde{\mathtt{o}}(\mathtt{t}, \mathtt{x}) - \widetilde{\mathtt{o}}(\mathtt{t}, \mathtt{y})) \, (\widetilde{\mathtt{o}}(\mathtt{t}, \mathtt{x}) - \widetilde{\mathtt{o}}(\mathtt{t}, \mathtt{y})) \, \star \, ] \\ & \leq \quad \mathsf{K}_{\mathtt{D}} |\mathtt{x} - \mathtt{y}|^{2} \end{aligned}$$

$$H_2' : \exists K \ge 0 , \forall x \in \mathbb{R}^m , \forall t \ge 0, \langle x, b(t, x) \rangle + tr[\sigma \sigma^*(t, x)] \le K(1 + |x|^2)$$

 $H_3': \xi_0$  est indépendant de  $(w_t)_{t\geq 0}$ 

$$H_4'$$
  $\xi_0 \in L^4(\mathbf{0}, \mathcal{F}, \mathbb{P})$ 

alors, il existe une unique solution continue de  $E(\tilde{b}, \tilde{b}, \tilde{\sigma})$ 

Remarque 3.2 Rappelons que si  $H_1'$  et  $H_3'$  sont vérifiés, si  $H_2'$  est remplacé par:

$$H_2'': \exists K \ge 0, \forall x \in \mathbb{R}^m, \forall t \ge 0, |b(t,x)|^2 + tr[\sigma\sigma^*(t,x)] \le K(1+|x|^2)$$

ainsi que  $H_4'$  par

$$H_4'': \xi_0 \in L^2(0, \mathcal{F}, \mathbb{P})$$

alors  $E(\xi_0, \tilde{b}, \tilde{\sigma})$  admet une unique solution continue. (Voir par exemple [GSk], Ch2, Th3)

Preuve de 3.1. Pour tout  $n \ge 1$ , on définit:

$$\tilde{b}_{n}(x) = \begin{cases} \tilde{b}(x) & \text{si } |x| \leq n \\ \tilde{b}(n \xrightarrow{|x|}) & \text{si } |x| \geq n \end{cases} \qquad \tilde{\sigma}_{n}(x) = \begin{cases} \tilde{\sigma}(n) & \text{si } |x| \leq n \\ \tilde{\sigma}(n \xrightarrow{x}) & \text{si } |x| \geq n \end{cases}$$

 $\tilde{b}_n$  et  $\tilde{\sigma}_n$  vérifient H'\_1 et H''\_2, et d'après la remarque 3.2, il existe une unique solution continue de  $E(\xi_0, \tilde{b}_n, \tilde{\sigma}_n)$ , qu'on note  $x_n$ . Soit  $\tau_n = \inf\{t, |x_{n+1}(t)| \ge n\}$ , d'après le lemme de localisation des intégrales stochastiques, on a:

 $x_{n+1}(t \wedge \tau_n) = x_n(t \wedge \tau_n)$ , donc  $\tau_n \leq \tau_{n+1}$ , et la proposition 3.1 sera démontrée si l'on prouve que:  $\mathbb{P} \{\sup_{n\geq 1} \tau_n = +\infty\} = 1$ . Pour cela, nous allons montrer que

$$(3.1.1) \quad \forall \ t \ge 0, \quad \mathbb{P}(\forall n, \ \tau_n \le t) = 0$$

$$\mathbb{P}(\forall n, \ \tau_n \le t) \le \mathbb{P}(\tau_{n_0} \le t) \le \mathbb{P}\{\sup_{0 \le s \le t} |x_{n_0+1}(s)| \ge n_0\}$$

$$\le \frac{1}{n_0} \mathbb{E}(\sup_{0 \le s \le t} |x_{n_0+1}(s)|^4)$$

Mais d'après le lemme 5.8,  $\sup_{n_0 \ge 1} E(\sup_{0 \le s \le t} |x_{n_0+1}(s)|^4) < + \infty$ 

On obtient 3.1.1 en faisant  $n_0 \rightarrow +\infty$  dans 3.1.2.

A partir du maintenant on supposera  $H_3'$ .

#### Proposition 3.3

Sous les hypothèses (H) , pout tout  $N \ge 1$  , si  $E(|x^N(0)|^4) < + \infty$  l'équation 2.1 admet une unique solution continue.

Preuve: Il suffit de vérifier  $H_1'$  et  $H_2'$  avec

$$\tilde{\mathbf{b}}(\mathsf{t},\mathbf{x}^N) = (\mathbf{b}[\mathbf{x}_1^N, \overline{\mathbf{x}}_N])_{1 \le i \le N} \quad \text{et } \tilde{\sigma}(\mathsf{t},\mathbf{x}^N) = \begin{bmatrix} \tilde{\sigma}[\mathbf{x}_1^N, \overline{\mathbf{x}}_N] & 0 \\ & \ddots & \\ 0 & \tilde{\sigma}[\mathbf{x}_N^N, \overline{\mathbf{x}}_N] \end{bmatrix}$$

Tout est clair, sauf  $\langle x^N, \tilde{b}(t,x^N) \rangle \leq K(1+|x^N|^2)$ 

 $^{\Theta}{}_N$  désigne l'ensemble des permutations de  $\{1,\;...\;,\;N\}$  . Pour tout élément  $\theta$  de  $^{\Theta}{}_N$  , on définit les fonctions suivantes (aussi dénotées par  $\theta)$  :

$$\theta : \begin{cases} \mathbb{R}^{dN} \to \mathbb{R}^{dN} \\ (x_1, ..., x_N) \to (x_{\theta(1)}, ..., x_{\theta(N)}) \end{cases}$$

$$\theta : \begin{cases} C(\mathbb{R}, \mathbb{R}^d)^N \to C(\mathbb{R}, \mathbb{R}^d)^N \\ (x_1, ..., x_N) \to (x_{\theta(1)}, ..., x_{\theta(N)}) \end{cases}$$

 $\mathbf{A}_{\mathbf{N}}$  est le générateur infinitésimal associé à 2.1, défini par:

$$\forall \ \psi \ \in \ C_K^2 (\ \mathbb{R}^{dN}) \ , \ \ \forall \ x \ \in \ \mathbb{R}^{dN}$$

$$A_{N} \psi(\mathbf{x}) = \sum_{\mathbf{i}=1}^{N} < \frac{\partial \psi}{\partial \mathbf{x}_{\mathbf{i}}}(\mathbf{x}) , \quad b[\mathbf{x}_{\mathbf{i}}, \overline{\mathbf{x}}_{\mathbf{N}}] > + \frac{1}{2} \sum_{\mathbf{i}=1}^{N} tr(\frac{\partial^{2} \psi}{\partial \mathbf{x}_{\mathbf{i}}^{2}}(\mathbf{x}) \sigma \sigma^{*}[\mathbf{x}_{\mathbf{i}}, \overline{\mathbf{x}}_{\mathbf{N}}])$$

#### Proposition 3.4

On note x la solution de 2.1, de loi initiale q.

$$\mathbf{q^*} = \frac{1}{N!} \int_{\theta \in \Theta_{\mathbf{N}}}^{\Sigma} \theta \circ \mathbf{q} \quad \text{et} \quad \mathbf{\mathcal{L}}(\mathbf{x})^* = \frac{1}{N!} \int_{\theta \in \Theta_{\mathbf{N}}}^{\Sigma} \theta \circ (\mathbf{x}), \quad sont \ les \ symétrisées$$
 
$$de \quad \mathbf{q} \quad et \, \mathbf{\mathcal{L}}(\mathbf{x}).$$

Si  $\tilde{x}$  est la solution de 2.1, de loi initiale  $q^*$ , alors  $\mathcal{L}(\tilde{x}) = \mathcal{L}(x)^*$ 

En particulier, la solution de 2.1 en tant que variable aléatoire sur  $C(\mathbb{R}^+,\mathbb{R}^{dN})\cong C(\mathbb{R}^+,\mathbb{R}^d)^N$  est une suite N-échangeable si et seulement si sa condition initiale est une suite N-échangeable sur  $(\mathbb{R}^d)^N$ . De plus:

$$\mathcal{L}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}\right) = \mathcal{L}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{\tilde{x}_{i}}\right)$$

Voir le §4.a, pour la définition de l'échangeabilité.

Preuve: Nous allons montrer que  $\mathcal{L}(\tilde{x}) = \mathcal{L}(x)*$ .

$$\forall 0 \leq s \leq t \text{ , } \forall f \text{ } \mathcal{F}_s\text{-mesurable et bornée, } \forall \psi \in C_K^2(\mathbb{R}^{dN});$$
 
$$\langle f \cdot [\psi(x_t) - \psi(x_s) - \int_s^t A_N \psi(x_u) du] \text{ , } \mathcal{L}(x) \rangle = 0, \text{ donc:}$$

$$\forall \theta \in \Theta_{N}, \forall f \cdot [\psi \circ \theta (X_{t}) - \psi \circ \theta (X_{s}) - \int_{s}^{t} A_{N}(\psi \circ \theta) (X_{u}) du], \quad (x) > = 0 \implies (symétrie de A_{N})$$

$$\forall \theta \in \Theta_{N}, \langle f \cdot [\psi \circ \theta (X_{t}) - \psi \circ \theta (X_{s}) - \int_{s}^{t} A_{N} \psi (\theta (X_{u})) du], \quad (\mathbf{x}) \rangle = 0 \Rightarrow \langle f \cdot [\psi (X_{t}) - \psi (X_{s}) - \int_{s}^{t} A_{N} \psi (X_{u}) du], \quad (\mathbf{x}) * \rangle = 0$$

qui avec  $X(0) \circ \mathcal{L}(\tilde{x}) = X(0) \circ \mathcal{L}(x)^* = q^*$  et l'unicité de la solution du problème de martingale associé à  $A_N$ , donne  $\mathcal{L}(\tilde{x}) = \mathcal{L}(x)^*$ .  $\square$ 

4. Quelques résultats concernant l'échangeabilité dans un espace polonais et les  $\mathcal{D}$ -semi-martingales à valeurs dans  $\mathbb{R}^m$ 

#### 4a) Echangeabilité dans un espace polonais

Dans ce paragraphe, S désigne un espace polonais et tous les résultats et définitions que nous y énonçons se trouvent dans [Ald].

Définition Une suite Y = (Y<sub>1</sub>, ..., Y<sub>N</sub>) de variables aléatoires est dite N-échangeable si pour toute permutation  $\theta$  de {1, ..., N}  $\mathscr{L}(Y_1, ..., Y_N) = \mathscr{L}(Y_{\theta(1)}, ..., Y_{\theta(N)})$ . Une suite infinie  $Y = (Y_1, Y_2, ...)$  est dite échangeable si pour toute permutation finie  $\theta$  de {1, 2, ...} c'est-à-dire toute permutation  $\theta$  telle que  $\{1, \theta(i) \neq i\} < +\infty$ ,  $\mathcal{L}(Y_1, Y_2, ...) = \mathscr{L}(Y_{\theta(1)}, Y_{\theta(2)}, ...)$ .

Proposition. Si  $\alpha$ :  $(0, \hat{y}) \rightarrow (\Pi(S), \hat{B}(\Pi(S)))$  est mesurable  $(\alpha$  est une probabilité aléatoire), alors il est possible de construire une suite  $\hat{Y} = (\hat{Y}_1, \hat{Y}_2, \dots)$ , telle que conditionnellement à  $\alpha = p$ ,  $\hat{Y}$  est une suite indépendante identiquement distribuée de loi p (i.i.d.(p)).

Definition. Soit Y une suite infinie de variables aléatoires sur S , soit  $\alpha$  une probabilité aléatoire sur S , on dit que Y est mélange d'i.i.d. dirigé par  $\alpha$  si:

 $\mathscr{L}(\alpha, \Upsilon) = \mathscr{L}(\alpha, \mathring{\Upsilon})$ , pour  $\mathring{\Upsilon}$  construit plus haut.

Théorème de de Finetti. Soit  $\underline{Y}$  une suite infinie échangeable de variables aléatoires sur S, alors  $\underline{Y}$  est un mélange d'i.i.d.

On définit:

Une conséquence du théorème de Glivenko-Cantelli est la

Proposition 4.1. Si la suite infinie  $\underline{Y}$  est un mélange d'i.i.d. alors ce mélange est dirigé par  $\alpha = \Lambda(\underline{Y})$  et cette probabilité aléatoire dirigeante est unique presque sûrement.

Kallenberg a démontré dans [Kal] un théorème plus général que le théorème suivant.

Théorème 4.2 ([Kal]). Si  $\mathbf{Y}^{\mathbf{k}}$  est une suite N-échangeable de variables aléatoires sur S , si  $\mathbf{Y}$  est une suite infinie de v.a. sur S et si  $\lim_{\mathbf{k} \to \infty} \mathbf{N}_{\mathbf{k}} = +\infty$  , alors:

$$(4.2.1) \quad \forall \, \mathbf{m} \, \geq \, 1, \, \mathcal{L}(\mathbf{Y}_1^k, \, \ldots, \, \mathbf{Y}_{\mathbf{m}}^k) \qquad \underset{k \to \infty}{\longrightarrow} \, \mathcal{L}(\mathbf{Y}_1, \, \ldots, \, \mathbf{Y}_{\mathbf{m}}) \quad (\text{\'etroitement dans } \Pi(\mathbf{S}^m))$$
 
$$\Leftrightarrow \mathcal{L}(\Lambda_{\mathbf{N}_k}(\mathbf{Y}^k)) \quad \xrightarrow{k \to \infty} \, \mathcal{L}(\Lambda(\mathbf{Y})) \quad (\text{\'etroitement dans } \Pi[\Pi(\mathbf{S})]).$$

Remarque: Y est nécessairement échangeable.

Lemme 4.3: Si Y est N-échangeable alors  $X(Y_1) = E[\Lambda_N(Y)]$ 

## 4b) $\mathcal{D}$ -semimartingales à valeurs dans $\mathbb{R}^{m}$

Les résultats et définitions que nous énonçons ci-dessous se trouvent dans [JoM].

<u>Définition</u>. On appelle  $\mathcal{D}$ -semi-martingale, tout processus cadlag adapté Y, défini sur la base stochastique  $(\mathcal{A}, (\mathcal{F}_t)_{t\geq 0}, \mathcal{F}, \mathbb{P})$ , à valeurs dans  $\mathbb{R}^m$ , tel qu'il existe une fonction cadlag croissante A(t), un sous-espace vectoriel  $\mathcal{C} \subset C(\mathbb{R}^m)$  et une application  $L: \mathcal{C} \times \mathbb{R}^m \times \mathbb{R}^{+} \times \mathbb{C} \to \mathbb{R}$  qui ont les propriétés suivantes:

- (D.1) les fonctions  $\phi_i: \begin{cases} \mathbb{R}^m \to \mathbb{R} & \text{et } \phi_i \phi_j \text{ ; i,j = 1, ..., m} \\ y \mapsto \phi_i(y) = y_i \end{cases}$  appartiennent à
- (D.2) (i) Pour tout  $(y,t,\omega) \in \mathbb{R}^m \times \mathbb{R}^+ \times \mathbb{Q}$ ,  $\phi \to L(\phi,y,t,\omega)$  est une forme linéaire sur  $\mathcal{C}$  et  $L(\phi,.,t,\omega) \in \mathcal{C}$  (ii) Pour tout  $\phi \in \mathcal{C}$ ,  $(y,t,\omega) \to L(\phi,y,t,\omega)$  est  $\mathcal{B}(\mathbb{R}^m) \otimes \mathcal{C}$  mesurable, où  $\mathcal{C}$  est la tribu des ensembles prévisibles.
- (D.3) Pour tout  $\phi \in \mathcal{E}$ , le processus  $M^{\phi}$  défini par  $M^{\phi}(t,\omega) = \phi(Y_{t}(\omega)) \phi(Y_{0}(\omega)) \int_{0}^{t} L(\phi,Y_{s}(s),s,\omega) dA_{s}$  est une martingale localement de carré intégrable sur  $(\mathcal{Q},(\mathcal{F}_{t})_{t\geq 0},\mathbb{P})$ .

<u>Définition</u>. Pour tout i,j = 1, ..., m , on pose  $\tilde{b}_{\mathbf{i}}(y,t,\omega) = L(\phi_{\mathbf{i}},y,t,\omega) \; ; \quad \tilde{a}_{\mathbf{i}\mathbf{j}}(y,t,\omega) = L(\phi_{\mathbf{i}}\phi_{\mathbf{j}},y,t,\omega) - (\phi_{\mathbf{i}}b_{\mathbf{j}} + \phi_{\mathbf{j}}b_{\mathbf{i}}) \; (y,t,\omega)$  b et  $\tilde{a}$  s'appellent les coefficients locaux.

Proposition 4.3. Soit  $(Y_n)_{n\geq 1}$ , une suite de  $\widehat{\mathcal{D}}$ -semi-martingales, chacun des  $Y_n$  étant défini sur son propre espace probabilisé:  $(\mathbb{Q}^n,(\mathbb{F}^n_t)_{t\geq 0},\mathcal{G}^n,\mathbb{P}^n)$ . Si tous les  $Y^n$  sont associés au même sousespace  $\mathcal{C} \subset C(\mathbb{R}^m)$  et si on appelle  $L^n$  (resp.  $A^n$ ), l'application  $(\phi,y,t,\omega) \to L^n(\phi,y,t,\omega)$  (resp. la fonction croissante) associée à  $Y_n$ , alors:

Pour que  $\{Z(Y_n), n \geq 1\}$  soit une suite relativement compacte de  $\mathbb{I}[D(\mathbb{R}^+, \mathbb{R}^m)]$ , il suffit que les hypothèses 4.3.1 et 4.3.2 suivantes soient vérifiées.

- (4.3.1) Si  $\tilde{b}^n$  et  $\tilde{a}^n$  désignent les coefficients locaux associés  $\tilde{a}$   $L^n$ :
- (i)  $\sup_{n\geq 1} E \sup_{0\leq t\leq T} |b^{n}(Y_{n}(t^{-}),t,\cdot)| < + \infty, \forall T \geq 0$
- (ii)  $\sup_{n\geq 1} E \sup_{0\leq t\leq T} tr |\tilde{a}^{n}(Y_{n}(t^{-}),t,.)| < + \infty, \forall T \geq 0$

Ce résultat n'est pas énoncé explicitement dans [JoM], mais sa démonstration est la même que celle de la proposition 2.3 de [JoM].

# 5. Relative compacité

### 5a) Un cadre général

Dans ce paragraphe S est un espace polonais et  $\phi$  est un élément de C(S) qui vérifie:

(5.1) inf 
$$\phi(x) > 0$$
  
 $x \in S$ 

Nous utiliserons les lemmes 5.3, 5.4 et 5.5 pour obtenir le preuve de la proposition 5.2 suivante:

On définit: 
$$\hat{\phi}: \begin{cases} \prod_{\phi}(S) \rightarrow \mathbb{R} & (il \ est \ clair \ que \ \inf_{P \in \prod_{\phi}(S)} \hat{\phi}(P) > 0) \end{cases}$$

$$P \mapsto \langle \phi, P \rangle$$

alors, pour que  $\{\mathcal{L}(\alpha_N), N\geq 1\}$  soit relativement compact dans  $\Pi_{\widehat{\varphi}}[\Pi_{\varphi}(S)]$ , il suffit que  $(\bar{\alpha}_N)_{N\geq 1}$  vérifie les conditions suivantes:

(5.2.1) It existe 
$$\delta > 0$$
, tel que  $\sup_{N \ge 1} \langle \phi^{1+\delta}, \overline{\alpha}_N \rangle \langle + \infty \rangle$ 

(5.2.2) Pour tout  $\varepsilon > 0$ , il existe un compact  $K_{\varepsilon} \subset S$ , tel que  $\sup_{N \geq 1} \overline{\alpha}_{N}(K_{\varepsilon}) \geq 1 - \varepsilon$ 

Soit 
$$\psi$$
: 
$$\begin{cases} \Pi_{\phi}(S) \rightarrow R(\psi) \subset \mathcal{N}_{b}^{+}(S) , \\ P \mapsto \phi \cdot P \end{cases}$$

où φ•P est défini par

$$\forall A \in \mathcal{B}(S)$$
,  $\phi \cdot P(A) = \langle 1_A \cdot \phi, P \rangle$ 

et R( $\psi$ ), qui est l'image de  $\Pi_{\varphi}(S)$  par  $\psi$  , est muni de la topologie trace de  $\mathcal{H}_b^+(S)$  .

Lemme 5.3.  $\psi$  est un homéomorphisme.

<u>preuve</u>:  $\psi$  est surjectif par définition et est injectif, puisque:  $\forall P,Q \in \Pi_{\varphi}(S)$ ,  $\phi \cdot P = \phi \cdot Q \Rightarrow \phi \cdot |P-Q| = 0 \Rightarrow P = Q$  (en raison de 5.1)  $\psi$  est continu, puisque:  $\forall n \geq 1, \forall g_1, \dots, g_n \in C_b(S), \forall \epsilon_1, \dots, \epsilon_n > 0, \forall Q_0 \in R(\psi),$ 

$$\psi^{-1}( \underset{i=1}{\overset{n}{\cap}} \{Q \in R(\psi) \,, \ | < g_i, \ Q - Q_0 > | < \epsilon_i \}) \ = \ \underset{i=1}{\overset{n}{\cap}} \{P \in \Pi_{\phi}(S) \,, \ | < \phi g_i, P - \psi^{-1}(Q_0) > | < \epsilon_i \}$$

et: 
$$g \in C_b(S) \Rightarrow \phi q \in C_{\phi}(S)$$

On montre la continuité de  $\psi^{-1}$ , de manière analogue, en utilisant l'injectivité de  $\psi$  et:  $f \in C_{\phi}(S) \Rightarrow \frac{f}{\phi} \in C_{b}(S)$ 

Lemme 5.4.  $\Pi_{\phi}$  (S) est un espace polonais.

preuve: S est un espace polonais implique que  $\mathcal{H}_b^+(S)$  est aussi un espace polonais ([Bou], §5, n<sup>o</sup> 4, proposition 10). Compte tenu du lemme 5.3, il nous reste à prouver que  $R(\psi)$  est séquentiellement fermé. Supposons que:

 $\forall n \geq 1$ ,  $Q_n \in R(\psi)$  et  $Q_n \xrightarrow[n \to \infty]{} Q$  (étroitement dans  $\mathcal{H}_b^+(S)$ ).

On note  $P = \frac{1}{\phi} \cdot Q$ , alors:  $P \in \Pi_{\phi}(S)$  et  $\psi(P) = Q$ .

En effet:  $\langle \phi, P \rangle = \langle 1, Q \rangle \langle + \infty$ , et

$$1 = \langle 1, \psi^{-1}(Q_n) \rangle = \langle \frac{1}{\phi}, Q_n \rangle \xrightarrow[n \to \infty]{} \langle \frac{1}{Q}, Q \rangle = \langle 1, P \rangle$$

puisque: 5.1  $\Rightarrow \frac{1}{\phi} \in C_b(S)$ . Finalement, il est clair que  $\psi(P) = Q$ 

Lemme 5.5. Une partie H de  $\Pi_{\varphi}(S)$  est relativement compacte si et seulement si elle vérifie les conditions suivantes:

(5.5.1) 
$$\sup \{ \langle \phi, P \rangle P \in H \} \langle + \infty \rangle$$

(5.5.2) 
$$\forall \varepsilon > 0$$
 ,  $\exists K_{\varepsilon} \subset S$  ,  $K_{\varepsilon}$  compact, tel que 
$$\sup \{ <1_{S \setminus K_{\varepsilon}} \phi, P > , P \in H \} \le \varepsilon$$

preuve: Soit H une partie relativement compacte de  $\Pi_{\varphi}(S)$ , alors  $\psi(H)$  est relativement compacte dans  $R(\psi)$ , et du fait que  $R(\psi)$  est fermé,  $\psi(H)$  est relativement compacte dans  $\mathcal{H}_b^+(S)$ . Réciproquement, l'image par  $\psi^{-1}$  d'une partie  $\mathcal{H}$  de  $R(\psi)$ , et relativement compacte dans  $\mathcal{H}_b^+(S)$ , est une partie relativement compacte de  $\Pi_{\varphi}(S)$ . D'autre part, puisque S est polonais, les parties relativement compactes de  $\mathcal{H}_b^+(S)$  sont caractérisées par le condition de Prokhorov ([Bou], §5,  $n^O$ 5, th. 2), on peut dont énoncer:

est relativement compact dans  $R(\psi) \Leftrightarrow$   $((A \in R(\psi)) \text{ et } (\sup \{ \le 1, Q > , Q \in \mathcal{H} \} < + \infty \text{ et } (\forall \epsilon > 0, \exists K_{\epsilon} \subset S, K_{\epsilon} \text{ compact, t.q.: } \sup \{ Q(S \setminus K_{\epsilon}), Q \in \} \le \epsilon ) ).$  On conclut, en écrivant:  $Q = \phi \cdot \psi^{-1}(Q)$ 

Nous sommes maintenant en mesure de prouver la proposition 5.2.

#### preuve de la proposition 5.2

D'après le lemme 5.5, on veut montrer:

$$(5.2.3) \quad \sup_{N\geq 1} \langle \hat{\phi}, \mathcal{L}(\alpha_N) \rangle = \sup_{N\geq 1} \int_{\Pi_{\phi}} \langle \hat{\phi}, P \rangle \mathcal{L}(\alpha_N) (dP) < + \infty$$

(5.2.4) 
$$\forall \varepsilon > 0, \exists \hat{K}_{\varepsilon} \subset \Pi_{\phi}(S)$$
,  $\hat{K}_{\varepsilon}$  compact, tel que:

$$\sup_{N\geq 1} \langle 1_{\Pi_{\hat{\Phi}}}(S) \setminus \hat{R}_{\epsilon} \cdot \hat{R}_{\epsilon} / (\alpha_{N}) \rangle = \sup_{N\geq 1} \int_{\Pi_{\hat{\Phi}}} \langle S \rangle \setminus \hat{R}_{\epsilon} / (\alpha_{N}) (dP) \leq \epsilon$$

Or  $(5.2.5 \text{ et } 5.2.6) \Rightarrow (5.2.3 \text{ et } 5.2.4)$ , avec:

(5.2.5) 
$$\exists \delta > 0$$
, t. q.  $\sup_{N \ge 1} \int_{\prod_{\phi}} \langle \phi, P \rangle^{1+\delta} (\alpha_N) (dP) < + \infty$ 

$$(5.2.6) \quad \forall \varepsilon > 0, \; \stackrel{\sim}{\exists K}_{\varepsilon} \subset \Pi_{\phi}(S) \; , \; \stackrel{\sim}{K}_{\varepsilon} \; \text{compact, tel que}$$

$$\sup_{N \ge 1} \mathbb{P}(\alpha_N \notin \stackrel{\sim}{K}_{\varepsilon}) \le \varepsilon$$

En effet: 5.2.5 ⇒ 5.2.3 (inégalité de Hölder)

et  $(5.2.5 \text{ et } 5.2.6) \Rightarrow 5.2.4$  puisque

$$\sup_{N\geq 1} \langle \mathbf{1}_{\Pi_{\phi}}(\mathbf{S}) \setminus \widetilde{K}_{\varepsilon} \cdot \widehat{\phi}, \mathcal{K}(\alpha_{N}) \rangle \leq \sup_{N\geq 1} [\mathbb{P}(\alpha_{N} \in \widetilde{K}_{\varepsilon})]^{\frac{\delta}{1+\delta}} [\langle \widehat{\phi}^{1+\delta}, \mathcal{K}(\alpha_{N}) \rangle]^{\frac{1}{1+\delta}}$$

$$\leq \varepsilon^{\frac{\delta}{1+\delta}} (\sup_{N>1} \langle \widehat{\phi}^{1+\delta}, \mathcal{K}(\alpha_{N}) \rangle)^{\frac{1}{1+\delta}}$$
(Hölder)

Donc il suffit de montrer que:  $(5.2.1 \text{ et } 5.2.2) \Rightarrow (5.2.5 \text{ et } 5.2.6)$ ,  $5.2.1 \Rightarrow 5.2.5$ , puisque

$$\sup_{N\geq 1} \int_{\mathbb{Q}_{\phi}(S)} \langle \phi, P \rangle^{1+\delta} \mathcal{A}(\alpha_{N}) (dP) \leq \sup_{N\geq 1} \int_{\mathbb{Q}_{\phi}(S)} \langle \phi^{1+\delta}, P \rangle \mathcal{L}(\alpha_{N}) (dP) = \sup_{N\geq 1} \langle \phi^{1+\delta}, \overline{\alpha}_{N} \rangle$$

 $(5.2.1 \text{ et } 5.2.2) \Rightarrow 5.2.6$ 

On fixe  $\varepsilon > 0$  . (5.2.1 et 5.2.2) implique:

$$\sup_{N\geq 1} <\phi , \overline{\alpha}_N > = k < + \infty \quad \text{et}$$

 $\forall j \ge 1$  ,  $\exists K_j \in S$  ,  $K_j$  compact, t.q.

$$\sup_{N\geq 1} < 1_{S\setminus K_{j}} \phi, \overline{\alpha}_{N}^{>} \leq \varepsilon 2^{-2j-1}$$

D'après l'inégalité de Tchebitchev:

$$\forall j$$
,  $N \ge 1$ ,  $\mathbb{P}(\langle 1_{S\setminus K_{j}} \phi, \alpha_{N} \rangle > 2^{-j}) \le \varepsilon 2^{-j-1}$ 

Donc en posant:  $\mathcal{K} = \bigcap_{j \ge 1} \{P \in \Pi_{\phi}(S), \{1_{S \setminus K_j}, \phi, P \ge 2^{-j}\} \cap \{P \in \Pi_{\phi}(S), \{\phi, P \ge \frac{2k}{\epsilon}\}\}$  on obtient:

$$\begin{split} \mathbb{N} &\geq 1, \quad \mathbb{P}\left(\alpha_{\mathbf{N}} \in \mathcal{N}\right) &\leq \sum_{\mathbf{j} \geq 1} \mathbb{P}\left(1_{\mathbf{S} \setminus \mathbf{K}_{\mathbf{j}}} \phi, \alpha_{\mathbf{N}}^{>>} 2^{-\mathbf{j}}\right) + \mathbb{P}\left(\langle \phi, \alpha_{\mathbf{N}}^{>>} \frac{2k}{\varepsilon}\right) \\ &\leq \frac{\varepsilon}{2} \sum_{\mathbf{j} = 1}^{\infty} 2^{-\mathbf{j}} + \frac{\varepsilon}{2} \frac{\sup_{\mathbf{N} \geq 1} \langle \phi, \overline{\alpha}_{\mathbf{N}}^{>} \rangle}{k} = \varepsilon \end{split}$$

on conclut en remarquant que, d'après le lemme 5.5, 🖔, est compact. []

Remarque. Pour que  $\{\mathscr{L}(\alpha_N), N \geq 1\}$  soit relativement compact dans  $\Pi_{\hat{\varphi}}[\Pi_{\varphi}(S)]$ , il est nécessaire que les conditions suivantes soient vérifiées:

$$\sup_{N\geq 1} < \phi, \overline{\alpha}_N > < +\infty$$

 $\forall \epsilon \geq 0$ ,  $\exists K_{\epsilon} \subset S$ , K compact, t.q.

$$\sup_{N\geq 1} < 1_{S\setminus K_{\varepsilon}} \cdot \phi, \overline{\alpha}_{N} > \leq \varepsilon$$

C'est une conséquence immédiate du lemme 5.5. et de la continuité de l'application:

$$\begin{cases} \Pi_{\widehat{\Phi}}[\Pi_{\widehat{\Phi}}(S)] & \rightarrow & \Pi_{\widehat{\Phi}}(S) \\ \theta & \mapsto & \prod_{\widehat{\Phi}}(S) & P & \theta & (dP) \end{cases}$$

Proposition 5.6 Pour tout  $k \in \mathbb{N}^*$ ,  $\frac{y^k}{z} = (Y_i^k)_{1 \le i \le N_k}$  est une suite  $N_k$ -échangeable à valeurs dans  $S^{N_k}$ , et  $\lim_{k \to \infty} N_k = +\infty$  Pour que  $\{X_i^k(\Lambda_{N_k}(y^k)), k \ge 1\}$  soit relativement compact dans  $\|X_i^k(S)\|_{\Phi}$ , il suffit que les deux conditions suivantes soient vérifiées:

(5.6.1) It existe 
$$\delta > 0$$
, tel que  $\sup_{k \ge 1} \langle \phi^{1+\delta}, \chi(Y_1^k) \rangle \langle +\infty$ 

(5.6.2) 
$$\{\chi(Y_1^k), k \ge 1\}$$
 est tendu uniformément dans  $||(S)|$ .

preuve: C'est une conséquence immédiate du lemme 4.3 et de la proposition 5.2.

preuve: 5.7.1 est clair.

Pour obtenir 5.7.2, il est suffisant de prendre pour A une suite de  $\widehat{\mathcal{G}}$ . Compte tenu de 5.7.1, la condition suffisante est évidente, et la condition nécessaire s'obtient à l'aide d'un procédé d'extraction de suite diagonale.  $\square$ 

# b) La relative compacité de $\{\bar{P}_N, N \ge 1\}$

De manière à prouver la relative compacité de  $\{\overline{P}_N, n \ge 1\}$  au lemme 5.10, nous allons utiliser la proposition 5.6 et le lemme 5.7, en prenant:  $S = C(\mathbb{R}^+, \mathbb{R}^d)$ ,  $k = N_k = N \to \infty$ ,

 $Y^k = X^N$ , considéré comme variable aléatoire sur  $C(\mathbb{R}^+, \mathbb{R}^{dN}) = C(\mathbb{R}^+, \mathbb{R}^d)^N$ , et

$$\phi_{\ell} = \phi_{\ell,p} : \begin{cases} C(\mathbb{R}^+, \mathbb{R}^d) & \to \mathbb{R} \\ x & \mapsto 1 + \sup_{0 \le t \le \ell} |x(t)|^p \end{cases}$$

Le lemme 5.8 suivant, va nous servir à obtenir des estimations sur les moments de  $\mathbf{x}_1^N$ , au lemme 5.9, dont nous aurons besoins pour établir 5.6.1 et 5.6.2 dans le cadre décrit précédemment.

$$\begin{split} \texttt{M}^{n}_{\psi}(\texttt{t}, \omega^{n}) &= \psi(\texttt{Y}^{n}(\texttt{t})) - \psi(\texttt{Y}^{n}(\texttt{0})) - \int_{0}^{\texttt{t}} [<\psi'(\texttt{Y}^{n}(\texttt{s})), \tilde{\texttt{b}}^{n}(\texttt{Y}^{n}(\texttt{s}), \texttt{s}, \omega^{n})> \\ &+ \frac{1}{2} \ \texttt{tr}(\psi''(\texttt{Y}^{n}(\texttt{s}))\tilde{\texttt{a}}^{n}(\texttt{Y}^{n}(\texttt{s}), \texttt{s}, \omega^{n}))] ds \end{split}$$

$$= \int_{0}^{t} \langle \tilde{\sigma}^{n} \star (Y^{n}(s), s, \omega^{n}) \psi'(Y^{n}(s)), dw^{n}(s) \rangle$$

est une martingale localement de carré intégrable, où:

$$\tilde{b}^n : \mathbb{R}^m \times \mathbb{R} \times \Omega^n \to \mathbb{R}^m, \tilde{\sigma}^n : \mathbb{R}^m \times \mathbb{R}^+ \times \Omega^n \to L(\mathbb{R}^m, \mathbb{R}^m), \tilde{a}^n = \tilde{\sigma}^n \tilde{\sigma}^n \star$$

et  $\mathbf{w}^n$  est un mouvement brownien à valeurs  $\mathbb{R}^m$ , construit sur  $(\Omega^n,(\S^n_t)_{t\geq 0}, \P^n,\mathbb{P}^n)$ . S'il existe  $k_1>0$ , et une suite de processus adaptés  $C^n_t$ , tels que:

$$(5.8.1) \quad \forall n \geq 1, \quad \forall y \in \mathbb{R}^m, \ \forall \omega^n \in \Omega^n, \ \forall t > 0 ,$$

$$\langle y, \delta^n(y, t, \omega^n) \rangle + tr(\tilde{a}^n(y, t, \omega^n)) \leq k_1(C_+^n + |y|^2)$$

S'il existe  $p \ge 4$ , et  $k_2 : t \rightarrow k_2(t)$ , tels que

(5.8.2) 
$$\forall n \ge 1, \forall 0 \le s \le t, E | C_s^n |^{\frac{p}{2}} \le k_2(t) (1 + E(|Y^n(s)|^p)),$$

(5.8.3) 
$$\sup_{n\geq 1} E(|Y^{n}(0)|^{p}) < + \infty$$

alors : 
$$\forall$$
 T > 0 , sup E ( sup | Y<sup>n</sup>(t)| P) < + ∞ N≥1 0≤t≤T

preuve: Soit 
$$\psi$$
 :  $\begin{cases} \mathbb{R}^m \to \mathbb{R} \text{ , alors pour tout } n \ge 1 \text{, il} \\ y \mapsto |y|^2 \end{cases}$ 

existe une suite de temps d'arrêt  $(\tau_k^n)_{k\geq 1}$ , tendant  $\mathbb{P}^n$ -presque sûrement vers l'infini et telle que:

$$|Y^{n}(t \wedge \tau_{k}^{n})|^{2} = |Y_{(0)}^{n}|^{2} + \int_{0}^{t \wedge \tau_{k}^{n}} [2 \langle Y^{n}(s), b^{n}(Y^{n}(s), s, \omega^{n}) \rangle + \text{tr } \tilde{a}^{n}(Y^{n}(s), s, \omega^{n})] ds$$

+ 
$$M_{\psi}^{n}$$
 (t  $\wedge$   $\tau_{k}^{n}$ , $\omega^{n}$ )

où 
$$M^{n}(t \wedge \tau_{k}^{n}, \omega^{n}) = \int_{0}^{t \wedge \tau_{k}^{n}} 2 \langle \tilde{\sigma}^{n} \star (Y^{n}(s), s, \omega^{n}) (Y_{s}^{n}), dw^{n}(s) \rangle$$

est une martingale réelle d'espérance nulle. On note  $q = \frac{p}{2}$ .

$$|\, Y^{n}(\mathsf{t} \wedge \tau_{\,k}^{\,n}) \,|^{\,p} \, \leq \, 3^{q-1}\{\, |\, Y^{n}(0) \,|^{\,p} \, + (2k_{1})^{\,q}[\, \int\limits_{0}^{t} (C^{n}_{\,\,s \wedge \tau_{\,k}^{\,n}} |\, Y^{n}(\mathsf{s} \wedge \tau_{\,k}^{\,n}) \,|^{\,2}d\mathsf{s} \,]^{\,q} \,+ \, |\, \mathsf{M}^{n}(\mathsf{t} \wedge \tau_{\,k}^{\,n}) \,|^{\,q}\}$$

$$(5.8.4) \leq 3^{q-1} |Y^{n}(0)|^{p} + (2k_{1})^{q} (2t)^{q-1} (\int_{0}^{t} |C^{n}|^{q} ds + \int_{0}^{t} |Y^{n}(s \wedge \tau_{k}^{n})|^{p} ds) + |M_{\psi}^{n}(t \wedge \tau_{k}^{n}, \omega^{n})|^{q} \}$$

En utilisant l'inégalité de Doob (q > 1) on obtient:

$$\forall$$
 o  $\leq$  t  $\leq$  T,

$$E \left( \sup_{0 \le v \le t} |Y^{n}(v \wedge \tau_{k}^{n})|^{p} \right) \le C_{1} E(|Y^{n}_{(0)}|^{p}) + C_{2} E(|M^{n}_{\psi}(T \wedge \tau_{k}^{n}, \cdot)|^{q})$$

$$+ C_{3}(T) \int_{0}^{t} E(\sup_{0 \le v \le s} |Y^{n}(v \wedge \tau_{k}^{n})|^{p}) ds$$

D'après le lemme de Gronwald:

$$\forall o \leq t \leq T , \quad E(\sup_{0 \leq v \leq t} |Y^{n}(v \wedge \tau_{k}^{n})|^{p}) \leq (C_{1} E(|Y^{n}(0)|^{p})$$

$$+ C_{2} E(|M^{n}(T \wedge \tau_{k}^{n}, \cdot)|^{q})) \exp(TC_{3}(T)) .$$

Et du lemme de Fatou, en faisant  $k \rightarrow \infty$  , on tire:

$$\begin{array}{ll} \forall \mathtt{T} \geq \mathtt{0}, & \sup_{n \geq 1} \ \mathtt{E} \ (\sup_{0 \leq t \leq \mathtt{T}} |\mathtt{Y}^n(t)|^p) \leq \mathtt{C}_{4}(\mathtt{T}) (\sup_{N \geq 1} \mathtt{E} (|\mathtt{Y}^n_{(0)}|^p) \\ & (\mathtt{5.8.5}) \\ & + \sup_{k,n \geq 1} \mathtt{E} (|\mathtt{M}^n_{\psi}(\mathtt{T} \wedge \tau^n_{k}, \cdot)|^q)) \end{array}$$

Donc, il nous reste à trouver une estimation de

$$\sup_{k,n\geq 1} E(|M^n(t \wedge \tau_k^n, \cdot)|^q)$$

Posons  $\xi^{n,k}(t) = M_{\psi}^n(t \wedge \tau_k^n, \omega^n)$ . Le lemme d'Ito  $(q \geq 2)$ , nous donne l'existence d'une suite de  $(\S_t^n)_{t \geq 0}$ - temps d'arrêt:  $(\theta_{\ell}^n)_{\ell \geq 1}$ , tendant  $\mathbb{P}^n$ -presque sûrement vers l'infini et telle que

$$|\xi^{n,k}(\mathsf{t} \wedge \theta^n)|^q = \int_0^{\mathsf{t} \wedge \tau_k^n \wedge \theta_\ell^n} 2q(q-1) |\xi^{n,k}(\mathsf{s})|^{q-2} |\tilde{\sigma}^{n^*}(\mathsf{Y}^n(\mathsf{s}),\mathsf{s},\omega^n) (\mathsf{Y}^n(\mathsf{s}))|^2 d\mathsf{s} + \mathsf{N}^{n,k}(\mathsf{t} \wedge \theta_\ell^n)$$

où  $N^{n,k}(t \wedge \theta_{\ell}^{n})$  est une martingale d'espérance nulle, donc:

$$|\xi^{n,k}(t \wedge \theta_{\ell}^{n})|^{q} \leq 2q(q-1) \int_{0}^{t \wedge \tau_{k}^{n} \wedge \theta_{\ell}^{n}} |\xi^{n,k}(s)|^{q-2} k_{1} |Y^{n}(s)|^{2} (C_{s}^{n} + |Y^{n}(s)|^{2}) ds + N^{n,k}(t \wedge \theta_{\ell}^{n})$$

$$\leq 3k_{1}q(q-1) \int_{0}^{t \wedge \tau_{k}^{n} \wedge \theta_{\ell}^{n}} |\xi^{n,k}(s)|^{q-2} ((C_{s}^{n})^{2} + |Y^{n}(s)|^{4}) ds + N^{n,k}(t \wedge \theta_{\ell}^{n})$$

A l'aide de 5.8.4 avec p = 4 et du lemme de Gronwald, on a :

$$\forall t \ge 0$$
,  $|Y^{n}(t \wedge \tau_{k}^{n})|^{4} \le C_{5}(t)(|Y_{(0)}^{n}|^{4} + \int_{0}^{t}(C_{s \wedge \tau_{k}^{n}}^{n})^{2} ds + |\xi^{n,k}(t)|^{2})$  (5.8.7)

Par conséquent:

$$\mathsf{E} \, |\, \xi^{n,k}(\mathsf{t} \wedge \, \, \theta^n_{\ell}) \, |^{\, q} \, \leq \, \mathsf{C}_6(\mathsf{t}) \, (1 + \sup_{n \geq 1} \, \mathsf{E} \, |\, \mathsf{Y}^n_{(0)} \, |^{\, 4} + \sup_{n \geq 1} \, \sup_{0 \leq s \leq \mathsf{t}} \, \mathsf{E} \, (\mathsf{C}^n_s)^{\, 2}) \, (1 + \int_0^\mathsf{t} \! \mathsf{E} \, |\, \xi^{n,k}(\mathsf{s} \wedge \, \, \theta^n_{\ell}) \, |^{\, q} \, \, \mathrm{d} \mathsf{s})$$

qui à l'aide des lemmes de Gronwald et Fatou permet d'obtenir:

$$\sup_{\substack{n,k\geq 1\\(5.8.8)}} \mathsf{E}^{|\xi|^{n,k}}(\mathsf{t})|^{q} \leq C_{7} (\sup_{n\geq 1} \mathsf{E}^{|Y|^{n}}(\mathsf{0})|^{4}, \sup_{n\geq 1} \sup_{0\leq s\leq \mathsf{t}} \mathsf{E}^{[(C^{n}_{s})^{2}]) \exp(\mathsf{t}^{|C|}(\mathsf{C}^{n}_{s}))$$

Compte tenu de 5.8.5 et 5.8.8, il nous reste à prouver:

(5.8.9) 
$$\sup_{n \ge 1} \sup_{0 \le s \le t} E[(C_s^n)^2] < + \infty, \forall t \ge 0$$

En prenant q = 2 dans 5.8.6 et en le combinant avec 5.8.7, on obtient:

$$E(|Y^{n}(t \wedge \tau_{k}^{n} \wedge \theta_{\ell}^{n})|^{4}) \leq C_{8}(t)(1 + E(|Y_{(0)}^{n}|^{4})) + C_{9}(t) \int_{0}^{t} E(|Y^{n}(s \wedge \tau_{k}^{n} \wedge \theta_{\ell}^{n})|^{4}) ds$$

Par conséquent:

$$\sup_{n \ge 1} E(|Y^{n}(t)|^{4}) \le C_{10}(t)(1 + \sup_{n \ge 1} E(|Y^{n}(0)|^{4}))$$

qui avec 5.8.2 nous permet d'écrire 5.8.9 :

$$\sup_{n\geq 1} \sup_{0\leq s\leq t} E[(C_s^n)^2] \leq C_{11}(t)(1 + \sup_{n\geq 1} E(|Y_{(0)}^n|^4)) < +\infty \qquad \Box$$

Au lemme 5.9, nous allons appliquer le lemme 5.8 à la suite de processus continus à valeurs  $\mathbb{R}^d$ :  $(\mathbf{x}_1^N)_{N\geq 1}$ , où l'on note pour tout élément  $\mathbf{y}^N$  de  $(\mathbb{R}^d)^N$  ou de  $C(\mathbb{R}^+,\mathbb{R}^d)^N$ :

$$y^{N} = (y_{j}^{N})_{1 \le j \le N}$$
;  $y_{j}^{N} \in \mathbb{R}^{d}$  ou  $C(\mathbb{R}^{+}, \mathbb{R}^{d})$ ,

D'après le lemme d'Ito appliqué à une fonction  $\Psi \in C^2(\mathbb{R}^{dN})$  de la forme :  $\Psi(x^N) = h(x_1^N)$ ,  $\forall x^N \in \mathbb{R}^d$ ,  $h \in C^2(\mathbb{R}^d)$ , on a  $\forall h \in C^2(\mathbb{R}^d)$   $\forall t \geq 0$ ,

$$h(\mathbf{x}_{1}^{N}(t)) = h(\mathbf{x}_{1}^{N}(0)) + \int_{0}^{t} [\langle h'(\mathbf{x}_{1}^{N}(s)), b[\mathbf{x}_{1}^{N}(s), \overline{\mathbf{x}}_{N}(s)] \rangle + \frac{1}{2} tr(h''(\mathbf{x}_{1}^{N}(s)\sigma\sigma^{*}[\mathbf{x}_{1}^{N}(s), \overline{\mathbf{x}}^{N}(s)])] ds$$
 
$$+ M_{h}^{N}(t)$$

où 
$$M_h^N(t) = \int_0^t \langle \sigma * [x_1^N(s), \overline{x}^N(s)]h'(x_1^N(s)), dw_1(s) \rangle$$
 est une martingale

localement de carré intégrable.

Nous sommes donc dans les conditions d'application du lemme 5.8, avec pour tout  $N \ge 1$ :  $(\Omega^N, (\mathcal{G}_t^N)_{t \ge 0}, \mathcal{F}^N, \mathbb{P}^N) = (\Delta, (\mathcal{F}_t)_{t \ge 0}, \mathcal{F}, \mathbb{P})$   $Y^N = x_1^N$ ,  $w^N = w_1$ ,  $\tilde{b}^N(Y^N(t), t, \omega^N) = b[x_1^N(t), \overline{x}_N(t)]$  et  $\tilde{\sigma}^N(Y^N(t), t, \omega^N) = \sigma[x_1^N(t), \overline{x}_N(t)]$ 

lemme 5.9. Sous les hypothèses  $H_{1,3,4,5,6,8}$  (de la proposition 3.3), pour que pour tout  $T \ge 0$ ,  $\sup_{N\ge 1} \sup_{0\le t\le T} |\mathbf{x}_N^1(t)|^p < +\infty$  (p  $\ge 4$ ) il suffit que (5.9.1)  $\sup_{N\ge 1} \mathsf{E}(|\mathbf{x}_N^1(0)|^p) < +\infty$ 

<u>preuve</u>: Pour pouvoir appliquer le lemme 5.8, il reste à vérifier les conditions 5.8.1 et 5.8.2. On vérifie aisément que:  $\forall\,N\,\geq\,1,\ \forall\,y\,\in\,\mathbb{R}^{dN}$ 

$$<\mathbf{y_1,\ b[y_1,\Lambda_N(y)]}> \le \ <\mathbf{y_1,v(y_1)}> \ +\ |\mathbf{y_1}|\mathbf{f_1(y_1)}\ +\ \frac{1}{2}|\mathbf{y_1}|^2\ +\ \frac{1}{2N}\ \frac{N}{j=1}\mathbf{f_2(Y_j)}^2$$
 et

$$\operatorname{tr}(\sigma\sigma^*[y_1, \Lambda_N(y)]) \leq \frac{1}{N} \sum_{j=1}^{N} [\operatorname{tr} \sigma\sigma^*(y_1, y_j)]$$

 $H_5$ ,  $H_6$  et  $H_8$  nous permettent de prendre:  $C_t^N = 1 + \frac{1}{N} \sum_{j=1}^{N} |x_j^N(t)|^2$ 

dans 5.8.1. Or, 
$$\forall t \geq 0$$
,  $\forall p \geq 0$ ,  $\forall N \geq 1$ , 
$$E(|C_t^N|^{\frac{p}{2}}) \leq C(1 + E([\frac{1}{N}\sum_{j=1}^{N}|x_j^N(t)|^2]^{\frac{p}{2}}))$$

$$\leq C(1 + E(\frac{1}{N} \sum_{j=1}^{N} |x_{j}^{N}(t)|^{p}))$$
 (convexité de  $x^{\frac{p}{2}}$ )

= 
$$C(1 + E(|x_1^N(t)|)^p$$
 (échangeabilité)

Ce qui donne 5.8.2 []

Lemme 5.10. Sous les hypothèses  $H_{1,3,4,5,6,8}$  et  $H_{7}$ , et si pour  $p \ge max (4,r)$  (rapparait dans l'hypothèse  $H_{7}$ ), on a

$$(5.10.1) \quad \exists \, \delta > 0, \quad \sup_{N \ge 1} E < |\cdot|^{p+\delta}, \overline{x}_N(0) > < +\infty$$

alors:  $\{\bar{P}_{N}, N \ge 1\}$  est relativement compacte dans  $\hat{\mathcal{T}}_{p}$ .

preuve: Compte tenu du lemme 5.7 et de la proposition 5.6, nous
devons montrer:

$$(5.10.2) \exists \delta > 0, \forall T \geq 0, \sup_{N \geq 1} \langle (\phi_{T,p})^{1+\delta'}, \mathcal{L}(x_1^N) \rangle < +\infty$$

et

 $(5.10.3) \qquad \{ \chi'(x_1^N) \text{ , } N \geq 1 \} \quad \text{est tendu uniformément dans } \mathbb{I}\left[\mathbb{C}\left(\mathbb{R}^+, \mathbb{R}^d\right)\right]$ 

or, 
$$\sup_{N\geq 1} \langle (\phi_{T,p})^{1+\delta'}, (x_1^N) \rangle \leq C(\delta') \sup_{N\geq 1} E(\sup_{0\leq t\leq T} |x_1^N(t)|^{\underline{p}+\delta'p})$$

donc, en prenant  $\delta' = \frac{\delta}{p}$ , 5.10.2 se déduit de 5.10.1 et du lemme 5.9. Puisque  $p \ge \max(4,r)$ , 5.10.1 implique 4.3.1 avec  $\mathbb{B}^N(Y_N(t^-),t,\omega^N) = \mathbb{B}[x_1^N(t),\overline{x}^N(t)]$  et  $\mathbb{A}^N(Y_N(t^-),t,\omega^N) = \sigma\sigma^*[x_1^N(t),\overline{x}^N(t)]$  4.3.2 est évident, puisque  $\mathbb{A}^N(t) = t$ ,  $\forall N \ge 1$ . Par conséquent la proposition 4.3 nous donne la tension uniforme de  $\{\mathscr{C}(x_1^N), N \ge 1\}$  dans  $\mathbb{H}[\mathbb{D}(\mathbb{R}^+,\mathbb{R}^d)]$ . Mais (4.3.1 et 4.3.2) implique la condition d'Aldous, et de ce fait, toute valeur d'adhérence de  $\{\mathscr{C}(x_1^N), N \ge 1\}$  est dans  $\mathbb{H}[\mathbb{C}(\mathbb{R}^+,\mathbb{R}^d)]$  (cf [JoM], lemme 3.2). On en déduit 5.10.3, par un argument classique.

# 6. Identification et unicité

# 6.a) Identification des valeurs d'adhérence de $(\overline{\mathtt{P}}_{\mathtt{N}})_{\mathtt{N}=1}$

On note 
$$\mathbb{I}_p(\mathbb{R}^d) = \mathbb{I}_{\chi_p}(\mathbb{R}^d)$$
, où  $\chi_p : \begin{cases} \mathbb{R}^d \to \mathbb{R}^+, p \ge 0 \\ x \mapsto 1 + |x|^p \end{cases}$ 

On definit L:  $C_K^2(\mathbb{R}^d) \times \Pi_1(\mathbb{R}^d) \to \mathbb{R}^{\mathbb{R}^d}$ , par:

$$\forall \psi \in C_K^2(\mathbb{R}^d)$$
 ,  $\forall \nu \in \Pi_1(\mathbb{R}^d)$  ,  $\forall x \in \mathbb{R}^d$  ,

$$L(\psi, v)(x) = \langle b[x, v], \psi'(x) \rangle + \frac{1}{2} tr(\sigma \sigma^*[x, v] \psi''(x))$$

Soit  $\mu \in \Pi_1(\mathbb{R}^d)$ , on dit que  $P_{\mu} \in \Pi(C(\mathbb{R}^+, \mathbb{R}^d))$  est solution du problème de martingale non-linéaire:  $(L,\mu)$  si:

$$\begin{array}{l} P_{\mu}\left(X\left(0\right) \in A\right) = \mu\left(A\right) \text{ , } \forall A \in \text{$\mathfrak{H}$}(\mathbb{R}^d) \\ \forall \psi \in C_K^2(\mathbb{R}^d) \text{ , } \psi\left(X(t)\right) - \psi\left(X(0)\right) - \int_0^t L(\psi,X(s) \circ P_{\mu})(X_s) ds \\ \text{est une $P_{\mu}$-martingale.} \end{array}$$

Lemme 6.1. Sous les hypothèses du lemme 5.10, si  $\xi_{\mu}$  est l'ensemble des solutions du problème de martingale non-linéaire (L, $\mu$ ),, si  $\bar{Q}$  est une valeur d'adhérance de ( $\bar{P}_N$ ) $_{N\geq 1}$ , et si

(6.1.1) 
$$\bar{\mathbb{Q}}(\{ \mathbf{m} \in \Pi(\mathbb{C}(\mathbb{R}^+, \mathbb{R}^d)), X(0) \circ \mathbf{m} = \mu \}) = 1$$
, alors  $\bar{\mathbb{Q}}(\mathcal{C}_{\mu}) = 1$ .

où:  $0 \le s \le t$ ,  $\psi \in C_K^2(\mathbb{R}^d)$  et  $G \in C_b[C(\mathbb{R}^+, \mathbb{R}^d)]$  est  $\mathcal{F}_s$ -mesurable comme en [Szn], nous allons montrer que: F(m) = 0,  $\bar{Q}$ -presque sûrement ce qui avec 6.1.1 démontre le lemme.

 $\label{eq:force_force} F \ \ \text{est continue pour} \ \ p \ge 1 \ , \ \text{puisque:} \ \ \forall \ x \ \epsilon \ \mathbb{R}^d \ ,$   $f(x, \cdot) \ \epsilon \ C_{\chi_1}(\mathbb{R}^d) \ , \ (F \ \text{est d\'efinie par} \ b(x, y) = v(x) + f(x, y)) \ , \ \text{et:}$ 

$$\begin{aligned} \forall k \in \mathbb{N}^*, & \langle F(\cdot)^2 \wedge k, \overline{Q} \rangle = \lim_{N \to \infty} \langle F(\cdot)^2 \wedge k, \overline{P}_N \rangle \\ &= \lim_{N \to \infty} \left[ \left\{ \frac{1}{N} \sum_{i=1}^{N} (\psi(\mathbf{x}_i^N(t)) - \psi(\mathbf{x}_i^N(s)) - \int_{s}^{t} L(\psi, \Lambda_N(\mathbf{x}_i^N(u))) du \right) G(\mathbf{x}_i^N) \right\}^2 \wedge k \right] \end{aligned}$$

$$\leq \frac{\lim_{N \to \infty} \left[ \frac{N-1}{N} \left\{ (H_{\psi}^{N,1}(t) - H_{\psi}^{N,1}(s)) (H_{\psi}^{N,2}(t) - H_{\psi}^{N,2}(s)) G(\mathbf{x}_{1}^{N}) G(\mathbf{x}_{2}^{N}) \right\} + \frac{1}{N} (H_{\psi}^{N,1}(t) - H_{\psi}^{N,1}(s))^{2} G(\mathbf{x}_{1}^{N})^{2} \right]$$

avec:  $H_{\psi}^{N,i}(t) = \psi(x_i^N(t)) - \psi(x_i^N(0)) - \int_0^t L(\psi, \Lambda_N(x^N(s)))(x_i^N(s)) ds$ , qui est une martingale localement de carré intégrable telle que:

 $\langle H_{\psi}^{N,i}, H_{\psi}^{N,j} \rangle = 0$  si  $i \neq j$  (processus de Meyer),

et

 $\sup_{N\geq 1} E[(H^{N,i}_{\psi}(t))^{2}] \leq C_{1}(\psi,t) \sup_{N\geq 1} (E \sup_{0\leq s\leq t} |x_{i}^{N}(s)|^{2} + E \sup_{0\leq s\leq t} \frac{1}{N} \sum_{j=1}^{N} x_{j}^{N}(s)|^{2})$   $\leq C_{2}(\psi,t) (1 + \sup_{N>1} E \sup_{0\leq s\leq t} |x_{1}^{N}(s)|^{2}) > < + \infty$ 

Par conséquent:  $\forall k \in \mathbb{N}^*$ ,  $\langle F(\cdot)^2 \wedge k, \overline{Q} \rangle = 0$ . On conclut avec Beppo-Levi .  $\square$ 

# 6.b) Unicité de le valeur d'adhérence de $(\overline{P}_N)_{N\geq 1}$

lemme 6.2. Sous les hypothèses (H), pour tout  $\mu \in \mathbb{F}_p(\mathbb{R}^d)$ , avec  $p > \max(4,24)$ ,  $\mathcal{E}_{\mu}$  est un singleton.

# Un résultat préliminaire.

$$W = \{ f, f \in C(\mathbb{R}^d), ||f||_{W} < + \infty \}, \text{ où}$$

$$||f||_{W} = \sup_{x \in \mathbb{R}^{d}} \frac{|f(x)|}{1+|x|} + \sup_{\substack{x,y \in \mathbb{R}^{d} \\ x \neq y}} \frac{|f(x)-f(y)|}{|x-y|}$$

 $(W,||\cdot||_W)$  est un espace normé. On note W' son dual et  $||\cdot||_W$ , la norme de W'. Il est clair que  $\Pi_1(\mathbb{R}^d)\subset W'$ . D'autre part si  $X_1$  et  $X_2$  sont des variables aléatoires sur  $\mathbb{R}^d$ , telles que  $E|X_1|+E|X_2|<+\infty$  alors:

$$\begin{aligned} (6.2.1) & || \cancel{\mathcal{L}}(x_1) - \cancel{\mathcal{L}}(x_2)||_{W'} &\leq E|x_1 - x_2|, & \text{en effet} \\ & |< f, \cancel{\mathcal{L}}(x_1) - \cancel{\mathcal{L}}(x_2)>| &= |E(f(x_1) - f(x_2))| \\ & \leq \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} E|x_1 - x_2| &\leq ||f||_{W} E|x_1 - x_2| \end{aligned}$$

# preuve du lemme 6.2

Puisque  $\{\bar{P}_N, N \ge 1\}$  est relativement compact (lemme 6.1), on a:  $\xi_{\mu} \ne \emptyset$ . Soit  $m \in \xi_{\mu}$ , la solution de l'équation différentielle stochastique

chastique
$$\begin{cases}
x(m)_t = \xi_0 + \int_0^t b[x(m)_s, X(s) \circ m] ds + \int_0^t \sigma[x(m)_s, X(s) \circ m] dw_s \\
\chi'(\xi_0) = \mu
\end{cases}$$

existe et est unique (voir la proposition 3.1). Le problème de martingale linéaire (L(•,m), $\mu$ ) admet par conséquent une unique solution. Puisque m  $\epsilon \stackrel{\textstyle \star}{\mathcal{E}}_{\mu}$ , cette solution est nécessairement m . Par conséquent, tout élément m de  $\stackrel{\textstyle \star}{\mathcal{E}}_{\mu}$  admet une représentation trajectorielle: x(m) .

Soit  $m_1$  et  $m_2$  deux éléments de  $\delta_{\mu}$ , et  $x_1 = x(m_1)$  et  $x_2 = x(m_2)$ : leurs representations trajectorielles. Pour prouver le lemme il suffit de montrer:

(6.2.2) 
$$\forall t \ge 0$$
,  $E|x_1(t) - x_2(t)|^2 = 0$ .

A l'aide du lemme d'Ito et du lemme de Fatou, on obtient  $E(|\mathbf{x}_1(t) - \mathbf{x}_2(t)|^2) \leq 2 \int_0^t \langle \mathbf{x}_1(s) - \mathbf{x}_2(s), b[\mathbf{x}_1(s), \mathbf{X}(s) \circ \mathbf{m}_1] - b[\mathbf{x}_2(s), \mathbf{X}(s) \circ \mathbf{m}_1] \rangle ds$   $+ 2 \int_0^t \langle \mathbf{x}_1(s) - \mathbf{x}_2(s), b[\mathbf{x}_2(s), \mathbf{X}(s) \circ \mathbf{m}_1] - b[\mathbf{x}_2(s), \mathbf{X}(s) \circ \mathbf{m}_2] \rangle ds$   $+ \int_0^t tr[(\sigma[\mathbf{x}_1(s), \mathbf{X}(s) \circ \mathbf{m}_1] - \sigma[\mathbf{x}_2(s), \mathbf{X}(s) \circ \mathbf{m}_2])$   $(\sigma[\mathbf{x}_1(s), \mathbf{X}(s) \circ \mathbf{m}_1] - \sigma[\mathbf{x}_2(s), \mathbf{X}(s) \circ \mathbf{m}_2]) * ]ds$ 

Ce qui, à l'aide de  $H_2$ ,  $H_3$  et  $H_4$ , donne :  $\forall 0 \le t \le T$ ,

$$\begin{split} \mathsf{E}(|\mathbf{x}_{1}(\mathsf{t}) - \mathbf{x}_{2}(\mathsf{t})|^{2}) &\leq 5\mathsf{K} \int_{0}^{\mathsf{t}} \mathsf{E}(|\mathbf{x}_{1}(\mathsf{s}) - \mathbf{x}_{2}(\mathsf{s})|^{2}) d\mathsf{s} \\ &+ \mathsf{K} \sup_{0 \leq \mathsf{s} \leq \mathsf{T}} ||\mathsf{b}(\mathbf{x}_{2}(\mathsf{s}), \boldsymbol{\cdot})||_{\mathsf{W}}^{2} \int_{0}^{\mathsf{t}} ||\mathsf{X}(\mathsf{s}) \circ \mathsf{m}_{1} - \mathsf{X}(\mathsf{s}) \circ \mathsf{m}_{2}||_{\mathsf{W}^{1}}^{2} d\mathsf{s} \end{split}$$



Or: 
$$\sup_{0 \le s \le T} ||b(x_{2}(s), \cdot)||_{w}^{2} \le \sup_{0 \le s \le t} E[(2K + |v(x_{2}(s)| + f_{1}(x_{2}(s)))^{2}]$$
$$\le C_{1}(1 + \sup_{0 \le s \le T} |x_{2}(s)|^{2T}) < + \infty$$

Compte tenu de 6.2.1, on a:

le lemme de Gronwald.

$$E(|x_1(t) - x_2(t)|^2) \le C_2 \int_0^t E(|x_1(s) - x_2(s)|^2) ds$$
, ce qui donne 6.2.2, avec

# 7. Quelques résultats supplémentaires

7a) En effectuant une démonstration analogue à celle du théorème 2.2, en remplaçant la proposition 3.1 par celle énoncée à la remarque 3.2 et en obtenant directement la tension de  $\{ \vec{\nabla}(\mathbf{x}_1^N), N \ge 1 \}$ , à l'aide de la proposition 2.3 de [JoM], on obtient le théorème 7.1 suivant, où les hypothèses (H) sont renforcées, mais où les conditions initiales sont dans  $L^2$ .

Théorème 7.1. Les hypothèses (H) sont vérifiées, mais: H<sub>2</sub> est renforcé par:

 $\forall x,y,z, |b(x,y) - b(z,y)| \leq K|x - z|, v = 0 \text{ et } r = 1 \text{ dans } H_7$ Si pour tout  $N \geq 1$ ,  $\mathcal{K}(x^N(0)) \in L^2(0,\mathcal{F},\mathbb{P})$  alors,

l'équation 2.1 admet une unique solution trajectorielle dans  $C(\mathbb{R}^+,\mathbb{R}^{dN})$ .

De plus, si pour  $\mu \in \Pi(\mathbb{R}^d)$ ,  $\mathcal{L}(\overline{x}_N(0))_{N \to \infty} = \delta_{\mu}$  dans  $\Pi[\Pi(\mathbb{R}^d)]$ , et si pour  $p \geq 2$ ,  $\sup_{N \geq 1} \frac{E \int_{\mathbb{R}^d} |x|^p [\overline{x}_N(0)](dx) < + \infty}{\mathbb{R}^d}$ 

alors, pour tout  $0 \le q < p$  ,  $\mathcal{L}(\bar{X}_N) \to \delta_p$  dans  $\mathcal{P}_q$  ,

où Pest l'unique solution de 2.2.5.

7b) La forme particulière des fonctions:

$$b: \left\{ \begin{array}{ll} \mathbb{R}^d \times \mathbb{I} \left( \mathbb{R}^d \right) & \rightarrow & \mathbb{R}^d \\ \left( \mathbf{x}, \boldsymbol{\mu} \right) & \mapsto & \langle b \left( \mathbf{x}, \boldsymbol{\cdot} \right), \boldsymbol{\mu} \rangle \end{array} \right.$$

et

$$\sigma : \left\{ \mathbb{R}^{d} \times \Pi (\mathbb{R}^{d}) \rightarrow S_{d} \right.$$

$$\left\{ (x,\mu) \leftrightarrow \langle \sigma(x,\cdot), \mu \rangle \right.$$

n'intervient qu'en 3.3, 5.9 et 6.2.

On généralise immédiatement les résultats des théorèmes 2.2, 7.1, 7.2 et de la proposition 7.5, au cas où les systèmes finis de diffusions sont de la forme:

$$dx_{i}^{N}(t) = b \left[x_{i}^{N}(t), \overline{x}_{N}(t)\right]dt + \sigma \left[x_{i}^{N}(t, \overline{x}_{N}(t))\right]dw_{i}(t)$$

où  $b[x,\mu]$  et  $\sigma[x,\mu]$  vérifient les mêmes propriétés que celles que les hypothèses (H) induisent sur  $\langle b(x,\cdot), \overline{x}_N \rangle$  et  $\langle \sigma(x,\cdot), \overline{x}_N \rangle$ , avec  $\overline{x}_N = \mu$ .

En particulier, on peut avoir

$$b[x,\overline{x}_N] = \int_{(\mathbb{R}^d)^n} b(x,y_1, ..., y_n)\overline{x}_N(dy_1) \otimes ... \otimes \overline{x}_N(dy_n)$$

et

$$\tilde{\sigma}[\mathbf{x}, \tilde{\mathbf{x}}_{N}] = \int_{(\mathbb{R}^{d})^{n}} \sigma(\mathbf{x}, \mathbf{y}_{1}, \dots, \mathbf{y}_{n}) \tilde{\mathbf{x}}_{N}(d\mathbf{y}_{1}) \otimes \dots \otimes \tilde{\mathbf{x}}_{N}(d\mathbf{y}_{1})$$

où b(x,y) et  $\sigma(x,y)$  vérifient la généralisation des hypothèses (H) où l'on remplace y par  $(y_1, \dots, y_n) \in (\mathbb{R}^d)^n$ .

# 7c) Une généralisation des théorèmes 2.2 et 7.1

Théorème 7.2. Si les hypothèses du théorème 2.2 (resp. 7.1) sont vérifiées, si  $(\bar{X}_N(0)) \to \bar{P}_0$  dans  $\Pi[\Pi(\mathbb{R}^d)]$ ,  $\bar{X}_N(0) \to \bar{P}_0$ 

et si pour  $p \ge max(4,2r)$  (resp.  $p \ge 2$ )

$$\sup_{N\geq 1} \quad \mathsf{E} \int |x|^p [\overline{x}_N(0)] (\mathrm{d} x) < +\infty$$

alors

$$(7.2.1) \quad \mathcal{L}(\bar{X}_N) \xrightarrow[N \to \infty]{} \bar{P} = \int_{\Pi(\mathbb{R}^d)} \delta_{P(\mu)} \bar{P}_0(d\mu) \, dans \, \Pi\{\Pi[C(\mathbb{R}^+, \mathbb{R}^d)]\}$$

où P( $\mu$ )  $\in$  M[C( $\mathbb{R}^+$ ,  $\mathbb{R}^d$ )] est l'unique solution de 2.2.5, telle que  $X(0) \circ P(\mu) = \mu$ . De plus, si le support de  $\overline{P}_0$  est fini, alors la convergence 7.2.1 a lieu dans  $\widetilde{\mathcal{P}}_q$ , pour tout  $0 \le q < p$ .

<u>preuve</u>: Le théorème de représentation de Skorokhod nous permet de choisir  $(x^N(0))_{N\geq 1}$ , tel que:  $\bar{x}_N(0)$   $\overset{p_*s}{\to}$ .  $\bar{x}(0)$ , avec  $(\bar{x}(0)) = \bar{P}_0$ .

$$\begin{array}{lll} \forall \mathtt{F} \in \mathtt{C}(\widehat{\mathcal{P}}_{\mathtt{p}}) & , & <\mathtt{F}, \not \preceq (\overline{\mathtt{X}}_{\mathtt{N}}) > & = \mathtt{E}(\mathtt{F}(\overline{\mathtt{X}}_{\mathtt{N}})) & = \mathtt{E}[\mathtt{E}(\mathtt{F}(\overline{\mathtt{X}}_{\mathtt{N}}) \mid \overline{\mathtt{X}}(\mathtt{0}))] \\ \\ & = & \int_{\mathbb{T}(\mathbb{TR}^d)} \left[\int_{\mathbb{C}} \mathtt{F}(\overline{\mathtt{X}}_{\mathtt{N}}(\xi)) \, \mathbb{P}(\mathrm{d}\xi \mid \overline{\mathtt{X}}(\mathtt{0}) = \mu) \right] \, \overline{\mathtt{P}}_{\mathtt{0}}(\mathrm{d}\mu) \end{array}$$

Le théorème 2.2 (resp 7.1), nous donne:

$$\forall \mu \in \Pi_{p}(\mathbb{R}^{d}), \forall F \in T_{\geq 0}^{\cup} C_{\widetilde{\phi}_{T,p}}(\mathcal{P}_{p}),$$

$$\int_{\mathbb{R}^{d}} F(\overline{x}_{N}(\xi)) \mathbb{P}(d\xi \mid \overline{x}(0) = \mu) \xrightarrow{N \to \infty} F(P(\mu))$$

Si F est bornée ou si  $\bar{P}_0$  a un support fini, la famille:

$$\{ \mu \to \int\limits_{\Lambda} F(\overline{X}_N (\xi)) \, \mathbb{P}(d\xi \mid \overline{X}(0) = \mu ), \, N \geq 1 \} \quad \text{est $\overline{P}_0$-equiintégrable et: } \\ < F, \bigvee_{N \to \infty} (\overline{X}_N) > \int\limits_{N \to \infty} \int\limits_{\Pi(-\overline{\mathbb{R}}^d)} F(P(\mu)) \, \overline{P}_0(d\mu) = < F, \overline{P} > \square$$

# 7d) Une autre formulation de la convergence étroite de $\not\ll$ $(\bar{\mathbf{x}}_{_{\mathbf{N}}})$

On suppose que, pour tout  $N \ge 1$ ,  $(x_1^N(0), ..., x_N^N(0))$  est N-échangeable, alors d'après le théorème 4.2:

$$\mathcal{L}_{\mathfrak{I}}(\overline{x}_{N}) \xrightarrow[N \to \infty]{} \overline{P} \quad (\text{\'etroitement dans} \quad \Pi\{\Pi[C(\mathbb{R}^{+}, \mathbb{R}^{d})]\})$$

équivaut à:

$$(7.3) \ \forall \ \mathbf{m} \geq 1, \ \mathcal{L}(\mathbf{x}_1^N, \dots, \mathbf{x}_m^N) \ \underset{N \rightarrow \infty}{\rightarrow} \mathcal{L}(\mathbf{x}_1^{\infty}, \dots, \mathbf{x}_m^{\infty}) \ (\text{dans } \ \mathbb{H}[\mathbb{C}(\mathbb{R}^+, \mathbb{R}^d)^m])$$
 où  $(\mathbf{x}_1^{\infty}, \mathbf{x}_2^{\infty}, \dots)$  est le mélange d'i.i.d. dirigé par  $\overline{\mathbf{P}}$ .

# 7e) Propagation du chaos, propagation du mélange

Kac a introduit dans un contexte différent du notre ([Kac]), la notion de propagation du chaos, qui est la suivante: si la condition initiale  $x^N(0)$  a pour loi  $\mu^{\boxtimes N}$ , à un instant t>0 cette indépendance est détruite, mais lorsque  $N=+\infty$ , l'indépendance se conserve tout au long de la trajectoire. Pour prouver un tel résultat, on peut montrer que:

(7.4) 
$$\forall t > 0$$
,  $\lim_{N \to +\infty} E(f_1(x_1^N(t)) \cdot ... \cdot f_m(x_m^N(t))) = \prod_{i=1}^m E[f_i(x_i^\infty(t))]$ 

mais l'échangeabilité (MacKean utilise dans [McK] la loi de 0-1 de Hewitt-Savage) avec le théorème de de Finetti (voir le chapitre 4), et la convergence 7.3, nous permettent d'énoncer à la proposition suivante, un résultat plus fort que 7.4 (voir aussi [Szn] pour un résultat analogue).

#### Proposition 7.5 (Propagation du chaos).

On suppose que pour tout  $N\geq 1$  ,  $x^N(0)$  est N-échangeable et que les hypothèses du théorème 7.2 sont vérifiées.

$$Si$$
  $\mathcal{L}(\bar{X}_N(0)) \rightarrow \delta_{\mu}$  dans  $\pi(\mathbb{R}^d)$ 

(en particulier si  $(x^{N}(0)) = \mu^{\otimes N}, \forall N \geq 1$ ),

alors: 
$$\forall m \geq 1, \mathcal{L}(x_1^N, ..., x_m^N) \xrightarrow[N \to \infty]{} P(\mu)^{\otimes m}$$
 dans  $\text{M[C(IR}^+, \text{IR}^d)^m]$ 

#### Propagation du mélange

De manière plus générale, la formule 7.2.1 et le théorème de de Finetti, nous disent que si les hypothèses de 7.5 sont vérifiées et si les conditions initiales  $\mathbf{x}^N(0)$  convergent au sens 4.2.1 vers un mélange d'i.i.d. dirigé par  $\bar{P}_0$ , alors les trajectoires  $\mathbf{x}_N$  convergent au sens 4.2.1 vers un mélange d'i.i.d. dirigé par  $\bar{P}_0$   $\int_{\mathbb{R}(\mathbb{R}^d)}^{\delta} P(\mu) \ \bar{P}_0(d\mu)$ .

# 9) Un résultat de fluctuations

Notations. Les notations sont les mêmes qu'au chapitre 8, auxquelles nous ajoutons les suivantes. Nous prenons d=1, pour simplifier.  $\Omega = C(\mathbb{R}^+, \mathbb{R})$ .

 $\mathcal{J}$  désigne l'espace des fonctions à décroissance rapide de  $\mathbb{R}$   $\mathcal{J}'$  désigne son dual: l'espace des distributions tempérées. Pour tout  $N \geq 1$ ,  $\alpha_N \geq 0$ ,  $\beta_N \geq 0$  et tout  $p \in \Pi(\Omega)$ , on définit

$$U_{N}: \begin{cases} \mathbb{R}^{+} \rightarrow \mathcal{Y} \\ t \mapsto U_{N}(t) = \alpha_{N} [\overline{X}_{N}(\beta_{N}t) - p(\beta_{N}t)] \end{cases}$$

où 
$$\bar{X}_{N}(t) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}^{N}(t)$$

 $\widetilde{\Omega}$  = C( $\mathbb{R}^+$ ,  $\mathcal{Y}^+$ ) est muni de la topologie de la convergence uniforme sur les compacts. U est le processus canonique sur  $\widetilde{\Omega}$ ;  $(\widetilde{\mathcal{F}}_t)_{t\geq 0}$ ,  $\widetilde{\mathcal{F}}$ : la famille de tribus canoniques  $\widetilde{P}_N = \mathcal{L}(U_N)$   $\in \Pi(\widetilde{\Omega})$ .

$$f[x,v] = \langle f_x,v \rangle_{f,\mathcal{Y}}, \text{ où } y \to f_x(y) = f(x,y) \in \mathcal{Y} \text{ et}$$

$$v \in \mathcal{Y}'.$$

est l'ensemble des fonctions tests:

$$= \underset{k \geq 1}{ \text{U} } \{ \ \widetilde{\forall} : \mathcal{J}' \rightarrow \mathbb{R}, \ \widetilde{\forall} \ ( \cdot ) \ = \ \psi \ ( < f_1, >, \ldots, < f_k, . > ) \ ;$$
 
$$\psi \in C_K^2 \ ( \ \mathbb{R}^k) \ , \ f_1, \ldots, \ f_k \in \mathcal{J} \}$$

### Lemma 9.1

Pour tout 
$$N \ge 1$$
, tout  $\widetilde{\Psi} \in \widetilde{\mathcal{C}}$ , on definit  $M_N^{\widetilde{\Psi}}$  par : 
$$\forall t \ge 0, M_N^{\widetilde{\Psi}}(t) = \widetilde{\Psi}(U_t) - \widetilde{\Psi}(U_0) - \beta_N \int_0^t \sum_{j=1}^L \frac{\partial \Psi}{\partial Y_j} (\widetilde{f}(s)) (\alpha_N L^{(0)} + L^{(1)} + \alpha_N^{-1} L^{(2)} + \alpha_N^{-2} L^{(3)}) (\beta_N s, f_j) (U_s) ds - \frac{1}{2} \beta_N N^{-1} \int_0^t \sum_{j,j'=1}^L \frac{\partial^2 \Psi}{\partial Y_j \partial Y_j} (\widetilde{f}(s)) + (\alpha_N^2 L^{(4)} + \alpha_N L^{(5)} + L^{(6)} + \alpha_N^{-1} L^{(7)}) (\beta_N s, f_j, f_j) (U_s) ds$$

avec 
$$\widetilde{f}(t) = (\langle f_j, U_t \rangle)_{1 \le j \le k}$$
  
et  $\forall v \in \mathcal{J}'$ ,  $\forall t \ge 0$ ,  $\forall f, g \in \mathcal{J}'$ :

$$L^{(0)}(t,f)(v) = \langle f,A*p(t) - \frac{\partial p}{\partial t}(t) \rangle$$

$$L^{(1)}(t,f)(v) = \langle f'b[\cdot,p(t)],v\rangle + \langle \frac{1}{2}f''\sigma[\cdot,p(t)]^2,v\rangle + \langle f'b[\cdot,v] + f''\sigma[\cdot,p(t)]\sigma[\cdot,v],p(t)\rangle$$

$$L^{(2)}(t,f)(v) = \langle f'b[\cdot v] + f''\sigma[\cdot,v]\sigma[\cdot,p(t)],v \rangle$$

$$+ \langle \frac{1}{2}f''\sigma[\cdot,v]^2,p(t) \rangle$$

$$L^{(3)}(t,f)(v) = \langle \frac{1}{2}f''\sigma[\cdot,v]^2,v\rangle$$

$$L^{(4)}(t,f,g)(v) = \langle f'g'\sigma[\cdot,p(t)]^2,p(t)\rangle$$

$$L^{(5)}(t,f,g)(v) = \langle f'g'\sigma[\cdot,p(t)]^2,v\rangle + \langle 2f'g'\sigma[\cdot,p(t)]\sigma[\cdot,v],p(t)\rangle$$

$$\mathbf{L}^{(6)}(\mathsf{t},\mathsf{f},\mathsf{g})(\mathsf{v}) = \langle 2\mathsf{f}'\mathsf{g}'_{\sigma}[\cdot,\mathsf{p}(\mathsf{t})]_{\sigma}[\cdot,\mathsf{v}],\mathsf{v}\rangle + \langle \mathsf{f}'\mathsf{g}'_{\sigma}[\cdot,\mathsf{v}]^2,\mathsf{p}(\mathsf{t})\rangle$$

$$L^{(7)}(t,f,g)(v) = \langle f'g'\sigma[\cdot,v]^2,v\rangle$$



Alors (9.1.1)

$$\mathbf{M}_{\mathbf{N}}^{\widetilde{\boldsymbol{\Psi}}}(\mathsf{t}) = \beta_{\mathbf{N}}^{\frac{1}{2}} \alpha_{\mathbf{N}}^{\mathbf{N}}^{-1} \\ \sum_{\mathbf{i}=1}^{N} \int_{0}^{\mathsf{t}} \sum_{\mathbf{j}=1}^{k} \frac{\partial \boldsymbol{\Psi}}{\partial y_{\mathbf{j}}} (\widetilde{\boldsymbol{\epsilon}}_{\mathbf{N}}(\mathsf{s}))_{\mathbf{f}_{\mathbf{j}}^{\mathbf{i}}} (\mathbf{x}_{\mathbf{i}}^{\mathbf{N}}(\beta_{\mathbf{N}}^{\mathbf{s}}))_{\sigma} [\mathbf{x}_{\mathbf{i}}^{\mathbf{N}}(\beta_{\mathbf{N}}^{\mathbf{s}}), \widetilde{\boldsymbol{x}}_{\mathbf{N}}^{\mathbf{N}}(\beta_{\mathbf{N}}^{\mathbf{s}})] d\widetilde{\boldsymbol{w}}_{\mathbf{i}}(\mathsf{s})$$

où  $(\widetilde{w}_i)_{i\geq 1}$  est une suite de browniens indépendants, dans  $\Omega^\infty$ , sur laquelle  $(x^N(\beta_N))_{N\geq 1}$  est contruit et  $\widetilde{f}_N(t) = (\langle f_j, U_N(t) \rangle)_{1\leq j\leq k}$ . Si de plus:

(9.1.2) les fonctions b et  $\sigma$  sont telles qu'elle rendent continus, les operateurs  $L^{(\ell)}(t,f,g): \mathcal{J} \to \mathcal{F}$ , pour toutes  $f,g \in \mathcal{F}$  et tout  $t \geq 0$  (0  $\leq \ell \leq 7$ ), alors

(9.1.3)  $M_N^{\widetilde{\Psi}}$  est une  $\widetilde{P}_N$ -martingale locale.

### démonstration:

9.1.1 est une conséquence de la formule d'Ito dans  $\ensuremath{\mathbb{R}}^N$  , appliquée à la fonction

$$\begin{cases} \mathbb{R}^+ \times \mathbb{R}^N & \to & \mathbb{R} \\ (t, \mathbf{x}_1, \dots, \mathbf{x}_N) & \to & \Psi(\langle \mathbf{f}_j, \alpha_N \mid \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i} - p(\beta_N t)) \rangle_{i \leq j \leq k}) \end{cases}$$

On définit la suite de temps d'arrêt  $(\tau_n)_{n>1}$  par :

$$(9.1.4) \quad \tau_{n} = \int_{1 \le j, j' \le k}^{n} (1 \le k \le 7^{\inf\{t, |L^{(k)}(\beta_{N}^{t}, f_{j'}, f_{j'})\}}) (U_{t}) | \ge n \}$$

$$\wedge \inf\{t, |\langle f_{j'}, U_{t} \rangle | \ge n \})$$

Pour tout  $\omega \in \widetilde{\Omega}$ :  $t \to \langle f_j, U_t(\omega) \rangle$  est continue, ainsi que  $t \to L^{(\ell)}(\beta_N t, f_j, f_j, )(U_t(\omega))$  (du fait de 9.1.2). Donc:  $\forall \omega \in \widetilde{\Omega}$ ,  $\lim_{n \to \infty} \tau_n(\omega) = +\infty$ . Il est clair que  $M_N^{\widetilde{\Psi}}(t \wedge \tau_n)$  est une  $\widetilde{P}_N$ -martingale, puisque considéré comme élément de  $\Omega^N$ , c'est une  $P_N$ -martingale.  $\square$ 

# 9.2 Remarques

1) Bien que

$$\left\{\int_{0}^{t} \sum_{j=1}^{k} (\widetilde{f}_{N}(t)) f_{j}'(x_{i}^{N}) (\beta_{N}t) \right\} \sigma \left[x_{i}^{N}(\beta_{N}t), \overline{x}_{N}(t)\right] d\widetilde{w}_{i}(t)$$

ne soit pas une famille de variables indépendantes, elles sont tout de même décorrélées. Par conséquent pour observer une fluctuation, il est nécessaire que  $\beta_N^{\frac{1}{2}}\alpha_N^{-1}$  soit de l'ordre de  $N^{-\frac{1}{2}}$ , lorsque  $N\to\infty$ . On prendra:

- (9.2.1)  $\beta_N^{\frac{1}{2}}\alpha_N=N^{\frac{1}{2}}$  , pour obtenir la convergence des moments d'ordre 2 de  $M_N^{\widetilde{\Psi}}$  .
- 2) Une suite infinie échangeable admettant des moments d'ordre 2 est correlée positivement, de sorte que l'ordre de  $\alpha_N$  doit être inférieur ou égal à  $N^{\frac{1}{2}}$ . Remarquons que si cet ordre est strictement inférieur à  $N^{\frac{1}{2}}$ ,  $\beta_N$  tend vers l'infini, d'après 9.2.1, ce qui signifie que le processus doit être accéléré pour pouvoir observer les fluctuations.

- 3) Notons aussi que le problème de la bonne normalisation en  $\alpha_N$  n'est pas résolu de manière générale. Si on se donne une suite quelconque de variables aléatoires  $(Y_i)_{1 \leq i \leq N}$ , il est possible de construire, à l'aide de permutations aléatoires, une suite échangeable  $(Z_i)_{1 \leq i \leq N}$ , telle que  $\sum\limits_{i=1}^{N} Y_i = \sum\limits_{i=1}^{N} Z_i$  (Ceci pour faire apparaître le manque de structure de l'échangeabilité).
- 4) Une condition minimale pour obtenir la convergence des  $\mbox{U}_{\mbox{N}}$  est:
- (9.2.4)  $A*p(t) = \frac{\partial p}{\partial t}(t)$ , equation que vérifie la loi de x . (Voir la proposition 6.12).
- 5) Remarque sur l'hypothèse 9.1.2

Si b(x,y) =  $v_1(x) + v_2(y)$ , alors 9.1.2 permet à  $v_1$  d'être  $C^{\infty}$  et d'avoir avec toutes ses dérivées une croissance polynomiale, alors que  $v_2$  doit appartenir à  $\mathcal Y$ .

6) 
$$\forall t \geq 0$$
,  $\forall f \in \mathcal{G}, \forall v \in \mathcal{G}'$ 

(9.2.6) 
$$L^{(1)}(t,f)(v) = \langle C_t f, v \rangle$$
  
 $C_t f(x) = f'(x)b[x,p(t)] + \frac{1}{2}f''(x)\sigma[x,p(t)]^2$ 

+ 
$$< f'(z)b(z,x) + f''(z)\sigma[z,p(t)]\sigma(z,x),p(t,dz) >$$

 $C_{\mathsf{t}}$  est un opérateur linéaire intégro-differentiel.

C\* s'obtient en linéarisant A\* autour de p(t) .

A partir de maintenant, nous étudions la convergence de  $U_N$  lorsque  $\alpha_N^{}=N^{\frac{1}{2}}$  , et 9.2.1 et 9.2.4 sont vérifiés, c'est à dire

(9.3) 
$$U_N(t) = N^{\frac{1}{2}}(\bar{X}_N(t) - p(t))$$
 où  $A*p(t) = \frac{\partial p}{\partial t}(t)$ 

En particulier, p = P (solution de l'équation 2.2.5 du chapitre 8) convient.  $M_N^{\widetilde{\Psi}}(t)$  s'écrit, alors, pour tout  $\widetilde{\Psi} \in \mathcal{C}$ 

$$(9.4) \qquad M_{N}^{\widetilde{\Psi}}(t) = \widetilde{\Psi}(U_{t}) - \widetilde{\Psi}(U_{0}) - \int_{0}^{t} (G_{s}^{(1)} + N^{-\frac{1}{2}}G_{s}^{(2)} + N^{-1}G_{s}^{(3)} + N^{-\frac{3}{2}}G^{(4)}) (\widetilde{\Psi}) (U_{s}) ds,$$
où  $\forall t \geq 0, \forall v \in \mathcal{J}'$ 

$$G_{t}^{(1)}\widetilde{\Psi}(v) = \sum_{j=1}^{k} \frac{\partial \Psi}{\partial y_{j}} (\widetilde{r}) \langle C_{t}f_{j}, v \rangle + \frac{1}{2} \sum_{j,j'=1}^{k} \frac{\partial^{2}\Psi}{\partial y_{j}\partial y_{j'}} (\widetilde{f}) \langle f'_{j}f'_{j'}, \sigma[\cdot, p(t)]^{2}, p(t) \rangle$$

$$G_{t}^{(2)}\widetilde{\Psi}(v) = \sum_{j=1}^{k} \frac{\partial \Psi}{\partial y_{j}} (\widetilde{f}) L^{(2)} (t, f_{j}) (v) + \frac{1}{2} \sum_{j,j'=1}^{k} \frac{\partial \Psi}{\partial y_{j}} (\widetilde{f}) L^{(5)} (t, f_{j'}, f_{j'}) (v)$$

$$G_{\mathsf{t}}^{(3)}\widetilde{\Psi}(\mathsf{v}) = \sum_{\mathsf{j}=1}^{\mathsf{k}} \frac{\partial \Psi}{\partial \mathsf{y}_{\mathsf{j}}} (\widetilde{\mathsf{f}}) L^{(3)}(\mathsf{t},\mathsf{f}_{\mathsf{j}})(\mathsf{v}) + \frac{1}{2} \sum_{\mathsf{j},\mathsf{j}'=1}^{\mathsf{k}} \frac{\partial \Psi}{\partial \mathsf{y}_{\mathsf{j}}} (\widetilde{\mathsf{f}}) L^{(6)}(\mathsf{t},\mathsf{f}_{\mathsf{j}},\mathsf{f}_{\mathsf{j}'})(\mathsf{v})$$

$$G_{t}^{(4)}\widetilde{\Psi}(v) = \frac{1}{2} \sum_{j,j'=1}^{k} \frac{\partial \Psi}{\partial y_{j} \partial y_{j'}} (\widetilde{f}) L^{(7)} (f_{j'}, f_{j'}) (v)$$

# Ce que nous allons faire

Nous allons supposer que:

(9.5) pour tout k-uplet  $\phi = (f_1, \dots, f_k)$  de  $\mathcal{J}^k$ , la loi de  $(\langle f_j, U_N \rangle)_{1 \leq j \leq k} : P_N^{\phi}$ , tend étroitement vers une probabilité  $P^{\phi_{\epsilon}} \Pi (C(\mathbb{R}^+, \mathbb{R}^k))$ . Le théorème 9.6 suivant, dû à J.P. Fouque,

nous permet d'énoncer que  $\{\widetilde{P}_N\}_{N\geq 1}$  est relativement compact dans  $\mathbb{I}(C(\mathbb{R}^+,\mathcal{P}'))$  .

### Théorème 9.6:

Soit  $\{p_N^-\}_{N\geq 1}$  une suite de probabilités sur  $C(\mathbb{R}^+,\mathcal{P}^+)$  .  $(U_N^- \text{ de loi : } p_N^-) \cdot \{U_N^-\}_{N\geq 1} \quad \text{converge en loi si et seulement si:}$ 

(9.6.1) 
$$\forall f \in \mathcal{J}$$
,  $\{\mathcal{L}(\langle f, U_N \rangle)\}_{N>1}$  est tendu dans  $\Pi(C(\mathbb{R}^+, \mathbb{R}))$ 

$$(9.6.2) \quad \forall k \geq 1, \quad \forall t_1, \ldots, t_k \geq 0 \ , \ \forall f_1, \ldots, f_k \in \mathcal{Y}$$
 
$$(\langle f_1, U_N(t_1) \rangle, \ldots, \langle f_k, U_N(t_k) \rangle) \quad \overset{\mathcal{L}}{\underset{N \rightarrow \infty}{\longrightarrow}} \quad \text{variable alfatoire de } \mathbb{R}^k \ .$$

# démonstration: voir [Fou]. []

Une probabilité  $\widetilde{Q}$  de  $\Pi(\widetilde{\Omega})$  est définie par  $\{Q^{\varphi}\}_{\substack{U \\ \varphi \in k \geq 1}} \mathcal{Q}^{k}$ , où  $\mathbb{Q}^{\varphi} = (\langle f_1, U \rangle, \dots, \langle f_k, U \rangle) \circ \widetilde{Q}$ , par conséquent  $\{P^{\varphi}\}_{\substack{\varphi \in U \\ k \geq 1}} \mathcal{Q}^{k}$  définit au plus une probabilité sur  $\widetilde{\Omega} : \widetilde{P}$ . (L'hypothèse de relative compacité 9.5 nous donne l'existence de  $\widetilde{P}$ ). L'identification de  $\widetilde{P}$  à l'aide de  $\{P^{\varphi}\}_{\varphi}$  est par conséquent immédiate.

Dans ce qui suit, nous montrons que les valeurs d'adherence  $\text{de } \{\widetilde{P}_N\}_{N\geq 1} \quad \text{(si elles existent) sont solution d'une problème des }$  martingales (9.9.1) qui admet une unique solution, que nous

caractérisons (9.9.3,4,5). L'unicité s'obtient simplement, et nous donnons des hypothèses supplémentaires sous lesquelles il y a existence d'une solution de ce problème des martingales. Soit  $P_N^{\ \phi,n} = (\langle f_1,U(.\wedge\tau_n^\phi)\rangle,...,\langle f_k,U(.\wedge\tau_n^\phi)\rangle) \circ \widetilde{P}_N$ , où  $\tau_n^\phi$  est défini en 9.1.4. On montre facilement la proposition:

# Proposition 9.7

Pour tout  $n \ge 1$ , toute valeur d'adhérence  $Q^{\varphi,n}$  de  $\{P_N^{\varphi,n}\}_{N\ge 1}$  est solution du problème des martingales suivant:

$$(9.7.1) \quad \text{Pour tout} \quad \Psi \in C_k^2(\mathbb{R}^k) ,$$

$$\widetilde{\Psi}(U_t) - \widetilde{\Psi}(U_0) - \int_0^{t \wedge \tau_n^{\varphi}} \sum_{j=1}^k \frac{\partial \Psi}{\partial Y_j}(\widetilde{f}(s)) < C_s f_j, U_s > ds$$

$$- \frac{1}{2} \int_0^{t \wedge \tau_n^{\varphi}} \sum_{j,j'=1}^k \frac{\partial^2 \Psi}{\partial Y_j \partial Y_j} (\widetilde{f}(s)) (\nabla_s f_j, D_s f_j, D_s f_j, D_s) ds$$

est une  $Q^{\phi,n}$ -martingale.

On a note  $\widetilde{\psi} = \psi(\langle f_1, \cdot \rangle, \dots, \langle f_k, \cdot \rangle)$ ,  $\widetilde{f}(t) = (\langle f_j, U_t \rangle)_{1 \le j \le k}$ ,  $D_t f = \sigma[\cdot, p(t)] f'$  et  $(\cdot, \cdot)_{p(t)}$  est le produit scalaire de  $L^2(p(t))$ .

#### Existence et unicité de la loi limite

Notations  $\|\cdot\|$  et  $(\cdot,\cdot)$  désignent la norme et le produit scalaire de L<sup>2</sup>. Si q est une probabilité sur  $\mathbb{R}$ ,  $\|\cdot\|_q$  et  $(\cdot,\cdot)_q$  désignent la norme et le produit scalaire de L<sup>2</sup> $(q) = \{f, f \mid f \mid^2 dq < \infty\}$ .

 $||\cdot||^1$  désigne la norme de  $||f||^2$  où  $||f||^2 + ||f||^2 + ||xf||^2$  et  $||f||^2 + ||f||^2 + ||xf||^2$ 

$$\forall t \geq 0$$
,  $D_t : \begin{cases} \mathcal{Y} \rightarrow \mathcal{Y} \\ f \rightarrow \sigma[\cdot, p(t)]f' \end{cases}$ 

# Hypothèses sur $(C_t)_{t\geq0}$ et $t \rightarrow p(t)$

(9.8.1) Il existe une semi-groupe généralisé d'opérateurs linéaires de  $\mathcal S$  dans  $\mathcal S$  dont la famille de générateurs est  $(C_t)_{t\geq 0}$ . On le note  $(T_s^t)_{0\leq s\leq t}$ .

$$(9.8.2) \quad \forall \ 0 \leq u \leq v \leq t \quad , \quad \forall f \in \mathcal{S}, \quad \forall v \in \mathcal{S}'$$

$$< (T_u^t - T_v^t) f, v > \quad \Rightarrow \quad < -C_u^t T_u^t f, v > \quad \Rightarrow \quad < -C_u^t T_u^t f, v > \quad \Rightarrow \quad < -C_u^t T_u^t f, v > \quad$$

(9.8.3)  $\forall t \ge 0$ ,  $\forall 0 \le u, v \le t$ ,  $\forall f \in \mathcal{F}$ ,  $(u,v) \rightarrow ||D_u^T_v^{t}f||_{p(u)}$  est continu.

Nous supposons en outre qu'il existe une probabilité sur  $\mathbb{R}:q$ , telle que les hypothèses suivantes soient vérifiées:

(9.8.4) 
$$q \ll lebesgues;$$
  $q(x) = \frac{dq}{dx} > 0$ ,  $(x \in \mathbb{R})$ ;  $\sup_{x} q(x) = \hat{q} < \infty$ .

$$(9.8.5) \quad \forall t \geq 0 \text{ , } p(t) \ll q \text{ et } \sup_{0 \leq s \leq t} \sup_{x \in \mathbb{R}} \frac{dp(t)}{dq}(x) = \hat{p}_t < \infty \text{ .}$$

(9.8.6) 
$$\forall 0 \le u \le v \le t$$
,  $\exists K_t \in \mathbb{R}$ ,  $\forall f \in \mathcal{Y}$ ,  $||T_u^v f||^1 \le K_t ||f||^1$ 

(9.8.7) 
$$\forall t \geq 0$$
,  $\forall f \in \mathcal{Y}$ ,  $\sup_{0 \leq u \leq t} ||C_u^f||^1 \leq \gamma(t) ||f||^1$ 

### Hypothèses sur b et σ

(9.8.8) 
$$\sup_{x,y} |\sigma(x,y)| = \hat{\sigma} < \infty.$$

(9.8.9) b et  $\sigma$  vérifient 9.1.2.

# Proposition 9.9

On suppose que les hypothèses 9.8.1, 2, 3 sont vérifiées. Soit Q une probabilité sur  $\tilde{\Omega}$  telle que, pour tout  $n \ge 1$  et tout  $\widetilde{\Psi} \in \mathcal{V}$ :

$$(9.9.1) \quad \widetilde{\Psi}(U_{t\wedge\tau_{n}^{\varphi}}) - \widetilde{\Psi}(U_{0}) - \int_{0}^{t\wedge\tau_{n}^{\varphi}} \sum_{j=1}^{k} \frac{\partial \Psi}{\partial y_{j}}(\widetilde{f}(s)) < C_{s}f_{j}, U_{s} > ds$$

$$- \frac{1}{2} \int_{0}^{t\wedge\tau_{n}^{\varphi}} \sum_{j,j'=1}^{k} \frac{\partial^{2}\Psi}{\partial y_{j}^{\partial y_{j'}}}(\widetilde{f}(s))(D_{s}f_{j'}, D_{s}f_{j'})_{P(s)}ds$$

est une Q-martingale.

Si on pose 
$$V_t = U_t - \int_0^t C_s^* U_s ds$$
, alors

$$(9.9.2) \quad \widetilde{\Psi}(V_{t}) - \widetilde{\Psi}(V_{0}) - \frac{1}{2} \int_{0}^{t} \sum_{j,j'=1}^{k} \frac{\partial^{2} \Psi}{\partial y_{j} \partial \underline{y}_{j'}} (\overline{f}(s)) (D_{s} f_{j'}, D_{s} f_{j'})_{p(s)} ds$$

où  $\overline{f}(t) = (\langle f_j, V_t \rangle)_{1 \le j \le k}$ , est une Q-martingale. De plus:

$$(9.9.3) \ \forall t \geq 0 \ , \ \forall f \in \mathcal{T}, \ \langle f, U_t \rangle = \langle f, U_0 \rangle + \int_0^t ||D_s T_s|^t f||_{D(s)} dw^f(s);$$
 w<sup>f</sup>-brownien.

$$(9.9.4) \ \forall t_1, t_2 \ge 0, \ \forall f_1, f_2 \in \mathcal{Y}, \quad cov(\langle f_1, U_{t_1}, U_{t_1}, U_{t_2}, U_{t_2}, U_{t_2}, U_{t_2}, U_{t_2})$$

$$\int_0^{t_1 \wedge t_2} (D_s T_s^{t_1} f_1, D_s T_s^{t_2} f_2)_{p(s)} ds$$

(9.9.5)  $U_t - (T_0^t)^* U_0$  vérifie 9.9.1 si et seulement si  $U_t$  la vérifie.

<u>démonstration</u>: A quelques modifications près, nous suivons [HSt], th. 1.4. On montre facilement à partir de 9.9.1 que:

$$\forall n \geq 1 , \quad \widetilde{\forall} (V_{t \wedge \tau_{n}^{\varphi}}) - \widetilde{\forall} (V_{0}) - \frac{1}{2} \int_{0}^{t \wedge \tau_{n}^{\varphi}} \sum_{j,j'=1}^{k} \frac{\partial^{2} \psi}{\partial y_{j} \partial y_{j'}} (\overline{f}(s)) (D_{s} f_{j'}, D_{s} f_{j'})_{p(s)} ds$$

est une Q-martingale. Il est alors possible de faire tendre  $n \to +\infty$  puisque:  $(D_s f_j, D_s f_j, )_{p(s)}$  n'est pas aléatoire, et on obtient 9.9.2. Donc:

 $\forall \theta \in \mathbb{R}$  ,  $\forall 0 \le s \le t$  ,  $X_f^s(t) = \exp[i\theta < f, V_t - V_s] + \frac{\theta^2}{2} \int_s^t ||D_u f||^2_{p(u)} du$  estune Q-martingale.

On va montrer que:

(9.9.6) 
$$\forall \theta \in \mathbb{R}, \ \forall 0 \le t \le T$$
,  $Y_f^T(t) = \exp[i\theta < T_t^T, U_t - U_0 > + \frac{\theta^2}{2} \int_0^t ||D_u T_u^T f||^2_{p(u)} du]$  est une  $\Omega$ -martingale. Compte tenu de 9.8.2 et 9.8.3, on montre que:

$$\forall 0 \leq t_1 \leq t_2 \leq T, \qquad \frac{Y_f^T(t_2)}{Y_f^T(t_1)} = \lim_{m \to \infty} \prod_{k=0}^{m-1} X_T^T(f) \xrightarrow{\sigma_{m,k}} (f)$$

où 
$$\sigma_{m,k} = t_1 + \frac{k}{m}(t_2 - t_1)$$

Cette convergence étant bornée, elle est aussi dans L<sup>1</sup>(Q) et:

$$\forall \mathbf{H} \in \mathcal{T}_{\mathsf{t}_{1}}, \quad \mathbf{E}_{\mathsf{Q}}[\mathbf{1}_{\mathsf{H}} \cdot \frac{\mathbf{Y}_{\mathsf{f}}^{\mathsf{T}}(\mathsf{t}_{2})}{\mathbf{Y}_{\mathsf{f}}^{\mathsf{T}}(\mathsf{t}_{1})}] = \lim_{m \to \infty} \mathbf{E}_{\mathsf{Q}}[\mathbf{1}_{\mathsf{h}} \quad \prod_{k=0}^{m-1} \mathbf{X}_{\mathsf{T}_{\mathsf{o}_{m,k}}^{\mathsf{T}}}^{\mathsf{o}_{m,k}} (\mathsf{f})$$

or, du fait que  $x_f^s(t)$  est une martingale:

On en déduit aisément 9.9.3, en regardant  $Y_f^t(t)$  . 9.9.4 est une conséquence de 9.9.3, et 9.9.5 est un calcul de martingales.  $\square$ 

# Corollaire 9.10.

sous les hypothèses 9.8.1, 2, 3, le problème des martingales 9.9.1 admet au plus une solution.

# démonstration:

L'argument est gaussien, c'est une conséquence de 9.9.3.

# Remarque 9.11

Du fait de 9.9.5, il suffit de prouver l'existence de  $\, Q \,$  , telle que  $\, Q \, (U_{\,0} \, = \, 0) \, = \, 1 \,$  .

### Corollaire 9.12:

Si Q vérifie 9.9.1, si les hypothèses 9.8.1, 2, 3, 4, 5, 6, 7, 8 sont vérifiées et si  $Q(U_0 = 0) = 1$ , alors pour tout  $T \ge 0$  et toute  $f \in \mathcal{J}$ :

$$(9.12.1) \quad \mathbb{E}_{Q} \ [ \sup_{0 \leq t \leq T} \langle \mathbf{f}, \mathbf{U}_{t} \rangle^{2} ] \ \leq \ 8 \widehat{\sigma}^{2} (1 + \mathbf{T}^{3}) \ (1 + \mathbf{K}_{T}^{2}) \widehat{\mathbf{p}}_{t} [(||\mathbf{f}'||_{q})^{2} + \sup_{0 \leq t \leq T} (\widehat{\mathbf{q}} ||\mathbf{C}_{t}\mathbf{f}||^{1})^{2} ]$$

< + ∞

En particulier

$$(9.12.2) \ \forall \widetilde{\Psi} \in \mathcal{C}, \ \widetilde{\Psi} (U_{t}) - \int_{0}^{t} \int_{j=1}^{k} \frac{\partial \Psi}{\partial Y_{j}} (\widetilde{f}(s)) \langle C_{s}f_{j}, U_{s} \rangle ds$$
$$- \frac{1}{2} \int_{0}^{t} \int_{j,j'=1}^{k} \frac{\partial^{2}\Psi}{\partial Y_{j}\partial Y_{j'}} (\widetilde{f}(s)) (D_{s}f_{j'}, D_{s}f_{j'})_{p(s)} ds$$

est une Q-martingale.

Démonstration: Nous suivons de près [HSt] , corollaire 1.7. 
Comme en 9.9, on pose  $V_t = U_t - \int_0^t C_s^* U_s ds$ . On considère 9.9.2 
avec  $\widetilde{\Psi}(\cdot) = \Psi(\langle f, \cdot \rangle)$ . 9.9.2 est encore vrai avec  $\Psi(x) = x$  et  $\Psi(x) = x^2$ . (Voir par exemple [Pri], proposition 17, Ch. 1).

Donc  $\langle f, V_t \rangle$  et  $\langle f, V_t \rangle^2 - \int_0^t ||D_s f||^2_{p(s)}$  ds sont des Q-martingales. L'inégalité de Doob donne:

$$\begin{split} & E_{Q} \left[ \sup_{0 \le t \le T} \left| \langle f, V_{t} \rangle^{2} \right| \le 4 E_{Q} (\langle f, V_{t} \rangle^{2}) = 4 \int_{0}^{T} ||D_{S} f||_{p(S)}^{2} ds, \quad donc: \\ & E_{Q} \left[ \sup_{0 \le t \le T} \left| \langle f, U_{t} \rangle^{2} \right| \le 2 T E_{Q} (\int_{0}^{T} \langle C_{S} f, U_{S} \rangle^{2} ds) + 8 \int_{0}^{T} ||D_{S} f||_{p(S)}^{2} ds, \end{split}$$

mais d'après 9.9.3:

$$\begin{split} E_{Q}(\int_{0}^{T} < C_{s}f, U_{s} >^{2}ds) &= \int_{0}^{T}ds \int_{0}^{s}du ||D_{u}T_{u}^{s}C_{s}f||_{p(u)}^{2}du \\ \text{Or:} & ||D_{u}T_{u}^{s}C_{s}f||_{p(u)}^{2} &= \langle T_{u}^{s}C_{s}f \rangle^{2} \sigma[\cdot, p(u)]^{2}, p(u) \rangle \\ &\leq \widehat{\sigma}^{2} \widehat{p}_{s}(||(T_{u}^{s}C_{s}f)^{\cdot}||_{q})^{2} \\ &\leq \widehat{\sigma}^{2} \widehat{p}_{T} K_{T}^{2} \widehat{q}^{2} \sup_{0 \leq t \leq T} (||C_{t}f||^{1})^{2} < + \infty \\ &(\forall 0 \leq v \leq s \leq T) \end{split}$$

et  $\|D_{\mathbf{S}}f\|_{\mathbf{p}(\mathbf{S})}^2 \le \hat{\sigma}^2 \hat{\mathbf{p}}_{\mathbf{T}}(\|f'\|_{\mathbf{q}})^2 \le \hat{\sigma}^2 \hat{\mathbf{p}}_{\mathbf{T}} \hat{\mathbf{q}}^2 (\|f\|^1)^2$ , ce qui donne 9.12.1. 9.12.2 s'obtient en appliquant 9.12.1 à  $C_{\mathbf{S}}f$  et en réutilisant 9.8.7.  $\Box$ 

Nous définissons maintenant la suite de probabilités  $Q^{(n)}$ , destinée à approcher Q, où Q vérifie les hypothèses du corollaire 9.12.

 $\left\{h_{k}^{}\right\}_{k\geq0}^{}$  désigne les fonctions de Hermite (voir l'appendice Al).

On definit : 
$$\forall n \geq 1$$
 ,  $\Pi_n : \begin{cases} \mathcal{J}_{\rightarrow} & \mathcal{J} \\ f & \rightarrow & \sum\limits_{i \leq n} (f,h_i)h_i \end{cases}$ 

 $\bar{\nu}$  est la variable aléatoire sur  $\tilde{\Omega}$  définit par:  $\forall t \geq 0 \text{ , } \forall f \in \mathcal{J} \text{ , } \langle f, \bar{\nu}_t \rangle = \sum_{i=n}^{\Sigma} (f, h_i) y_i(t) \text{ , où } \mathcal{L}(y) = P^{(n)} \text{ .}$ 

 $\hat{\Psi}$  est un élément de  $C^2(\mathbb{R}^{n+1})$  définit par:

$$\begin{array}{l} \forall y \in \mathbb{R}^{n+1}, \ \widehat{\psi}(y) = \psi(\widetilde{\nu}) \quad \text{où} \quad \psi \in C_k^2(\mathbb{R}^k) \ ; \quad f_1, \ \dots, \ f_k \in \mathscr{S} \\ \text{et} \quad \widetilde{\widetilde{\nu}} = \big(\sum\limits_{i=n}^{n} (f_j, h_i) y_i \big)_{1 \leq j \leq k} \end{array}.$$

Alors

$$L^{(n)}(t,\widehat{\psi})(y) = \sum_{j=1}^{k} \frac{\partial \psi}{\partial z_{j}} (\widehat{v}) \sum_{i \leq n} (f_{j},h_{i}) \sum_{m \leq n} b_{i,m}(t) y_{m}$$

$$+ \frac{1}{2} \sum_{j,j'=1}^{k} \frac{\partial^{2} \psi}{\partial z_{j}^{\partial z_{j'}}} (\widehat{v}) \sum_{i,m \leq n} a_{i,m}(t) (f_{j},h_{i}) (f_{j'},h_{m})$$

$$= \sum_{j=1}^{k} \frac{\partial \psi}{\partial z_{j}} (\widehat{v}(t)) \langle C_{t}^{(n)} f_{j'},\widehat{v}_{t} \rangle + \frac{1}{2} \sum_{j'=1}^{k} \frac{\partial \psi}{\partial z_{j}^{\partial z_{j'}}} (\widehat{v}(t)) (D_{t}^{(n)} f_{j'},D_{t}^{(n)} f_{j'})_{p}(t)$$

où 
$$C_t^{(n)} = \prod_n C_t \prod_n$$
 et  $D_t^{(n)} = \prod_n D_t \prod_n$ 

Si 
$$Q^{(n)}$$
 est la loi de  $\overline{V}$ , alors:  $Q^{(n)}(U_0 = 0) = 1$  et  $\Psi\widetilde{\Psi} \in \widetilde{V}$ ,  $\widetilde{\Psi}(U_t) = \int_0^t \sum_{j=1}^k \frac{\partial \Psi}{\partial y_j}(\widetilde{f}(s)) < C_s^{(n)} f_j, U_s > ds$ 

$$- \frac{1}{2} \int_0^t \sum_{j=1}^k \frac{\partial^2 \Psi}{\partial z_j \partial z_j}(\widetilde{f}(s))(D_s^{(n)} f_j, D_s^{(n)} f_j)_{p(s)} ds$$

est une Q (n)-martingale.

Nous appelons 9.13.1, 2, 3, 6, 7 l'équivalent des hypothèses 9.8.1, 2, 3, 6, 7 pour  $C^{(n)}$  et  $D^{(n)}$ . Nous vérifions ces propriétés pour  $C^{(n)}$  et  $D^{(n)}$ :

-9.13.1  $(C_t^{(n)})_{t\geq 0}$  engendre le semi-groupe généralisé, uniformément continu:  $T_s^t = \exp(\int_0^t \pi_n^C du) \circ \pi_n$ , puisque  $\pi_n^C u$  est de rang fini.

- -9.13.2 et 9.13.3 s'en déduisent
- -9.13.7 est impliqué par 9.8.7 puisque

$$||(||_{n}C_{t}||_{n}f)'||_{q} \leq \widehat{q}||(||_{n}C_{t}||_{n}f)'|| \leq \widehat{q}||C_{t}||_{n}f||^{1} < \infty$$

-9.13.6 s'énonce: 
$$\forall 0 \le u \le v \le t$$
,  $\exists K_t^{(n)}$ ,  $\forall f \in$ ,  $||^{(n)}T_u^{v}f||^1 \le K_t^{(n)}||f||^1$ , et se vérifie avec  $K_t^{(n)} =$ 

 $\exp(t \sup_{0 \le s \le t} |\prod_n C_s \prod_n |^1)$ , où  $|\cdot|^1$  est la norme des endomorphismes

de H<sup>1</sup>. Mais cette estimation est insuffisante et nous faisons l'hypothèse d'équicontinuité:

# Lemme 9.14

Si les hypothèses 9.8.1, 4, 5, 7, 8 et 9.14.1 sont vérifiées,  $\{Q^{(n)}\}_{n\geq 1} \quad \text{est relativement compact dans} \quad \Pi(\widetilde{\Omega}) \ .$ 

démonstration: Nous utilisons le théorème 9.6.

En appliquant 9.9.3 on obtient:

$$\forall 0 \leq t_{1} \leq t_{2} \leq T , \forall f \in \mathcal{Y}$$

$$E_{Q}(n)^{[(\langle f, U_{t_{2}} \rangle - \langle f, U_{t_{1}} \rangle)^{4}]}$$

$$= E_{Q}(n)^{[(\int_{0}^{t_{2}} |D_{s}^{(n)} T_{s}^{t_{2}} f||_{p(s)} dw^{f}(s) - \int_{0}^{t_{1}} |D_{s}^{(n)} T_{s}^{t_{1}} f||_{p(s)} dw^{f}(s))^{4}]$$

$$\begin{split} & < f, U_{t_{2}} - U_{t_{1}} > = \int_{0}^{t_{1}} (||p_{s}^{(n)}T_{s}^{t_{2}}f||_{p(s)} - ||p_{s}^{(n)}T_{s}^{t_{1}}f||_{p(s)}) \, dw^{f}(s) \\ & + t_{1}^{t_{2}^{2}} ||p_{s}^{(n)}T_{s}^{t_{2}}f||_{p(s)} \, dw^{f}(s) \\ & = \int_{Q}^{t_{1}} (||p_{s}^{(n)}T_{s}^{t_{2}}f||_{p(s)} - ||p_{s}^{(n)}T_{s}^{t_{1}}f||_{p(s)}) \, dw^{f}(s))^{4} ] \\ & \leq T^{2} \hat{p}_{T}^{2} \hat{q}^{2} \sup_{0 \leq s \leq T} (|||^{(n)}T_{s}^{t_{2}}f - ||^{(n)}T_{s}^{t_{1}}f||_{1}^{1})^{4} \\ & = \int_{Q}^{t_{1}} (|||^{(n)}T_{s}^{t_{1}}f||_{1}^{1})^{1} = ||\int_{Q}^{t_{2}} (||^{(n)}T_{s}^{u}f||_{1}^{1} \\ & \leq (t_{2} - t_{1}) \sup_{0 \leq u, s \leq T} ||C_{u}^{(n)}T_{s}^{u}f||_{1}^{1} \\ & \leq (t_{2} - t_{1}) \gamma (T) K_{T}^{\omega} ||f||_{1}^{1} \\ & = \int_{Q}^{t_{1}} (|||^{t_{1}^{2}} ||p_{s}^{(n)}T_{s}^{t_{2}^{2}}f||_{p(s)} \, dw^{f}(s))^{4} ] \leq (K_{T}^{\omega} \hat{p}_{T}\hat{q})^{4} (|||f||^{1})^{4} (t_{2} - t_{1})^{2} \end{split}$$

Ce qui démontre 9.6.1, puisque

$$\sup_{n\geq 1} \ \mathbb{E}_{Q^{(n)}}[(\langle f, U_{t_2} \rangle - \langle f, U_{t_1} \rangle)^{\frac{4}{3}}] \leq c^{\text{te}} (t_2 - t_1)^{\frac{2}{3}}$$

Pour obtenir 9.6.2, il suffit d'avoir l'estimation:

$$(9.14.2) \quad \forall T \geq 0 , \forall f \in \mathcal{J}, \quad \sup_{n \geq 1} E_{(n)} \left(\sup_{0 \leq t \leq T} \langle f, U_t \rangle^2\right) < + \infty$$

En effet:

$$Q^{(n)} \begin{bmatrix} k \\ U \\ j=1 \end{bmatrix} \{ | \{f_j, U_{t_j} \} | \geq K \} \end{bmatrix} \leq \sum_{j=1}^{k} Q^{(n)} \{ | \{f_j, U_{t_j} \} | \geq K \}$$

$$\leq \frac{1}{K^2} \sum_{j=1}^{k} \sup_{n \geq 1} E_{Q^{(n)}} [ \sup_{0 \leq t \leq T} \{ f_j, U_{t_j} \}^2 ]$$

(si  $T \ge max \{t_j, 1 \le j \le k \}$ ).

Mais 9.14.2 est une conséquence immédiate de 9.12.1 et du 9.14.1 (nous sommes en mesure d'appliquer le corollaire 9.12).

# Lemme 9.15

Si les hypothèses 9.8.1, 4, 5, 6, 7, 8 et 9.14.1 sont vérifiées, toute valeur d'adhérence,  $Q^{\infty}$ , de  $\{Q^{(n)}\}_{n\geq 1}$  est solution du problème des martingales 9.12.2, avec  $Q^{\infty}(U_0=0)=1$ .

#### démonstration:

Soit  $\textbf{Q}^{(n')}$  une suite entraite de  $\{\textbf{Q}^{(n)}\}_{n\geq 1}$  qui converge vers  $\textbf{Q}^{\infty}$  .

$$Q^{\infty}(U_0 = 0) \ge \overline{\lim}_{n' \to \infty} Q^{(n')}(U_0 = 0) = 1$$

Pour tout  $\widetilde{\Psi}$   $\epsilon$   $\widetilde{C}$  et tout  $t \ge 0$  , on note:

$$N^{(n)}(t) = \widetilde{\Psi}(U_{t}) - \int_{0}^{t} \sum_{j=1}^{k} \frac{\partial \Psi}{\partial y_{j}} (\widetilde{f}(s)) < C_{s}^{(n)} f_{j}, U_{s} > ds$$

$$- \frac{1}{2} \int_{0}^{t} \sum_{j,j'=1}^{k} \frac{\partial^{2} \Psi}{\partial y_{j} \partial y_{j'}} (\widetilde{f}(s)) (D_{s}^{(n)} f_{j'}, D_{s}^{(n)} f_{j'})_{p(s)} ds$$

et  $N^{\infty}(t)$ : l'expression correspondante lorsque  $C^{(n)}$  et  $D^{(n)}$  sont remplacés par C et D .

$$\begin{split} \forall \widetilde{\forall} \ \in & \bigvee_{j=1}^{\infty} \forall t \ \geq \ 0 \ , \ \forall n \ \geq \ 1 \\ & N^{(n)}(t) = N^{\infty}(t) + \int_{0}^{t} \sum_{j=1}^{k} \frac{\partial \Psi}{\partial Y_{j}}(\widetilde{f}(s)) < (C_{s} - C_{s}^{(n)}) f_{j}, U_{s} > ds \\ & + \frac{1}{2} \int_{0}^{t} \sum_{j,j'=1}^{k} \frac{\partial^{2} \Psi}{\partial Y_{j} \partial Y_{j'}}(\widetilde{f}(s)) [(D_{s}f_{j},D_{s}f_{j'})_{p(s)} - (D_{s}^{(n)}f_{j'},D_{s}^{(n)}f_{j'})_{p(s)}] ds \end{split}$$

Or:

$$\forall f \in \Psi \text{ , } \forall t \geq 0 \text{ , } \sup_{0 \leq s \leq t} ||(D_s - D_s^{(n)})f||_{p(s)} \leq \widehat{p}_t \widehat{q} \widehat{\sigma} ||f' - \prod_n (\prod_n f)'||_{n \to \infty} \rightarrow 0$$

De même:

$$E_{Q(n)} (<(C_{s} - C_{s}^{(n)}) f, U_{s}^{2}) \le \hat{\sigma}^{2} K_{s}^{2} \hat{p}_{t}^{2} \hat{q}^{2} \gamma(t)^{2} (||(C_{s} - C_{s}^{(n)}) f||^{1})^{2} \xrightarrow[n \to \infty]{} 0$$

Donc, 
$$\forall 0 \le u \le t$$
,  $\forall F \in C_b(\widetilde{\Omega})$ ,  $F: \mathcal{F}_u$ -mesurable

$$\lim_{n'\to\infty} \frac{E}{Q}(n')^{(F,N'(n')}(t)) = \lim_{n'\to\infty} \frac{E}{Q}(n')^{(F,N'')}(t)$$

mais 
$$N^{\infty}(t)$$
 est continu en  $\omega$  et  $E \left[\sup_{O^{\infty}} \langle f, U_{s} \rangle^{2}\right] \leq O^{\infty}$ 

$$\sup_{n'} E_{Q(n')} \left[\sup_{0 \le s \le t} \langle f, U_s \rangle^2 \right] < +\infty \text{ et } E_{Q^{\infty}} (F \cdot N^{\infty}(t)) =$$

$$\lim_{\substack{n' \to \infty}} E_{Q}(n') \stackrel{\text{(FN}^{(n')}(t))}{=} \lim_{\substack{n' \to \infty}} E_{Q}(n') \stackrel{\text{(FN}^{(n')}(u))}{=} E_{Q}^{\infty} \stackrel{\text{(F N}^{\infty}(u))}{=} .$$

Finalement, nous avons montré que sous les hypothèses 9.8.1, 2, ..., 9, et 9.14.1, il existe une unique probabilité  $\widetilde{P}$  sur  $\widetilde{\Omega}$  telle que pour tout  $n \ge 1$   $P_{\widetilde{T}_n} = Q^n$  où  $Q^n$  est une solution de problème des martingales 9.7.1. Ce qui nous permet d'enoncer le

# Théorème 9.16.

Sous les hypothèses 9.8.1, 2, 3, 4, 5, 6, 7, 8, 9 et 9.14.1, le problème des martingales sur  $C(\mathbb{R}^+, \cdot)$ , associé au générateur  $(G_t^{(1)})_{t>0}$ , où:  $\forall \widetilde{Y} \in \mathcal{C}, \forall v \in \mathcal{F}'$ 

$$G_{t}^{(1)}\widetilde{\Psi}(v) = \sum_{j=1}^{k} \frac{\partial \Psi}{\partial Y_{j}}(\widetilde{f}) \langle C_{t}f_{j}, v \rangle + \frac{1}{2} \sum_{j,j'=1}^{k} \frac{\partial^{2}\Psi}{\partial Y_{j}\partial Y_{j'}}(\widetilde{f}) \langle f_{j}', f_{j'}', f_{j'}\rangle \sigma[\cdot, p(t)]^{2}, p(t) \rangle$$

admet une unique solution. De plus:

$$\forall t \ge 0$$
,  $\forall f \in \mathcal{J}$ ,  $\langle f, U_t \rangle = \langle f, U_0 \rangle + \int_0^t ||D_s T_s^t f||_{p(s)} dw^f(s)$ ;  $w^f$ -brownien.

$$\forall t_1, t_2 \ge 0 , \forall f_1, f_2 \in \mathcal{Y}, cov(\langle f_1, U_{t_1} - U_0 \rangle, \langle f_2, U_{t_2} - U_0 \rangle)$$

$$= \int_0^{t_1 \wedge t_2} (D_s T_s^t f_1, D_s T_s^t f_2)_{p(s)} ds$$

Appendice : Deux simulations du modèle d'Ising sur le tore

Le modèle d'Ising sur le tore

L'ensemble S des sites où se situent les aimants est

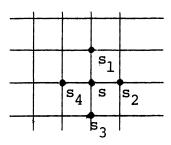
$$S = (\frac{Z}{N} / \frac{Z}{Z})^2$$
 avec  $N \in \{1, 2, 3, ...\}$ 

En chacun des points s de S , vit une variable aléatoire:  $\sigma_{S}$  , susceptible de prendre les valeurs -1 et +1 , c'est le spin en s . L'ensemble des configurations est donc:  $E = \{-1, 1\}^{S}$ .

On note  $\sigma_{\rm S}$  (i) le spin en s dans la configuration i (i  $\epsilon$  E). Le système à l'équilibre est décrit par la mesure de Gibbs  $\Pi$ :

$$\begin{array}{lll} \mathtt{d} \mathbb{I}\left(\mathbf{i}\right) = & \frac{1}{Z} \exp (\mathbf{J} \ \frac{1}{2} \ \underset{\mathbf{S} \in \mathbf{S}}{\Sigma} \ \underset{\mathbf{S}' \in \mathbf{S}}{\sigma_{\mathbf{S}}}\left(\mathbf{i}\right) \sigma_{\mathbf{S}'}\left(\mathbf{i}\right) ) & \\ & s \in \mathbf{S} \\ & s : \epsilon \mathbf{S} \\ & |s - \mathbf{s}'| = 1 \end{array}$$

où  $J = \widetilde{J}\beta$  avec  $\beta = \frac{1}{kT}$  et  $\widetilde{J}$ : une constante d'interaction.  $|s - s'| = 1 \quad \text{signifie que} \quad s' \in \{s_1, s_2, s_3, s_4\}$ 



On note  $n_s(i)$  le nombre de plus proches voisins de s , de spin différent de  $\sigma_s(i)$  , soit:

$$n_s(i) = \frac{1}{2} \sum_{\{s', |s-s'|=1\}} |\sigma_s(i) - \sigma_{s'}(i)|$$

On appelle (i) l'ensemble des états qu'on obtient à partir de i en retournant un spin en un seul site. Si j  $\epsilon$  (i) , si,j est le site où le spin est retourné.

$$\Pi_{\mathbf{i}} \equiv \exp\left(\frac{\mathbf{J}}{2} \sum_{\substack{\mathbf{S} \in \mathbf{S} \\ \mathbf{S}' \in \mathbf{S}}} \sigma_{\mathbf{S}}(\mathbf{i}) \sigma_{\mathbf{S}'}(\mathbf{i})\right) = \exp\left(\frac{\mathbf{J}}{2} \sum_{\mathbf{S} \in \mathbf{S}} ((4 - n_{\mathbf{S}}(\mathbf{i})) - n_{\mathbf{S}}(\mathbf{i}))\right)$$

= 
$$\exp(2J)\exp(-J\sum_{S \in S} n_S(i))$$
, donc:

(A2.1): 
$$\forall i \in S$$
,  $\forall j \in S$ ,  $\forall j \in \widehat{Y}(i) \Rightarrow$ 

$$\frac{\Pi_{j}}{\Pi_{i}} = \frac{\exp(-J^{n_{s_{i,j}(i)}})}{\exp(-J^{s_{i,j}(j)})} \equiv \alpha_{i,j}$$

# Pourquoi une simulation?

En général, on n'a pas moyen d'atteindre la fonction de partition Z qui nécessiterait le calcul et la somme de  $2^{N^2}$  termes (si N = 10,  $2^{N^2}$   $\approx$   $10^{30}$ ). C'est pourquoi on ne pourra calculer des

moyennes  $\langle X, \pi \rangle$  ( $\langle x \rangle$  pour les physiciens) que par les biais d'une simulation. Plus exactement, on n'aura que des estimations de ces moyennes.

#### Description des simulations

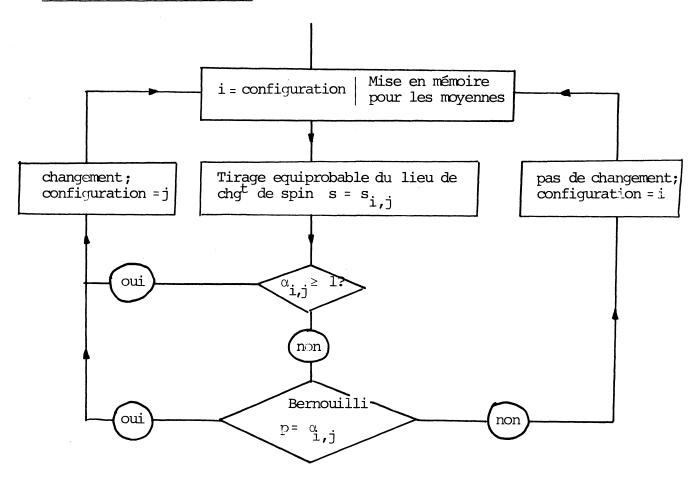
Les deux simulations utilisent de façon fondamentale le théorème ergodique (dont les hypothèses sont aisément vérifiées), à savoir:

$$\lim_{T\to\infty} \frac{1}{T} \int_0^T X_t(\omega) dt = \langle x \rangle,$$

presque sûrement en  $\omega$  , où  $\omega$  est un évènement aléatoire qui dans notre cas se "représente" par les différentes valeurs que prend le système au cours du temps. Du fait que la simulation ne dure qu'un temps fini la valeur obtenue pour < > n'est qu'approchée, (indépendamment des erreurs de troncature), c'est là qu'intervient le problème de l'estimation de l'intervalle de confiance.

Les paramètres des lois régissant les phénomènes aléatoires des simulations sont construits à partir de la probabilité d'équilibre II. Pour se persuader que les simulations sont correctes il suffit de vérifier que la probabilité invariante du processus joué dans une simulation est bien II. La l<sup>ere</sup> simulation est construite en temps réel, c'est à dire qu'on regarde l'état du système à toutes le unités de temps, la 2<sup>eme</sup> en temps "événementiel", c'est à dire qu'on ne regarde le système qu'aux instants de saut.

## La première simulation



La simulation est celle d'une chaîne de Markov en temps discret dont les probabilités de transitions sont données par la matrice:

P: 
$$\begin{cases} P_{ij} = \frac{1}{N^2} & \inf(1, \alpha_{i,j}) & \text{si } j \in \mathfrak{P}_{(i)} \\ P_{ii} = 1 - \sum_{\substack{j \neq i \\ j \neq i}} P_{ij} \\ P_{ik} = 0 & \text{si } k \notin \mathfrak{P}_{(i)} \end{cases}$$

où  $\alpha_{i,j}$  est défini en (A2.1)

$$\sum_{j \neq i} P_{ij} = \sum_{j \in (i)} P_{ij} = \frac{1}{N^2} \sum_{j \in (i)} \inf(1, \frac{\mathbb{I}_{j}}{\mathbb{I}_{i}})$$

Montrons que II est la probabilité invariante de la chaîne.

- La chaîne est clairement irréductible récurrente, donc la probabilité invariante est unique.
- 2) Reste à vérifier  $\Pi$   $P = \Pi$  ( $\Pi$  vecteur horizontal)  $<\Pi,P_{j}> = \sum_{i \in (j)} \frac{1}{N^{2}} \inf (\Pi_{i},\Pi_{j}) + \prod_{j} (1 \sum_{k \neq j} P_{jk})$

## La deuxième simulation (avec la dynamique de Glauber)

La loi du temps de retournement d'un spin en un lieu s  $\epsilon$  S est une loi exponentielle de paramètre  $\lambda_{s,i}$  où i est la configuration actuelle - le problème est de calculer les  $\lambda_{s,i}$  pour que le processus de saut associé ait une probabilité invariante égale à  $\pi$ . Calculons pour cela le générateur infinitésimal du processus.

 $Q_{i,j}$  est la probabilité de sauter de i en j,  $\lambda_i$  le paramètre de la loi exponentielle d'attente en i. q =  $(q_{ij})$  est le générateur. Par construction  $j \notin \mathcal{P}(i) \Rightarrow Q_{ij} = 0$ 

Par hypothèse  $Q_{ii} = 0$  (ce n,est pas une restriction).

le temps d'attente en i est: inf (tps de retournement en s, s  $\varepsilon \, S$ 

dans i), donc  $\lambda_{i} = \sum_{s \in S} \lambda_{s,i}$ 

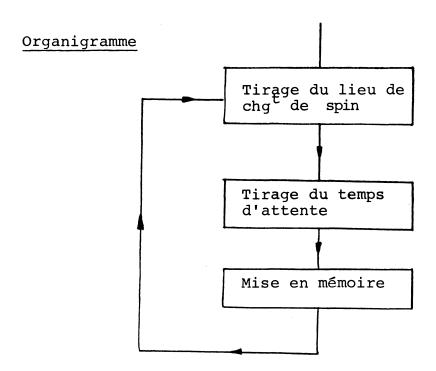
$$Q_{ij} = \frac{\lambda_{s_{i,j};i}}{\sum_{s \in S} \lambda_{s,i}} \quad \text{soit} \quad \begin{cases} \text{si } i \neq j & q_{ij} = \lambda_{i}Q_{ij} = \begin{cases} 0 \text{ si } j \notin \widehat{Y}(i) \\ \lambda_{sij,i} \end{cases}$$

On calcule  $\lambda_{s_{i,j}}$  à l'aide des conditions de balance détaillées:

$$\forall i,j \quad \prod_{i} q_{ij} = \prod_{j} q_{ji} \quad \text{donc} \quad \frac{\lambda_{s_{i,j};i}}{\lambda_{s_{j,i};j}} = \frac{\prod_{j}}{\prod_{i}} = \frac{\exp(+Jn_{s_{i,j}})}{\exp(+Jn_{s_{i,j}})}$$

Il suffit donc de prendre:  $\lambda_{s,i} = \exp(Jn_s^i)$ 

Remarque: Un tel processus est réversible.



La loi du lieu de changement de spin est une loi discrète sur S de paramètres:  $(\frac{\lambda_{s,i}}{\sum_{s' \in S} \lambda_{s',i}})_{s \in S}$ 

(conditionnellement au fait que la configuration actuelle est i ).

La loi d'attente en i est une loi exponentielle de paramètre  $\lambda_{\mathbf{i}} = \sum_{\mathbf{s} \in \mathbf{S}} \lambda_{\mathbf{s},\mathbf{i}} \quad \text{où} \quad \lambda_{\mathbf{s},\mathbf{i}} = \exp(\mathbf{J}^{n_{\mathbf{s}}^{\mathbf{i}}}) \quad \text{avec: } n_{\mathbf{s}}^{\mathbf{i}} \quad \text{nombre de voisins}$  différents de s, dans la configuration i.

## Comparisons des simulations

Bien que les critères de comparison soient difficiles à définir, il semble que pour les grand réseaux (N > 20) la premiere simulation soit plus rapide que la seconde. Toutefois pour les petits, la

seconde est plus performante. Elle a, de plus, l'avantage de correspondre à une évolution physiquement acceptable, alors que la première introduit un désordre temporel, l'wolution globale de celle-ci est toutefois satisfaisante.

Quelques résultats numériques (Avec la seconde simulation uniquement).

La théorie prévoit un phénomène de "transition" de phase quand le réseau est infini, c'est à dire qu'à basse température et compte tenu de la condition initiale le système évoluera presque sûrement vers une aimentation particulière, ou sa complémentaire, tandis que passée une température critique, indépendemment de la condition initiale le système évoluera vers une aimantation correspondant à 50% de spins +1, en absence de champ magnétique extérieur. Le phénomène se traduit lorsque le réseau est fini, pour le passage d'un bassin d'attraction à l'autre. Ceci est mis en évidence avec N = 10, et n'est pas apparu, du fait de la rareté de l'évènement avec N = 20.

La première série (N = 20) fait apparaître la "stabilisation" de l'équilibre métastable d'aimantation = 50%. Elle correspond à plus de 40,000 boucles de l'organigramme.

La seconde serie (N = 10) fait apparaître le phénomène de transition de phase. Remarque: J décroit en  $\frac{1}{T}$ , si T est la température. Sur les graphiques suivants, l'aimantation

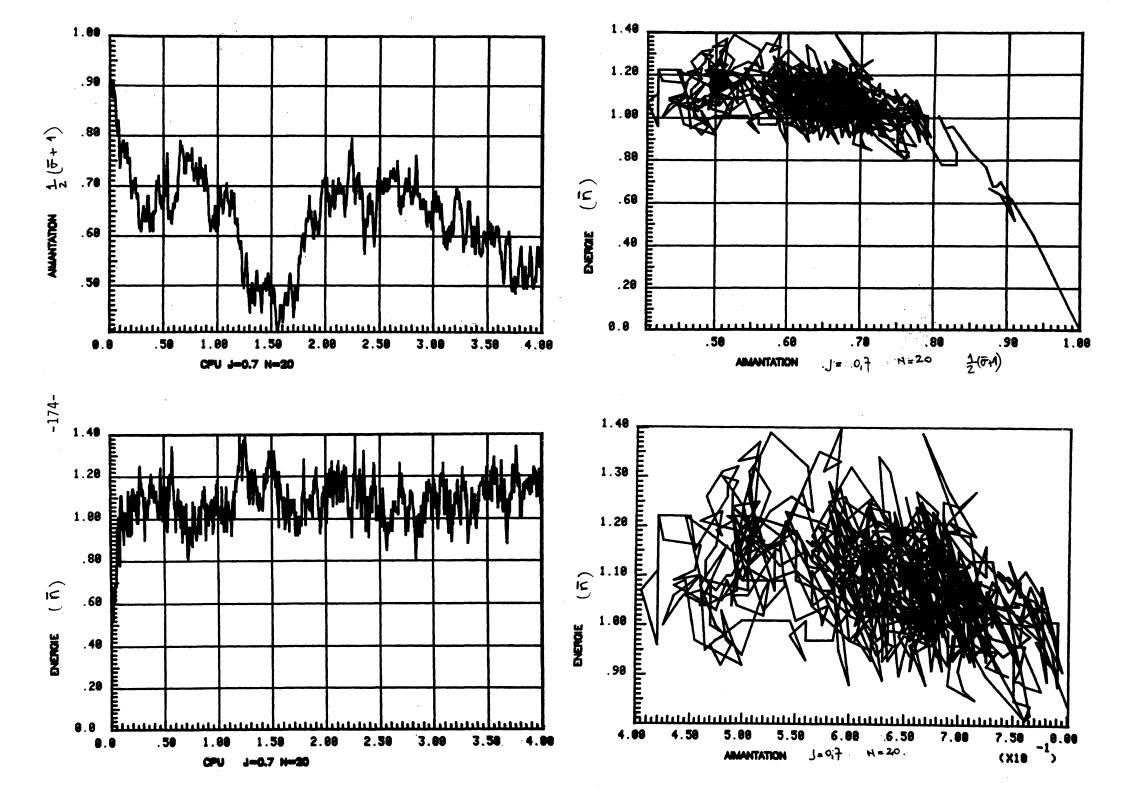
instantanée est représentée par:

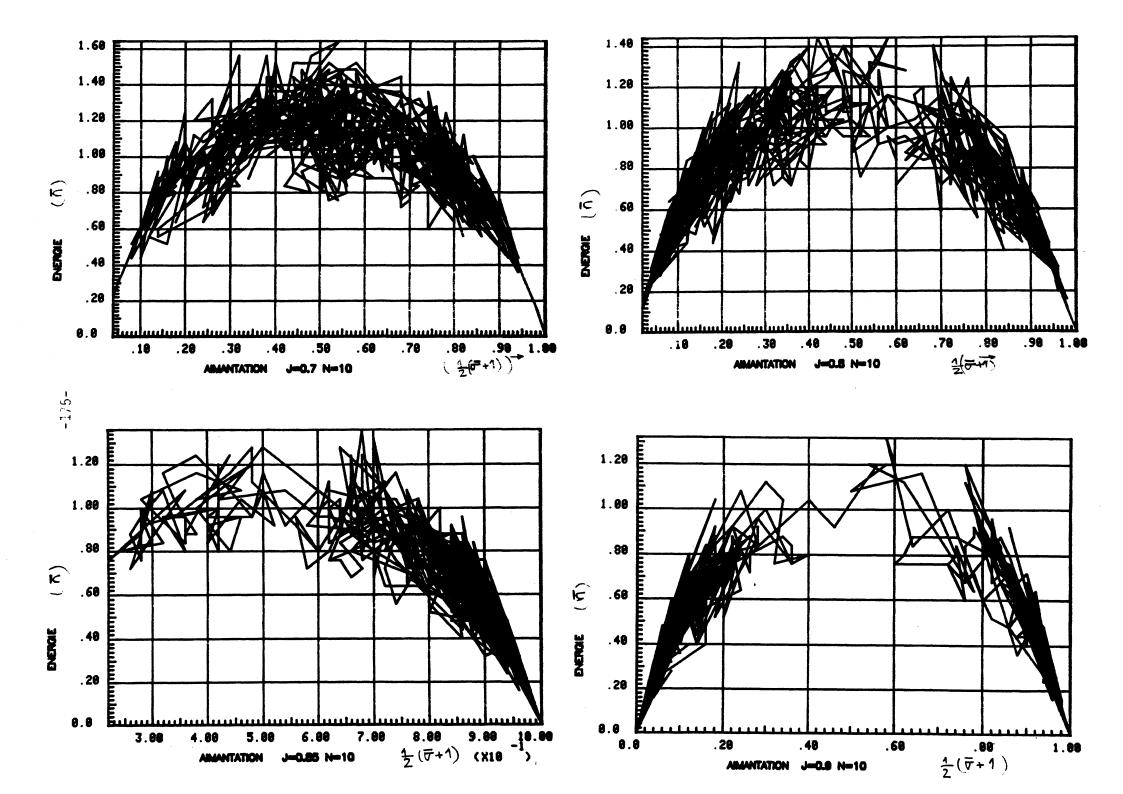
$$\bar{\sigma} = \frac{1}{\#(S)} \sum_{s \in S} \sigma_s$$

et l'énérgie instantanée par:

$$\bar{n} = \frac{1}{\#(S)} \sum_{s \in S} n_s$$

où 
$$\#(s) = 2^{N^2}$$





## Références

- [Ald] D.J. Aldous. Exchangeability and related topics. Ecole d'été de Saint-Flour. 1983 (à paraitre dans LNM)
- [Aze] R. Azencott (1980) Grandes Déviations et Applications Statistiques. Lecture Notes in Math. 774. Springer-Verlag.
- [Bou] N. Bourbaki. Intégration. Chapitre 9. Hermann, Paris, 1969.
- [Bre] J. Bretagnolle. Formule de Chernoff pour les lois empiriques de variables à valeurs dans des espaces généraux. Grandes déviations et applications statistiques. Astérisque 68.
- [Dac] J. Dacunha-Castelle. Formule de Chernoff pour une suite de variables réelles. Grandes déviations et applications statistiques. Astérisque 68.
- [Daw] D.A. Dawson (1983) Critical dynamics and fluctuations for a mean-field model of cooperative behavior. Journal of statistical physics. Vol. 31, no. 1.
- [Dob] R.L. Dobrushin (1968) The problem of uniqueness of a Gibbsian Random Field and the problem of phase transitions. Functional Analysis and its applications. 2 (pp. 302-312).
- [Dyn] E.B. Dynkin (1967) Markov Processes I. Springer-Verlag.
- [Dzw] R.C. Desai & R. Zwanzig (1978) Statistical mechanics of a nonlinear stochastic model. Journal of statistical physics. Vol. 19, no. 1.
- [EN1] R.S. Ellis & C.M. Newman (1978) Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z.W.v.G. 44, 117-139.
- [EN2] R.S. Ellis & C.M. Newman (1978) Necessary and sufficient conditions for the G.H.S. inequality with applications to analysis and probability. Transactions of the American Mathematical Society. Vol. 237, March 1978.
- [Fou] J.P. Fouque (1983) La convergence en loi pour les processus à valeurs dans un espace nucléaire (à paraître).

- [Gro] L. Gross (1980) Thermodynamics, statistical mechanics and random fields. Lecture Notes in Mathematics 929. Springer-Verlag.
- [GSk] I.I. Gihmann & A.V. Skorohod (1972) Stochastic differential equations. Springer-Verlag.
- [HSt] R.A. Holley & D.W. Stroock (1978) Generalized Ornstein-Uhlenbeck processes and infinite particle branching brownian motions. Publ. RIMS, Kyoto Univ. 14, 741-788.
- [JoM] A. Joffe & M. Métivier (1984) Weak convergence of sequences of semimartingales with applications to multiple branching processes (à paraitre)
- [Kac] M. Kac (1958) Probability and related topics in the physical sciences (New York: Interscience, 1958).
- [Kal] O. Kallenberg (1973) Canonical representations and convergence criteria for processes with interchangeable increments. Z.W.v.G. 27, pp. 23-36.
- [MK1] H.P. McKean (1966) A class of Markov processes associated with nonlinear parabolic equation. Proc. N.A.S. uSA. 56 pp. 1907-1911.
- [MK2] H.P. McKean (1967) Propagation of chaos for a class of nonlinear parabolic equations. Lecture series in differential equations. Vol. 7, 41-57, Catholic University, Washington D.C.
- [Nev] J. Neveu (1957) Théorie des semi-groupes de Markov. Thèse d'état. University of California. Publications in Statistics.
- [Oel] K. Oelschläger (1984) A martingale approach to the law of large numbers for weakly interacting stochastic processes. The Annals of Probability. Vol. 12, no. 2, pp. 458-479.
- [Pri] P. Priouret (1973) Processus de diffusion et équations différentielles stochastiques. Lecture Notes in Mathematics. 390. Springer-Verlag.
- [Roc] R.T. Rockafellar (1970) Convex Analysis. Princeton University Press.
- [Spi] F. Spitzer (1973) INtroduction aux processus de Markov à paramètres dans  $\mathbb{Z}_{\mathcal{V}}$ . Lecture Notes in Mathematics. 390. Springer-Verlag.
- [Stv] D.W. Strook & S.R.S. Varadhan (1979). Multidimensional diffusion processes. Springer-Verlag.

- [Szn] A.S. Sznitman (1983) An example of non-linear diffusion process with normal reflecting boundary conditions and some related limit theorems (a paraitre).
- [TaH] H. Tanaka & M. Hitouda (1981) Central limit theorem for a simple diffusion model of interacting particles. Hiroshima Math. Journal. 11, 415-423.
- [Tan] H. Tanaka (1982) Limit theorems for certain diffusion processes with interaction, preprint.
- [Yor] M. Yor (1974) Existence et unicité de diffusions à valeurs dans un espace de Hilbert. Annales de l'IHP, Section B, Vol. X, no. 1, p 55-88.
- [Yos] K. Yosida (1965) Functional Analysis. Springer-Verlag.

