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LOCAL ANALYTIC CLASSIFICATION OF 
q-DIFFERENCE EQUATIONS 

Jean-Pierre Ramis , Jacques Sauloy, Changgui Zhang 

Abstract. — We essentially achieve Birkhoff's program for g-difference equations by 
giving three different descriptions of the moduli space of isoformal analytic classes. 
This involves an extension of Birkhoff-Guenther normal forms, ^-analogues of the 
so-called Birkhoff-Malgrange-Sibuya theorems and a new theory of summation. The 
results were announced in [44,45] and in various seminars and conferences between 
2004 and 2006. 

Résumé (Classification analytique locale des équations aux -̂différences) 
Nous achevons pour l'essentiel le programme de Birkhoff pour la classification 

des équations aux ^-différences en donnant trois descriptions distinctes de l'espace 
des modules des classes analytiques isoformelles. Cela passe par une extension des 
formes normales de Birkhoff-Guenther, des (/-analogues des théorèmes dits de Birkhoff-
Malgrange-Sibuya et une nouvelle théorie de la sommation. Ces résultats ont été an­
noncés dans [44,45] ainsi que dans divers séminaires et conférences de 2004 à 2006. 

© Astérisque 355, SMF 2013 
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C H A P T E R 1 

I N T R O D U C T I O N 

1.1. The problem 
1.1.1. The generalized Riemann problem and the allied problems. — This 
paper is a contribution to a large program stated and begun by G.D. Birkhoff in the 
beginning of xxth century [10]: the generalized Riemann problem for linear differen­
tial equations and the allied problems for linear difference and q-difference equations. 
Such problems are now called Riemann-Hilbert-Birkhoff problems. Today the state of 
achievement of the program as it was formulated by Birkhoff in [10] is the following: 

- For linear differential equations the problem is completely closed (both in the 
regular-singular case and in the irregular case). 

- For linear q-difference equations (\q\ ^ 1), taking account of preceding results 
due to Birkhoff [10], the second author [51] and van der Put-Reversat [37] in 
the regular-singular case, and to Birkhoff-Guenther [11] in the irregular case, 
the present work essentially closes the problem and moreover answers related 
questions formulated later by Birkhoff in a joint work with his PhD student 
P.E. Guenther [11] (cf. below 1.1.2). 

- For linear difference equations the problem is closed for global regular-singular 
equations (Birkhoff, J. Roques [47]) and there are some important results in the 
irregular case [14,28]. 

1.1.2. The Birkhoff-Guenther program. — We quote the conclusion of [11], it 
contains a program which is one of our central motivations for the present work. We 
shall call it Birkhoff-Guenther program. 

Up to the present time, the theory of q-difference equations has lagged noticeably 
behind the sister theories of linear difference and differential equations. In the opin­
ion of the authors, the use of the canonical system, as formulated above in a special 
case, is destined to carry the theory of q-difference equations to a comparable degree of 
completeness. This program includes in particular the complete theory of convergence 
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and divergence of formal series, the explicit determination of the essential invariants 
(constants in the canonical form), the inverse Riemann theory both for the neigh­
borhood of x = oo and in the complete plane (case of rational coefficients), explicit 
integral representations of the solutions, and finally the definition of q-sigma periodic 
matrices, so far defined essentially only in the case n — 1. Because of its extensiveness 
this material cannot be presented here. 

The paper [11] appeared in 1941 and Birkhoff died in 1944; as far as we know 
"this material" never appeared and the corresponding questions remained opened and 
forgotten for a long time. 

1.1.3. What this paper could contain but does not. — Before describing the 
contents of the paper in the following paragraph, we shall first say briefly what it 
could contain but does not. 

The kernel of the present work is the detailed proofs of some results announced 
in [44,45] and in various seminars and conferences between 2004 and 2006, but there 
are also some new results in the same spirit and some examples. 

In this paper, we limit ourselves to the case \q\ ^ 1. The problem of classification 
in the case \q\ = 1 involves Diophantine conditions, it remains open but for the only 
exception [19]. Likewise, we do not study problems of confluence of our invariants 
towards invariants of differential equations, that is of q-Stokes invariants towards 
classical Stokes invariants (cf. in this direction [22,61]) ^ \ 

In this work, following Birkhoff, we classify analytically equations admitting a fixed 
normal form, a moduli problem. There is another way to classify equations: in terms 
of representations of a "fundamental group", in Riemann's spirit. This is related to the 
Galois theory of g-difference equations, we will not develop this topic here, limiting 
ourselves to the following remarks, even if the two types of classification are strongly 
related. 

The initial work of Riemann was a "description" of hypergeometric differential equa­
tions as two-dimensional representations of the free non-abelian group generated by 
two elements. Later Hilbert asked for a classification of meromorphic linear differential 
equations in terms of finite dimensional representations of free groups. Apparently the 
idea of Birkhoff was to get classifications of meromorphic linear differential, difference 
and g-difference equations in terms of elementary linear algebra and combinatorics 
but not in terms of group representations. For many reasons it is interesting to work 
in the line of Riemann and Hilbert and to translate Birkhoff style invariants in terms 
of group representations. The corresponding groups will be fundamental groups of 
the Riemann sphere minus a finite set or generalized fundamental groups. It is pos­
sible to define categories of linear differential, difference and ^-difference equations, 

1. Also see the Ph.D. thesis of Thoams Dreyfus, defended at the Institut Mathématique de Jussieu, 
November 2013. 
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these categories are Tannakian categories; then applying the fundamental theorem of 
Tannakian categories we can interpret them in terms of finite dimensional represen­
tations of pro-algebraic groups, the Tannakian groups. The fundamental groups and 
the (hypothetic) generalized fundamental groups will be Zariski dense subgroups of 
the Tannakian groups. 

In the case of differential equations the work was achieved by the first author, 
the corresponding group is the wild fundamental group which is Zariski dense in the 
Tannakian group. In the case of difference equations almost nothing is known. In the 
case of ^-difference equations, the situation is the following. 

1. In the local regular singular case the work was achieved by the second author 
in [52], the generalized fundamental group is abelian, its semi-simple part is 
abelian free on two generators and its unipotent part is isomorphic to the addi­
tive group C. 

2. In the global regular singular case only the abelian case is understood [52], using 
the geometric class field theory. In the general case some non abelian class field 
theory is needed. 

3. In the local irregular case, using the results of the present paper the first and 
second authors recently got a generalized fundamental group [41-43]. 

4. Using case 3, the solution of the global general case should follow easily from 
the solution of case 2. 

1.1.3.1. About the assumption that the slopes are integral. — The "abstract" part 
of our paper does not require any assumption on the slopes: that means general 
structure theorems, e.g., theorem 3.1.4 and proposition 3.4.2. The same is true of 
the decomposition of the local Galois group of an irregular equation as a semi-direct 
product of the formal group by a unipotent group in [42,43]. 

However, all our explicit constructions (Birkhoff-Guenther normal form, privileged 
cocycles, discrete summation) rest on the knowledge of a normal form for pure mod­
ules, that we have found only in the case of integral slopes. 

In [37] van der Put and Reversât classified pure modules with non integral slopes. 
The extension of our results to the case of non integral slopes, using [37], does not 
seem to have been done - and would be very useful ^ . 

1.2. Contents of the paper 

We shall classify analytically isoformal g-difference equations. That is, we consider 
analytic ^-difference modules together with an isomorphism of their formalization 
with a given formal ^-difference module, and we consider equivalences preserving 

2. Long after the present work had been submitted for publication, this task was undertaken by 
Virginie Bugeaud, see [15]. 
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4 CHAPTER 1. INTRODUCTION 

this additional structure. This is in adequation to the corresponding problem for 
differential equations, see for instance [3]. 

The isoformal analytic classes form an affine space, we shall give three descriptions 
of this space respectively in chapters 3, 4 and 6 (this third case is a particular case of 
the second and is based upon chapter 5) using different constructions of the analytic 
invariants. A direct and explicit comparison between the second and the third descrip­
tion is straightforward but such a comparison between the first and the second or the 
third construction is quite subtle; in the present paper it will be clear for the "abelian 
case", of two integral slopes; for the general case we refer the reader to [42,43] and 
also to work in progress [50]. 

Chapter 2 deals with the general setting of the problem (section 2.1) and introduces 
two fundamental tools: the Newton polygon and the slope filtration (section 2.2). 
Prom this, the problem of analytic isoformal classification, that we state in section 2.3, 
admits a purely algebraic formulation: the isograded classification of filtered differ­
ence modules. Simple examples are tackled in the same section to give an idea of the 
landscape. This is also the occasion to introduce the g-Borel transformation. The cor­
responding algebraic theory is developed in a more general setting in the appendix A. 

The first attack at the classification problem for ç-difference equations comes 
in chapter 3. Section 3.1 specializes the results of appendix A to g-differences, and 
section 3.2 provides the proof of some related index computations. One finds that the 
space of classes is an affine scheme (theorem 3.1.4) and computes its dimension. This 
is a rather abstract result. In order to provide explicit descriptions (normal forms, 
coordinates, invariants...) from section 3.3 up to the end of the paper, we assume that 
the slopes of the Newton polygon are integers. This allows for the more precise the­
orem 3.3.5 and the existence of Birkhoff-Guenther normal forms originating in [11]. 
This also makes easier the explicit computations of the following chapters. Then some 
precisions about g-Gevrey classification are given in section 3.4. 

Analytic isoformal classification by normal forms is a special feature of the 
g-difference case, such a thing does not exist for differential equations. To tackle this 
case Birkhoff introduced functional 1-cochains using Poincaré asymptotics [9,10]. 
Later, in the seventies, Malgrange interpreted Birkhoff cochains using sheaves on a 
circle S1 (the real blow up of the origin of the complex plane). Here, we modify 
these constructions in order to deal with the g-difference case, introducing a new 
asymptotic theory and replacing the circle S1 by the elliptic curve F,q = C*/qz. 

In this spirit, chapter 4 tackles the extension to ^-difference equations of the so 
called Birkhoff-Malgrange-Sibuya theorems. In section 4.1 is outlined an asymptotic 
theory adapted to ^-difference equations but weaker than that of section 5.2 of the 
next chapter: the difference is the same as between classical Gevrey versus Poincaré 
asymptotics. The counterpart of the Poincaré version of Borel-Ritt is theorem 4.1.4; 
also, comparison with Whitney conditions is described in lemma 4.1.3. Indeed, the 
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1.2. CONTENTS OF THE PAPER 5 

geometric methods of section 4.3 rest on the integrability theorem of Newlander-
Niremberg. They allow the proof of the first main theorem, the (/-analogue of the 
abstract Birkhoff-Malgrange-Sibuya theorem (theorem 4.3.11). Then, in section 4.4, 
it is applied to the classification problem for (/-difference equations and one obtains the 
(/-analogue of the concrete Birkhoff-Malgrange-Sibuya theorem (theorem 4.4.1): there 
is a natural bijection from the space T(Mo) of analytic isoformal classes in the formal 
class of M0 with the first cohomology set Hl(T£q, A/(Mo)) of the "Stokes sheaf". The 
latter is the sheaf of automorphisms of Mo infinitely tangent to identity, a sheaf of 
unipotent groups over the elliptic curve EQ = C*/qz. The proof of theorem 4.4.1 
appeals to the fundamental theorem of existence of asymptotic solutions, previously 
proved in section 4.2. 

Chapter 5 aims at developing a summation process for (/-Gevrey divergent series. 
After some preparatory material in section 5.1, an asymptotic theory "with estimates" 
well suited for (/-difference equations is expounded in section 5.2. Here, the sectors of 
the classical theory are replaced by preimages in C* of the Zariski open sets of the 
elliptic curve C*/qz, that is, complements of finite unions of discrete (/-spirals in C*; 
and the growth conditions at the boundary of the sectors are replaced by polarity 
conditions along the discrete spirals. The (/-Gevrey analogue of the classical theorems 
are stated and proved in sections 5.3 and 5.4: the counterpart of the Gevrey version of 
Borel-Ritt is theorem 5.3.3 and multisummability conditions appear in theorems 5.4.3 
and 5.4.7. The theory is then applied to (/-difference equations and to their classifica­
tion in section 5.5, where is proved the summability of solutions (theorem 5.5.3), the 
existence of asymptotic solutions coming as a consequence (theorem 5.5.5) and the 
description of Stokes phenomenon as an application (theorem 5.5.7). 

Chapter 6 deals with some complementary information on the geometry of the space 
J7 (Mo) of analytic isoformal classes, through its identification with the cohomology set 
if1 (Eg, A/(Mo)) obtained in chapter 4. Theorem 4.4.1 of chapter 4 implicitly attaches 
cocycles to analytic isoformal classes and theorem 5.5.7 of chapter 5 shows how to 
obtain them by a summation process. In section 6.1, we give yet another construction 
of "privileged cocycles" (from [53]) and study their properties. In section 6.2, we show 
how the dévissage of the sheaf A/(Mo) by holomorphic vector bundles over Eg allows 
to identify H1(Eq,Ai(Mo)) with an affine space, and relate it to the corresponding 
result of theorem 3.3.5. In section 6.3, we recall how holomorphic vector bundles over 
Eg appear naturally in the theory of (/-difference equations and we apply them to an 
interpretation of the formula for the dimension of .F(Mo). 

Chapter 7 provides some elementary examples motivated by their relation to 
(/-special functions, either linked to modular functions or to confluent basic hyperge-
ometric series. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



6 CHAPTER 1. INTRODUCTION 

The appendix is devoted to the study of the following purely algebraic problem: 
to classify (in a given abelian category) all finitely filtered objects with fixed asso­
ciated graded object, up to equivalence compatible with the graduation. Since the 
space under study looks like some generalized extension module, it relies on homo-
logical algebra and index computations. The problem is solved here under restrictive 
assumptions, but which are sufficient to apply them to our specific situation. Note 
that, to ease the reading of chapter 2, there are some redundancies, so that the reader 
does not have to swallow the whole appendix before reading that chapter! 

1.2.1. About the wealth of summation processes. — It is important to no­
tice that the construction of q-analogs of classical objects (special functions...) is not 
canonical, there are in general several "good" (/-analogs. So there are several (/-analogs 
of the Borel-Laplace summation (and multisummation) (3) : there are several choices 
for Borel and Laplace kernels (depending on a choice of (/-analog of the exponential 
function) and several choices of the integration contours (continuous or discrete in 
Jackson style) [40,46,59,60,62]. The paper [22] studies a case where distinct pro­
cesses give the same result, while [65] dwells on the difference of such results to obtain 
modularity properties. 

Our choice of summation here seems quite "optimal": the entries of our Stokes 
matrices are elliptic functions (cf. the "(/-sigma periodic matrices" of Birkhoff-
Guenther program), moreover Stokes matrices are meromorphic in the parameter of 
"(/-direction of summation"; this is essential for applications to (/-difference Galois 
theory (cf. [41-43]). Unfortunately we did not obtain explicit integral formulae for 
this summation (except for some particular cases), in contrast with what happens for 
other summations introduced before by the third author. 

1.3. General notations 

Generally speaking, in the text, the sentence A := B means that the term A is 
defined by formula B. Numbered equations are numbered according to the chapter 
they appear in: thus, equation (2.3) is the third numbered equation in chapter 2. 

But for some changes, the notations are the same as in [44,45], etc. Here are the 
most useful ones (4). 

We write C{z} the ring of convergent power series (holomorphic germs at 0 G C) 
and C({z}) its field of fractions (meromorphic germs). Likewise, we write C[[z]] the 
ring of formal power series and C((z)) its field of fractions. 

3. Note however that the "algebraic summation" introduced in [53] and recalled and used here 
in chapter 6 is actually just a special case of the general summation process described in chapter 5: 
when one restricts to solutions of g-differenee equations, the algorithm of summation admits a more 
elementary expression. 

4. The reader will also find on page 145 an index of notations followed by a terminological index. 
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1.3. GENERAL NOTATIONS 7 

We fix once for all a complex number q G C such that \q\ > 1. Then, the dilatation 
operator oq is an automorphism of any of the above rings and fields, well defined by 
the formula: 

_1)(l + q~nz)(l+xw+e 
Other rings and fields of functions on which oq operates will be introduced in the 
course of the paper. This operator also acts coefficientwise on vectors, matrices... over 
any of these rings and fields. 

We write EG the complex torus (or elliptic curve) F,q := C*/qz and p : C* —» EQ 
the natural projection. For all À G C*, we write [A;g] := Xqz C C* the discrete 
logarithmic q-spiral through the point A G C*. All the points of [A; q] have the same 
image A := p(X) G EG and we may identify [A; q] = p~x (A) with A. 

A linear analytic (resp. formal) g-difference equation (implicitly: at 0 G C ) is an 
equation: 

(1.1) aqX = AX, 

where A G GLN(C({z})) (resp. A G GLN(C((*)))). 

1.3.1. Theta Functions. — Jacobi theta functions pervade the theory of 
g-difference equations. We shall mostly have use for two slightly different forms 
of them. 

In chapter 5, we shall use: 

(1.2) 9(z;a) := 
nez 

-n(n-l)/2 n _ 

dr+d 
(1 - <rn_1)(l + q~nz)(l + q~n~llz). 

The second equality is Jacobi's celebrated triple product formula. When obvious, the 
dependency in q will be omitted and we shall write 0(z) instead of 0(z; q). One has: 

0(qz) = qz0(z) and 0(z) = 0(1/qz). 

In chapter 6, we shall rather use: 

(1.3) 0q{z) := 
nez 

-n{n+l)/2zn _ 
nGN 

(1 - q-n~l)(l + <Tn-^)(l + q~n/z). 

One has of course 0„(z) = 0(q 1z:a) and: 

0q(qz) = z0q(z)=Oq(l/z). 

Both functions are analytic over the whole of C* and vanish on the discrete g-spiral 
—qz with simple zeroes. 

In chapter 7, we shall use in alternance both forms, according to which fits better 
the needs of the computation. Indeed, in section 7.4, we shall even use the "classical" 
forms 0ij, i,j G {0,1} to be found in the standard theory of special functions. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



8 CHAPTER 1. INTRODUCTION 

1.3.2. g-Gevrey levels. — As in [8,39], we introduce the space of formal series of 
q-Gevrey order s: 

C M , ; . := \nzn G Clzj I 3A > 0 : an = 0(Anqsn /2) 

We also say that / G C[^]|G;S is of q-Gevrey level 1/s. It understood that CJZĴ .Q = 
C{z} and C ^ ] = C ^ J . Note however that it is not true that f]s>0 Clzlq;s = 
C{z}, as shows the example of the classical Euler series ]Pn!2:N, which belongs to the 
former but not to the later (and the same is true for any divergent series having a finite 
Gevrey level in the sense of the classical theory of ordinary differential equations) ; nor 
that Us>o ̂ Wq;s =+d+r+d+r as shows the example of ^nnzn, which belongs to the 
latter but not to the former. 

Similar considerations apply to spaces of Laurent formal series: 

C((*)),;8 : = C W B , [ L / 4 

More generally, one can speak of q-Gevrey sequences of complex numbers. Let 
k G R* U {oo} and s := \. A sequence (an) G C N is q-Gevrey of order s if it is 
dominated by a sequence of the form (CAn \q\n /(2fc)), for some constants C, A > 0. 
Note that this terminology is all about sequences, or coefficients of series. Extension to 
g-Gevrey asymptotics is explained in definition 5.2.1, while the (/-Gevrey interpolation 
by growth of decay of functions is dealt with in definitions 5.2.7 and 5.4.1. 
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C H A P T E R 2 

S O M E G E N E R A L N O N S E N S E 

2.1. The category of ^-difference modules 

General references for this section are [38,54]. 

2.1.1. Some general facts about difference modules. — Here, we also refer 
to the classical literature about difference fields, like [17] and [23] (see also [36]). A 
detailed proof of many elementary algebraic facts can be found in [21]. We shall also 
use specific results proved in appendix A. 

We call difference field ̂  a pair (K, cr), where K is a (commutative) field and a a 
field automorphism of K. We write indifferently a(x) or ax the action of a on x G K. 
One can then form the Ore ring of difference operators: 

VK,a '.= K(T,T~l) 

characterized by the twisted commutation relation: 
Vfc G Z, x G K, Tkx = ak(x)Tk. 

We shall rather write somewhat improperly Vk,<T := K(a,a~1) and, for short, 
V := T>K,a in this section. The center of V is the "field of constants": 

Ka := {x G K I <T{X) = x}. 
The ring V is left euclidean and any ideal is generated by a unique entire unitary 
polynomial P = un + a\an~l H h an. 

Any (left) P-module M G Mod-® can be seen as a i^-vector space E and the left 
multiplication x H-> a.x as a semi-linear (or cr-linear) automorphism # : E -» E, 
which means that #(Ax) = <r(\)$(x); and any pair (E, $) of a K-vector space E and 
a semi-linear automorphism $ of E defines a V-module; we just write M = (E,$). 

1. Much of what follows will be extended to the case of difference rings in appendix A, where the 
basic linear constructions will be described in great detail; the reader is encouraged to refer to the 
appendix only when necessary. 
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Morphisms from (F, <£) to (£", $') in Modx> are linear maps u G Ck(E, E') such that 
o u = n o 
The D-module M has finite length if, and only if, E is a finite dimensional if-vector 

space. A finite length P-module is called a difference module over (if, cr), or over if 
for short. The full subcategory of Modx> whose objects are of difference modules is 
written DiffMod(K,a). The categories Mod-p and DiffMod(K,a) are abelian and 
if ^-linear. 

By choosing a basis of F, we can identify any difference module with some 
(Kn,$A), where A G GLn(if) and $a(X) := A~lcrX (with the natural operation of 
a on ifn); the reason for using A~x will become clear soon. If B G GLp(if ), then mor­
phisms from (Kn,$A) to (lfp,$#). can be identified with matrices F G MatPjn(if) 
such that (o~F)A = FF (and composition amounts to the product of matrices). 

2.1.1.1. Unity. — An important particular object is the unity 1, which may be de­
scribed either as (if, cr) or as V/VP with P = a — 1. For any difference module 
M = (F, $) the if °"-vector space Hom(l, M) can be identified with the kernel of the 
if^-linear map — Id : E —» F; in case M = (ifn, <Ê>̂ ), this boils down to the space 
{X G ifn I crX = AX} of solutions of a "cr-difference system"; whence our defini­
tion of $>a- The functor of solutions M T(M) := Hom(l, M), from the category 
DiffMod(K,a) to the category of finite dimensional (see remark 2.1.4) vector spaces 
over if° is left exact and if^-linear. We shall have use for its right derived functors 
P(M) = Ext*(l,M) (see [13]). 

2.1.1.2. Internal Horn. — Let M = (F, 3>) and N = The map T*,* : / ^ 
\I> o / o is a semi-linear automorphism of the if-vector space £K(F, F), whence a 
difference module Hom(M, N) := (£k(E, F),T$}^). Then one has Hom(l, M) = M 
and r(Hom(M,A0) = Hom(M, AT). The dual of M is Mv := Hom(M,l), so that 
Hom(M, 1) = T(MV). For instance, the dual of M = (ifn,$A) is Mv = (ifN,$AV), 
where Av := ^A-1. 

2.1.1.3.Tensor product. — Let M = (F, $ ) and iV = (F,#). The map $ <g> # : 

x (8) y H-» 0 ^(y) from F 0 ^ F to itself is well defined and it is a semi-linear 
automorphism, whence a difference module M (G) N — (E 0 x F, $ (8) \I>). The obvious 
morphism yields the adjunction relation : 

Horn (M, Horn (TV, F)) = Hom(M <g> iV, F). 

We also have functorial isomorphisms 1 (8) M = M and Horn (M N) = Mv ® N. The 
classical computation of the rank through 1 -» Mv 0 M —• 1 yields dim# E as it 
should. We write rk M this number. 

2.1.1.4- Extension of scalar s. — An extension difference field (Kf,o~f) of (if, cr) con­
sists in an extension if' of if and an automorphism a' of if' which restricts to a 
on if. Any difference module M = (F, $) over (if, cr) then gives rise to a difference 

ASTÉRISQUE 355 



2.1. THE CATEGORY OF Q-DIFFERENCE MODULES 11 

module W = (Ef, over (if', a'), where E' := if' ®K Fand $' := cr' <g> $ is defined 
the same way as above. We then write r#V(M) the if'a -vector space T(M'). The 
functor of solutions (with values) in if' is defined a s M ^ T(M'); it is left exact and 
KMinear. The functor M ^ M' from DiffMod(K,cr) to DiffMod(Kf,cr') is compat­
ible with unity, internal Horn, tensor product and dual. The image of M = (ifn, 
is M' = (if'n,$A). 

2.1.2. (/-difference modules. — We now restrict our attention to the difference 
fields (C({z}),o~q) and (C((z)),aq), and to the corresponding categories of ana­
lytic, resp. formal, (/-difference modules: they are C-linear abelian categories since 
C({z})ag — C((z)Yq = C. In both settings, we consider the (/-difference module 
M = (KN,<&A) as an abstract model for the linear (/-difference system aqX = AX. 
Isomorphisms from (the system with matrix) A to (the system with matrix) B in either 
category correspond to analytic, resp. formal, gauge transformations, i.e., matrices 
F G GLn(C({z})), resp. F G GLn(C((z))), such that B = F [A] := (aqF)AF~1. We 
write Vq indifferently for T>C({z}),aq or ^c((z)),aq when the distinction is irrelevant. 

Lemma 2.1.1 (Cyclic vector lemma). — Any (analytic or formal) q-difference module 
is isomorphic to a module Vq/VqP for some unitary entire q-difference operator P. 

Proof — See [18,51]. • 

Note however that the ideal VqP, and thus its generator P, are by no means unique, 
since they depend on the choice of a cyclic vector. For instance, it is an easy exercise 
to show that the operators P := crq — a and P' := aq — a! (with a,a' G if*) give 
rise to isomorphic modules Vq/VqP ~ Vq/VqP' if, and only if, a'/a belongs to the 
subgroup I b G if*} of if* ( [21], exemple 3.9). 

Theorem 2.1.2. — The categories DiffMod(C({z}),aq) and DiffMod(C((z)),aq) are 
abelian G-linear rigid tensor categories. 

Proof. — See for instance [38,52]. (From proposition 3.1 of [42], it actually follows 
that DiffMod(C({z}),aq) is a neutral Tannakian category, and the same is true for 
DiffMod(C((z)),aq) by [38] or [37], but we won't use these facts.) • 

2.1.2.1. The functor of solutions. — It is customary in P-module theory to call 
solution of M a morphism M —» 1. Indeed, a solution of V/VP is then an element of 
KerP. We took the dual convention, yielding a covariant C-linear left exact functor 
T for the following reason. To any analytic g-difference module M = (C({z})n, $A) , 
one can associate a holomorphic vector bundle F A over the elliptic curve (or complex 
torus) Eg := C*/c/z in such a way that the space of global sections of FA can be 
identified with T(M). We thus think of T as a functor of global sections, and, the 
functor M ^ FA being exact, the P can be defined through sheaf cohomology. 
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There is an interesting relationship between the space T(M) = Hom(l, M) of solu­
tions of M and the space T(MV) = Hom(M, 1) of "cosolutions" of M. Starting from a 
unitary entire (analytic or formal) g-difference operator P — a™ + ai<7™-1 H \-an G 
Vq, one studies the solutions of the g-difference equation: 

P-f '•= <f + +'••• + anf = 0 
by vectorializing it into the form 

aqX = AX, 
where 

X = 

f 
Vgl 

°r2f 
ds+d+r 

and A = 

0 1 0 . . . 0 
0 0 1 . . . 0 

0 0 0 . . . 1 
—an —an-\ —an-2 — ... —a\ 

Solutions of P then correspond to solutions of M = (C({z})n, $A) or (C((z))n, $A)-
Now, by lemma 2.1.1, one has M = Vq/VqQ for some unitary entire ^-difference 
operator Q. Any such polynomial Q is dual to P. An explicit formula for a particular 
dual polynomial is given in [54, prop. 2.1.10]. 

Prom the derived functors T2(M) = Ext*(l, M), one can recover general Ext-
modules: 

Proposition 2.1.3. — There are functorial isomorphisms: 
ExtVM, N) ~ r(Mv <g> AO. 

Proof. — The covariant functor N ^ Hom(M, N) is obtained by composing the 
exact covariant functor N ^ Mv <S> N with the left exact covariant functor F. More­
over, considered as a left exact functor over Modx>, it is isomorphic to the functor 
N ^ Hom(M, AO, which sends injective modules to injective modules. Indeed, the 
adjunction formula: 

Hom(P, Hom(M, N)) ~ Hom(P ® M, N) 

makes sense and remains valid for arbitrary modules in Mod-p for definitions of tensor 
product and internal Horn in Modx> similar to the ones given above: see theorem A.2.9 
in paragraph A.2.5 of section A.2 of the appendix; and it implies that the flatness of M 
over K is enough to ensure the exactness of P ^ Horn ( P, Horn (M, N)) whenever N 
is injective. One can then derive N ^ Hom(M, N) using [25, chap. Ill, §7, th. 1]. • 
Remark 2.1.4. — For any difference field extension (K,a) of (C({z}), o~q), the 
KA-vector space of solutions of M in K has dimension d im^ TK(M) < rk M: this 
follows from the g-Wronskian lemma (see [18]). One can show that the functor TK 
is a fibre functor if, and only if, (K, a) is a universal field of solutions, i.e., such 
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that one always have the equality d im^ YK(M) = rk M. The field A4(C*) of 
meromorphic functions over C*, with the automorphism aqi is a universal field of 
solutions, thus providing a fibre functor over A4(C*)crq — A4(Eq) (field of elliptic 
functions). Actually, no subfield of M{C*) gives a fibre functor over C (this follows 
from the argument at the beginning of [52, 0.3]). In [38], van der Put and Singer use 
an algebra of symbolic solutions which is reduced but not integral. A transcendental 
construction of a fibre functor over C is described in [42]. 

2.2. The Newton polygon and the slope filtration 

We summarize results from [54] 

2.2.1. The Newton polygon. — The contents of this section are valid as well in 
the analytic as in the formal setting. To the (analytic or formal) ^-difference operator 
P = Y2aiaq £ we associate the Newton polygon N(P), defined as the convex hull 
of {(i, j) G Z2 I j > vo(cii)}, where vo denotes the z-adic valuation in C({^}),C((z)). 
Multiplying P by a unit aaj of Vq just translates the Newton polygon by a vector 
of Z2, and we shall actually consider N(P) as defined up to such a translation (or, 
which amounts to the same, choose a unitary entire P). The relevant information 
therefore consists in the lower part of the boundary of N(P), made up of vectors 
(f*i,di), • • •, (rk,dk), ri G N*, d{ G Z. Going from left to right, the slopes fa := ^ 
are rational numbers such that fa < • • • < ßu- Their set is written S(P) and ri is 
the multiplicity of fa G S(P). The most convenient object is however the Newton 
function rp : Q —>> N, such that fa ri and null out of S(P). 

Theorem 2.2 J 

(i) For a given q-difference module M, all unitary entire P such that M ~ Vq/VqP 
have the same Newton polygon; the Newton polygon of M is defined as N(M) := 
N(P), and we put S(M) := S(P), rM •= rP. 

(ii) The Newton polygon is additive: for any exact sequence, 

0 M —> M -> M -> 0 => rM = rM' + rM". 

(iii) The Newton polygon is multiplicative: 

V/iGQ, rMl®M1(fJ<) = 
d+r+d+rd 

rM1(^i)rM2(ß2)' Also: rMv(^) =rM(-ß)-

2. Note however that, from [42], we changed our terminology: the slopes of a g-differenee module 
are the opposites of what they used to be (see herebelow subsection 2.2.1); and what we call a 
pure isoclinic, resp. pure module was previously called pure, resp. tamely irregular (see herebelow 
subsection 2.2.2). 
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(iv) Let £ G N*7 introduce a new variable z' := z1^ (ramification) and make K' := 
C((z))[z;] = C((z')) or C({z})W] = C({z/}) a difference field extension by 
putting (T'(z') = q'z', where q' is any £th root of q. The Newton polygon of the 
q'-difference module M' := K' (g)M (computed w.r.t. variable z') is given by the 
formula: 

To follow the next example, recall from paragraph 2.1.2.1 how we vectorialize a 
scalar g-difference equation P.f = 0, P G Vq, by a g-difference system oqX = AX, 
and then associate to this system a (/-difference module (C({z})n, $A)- Remember 
that the latter is isomorphic to some Vq/VqQ (by the cyclic vector lemma and left 
euclideanity of Vq), but that Q is not equal to P, it is dual to P. 

d+d+r+d+r+d+r+d 

Example 2.2.2. — Vectorializing an analytic equation of order two yields: 

o\f + aidqf + a2f = 0 4=> aqX = AX, 

with 

X J \ 
drdrld 

and A = 
0 1 

-a2 -ai) 

The associated module is (C({z})2, $^). Putting e := ( J ), one has $A(e) = ( "ai1/a2 ) 
and: 

d+r+d+r+d - 1 

«2 
e + 

d+r+d 

d+r+df+r 
<PA{e)=>M~Vq/VqL 

where 

L := a2 + O'qO'l 
o~qa2 

O-q "h 
1 

Ö2' 

L thus being a dual of L := a2 + aicrg + a2 G 
Note that if we started from vector e' := (?), we would compute likewise: 

d+rd+d+rd - 1 

aqa2 
drdkrfkd -ai 

o-qa2 
$A{ef)=^M~Vq/VqL', 

where 

Ù := o\ ~\ 
ai 

aaa2 
o-q + • 

1 

<Jqa2 
another dual of L. However, they give the same Newton polygon, since VQ(ai/aqa2) = 
vo{(Tqai/aqa2) and v0(l/aqa2) = v0(l/a2). 

We now specialize to the equation satisfied by a g-analogue of the Euler series, the 
so-called Tshakaloff^ series: 

(2.1) d+rd+r+dr 

n>0 

n(n-l)/2 zn ̂  

3. We use the Cyrillic letter H ("tsh") to denote it. 
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Then 0 := M satisfies: 

0 = 1 + ZGqÇ ==> L.<p = U, 
where: 

qzL := (o-g - l)(z<7G - 1) = qza1 - (1 + z)crg + 1. 

By our previous definitions, S(L) = {0,1} (both multiplicities equal 1). The second 
computation of a dual above implies that: 

M ~ Vq/VqL, where L := a2 - q(l + z)aq + q2z = (aq - qz)(aq - q), 

whence S(M) — S(L) = {—1,0} (both multiplicities equal 1). 
This computation relies on the obvious vectorialization with matrix A = 

( -i/qz {\+l)/qz )• However, we also have: 

L.f = 0 4=> OnY = BY. with Y = 
d+rdf+r+dfr 

d+rd+r+d and B — 
W 7~l\ 

o l ; 

The fact that matrix A is analytically equivalent to an upper triangular matrix comes 
from the analytic factorization of L; the exponents of z on the diagonal are the slopes: 
this, as we shall see, is a general fact when the slopes are integral. 

2.2.2. Pure modules. — We call pure isoclinic (of slope n) a module M such that 
S(M) = {/i} and pure a direct sum of pure isoclinic modules. We call Fuchsian a pure 
isoclinic module of slope 0. The following description is valid whether K — C((z)) 
or C({z}). 

Lemma 223 

(i) A pure isoclinic module of slope ji over K can be written: 

M ~ Vq/VqP, 

where P — ancr™ + an-\Gq 1 + • • • + a0 G Vq with: a0an ^ 0; Vz G {1, n — 1}, 
vn(ai) > v0(a0) + ui and v0(an) = v0(a0) + un. 

(ii) If fi £ Z, it further admits the following description: 

M = (Kn, <$>Z»A) with A G GLJC). 

Proof. — The first description is immediate from the definitions. The second is 
proved in [21, théorème 6.15]. • 

2.2.2.1. Pure modules with integral slopes. — In particular, any Fuchsian module is 
equivalent to some module (KN,$A) with A G GLn(C). One may moreover require 
that A has all its eigenvalues in the fundamental annulus: 

VA G Sp-A, 1 < |A| < \q\. 

Indeed, one can do this using gauge transforms by shearing matrices, like in [51, 1.1.1]. 
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Last, two Fuchsian modules (Kn, (Kn\ with A G GLn(C), A' G GLn/(C) 
having all their eigenvalues in the fundamental annulus are isomorphic if and only if 
the matrices A, A' are similar (so that n = n'). 

It follows that any pure isoclinic module of slope fi is equivalent to some module 
(Kn, with A G GLn(C), the matrix A having all its eigenvalues in the funda­
mental annulus; and that two such modules (ifn, ^Z^A), {Kn > *&z»A') are isomorphic 
if and only if the matrices A, A' are similar. 

2.2.2.2. Pure modules of arbitrary slopes. — The classification of pure modules of 
arbitrary (not necessarily integral) slopes was obtained by van der Put and Reversât 
in [37]. It is cousin to the classification by Atiyah of vector bundles over an elliptic 
curve, which it allows to recover in a simple and elegant way. Although we shall not 
need it, we briefly recall that result. 

The first step is the classification of irreducible (that is, simple) modules. An 
irreducible g-difference module M is automatically pure isoclinic of slope say \i. We 
write /x = d/r with d, r coprime and may assume that r > 2 (the case r = 1 is already 
known). Let K' := K\zxlr\ — K\z'\ and q' an arbitrary rth root of q. Then M is 
isomorphic to the module obtained by restriction of scalars from some (/-difference 
module M' of rank 1 over K'\ and M' is isomorphic to (K1^czm) for a unique c G C* 
such that 1 < \c\ < \q'\. Actually: 

M ~ £7(r,d,cr) := Vq/Vq(arq - q'-dr{r~1)/2C-rz~d). 

Moreover, for E(r,d,a) and E(rf,d',ar) to be isomorphic, it is necessary (and suffi­
cient) that (rf,d',a') = (r, d, a). 

Then van der Put and Reversât prove that an indecomposable module M (that 
is, M is not a non trivial direct sum) comes from successive extensions of isomorphic 
irreducible modules; indeed, it has the form M ~ E(r,d,a) (8) (Xm,$t/) for some 
indecomposable unipotent constant matrix U. Last, any pure isoclinic module is a 
direct sum of indecomposable modules in an essentially unique way. 

2.2.3. The slope filtration. — Submodules, quotient modules, sums... of pure 
isoclinic modules of a given slope keep the same property. It follows that each module 
M admits a biggest pure submodule M' of slope /i (this means that M' contains all 
submodules of M that are pure of slope \x)\ one then has a priori rk M' < TM(M)-

Like in the case of differential equations, one wants to "break the Newton polygon" 
and find pure submodules of maximal possible rank. In the formal case, the results 
are similar, but in the analytic case, we get a bonus. 

2.2.3.1.. Formal case. — Any (/-difference operator P over C((z)) admits, for 
all fi G 5(P), a factorization P = QR with S(Q) = {//} and S(R) = S(P) \ {//}. 
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As a consequence, writing the biggest pure submodule of slope fi of M, 
one has rk — VM(V) and S(M/M^) = S(M) \ {/i}. Moreover, all modules are 
pure: 

M = 
ueS(M) 

d+sq 

The above splitting is canonical, functorial (preserved by morphisms) and compatible 
with all tensor operations (tensor product, internal Horn, dual). 

2.2.3.2. Analytic case. — Here, from old results due (independently) to Adams and 
to Birkhoff and Guenther, one draws that, if [i := min S(P) is the smallest slope, then 
P admits, a factorization P = QR with S(Q) = {//} and S(R) = S(P) \ {/x}. As a 
consequence, the biggest pure submodule of slope \x of M, call it M', again satisfies 
rk M' = rM(/i), so that S(M/Mf) = S(M) \ {//}. 

Theorem 2.2A 

(i) Each q-difference module M over C({z}) admits a unique filtration with pure 
isoclinic quotients. It is an ascending filtration (M<M) characterized by the fol­
lowing properties: 

S(M<J = S(M)n]-oo,fx] and 5(M/M<M) = S(M) n )fa +oo[. 

(ii) This filtration is strictly functorial, i.e., all morphisms are strict (see explanation 
after the "proof"). 

(iii) Writing M<yb := \}^<ß^<^' and := M<^/M<lJL (which is pure isoclinic 
of slope fi and rank rM (aO), the functor: 

M ^ gr M := 
d+r+dr 

d+r+d 

is exact, C-linear, faithful and ^-compatible. 

Proof — See [54, 3.2, 3.3]. 

Note that assertion (ii) says two things. First, a morphism / : M —» N of 
(/-difference modules automatically respects the canonical filtration, i.e., /(M<M) C 
N<ß for all \i. This implies in particular that / induces morphisms of g-difference 
modules —> , so that M ^ grM is indeed a functor. 

Second, recall from [56, p. II.2] that a morphism / : M —>• N is said to be strict 
with respect to the nitrations (M<M), (iV<M), if /(M<M) = N<^ fi f(M) for all 
equivalently: the two filtrations on f(M) respectively induced by that of N (by re­
striction) and by that of M (through / ) are identical, it is then a classical consequence 
(and a nice exercise in linear algebra) that the functor M ^ grM is indeed exact. 
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2.3. Application to the analytic isoformal classification 
The formal classification of analytic g-difference modules is equivalent to the classi­

fication of pure modules: the formal class of M is equal to the formal class of grM, and 
the latter is essentially the same thing as the analytic class of grM. The classification 
of pure modules has been described in paragraph 2.2.2. 

Let us fix a formal class, that is, a pure module: 

M0 :=Pi 0 - © P f e . 

Here, each Pi is pure isoclinic of slope fa G Q and rank n G N* and we assume 
that fa < • • • < fa. All modules M such that grM ~ Mo have the same Newton 
polygon N(M) — N(MQ). They constitute a formal class and we want to classify 
them analytically. The following definition is inspired by [3]. 

Definition 23.1. — We write J^Mo) or ^ (P i , . . . , Pk) for the set of equivalence classes 
of pairs (M, g) of an analytic g-difference module M and an isomorphism g : gr(M) —>> 
Mo, where (M,g) is said to be equivalent to (M',g') if there exists a morphism 
f : M -> M' such that g = g'' o gr(/). 

Note that / is automatically an isomorphism. The goal of this paper is to describe 
precisely .F(Pi,... , Pfc). This definition obviously admits a purely algebraic gener­
alization, which is related to some interesting problems in homological algebra. In 
the appendix, we shall describe in some detail the necessary formalism and results in 
that direction; this will give us an adequate frame to formulate and prove our first 
structure theorems for the space T(Mo) of isoformal analytic classes (theorems 3.1.4 
and 3.3.5). 

Remark 23.2. — The group rii<i<fc Aut(P^) naturally operates on T(P\,..., Pk) in 
the following way: if (fa) is an element of the group, thus defining 0 G Aut(Mo), then 
send the class of the isomorphism g : gr(M) —y MQ to the class of <fi o g. The quotient 
of J-"(Pi,..., Pk) by this action is the set of analytic classes within the formal class of 
Mo, but it is not naturally made into a space of moduli. An example is given at the 
end of the next paragraph (remark 2.3.8). 

2.3.1. A prototypal example and the ç-Borel transformation. — To give a 
feeling of the situation encountered we introduce at once a prototypal example. To 
begin with, we only assume that K := C({z}) or K := C((z)) without choosing. This 
will allow us to treat both the formal and the analytical situations, and to see clearly 
the difference. 

Let Pi := (K, 4>i) = (K,aq) and P2 := (K,$z) = (K, z~xaq). These pure isoclinic 
modules of respective slopes 0 and 1 correspond to the rank 1 systems aqf = / and 
&qf — zf- The pure module M0 := Pi 0 P2 defines a formal class and we intend to 
compute the set .F(Mo) = J7(Pi,P2) of isoformal analytic classes. We thus consider 
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g-difference modules M endowed with a submodule M\ and two isomorphisms: M\ —) 
Pi and M/Mi ^2- Such a module M has the form Mu = (K2, <Ê>A) for some u £ K 
where: 

A — :— d+r+d 
Vo zj 

(Thus, setting u :— 0 indeed yields Mo.) Note that this description encompasses the 
additional structure provided by the isomorphism gr Mu ~ M0. Equivalence of two 
such objects Mu and Mv is given by an isomorphism described in matricial form as: 

F := 1 / 
Ko î 

d+é+zé+ 
vo ^ 

dr d+r 
dr++d 

(agF)^u = AVF. 

The fact that F has this precise shape (unipotent and upper triangular) corresponds 
to the condition g = g' o gr(/) in the definition of our equivalence relation (defini­
tion 2.3.1). 

The relation (aqF)Au = AVF is in turn equivalent to the first order inhomogeneous 
g-difference equation: 

Z(Tqf - f = V-U. 
So we are actually interested in the cokernel of the mapping \£ : / I—>> zoqf — / from 
K to itself. 

Now, if K — C((z)), this mapping is bijective and admits as inverse the mapping 
w •->• — ^2n>o(zaq)nw (this is well defined in the z-adic topology). Therefore, for all 
u,v G C((z)), the equation zaqf — f = v — u admits a unique solution / in C((z)), 
so that there is a unique class in T(Pi,P2), that of the pure module Mo = Pi 0 P2-

However, if K — C({z}), one proves that \£ is injective (this is obvious) and that 
its cokernel is isomorphic to C. More precisely, for each u G C({z}), there exists a 
unique UQ G C such that the equation zaqf — f = u — UQ admits a solution; and t̂ o 
can be explicitly computed, as we shall now see. 

Definition 233. — The q-Borel transform of f(z) := J2fnZn £ C({^}) is defined as: 

_1)(l + q~d+d fn 
Qn(n-l)/2 d+r 

Remark 23A. — Actually, this is the transformation at level 1; for general properties 
of Bq,i see [39]. Also note the customary use of the new variable £ in the so-called 
Borel plane. 

Clearly, the radius of convergence of / being > 0, that of Bq^f is infinite (under 
our general convention that \q\ > 1). More precisely, the C-linear mapping Bq^ sends 
C({z}) isomorphically to the following subspace of 0(C) 

C(U}ki := : « " ë C ( f â ) u „ ^ - i M / 2 

Here, un -< vn means: un = 0(Anvn) for some A > 0. 
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Introduction of the g-Borel transform is motivated by the following easily checked 
property: 

Z(Tqf ~ f = g Vn, qn fn-i - fn = gn 

> Vn, fn-1 
(n-l)(n-2)/2 

fn 
qn(n-l)/2 

9n 
qn(n-l)/2 

• t t - l )ß , f i / (0=ßg , i f l (0 -

We therefore get a commutative diagram: 

c ( W ) 
l—zaq C({z}) 

B«,i d+rd 

C ( {0k: x(l-î). C(tf})„,i 

The vertical arrows are isomorphisms and the right one sends C C C({z}) onto 
C C C({£})q5i. (The fact that x(l — £) does send C({£})g5i into itself is easily 
checked.) 

Lemma 233. — The image of the lower horizontal arrow is the subspace {(ß G 
C({£}),,i | # 1 ) = 0}. 

Proof. — It is obvious that 0(1) makes sense for any 0 G C({£})qji and so that any 0 
in the image satisfies 0(1) = 0. If 0(1) = 0, it is also clear that iß := € 0(C) 
and we are left to prove that ^ G C({£})9)i. So we write 0 = Yjan£,n, = S&nCN 
so that we have J2 an = 0 and: 

dr+ 
d+r 

Op = -
p>n 

Op. 

Suppose that \an\ < CAn ^-"(""W2 for all n, where C, A > 0. Then: 

|6n| < C 

p>n 

AP I |-P(P-1)/2 < CAn « ,-n(n-l)/2 < 

£>0 

^|^p£(2n+£-l)/2 

<c^nM-n(n-1) /2 , 

where C" := £ / ^ n ^ k|"^~1)/2 < oo. 

Proposition 2.3.6. — One /ias a splitting of C-vector spaces: 

C({z}) = C e I m # . 

Tfte corresponding projection operators are u H-> Z3g5in(l) and « - Sg7ln(l). 

Proof. — It follows from the lemma that the image of the upper horizontal arrow 
in the commutative diagram above is {g G C({z}) | Bq^ig(l) = 0}. The conclusion 
follows easily. • 
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Thus, the only obstruction in solving zcrqf — f — g analytically is Bq^g(l) (we saw 
that solving formally is always possible). Therefore, each u G C({z}) is equivalent to 
a unique UQ G C modulo Im\I>, and UQ = Bq^u(l). 

This implies that the map u H> MU induces a bijection of C with Jr(Pl,P2). 
Moreover, we have representatives in "normal form" ( J uz ) with UQ G C, a particular 
case of the "Birkhoff-Guenther normal form" (subsection 3.3.2). Note that this normal 
form rests on a transcendental computation. 

Example 23.7. — If we take for instance u := 1 and v := 0, we see that the unique 
formal solution of the equation zaqf — / = v — u is the Tshakaloff series defined 
in (2.1), page 14, and considered as a ^-analogue of the Euler series J]n!zn. In the 
same way as the latter is the simplest non trivial object in the analytical classification 
of complex linear differential equations so is the former for (/-difference equations. As 
such, it will follow us, see e.g., example 3.3.2 page 32, example 6.1.1 page 88 and the 
more detailed study in section 7.1 of chapter 7. 

Remark 23.8. — In the notations of remark 2.3.2, it is clear that Aut(Pi) = 
Aut(P2) = C* and it is easy to see that the action of Aut(Pi) x Aut(P2) = C* x C* 
on Jr(Pi,P2) = C is given by (t\,t2).u := (ti/t2)w. Thus one is led to the quotient 
C/C*, which is rather badly behaved: it consists of two points 0,1, the second being 
dense. 

2.3.2. The case of two slopes. — The case k = 1 is of course trivial. The case 
where k — 2 is "linear" or "abelian": the set of classes is naturally a finite dimensional 
vector space over C. We call it "one level case", because the q-Gevrey level /12 — [i\ 
(see the paragraph 1.3.2 of the general notations in the introduction for its definition) 
is the fundamental parameter. This will be illustrated in section 3.4, in chapter 5. 
Let P, P' be pure analytic ^-difference modules with ranks r, r' and slopes ß < //. 

Proposition 23.9. — There is a natural one-to-one correspondence: 

Jr(P,P') ->Ext(P',P). 

Proof. — Here, Ext denotes the space of extension classes in the category of left 
Démodules; the homological interpretation is discussed in the remark below. 

Note that an extension of r>g-modules of finite length has finite length, so that an 
extension of ^-difference modules is a ^-difference module. To give g : grM ~ P 0 P' 
amounts to give an isomorphism M<M ~ P and an isomorphism M/M<M ~ P;, i.e., 
a monomorphism i : P —>> M and an epimorphism p : M —> P' with kernel i(P), i.e., 
an extension of P' by P. Reciprocally, for any such extension, one automatically has 
M<M = i(P), thus an isomorphism g : grM ~ P 0 P'. The condition of equivalence 
of pairs (M,g) is then exactly the condition of equivalence of extensions. • 
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Remark 23,10. — By the classical identification of Ext spaces with Ext1 modules, 
we thus get a description of Jr(P1Pf) as a C-vector space. We shall have use for 
an explicit description of this structure in terms of matrices: this will be given in 
section A.4 of the appendix. 

2.3.3. Matricial description. — We now go for a preliminary matricial descrip­
tion, valid without any restriction on the slopes (number or integrity). Details can 
be found in appendix A. Prom the theorem 2.2.4, we deduce that each analytic 
^-difference module M with S(M) = {fa,... these slopes being indexed in in­
creasing order: fa < • • • < fa and having multiplicities ri,...,rfc G N*, can be 
written M = (C({z})n,$A) with: 

(2.2) A = Au := 

Bi 
_1)(l + q~nz)(l 

n 
n 

0 0 dr+d 
where, for 1 < i < k, Bi G GLn(C({z})) encodes a pure isoclinic module Pi = 
(Kri,<&Bi) of slope [ii and rank Ti and where, for l<i< j<k, Uij G Matn?rj (C({z})). 
Here, 17 stands short for (i7i,j)i<i<J<fc G rii<i<j<fc Matri>rj.(C({z})). Call Mv = M 
the module thus defined: it is implicitly endowed with an isomorphism from gvMjj to 
M0 := Pi0- • -0-Pfc, here identified with (ifn, $A0)- Kmoreover the slopes are integral: 
S(M) C Z, then one may take, for 1 < i < k, Bi = z^1 Ai, where Ai G GLr.(C). 

Now, a morphism from MU to MY compatible with the graduation (as in defini­
tion 2.3.1) is a matrix: 

(2-3) 
F := 

0r 
F 

0 
0 

0 0 dr 

with (Fij)i<i<:j<k G 
\<i<j<k 

Matr, r,(C({z})) 

such that (aqF)Au = BuF. The corresponding relations for the Fij, Uij,Vij will be 
detailed in subsection 3.3.2. Here, we just note that the above form of F characterizes 
a unipotent algebraic subgroup (5 of GLn, which is completely determined by the 
Newton polygon of MQ. The condition of equivalence of Mu and My reads: 

Mu ~ My <=> 3F G <5(C({z})) : F[AV] = Av. 
The set of classes T(Pi,..., Pk) may therefore be identified with the quotient 
of ni<i<j<fc Matr.jrj;(C({z})) by that equivalence relation, i.e., by the action 
fdlsldflldkdk 
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For a more formal description, we introduce the block-diagonal part of A, i.e., the 
matrix AQ corresponding to the pure module MQ: 

(2.4) A0 := 

'Ai 
0 

0 
0 

0 0 dr 
along with the following set: 

®A°(C((z))) := {F G &(C((z))) I F[Ao] G GLn(C({^}))} 

If F G ©Ao(C((^))) and F G 0(C({z})), then (FF)[A)] = F[F[Ao]] G GLn(C({z})), 
so that F F G ©"4o(C((2;))): therefore, the group <8(C({z})) operates on the set 
6*>(C((z))). 

Proposition 2.3.11. — T/ie map F H» F[A0] induces a one-to-one correspondence: 
®A°(C((Z)))/<Ô(C({Z})) -4 J-(P!, . . . , Pfe). 

Proof. — Prom the formal case in 2.2.3, it follows that there exists a unique F G 
0(C((*))), for any U G Ef i^x / c Matri>rj,(C({z})), such that F[,40] - Au. The 
equivalence of F[A0] with F'[A0] is then just the relation F'F'1 G 0(C({z})). • 

Remark 23.12. — Write Fu for the F in the above proof. More generally, for any 
U,V e YiKiKjKk^-^ri^jiCdz})) there exists a unique F G <5(C((z))) such that 
F[̂ 4jy] = Ay; write it Fc/,v- Then Fuy — FyF^1 and the condition of equivalence 
of Mt/ and My reads: 

Mu~My <=> Fuy G 0(C({z})). 
Giving analyticity conditions for a formal object strongly hints towards a resummation 
problem! (See chapters 4 and 5.) 
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C H A P T E R 3 

T H E A F F I N E S P A C E OF I S O F O R M A L 
A N A L Y T I C CLASSES 

3.1. Isoformal analytic classes of analytic ^-difference modules 

We shall now specialize the results of the appendix A, in particular its section A.7, 
to the case of ^-difference modules ^ \ 

3.1.1. Extension classes of analytic ^-difference modules. — From here on, 
we consider only analytic ^-difference modules and the base field is C({z}) (except 
for brief indications about the formal case). 

Theorem 3.1.1. — Let M, N be pure modules of ranks r, s G N* and slopes fi < v G Q. 
Then dimc T[M, N) = rs(u - p). 

Proof — Since T{M, N) ~ Ext^TV, M) ~ rx(iVv <g>M) (proposition 2.1.3) and since 
iVv (g) M is pure isoclinic of rank rs and slope p — v < 0, the theorem is an immediate 
consequence of the following lemma. • 

Lemma 3.1.2. — Let M be a pure module of ranks r and slope \i < 0. Then 
dimcT^M) = -rfi. 

Proof — We give four different proofs, of which two require that \i G Z. 
1) Write d := -rfi G N*. If M = Vq/VqP, the module Mv is pure of rank r and 

slope —/i, and can be written as Vq/VqPy for some dual Pv = do + • • • + araq of 
P, such that vo(ao) — 0, Vo(ar) = d and vo(a,i) > id/r for all i (lemma 2.2.3). We 
want to apply proposition 2.5 of [8], but the latter assumes \q\ < 1, so we consider 
L := Pwo~qr = bo + • • • + brar, where a := cr"1 and bi := ar-i. After [8], the 
operator L : C{z} —)> C{z} has index d. More generally, for all m G N*, the operator 
L : z-mC{z} -> z~mC{z} is conjugate to z^Lz'771 = J^Q^i^ : C{z} -> C{z}, 
which also has index d. Hence L : C({z}) —> C({z}) has index d, and so has Pv. 

1. Reading the appendix is not a prerequisite to reading that chapter, except for some particular 
explicit references. 
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After corollary A.7.5, this index is dimcT^M) - dimcr(M). But, M being pure 
isoclinic of non null slope, T(M) = 0, which ends the first proof. 

2) In the following proof, we assume /i G Z. Prom theorem 1.2.3 of [51], we know 
that we may choose the dual operator such that: 

Pv = (z~flaq — c\)u\ • • • (z~^o~q — cr)ur, 

where ci, . . . ,cr G C* and ui,...,ur G C{z}, ui(0) — ••• = ur(0) = 1. We are 
thus left to prove that each z~ßo~q — c\ has index the indexes add up and the 
sum will be — r/i = d. Since the kernels are trivial, we must compute the cokernel of 
an operator zmcrg — c, m G N*. But it follows from lemma 3.1.3 that the image of 
zm<7q - c : C({z}) -» C({z}) admits the supplementary space C 0 • • • 0 Cz™'1. 

3) In the following proof, we assume again /i G Z. After lemma 2.2.3, we can write 
M = (C({z})rA G GLr(C). After corollary A.7.3, we must consider the 
cokernel of C{{z})r *ztt^ld C({z})r. But, after lemma 3.1.3, the image of - Id 
admits the supplementary space (C 0 • • • 0 Cz~ß~1)r. 

4) A similar proof, but for arbitrary can be deduced from [37]. It follows indeed 
from this paper that each isoclinic module of slope \i can be obtained by successive 
extensions of modules admitting a dual of the form Vq/Vq(zao~hq — c), where bja — —\i 
and CGC*. • 

Lemma 3.1.3. — Let d,r G N* and A G GLr(C). Let D c Z be any set of represen­
tatives modulo d, for instance {a, a + 1,. . . , a + d — 1} for some a G Z. Then, the 
image of the C-linear map F:IH> zdAaqX — X from C({z})r to itself admits as a 
supplementary (^2ieDCzl)r. 

Proof — For all i G Z, write Kt := ^C(j>d}), so that C({z}) = ®ieDKi. Each 
of the K\ is stable under F. We write w := zd, L := C({w}), p := qd and define 
a on L by o~f(w) = f(pw). Multiplication by z% sends Lr to K\ and conjugates the 
restriction of F to K\ to the mapping Gi : Y »-» wqlAaY — Y from Lr to itself. We 
are left to check that the image of Gi admits Cr as a supplementary. But this is just 
the case d = 1, D = {0} of the lemma. So we tackle this case under these assumptions 
with the notations of the lemma. 

So write FA : X ^ zAoqX - X from C({z})r to itself. Also write X = ^Xnzn 
and Y — FA(X) = ^Ynzn (all sums here have at most a finite number of negative 
indices), so that Yn = qn~lAXn.x - Xn. Putting X := J2A~nXnZn and Y := 
^ A-nYnzn, from the relation A~nYn = q71'1 A'^-^XN^ - A~nXn, we draw Y = 
zcfqX — X. Of course, X v-ï X is an automorphism of C({z})r and we just saw that 
it conjugates FA to the map F : X \-> zaqX — X from C({z})r to itself. Moreover, 
the same automorphism leaves invariant the subspace Cr C C({z})r, so the question 
boils down to prove that the image of F has supplementary Cr. And this, in turn, 
splits into r times the same problem for r = 1. 
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So we are left with the case of the map \P : / i->> zoqf — f from C({z}) to itself, 
which is the very heart of the theory! (See for instance example 3.3.2 page 32 and 
section 7.1 of chapter 7.) This case has been studied in detail in paragraph 2.3.1. We 
saw there that ^ is injective and that its image is in direct sum with C C C({z}). 
More precisely, for any u G C({z}), the unique uo e C such that u — uo G Im^ is 
uo :— Bq,i ̂ (1) (the g-Borel transform Bq^u was defined in paragraph 2.3.1). This 
achieves the proof. • 

Note that from the proof, one draws explicit projection maps from C({z})r to the 
image of FA and its supplementary Cr: these are the maps Y \-ï Y — Bq^Y(A~1) and 
y ^ ß ^ " 1 ) , where: 

Bg^YiA'1) := ^2q-n{n-1)/2A-nYn. 

3.1.2. The affine scheme J-*(Pi,..., Pfc). — Now let P i , . . . , Pk be pure isoclinic 
^-difference modules over C({z}), of ranks r i , . . . , r& G N* and slopes p\ < • • • < /x̂ -
Prom section A.6 of the appendix A, we have a functor from commutative C-algebras 
to sets: 

C F(C) :=T(C®cPu...,C 0 c ft). 

Here, the base change C®c — means that we extend the scalars of g-difference modules 
from C({4) to C®c C({*}). 

Theorem 3.1.4. — The functor F is representable and the corresponding affine scheme 
is an affine space over C with dimension: 

dimJr(Pi,...,Pfc) = y ^ _ . r^-O/j - pi). 

Proof — We apply theorem A.6.1. We need two check the assumptions: 

Vi, j , s.t. 1 < i < j < k, Hom(Pj,Pi) = 0 and dime Ext(Pj, Pi) = urj(pj — pi). 

The first fact comes from theorem 2.2.4 and the second fact from theorem 3.1.1; the 
fact that the extension modules are free is here obvious since C is a field. • 

Remark 3.1.5. — The use of base changes C 0 c C({z}) is too restrictive to consider 
this as a true space of moduli, as was done for differential equations in [3, chap. Ill]: 
we would like to consider families of modules the coefficients of which are arbitrary 
analytic functions of some parameter. This will be done in [50]. 

Now, to get coordinates on our affine scheme, we just have to find bases of the 
extension modules Ext(Pj,Pi) for 1 < i < j < k: this follows indeed from corol­
lary A.6.5. An example will be given by corollary 3.3.7. 
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3.2. Index theorems and irregularity 

We shall now give some complements to the results in 3.1.1, in the form of index 
theorems. They mostly originate in the works [8] of Bézivin^2^ and also in [39]: the 
difference here is merely the adaptation to our formalism. Although not strictly nec­
essary for what follows, these results allow for an interpretation of dim J7 (Pi,..., Pk) 
(theorem 3.1.4) in terms of "irregularity", as in the paper [31] of Malgrange. 

In most of this section, we write if for (indifferently) C((z)) or C({z}) and re­
spectively speak of the formal or convergent case. We intend to compute the index 
of an analytic g-difference operator P G Vq acting upon G((z)) and C({z}) (and, in 
the end, upon C((z))/C({z})). To begin with, we do not assume P to have analytic 
coefficients. 

3.2.1. Kernel and cokernel of o~q — u. — We start with the case degP = 1. Up 
to an invertible factor in Vq, we may assume that P = o~q — u, where u = dqkzuv, 
v G if, v(0) = 1, with k G Z and d G C* such that 1 < \d\ < \q\. We consider P as a 
C-linear operator on if. 

Fad. — The dimensions over C of the kernel and cokernel of P depend only of the 
class of u G if* modulo the subgroup { \ w G if*} of K*. This class is equal to 
that of a dzv. 

Proof. — Conjugating the C-linear endomorphism oq — u of if by w G if* (under­
stood as the automorphism xw), one finds: 

w o (aQ — u) o w 1 = w 
aq(w) o (aa — v!), with ur = u aa{w) 

w 
whence the first statement. Then, qkv = ? where w = zk Yii>i aq %iv) ^ K (also 
well defined in the convergent case), whence the second statement. 

So we now set u :— dzv'. 

Fact. — The kernel of aq — u : if —» if has dimension 1 if (v,d) = (0,1)7 and 0 
otherwise. 

Proof — The series / = ^2fnzn belongs to the kernel if, and only if Vn , qnfn = 
dfn-v. Since we deal with Laurent series having poles, this implies / = 0 except 
maybe if v — 0. In the latter case, it implies / = 0, except maybe if d G qz. Prom 
the condition on this is only possible if d = 1, thus u= 1. In that case, the kernel 
is plainly C. • 

Fact. — The map o~q — u : if -> if is onto if v > 0 and also if v = 0, d ^ 1. 

2. The index computations in [8] are more general in two directions: they apply to "difference" 
automorphisms that are more general that z qz\ and the equations are not linear. 
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Proof. — Let g G K. We look for / solving the equation crqf — dzv f — g in K. This 
is equivalent to: Vn , qnfn - dfn-v = gn, that is, Vn , fn = q~n(dfn-u + gn). If z/ > 1, 
one computes the coefficients by induction from the v first among them. Moreover, 
in the convergent case, inspection of the denominators show that / converges if g 
does; and then, the functional equation ensures meromorphy. If v — 0 and d ^ 1 (so 
that d £ qz), one gets rightaway fn = qln_d> Convergence (resp. meromorphy) is then 
immediate in the convergent case. (When v > 1, one can also consider the fixpoint 
equation F(f) = f, where F(f) := crq~1(g + dzuf): it is easy to see that this is a 
contracting operator as well for the formal topology, i.e., for z-adic convergence, as 
for the transcendent topology, i.e., for usual convergence.) • 

Fact. — // {y, d) = (0,1), the cokernel of crq — u : K —>> K has dimension 1. 

Proof. — One checks that aq — u vanishes on C and induces an automorphism of the 
subspace K* of K made up of series without constant term. • 

Fact. — Assume v < 0. Then aq — u : K -» K is onto in the formal case. 

Proof. — Put F'{f) — d~lz~v(crq(f)—g). Since v > 0, this is a z-adically contracting 
operator, whence the existence (and unicity) of a fixed point. • 

Remark 32.1. — This is the first place where the formal and convergent cases differ. 
The operator is (rather strongly) expanding for the transcendent topology, it pro­
duces Stokes phenomena! So this is where we need an argument from analysis in the 
convergent case. 

Fact. — Assume v = —r,r G N*. Then, in the convergent case, the cokernel of 
aq — u : K —» K has dimension r. 

Proof — This is a consequence of lemma 3.1.2 (and therefore relies on the use of the 
g-Borel transformation). • 

We now summarize our results: 

Proposition3.2.2. — Letu = dz"v, v e K, v(0) = 1, with d G C*. Write d the class 
of d modulo qz. The following table shows the ranks of the kernel and cokernel, as 
well as the index x(P) := dimKerP — dimCokerP of the C-linear operator P := 
aq - u : K -> K: 

d+rd+ Kernel Cokernel Index 
(0,1) 1 1 0 

(0,^1) 0 0 0 
( > o , - ) 0 0 0 

(< o,-) 0 
JO (formal case) JO (formal case) 

(< o,-) 
d+r+d \—v (convergent case) (convergent case) 
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3.2.2. The index in the general case. — Generally speaking, there is no simple 
formula for the dimensions of the kernel and cokernel of a (/-difference operator P. 
However, if P has integral slopes (3), we can factor it into operators of degree 1, and 
then use proposition 3.2.2 and linear algebra to deduce: 

1. The C-linear map P : f i-> P.f from K to itself has an index, that is finite 
dimensional kernel and cokernel. 

2. The index of P, that is the integer x(P) := dimKerP — dim Coker P is the sum 
of indices of factors of P. 

Note that x(P) is the Euler-Poincaré characteristic of the complex of solutions 
of P. 

Corollary 323. — Let P be an operator of order n and pure of slope 
(i) In the formal case, dimKerP = dim Coker P = 0. 

(ii) In the convergent case dimKerP = 0 and dim Coker P = nmax(0,/i). 

Proof. — If fi G Z, all the factors of P have the form (zßaq — c).u. If [i ^ 0, they are 
all bijective in the formal case, whence the first statement. They are also all injective 
in the convergent case, and onto if fi < 0, whence the second statement in this case. 
If [i > 0, they all have index \i (in the convergent case), whence the second statement 
in this case by additivity of the index. 

The case of an arbitrary slope is easily reduced to this case by ramification. • 

By similar arguments: 

Corollary 32A. — Let P be an operator pure of slope 0. Then, the index of P (in the 
formal or convergent case) is 0. 

Now, using the additivity of the index: 

Corollary 323. — The index of an arbitrary operator P is 0 in the formal case and 
— ]C/z>o rp(lJj)ljL in convergent case. 

Corollary 3.2.6. — Let P EVq be an analytic q-difference operator. The index of P 
acting as a C-linear endomorphism of C((z))/C({z}) is equal to Yl^>orp(ljL)lJ" 

Of course, rp denotes here the Newton function of P introduced in subsection 2.2.1. 

3.2.3. Irregularity and the dimension of F{P\,..., Pk)> — The following defi­
nition is inspired by that of [31]. 

3. This assumption will be dropped in the four next corollaries. 
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Definition 32.7. — The irregularity of a ^-difference operator P, resp. of ^-difference 
module M, is defined by the formulas: 

Irr(P) := 
'/x>C 

rP(/i)/x, Irr(M):= rM(»)fa 

Graphically, this is the height of the right part of the Newton polygon, from the 
bottom to the upper right end. It is clearly a formal invariant. Prom its interpretation 
as an index in C((z))/C({z}), the irregularity of operators is additive with respect to 
the product. Prom theorem 2.2.1, the irregularity of modules is additive with respect 
to exact sequences. Moreover, with the notations of 2.2.4, writing 

M>0 := M/M<0 

the "positive part" of M, one has: 

Irr(M) = Irr(M>0). 

Write M0 := Pi 0 • • • © Pfc. Then the "internal End" E := End(M0) = M0V <8> M0 
of this module (subsection 2.1.1) has as Newton function: 

d+re+d+r 
>+<<+qq 

é+éd 

(This follows from theorem 2.2.1.) Prom theorem 3.1.4 and definition 3.2.7, we there­
fore get the equality: 

dim JYPi Pfc) - Irr (End(Mn)). 

In subsection 6.3.2, we shall give a sheaf theoretical interpretation of this formula. 

3.3. Explicit description of ^ (P i , . . . , Pfc) in the case of integral slopes 

FROM NOW ON, WE ASSUME THAT THE SLOPES ARE INTEGRAL: fa, . . . , fa G Z. 

It is then possible to make the results of sections 3.1 and 3.2 more algorith­
mic by using the matricial description of paragraph 2.3.3. Indeed, as explained in 
paragraph 1.1.3.1, our construction of normal forms and of explicit Stokes operators 
depends on the normal form (3.2) given herebelow for pure modules. 

For i = 1,. . . , fc, we thus write P* = (C({z})r\$z»iAi), with Ai G GLr. (C). Then, 
putting n := r\ H h r/~, we have M0 := Pi 0 • • • 0 Pk — (Kn, $A0), with A0 as in 
equation (2.4) page 23 from paragraph 2.3.3: 

(3.1) Aq := 

> M i 
0 

0 
0 

0 0 zßkAk/ 
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Any class in T(P±,..., Pk) can be represented by a module Mu := (Kn, $>Au ) for some 
U := (^i,j)i<z<j<fc G Ili<t<j<feMatri,rJ-(C({^})), with, Au as in equation (2.2): 

(3.2) Au := 

d+rd+rd 
d+r+d 

0 
0 

0 0 d+r+d+r 

and Mu, My represent the same class if, and only if, the equation (o~qF)Ay = Au F 
can be solved with F G 0(C({z})). Such an F is then unique. 

3.3.1. Analytic classification with 2 integral slopes. — Prom the results 
of 3.1.1, we get the following result for the case of two slopes. Here, and after, we 
write, for ji < v G Z: 

d+r+dr+ 
V — fj,— 1 

i=0 

Czl or, at will: Ku v := 
d+r+d 

i=/j, 
d+r+d 

(The second choice is motivated by good tensor properties, see for instance [42].) 
Then, for r, s G N*, we denote Mat7.jS(ÜT/Xjl/) the space of r x 5 matrices with coefficients 
in K^v. 

Proposition 3.3.1. — Le£ U G Matri5r2(C({z})). T/ien, £/iere exists a unique pair: 

Red(FJLljAUFJL2,A2,U) := (Fi,2,^) G Matri,r2(C({z})) x Matrifr2(ürMl,M2) 

d+ed+f+d+e 
KF I ,2 )^m2 - ^̂ d+r+d+r̂ ,2 = t/ - y, 

that is: 
dr+d++r+d 

0 In 
z^Ax 

0 

dr+ 

dr++drd I -
d+r+d 

o 
Ï7 

d+r+d+r 

Proof. — Using the reductions of lemma 3.1.2, this is just a rephrasing of lemma 3.1.3. 

We consider V as a polynomial normal form for the class of Mu and F\^ as the 
corresponding reduction datum. Of course, they depend on the choice of the space of 
coefficients ifmjM2. 

Example 3.3.2. — This is the archetypal example (and strongly related to the proto­
typal example of subsection 2.3.1), from which much of the theory is built. Fix c G C*. 
For any f,u,v G C({z}), the isomorphism: : (ocz) — (ocz) *s equivalent to 
the inhomogeneous g-difference equation: czaqf — f = u — v. Writing / = X^/n2^ 
etc., we find the conditions: 

cq fn-i - fn = un - vn * 
fn-l 

cn-l q(n-l)(n-2)/2 
fn 

çnqn(n—l)/2 
d+r+dr+d+ 
çriqn(n—l)/2 1 
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which admit an analytic solution / if, and only if, Bq,\u(c~1) = Bq^v{c~l) (recall 
that the g-Borel transform Bq,\ was defined in definition 2.3.3 page 19). The analytic 
class of the module with matrix ( J ^ ) within the formal class ( J c° ) is therefore 
Bq,\u(c~l) G C. Writing fu the unique solution in C({z}) of the equation czaqf — f — 
u — ß^ii^c-1), we have Red(0,1,1, c, u) = (fu, ß^ii^c-1)). 

Note that equation czaqf — f = u always admits a unique formal solution fu. 
For instance, for u G C, we find that fu = —u^cz), where H is the Tshakaloff 
series defined by (2.1) page 14. We infer that, for a general u G C({z}), one has 
fu = fu-BqMc-1)xi(cz). 

Example 333 (A direct computation). — In proposition 3.3.1, we meet the equation 
(o~qFi^2)zfJ'2A2 — z^xA\F\^ — U — V. Here is an explicit resolution that does not go 
through all the reductions of 3.1.1. We write X = ]T Xnzn for F\^ and Y — J2 Ynzn 
for U — V. We have: 

(aqX)z^A2 - z^AxX = Y Vn, qn-^Xn.^A2 - AxXn.^ = Yn 
• Vn, qn-dXn.dA2 - AxXn = yn+M1, 

- Vn, qn-dA-lXn„dA2 -Xn = Zn := A^Yn+lil, 
where we denote d \— ß2 — \i\ G N* the level of the above inhomogeneous equation. 
(The second equivalence is obtained by a mere translation of indices.) It follows 
from [8,39] that, for any analytic Y, this has a formal solution of g-Gevrey level d 
(this was defined in paragraph 1.3.2 of the general notations, in the introduction); it 
also follows from [8,39] that, if there is a solution of g-Gevrey level d! > d (which is 
a stronger condition), then, there is an analytic solution. To solve our equation, we 
introduce a g-Borel transform of level d. This depends on an arbitrary family (tn)nez 
in C*, subject to the condition: 

Vn, tn = qn-dtn-d. 
For d = 1, the natural choice is tn := gn(n-1)/2. In general, such a family can be 
built from Jacobi theta functions as in [42]. At any rate, tn has the order of growth 
of qn l2d'. The a-Borel transform is then defined by: 

d+r UZ" v d+re 
r+d+r+d 

We must also choose dth roots B\,B2 of A\,A2. Then, writing Bq^X — ^Xnzn, 
etc., we find the relations: 

Vn, B1 dXn-dBd — Xn — Zn Vn, B™ dXn^dB2 n — BiXnB2 n — BiZnB2 n. 

Thus, a necessary condition for the existence of an analytic solution X is that, for all 
i in a set of representatives modulo d, one has: 

n=i (mod d) 
B?ZnB^n = 0. 
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This provides us with d obstructions in Matn?r2(C) and it is not hard to prove, 
along the same lines as what has been done, that these form a complete set 
of invariants. More precisely, the map which sends U to the d-uple of ma­
trices J2n=i (mod d) t~;Bi~dUn+^B2n yields an isomorphism of J7(Pi,P2) with 
Matri?r2(C)d. Different choices of the family (tn) and the matrices PI,jB2 induce 
different isomorphisms. 

3.3.2. The Birkhoff-Guenther normal form. — Going from two slopes to gen­
eral case rests on the following remark. The functor M M' := M<jJik_1 induces an 
onto mapping F(P\,..., Pk) —» F (Pi, • • •, P/c-i). The inverse image in F (Pi,..., Pk) 
of the class of M' in F (Pi,..., Pk-i) is in natural one-to-one correspondence with the 
space Ext1(P/c, M'). The latter is a C-vector space of dimension J2i<j<k rjrk(ßk—ßj)-
This follows from the slope filtration 0 = Mo C • • • C Mk-i = M' and the resulting 
exact sequences, for 1 < j < k: 

0 Mj-i -> Mj -> Pj -» 0 => 

0 Ext^Pfc^.- i ) -+ Ext^P^M,) -> ExtVP^ft) -> 0. 

(Recall that Hom(P^,Pj) = 0.) Actually, there is a non canonical C-linear isomor­
phism Ext1 (ft,M7) ~ © ^ ^ E x t ^ P ^ P , ) . 0ne can go further using the matricial 
description of paragraph 2.3.3. We keep the notations recalled at the beginning of 
subsection 3.3.1 and moreover denote MJJ the class in F (Pi,..., Pk) of the module 
Mu := (Kn,$Au) for U := ( E ^ i ^ x * € IIi<i<;<fc Mat^(C({s»). 

Proposition 33A. — TAe map [/ ^ M(/ /rora Ili<t<i<FC ^ W j - C ^ M , - ) *° 
F(Pi,..., Pfc) zs one-to-one. 

Proof. — We already now that the map is onto and the conclusion will follow from 
the following fact: for all U G ni<i<j<fe Matri,rj(C({z})), there exists a unique pair 
(P, V) e <5(C({z})) x ni<i<i<feMatr^ri(lfMifMj.) such that P[Ay] = A^. Writing P 
as in equation (2.3) and V — (Vij), this is equivalent to the following system: 

V ( i , j ) , l < i < j<k, Vitj + 
+e+e 

£=i+l 
{<TqFi1i)Vilj + (vqFiJ)(z*Aj) = 

(z^Ai)Fu + 
d+rdd 

d+rd+d 
{<TqFi1i)Vidr 

It is understood that an empty sum vanishes: if (te) is any sequence, Yle=i+i U = 0 
when j = i + 1. Then, [/ being given, the system is (uniquely) solved by induction 
on j — i by the following formulas: 

{Fijidr+d :~ Red/̂ i 5 Ai, ^/-j, , Uij + 
rdd 

d+r+d 
UifFpj -

3-1 

d+rd+ 
[o~qFi^)V£j 

ASTÉRISQUE 355 



3.3. EXPLICIT DESCRIPTION OF T{Pi,..., Pk) IN THE CASE OF INTEGRAL SLOPES 35 

The following is a particular case of theorem 3.1.4, page 27 (itself a particular case 
of corollary A.6.5, page 133): the only novelty being that, in the case of integral 
slopes, we obtain an explicit coordinate system. 

Theorem 3.3.5 
The set T(Pi,..., Pk) is an affine space of dimension ^2i<i<j<^ W^jißj — fa). 

Proof. — This is an immediate consequence of the proposition. • 

Note that this is the area contained in the lower finite part of the Newton polygon. 
This result is the natural continuation of a normalization process found by Birkhoff 
and Guenther in [11]. 

Definition 3.3.6 
A matrix Au such that U := (Uij)i<i<j<k G rii<i<j</c Matr<jrjXKßi,H ) wnl De 

said to be in Birkhoff-Guenther normal form. 

Now, using the argument that follows theorem 3.1.4, we draw from corollary A.6.5: 

Corollary 33 J. — The components of the matrices {Uij)i<i<j<k make up a complete 
system of coordinates on the space .F(Pi,..., Pk)-

A generalization of Birkhoff-Guenther normal form to the case of arbitrary slopes 
has recently been obtained by Virginie Bugeaud [15]. 

3.3.3. Computational consequences of the Birkhoff-Guenther normal form 
Let A0 be as in (3.1) and Au = A as in (3.2). Looking for F G <8(C((z))) such 

that F[AQ] = A amounts, with notation (2.3), to solving the system: 

A ( i , j ) l < i < j < k , (aqFij)(z^ Aj) = (z^A^Fij -\ 
d+r 

£=2+1 

UijFij + Uij. 

This is triangular in the sense that the equation in Fij depends on previously found 
Fej with £> i. 

Assume that A is in Birkhoff-Guenther normal form (definition 3.3.6). Then we 
can write Uij = z^U^j, where U^j has coefficients in C[z]. The previous equation 
becomes: 

(vqFifj)(z*-'«Aj) = AiFitj + 
3-1 

£=i+l 
UljFtj + Ulj. 

Assume by induction that all Ftj have coefficients in C^J. Then one may write the 
above equation as: 

F,, =U" + zsA71((TaFi.i)A<, 

where U" has coefficients in C\z\ and 6 G N*. This is a fixpoint equation for an 
operator that is contracting in the z-adic topology of Clz} and so it admits a unique 
formal solution. Therefore we find a unique F G Ö(C[[z]]) such that F[A0] = A. 
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A noteworthy consequence is that the inclusions C{z} C C({z}) and CJz] C 
C((z)) induce a natural identification: 

ö^°(CH)/©(C{z}) ~ <5*>(C((z)))/0(C({*})), 

and, as a corollary, a bijection: 

<SA°(Clz])/®(C{z}) -»• 7-(Pi,.. -, Pk). 

3.4. Interpolation by ç-Gevrey classes 

We shall now extend the previous results to g-Gevrey classification. We use here 
notations from paragraph 1.3.2 of the general notations in the introduction. 

3.4.1. ç-Gevrey extension spaces 
3.4.1.1. q-Gevrey extensions for arbitrary slopes. — If one replaces the field 
C({z}) by the field C((z)) of g-Gevrey series of level s > 0 and Vq by 
Vq,s := C((z))g;s(T,T-1), one gets the abelian category DiffMod(C((z))q.s,aq) 
and the following extension of the results of 3.1.1. 

Proposition 3.4.1. — Let M, N be pure modules of ranks r, s G N* and slopes fi < v G 
Q in DiffMod(C((z))q.s,aq). Then one has: 

dime Ext (M, N) = 
0 if v — n> 1/s, 
rs{v — /i) if v — /i < 1/s. 

Proof — This follows indeed, by the same arguments as before, from propositions 3.2 
and 3.3 of [8]. • 

This remains true in the extreme case that s = oo, since, over the field C((z)), the 
slope filtration splits and Ext1 (M,N) = 0; and also in the extreme case that 5 = 0, 
by theorem 3.1.1. Therefore, the above proposition is an interpolation between the 
analytic and formal settings. 

3.4-1-2. q-Gevrey extensions for integral slopes. — Here, we extend the results 
of 3.3.1. If one replaces C({z}) by C((z)), one gets V = 0 in all relations 
(F, V) = Red(fjLi,Ai,/i2, A2, U) and the corresponding space of classes has dimension 
0. The previous algorithm then produces F = Fu and the "formal normal form" 
Ao of A. If one replaces C({z}) by C((z))q.s, one gets V — 0 and a matrix F of 
g-Gevrey level \i2 — [i\ if ß2 — > 1/s, and the same i?ed(/xi, A\, /J,2, A2, U) as before 
otherwise. 
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3.4.2. Isoformal q-Gevrey classification 
3.4-2.1. q-Gevrey classification for arbitrary slopes. — One can state the moduli 
problem for q-Gevrey classification at order s, that is, over the field G((z))q.s of 
q-Gevrey series of order s > 0 (see subsection 3.4.1). From proposition 3.4.1, one 
gets, by the same argument as before: 

Proposition 342 
Over C((z))q.s, the functor F is representable and the corresponding affine scheme 

is an affine space over C with dimension ̂ 2 I<*<J<fc rirj(f1j ~ ßi)-

This remains true for s = oo (formal setting, the space of moduli is a point) and 
for s = 0 (analytic setting, this is theorem 3.1.4). 

3.4-2.2. q-Gevrey classification for integral slopes. — We fix s > 0 and write for 
short g-Gevrey for g-Gevrey of order s. Every matrix is g-Gevrey equivalent to a 
matrix Au such that Uij = 0 for fa — fa > 1/s. The slopes being assumed to be 
integral, there is moreover a unique normal form with Uij = 0 for fa — fa > 1/s and 
Uij G Matri,rj(KMi5/ij) for fa - fa < 1/s. 

3.4.3. Another kind of g-Gevrey interpolation. — A somewhat symmetric 
problem is to describe the space of analytic classes within a fixed 
q-Gevrey class. This can be done in a similar way. We fix a matrix Au0 where 

e YliKi^Kk^^ri.TJIK^^) is such that Uij = 0 for fa - fa > 1/s 
(any g-Gevrey class contains such a matrix). This characterizes a well defined 
q-Gevrey class and the space of analytic classes within this q- Gevrey class is 
an affine space of dimension ^i^j>i/srirj(lJL3 ~ A*»)- ^ ^ne sl°Pes are integral, 
one can assume that UQ is in normal form, i.e., each component Uij such 
that fa — fa < 1/s belongs to Matr.)rj.(üfMij/Xi). Then each analytic class ad­
mits a unique normal form Au where U is in normal form and its components such 
that jij — fa < 1/s are the same as those of UQ> 
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C H A P T E R 4 

T H E ç-AN A L O G S OF B I R K H O F F - M A L G R A N G E - S I B U Y A 
T H E O R E M S 

4.1. Asymptotics 

We shall need a ^-analogue of asymptotics in the sense of Poincaré. In chapter 5 
we shall develop a more restrictive notion of asymptotics. 

The underlying idea, coming from the thesis [34] of Jose-Luis Martins, is that 
an asymptotic theory is related to a dynamical system. In the "classical" case of 
Poincaré asymptotics for ordinary differential equations, say locally at 0 in C*, the 
dynamical system is given by the action of the semi-group E := e]-°°,o[. -n QUr 
case, the semi-group is plainly E := #-N (in the case of difference equations there 
are two semi-groups: E := N and E := — N; this was used by J. Roques in [48]). 
Likewise, the sheaves of functions admitting an asymptotic expansion will be defined 
on the horizon, that is on the quotient space C*/E. In the classical case, this is 
the circle S1 of directions (rays from 0) in C*; in our case, this is the elliptic curve 
Eg = C*/gz = C*/g-N (in the difference case this is a pair of cylinders). 

4.1.1. q-Asymptotics. — Recall from the introduction that we denote p : C* —> 
E9 the quotient map. We set 

E := ö"n and, for i c C , E(i) := 
aeA 

{<TqFi1i) 

Let U be an open set of C invariant by the semi-group E := q~N, that is, q~lU CU 
(we shall also call it "stable"). We shall say that a E-invariant subset K of U is a 
stable strict subset if there exists a compact subset K' of U such that K — T,(Kf); 
then K U {0} is compact in C. If an invariant subset K C U is strict, then p(K) is a 
compact subset of Eg. 

Let / be a function holomorphic on the E-invariant open subset U of C* and 
let / = En>o a«^n ^ We shall say that / is q-asymptotic to / on U if, for 
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all n G N and every E-invariant strict subset K C U: 

z-n(f(z)-Sn^f(z)) 

is bounded on K. Here, Sn-if := J2pZo apzP stands for "truncation to n terms" of 
/ . If / admits a q-asymptotic expansion it is plainly unique. In the following we will 
say for simplicity "asymptotic expansion" for "ç-asymptotic expansion". For n G N 
we shall denote /(n)(0) := n\ an. 

We denote: 
- srf(U) the space of holomorphic functions admitting a q-asymptotic expansion 

on 17, 
- £/o(U) the subspace of &/(U) made up of (infinitely) flat functions, i.e., those 

such that / = 0 and 
- 3S{U) the space of holomorphic functions bounded on every stable strict subset 

of U. 
If / is holomorphic on U, then / G s/(U) if and only if z~n (f(z) - 5n_i/(^)) G SS{U) 
for all n G N. We check easily that srf(U) is a C-algebra and that srfb(U) is an ideal 
of&/(U). 

Let again U be a E-invariant open subset of C* and let Uqq := p(U)\ we think of 
UQO as the horizon of U. Every open subset of Eg is the horizon of some E-invariant 
open subset of C* (actually, of a great many of them!) and, from now on, we shall 
often write C/QO an arbitrary open subset of Eg and U some adequate E-invariant open 
subset of C* such that UQO := p(U). 

We introduce three sheaves on Eg, also denoted #/q and 3S\ no confusion should 
be caused by this overloading of notations. The reader is invited to check that these 
are indeed sheaves: 

- £/(Uoo) is the direct limit of all £?(U), 
- &fo{Uoo) is the direct limit of all s^q(U) and 
- 3S{Uoo) is the direct limit of all âS(U). 

In each case the limit is taken for all E-invariant open subset U of C* such that 
Uoo •= p{U). Then the ß/{Uco) form a sheaf of C-algebras and the M)(̂ oo) a sheaf 
of ideals. 

Lemma 4,1,1. — Let U C C be a Y^-invariant open set and K C V be a Y>-invariant 
strict subset ofU. There exists a real number p > 0 such that the closed disk of radius 
p\z\ and center z lies in U for all z G K. Moreover it is possible to choose p > 0 such 
that UzeK (̂̂ 5 P \z\) be a Y-invariant strict subset of U. 

Proof. — There exists by definition a subset K' of K, compact in U, such that 
K = T,(Kf). By compacity the result of the lemma is true for every z G K'\ using the 
action of E we get that it is also true for all z G K. • 
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Let f G srfiUoo) and f := VL n̂̂ n̂ 71 its asymptotic expansion. We set Rn := 
z n(f — Sn-if). We have / = Ylp=oapzP + ^n+1-ßn+i; therefore the derivative / ' 
is given by: 

d+rd 
n 

p=l 
oopz*-1 + (n + l)znRn+1 + zn+1Rfn+l 

If if C U is a E-invariant strict subset, then i?n+i is bounded by M^n+i on if. 
Therefore, using Cauchy formula for the derivative and lemma 4.1.1, R'n is bounded 
by some positive constant M^+1 on K. 

We have f — J2n>i nûn^n-1 and: 

z'n(f(x)-Sn-1f') =z~n d+r+ze+ds 
n 

p=l 

napzp 1 = (n + l)Än+l +zR'n+ 

Since |(n + l)Ä„+i +d+r+dr d+er < (n + 1 + ^)MK,n+i, then z-n(/'(x) - Sn-i/ ') is 
bounded on K, so that / ' admits / ' as a q- asymptotic expansion on U. Hence ({Too) 
is a differential algebra and M)(£4o) is a differential ideal of s/(Uoo). 

4.1.2. Asymptotic expansions and C°° functions in Whitney sense 

Lemma 4,12. — Let U be a ^-invariant open set of C and f G s/(UQO). Let K C U 
be an invariant strict subset. 

(i) There exists a positive constant CK (depending on f) such that, for all z\,z2 G 
KU{0}: 

\f(z1)-f(z2)\<CK\z1-z2\. 

(ii) For all n G N there exists a positive constant CK,u (depending on f) such that, 
for all zi,z2 G Ku{0} : 

f(zi) ~ 
n 

p—ö 

f(p){z2) 

p\ 
'•{zi-z2y <CK,n\zl-z2\n+1 

(iii) lim 
zi —>-0.zo-*-0 

Z! ,z2eKU{0},z1^z-

1 

\zi - z21 
s+spl s=e 

n 

p=0 

f(p)(Z2) 

pi 
izi - z2f = 0. 

Proof 
(i) We choose p > 0 (depending on K) as in lemma 4.1.1; then K\ := 

\JzeK D(z, p \z\) is an invariant strict subset of U. We set: 

MK '•— sup 
l / (* ) - / (0 ) | 

zeK \z\ 
M' := sup \f'(z)\ . 

Let zi,z2 G if U {0}. We shall consider separately three cases: (a) z2 = 0; (b) 
z2 ^ 0 and |zi - z2\ < p\z2\; (c) z2 ^ 0 and |zi - z2| > pl^l-
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The cases (a) and (b) are easy. In fact, if z2 — 0, then: 

f(z1)- f{z2)\ ={<TqFi1- /(0)| < MK \Zl\ = MK \Zl - z2\. 

If z2 7^ 0 and \z± — z2\ < p \z2\, then z2 G K and the closed interval [z±, z2] is contained 
in K\\ therefore: 

\f(zx)-f(z2)\<M'Kl \Zl-z2\. 

Now consider case (c). If z2 € K and \zi — z2\ > p\z2\, then we write f{z\) — 
f(z2) = f(Zl) - /(0) - (f(z2) - /(0)) and we have: 

\f{zi) - /(0)| < MK \Zl\ < MK(\z2\ + \Zl - z2\) < (- + 1)MK \Zl - z2\ 

and 

\f(z2)-f(0)\<MK\z2\< 
1 

? 
MK\z1-z2\ 

whence: 

|/(*l)-/(*2)|< 
2 + p 

P 
MK\zx-z2\. 

Last, let CK := max (M'K , ̂ M K ) ; then, for all zi, z2 G K U {0}, we have: 

| / ( ^ i ) - / ( ^ ) | < C ^ | z i - z 2 | . 

(ii) We define ifi, as in (i). We set: 

CK,n •= SUp 
zeK I 

d+r+dr 
n 

p=0 

/(p)(0) 
p! 

d+d+d{<TqFi ̂ l i n := sup |/<n+1>(s)l-
z£Ki 

The result is obviously true if / is a polynomial. Therefore, fixing n G N it suffices 
to prove the result when / = zn+1#, g G s^(UOQ). 

As in (i) we shall consider separately the three cases (a), (b), (c). If z2 = 0, then 
the result merely comes from the following relation: 

d+rde'g 
n 

p=0 

d+r+dr 

d+rd 
d+d+e+r< = \f(zi) -

n 

p=0 

/(P)(Q) 

vrd 
z\ <CK,n\Zl\n+1 

Next, if z2 ^ 0 and \z\ — z2\ < p\z2\, then the closed interval [zi,z2] is contained 
in K\, so that: 

{<TqFi1i) 
n 

p=0 

f{p){z2) 

v 
[zi ~ z2f <M'Kun\zl-z2 n+1 

It remains to deal with the case (c), that is, when z2 ̂  0 and \z\ — z2\ > p \z2\. If 
we set: 

A IS „ := sun 
z£K 

p = U, . . . ,71 

I A ) ! 
de+r 

PK := sup |z|, 
2€K 
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then, for any integer p € fO, n], we find: 
d+r+d 

e+d 
\(zn+1a)^Hzo) 

p\ 
d+r+d 

P 

k=0 

d+r+d 
k 

\z2\n+1~k 

d+rd +(n+l)\K,n \z2-z^ 

where: 

d+r+d(n+l)\K,n \ 
p 

k=0 

n + 1 
fc 

p—k 

Prom this, it follows: 

d++e+e 
n 

p=0 

/(p)(^2) 
v d+r+e+' < 2 ^ 9(zi) \ + (n+l)\K,n \z2-z^' 

< H 
r+d 

d 
AK,n + (n + l)XK,n )\z2-z1 \n+1 

To summarize, in the three cases cases we have: 

d+ +sde+s 
n 

p=0 

d+rd+r 
p\ 

(*i - z2y (n+l)\K,n \z2n+1 

where 
CK,n max [M'KUN, dr 1 

d 

V n+1 
(n+l)\K,n \z2-Kn. 

(iii) The result follows immediately from (ii). • 

Before stating the next proposition, we first recall Whitney conditions and Whitney 
theorem [30, chap. I, §4], [29]. We give them here in the case of dimension 2. Let 
/ be a function of (se, y) with complex values, C°° in an open neighborhood Uf of 
some compact subset K' of C. (We keep the letters U and K to denote respectively 
a E-invariant open subset of C and an invariant strict subset of U.) We shall use the 
following standard conventions; for k := (ki,k2) G N2, we set: 

f(k) := d+r+dr 
dxkl dyk2 

v 

We also write k\ := k\\k2\, (x,y)k := xklyk2, \k\ := k\ + k2l etc. We associate to / 
the family (f^)keN2 of its "Taylor fields" restricted to K'. 

We agree to identify the C°° function / on U' D Kr with the C°° function g on 
V D Kf if their associated families (/^)fc6N2; (#^)fcEN2 are equal. Such a class of 
functions is called a C°° function in the Whitney sense on Kf. We write C^rhitney(Kf) 
the space of C°° functions ^ in the Whitney sense on K'. As is customary when 

1. They are not really functions, but it usually causes no problem; moreover, in our case, they 
will be (according to the next proposition). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



44 CHAPTER 4. THE g-ANALOGS OF BIRKHOFF-MALGRANGE-SIBUYA THEOREMS 

dealing with germs, we sometimes write / the class of / ; likewise, we write ( / ^ ) the 
family of restrictions to K' of the derivatives f^: by définition, they depend only on 
the class of / . 

So let / be a C°° function in the Whitney sense on K'. The functions /W are 
continuous on K' and for all n G N, the family ( / ^ ) (restricted to K') satisfies the 
following conditions, that are called Whitney conditions of order n G N and that we 
shall denote Wn(K'): 

lim (f{k)(xuyi)-Z\h\<n-\k 
fik + H)(X2,V2) 

h\ (X! -£2 ,2 /1 -y2)H 

| |(#i-#2,2/i-2/2)IMfc| 
= 0, 

where the limit is taken for (#1,2/1) (#0,2/0) € (#2,2/2) —̂  (#o,2/o) £ with 
(#i,2/i), (#2,2/2) G if7 and (#1,2/1) 7̂  (#2,2/2). 

Conversely a family (/^)fc€N2- of continuous functions on K' is the family of 
Taylor jets of an element of C^it (if7) if and only if it satisfies Whitney conditions 
Wn(K') for all n G N (this is Whitney's theorem, see [29,30]). Note that, with 
the usual identification of C with R2, setting z := x + \y and using J^, J | instead 
of wwlwlfor all n G N we can replace Whitney conditions Wn(K') by equivalent 
conditions Wn(K'), that we do not state more explicitly here. In our case of interest 
(functions satisfying the Cauchy-Riemann equation df/dz = 0), they take the form 
of condition (iii) of the lemma above. 

Proposition 4.1.3. — Let U be a E-invariant open set ofC Then, f G £/(Uoo) if, and 
only if, for every invariant strict subset K C U, one has: 

f\K G Ker 
d 
dz 

C%huney{K U {0}, C) -> C^hltney(K U {0}, C) ) . 

Proof — Let / G C^hitney(K U {0}, C). If for all invariant strict subset K C U, one 
has: 

f\K e KEI 
d 

,dz 
C^hüney{K U {0}, C) -+ C%hüney{K U {0}, C) ) 

then, the function / is holomorphic on V, its Taylor jet / at 0 is formally holomorphic 
(i.e., it satisfies the Cauchy-Riemann equation), / = J2n>0 anzn and / is asymptotic 
t o / o n V, /€^(J7oo). 

Conversely let / G st(Uoo)\ then, for all p G N, /(?) G ^(t/oo) and for all r G N*, 
we have |^ / (p) - 0. 

We can apply lemma 4.1.2 to each function f^p\ p G N, to the effect that / satisfies 
conditions Wn(K) for all n G N (this is assertion (iii) of the lemma); therefore it 
satisfies also Whitney conditions Wn(K) for all n G N and, using Whitney theorem, 
wege t / eC^ney( t fU{0} ,C) . • 
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4.1.3. Asymptotics and sheaves on Eg. — Recall from paragraph 4.1.1 the 
definition of the sheaves si and sin on Eg. There is a natural map from si to the 
constant sheaf C\z\ sending a function to its asymptotic expansion. Although much 
weaker than the g-Gevrey theorem of Borel-Ritt 5.3.3, the following result does not 
directly flow from it, and we give here a direct proof. 

Theorem 4.1 A (Weak ̂ -analogue of Borel-Ritt). — The natural map from the sheaf si 
to the constant sheaf C^z} is onto. 

Proof — Starting from an open set V C Eg small enough that U := p^iV) C C* is 
a disjoint union of open sets UN := qnUo, where Uq is mapped homeomorphically to V 
by p, we divide C* in a finite number of sectors Si such that each Un is contained in one 
of the S{. Now, let / G CJz]. Apply the classical Borel-Ritt theorem [27, chap. XI, 
§1] within each sector 5 ,̂ yielding a map fi holomorphic and admitting the asymptotic 
expansion / . Glueing the fi provides a section of si over V having image / . • 

4.2. Existence of asymptotic solutions 

We call adequate an open subset C* of the form q~NUn, where the q~kUo,k > 0 
are pairwise disjoint. Clearly, ^o(^oo) is a C({z})-vector space stable under aq. In 
particular, any ^-difference operator P := aq + a\aq _1 + • • • + an G Vq defines a 
C-linear endomorphism P : f i-> Pf = aq{f) + a\aq~x + • • • + anf of s/o(Uoo). 
Likewise, any matrix A G GLn(C({2;})), defines a C-linear endomorphism aq — A : 
X I—y aqX - AX of M)(^OO)N. 

Theorem 421 (Existence of asymptotic solutions). — Let A e GLn(C({z})) and let 
X G C[zJn be a formal solution of the system aqX — AX. For any adequate open 
subset Uthere exists a solution X G ^(C/oo)n of that system which is asymptotic 
toX. 

Proof. — Prom theorem 4.1.4, there exists Y G s/(Uoo)n which is asymptotic to X 
(without however being a solution of the system). Set: 

W := aqY - AY = aq(Y - X) - A(Y — X) G M)(^oo)n. 

From proposition 4.2.2 below, there exists Z G sin(Uoo)n such that aqZ — AZ = W. 
Then X := Y — Z G si(Uoo)n is asymptotic to X and solution of the system. • 

Proposition 422. — Let A e GLn(C({z})) and let U be an adequate open subset 
Then, the endomorphism oq — A of s/q(Uoo)n is onto. 
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Proof. — Let F € GL„(C({^})) and B := F [A]. From the commutative diagram: 

m u , » ) * a q-A 
_ L 

mu,»)dr+dr* 

F (TQF 

**Ô(Uoo)n mu,»)* MU™)71 
in which the vertical arrows are isomorphisms, we just have to prove that aq — B 
is onto. After the cyclic vector lemma (lemma 2.1.1), we can take B :— Ap, the 
companion matrix of P := aq-\-aiaq~l H \-an described in 2.1.2.1. We then apply 
lemma 4.2.3 (herebelow) and theorem 4.2.5 (further below). • 

Lemma 423. — Let R be a C({z})-vector space on which o~q operates. With the 
notations of the previous proposition, P : R —^ R is onto if and only if aq — Ap : 
Rn -» Rn is onto. 

Proof 

(i) Assume P is onto. To solve 

(aq - AP 
dr 
xn t d+r 

yi N 

d+r 
put Xi+i '.— aqXi — yi\ one sees that x\ just has to be solution of an equation 
Px\ — z, where z is some explicit expression of the yi. 

(ii) Assume crq — Ap is onto. To solve Pf — g, it is enough to solve 

GqX - APX = 
0> 

0 J 
<9/ 

and to set / to the first component of X. 

Remark 42.4. — This computation is directly related to the homotopy of complexes 
discussed in A.8.2. 

Theorem 423. — The endomorphism P of «Î B(f/OO) is onto. 

Proof. — We give the proof under the assumption that the slopes are integral, which 
is the only case we need in this paper; the reader will easily deduce the general case 
by ramification. The counterpart of the slope filtration on the side of g-difference 
operators is the existence of a factorization [32, 54, 59] of P as a product of non 
commuting factors: elements of C{z}* (which induce automorphisms of M)(Uoo)) 
and first order operators z^oq — a, [i E Z, a G C*. We are therefore reduced to the 
following lemma. (This is where some analysis comes in!) • 

Lemma 42.6. — The endomorphism f i-» z^aqf — af of ^o{Uoo) is onto. 
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Proof. — Write L this endomorphism. Let h G M)(Uoo); for all n G N and each strict 
stable subset V of £7, there exists Cny > 0 such that \h(z)\ < Cny \z\n over V. We 
distinguish two cases: (i) \i < 0; (ii) n > 0. 

Case (%): /x < 0 feas?/ case,). — Let $ be the automorphism of M)(̂ oo) defined by 
$(/) := aq^z-^o-q-if; one hasd+d+ = amq^m+1^2z~rn^aq-mf for all m > 0. Since 
\h(z)\ < |*r on each stable strict subset V of U and all integers n > 0, one finds: 

Vz G F. 

dr 

mu,»)*qMl-l)/2zi» qMl 

m>0 
|a| \q\ V Y/ #D+R+D+R+DR+DZ . 

One deduces that the series Ylm>o ®mh defines a flat function over U, write it H £ 
M)(Uoo). Observing that LH = z^aq{H — $H) = z^aqh, we see that L is onto over 
^o(^oo). 

Case (ii): fi > 0 (hard case). — For all j G N, set Uj := q~jU0 = {z G C* | ^2; G 
f/o}; these are pairwise disjoint since U was assumed to be adequate. We are going to 
build successively fo, / i , f2, • •. over [/"o, £/i, U2,..., which will give rise to a function 
/ defined over U = q~NUo, with /j = f\jj. and L/ = h. 

For all j G N, let hj := fti^. : C/j —> C. Since {crqf)\uj — oqfj-\, equation Lf = h 
is equivalent to system: 

Vj G N* , z^o-qfj-i - afj = hj, 

also written: 

(4.1) Vi e N* , /_,• = (z^fj.! - hj)/a. 

We agree that /_i = 0 and /o = /io/a- Iterating the last relation (4.1) above, we 
find: 

(4.2) Vi e N*, / , = -
3 

£=0 

qMl-l)/2zi» /, _£a-i-\ 

Write / the function defined on U by the relations f\uj = fj, j G N; Clearly, Lf = h 
on U. We are left to show that / G M)(̂ oo)-

Let n G N and V a strict stable subset of U; let Vj := Uj D V and choose a A ' > 0 
such that \z\ < K \q\~3 for all z G UJ; one has |z| < K\q\~i on each V}. Bounding by 
above the right hand side of (4.2), one gets: 

(4.3) Vz e Vj, \fj(z)\ < 
d+'r+d 

a Pj(\q\n<*) i*r. 

where a := ja and where Pj denotes the polynomial with positive coefficients: 

qMl-l)/2zi» 
j 

£=0 

q^£(£-l)/2-j£» X£ 

Taking in account the relation 

Vi e N* , /_,• = (z^fj.! - hj)/a.x+x+d+xre+d 
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one finds that Pj(X) < P(X; /x, q) for all X > 0, where we write P(z; fi, q) the entire 
function defined by: 

P(z;ß,q) := 
oo 

3=0 

g|-MJ'0'+l)/2 z3\ 

Said otherwise, (4.3) can be written in the form: 

W e V,-, \fAz)\ < Cn.V 
a 

F(\q\n a;j2,q) \z\n 

which allows us to conclude that f is flat. 

We now apply theorem 4.2.1 to a situation that we shall meet when we prove 
theorem 4.4.1. 

Let Ao G GLn(C({z})) be the matrix of a pure module and let A G GLn(C({z})) 
a matrix formally equivalent to Ao. Let F G GLn(C((z))) be a gauge transfor­
mation proving this equivalence, i.e., F[Ao] = A . (Note that we do not assume F G 
0(C((z))).) The conjugation relation is equivalent to aqF = AFAQ1, which we regard 
as a g-difference system of rank n2 in the space Matn(C({z})) ~ C({z})n . After the­
orem 4.2.1, there exists over each adequate open set U a solution Fu G Matn(C({z})) 
of the system oqF = AFAQ1 that is asymptotic to F. Since the latter is invertible, 
and since det FJJ is obviously asymptotic to det F, whence non zero, FJJ is invert ible. 

Now let U' another adequate open set which meets U. Then U" := U fl U' is 
adequate and the matrix G := F^xFu' satisfies the two following properties: 

1. It is an automorphism of AQ, i.e., G[AQ] = AQ. 

2. It is asymptotic to F~XF = In, i.e., the coefficients oîG — In belong to ^(U^). 

Lemma 42 J. — The matrix G belongs to <5(J*O 

Proof. — With the usual notations for .Ao, each block of G satisfies: 
o-qGij = (z^Aj)-1 Gitj (z^Ai) = z^-^A^GijA. 

The order of growth or decay of Gij near 0 is therefore the same as 6qßi~^j. Since 
Gij is flat for i ^ j , this implies Gij — 0 for i > j . For i = j , we apply the same 
argument to G^i — lTi, which therefore vanishes. • 

4.3. The fundamental isomorphism 

We write Aj := In + Matn(^o) for the subsheaf of groups of GLn(^) made up 
of matrices infinitely tangent to the identity and, if G is an algebraic subgroup of 
GLn(C), we put A^ := Aj DG(«^). In particular Af is a sheaf of triangular matrices 
of the form (2.3) with all the Fij infinitely flat. 

For a g-difference module M = (C({z})n,$A) (section 2.1.1), we consider the 
set of automorphisms of M infinitely tangent to the identity: this is the subsheaf 
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A/(M) of A/ whose sections satisfy the equality: F [A] — A (recall that by definition 
F[A] = (aqF)AF~1); this is also called the Stokes sheaf of the module M. 

If the matrix A has the form (2.2) (see paragraph 2.3.3) then A/(M) is a subsheaf 
of Af. Up to an analytic gauge transformation, we can assume that we are in this 
case. As a consequence, Aj(M) is a sheaf of unipotent (and even triangular) groups. 

4.3.1. Study of JH"1(Eg; A/). — We choose r G C, 3(r) > 0, such that q = e"2i7rr. 
Since (1, r) is a basis of the R-vector space C, the group morphism: 

p0:(u,v)^e2[7Ç^vr) 

from R2 to C* is onto with kernel Z x {0}, and the preimage of qz is 

P„ V ) = Z x z. 

Therefore, the composition p o p0 of po with the natural projection p : C* —• Eg = 
C*/<ZZ is a group epimorphism with discrete kernel Z2; it is clearly a local diffeomor-
phism. 

Remark 4,3.1. — The morphism po induces an isomorphism between R2 /Z2 and ~Eq — 
C*/qz. Through this isomorphism, the natural splitting of R 2 / Z 2 is carried to the 
splitting: 

C* = U x qn, 

where U denotes the unit circle in C* and, for v G R, we denote qv = e~2l7rrv 

We will call open parallelogram of ~Eq the image by the map p o p0 : R2 —y Eg of 
an open parallelogram ]ui, u2[ x ]v\, v2[ C R2 where u2 — u\ < 1, v2 — v\ < 1. This is 
the same as the image by x e2l7rx of: 

+ VT G C I U\ < U < U2, Vi < V < v2}, 

We will call closed parallelogram of Eg the closure of an open parallelogram such that 
u2 — u\ < 1, v2 — v\ < 1. We will say that a parallelogram is small if u2 — ui < 1/4 
and v2 — vi < 1 /4. 

For every open covering of Eq, there exists a finite open covering it = (Ui)iej, 
finer than QJ, such that: 

(i) the Ui are open parallelograms, 

(ii) the open sets Ui are four by four disjoint. 

We will call good such a covering. There is a similar definition for closed coverings. 
It is then clear that: 

- Every element of H^(Eq; GLn(s/)),j — 0,1 can be represented by an element of 
UP (it; GLn(^)), where il is a good covering. 

- The natural map if-7(it; GLn(s/)) -» Hj(Eq; GLn(s/)) is always injective. 
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Let il be a good open covering of Eq; we denote by (7° (il; GLn(^)) the subspace 
of the space of 0-cochains (gi) G C°(il; G L n w h o s e coboundary (gij := gigj1) 
belongs to C^iljAj). Thus, a cochain C°(il; GLn(^)) is any family (gi) such that 
gi G £/(Ui), and it belongs to C°(il; GLn(srf)) if, and only if, the gi (i G /) admit 
the same asymptotic expansion g G GLn(C[z]]). It is also equivalent to say that the 
natural image of the cochain (gi) in C°(il; GLn(C[[z]])) is a cocycle. 

Lemma 432 

(i) Let il be a good open covering ofEq. The coboundary map d induces an injection 
on the double quotient: 

C°(ii; A/)\C°(il; GLn{srf)) / H°(il; GL„(^/)) -»• H\ü; A/). 

(ii) We have a canonical injection: 

Urn C°(il; A/)\C'0(il;GLnK))/GL„(C{^}) -»• Jf^E,; Aj), 

where the direct limit is indexed by the good coverings. 

Proof. — We have two natural maps: 

C°(il;GL„(^)) ->• Z^iljA/), 

which sends the family (gi) to the family (gij) and 

(70(U;GLn(^))->GL„(C^]), 

which sends the family (gi) to g G GLn(C[2:|]), the common asymptotic expansion of 
all the gi. 

Two cochains (g*), (g[) G C°(il; GLn(«2̂ )) define the same element of if1 (il; A/) if 
and only if: 

gWJ1 = higig-lh-\ with (hO G C°(il; A/). 
This is equivalent to gfJxhjgj = g'^lhigi, which thus defines an element / G 
if0 (il; GLn(^)) and we have g' = hgf~\ • 

Proposition 433. — For every good open covering il o/Eg we have a natural isomor­
phism: 

C°(il : A/)\C0(ü;GLn(^))/F°(il;GLn(^)) -» GLn(C[[z])/GLn(C{^}). 

(Note that the double quotient on the left hand side is the same as the double quotient 
on the left hand side of assertion (i) in the lemma above.) 

Proof. — Let il be a good open covering of Eq. Let g G GLn(C[2:]]). Using the 
ç-analog of Borel-Ritt (theorem 4.1.4), we can represent it by an element gi on each 
open set Ui such that gi admits g as asymptotic expansion, therefore the natural map: 

C°( i l ;GLn(^))^GLn(CH) 

is onto. The proposition follows. • 
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Corollary 43A. — For every good open covering ii ofEq, we have natural injections: 

GLn(CH)/GLn(C{z}) -tH^ibAj) J ï 1 ^ ; Aj). 

We will see later (subsection 4.3.3) that these maps are bijections. 

4.3.2. Geometric interpretation of the elements of iJ1(Eq;A/). — We need 
some results on regularly separated subsets of the euclidean space R2. We first recall 
some definitions. 

If X C Rn is a closed subset of the euclidean space Rn, we denote by <£(X) the 
algebra of C°° functions in Whitney sense on X (cf. [30]). 

We recall the Whitney extension theorem: if Y C X are closed subset of Rn, the 
restriction map £(X) —» £(Y) is surjective. 

Let A, B be two closed sets of Rn; we define the following maps: 

a : / G £(A U B) ^ f\B) G S {A) 0 <?(B), 

ß : (/, g) G £{A) © £(B) ^ /,AnB - ,̂Anfî G ^(A fl B), 

and we consider the sequence: 

O^^(AUB)^ £(A) © ^(B) A £(A n 5 ) ^ 0 . 

Definition 4.3.5. — Two subsets A and B of the euclidean space Rn are regularly 
separated if the above sequence is exact. 

The following result is due to Lojasiewicz (cf. [30]). 

Proposition 4.3.6. — Let A,B be two closed subsets A and B of the euclidean space 
Rn; the following conditions are equivalent: 

(i) A and B are regularly separated; 

(ii) A fl B = 0 or for all xo G A fl B, there exists a neighborhood U of XQ and 
constants C > 0, A > 0 such that for all x G U : 

d(x, A) + d(x, B) > Cd(x, A n B)x; 

(iii) An B = 0 or /or a// G An £/iere e#zs£s a neighborhood U of Xo and a 
constant C > 0 such that for all x G AC\U: 

d(x,B) > Cfd(x,AHB)x. 

If we can choose A = 1 in the above condition(s), we will say that the closed subsets 
A and B are transverse. Transversality is in fact a local condition. 

Lemma 43J. — Let K\, K2 be two closed small parallelograms of Eg. The sets 
p_1(lfi) and p~1(K2) are transverse. 
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Proof. — Using the map po (introduced at the beginning of 4.3.1), we set: 

A ^ p " 1 ^ ) C C* and A0 :=PÖ\A) = (popo)"1 ( # 1 ) C R2, 

5 - p " 1 ^ ) C C* and B0 :=pô\B) = (p o p o ) " 1 ^ ) C R2. 

Since if i and Ä2 are small parallelograms, both Ao and i?o are formed of a family of 
disjoint rectangles, that is to say: 

A0 = 
M,N€2 

AM,N and B0 = 
m,nGZ 

Bm,m 

where the families (AM5N)M5NGZ, (#M,N)M,NEZ are such that D(AM?N, AM/,N/) > 3/4 
and d(Bmin, Bm'jTl/) > 3/4 for any (m! ,n') ^ (m,n). We only need to deal with 
the case when 4 n 5 ^ 0, that is, when there exists (M, N), (m!,nf) such that 
7̂71,71 DLD DLR DLRLDDL 

Consider the function / defined over C* \ A n B by 

/(*) = 
D(X, A) + d(x,B) 

d(x,AnB) 

and observe that / is ç-invariant; therefore, it is enough to prove the following state­
ment: for any XQ G A HB such that 1 < \xo\ < \q\, there exists an open disk D(xo,r), 
r > 0, and a constant C > 0 such that f(x)>C for all x G D(xo, r) \(AnB). 

On the other hand, the mapping po is a local diffeomorphism from R2 onto C* 
inducing a local equivalence between the natural metrics. Therefore the proof of the 
lemma boils down to the transversality between Ao and £ 0 , which is merely deduced 
from the transversality of each pair of rectangles (AM?N, J5m/5n/) of the euclidean plane. 

• 

Let 7 G ü"1(Eg; A/), we can represent it by an element g G Zl(iX; A/) where il is a 
good open covering of Eq. We can suppose that all the parallelograms of the covering 
are small. We will associate to g a germ of fibered space (Mg, 7r, (C, 0)). We will see 
that if we change the choice of g, then these germs of linear fibered space correspond 
by a canonical isomorphism. This construction mimics a construction of [33] inspired 
by an idea of Malgrange (cf. [29]), it is a central point for the proof of one of our 
main results. 

Let g G Zx(il; A/). We interpret the gi as germs of holomorphic functions on the 
germ of g~N-invariant open set defined by that is the germ of p~1(Ui)nD (D being 
an open disk centered at the origin). For sake of simplicity we will denote also by 
Ui this germ. We consider the disjoint sum YlieI U% x Cn and (using representatives 
of germs) we identify the points (#, Y) G Ui x Cn and (x, Z) G Uj x Cn if x G 
Uij and Z = gij(x)(Y) (we verify that we have an equivalence relation using the 
cocycle condition), we denote the quotient by Mg. If x = 0, gi(0) is the identity 
of Cn therefore the quotient M.g is a germ of topological space along {0} x Cn. 
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lemma 4.3.8 

(i) The projections Ui x Cn —>> Ui induce a germ of continuous fibration tt : ~Mg —>> 
(C,0), the fiber tt'1 (0) identified with (Cn,0). 

(ii) Tfte germ Mp := \7r_1(0) admits a natural structure of germ of complex 
manifold of dimension n + 1, i£ äs unique structure such that the natural 
injections {Ui \ {0}) x C M Mp are holomorphic. The restriction of tt to Mg 
is holomorphic. 

The proof of the lemma is easy. 

Lemma 4.3.9. —- There exists on Mp a unique structure of germ of differentiable man­
ifold (C°°) such that the natural injections {Ui \ {0}) x C M Mg are C°° (in Whitney 
sense). The induced structure on M.g is the underlying structure of the holomorphic 
structure on Mg. The map tt is C°° of rank one, {Mg,ir, (C,0)) is a germ of vector 
bundle. 

Proof — This lemma is the central point. The proof uses the Whitney extension 
theorem and the notion of regularly separated closed sets (cf. above). 

We replace the good open covering {Ui)iei by a good closed covering {Vi)iei with 
Vi C Ui. We interpret the Vi as g~N-invariant germs of compact sets p~1{Vi)C\D C C* 
(we take D := D{r), r > 0). The differentiable functions on Vi x Cn are by definition 
the C°° functions in Whitney sense. We can built a germ of set as a quotient of 
Yliei ^ x ^n usm§ 9 as above, the natural map from this quotient to Mp is an 
homeomorphism and we can identify these two sets. If we consider a representative of 
the germ Mp and x G C* sufficiently small, there exists a structure of differentiable 
manifold along n~1{x) and it satisfies all the conditions. Let Yo G Cn, we set mo = 
(0, Yb) and we denote by <?mo the ring of germs of real functions on M.g represented 
by germs at mo G Vi x Cn of functions fi compatible with glueing applications, that 

is fj °9ji = fi-
We will prove that each coordinate y h {h = 1,. . . , n) on Cn extends in an element 

rjh of <fmo. It suffices to consider y±. 
We start with i e I We extend y\ in a C°° function fi on Vi x Cn (we can choose 

fi = 2/1 )• 
Let j G /, j i. The glueing map gives a C°° function hj on VJj xCn C VjxCn, 

using Whitney extension theorem, we can extend it in a C°° function fj on Vj x Cn. 
Let k e I, k ^ i,j. The glueing maps g^ and give functions hik and /ij^ 

respectively on Vik x Cn C Vk x Cn and x Cn C 14 x Cn; these functions coincide 
on Vijk x Cn C T4 x Cn. The closed sets Vik x Cn and Vjfc x Cn are regularly 
separated {Vik and are, as subsets of Eg, closed parallelograms and we can apply 
lemma 4.3.7), therefore the C°° functions hik and hjk define a C°° function hk on 
{Vik U Vjk) x Cn C Vfc x Cn, using Whitney extension theorem, we can extend it in 
a C°° function fk on 14 x Cn. 
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Let h G i", h ^ i,j, k, then Vih H Vjh fl V̂ ^ = = 0 and we can do as in the 
preceding step, using moreover the fact that to be C°° is a local property. 

We can end the proof along the same lines. • 

The n functions r/i,.. . , 7/m G <?mo and 7r, interpreted as an element of <?mo, define 
a system of local coordinates on Mff in a neighborhood of mo; an element of <?mo is a 
C°° function of these coordinates. Therefore admits a structure of differentiable 
manifold, this structure is fixed on M^, therefore unique. 

Proposition 43.10 

(i) The germ of differentiable manifold Mp admits a unique structure of germ of 
complex analytic manifold extending the complex analytic structure of M.g. For 
this structure the map tt is holomorphic and its rank is one, (M^,7r, (C,0)) is 
a germ of holomorphic vector bundle. 

(ii) We consider the formal completion M.g ofM.g along 7r_1(0) (for the holomor­
phic structure defined by (i)) and the formal completion F of (C,0) x Cn 
along {0} x Cn. We denote by 7r : Mg -» ((C,0)|{0}) the completion of it 
and by 7i"o : F —» ((C,0)|{0}) the natural projection. The formal vector bun­
dle (Mg, 7T, ((C, 0)|{0})) is naturally isomorphic to the formal vector bundle 
(F,7T0)((C,0)Î{0})). 

Proof. — The proof of (i) is based on the Newlander-Niremberg integrability theorem, 
it is similar, mutatis mutandis to a proof in [33], page 77. The proof of (ii) is easy 
(the gij are equal to identity). • 

If g,g' are two representatives of 7, the complex analytic manifolds Mp and M.g' 
are isomorphic (cf. [33], page 77) 

4.3.3. The formal trivialization of the elements of i/1(Eg;Aj) and the fun­
damental isomorphism. — Using the geometric interpretation of the cocycles of 
^ ( i l ; A/) we will build a map: 

Z1(il;A/)->GLn(C[[^) 
defined up to composition on the right by an element of GLn(C{z}). Hence we will 
get a map: 

H\Kq- A7) GLn(CH)/GLn(C{4) 
and we will verify that it inverses the natural map: 

GLn(C[z])/GLn(C{4) ^ ^ ( E ç î A / ) . 
We consider the germ of trivial bundle (C, 0) x Cn, 7To, (C, 0). We choose a holo­

morphic trivialization H of the germ of fiber bundle (Mp, 7r, (C, 0)): ttq O H = n (H 
is defined up to composition on the right by an element of GLn(C{z})). From the 
proposition 4.3.10 (ii) and H we get an automorphism (p of the formal vector bundle 
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(F, 7TO, (C|{0})). We can interpret (p as an element of GLn(C[[z]|), this element is well 
defined up to the choice of iJ, that is up to composition on the left by an element of 
GLn(C{z}). Hence (p~x is defined up to composition on the right by an element of 
GLn(C{*}). 

The map: 

Z\U; A7) -+ GLn(Ctt*l)/GL„(C{4) 

induced by g H-» (p~x induces a map: 

H^Aj) -» GLn(CH)/GLn(C{z}). 

We will verify that this map is the inverse of the natural map: 

GLn(CH)/GLn(C{z}) -ïH'iE^Aj). 

From the natural injections (£/i,0) x C M Mg (i G I) and the trivialization iJ, 
we get automorphisms of the vector bundles (([/*, 0) x Cn -» (C/̂ , 0)), that we can 
interpret as elements <pi G T(Ui; GLn(s/)) compatible with the glueing maps gij, i.e., 
(fi = (fj o gji. We have: 

9ij = VTX ° <Pj = Vi1 ° (Vj1)'1 and dfa1) = [gi5). 

The element G GLn(C[[;z]]) is independent of i G I; we will denote it by (p. 
We have (<p>^1) G C°(il; GLn(^)) (remember that this space of cochains was de­

fined in subsection 4.3.1). The coboundary of (c/?"1) is g and its natural image in 
GLn(C|[2:]|) is <p~l. This ends the proof of our contention. 

It is possible to do the same constructions replacing GLn(C) by an algebraic sub­
group (vector bundles are replaced by vector bundles admitting G as structure group). 
We leave the details to the reader. 

Theorem 43.11 (First g-Birkhoff-Malgrange-Sibuya theorem) 
Let G be an algebraic subgroup o/GLn(C). The natural maps: 

GLn(CH)/GLn(C{z}) - ^ ( E g j A j ) , 

G(Clz})/G(C{z}) ^ H\Eq;Af) 

are bijective. a 

4.4. The isoformal classification by the cohomology of the Stokes sheaf 

We will see that the constructions of the preceding paragraph are compatible with 
discrete dynamical systems data and deduce a new version of the analytic isoformal 
classification. We use notations from section 2.3. 
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4.4.1. The second main theorem. — Before going on, let us make some prelim­
inary remarks. Let MQ := Pi ® • • • 0 Pk be a pure module. Represent it by a matrix 
Ao with the same form as in (3.1). Assume moreover that Ao is in Birkhoff-Guenther 
normal form as found in 3.3.2. 

We saw in proposition 2.3.11 that there is a natural bijective mapping between 
J-(MQ) = J"(Pi,...,Pfc) and the quotient &A°(C((z)))/<5(C({z})). It also follows 
from the first part of 3.3.3 that this, in turn, is equal to 0A°(e[zJ)/0(C{z}). Last, 
the inclusion (5 C GLn induces a bijection from 0A°(C[[z]])/0(C{2:}) to the quotient 
GLf°(C[z])/GLn(C{z}), where we take GL^°(cjz]]) to denote the set of those 
formal gauge transformation matrices that send Ao into GLn(C{z}). 

Theorem 4.4.1 (Second g-Birkhoff-Malgrange-Sibuya theorem) 
Let Mo be a pure module represented by a matrix Ao in Birkhoff-Guenther normal 

form. There is a natural bijective mapping: 

GL^°(CM)/GL„(C{*}) -»• ff^E,; A/(M0)), 

whence a natural bijective mapping: 

T(Mo)^H1(Eq;AI(M0)). 

Proof 

The map X. — Let il := (Ui)iei be a good open covering of ~Eq. 
Let F G GL^° C GLn(C|[z]|); by definition there exists an unique A G GLn(C{z}) 

such that F[A0] = A. 
For all i G J, there exists gi G GLn(A(Ui)) asymptotic to F on Ui (cf. theo­

rem 4.2.1). The coboundary (g^) of the cochain (gi) belongs to Z1 (il, A/(Mo)) (the 
reason for that is lemma 4.2.7 which can be applied because the condition of good 
covering implies that the open sets are adequate); it does not change if we multiply 
F on the right by an element of GLn(C{z}). If we change the representatives we 
get another cochain in Zx(il, A/(Mo)) inducing the same element of H1(il,Ai(Mo)). 
We thus get a natural map: 

A : GLf>(CH)/GL„(C{*}) ff^E,; A/(M0)). 

This map is injective. 

Surjectivity of X. — Let il := (Ui)ieI be a good open covering of Eg; assume 
moreover that the compact covering (Ui)iei is good and that the Ui are small paral­
lelograms. 

Let 7 G iJ1(Eq; A/(Mo)); we can represent it by an element g G Zx(il; Aj(Mo)), 
il = (Ui)i£i being a good open covering of ~Eq. Moreover we can choose il such that 
the compact covering (Ui)iei is good and such that the Ui are small parallelograms. 

As in section 4.3.1, using g, we can build a germ of analytic manifold and a 
holomorphic fibration 7r : —>> (C,0). But now there is a new ingredient: we have 
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a holomorphic automorphism 6 0 : (C,0) x Cn -» (C,0) x Cn of the trivial bundle 
((C, 0) x Cn, 7T0, (C, 0)) defined by: 

(z,X)^(qz,AoX). 

It induces, for all i G I a holomorphic automorphism of fibre bundles : Ui x Cn —» 

By definition the gij G Aj(Mo)(Uij) commute with ©0, therefore the automor­
phisms 0o,i glue together into a holomorphic automorphism ^ of the germ of fibered 
manifold (Mp,7r, (C, {0})). The map \I> is linear on the fibers and the map on the 
basis is the germ of z \-> qz. 

We choose a holomorphic trivialization H of the germ of fiber bundle (Mp, 7r, (C, 0)): 
TTQOH — TT. The map := H oty oH~l is a holomorphic automorphism of the germ of 
trivial bundle ((C, 0) x Cn, 7r0, (C, 0)), it corresponds to an element A G GLn(C{2:}). 
Using the results and notations of section 4.3.1, we see that there exists an ele­
ment (p G GLn(C{2:}) such that g \-ï (p~x induces the inverse of the natural map 
GLn(C[zJ)/GLn(C{z}) -» i l^E^Aj) . If we set F := it is easy to check that 
F[A0) = A. We have F G GL^° and X(F) = g, therefore A is surjective. • 
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S U M M A T I O N A N D A S Y M P T O T I C T H E O R Y 

To find analytic solutions having a given formal solution as asymptotic expansion 
is a rather old subject in the theory of (/-difference equations: see for instance the 
paper [58] by Trjitzinsky in 1933. The first author had already suggested in [40] the 
use of the Gaussian function to formulate a g-analogue for Laplace transform; this 
allowed to find in [59] the Gg-summation, a g-analog of the exponential summation 
method of Borel-Laplace. In [32], the Gg-summation was extended to the case of 
multiple levels, and it was shown that any formal power series solution of a linear 
equation with analytic coefficients is Gg-multisummable, and thus can be seen as the 
asymptotic expansion of an analytical solution in a sector with infinite opening in the 
Riemann surface of the logarithm. The work in [45,46,60,62] was undertaken with 
the goal of obtaining a summation over the elliptic curve, or a finite covering of it ^ . 

5.1. Some preparatory notations and results 

In this section, we will introduce some notations related to elliptic curves Eg and 
to Jacobi theta function. 

5.1.1. Divisors and sectors on the elliptic curve Eg = C*/qz. — The pro­
jection p : C* —> Eg and the discrete logarithmic g-spiral [À; q] were defined in the 
general notations, section 1.3. In this chapter, we shall usually shorten the latter no­
tation into [À] := [À; q]. We call divisor a finite formal sum of weighted such g-spirals: 

A = vi[\i] H h ^m[Am], where i/* G N* and [A*] ^ [Xj] if i ^ j . 

1. To be more precise: note [45] can be seen as an abridged version of the present chapter. It 
summarizes and completes [46], the departure point, which announces the first part of [60]. These 
first works dealt with divisors supported at a single point, and [62] started the extension to more 
general divisors (and more slopes). 
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This can be identified with the effective divisor ^ Vi [Aï] on Eg and, to simplify 
notations, we shall also write X^[A^] that divisor on Eg. The support of A is the 
union of the g-spirals [Ai],..., [Am]. We write: 

|A| := vi H h Vm 

the degree of A (an integer) and: 

| |A||:=(-l)lAlAr---A^ (modç2) 

the weight of A, an element of Eg. It is equal, in additive notation, to Y2uiP(~Ai) 
evaluated in Eg. 

For any two non zero complex numbers z and A, we put: 

dJzAX}) := inf 
d+rd 

1 - Z 
0 

This is a kind of "distance" from z to the ^-spiral [A]: one has dq(z, [A]) = 0 if, and 
only if z G [A]. 

Lemma 5.1.1. — Let ||g||i := infnGZ* |1 - qn\ and Mq := 2|?,ll]| . Let a G C be such 
that \l-a\<Mq. Then: 

dq(a; [l]) = | l - a | . 

Proof. — This follows at once from the inequalities: 

|1 - aqn\ > \a\ |1 - qn\ - |1 - a\ > (1 - M9)||g||i - |1 - a\ > |1 - a| . • 

For p > 0, we put: 

D([\];p) := {zeC* I [A]) < p}, 

Dc(\Xhp) := C*\D(\\}:p), 

so that ZXfAl; 1) = C* and DC(\X\: 1) = 0. From lemma 5.1.1, it follows that for any 
p < Mq: 

D(\X]:p) = 
nez 

qnD(\;\\\p), 

where D(\; \X\p) denotes the closed disk with center A and radius \X\p. 
Let A, p G C*; since: 

1 ~ 
z 

d+r 
n > \Z\ 

IAI 
1 -

A , 

d+r 
- 1 - dr 

Al' 

one gets: 

(5.1) dq(z, [/i]) > dq(X, \ft}) - p(l + d,(A, \fi])) 

when ^ e £>([A]; p) and p < Mg. 
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Proposition 5,12. — Given two distinct q-spirals [A] and [p], there exists a constant 
N > 1 such that, for all p > 0 near enough from 0, ifdq(z, [A]) > p and dq(z, [jjl]) > p, 
then: 

dq(z, [X])dq(z,[p]) > P 
N 

Proof. — By contradiction, assume that, for all N > 1, there exists pN > 0 and 
z G C* such that dq(z, [A]) > PN and dq(z, [p]) > PN but dq(z, [dkddkX])dq(z, [p]) < 
this would entail: 

pN < dq(z, [A]) < 1 
AT' 

whence, after (5.1): 

dJz, \n)) > dJX, [ft]) - (1 + dq(X, [p]))/N. 

In other words, when N —>> oc, one would get: 

dq(z, [A]) dq(z, [p]) > dq(X, [p]) pN 

(i.e., there is an inequality up to an o(l) term), contradicting the assumption 

d q ( z , [ \ ] ) d q ( z M ) < T 

Let A := ^i[Ai] + h m̂[Am] be a divisor and let p > 0. We put: 

(5.2) da(z,A) := 
l<j<m 

Vi e N* , /_,• = (z^ 

and 
D(A;p):={zeC* \dJz,A)<p}, Dc(A;p) := C* \ D{A;p). 

Proposition 5.1.2 implies that, if A = [A] + [p] with [A] ̂  [p], one has: 

Dc([X];p)nDc([fA;p)cDc(A P 
N) 

as long as p is near enough from 0. 

Proposition 5.1.3. — Let A := i/i[Ai] + • • • + ^m[Am] be a divisor such that [A$] / [Aj] 
/or i ^ j . There exists a constant N > 1 swc/i for all p > 0 near enough from 0, 
one has: 

(5.3) £>c(A;/>)c 

Kj<m 

Dc([A,-];p1M)Cl?c(A; dr 
d+r+d 

Proof. — The first inclusion comes from the fact that, if dq(z, [Aj]) < el'Vj for some 
index j , then dq(z,A) < e, because dq(z, [A]) < 1 for all A G C*. 

To prove the second inclusion, we use (5.1) in the same way as in the proof of 
proposition 5.1.2; details are left to the reader. • 
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Taking the complementaries in (5.3), one gets: 

(5.4) DA; Py 
N. 

c 
l<7<m 

D([\j\\pl/Vi} cD(A;p). 

Modifying the definition (5.2) of dq(z,A) as follows: 

(5.5) S(z,A) := min {d„(zA\A)Y* 
l<jf<m 

one gets, for all small enough p: 

D5(A;p) := {z G C* : S(z, A) < p} = 

l<j<m 

Vi e N* , /_,• =d+ 

Relation (5.4) shows that the maps z H> dq(z,A) and z H-» Ö(Z,A) define equivalent 
systems of small neighborhoods relative to the divisor A; precisely, for p —> 0: 

DA; P_ 
N > 

cD5(A;p)cD(A;p) 

Definition 5.1.4. — Let e > 0. We call germ of sector within distance e from divisor 
A any set: 

5(A, e; Ä) - (z G C* : dq(z, A) > e, Izl < R}, where ß > 0. 

When R — +oo, we write S(A, e) instead of 5(A, e; +oo). 

Note that S(A,0;iî) is the punctured open disk {0 < \z\ < R} deprived of the q-
spirals pertaining to divisor A. Since dq(z, A) < 1 for all z G C*, one has S(A, 1; R) = 
0; that is why we shall assume that e G]0,1[. Last, each sector within a short enough 
distance to A represents, on the elliptic curve Eg = C*/gz, the curve ~Eq deprived of 
a family of ovals centered on the Xj with sizes varying like e1/^. 

By a (germ of) analytic function in 0 out of A, we shall mean any function defined 
and analytic in some germ of sector S(A,0;R) with R > 0. Such a function / is said 
to be bounded (at 0) if, for all e > 0 and all r G]0, one has: 

sup | / (z) |<oo. 
zeS(A,e:r) 

We write BA the set of such functions. 

Proposition 5.1.5. — If f e MA, then for any R > 0 small enough and for all a G 
5(A, 0; JR) such that \a\ £ (JTĴ N I'M \Q~n\> there exists K > 0 such that 

sup max \f(z)\ < K. 
nGN |s| = |ag-"| 

Proof. — From the assumption on a, it follows that: 

e := 
maxT,F09D dQ(aelT,A) 

2 
> 0 , 

whence all circles centered at 0 and with respective radii \aq n|, n G N are contained 
in the sector 5(A, e; i?), which concludes the proof. • 
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5.1.2. Jacobi Thêta function, (/-exponential growth and g-Gevrey series 
Jacobi's theta function 9(z;q) = 0(z) was defined by equation (1.2) page 7. Prom 

its functional equation, one draws: 

Viz, n) G C* x Z, e(qnz) = on(n+1)/2 zn 0(z). 

Moreover, for all z G C*, one has: 

\6{z)\<e{z) := e(z;q) := 0 (\z\;\q\). 

Lemma 5.1.6. — T/iere exists a constant C > 0, depending on q only, such that, for 
all e > 0; 

\0(z)\ >Cee(z), 

as long as da(z, [— 1]) > e. 

Proof — It is enough to see that the function z i-> \0(z) \ /e(z) is (/-invariant, which 
allows one to restrict the problem to the (compact) closure of a fundamental annulus, 
for instance {z G C | 1 < \z\ < \q\}. See [60, Lemma 1.3.1] for more details. • 

Recall that 0(z) = 0(^)î one draws from this that e(z) = e ( ^ ) . To each subset 
W of C, one associates two sets d+f+d W{Q) as follows: 

W(oo) := 

n>0 
qnW, W(0):= 

n<0 
qnW. 

Definition 5.1.7. — Let / be a function analytic over an open subset £2 of C* and let 
k > 0. 

1. We say that / has q-exponential growth of order (at most) k at infinity (resp. 
at 0) over Q if, for any compact W C C such thatd +d+r+ C ft (resp. such that 
W(o) C £2), there exists C > 0 and p > 0 such that \f(z)\ < C(e(nz)) for all 
z G W(oo) (resp. 2 G W(o)). 

2. We say that / has q-exponential decay of order (at least) k at infinity (resp. at 
0) over ft if, for any compact W C C such that W^) C ft (resp. such that 
W(o) C £2), there exists C > 0 and // > 0 such that \f(z)\ < C(e(pz)) for all 
z € w(oo) (resp. z G W(0)). 

Lemma 5.1.8. — Le£ /c > 0 and / an enure function with Taylor expansion f(z) = 
En>o aw^n a>t 0. T/ien / has q-exponential growth of order (at most) k at infinity 
over C, if, and only if, the sequence (an) is q-Gevrey of order (—1/k). 

Proof. — The g-Gevrey order of a sequence was defined in paragraph 1.3.2 of the 
general notations, in the introduction. A variant of this result was given in [39, 
Proposition 2.1]. The proof shown below rests on the functional equation 6(qz) — 
qz6(z). 

If (an) is g-Gevrey of order (—A;), one has \ f(z)\ < C6(p \z\ ; l^l1^), which shows 
that / has (/-exponential growth of order (at most) k at infinity over C. 
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On the other hand, by Cauehy formula, one has: 

\an \ < min ( max 
MEZ \\z\=tA\q\m 

f(z)\fr \q\m)-n 

where \i > 0 is an arbitrary parameter. If / is an entire function with g-exponential 
growth of order (at most) k at infinity, one has \f(z)\ < C (e(z))k for all z G C*. 
Prom relation e(qrnz) = |g|m(m+1)/2 |z|m e(z), one draws, for all integers n > 0: 

Vi e N* , /_,• = (z^fj.! - hj)/a. • |-n+fc/2\m I ifcmV2 ^ 

Last, we note that the function 11-> AF loi kt2/2 reaches its minimum at t - In A 
fc ln|qr| 5 

with: 
minAt|fl|fet /2 = 
ten 

In2 A 
2k ln\g\ ^ 

Prom this, one deduces: 

(5.6) min Arn\Qfm 11 < 
MEZ 

fc In2 A lg 8 g 2fcln|q 

for all A > 0. Therefore, if we set A —d+r+d+ +d+r n+fc/2, we get the wanted g-Gevrey 
estimates for |an|, which concludes the proof. 

5.2. Asymptotics relative to a divisor 

In this section, we fix a divisor A := v\[\\) H h ^m[Am] and we write v := |A| = 
v\ + h • Without loss of generality, we make the following 

Assumption. — The complex numbers Xi are pairwise distinct and such that: 
(5.7) 1 < |Ai| < |A2| < ••• < |Am| < |çAi|. 

Definition 5.2.1. — Let / € BA. We write(2) / € AA and we say that / admits a 
q-Gevrey asymptotic expansion of level v (or order s := along divisor A at 0, 
if there exists a power series X̂ n>o anZn and constants C, A > 0 such that, for any 
e > 0 and any integer N > 0, one has, for some small enough R > 0 and for all 
z € S(A,e;R): 

(5.8) d+r+d 

0<n<N 
anzn C 

d+r 
|-n+fc/2\m I ifcmV2 

Recall that condition z G S(A, e;i?) means that 0 < \z\ < R and dq(z1A) > e; see 
definition 5.1.4. One sees at once that, if / G AA, its asymptotic expansion, written 
J(f)j belongs to the space of g-Gevrey series of level z/, whence the following linear 
map: 

J : < 4 C I i ; 1 / l / , f^J(f). 

2. The set was previously written AA,A, in our Note [45]. 
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(For the notation Cfz]] , see paragraph 1.3.2 of the general notations, in the intro­
duction.) In section 5.3, we shall see that this map is onto, providing a "meromorphic 
g-Gevrey version" of classical Borel-Ritt theorem. In order to get the surjectivity of J, 
we shall obtain a characterization of AA in terms of the residues along poles belonging 
to the divisor A. This description will be shared among the following two paragraphs. 

5.2.1. Asymptotics and residues (I). — When v = 1, divisor A reduces to [A] 
and the above definition coincides with the definition of Â {9' in [46,60]. After [46], 
one has / G A^ if, and only if, there exists an integer N G N, a q-Gevrey sequence 
(cn)n>N of order (—1) and a function h holomorphic near z = 0 such that, for any 
zeSl\\lO:\\Q-N\): 

d+r+d+r 
n>N 

z+ev 
z - q~nX 

+ h(z). 

In the sequel, we shall give a characterization of all elements of AA with help of its 
partial fraction decomposition along divisor A. 

Theorem 522. — Let f G BA. The following assertions are equivalent: 
(i) One has f G AA. 

(ii) There exists an integer N0 and v sequences (ai,j,n)n>N0 0- < i < m, 0 < j < vi) 
of q-Gevrey level (—v) and a function h holomorphic at 0 G C such that the 
following equality holds over the sector S (A, 0; \q-N°Xm\): 

(5.9) /(*) = 
n>N0 l<i<mO<j<Vi 

dr+d+r 
(z - Ai<rn)j+1 

+ h(z). 

Proof. — Recall that v := |A| G N*. Let / G BA. Under assumption (5.7), page 64 
about the Â , we can choose a real R > 0 and an integer Âo such that, on the one 
hand, one has |g_iVoAm| < R < \q~No+lXi \ and, on the other hand, / is defined and 
analytic in the open sector S (A, 0;R). Therefore, the only possible singularities of / 
in the punctured disk 0 < \z\ < R belong to the half ö-spirals A^_iVo_N, 1 <i < m. 
Proof of (i) (ii). — It will rest on lemmas 5.2.3, 5.2.4 and 5.2.5. 

Lemma 523. — We keep the above notations R, No, and moreover assume that f G 
AA. Then f has a pole with multiplicity at most vi at each point of the half q-spiral 

Proof. — Let n > No be an integer. When z tends to z^n := Xiq~none has 
dq(z,A) = |1 - ^ \Ui -> 0. Taking e := ^IFIAL and N := 0 in relation (5.8), defi­
nition 5.2.1, one finds: 

\iq-N°-Ndr+d 

sdd+r+dr 2C 
1 - Z 

Zi,n I 
dr+d 

which allows one to conclude. 
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Write Pi,n the polar part of / at point Xiq n: 

(5.10) Pi,n(z) = 
0<j<Vi 

dr++dr 
|-n+fc/2\m I f+ 

We are going to study the growth of coefficients with respect to index n when n 
goes to infinity. For that, we choose some small rj G (0, T ^ [ ) SO that, putting 
n,n := \Kq~n\?7, all the open disks D^n := {z G C | \z - Xiq~n\ < r^n} (1 < i < m, 
n > N0) are pairwise disjoint. Also write C? = d^D^n the boundary of disk D^n, 
with positive orientation. 

lemma 5.2.4. — Let IZN := f(z) - Y,k=o anZn, the N-th remainder of f. For all 
z G Cln, one has: 

(5.11) \Kn{z)\ < 
2C 

I 
7f 

{2A\Xiq-\)N \af'^\ 

where C and A are the constants in relation (5.8) of definition 5.2.1. 

Proof — Since rj < T ĴT^ , one has dq(z, [Xi]) = rj and dq(z, [Xj]) > 77 for j ^ i. One 
deduces that dq(z,A) > 7yMAX(̂ I?--̂ M) > ^ wmcn allows one to write, taking e := ^ 
in (5.8): 

\KN(z)\ 
2C 

v+r+d 
[N k|iVV(2,) lzlNt 

Relation (5.11) follows, using the fact that \z\ < (1 + 77) |A^"n| < 2 \\iq~n\. 

We now express the coefficients aijiTl in (5.10) with the help of Cauchy formula in 
the following way: 

d+r+d+r 
1 

2i7 Jc71 
f(z) (z-xiq-nydz, 

that is, for any integer N > 0: 

ée++dc+r 
1 

2i7T dr+d 
TlN{z) {z-Xiq-n)jdz 

Taking in account estimation (5.11) above entails: 

la,- ,• J < 2CV+1"" |A,0-"IJ+1 XNQN2'\ 

where X := 2A \Xiq n\ and Q := \q\ . Relation (5.6) implies that, if X < 1, then: 

mm(XNQN^2) < Q V 8 e - ï è S , 
dr+d+r+d 

which implies that: 

laij.nl < 2C^'+1-" |A^+1 |g|V(8")-ü+D» e 
v LN2(2A| AIQ~N I) 

2 IN |Q| 
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so that all the sequences (aij^n)n>N0 are g-Gevrey of level (—v). Thus, for each pair 
(i, j) of indexes, the series: 

SiAz) := 
n>N0 

&i,j,n 
(z - \iq-n)i+l 

converges normally on each compact subset of the sector S(A, 0). 
Last, if 0 < \z\ < R and if z £ Ui<i<m Kq~No+N, let us put: 

h(z) := f(z) -
l<i<m 0<jO 

dr++d+r+d 

From normal convergence of the series Sij(z) on every compact subset of S (A, 0), we 
draw: 

(5.12) h(z) = f(z) -

n>N0 l<i<m 

d+r+d+r 

Lemma 5.2.5. — The function h represents the germ of an analytic function at z = 0. 

Proof — Since all non zero singularities of / in the disk \z\ < R are necessarily sit­
uated on the union of half g-spirals Ui<i<m Kq~No^N and each Pitn(z) represents 
its polar part at each point Xiq~n of the latter, the function h has an analytic con­
tinuation to the punctured disk 0 < \z\ < R. Moreover, if Q := [jn>NoC(0; R\q\~n) 
denotes the union of the circles centered at z = 0 and with respective radii R\q\~n 
with n > No, all the series Sij(z) converge normally over £2, and therefore remain 
bounded on that family of circles. Besides, from proposition 5.1.5, / is also bounded 
on £2 because / G BA. It follows that h is bounded on £2, which entails the analyticity 
of h at z = 0. • 

Combining relations (5.10) and (5.12), we get decomposition (5.9) of/, thus achiev­
ing the proof of (i) => (ii). 

Proof of (ii) => (i). — It will rest on lemma 5.2.6. 

Lemma 5.2.6. — Let j G N, N G N and write HJ,N the rational fraction defined by 
relation: 

(5.13) 1 
(l -dr+d+r 

N-l 

n=0 

fn + p 
n 

\tn + nj,N(t). 

Let 6 > 0. IftEC satisfies |1 —1\ > 5, then: 

(5.14) \njtN{t)\<c% 
\t\N 

gy.0tt 
o+h+u 1 

2 - r 

d+d+d+r 

K r- 1 

,1 + r6< N 

v 1 + 6 
for all re (1,2). 
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Proof. — The relation (5.14) being trivially satisfied at point t = 0, we assume thai 
t ^ 0. Taking the j-th derivative for each side of relation j ^ - r^N+J-l 

D+R+ +drd+ TN+J 
1-t ' 

one finds: 

dr+d+r+d 
i tN+i\U) 

DR++D 

1 
2Î7T C(t,p] 

d+r+d 

1 - 5 
ds 

DR+D+D+E 

where C(£, p) denotes the positively oriented boundary of the circle centered at s = t 
and with radius p with p < |1 — \ \. One deduces that: 

(5.15) \Kj,N{t)\ < 
(l + p)N+* \t\N 

( | l - i | - p | t | V 

where p denotes a real number located between 0 and 11 — 11. 
If |1 - 1 \ > 6, with t = 1 + Reia (a G R), one gets: |1 - | | > ̂ dr+d > Choose 

p := i!± with r' G (0,1), so that \l-t\- p\t\ > |1 - t | (1 - r') > (1 - r') 5; re­
lation (5.14) follows at once (along with lemma 5.2.6) with the help of (5.15), with 
p := lr=M and r - r ' + lG (1, 2). • 

We shall now use lemma 5.2.6 to prove that (ii) => (i); by linearity, it suffices to 
check that a series of the form: 

(5.16) S(z) := 
n>0 

d+r+d 
(z - \q-ny+i 

defines a function in space where À = À; for some i G {1,2,..., m}, 0 < j < Vi 
and where (an) denotes a g-Gevrey sequence of order (—v): there are C, A > d+re0 such 
that: 

(5.17) Vn G N, \an\ < CAn |GR,/N(N"1)/2 . 

Let z G C* such that dq(z, A) > e; we have [A])1"1 > e, hence |1 - ^prrl > Vë. 
Let AT G N and apply to each term of the series S(z) formula (5.13) with t = 
to obtain formally S(z) = SN(Z) + RN(Z), where one puts: 

SN(z) := 
7V-1 

n>0 k=0 
OLn[ 

'k + p 
k 

|-n+fc/2\m I ifcmV2 z \k 
DD+D+R+D 

and: 
RN(Z) := 

n>0 
1 - ^prrl > Vëd+d+rd 

2 

df+W<+ 

Since (an) has g-Gevrey decay of order v (see (5.17)), we see that SN(Z) and RN(Z) 
are normally convergent series on any domain Q such that inf^n dq(z, [X]) > 0. 

Define: 

(5.18) A(z) := 
drdx 

s+s+e ,*(*) := 
n>0 

|û!n| ^ 
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Prom relation (5.17), one gets: 

\A(z)\<A(\z\)<C 
n>0 

• |-i/n(n-i)/2d+d+r+ d+r +d<Ce(Az:\q\v) 

On the other hand, one can express the series SN(Z) in the following way: 

(5.19) SN(z) = 
N-l 

n=0 
anzn, an := (-A) 3 n + p 

n 
)A(qj+1+n)\-n; 

besides, the relation (5.14) implies that, putting S := Sj/ë: 

(5.20) \RN(Z)\ < K5/M \z\N , K"%:= 
s+s+e+s 

A i+1+iv 6j+1 
1 - ^prrl > Vë 

with A(z) as in (5.18) and r G (1,2). 
To sum up, we have seen that, if dq(z, A) > e > 0 and 5 = uife, then: 

'S(z) -
N-l 

n-0 
an zn\ 1dr+d - ^prrl > Vë 

the coefficients an and K-'rN being defined as in (5.19) and (5.20) respectively. To 
conclude that S(z) admits J2n>o a^zU as a ^-Gevrey asymptotic expansion of level v 
in A at 0, it only remains to be checked that one can find Co > 0, AQ > 0 with: 

(5.21) mm K-N < 
r€(l,2) 

Co 
e 

AN \qfl{2») 

for all N G N and j = 0, . . . , Vi — 1. To do that, note that, after lemma 5.1.8 and 
relation (5.6), one finds: 

À(\q\j+1+N) < C ' ( 1 ^ - 4 ^ ) V 2 / ( 2 " \ 

where C" denotes a constant independent of N; this, along with definition (5.20) of 
KJ'N, entails (5.21) and we leave the details to the reader. The proof of theorem 5.2.2 
is now complete. • 

5.2.2. Asymptotics and residues (II). — After [46], for any / G AqX\ the func­
tion z \-> F(z) := 0(—j)f(z) is analytic in some punctured disk 0 < \z\ < \\q~N\, 
with (at most) a first order (/-exponential growth when z goes to 0, and such that its 
restriction to the ç-spiral [A] has at most a growth of (/-Gevrey order 0 (3). In order 
to extend this result to a general divisor A (with degree v > 1), we introduce the 
following definition. 

3. That is, there exists constants C, A > 0 such that, for any integer n ̂ > 0, one has \F(q nA)| < 
CAn. 
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Definition 52 J. — Let F be a function denned and analytic in a neighborhood of 
each of the points of the support of the divisor A near 0. 

1. We call values of F on A at 0, and write AF(0), the v (germs at infinity of) 
sequences: 

AF(0) := {(F^(A^-n))n»o :• 1 < % < m,0 < j < i/J, 

where F^' is the j-th derivative of F (with F^ = F) and where "n > 0" means 
"n great enough". 

2. We say that F has q-Gevrey order k along divisor A at 0 if all its values are 
g-Gevrey sequences of order k. 

3. We write F G EQ if F is analytic in a neighborhood of 0 punctured at 0, has 
g-Gevrey order v at 0 and ç-Gevrey order 0 along A at 0. 

To simplify, we shall write: 

(5.22) 0a(z) := 
m 

d+r 
0 -

z 
v+r 

d+r 

Thus, if / G BA, 0A/ represents an analytic function in a punctured disk 0 < \z\ < R. 

Theorem 5.2.8. — Let f G BA and F := 0A/. Then, / G AA i/ and only if F G E£. 

Proof — We prove separately the two implications. 

Proof of f G AA F G E£. — It will rest on lemma 5.2.9. 

Lemma 5.2.9. — Let A G C*, fc G N* and let g{z) := (0A(̂ ))fc /or z G C*. For £ > 0, 
consider the H-th derivative g^ of g. 

1. T/ie function has q-exponential growth of order k both at 0 and infinity. 

2. J/^ < A;, tfien gw(Xq~n) = 0 /or a// n G N; efoe, (0W(Atf~n))n>o is a q-Gevrey 
sequence of order k. 

3. Let n G Z and put u(z) := (z_9xq~n)k for a" ^ £ C* \ {Ag-n}. T/ien u has an 
analytic continuation at Xq~n, with: 

(5.23) UW(\q-n) = 
U + k)l 

k\ 
1 - ^prrl > Vë 

In particular: 

(5.24) u(Xq-n = (-l)in-1)k(q-1;q-1)% vr 
,XJ 

qkn(n+l)/2 

where (q 1;q x)oo = Ylr>0{^ - Q r *) (q-Pochhammer symbol). 

Proof — Writing gW as the sum of a power series in z and one in ^, one draws from 
lemma 5.1.8 assertion (1), because derivation does not affect the g-Gevrey character 
of a series. Assertion (2) is obvious. 
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The function u can be analytically continuated at \q~n, because 9\ has a simple 
zero at each point of the (/-spiral [A]; formula (5.23) comes by differentiating (£ + k) 
times the equality g(z) = u(z)(z—Xq~n)k1 while (5.24) follows from a direct evaluation 
using Jacobi's triple product formula (1.2). • 

We now come to the proof of the direct implication; that is, we assume condition (ii) 
of theorem 5.2.2. Since 9\h G Eg , by linearity, we just have to check that the series 
S(z) defined by relation (5.16) satisfies 9AS G EQ . To that end, put T(z) := 0A(z) S(z) 
for all £ G C* \ A(/~N; this clearly has an analytic continuation to C*. On the other 
hand, T^(Xifq-n) = 0 for all i' ^ i, £ < vv and n G Z. 

In order to evaluate T^(Ag~n), put A' := A - (j + 1)[A] and: 

To(z) := 

n>0 
dr+ 

prrl > Vë 

(z - À<rn)i+1 

one has T(z) — 6\>{Z)TQ{Z), where To is analytic on C*. First note that, if I < 
Vi — j — 1, one has T^\\q~n) = 0 for all n G N; when Vi — j — 1 < £ < Vi, using 
relation (5.23), we get: 

TM(VB) = a„ 
dr++d+r+ 

fc=c 

dr 

v+r 
trk\\q-n) 

(k + j+ 1)1 
d+r+dr 

1 - ^prrl > Vë 

where n G N, g = (ÖA)*7'"1"1- Taking in account assertions (1) and (2) of lemma 5.2.9, 

the sequences (0^rk\\q~n))n>o and (#^+,7+1H^/~n))n>o respectively have (/-Gevrey 
order [y — j — 1) and (j + 1), which implies that (T^\\q~n))n>o is bounded above 
by a geometric sequence, for (an)n>o has (/-Gevrey order (—v). 

Moreover, like #A, the function T has (/-exponential growth of order v at 0. Indeed, 
let a G (1, \q\) and put Ö := min|^|=a dg(z, [1]); one has ö > 0, so that: 

(5.25) max 
dd+d+r+d 

\S(z)\ < 
1 

dr+d+r 
n>0 

|an<?n| < oo 

This shows that S(z) stays uniformly bounded over the family of circles centered 
at 0 and such that each one goes through a point of the (/-spiral with basis aX. It 
follows first that the restriction of function T to the circles has (/-exponential growth 
of order v at 0; then that function T itself has such growth. To summarize, we see 
that T G EQ , whence F G EQ • 

Proof of F G EQ / G A .̂ — It will rest on lemma 5.2.10, which gives a minoration 
on 6 as in lemma 5.1.6. 

Lemma 52.10. — Let a > 0 and k G Z. Then: 

(5.26) min 10(2)1 > 
\z\=a\q\-k 

Ifa-1;*-1)™! 
0s#^+,7+1H^/~n))n>o 

0^rk\\q~n))n>+,7+1H^/~n))n>o 
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Proof. — Let z G C be such that \z\ = a \q\ k. Prom a minoration of each factor of 
the triple product formula (1.2), we get: 

min \0(z)\ > (q-1^-1)^ 
\z\=a\q\- i X A. 

n>0 

i-a\q\-n-k 1 -
e+e=+ds 

a\q\~k I 

d 
Ifa-1;*"1)«,! 

(kl-1; kl ^oo 
\0(-a\q\-k;\q\)\, 

yielding relation (5.26). 

Now we assume F G EQ . We put / := — and keep the notations R, No introduced 

at the beginning of the proof of the theorem (page 65); also, we choose a G (|Am|, R). 
According to relation (5.26), there is C > 0 and fi > 0 such that, if \z\ = aq~k and 
k > No, then \f(z)\ < C|z|M; that is, / has moderate growth at 0 on the circles 
\z\ = a \q\~h, k > No. 

Partial fraction decomposition of / at each point of A contained in the punctured 
disk 0 < \z\ < R, will produce an expression of the form (5.9), in which the coefficients 
aijin have g-Gevrey order (—v). Indeed, let: 

and (#^+,7+1H^/~ 
+er+n))n>od+rd 

dr 
®i,k,n • — 

0^rk\\q~n))n>o 
(fc + i/i)! 

then: 

n))n>oxd+r+ez 
dr+d 

dr++er dr+d+d+dn = 
Fi \n &i,i/i — l,n ®i,l,n 

n))n>o+dsxed 

n))n>o+xd 
—l,nn))n>o +s+e+xfc,n Oi,ẑ  — k,n 

©I,0,n 
According to relation (5.24), one finds: 

e*,o,n = («T1;«"1)^ (-Ai9-n)-" flAj(Ai) 
m 

3 = 1 

A, 
Ai/ 

J ^n(n-l)/2^ 

Since (i^ o,n)n>N0 nas </-Gevrey order 0, it follows that the sequence {oii^Vi—\i)n)n>NQ 
has g-Gevrey order (—v). As for the other coefficients c*i,j,n, 0 < J < — 1> since the 
sequences (0;,j,n)n>iVo an* have g-Gevrey order z/ (see lemma 5.2.9), one successively 
shows that the sequences (AI,i/i-2,n)n>JV0J • • • ? (°^ o n)n>iv0 all have ç-Gevrey order 
fmfm 

Last, note that after (5.25), the function P defined by: 

P(z) := 
n>N0 l<i<m0<j<v 

&i,j,n 
(z - Xtq-ny+i 

is uniformly bounded over the family of circles \z\ = a \q\~k, k G Z if a £ UKKWIM* 

Since / G BA, from proposition 5.1.5 we deduce that h{z) := f(z) — P(z) is analytic 
in some open disk 0 < \z\ < R and remains bounded over these circles, which implies 
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that h is holomorphic in a neighborhood of 0, achieving the proof of the converse 
implication and of theorem 5.2.2. • 

5.3. (/-Gevrey theorem of Borel-Ritt and flat functions 

The classical theorem of Borel-Ritt [27, chap. XI, §1] says that any formal power 
series is the asymptotic expansion, in Poincaré's sense, of some germ of analytical 
function in a sector of the complex plane with vertex 0 (the Gevrey version for dif­
ferential equations is to be found in §2 of the same chapter of [27]). We are going to 
prove a q-Gevrey version of that theorem involving the set of functions A^ and then 
give a characterization of the corresponding flat functions. 

5.3.1. Prom a (/-Gevrey power series to an entire function. — As before, let 
A = Yli<i<m +d+r+ d+r De a divisor and let 6A be the associated theta function given by 
the relation (5.22). 

Lemma 53.1. — Consider the Laurent series expansion ^2nez@nZn °/^A-

1. For all (k,r) G Z2, one has: 

(5.27) ßkv+r — 
dr+d 

d+rd 
q-k(k+l)u/2 ßr 

(The constant L is defined at the beginning of the proof.) 

2. For all n G Z, write Tn the function defined by: 

n))n>od+f+d+r+d 

£<n 
dr+d+r 

If j G {1 , . . . , m}, one has: 

(5.28) K„ , := SUD \z-nT„(z)\ < +oo. 
dr++dr 

Proof. — Prom the fundamental relation 0(qz) — qz6(z), one draws: 

eA(qz) = Lz1/0A(z), L:= 
m 

dr++d 

q y3 
d+r+d 

whence, for all k G Z: 

6A(qkz) = Lk zkv g*(*-iW2 0A(Z) 

The relation (5.27) follows immediately. 
Since z~n Tn(z) represents an analytic function over C* U {oo}, one obtains (5.28) 

by noticing that, if z G [Àj], then: 

TJz) = -
d+r 

3eze 

which implies that z n Tn(z) tends to zero as z tends 0 along the half-spiral A*(/ N. 
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Consider a g-Gevrey series / = J2n>o anZn €d+r+ d+r+ d+rd+dr+d with order \ jv and, for all 
£ G Z, put C£ := Y2n>o anßi-n- Set £ := kv + r with k G Z and r G Z, and write: 

dr+d+ 
dr+d 

J=0 M>0 
^mi/+j H(k—m)v-\-(r—j)* 

As we shall see now, the above infinite series converges when the integer — £ is large 
enough. Indeed, using relation (5.27), one gets: 

Ci(|i|krr)fc |g|-fc(*+1W2 (Iqgf++df 
q>—j+ku 

L 
q-m(m-l)v/2 m 

Since / has g-Gevrey order 1/z/, there exists C\ > 0, A\ > 0 such that |an| < 
Ci A7? |g|n(n-i)/(2i/) for aii n € N. One has: 

|ûmi/-j-j m)ẑ +(r— j) I — 

Ci(|i|krr)fc |g|-fc(*+1W2 (Iq^AiY \q\iU-m^) 
d+d+d+r+d+d 

\L\Ar 

m 

Therefore, if we set: 

c 2 ~ 
v-A 

3=0 
Aî|g|iu"1)/(2l/), 

then we find (£ = kv + r): 

lQ|<C1C2(|L(7-'-|)fc|(7|-fc(fc-lW2 

m>0 

Ci(|i|krr)fc |g|-fc(*+ 

d+d+r+d+r 

m 

It is easy to see that the last series converges if |#|^+^ < \L\A1 v\ moreover, when 
£ —> — oo, the sequence (Q) is g-Gevrey of level (—v). 

Proposition 5.3.2. — Let f := ^2n>0 anzn G CJzflg.-^ and let No be a negative integer 
such that any series defining ce converges for £ < No. Let F(z) := J2e<N0 c^'• ^en> 
dkdd +d 

Proof. — Since (Q) is a g-Gevrey sequence of order (—1/z/) for £ —» —oo, the sum F 
represents an analytic function in C* U {oo}, with ^-exponential growth of order v at 
zero. 

We are left to estimate F{z) and its derivatives along the spirals [Àj] belonging to 
the divisor A. Taking in account relation (5.27), one has: 

T_n_fcv(z) = {Lzv)-kq-k(k-1)v/2T-n(qkz). 

Therefore, when z G [A7], relation (5.28) allows writing F(z) in the following form: 

F(z) = 
s+s 

k>0 n=0 
Ci(|i|krr)fc |g|-fc(dkdkr dkr 
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and also: 

(5.29) F(z) = 
dr+d 

dr+d 

dr+d 

k>0 

L-kakl,+nq-^k-1^2TN^n(qkz). 

One deduces that F has moderate growth when z —> 0 along spirals [Xj] belonging to 
the divisor A. 

As for the derivatives F^\ along each spiral [Xj], with £ < Vj, one may proceed all 
the same: the function Tn^ is indeed bounded over [Xj] for all £ < Vj and one checks 
that relation (5.29) remains true up to order £, that is, if z G [Xj]: 

FW(z) = 
d+rd 

n=0k>0 
L~kakv+n g-*(*-D"/2 \zn TN^n(qkz)] W. 

5.3.2. The g-Gevrey theorem of Borel-Ritt. — The main result of this para­
graph is the following (4). 

Theorem 5.3.3 (ç-Gevrey theorem of Borel-Ritt). — The mapping J sending an ele­
ment f to its asymptotic expansion is a surjective linear map from the C-vector space 
Âq to the C-vector space CjzJ x ,v. 

Proof — Let / = En>o aw2n be a ç-Gevrey series of order \/v and let F be the 
function defined in proposition 5.3.2. Maybe at the cost of taking a smaller No, we 
may assume that formula (5.29) remains true for all z G C*; this being granted, one 
has: 

(5.30) F(z) = 

i>0 

^ae z£TNo-t(z). 

Put / := ^-,so that / G AA, after theorem 5.2.8. We are going to prove that / admits 
/ as an asymptotic expansion. To that aim, it is enough to show that, if À ^ A, one 
has: 

(5.31) 
d+r+dr 

lim fW(\q-n)=eia, 

for any integer £ > 0. 
Since |T/v0-n(^)| < e\(z) and |#A(Z)I ~ £A{Z) (see lemma 5.2.10), relation (5.30) 

immediately leads us to the limit (5.31) for £ = 0. If £ > 1, one has: 

f{i\z)=: 
dr 

n>0 j=0 
dr 

d 
dr+ 

vr 

d+r+d 
Z J TNo_n(z) 

0a(z) 

d+rd 

4. Theorem 5.3.3 is proved with the help of theorem 5.2.8, where we gave conditions for a function 
to have a certain type Taylor expansion; here, we deal with the surjectivity of the "Taylor expansion 
mapping". 
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Through direct estimates, one gets the limit (5.31) (omitted details are left to the 
reader). • 

The theorem 5.3.3 can also be interpreted with help of interpolation of a q-Gevrey 
sequence by entire functions at points in a geometric progression. Indeed, if / G 
is asymptotic to the g-Gevrey series J2k>o akzk °f level v-> then, from the decomposi­
tion (5.9), one draws: 

CLk = 
n>N0 l<i<mQ<j<Vi 

dr++d+r 
dr++dr 

j 
fd+d+d 

(Xiq-n)k+j+1 dr+d++r 

where hk denotes the coefficient of zk in the Taylor series of h. Put: 

fdY \q\iU-
n>N0 

&i,j,n Z 

then: 

(5.32) d+r+d 
I<i<m 0<j<Vi 

'k+j 
j 

(_l)i+l 

d+r+d+rd 
C+1W2 (Iq^AiY \q\iU-

Corollary53A. — Let (an) be a q-Gevrey sequence of order v and let A = 
E i < K m ^ M be a divisor of degree v := v\ + ••• +Ci(|i|krr)fc |g|TAen, £/iere existe v 
entire functions Aij, 1 < i < m, 0 < j < V{ satisfying the following properties: 

1. Each function Aij has q-exponential growth of order (at most) v at infinity. 

2. There exists C > 0. A > 0 such that, for all n G N; 

;5.33) dr+d 
l<i<m 0<j<v>i 

n + f 
3 

(_l)i+i 
é+z+e 

^,i(çn+J + 1 < C A N 

Proof. — The functions Aij are defined by replacing Âo by max(0,A^o) in defini­
tion (5.32); one then uses relation (5.32) to get the bounds (5.33). • 

Note that if A is solely made of simple spirals (yi = 1), then corollary 5.3.4 spells 
as follows: 

d+d+re 
\<i<v 

A~n_1 AAqn+l <CAn, 

where C > 0, A > 0 and where the Ai are v entire functions with ^-exponential 
growth of order at most v at infinity. In other words, one can interpolate a q-Gevrey 
sequence of order z/, up to a sequence with at most geometric growth, by v entire 
functions on a half-spiral AtfN. 
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5.3.3. Flat functions with respect to a divisor. — In the proof of theorem 5.3.3, 
function F was defined up to a function of the form where P is a polynomial in 
z and z~x. We shall see that, if h denotes a meromorphic function at z = 0, then 

represents a function with trivial asymptotic expansion, that is, ^ G Ker J with 
notations from theorem 5.3.3. 

Theorem 5.3.5. — A function f G is flat, i.e., has trivial expansion, if, and only 
if 0\f is meromorphic in a neighborhood ofO G C. 

Proof — If / G has trivial asymptotic expansion, then, for all e > 0 and z G C* 
with small enough modulus: 

(5.34) d a ( z , A ) > € = > \ f ( z ) \ d r + d f 
cdr 

e 

Ci(|i|(Iq^AiY \q\iU-

for any integer N > 0. Using relation (5.6), one deduces that 6^f has moderate 
growth at zero, thus is at worst meromorphic at z = 0. 

Conversely, note that if f(z) = ßjfy with h(z) = 0(zß), fi G Z, then lemma 5.1.6 
entails the following relation for all z with small enough modulus: 

dq(z,A)>e>0=>\f{z)\ 
M 

e 
\zf 

m 

3=1 
e 

Zdr+d+rd 
drd+d 

where M denotes a constant > 0. But for any integer n G Z: 

ez) = 

d+rd 

, rfc(fc-L)/2 , ,* j ,-n(n-l)/2 , ,N 

so that: 

(5.35) 
m 

d+r+d 

d Z 
XJJ 

C \\A\\-n U ™ ^ - 1 ) / 2 \ z r v n 

One thereby gets an estimate of type (5.34) for / , for a sequence of integral values of 
N, with N = fi, + vn, n —» +oo and, as a consequence, for all integers N > 0: this 
achieves the proof of the theorem. • 

Corollary 5.3.6. — Let f\,f2 G A£. Assume that f\ et f<i have the same asymptotic 
expansion. Then f\ = f2 if and only if one of the following conditions is satisfied: 

1. One has fi(zn) = f2{zn) for some sequence of points (zn) tending to zero outside 
of divisor A. 

2. On some spiral [Xi] belonging to divisor A: 

lim (z - X^Y* i 
z-^Xiqn 

dr+d+r lim 
dr+d+r 

(z - xiQnr H z ) 

as n -» -CO. 

Proof — Immediate. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



78 CHAPTER 5. SUMMATION AND ASYMPTOTIC THEORY 

5.4. Relative divisors and multisummable functions 

Theorems 5.3.3 and 5.3.5 show that, for each divisor A with degree v G N*, the 
datum of a g-Gevrey series of order \jv is equivalent to the datum of an element 
in space A^ together with a function of the form for some h G C({z}). When 
studying g-difference equations, we shall observe that the function h in the correction 
term will have to be determined in some space of asymptotic functions similar to 
A^, and that is why we are now going to define a notion of asymptoticity involving 
more than one divisor level. 

5.4.1. Relative divisors and two levels asymptotics. — Let A', A be 
two divisors. Assume that A' < A, meaning that A' = ^K-^m^M' 
A = Ei<Kmdr++d+r+ d+r 0 < ^ < I/., i/» > 0 and that |A| > |A'|. 

Definition 5.4.1. — Let A' < A and let F be a function defined and analytic in a 
neighborhood of each point of the spirals in the support of A near 0. 

1. We call values of F over the relative divisor A/Af at 0, and we write (A/A/)F(0), 
the |A| — |A'| (germs of) sequences: 

(A/A')F(0) := (F<0(A,?-B))„™ : 1 < i < m, v[ < j < Vi >. 

2. We say that F has q-Gevrey order k over A/A' ai 0 if all its values there con­
stitute q- Gevrey sequences of order k. 

3. Let A = Ai -f A2 and A' = Ai. We write F G Ê Vi Aa) if F is analytic in a 
neighborhood of 0 punctured at 0, has g-Gevrey order |A| at 0, has g-Gevrey 
order | A2I along A/A2 at 0 and has q- Gevrey order 0 along A2 at 0. 

We get the following generalization of theorem 5.2.8. 

Proposition 5.42. — Let Ai < A = Ai + A2. One has the following decompositions: 

EfAl ,A2)=E£2+0AX\ 
1 

0A E(Ai,A2) n »A = AAl + 1 
0A, K2-

Proof. — We shall only check the first decomposition, the second one following im­
mediately with help of theorem 5.2.8. 

Let A2 = Y7=i "iM. with M ^ [V] for * ̂  ï. Let F e Ê Ai>Aa). Since F has 
o-Gevrey order 0 over A2 at zero, one gets the following Taylor expansion: 

(5.36) F(z) = 
m Vi —I 

n»0 i=0 j=0 

F^(\iq-n) 

ßdrd 
CW2 (Iq^AiY \q\iU-

where the convergence of these series for n >̂ 0 comes from the fact that each 
sequence (i^(^i3~n))n>o is bounded. Let f2 :— and F\ := and put 
F2 := 6KoU2 — F1)] one has F = F2 + 9a2 F\ and F2 is the function represented by the 

ASTÉRISQUE 355 



5.4. RELATIVE DIVISORS AND MULTISUMMABLE FUNCTIONS 79 

triple summation in the expansion (5.36). After theorem 5.2.8, one has (/2 — G A 2̂ 
and F2 G Eq2. 

There remains to check that F\ G Eg1. First note that R\2 has order at least Vi 
at each z = \iq~n for n >̂ 0, which implies that F\ represents a germ of analytic 
function in a punctured neighborhood of z = 0. Moreover, since the values of F 
over the relative divisor A/A2 at 0 have g-Gevrey order | A21, the same is true for the 
function R\2 because F2 has g-Gevrey order |A21 at zero. Using lemma 5.2.10, one 
finds at last that F\ G Eq 1, achieving the proof of the theorem. • 

Note that: 

K1 A*1 1 
9A1 

< 2 , 

the inclusion being strict for a non trivial divisor A2. 

5.4.2. Multisummable functions. — More generally, let 

Ai < Ai + A2 < • • • < Ai + A2 H h Am = A. 

For i from 1 to m + 1, put 

A>i := A3 
<j>i J 

and A<i := A3 
j<i J Also, we will write A>m+i = A<o — O, where O stands for the null divisor, and 

A>0 = A<m = A. For short, we shall call (Ai, A2,..., Am) an ordered partition of A. 

Theorem 5A3.— Let (Ai, A2,..., Am) be an ordered partition of A and define 
Ê Vi À2 A^ as the set of functions that are analytic in a punctured neighborhood 
of 0, have q-Gevrey order |A| at 0 and, for i from 1 to m, having q-Gevrey order 
|A>i+i| over A>i/A>i+i atO. Then, one has: 

EfAl,A3,...,ATO) = Eom +0A>M<M-1 + ... + eA X 1 -

In other words, writinq O; AI,A2,...,AM) UA^(AI,A2,.-,AM)^ FLBA, one has: 

of* A2,...,AM) d+r+d+r 
1 

d+r+d 
A£2 + drd 

1 

ÖA<M_1 
d+rd 

Proof. — One proceeds by induction on the length m of the partition of divisor A: 
the case m — 1 is theorem 5.2.8 while the case m = 2 is dealt with in proposition 5.4.2. 
The other cases follow directly from the next lemma. • 

Lemma 5.4.4. — Letm> 2. Then: 

^(A!,A2,...,AM) 
Ci(|i|2 (Iq^AiY \q\iU-

(Ai,A2,...,Am_iJ 
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Proof. — Let F G ÊVI Â2 A^. As in equation (5.36) in the course of the proof 
of proposition 5.4.2, one considers the Taylor expansion of F along the divisor Am, 
thereby finding that F G EQm + öAMÊ 21,...,AM_L). • 

Definition 5.4.5. — We call 0^VI À2 A^ the set of multisummable functions at 0 
with respect to partition (Ai, A2,..., Am) of divisor A. 

By convention, we will set := C{z}, the ring of all germs of analytic functions 
at z = 0. 

Proposition 5.4.6. — The sets ^£AltA2i_iAm) and ®FAl?A2,...,Am) have a structure of 
module over C{z} and are stable under the q-difference operator aq. 

Proof. — Immediate. • 

If m > 2, an element / G 0^VI À2 A^ generally has no asymptotic expansion in 
the sense of definition 5.2.1. Nonetheless, according to theorem 5.4.3, there exists a 
fi G such that f(z) - fi(z) = 0( eA\z) ) as z ~^ 0 outside of A, which allows one 
to prove the following. 

Theorem 5A.7. — To each f G 0^VI A2 A ^ there corresponds a unique power series 

f = J2n>oanZn ^ ^Wg-l/iAi I satisfying the following property: for all R > 0 near 
enough 0, there are constants C, A > 0 such that, for all e > 0 and all z G S (A, e; R): 

(5.37) f(z) -
n-l 

£=0 
ai zl < C 

€ 
An I |«2/(2|Ai|) , r 

Proof. — Applying theorem 5.4.3 to the function / , one gets: 

/ = / i 4 
d+r 
oAl 

+ ••• + 
fm 

#A<m-l 
where fi G Â  * for all indexes i from 1 to m. Choose R > 0 in such a way that the 
fi6Ai have an analytic continuation to the punctured disk 0 < \z\ < 2R\ from the 
definition of each space A^, one has: 

dq(z,Ai) > e \fi(z)\ . Ci 
e 

for all z such that 0 < \z\ < i?, where Ci is some positive constant. On the other hand, 
from lemma 5.1.6 and relation (5.35), one has, for anv divisor A' = Ai, . . . , A<m_i : 

dq(z,A') > e • 
1 

\0k>(z)\ 

a 

e 
CdW2 (Iq^AiY \q\iU-

for all integers n > 0, where C and A' are positive constants depending only on the 
divisor A'. Noting that dq(z,A) < dq(z,Ai)dq(z,A<i-i) for i = 2,... , m, one gets 
that, for all integers n > 0: 

(5.38) D , ( Z , A ) > E = = > | / ( 2 ) - / i ( * ) | 
, Ci 

e 
An ,1^/ (21^1) , ,N 

as long as 0 < \z\ < R. 
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Relation (5.38) implies that both / and fi have / as an asymptotic expansion in 
the classical sense (Poincaré) at 0, outside of divisor A'. Since f\ is asymptotic to / 
in the frame of space A^1, one has / G CHg.i/lAil- The bounds (5.37) are directly 
obtained from (5.8) and (5.38), using the obvious relation dq(z, A) < dq(z, Ai). • 

It is clear that a function / satisfying (5.37) does not necessarily belong to the 
space 0^Ai Ä2 Amy To simplify, we shall adopt the following definition. 

Definition 5.4.8. — When / and / satisfy condition (5.37), we shall say that / admits 
f as an asymptotic expansion at 0 along the divisors (Ai,A). If moreover / is the 
null series, we shall say that / is flat at 0 along divisors (Ai, A). 

The following result is straightforward from definitions 5.2.1 (page 64) and 5.4.8. 

Proposition 5.4.9. — Let Ai, A' and A be divisors such that Ai < A' < A. Iff G A^', 
then its expansion along Af is also the expansion of f along (Ai, A). 

Proof — Immediate. • 

5.5. Analytic classification of linear g-difference equations 
We now return to the classification problem, with the notations of chapter 3. In 

particular, we consider a block diagonal matrice Ao as in (3.1) page 31, and the 
corresponding space .F(JPI, . . . , Pk) of isoformal analytic classes within the formal 
class defined by Ao. 

The space of block upper triangular matrices Au as in (3.2) page 32 such that 
moreover each rectangular block Uij belongs to Matri,rj(ifMi,Mj) (according to the 
notations of the beginning of subsection 3.3.1) will be written for short CA0- It follows 
from proposition 3.3.4 that sending Au to its class induces an isomorphism of CA0 
with F{Pu...,Pk). 

Let A G CA0 et consider the conjugation equation: 

(5.39) (crqF)Ao = AF; 

We saw in the first part of 3.3.3 that this admits a unique solution F = (Fij) 
in <5(C[[z]]). After J.P. Bézivin [8], this solution satisfies the following g-Gevrey 
condition: 

Vi < j , Fij € Matri>rj ( C H ^ . ^ . J . 

In this section, we shall first prove that the formal power series F is multisummable 
according to definition 5.4.5. We shall deduce the existence of solutions that are 
asymptotic to the formal solution F at zero along divisors (Ai, A) (see definition 5.4.8). 
Last, in 5.5.2, we shall prove that the Stokes multipliers make up a complete set of 
analytic invariants. 
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In the following, a matrix-valued function will be said to be summable or multi-
summable or to have an asymptotic expansion if each coefficient of the matrix is such a 
function. In this way, we will be led to consider spaces <5(A£), Matni>n2(0^i Am))> 
etc. 

5.5.1. Summability of formal solutions. — Consider the equation (5.39) and 
keep the notation (3.2). To each pair (i, j) such that i < j , we associate a divisor 
Aij with degree \x3- — we assume that A^+ij < A^- < A*j+i, meaning that 

= YjeZi &i,e+i- Put Aj := Aj-itj and A := X^L2 A ;̂ then Aitj = $^=*+i Aj and 
|A| = ßk — Mi- By convention, we write A^ = O, the null divisor. 

In order to establish the summability of the formal solution F, we need a genericity 
condition on divisors. 

Definition 53,1. — Let AQ be as in (3.1) and let A be a divisor of degree |A| = iik—p-i-
A partition (Ai,.. . , Am) is called compatible with AQ ifm = k—1 and if, for i from 1 to 
(k— 1), one has |A$| = ßi+i — w h e n this is the case, the partition is called generic for 
AQ if it moreover satisfies the following non-resonancy condition: ||A |̂| ^ ^-(mod) qz 
for any eigenvalues of Ai and aj of Aj, j > i. 

The following theorem makes more precise the result [53, Theorem 3.7]. Here, we 
prove that the unique meromorphic solution F = Fç/il^_^k_1y found by both meth­
ods, is asymptotic to the unique formal solution F, in the sense of definition 5.4.8). 
Moreover, its construction is different [62] and uses the theorem of Borel-Ritt 5.3.3. 

Remark 5.5.2. — The two approaches can be compared with help of the following 
dictionary (see also subsection 6.1.1): 

Here [53] 
partition summation divisor 
compatible adapted 
generic allowed 

Theorem 5.5.3 (Summability). — Let A G CA0, let K be a divisor and (Ai,. . . , Afc_i) 
a generic partition of A for AQ. For i < j , put Aij := YjeZÎ Then the 
conjugacy equation (aqF)Ao = AF admits a unique solution F = (Fij) in 0 such 
that Fij G Matri,ri(0^^Aj_x) for i < j 

Proof. — Take A in the form (3.2). The conjugacy equation (5.39) is equivalent to 
the following system; fori < i < j < k: 

z^-^(aqFij)Aj = AiFij + 
3 

d+r+dr 
UuFij. 

After J.P. Bézivin [8], we know that the formal solution Fij has g-Gevrey order 
l/(fjij - fJLj-i) for i <j. 
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Let 1 < j < k and consider the formal solution Fj-\j of equation: 

(5.40) Ci(|i|krr)fc |g|-fc(*+1W2 (Iq^AiY \q\iU-
After the theorem of Borel-Ritt 5.3.3, there exists a function $j-ij G A Ĵ_1 with 
Fj-ij as an asymptotic expansion at zero. Putting Y — Z+$j-ij in equation (5.40), 
one gets, from theorem 5.3.5: 

zn-n-i (a„Y)A4 — A,-_i Y -
dr++dr 

OA,-! 

where Hj-ij denotes a meromorphic function in a neighborhood of z = 0. Putting 
Z := x 

dr+d one finds: 

Ci(|i|krr)fc |g|-fc(*+1W2 (Iq^AiY \q\iU-

By the non-resonancy assumption, this yields a unique solution that is meromorphic 
at z — 0. It follows that the equation admits a unique solution in class AgJ_1 which 
is asymptotic to the series Fj-\j; the uniqueness is obvious. This solution will be 
written Fj-ij. 

Now consider the equation satisfied by Fj-2j' 

(5.41) zH-H-2{aY) Ai = Ai-2 Y +d+r+d+r+d+r (Ui-ij-iFi-u + Ui-2,i). 
Choosing a function $7-2 ? in AgJ 1 with K-27 as an asymptotic expansion, the 
change of unknown function Y Z+&i-2.i 

0A.-1 
transforms (5.41) into: 

IIA,-! II zW-i-W-a laY\ AH = AH-O X + HH-0 H. 
where Hj-2j is a function meromorphic at z — 0. We are thus led back to a similar 
situation as in equation (5.40), with fij-i — instead of jij — n3-\. One thus gets 
a solution of (5.41) in OAJ_25Aj._1 which is asymptotic to Fj-2j along the divisors 
(Aj_2, Aj_i +Aj_2). By considering the associated homogeneous equation, one checks 
that this solution is unique. 

Iterating the process, one shows that there is a unique solution Fij in 0At^^Aj_i 
which is asymptotic to the formal solution F^ for all i < j . • 

Theorem 5.5.3 can be extended in the following way. 

Corollary 5.5.4. — Let B1,B2 G &{C{z}) be such that (A0)_1 B{ G &(C{z}), i = 1, 
2, and consider the associated a-difference equation: 

(5.42) (aqY)B1 = B2Y 

Then, for any given generic partition of divisors (Ai,.. . , A^_i) for AQ, there exists, 
in &, a unique matrix solution Y := (Yij) of (5.42) and such that, for each pair i < j 
of indices, Yij G Matri,rj (0AiJA. ). 
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Proof. — Recall that (5.42) is analytically conjugated to an equation of form 
(5.39); see section 2.3. The result follows from proposition 5.4.6 and the fact that 
Û T L . A - . c O ^ X for all ^ j . • 

An obvious consequence of theorem 5.5.3 and corollary 5.5.4 is the following. 

Theorem 5.5.5 (Existence of asymptotic solutions). — The functions F = (Fij) and 
Y = (Yij) respectively considered in theorem 5.5.3 and corollary 5.5.4 both admit an 
asymptotic expansion in the following sense: for all pairs (i,j) with i < j , the blocks 
Fij and Yij have an asymptotic expansion at 0 along divisors (Aj,Aij), according to 
definition 5.4-8. 

Proof. — Immediate, with help of theorem 5.4.7. • 

5.5.2. Stokes phenomenon and analytic classification. — Write F^ Afc ^ 
the solution of (5.39) obtained in theorem 5.5.3, which can be seen as a sum of 
the formal solution F with respect to generic partition (Ai,.. . , Afc_i). One thereby 
deduces a summation process of F with respect to each generic partition of divisors 
for Ao; we shall denote: 

FA '• (Ai,.. . , Afe_i) I-> F(A A ,. 

The g-analogue of Stokes phenomenon is displayed by the existence of various "sums" 
of F. 

Proposition 5.5.6. — In theorem 5.5.3, one has A = AQ if, and only if, the map JrA 
is constant on the set of generic partitions of divisors for AQ. 

Proof. — If A = AQ, the formal solution boils down to the identity matrix, which 
plainly coincides with F^ Afe ^ for any compatible partition (Ai,.. . , Afc_i). 

On the other hand, if A ^ AQ, the polynomial Uij in (3.2) are not all 0. To begin 
with, assume that UJ-IJ ^ 0 for some index j . Since Fj-ij diverges, its sum along 
divisor Aj will be distinct from its sum along any different divisor. More generally, 
when Uij ^ 0, the solution F^ Afcl) will depend in a one-to-one way on divisor 
AJ; details are left to the reader. • 

For any À G C*, let [À; q : AQ] be the ordered partition of divisors generated by the 
spiral [A; q] in the following way: 

[A; q : AQ) := ((/x2 - /ii)[A; q), (/i3 - M2)[A; ? ] , . . . , (/x/k - Mfc-i)[*; q]) , 

where /JLJ are as in (3.1), i.e., AQ = diag (zMl A\,... ,z^kAk). 
If [A; q : AQ) is generic with respect to AQ, we will write A G {Ao} and say that A 

is generic for AQ. 
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Theorem 5.5.7 (Stokes phenomenon). — Fix some A0 G {A0} and for any A G {A0} 
and A G CA0 , set: 

St\0(\]A) := (F(xQ.q:Ao]) 1 Ffi.q:Ao]. 
The following conditions are equivalent. 

1. There exists A G {-Ao} such that [X;q] ^ [Ao;g] but St\0(\;A) = Id. 
2. For all A G {^o}, the equality St\0(\;A) = Id holds. 
3. One has A = Ao. 

Proof — It follows immediately from proposition 5.5.6 • 

In the previous theorem, each StA0 (A; A) represents an upper-triangular unipotent 
matrix-valued function that is analytic in some disk 0 < \z\ < R except at spirals 
[A;ç] and [Ao;g]; moreover, it is infinitely close to the identity matrix as z -> 0. If 
Y := StA0(A; A) — In, then Y is flat at zero and satisfies the relation: 

(aqY)Ao = AoY. 

Theorem 5.5.7 implies that each matrix A chosen within the isoformal class CA0 
reduces to the normal form Ao whenever the Stokes matrix Sta0 (A; A) becomes trivial 
for some couple of generic parameters Ao, A such that A ^ Ao mod qz. 

We shall now show that for any given pair of generic parameters Ao, A that are 
not g-congruent, the data {StA0(A; A), Ao} constitutes a complete set of analytical 
invariants associated to the g-difference module determined by A. 

Indeed, the notation StA0 (A; A) introduced for any A G CA0 can De naturally gen­
eralized for any matrix B G <Ô(C{z}) that belongs to the same formal class as Ao. To 
simplify, assume that (AQ)~1B G 0(C{z}); this is for instance the case if B is taken 
in Birkhoff-Guenther normal form (definition 3.3.6). Prom corollary 5.5.4 it follows 
that the corresponding conjugacy equation: 

(aqY)B = A0Y 

admits, in 0, a unique solution in the space of multi-summable functions associated 
to any given generic ordered partition of divisors [A; q : Ao]. Thus, we are led to the 
notations F\\.Q.AQ] anô  StA0(A; B) as m the case of A G CA0-

Corollary 5.5.8. — Suppose that B\ and B2 are two matrices such that (Ao)~lBi G 
0(C{z}). Then the following assertions are equivalent. 

1. There exists (Ao,A) G {A)} x {A)} such that [\',q\ ^ [Ao;#] but St\0(\\B\) — 
StXo(X;B2). 

2. The equality St\0(\] B{) = St\0(\; B2) holds for all A0, A G {Aq}. 
3. The matrices B\ and B2 give rise to analytically equivalent q-difference modules. 
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Proof. — The only point to prove is that (1) implies (3). To do that, notice that 
from (1) we obtain the equality 

d+r+d 
[X0;q:A0] 

TB1 
X0;q:A0] 

-1 CB2 
[A;g:A0] 

(tBI 
d+r+d 

— ± 
in which the left hand side and the right hand side are both solution to the same equa­
tion (5.42). Since these solutions are analytical in some disk 0 < \z\ < R except maybe 
respectively on the ç-spiral [Ao;#] or [\\q] and that they have the same asymptotic 
expansion at zero, they must be analytic at z — 0 and we arrive at assertion (3). • 
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C H A P T E R 6 

G E O M E T R Y OF T H E S P A C E OF CLASSES 

In this chapter we describe to some extent the geometry of the space T(Mo) of 
analytic isoformal classes in the formal class Mo- In subsection 3.3.2, we already used 
the Birkhoff-Guenther normal form to find coordinates on .F(Mo). Here, we rather 
use the identification of T{MQ) with iJ1(Eg, A/(Mo)) proved in theorem 4.4.1 and 
completed in section 5.5. The description given here will be further pursued in a 
separate work [50]. 

6.1. Privileged cocycles 

In "applications", it is sometimes desirable to have explicit cocycles to work with 
instead of cohomology classes. We shall now describe cocycles with nice properties, 
that can be explicitly computed from a matrix in standard form. Most of the proofs of 
what follows are consequences of theorem 5.5.3. However, they can also be obtained 
through the more elementary approach of [53], which we shall briefly summarize here 
in subsection 6.1.1. 

Fix Ao as in (3.1) page 31 and let Mo be the corresponding pure module. All 
notations that follow are relative to this Ao and Mo. Recall from section 1.3 at the 
end of the introduction the notations ä G Eg for the class of a G C* and [a;q] := 
aqz for the corresponding g-spiral. Also recall from paragraph 1.3.1 the function 
9q, holomorphic over C* with simple zeroes on [—l\q] and satisfying the functional 
equation o~q6q = z6q. 

6.1.1. "Algebraic summation". — To construct cocycles encoding the analytic 
class of A G GLn(C({z})), we use "meromorphic sums" of FA> These can be obtained 
either by the summation process of theorem 5.5.3, or by the "algebraic summation 
process" of [53]. We now summarize this process. We restrict to the case of divisors 
supported by a point, since it is sufficient for classification. 
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Let A as in (3.2) (we do not assume from start that it is in Birkhoff-Guenther nor­
mal form). We want to solve the equation aQF = AFAQ1 with F G &AQ meromorphic 
in some punctured neighborhood of 0 in C*. Since A, Ao, A-1, AQ1 are all holomor­
phic in some punctured neighborhood of 0 in C*, the singular locus ̂  of F near 0 
is invariant under g_N: it is therefore a finite union of germs of half g-spirals aq~N 
(the finiteness flows from the meromorphy of F). If we take A in Birkhoff-Guenther 
normal form (définition 3.3.6), the functional equation aQF — AFAQ1 actually allows 
us to extend F to a meromorphic matrix on the whole of C* and its singular locus is 
a finite union of discrete logarithmic g-spirals [a;q\. 

To illustrate the process, we start with an example. 

Example 6.1.1. — Setting AM := z~*u),withu G C({z}), and F = ( J {), we saw 
that AU = F[A0] 4=> zo~qf — f = u. This admits a unique formal solution / , which 
can be computed by iterating the z-adically contracting operator f \-> —u + zaqf. If 
A is in Birkhoff-Guenther normal form, u G C and / = —u M (the Tshakaloff series). 
We want / to be meromorphic on some punctured neighborhood of 0 in C*, which 
we write / G .M(C*,0), and to have (in germ) half g-spirals of poles. For simplicity, 
we shall assume that u is holomorphic on C*, so that / will have to be meromorphic 
on the whole of C* with complete (/-spirals of poles. We set 0qiC(z) := 9q(z/c), which 
is holomorphic on C*, with simple zeroes on the g-spiral [—c; q] and satisfies the 
functional equation crq6q^c — (z/c)9q,c. We look for / with simple poles on [—c\q\ 
by writing it / = g/0q,c and looking for g holomorphic on C* and satisfying the 
functional equation: 

Z(J„(q/6„ r) — (Q/On r) = U CO~nQ ~ Q — u6n r 
Vn G Z , (cqn - l)gn = [uOq,c]n, 

where we have introduced the Laurent series expansions g = ^2neZ gnzn and uOq,c = 
J^n^vluQa c\nZn. If c 4 0Z, we get the solution: 

fc-
1 

Vq,c dr+d 

[U0q,c\n „n 
cqn - 1 

This is clearly the unique solution of zo~qf — f = u with only simple poles on [—c; q], 
a condition that depends on c only and justifies the notation fc. We consider it as 
the summation of the formal solution f in the "authorized direction of summation' 
c G Fiq. Accordingly, we write it Scf- The sum Scf is asymptotic to / (see further 
below). Note that the "directions of summation" are elements of ~Eq = C*/qz which 
plays here the role of the circle of directions S1 := C*/R?j_ of the classical theory. 
Also note that all "directions of summations" c G Eg are authorized, except for one. 

1. In the context of g-difference equations, the singular locus of a matrix of functions P is made 
of the poles of P as well as those of P_1. For a unipotent matrix, like F, these are all poles of F 
since F_1 is a polynomial in F. 
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Returning to the general equation F[AQ] = A aQF = AFAQ , we want to look 
for solutions F that are meromorphic on some punctured neighborhood of 0 in C*, 
and we want to have unicity by imposing conditions on the half ^-spirals of poles: 
position and multiplicity. Thus, for / G A^(C*,0), and for a finite family (ai) of 
points of C* and (rii) of integers, we shall translate the condition: "The germ / at 0 
has all its poles on (J[a^; q], the poles on [a*; q] having at most multiplicity by an 
inequality of divisors on E0: 

d ivEq( / )>- d+r+dr 

We introduce a finite subset of E0 defined by resonancy conditions: 

£U0 : = 
l<i<j<k 

Si j , where Sij := v(-a) G E„ I qza^Sv(Ai)nqza^Sv(Ai) 4 0 

Here, Sp denotes the spectrum of a matrix. 

Theorem 6.12 ("Algebraic summation") — For any matrix A in form (3.2), and for 
any "authorized direction of summation" c G Eg \ EA0 , there exists a unique meromor­
phic gauge transform F G <&A0(M(C*,0)) satisfying: 

F[AQ] = A and div^q(Fij) > -(ßj - /i;)Fc] for 1 < i < j < k. 

Proof — See [53, theorem 3.7]. 

Of course, div^ (fij) > — (ßj — cj means that all coefficients / ol the rectan­
gular block Fij are such that divEq (/) > — (ßj — ßi)[—c\. The matrix F of the theorem 
is considered as the summation of FA in the authorized direction of summation c G Eg 
and we write it SCFA-

It is actually the very same sum as that obtained in theorem 5.5.3. Indeed, using 
notations from subsection 5.5.1, if one requires the divisors Â  to be supported by 
a single point c G Eg, the genericity condition of definition 5.5.1 translates here to: 
c G Eg \ EA0> as one sees by using the dictionary provided in remark 5.5.2. Then, 
from the same dictionary, one draws that the conditions on the sum guaranteed by 
the conclusion of theorem 5.5.3 immediately imply the conditions on SCFA guaranteed 
by the above theorem, and the unicity in the above theorem allows one to conclude. 
As a consequence of subsection 5.5.1, the sum SCFA is asymptotic to FA-

The algorithm to compute F := S-QFA is the following. We introduce the gauge 
transform: 

TA0,c := 

Ci(|i|krr)W2 (Iq^AiY \q\iU-
o 

0 d 
0 

0 . . . 0 . . . Ô'^Ir, 
(Recall that 0q,c(z) = 6q(z/c).) Then F[Ao] = A , is equivalent to G[Bo] = B, where 
B = TAo,c[A], B0 = TaoAM, and G = TAa,cFT^c. Now, B0 is block-diagonal with 
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blocks c^Ai G GLN(C), and we can solve for G[B0] = B with G G <8A0(Ö(C*,0)), 
because this boils down to a system of matricial equations: 

(arQX)^Aj-cfAIAIX= somer.h.s. Y. 

Expanding in Laurent series X = ^Xpzp, Y = ^Yvzp, we are led to: 

qpXpc^Aj - c^AiXp = Yp. 

Since the spectra of cßiAi and c^Ai are non resonant modulo qz, the spectra of 
qpc^iAi and c^Ai are disjoint and the endomorphism V qpVcfljAj — c^AiV of 
Matr.?rj. (C) is actually an automorphism. There is therefore a unique formal solution 
X, and convergence in (C*,0) is not hard to prove, so we indeed get G with the 
required properties. Last, putting F := T 1̂ GTA0jC gives SQFA in the desired form. 

6.1.2. Privileged cocycles. — We have three ways of constructing a cocycle en­
coding the analytic isoformal class of A in the formal class defined by Ao: the map 
À defined in the first part of the proof of theorem 4.4.1; the construction of theo­
rem 5.5.7; and the one of [53], based on theorem 6.1.2 above. Because of what was 
said just after this theorem, the last two ways give the same privileged cocycle, which 
we shall now describe more precisely. 

Remark 6.1.3. — The construction in theorem 4.4.1 is not deterministic, since it in­
volves the choice of a good covering and of functions gi asymptotic to F. However, 
among the possible choices, there is the possibility to take the sums defined by theo­
rems 5.5.7 and 6.1.2. Thus, among the possible cocycles constructed in theorem 4.4.1, 
there is our privileged cocycle. 

If Mo is the pure module with matrix Ao, recall from section 4.3 the sheaf A/(Mo) 
of automorphisms of Ao infinitely tangent to the identity. We shall also denote it 
the covering of Eq consisting of the Zariski open subsets Uc := Eg \ {c} such that 
c 0 XU0 (thus, we drop the upper bar denoting classes in Eq). For any c G Eq \ 
E,40 an authorized direction of summation, write for short Fc := SCFA- Then Fc is 
holomorphic invertible over the preimage p-1(t/c) C C*. If c, d G Eg \ XU0> Fc,d •= 
F~lFd is in (&(ö(p~1(Uc fl Ud))) and it is an automorphism of Ao infinitely tangent 
to the identity: 

Fc,d G Ai(Mo)(Uc n Ud)-
The cocycle (Fc,d) € ^1(il, A/(M0)) involves rectangular blocks (FCid)i,j (for 1 < i < 
j < k) belonging to the space Eij of solutions of the equation (aqX)zflj Aj = z^AiX. 
For X G Eij, it makes sense to speak of its poles on Eq, and of their multiplicities. 
For c, d G Eg \ HAo distinct, we write EijjCid the space of those X G Eij that have at 
worst poles in c, d and with multiplicities fij — pi. 

Lemma 6.1.4. — The space EijiCid has dimension r^j^fij — fii). 
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Proof. — Writing again Oq,a(z) := 6q{z/a), any X G P<i,j,c,d can be written 
(Qq,aQq,b)~^j~^Yi where p{—a) = c, p{—b) = d and Y is holomorphic on C* and 
satisfies the equation: 

(JQY z 
ab; 

fJbj—fJLi AiYAj . 

Taking F as a Laurent series, one sees that {ßj — fii) consecutive terms in Matri?rj (C) 
can be chosen at will. • 

Definition 6.1.5. — The cocycle (Fc,d) £ Zx{ii, A/(M0)) is said to be privileged if 
(Fc,d)ij £ Eij^d for all distinct c, d G Eg \ XU0 and all 1 < I < j < k. The space of 
privileged cocycles is denoted Zpr(il, Aj(Mo)). 

It is not hard to see that, I, j being fixed, the corresponding component (c,d) i-> 
(FCjd)ij of a cocycle is totally determined by its value at any particular choice of c, d. 
That is, fixing; distinct c, d G E0 \ XUN gives an isomorphism: 

^R(IL,A7(M0)) 

i<i<.7<fc 

d+r+dr 

Thus, the space of privileged cocycles has the same dimension as F(MQ). Actually, 
one has two bijections: 

Theorem 6.1.6. — The following natural maps are bijections: 

JYMn) Zi.«I, A/(MN)) -> ff^Ea, AJ(MN)). 

Proof. — See [53, prop. 3.17, th. 3.18]. The second map is the natural one. • 

6.1.3. q-Gevrey interpolation. — The results found in section 3.4 can be adapted 
here mutatis mutandis: the two classification problems tackled there lead to the fol­
lowing spaces of classes:dr+d+ d+r Eij,c,d and 0Mj._Mi>i/s Ei,j,c,d, which have ex­
actly the desired dimensions. This can be most easily checked using the dévissage 
arguments from section 6.2 below. 

6.2. Dévissage g-Gevrey 

The following results come mostly from [53]. 

6.2.1. The abelian case of two slopes. — When the Newton polygon of Mo has 
only two slopes a < v with multiplicities r, s, so that we can write: 

A0 = 
z»B 0 N 

0 zvC, 
B G GLr(C), C € GL.(C), 

then the unipotent group <ÖA0 is isomorphic to the vector space Matr>s through the 
isomorphism: 

vr 
7. F\ 
0 I, 
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from the latter to the former. Accordingly, the sheaf of unipotent groups A/(Mo) can 
be identified with the abelian sheaf A on Eq defined by: 

A(U) := {F e Matr,s(0(p-1(t/))) | (aqF)(z»C) = {z"B)F}. 

This is actually a locally free sheaf, hence the sheaf of sections of a holomorphic vector 
bundle on Eq, which we also write A (more on this in section 6.3). This bundle can be 
described geometrically as the quotient of the trivial bundle C* xMatr?s(C) over C* by 
the equivariant action of qz determined by the action (z, F) H-» (qz, (zhLB)F(zvC)~1) 
of the generator q: 

A = C* x Matr,s(C) 
(z,F) ~ (qz,(z»B)F(z»C)-1) 

C* 
z ~ qz 

= E,. 

For details, see [53,55]. This bundle is the tensor product of a line bundle of de­
gree ß — v (corresponding to the "theta" factor aqf = z^~^f) and of a flat bundle 
(corresponding to the "Fuehsian" factor aqF — BFC~X)\ we shall say that it is pure 
(isoclinic). Now, the first cohomology group of such a vector bundle is a finite di­
mensional vector space whose dimension can be easily computed from its rank rs and 
degree /i — v. it is rs{y — fi). Actually, using Serre duality and an explicit frame of 
the dual bundle (made up of theta functions), one can provide an explicit coordinate 
system on iJ1(Eç, A): this is done in [55], where the relation to the g-Borel transform 
is shown. In this section, we shall see how, in general, the non-abelian cohomology 
set iJ1(Eg, A) can be described from successive extensions from the abelian situation. 

6.2.2. A sequence of central extensions. — For simplicity, we write 0 for &A0-
The Lie algebra g of 0 consists in all nilpotent matrices of the form: 

0ri 
• Fij 
0 

. . . 0 
0 . . . 0 . . . 0rtfi 

where 0r is the square null matrix of size r and where each Fij is in Matn?rj for 
1 < i < J' < k. For each integer write #-s the sub-Lie algebra of matrices whose 
only non null blocks Fij have level fij — ßi > ö] it is actually an ideal of g and 
0-5 := In + g-5 is a normal subgroup of 0. Moreover, one has an exact sequence: 

0 _> 0><5/0>S+l 0/0^5+1 0 / 0 ^ -> 1, 

actually, a central extension. The map g H-> In + g induces an isomorphism from the 
vector space q-6/q-s+1 to the kernel 0^<5/0^<5+1 of this exact sequence. We write 

this group: it consists of matrices in g whose only non null blocks Fij have level 
jjij — fa — S. (This is the reason why we wrote a 0 instead of a 1 at the left of the 
exact sequence!) 
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Restricting the above consideration to A := A/(Mo) considered as a sheaf of sub­
groups of 0 (with coefficients in function fields), we get a similar central extension: 

0 A(<5) -> A/A^+1 -> A/A-S -> 1. 

Now, a fundamental theorem in the non-abelian cohomology of sheaves says that we 
have an exact sequence of cohomology sets: 

Theorem 62 A. — One has an exact sequence of pointed sets: 

0 -> ic2rl(Eq, A^) -> H\Eqj A/A^+1) -> i /^E^, A/A-5) -+ 1. 

Proof — The exactness should be here understood in a rather strong sense. 
The sheaf A^ is here a pure isoclinic holomorphic vector bundle of degree — S 
and rank Yl^j-^i=8rirj- ^s nrst cohomology group is therefore a vector space 
of dimension 8 ^2^-^=6 r^rr The theorem says that operates on the pointed set 
ff^EgjA/A^+^'with quotient the pointed set Hl(EQ,A/A-S). For a proof, 
see [24, th. 1.4 and prop. 8.1]. • 

Corollary 622. — There is a natural bisection of Hx{Eq, A/(Mo)) with 

Proof. — Indeed, the cohomology sets being pointed, the theorem yields a bijection 
of each H\Eq, A/A^+1) with i f 1 ^ , A/A^5) x iJ1(Eg, A^). • 

We shall write T<s{M0) := iï^Eg, A/A-*"4"1). This space is the solution to the 
following classification problem: two matrices with diagonal part AQ are declared 
equivalent if their truncatures corresponding to the levels < 8 are analytically equiv­
alent (through a gauge transform in <*5); and there is no condition on the components 
with levels > 8. This is exactly the equivalence under C((z))q.s for 8 < s < 8 + 1. 
The corresponding Birkhoff-Guenther normal forms have been described in section 3.4. 
The extreme cases are 8 > ßk — ßi, where ^^(Mo) is the whole space .^(Mo); and 
8 < 1, where it is trivial. 

6.2.3. Explicit computation. — We want to make more explicit theorem 6.2.1. 
So we assume that A , A' represent two classes in iczrl(Eg, A/A-<5+1) having the 

same image in H1(Eq, A/A-5). Up to an analytic gauge transform, the situation just 
described can be made explicit as follows. Assume that A, A' have graded part AQ 
and are in Birkhoff-Guenther normal form. Assume moreover that they coincide up 
to level 8 — 1. Then the same is true for FA and FA>\ therefore, it is also true for FA,A> 

and Jn, that is, F A, A' G <Ö-s(C((z))). The first non-trivial upper diagonal of F A, A' is 
at level 8 and, as a divergent series, generically it actually has g-Gevrey level 5; if it has 
level < 8, then it is convergent. The classes of A, A' in T<s(M0) = fl^Eg, A/A-8+1) 

have the same image in F<s-i(Mo) = üzrl(Eq, A/A-6). After theorem 6.2.1, there 
exists a unique element of which carries the class of A to the class of A'. The 
Stokes matrices SCJDFA := (SC,DFA)~LSDFA and SC,DFA> := (SC,DFA<)~1SDFA> are 

®S>1H\Eq,\{SK 
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congruent modulo A-5, so that their quotient Sc,dFA,A' is in A-6. Its first non trivial 
upper diagonal is at level S; call it fCjd and consider it as an element of A^. This 
defines a cocycle, hence a class in ii"1(Eg, A^). This class is the element of we 
look for. 

Example 6.23. — Take 

Ao := 
A 0 0 
0 bz 0 
U U cz~ 

and A := 
a u VQ+VIZ 
0 bz wz 
0 0 cz2 

in Birkhoff-Guenther normal form, so that u,vo,v\,w G C. Here, the total space of 
classes iJ1(Eg, A/(Mo)) has dimension 4, while each of the components iJ1(Eg, A^)) 
and ii"1(Eg, Â 2)) has dimension 2. 

To compute the class of A in JFF^Eq, A/(M0)) identified with 7J1(Eg, A^) 0 
iJ1(Eo, A 2̂)), we introduce the intermediate point 

A' := o « 0 
u oz wz 
0 0 czz 

and the intermediate gauge transforms 

G:= 1 / x 
OU 
0 0 1 

such that G[Aq] = A! and H := 1 0 g 0 10 
0 0 1 

such that H [A'] = A, 

so that 
F:=HG = dr+d+r+d 

0 1 D /I 
0 0 1 

is such that F\A0] = A. 
The component in H1(Eq, X^) is computed by considering G alone. Its coefficients 

satisfy the equations: 

bzcrqf — af = u and czaqh — bh — w. 

(The coefficient x is irrelevant here.) We shall see in section 7.1 how to compute 
the corresponding cocycles (fc,d) and (/ic,d)? but what is clear here is that they are 
respectively linear functions of u and of w. So in the end, the component of the class 
of A in i71(Eg, Â 1)) is uL\{a,b) + wL\(b,c) for some explicit basic classes Li(a, 6), 
Li(6, c) (the index 1 is for the level). 

Similarly, the component in ii"1(E(?, Â 2)) is computed by considering H alone. Its 
coefficient satisfies the equation: 

cz o~qg — ag = vo + v\z. 

It is therefore clear that the component we look for is i>oZ/2,o(a, c) + ^1^2,1(0, c) for 
some explicit base of classes 1,2,0(a? c)> ^2,i(a, c). 

This example will be pursued in section 7.2. 
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6.2.4. Various geometries on T(P\1..., Pk)» — In subsection 3.3.2, we drawned 
from the Birkhoff-Guenther normal form an affine structure on .F(Mo). This structure 
is made explicit by the coordinates provided by proposition 3.3.4. The dévissage 
above implies that it is the same as the affine structure on H1(Eqi Aj(Mo)) inherited 
from the vector space structures on the if1(Eg,A (̂5 )̂ through corollary 6.2.2. More 
precisely: 

Theorem62A. — The mapping from ni<i<j<fcMatr.,r^KMi5MJ to 0(5>1iJ1(Eg,A^)) 
coming from proposition 3.3.4, corollary 6.2.2 and theorems 4-4-1 and 5.5 is linear. 

Proof. — The computations are in essence the same as in the example. Details will 
be written in [50]. • 

There is a third source for the geometry on T(M0), namely the identification with 
the space 0 Eij^d of all privileged cocycles (where c, d are fixed arbitrary) found in 
subsection 6.1.2. The corresponding geometry is the same. 

6.3. Vector bundles associated to ^-difference modules 
We briefly recall here the general construction of which the vector bundle in sub­

section 6.2.1 is an example, and then give an application. This is based on [55]. 

6.3.1. The general construction. — For details on the following, see [55]. To any 
g-difference module M over C({z}), one can associate a holomorphic vector bundle 
J~M over Eg in such a way that the correspondence M ^ TM is functorial and 
that the functor is faithful, exact and compatible with tensor products and duals. 
If one restricts to pure isoclinic modules with a fixed slope, the functor is moreover 
fully faithful (this follows immediately from the case of Fuchsian modules, which is 
dealt with in [52]); but this ceases to be true for arbitrary modules: for instance, 
if M := (C({z}),aq) and N := (C({z}), z~1aq), then the function 0q induces a 
morphism from TM to TN, although Hom(M, N) = 0. This is one of the reasons 
why this functor is not very important in the present work (see however the remark 
further below). 

In order to describe TM, we shall assume for simplicity that the module M is 
related to a g-difference system o~qX = AX such that A and A-1 are holomorphic all 
over C*, for instance, that A is in Birkhoff-Guenther normal form. (In the general 
case, one just has to speak of germs at 0 everywhere). The sheaf of holomorphic 
solutions over Eg is then defined by the relation: 

TM(U) := {X e 0{p-\U))n I aqX = AX). 

This is a locally free sheaf, whence the sheaf of sections of a holomorphic vector bundle 
over Eg which we also write TM- The bundle TM can be realized geometrically as 
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the quotient of the trivial bundle C* x Cn over C* by an equivariant action of the 
subgroup qz of C*: 

F M = 
C* x Cn 

[z,X)~(QZ,AX) 

C* 
z ~ qz 

= E,. 

The construction of the bundle A in subsection 6.2.1 corresponds to the ç-difference 
system (cjqF^C) = (z»B)F, which is the "internal Horn" Hom(AT, M) of the mod­
ules M, N respectively associated to the (/-difference systems with matrices z^B, zvC. 
Prom the compatibilities with tensor products and duals, one therefore draws: 

A = TyN <g> 7M-

Remark 6.3.1. — From the exactness and the existence of slope nitrations, one de­
duces that the vector bundle associated to a g-difference module with integral slopes 
admits a flag of subbundles such that each quotient is "pure isoclinic", that is, isomor­
phic to the tensor product of a line bundle with a flat bundle. The functor sending 
the module M to the vector bundle TM endowed with such a flag is fully faithful. 

6.3.2. Sheaf theoretical interpretation of irregularity. — We interpret here 
in sheaf theoretical terms the formula relating irregularity and the dimension of 
dimT(P\,..., Pk) given in subsection 3.2.3. 

Actually, the irregularity of End(Mn) comes from its positive part: 

End>u (Mn) = 
l<i<j<k 

s+dsd+e+s+es 

For each pure component Pij := Hom(Pj, P»), the computations of sections 3.1 
and 3.2 give: 

dimr°(P ,) - dimr1 (Pi.,-) = nnfui - lu). 
As we know, ^ ( P i , . . . , Pk) = ^(MQ) is isomorphic to the first cohomology set of the 
sheaf A/(Mo). Also, in the previous section, we have seen that this is an affine space 
with underlying vector space the first cohomology space of the sheaf À/(Mo) of their 
Lie algebras. And the latter, from its description as ©£>:L A^, is the vector bundle 
associated to the ^-difference module End>Q(Mo). So the irregularity is actually an 
Euler-Poincaré characteristic. 
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CHAPTER 7 

EXAMPLES OF THE STOKES PHENOMENON 

In the study of g-special functions, one frequently falls upon series that are con­
vergent solutions of irregular g-difference equations, the latter thus also admitting 
divergent solutions; and this should be so, since Adams lemma ensures us that 
irregular equations always have some convergent solutions. However, in most works, 
only convergent solutions have been considered, although the other ones are equally 
interesting ^ 

The touchstone of any theory of the Stokes phenomenon is Euler series. We shall 
therefore concentrate on one of its q-analogs, the g-Euler or Tshakaloff series 
(see equation (2.1), page 14). The simplest (/-difference equation satisfied by ^1 is 
the g-Euler equation zaqf — f = —1. We shall detail the Stokes phenomenon for 
a family of similar equations in 7.1 and we shall apply it to some confluent basic 
hypergeometric series. Then we shall show how such equations naturally appear in 
some well known historical cases: that of Mock Theta functions in 7.3, that of the 
enumeration of class numbers of quadratic forms in 7.4; this has been exploited by 
the third author in [63,65]. 

7.0.2.1. Notations. — We use some notations from ç-calculus for this chapter only. 
Let p G C be such that 0 < \p\ < 1, e.g., p := q~l. Let a, a i , . . . G C and n G N. 

1. In its original form, Adams lemma [1,21,32] says that, for any analytic g-difference operator, 
the power series appearing in the solutions related to the biggest slope have a strictly positive radius 
of convergence: see for instance the g-Euler equation in paragraph 7.1.1. Adams lemma was used 
implicitly in paragraph 2.2.3 through its consequences: existence of an analytic factorization and 
definition of the slope filtration. 

2. This was of course well known to Stokes himself when he studied the Airy equation, as well 
as to all those who used divergent series in numerical computations of celestial mechanics, leading 
to Poincaré work on asymptotics. But, of course, one should above all remember Euler, who used 
divergent series for numerically computing £(2) = 7r2/6, in flat contradiction to the opinion expressed 
by Bourbaki in "Topologie Générale", IV, p. 71. 
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The q-Pochhammer symbols are: 

(a;p)n := 
0<i<n 

(1 - ap*), 

(a;p)oo := 
OO 

i=0 
1 - ap1) 

(ai,... ,ak;p)n := 
k 

dr+ 
,aj 'iP)n-> 

(ai,...,afc;p)oo := 
dr 

dr+d 
d+r+d+r 

Note that, for all n G N, we have: 

(û;p)n = 
(o;p)cx) 

(a;pn)oo 
but, since the right hand side is well defined for all n G Z, this allows us to extend 
the definition of ç-Pochhammer symbols; and similarly for (ai , . . . , ak',p)n-

With these notations, Jacobi's theta functions 0(z; </) and 0q respectively defined 
in equations (1.2) and (1.3) page 7 admit the factorizations: 

(7.1) 0(z;q) = (q l,-z,-q xz 1;q ^oo, 

(7.2) On(z) = (q , -q z,-z :q )OQ. 

(This is again Jacobi's triple product formula.) In section 7.1, we use functions derived 
from 6(z;q), as in chapter 5. In section 7.2, we use functions derived from 0q, as in 
chapter 6. In section 7.3, we use both kinds in alternance. Last, note that, along with 
these two forms, we shall also use in section 7.4 the "classical" forms 6ij, i,j G {0,1}. 

7.1. The g-Euler equation and confluent basic hypergeometric series 

Consider a g-difference system of rank 2 and level 1 (that is, its slopes are /x, /i + 1 
for some ji G Z). Through some analytic gauge transformation, its matrix can be 
put in the form bz^ ( J ^ ) , where a,6 G C*, /i G Z and u G C({z}). The bz^ factor 
corresponds to a tensor product by a rank one object L, which does not affect the 
Stokes phenomenon, nor the isoformal classification, i.e., the map M ~> L®M induces 
an isomorphism: 

TYPi,..., Pk) -> T(L 0 P i , . . . . L (8) Pfc). 

We therefore assume that 6 = 1,/i = 0. The associated inhomogeneous equation is 
the following q-Euler equation: 

(7.3) 
dr+d 
0 1 

'1 0 
0 a2 

1 
0̂ az. 

> azaqf — f — u. 
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7.1.1. A digest on the g-Euler equation 

7.1.1.1. Formal solution. — We obtain it, for instance, by iterating the z-adically 
contracting operator / i-> — u + azo~qf. One finds the fixed point: 

f = -
N>0 

an n(n-l)/2znGnUa 

If u is a constant, the right hand side is just — vtt(az). If u = Ylk»-oo ukzk -> then 

/ = - Efc»-oc ukzk*l(qkaz). 

7.1.1.2. Birkhoff-Guenther normal form. — There is a unique a G C such that, 
setting v := u — a, the unique formal solution of azaqf — f = v is convergent. 
Indeed, putting v = J2k»-oo ykzh, fr°m the relation aqn~l fn-\ — fn — vn, we draw 
that Ylnez ONÇ_N^N-1^2^N = 0, which also writes: a — ß^II^A-1), where, as usual 
(see definition 2.3.3, page 19), BqAu(£) = J2k»-oo ukq~Hk~1)/2^k• (The letter £ 
is traditional for the Borel plane.) Note that the value Bq,\u(a~l) is well defined, 
for Bq,\u is an entire function. The Birkhoff-Guenther normal form of ( J ^ ) is 
therefore (J B ^ < ^ ). 

7.1.1.3. "Algebraic" summation. —- For any a G C*, we shall set: 

OqA*) := 0q{z/a). 

(See (1.3) in the general notations of section 1.3.) One looks for a solution of (7.3) 
in the form / = g/0q,\, with g G Ö(C*) and À adequately chosen in C*. We are led 
to solve the equation: a\aqg — g = u6q,\. Identifying the coefficients of the Laurent 
series, one gets the unique solution: 

9 = 
^n€Z a\an — 1 

dr+d+r+d 

which makes sense if, and only if, À [a_1;g]. (Note that we write [h]n := an when 
h = ^2 anzn.) Thus, for all "authorized directions of summation" A, we get the unique 
solution for (7.3) with only simple poles over [—A;g]: 

Sxf ••= 
1 

Oa.X 
K ,A]„ 

'nez a\qn - 1 
dr+ 

7.1.1.4- "True" summation. — Since the polar condition that uniquely characterizes 
the solution S\f only depends on À := A (mod qz) G Eg, or (equivalently) on A := 
[A; gl, we shall also write: 

ST/ := 5 A / := Sj. 

We now make this dependency explicit. We draw from the equality udQt\ = 

K ,A]„ = 

k+£=n 

Wfc<T^+1)/2A-* : 

k 

Cd+dW2 (Iq^AiY \q\iU-
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so that: 
gn(n+l)/2An [Yß J 

vr 
nk-k(k-l)/2Xk = Bn,u(QnX). 

On the other hand, iterating the relation 9a x(z) -kOq,q\{z) yields 0q,\(z) = 
dr 

n+i)/2^n5 wne 
^GN^W, whence: 

% / = SA/ = 
NGZ 

-»(n+l)/2A-nR f « n 
znrn(n+l)/2A-nfl „nx(z)(aAan ~ D 

drd 
n+i)/2^n5 wne 

vr 
(a / i - l)0g,M(z) 

dd 

Remark 7.1.1. — In [41-43], one computes the residue of the meromorphic function 
A I y Sjf at the pole a-1 G Eq. According to the above formula, one finds: 

q+q+-nfl „nx(z)(aAan 
1 BnMor1) 

2i7r 6a(az) 
Indeed, for any b G C* and for any map / : C* —» C analytic in a neighborhood 
of [6; q], setting: 

VAGE,, F (A) := 
d+r+d+r 

e+eré 
Ii —b 

defines a meromorphic map F with a simple pole at b G Eg and the corresponding 
residue: 

-nfl „nx(z)(aAan 1 /(6) 
2Î7T 6 

Note that the residue of a function here makes sense, because of the canonical gen­
erator dx = 2^ of the module of differentials, which allows one to flatly identify 
maps on ~Eq with differentials. (Here, as usual, z — e2i7rx, where x is the canonical 
uniformizing parameter of Eg = C/(Z + Zr).) 

7.1.2. Some confluent basic hypergeometric functions. — Usual basic hyper-
geometrics series have the form: 

2$i(a,b:c:q,z) := 
n>0 

-nfl „nx(z)(aAan 
n+dr+di)/2^n5 wne zn, where a, 6, c G C*. 

(Remember that here, |<?| > 1.) Writing for short F(z) this series, the rescaling 
F(—q~1z/c) degenerates, when c —)• oo, into a confluent basic hypergeometrics series: 

4>{a,b',q,z) := 
n>0 

s+d+r+cx+r 
dr+d++r+e+e+ 

gn(n+i)/2^n5 wnerea,&GC*. 

Writing wn := n+i)/2^n5 wne 
dr+d+r+x+ 

gn(n+i)/2 generai coefficient, we have, for all n > 0: 

(qn+1 - l)tin+i = g V - a)(çn - 6)un, 
whence, multiplying by zn+l and summing: 

(aq - l)f = q2z(aq - a){aq - &)/, 
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where we write for short f(z) the divergent series (j)(a,b;q,z). We shall denote the 
corresponding g-difference operator as: 

L := q2z(oq - a)(aq - b) - (a» - 1) = q2za2 - (1 + (a + b)q2z)aq + (1 + abq2z). 

We are interested in the equation Lf = 0. Its Newton polygon (i.e., that of L) has 
slopes 0 and 1. The slope 0 has exponent 1 and gives rise to the divergent solution / . 
To tackle the slope 1, we compute: 

(z^)L(zö,)-1 1 
qz 

(a2 - (1 + (a + b)q2z)aq + qz(l + abq2z)), 

which has slopes 0 and —1, the latter having exponent 0. According to Adams lemma 
(see the footnote in the introduction to this chapter), we thus get a unique solution 
#o € 1 + zC{z}, whence the "convergent" solution /0 := of equation Lf = 0. 

7.1.2.1. Factoring L. — To get L = q2z(aq - A)(aq - B), we first look for B such 
that (aq-B)f0 = 0, that is, B := = ±n+i)/2^n5 wne Thus, L = (aq- A)(qzaq-qzB) = 
(aq - A)(qzcrq - ^ ) and, by identification of the constant terms: A = (1+^z)g0 
and in the end: 

n+i)/2^ wne 
(1 + abq2z)g0 

o~qgo 
[qzaq o~q9o\ 

The corresponding non homogeneous equation is qzfoq — ^~-f — v, where v is a non 
trivial solution of (aQ • (L+aöq z)g0 

&q90 
v = 0. An obvious choice is: 

v :— 
1 

dv+r 
n>l 

(l + abq2-nz) = 1 
9o 

-abqz\q 1)oc. 

One checks easily that the above non homogeneous equation has indeed a unique 
solution in 1 + zC[z]], and this has to be / . This equation is associated with the 
matrix d+r 

9o 
V 

0 qz 
which can be seen to be equivalent to the matrix ( J uz ) through the gauge transform 

gn1 0 
B z-1 

7.1.3. Some special cases. — Taking a :—b := a 1 vields: 

f = '. 
n>0 

^~1;^"1)ngn(n+1)/2^n. 

The recurrence relationd+r+d+r = qn+l — 1 immediately gives the non homogeneous 
equation qzo~qf — (1 + z)f = — 1. This, in turn, boils down to the straight g-Euler 
equation by setting g := (_g-izz;g-i)ooso that zaqg - g = (_z~-i)oo • 

Taking a := b := 0 yields: 
d+r+d 

n> 

1d+r 
n+i)/2^n5 wne 

jn{n+\)/2zn^ 
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The recurrence relation Un+l d 
n2n + 2 
F ' — 1 

gives the homogeneous equation q2za2f — 
o~qf + f = 0. The convergent solution is fo J_ 

•— z6. 
go, where g0 = Yl lnZn G 1 + zC{z} 

is solution of the equation (a2 — crq + qz)g = 0. The corresponding recurrence relation 
(q2n — qn)jn + Qln-i — 0 can be solved exactly and entails: 

9o = 
(-l)nq-n2 

n>0 n+i)/2^n5 wne 
7U 

The corresponding factorization is L = (crq — ^-) (qzcrq — ^ ^ ) . Following [64] (3), 
one can prove the following formula for the Stokes operators: 

Sxf-Sj=(q-1;q-1)2oc xf-Sj=(q-1;q-1+xx+d 
•EQ(-I/\)EG(-I/RIOq(\/z)Oq{z/ri 

n+i)/2^n5 wne 

nez dr+d+r+x++x 
-zn. 

We shall not attempt to prove this, but a similar formula is checked in the next case. 
Taking a := 0, b := q~x yields: 

f = 
n>0 

n{n+l)/2zn = ^/ X 

which is solution of the g-Euler equation (qzo~q — l)f = — 1. A solution of the associated 
homogeneous equation is Q-j^ = e (l/z)i so that, f°r anY two A, ^ [1; (authorized 
directions of summation): 

Sxf-Sj = K(\,u,z) 
Oad/Z) 

where K is g-invariant in each of the three arguments. We assume A / /Z; then, as a 
function of z, the numerator K is elliptic with simple zeroes over [— 1; q] and at most 
simple poles over [—A; g] and [—/x;g]; thus: 

n+i)/2^n5 wne+x+d+sx+er+ 6q(l/z)0Jz/\ri 
Eq(\/z)Dq(zfi) ' 

where Kf(X,ß) is independent of z and, as a function of A, has at most simple poles 
over \l:q] and \ii\q\\ thus: 

n+i)/2^n5 wne ôJz/Xu) 
6J\/z) 

= K' Eq(z/\P)9Q{-\/N) 
Eq(\/z)6Q(-I/\) 

where K" is independent of X,/J,,Z. Last, we get: 

Sx f - S„ f = C 
60(-\/u)60(z/\u) 

6q(-l/\)0q(-l/ti6q(\/z)9q(z/vL) 

3. Note that [22] contains similar formulas. 
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We shall now see that C = —0q'(—l) = ((Z_1; g"1)^- The second equality follows 
immediately from Jacobi Triple Product Formula. Note that, by simple singularity 
analysis, one may write: 

Sxf = 
nez 4 

dr+d 
+ Xqn 

Since S\f(0) = 1, we have J2anQ n = X. On the other hand, from the functional 
equation, taking residues yields the recurrence relation: an_i = —Aangn_1, then 
an = (-l/X)nq-<n~iy2a0 and in the end: 

X = a0 
nez 

-l/A)N<TN(N-1)/2 = anO„(-l/\) =>an = X 
eq(-i/x) 

On the other hand: 

a0= lim (z + \)(Sxf - Sj) 
z-* — \ 

= lim (z + X)C 
Z-+ — A 

eq{-x/fj)Uz/Xn) 
'6q(-l/X)6q(-l/»)eq(X/z)6g(z/v) 

= C- 1 -A 
eq(-i/x)eq'(-i) 

whence the desired conclusion. 

7.2. The symmetric square of the g-Euler equation 

This will be our only example with more than two slopes. Consider the square 
Y := M2 of the Tshakaloff series: 

Y(z) = 
x n>0 

n(n-l)/2zn 
\2 

As we shall see in section 7.2.2, the series Y = JJ{2 does not support the same process 
of analytic summation as H itself. This comes from the fact that the Newton polygon 
of Y has three slopes, as we shall see, while that of H has two slopes. First, however, 
we want to give some recipes to tackle such examples. 

7.2.1. Algebraic aspects. — Remember that the equation / = 1 + zo~qf satisfied 
by M is nothing but the cohomological equation for ( J ~1 ). 

7.2.1.1. Newton polygon of a symmetric square. — To find the equation satisfied by 
a product of two functions, one uses the tensor product of two systems or modules; 
for a square, one uses likewise the symmetric square. 
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Let M = (V, $) be a g-difference module and T2M := M 0 M = (V 0 V, $ (g) <ï>) 
its tensor square. The linear automorphism x ® y y ® x commutes with $ (g) 
so that it actually defines an involutive ^-difference automorphism of M (g) M, and a 
splitting: 

T2M = S2M 0 A2M. 

If M has slopes / / i , . . . with multiplicities r i , . . . , then T2M has slopes the 
fa + ßj , 1 < i,j < k with multiplicities the r^-. (Of course, if many sums fa + /ij 
are equal, the corresponding multiplicities r^j should be added; the same remark will 
hold for the following computations.) Said otherwise, the slopes of T2M are the 2 fa, 
1 < i < k with multiplicities the r2 ; and the fa-\-ßj,l<i<j<k with multiplicities 
the 2viTj. 

The repartition of these slopes (breaking of the Newton polygon) among the sym­
metric and exterior square is as follows: 

- S2M has slopes the 2 fa, 1 < i < k with multiplicities the r* 2 ri ; and the fa + 
1 < « < j < with multiplicities the r^-. 

- A2M has slopes the 2fa, \ < i <k with multiplicities the r* ~r* ; and the fa -hßj, 
1 < * < j < fe with multiplicities the r^-. 

If there are two slopes fi < v, with multiplicities r, s, no confusion of sums /x̂  + ßj 
can arise, and we find: 

- T2M has slopes 2ß < ji + v < 2v, with multiplicities r2,2rs, s2; 

- 52M has the same slopes, with multiplicities 1—^L,rs, ^-y^; 

- A2M has the same slopes, with multiplicities JL^L,rs, 

We now take M0 = (g and M = d+d+r+ d where a, 6 G C* and u G C({z}). The 
symmetric squares admit an obvious choice of basis and corresponding matrices: 

N0 = 
(a2 0 0 
0 abz 0 
0 0 b2z2j 

and N = 
'a2 2au u2 
0 abz ubz 
0 0 b2z2 

If F = ( I {) is such that F[MQ] = M, then we have G[N0] = N with G given by: 

G = S2F = 
1 2/ /2 

0 1 / 
0̂ 0 1 / 

Actually, if one does not cheat, when looking for G -
i h h 
0 1 f3 
0̂ 0 1 

such that G[AT0] = N, 

one has to solve the system: 

abzaQfi = a2fi + 2m/, 

62z2a„ fo = a2 fo 4- 2au f3 + u2, 

b2z2aa f3 = a&z f3 + -u&z. 

ASTÉRISQUE 355 



7.2. THE SYMMETRIC SQUARE OF THE q-EULER EQUATION 105 

Since we know from start that bzaqf = af + u, we see that f\ \— 2f and /3 := / 
respectively solve the first and third equation; then, we find that f2 '•= f2 solve the 
second equation. 

Using the system above, we find a second order inhomogeneous equation for f2 
alone as follows: 

(bzaq — a) 1 

lau 
• (b2z2aQ - a2)f2 = (bzaa - a) h + (bzaa - a) u2 

2au 
bz 

(Ta(u) 
dr+d d+r 

u 
(b z o~q — a )/2 = bzaq(u) + au. 

We leave to the reader to find a simpler form, as well as the corresponding third 
order homogeneous equation. At any rate, in the case that UEC (Birkhoff-Guenther 
normal form) we have: 

{bzaq — a) (b2z2aq — a2)f2 — bz + a. 

In the particular case a = b = — u = 1 oî the Tshakaloff series, we are led to the 
following equation: 

(7.4) LY = 1 + 2, where L := q2zzo2q - z(l + z)aq + 1. 

Remark 7.2.1. — We refer here to the example 6.2.3 and specialize it to the case 
of the symmetric square above. We see that, when u varies, the class of TV 
in Hx(Eq,\W) 0 ff^Eg, A(2)) has components 2auLi(a2,ab) + ubLi(ab,b2) and 
u2L2$(a2, b2): a nice parabola. 

7.2.1.2. Algebraic summation of the square of the Tshakaloff series. — The fact that 
i^^o] — A S2F[BQ] = B is purely algebraic and stays true of the sum in direction 
c, so that one gets the following sums: 

ScP = S2(ScF) = 
'1 2/c / I 
0 1 fc 

iO 0 1 

Moreover, observing that x ^ 1 2x x2 
Ü 1 x I is a morphism from C C to GL3(C), one 

gets the explicit formula for the cocycle: 

S--dG = S>(S--dF) = 
'! 2hä fil 
0 1 h-A 

IO 0 1 

The algebraic sums fc have been described explicitly in subsection 7.1.1 where their 
notation was Sjf, with A = c. 
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7.2.2. Analytic aspects 

7.2.2.1, The square of the Tshakaloff series is not summable with one level. — Con­
sider the square Y := ̂  of the Tshakaloff series: 

Y(z) = 
n>0 

qn{n-l)/2zn 
V2 

Its g-Borel transform BqjiY (at level 1) can be computed from the following simple 
remark: 

dr+daa+q 
n>0 

anzn and g G C[zJ BqA(fg) = 
n>0 

un9-n(n-1)/2rß,,ifl(«"no 

It follows that, if P(£) = BqjiY(Ç)Yln>Q(l — q n£), then P is an entire function such 
that: 

(7.5) p(qm) = (-ir<r(3m+1)/2(<r1;<r1)m(<r1;<r1)oc. 

Prom this, we see that P has at infinity g-exponential growth of order > 3. 
The g-Borel transform of Y represents a meromorphic function in C with (simple) 

poles on gN and having at infinity in C \ gN ^-exponential growth of order exactly 2. 
Thus, Y — M2 is not g-Borel-Laplace summable as M itself is. This comes from 

the fact that the Newton polygon of the former (resp. of the latter) has three (resp. 
two) slopes as we have seen. Moreover, the problem is cousin to a nonlinear problem. 

7,2.2.2. Multisummability. — 

Proposition 722. — Let A, /z G C* and let f G Aq and g efJ. 

1. 7/[A] = H tkenfgeOJ£x]y 

2. If [A] ^ [ji], then, generically fg$. "Al + ful 
([A],M 

TJA]+[M] 
xf-d-1;q-1 

Proof — Write / = F/0Xl g = G/0M; from theorem 5.2.8, one gets F G E{>A] and 
G G E[0ß]. (The functions <9A, 0ß were introduced just before the statement of theo­
rem 5.2.8.) 

If [A] = [//], then FG represents an analytic function near 0 in C*, with g-Gevrey 
growth of null order on the g-spiral [A] at 0 and g-Gevrey growth of order 2 globally. 
To obtain the g-Gevrey growth order of its values on 2[A]/[A] at 0, write: 

(FG)'(Xq-n) = Ff(Xq-n)G(Xq-n) + F(Xq-n)G'(Xq'71), 

which will provide the g-Gevrey order. Using theorem 5.4.3, we get the first statement. 
For the second statement, just note that, generally, F G has null g-Gevrey order 

at 0 neither on [A], nor on [//]; indeed, the sequences (F(fiq~n)) and (G(Ag_n)) have 
g-Gevrey order one. • 
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Let À, fi fi [1] = qz. Write f\, resp. /M, the solutions of the g-Euler equation 
satisfied by M in AqX\ resp. in A^. If [A] = [/x], from the proposition above, one has: 

(/a)2 ,2\\] 
;([AU]V 

and this is the solution provided by theorem 5.5.3 for equation (7.4) with A = 2[A] 
and Ai = A2 = [A]. However, if [A] 7̂  [/x], then f\fß is not the solution provided by 
that theorem with A = [A] + [/1] and {Ai, A2} = {[A], [/1]}. 

7.2.2.3. Possibility of a multisummation process. — No explicit algorithm is 
presently known to yield the solution of (7.4) in the spirit of theorem 5.5.3 with 
A = [A] + [//]. A multisummation algorithm does exist in a very different setting, due 
to the third author. The following result shows its similarity to classical Borel-Laplace 
summation. 

Theorem 723. — In (7A), we have L — (zo~q — l)(z2o~q — 1) and the series Y is 
(1, \/2)-summable by the following process: 

f = 
n>0 

anzn dr+d y := 
n>0 

AN4"n(n-1)/2r 

*̂ <3;i,i/2 
ft 

i-q;l/2 
/(l,l/2)-

For a basic introduction to this method and explanation of the notations above, 
see [20], which contains further references to this work. 

7.3. From the Mock Theta functions to the g-Euler equation 

Our source here is the famous 1935 paper "The final problem: an account of the 
Mock Theta Functions" by G. N. Watson, as reproduced, for instance, in [4]. On 
page 330, seven "mock theta functions of order three" are considered. The first four 
are called / , 0, V7, X (after Ramanujan who discovered them); the three last are called 
CJ, v,p (after Watson who added ^ them to the list). In the notation of Ramanujan 
and Watson, the unique variable of these analytic functions is written q (this tradition 
goes back to Jacobi) and it is assumed there that 0 < \q\ < 1. 

In [63], a new variable x is added (this tradition goes back to Euler) and one puts: 

xf-Sj=(q-1;q-1sx+ 
n>0 

anx . 

4. At least, so says Watson. However, this is questioned by G.E. Andrews and B.C. Berndt in 
their introduction to Ramanujan's Lost Notebook. The point is also discussed in detail in p. 171-172 
of the article by Andrews in [4]. 
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where: 

an := 
n2 

dr+d+r+d+ 
1 

.aß. 
n 

dv 
(<x,ß;q)oo 

(cLq-n,ßq-n\q)oc: 
q+q+e 

dr 
qn2 

(a-q)-->(a-<r)(ßdr+d-q)---(ß-qn] 
Note for further use that the second formula makes sense for all n G Z and allows one 
to define another series: 

F(a,ß\q,x) := 
nez 

drdr+d+r 

so that F(a, ß\ q, x) — s(a, ß\ q, x) + G(a, ß\ g, x), where: 

G{a,ß;q,x) = 
n<0 

dr++d+ 
n>0 

)(a,ß;q)n(q/x)n. 

The formula giving s(a,ß]q,x) subsumes all seven mock theta functions, which 
can be respectively recovered by setting (a,ß,x) to be one of the following: 
(-1,-1,1), ( i , - i , l ) , (Jq,-y/q,l), (j,j2,-g), ( l /g, l /g, l) , 0/^5,-1/^5,1) and 
(—j/q, —j2/q-> 1)- (Note that in all cases, among other multiplicative relations, a and 
ß map to torsion points of Eg.) 

In the following, which is intended to motivate the study of the Stokes phenomenon, 
we follow recent work by the third author [63], skipping most of the proofs. In 7.3.1 
and 7.3.2, we use its conventions . In particular, it is assumed (exceptionally) that 
\q\ < 1 and we use the theta function: 

0(x;q) := 
nez 

qn^-l^2xn = (q,-x,-q/x;q)00. 

(See (1.2) in the general notations of section 1.3 and equation (7.1) page 98.) In 7.3.3, 
we shall return to the general convention \q\ > 1 of the present paper, and use the 
function 6q 

7.3.1. Functional equation for s(a, ß\ q, z). — From the recurrence relation (a — 
qn^~1)(ß — qn+1)an+i = o2nJtlan, one deduces that 5, as a function of x, is solution of 
the second order non homogeneous g-difference equation: 

(7.6) Uaq - a)(aq - ß) - qxa20)s = (1 - a)(l - ß). 

The recurrence relation actually remains valid for all n € Z, which implies that F is 
solution of the corresponding homogeneous equation: 

(7.7) ((*a-a)(<T„-ß)-qxo*)F = 0. 

This, in turn, entails that — G = s — F is a solution defined at infinity of (7.6). 
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We shall assume now that QJ, ß / 0 and that ß/a fi qz. One checks easily that the 
equation (7.7) is Fuchsian at 0 with exponents a, ß (see for instance [51]). Likewise, 
taking in account the general conventions of this paper (i.e., using the dilatation factor 
q-i |n orc[er £0 have a modulus > 1), we see that (7.7) is pure isoclinic at infinity, with 
slope —1/2; this will explain the appearance of 6(—, q2) in the following formulas. We 
define: 

M(a,ß\q,x) := 1 1. 
<a ß 

q) F(a,ß;q,x). 
/ oo 

This is another solution of (7.7), with more symmetries. It admits the following 
expansions: 

M(a,ß]q,x)=6{qaßx;q2)Ua/ß(x) - - 6(aßx;q2)Va/ß(x) 

= e(qx/aß; q2)Ua/ß(l/x) - ± 0(q2x/aß- q2)Va/ß(l/x)., 

with the following definitions: 

Ux(x) := 
ra>0 

qm2S2m(-q-2mX;q)(qx/\)m, 

Vx(x) := 

m>0 

çro(ro+1)52m+1(-ç-2m-1A;g)(^/A)m, 

Sn(x:q) := 
n 

dvr 

k2 
qK (q',q)k{q;q)n-k 

dr+d+ 

(The Sn are the Stieltjes-Wiegert polynomials.) 

Remark 7.3.1. — The parameter À := a/ß is linked to monodromy. Indeed, the local 
Galois group of (7.7) at 0 is the set of matrices (7QA^ 7(% where 7 runs through the 
group endomorphisms of C* that send q to 1; and the local monodromy group is the 
rank 2 free abelian subgroup with generators corresponding to two particular choices 
of 7 described in [52]. 

7.3.2. Back to the the Mock Theta function. — We can for instance study 
</>, i/j,v, p by setting x = 1 in s(a, ß\ q, x). (The function x involves x — — q and 
f,uj will not comply the condition ß/a fi qz: in [63], their study is distinct, though 
similar.) Up to the knowledge of standard q-functions, one is reduced to the study of: 

U(X) := Ux(l) and V(X) :=VX(1). 

These are solutions of the ^-difference equations: 

U(qX)-XU(X/q) = (l-X)-
?(<ZA;<Z2) 

dr++dr+d+ 

V(qX)-qXV(X/q) = (l-X) 
e(X/q;q2) 
(q,q;q)oo 
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Upon setting: 

17(A) =: 
fl(A;<?2) . 

dr+x+e+ 
'(A) and V(A) = 0(X/q;q2) 

dr+d+r+d 
•Z(X), 

we find that both Y and Z are solutions of the g-difference equation: 

X(qX) -
A2 

q 
X(X/q) = 1 - A. 

7.3.3. Back to the g-Euler equation. — To fit this equation with the convention 
of this paper, we shall put z :— À, f(z) := X(q\) and take q~2 as the new dilatation 
coefficient, that we shall denote by q, so that \q\ > 1 indeed. Our equation becomes: 

y/qZ (Jqf - f = Z - 1. 

(We have implicitly chosen a square root y/q.) There are four paths of attack. The 
most powerful involves the summation techniques of chapter 5 and it is the one used 
in [63]. We show the other three as an easy application exercise. 

7.3.3.1. q-Borel transformation. — Following 3.1.1, we put Z := z2, Q := q2 and 
f(z) = g(Z) + zh(Z), so that: 

y/qZaçg — g = — 1 and qy/qZaçh — h — 1. 

The end of the computation, i.e., that of the invariants (#Q,I)(—l)(y/q) and 
(#Q,i)(l)(Ç\/5)' is teft to the reader. 

7.3.3.2. Birkhoff-Guenther normal form. — According to section 3.3, we see that our 
equation is already in Birkhoff-Guenther normal form. Actually, it is the equation for 
/ such that ( J { ) is an isomorphism from ( J ) to ( 0 ) • 

7.3.3.3. Privileged cocycles. — There is here an obvious isomorphism of A/(Mo) 
with the vector bundle Fi/y^2 (cf. 3.1.1). (More generally, if Ao= ( Q ^ ) , 
then A/(M0) ~Fa/bzs.) The privileged cocycles of 6.1 are best obtained by the 
elementary approach of [53] as follows. We look for a solution — Q§- with g 
holomorphic over C*. The corresponding equation is y/qc2aqg — g = (z — l)02c. 
Writing 0q2 =: ^2rnzn, we see that: 

dr++dr 
1 

e2 
neZ 

(rn_ic-rn)c 71 
y/qc2qn - 1 

vr 

This is the only solution with poles only on [—c; q] and at most double. It makes 
sense only for yjqc2 £ qz, which prohibits four values c G ~Eq. The components of the 
Stokes cocycle are the (fc — /^). 
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7.4. From class numbers of quadratic forms to the ç-Euler equation 
This topic is related to a paper of Mordell [35] and to recent work [65] by the third 

author. We follow their notations, except for the use of the letter g, and also for the 
dependency on the modular parameter lj, which we do not always make explicit. 

We shall have here use for the classical theta functions, defined for x G C and 
F(w)> 0: 

öo,i(x) = 0o,i (a?, a;) := 
dr++dr+ 

( -1 \n m{n2uj+2nx) 

0i,i(a) = 0i,i(x,a;) := 1 
i m odd 

/ _ ^ \ (m — 1 ) j 2 gin {m2u)/A+mx) 

_ em{u/A+x-l/2) 

nez 

/ 2̂ NGI7R(N(N+L)CÜ+2nx) 

We shall set q := e~2'1™ (so that indeed \q\ > 1) and z := e2inx. The above theta 
functions are related to 0q through the formulas: 

0O,1 (x,u) = Oq(-y/qz), 

0i,i (x, a;) = dr+ 
dr++dr 

dr+d+r 

(Thus, the latter is multivalued as a function of z.) 

7.4.1. The generating series for the class numbers. — Consider the quadratic 
forms ax2 + 2hxy + by2, with a, b, h G Z, a, b not both even ("uneven forms"), and 
D := ab — h2 > 0, up to the usual equivalence. For any D G N*, write F(D) the 
(finite) number of classes of such forms. 

Theorem 7A.1 (Mordell, 1916)). — Let fo,i(x) = fo,i{x, lu) be the unique entire func­
tion solution of the system: 

fo.iix + 1) = fo.i(x), 
Jo Ax + eu) + /o,iW = 0o,i 

Then, for Q(u) > 0: 

nGN 
F(n)emnuj = i /u,i(0) 

4TT 0O,I(0) 

If one now defines GQ,I(Z) := j?0'1^! (which does make sense, since the right hand 
side is 1-periodic), one falls upon the familiar ^-difference equation: 

(^/qzaq - l)G0,i = y/qz. 

We leave it as an exercise for the reader to characterize Go,i as the unique solution 
complying some polar conditions. 
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7.4.2. Modular relations. — In order to obtain modular and asymptotic proper­
ties for the generating series of theorem 7.4.1, Mordell generalized his results in 1933. 
We extract the part illustrating our point. Mordell sets: 

f(x) = f{x,u) := 1 

i m odd 

f_^\(rn~l)/2eiTr(rn2üj/4-\-mx) 

xf-Sj=(q-1;q-1 

This the unique entire function solution of the system: 

'f(x + l) + f(x) = Q, 

f(x + u) + f(x) = 0ltl(x). 

The interest for Mordell is the (quasi-)modular relation: 

f(x,u) -
i 

UJ 
x/id, —1/üü) — tOi,i(x,Cjü) 

•+00 inujt2—27ctx 

eZ7rt _ I 
-dt. 

(The path of integration is R except that one avoids 0 by below.) The interest for 
us is that one can put G(z) := e[^x^ (the right hand side is 1-periodic), and get the 
same equation as before: 

(Vqzo-q - l)G = yfqz. 

This is used in [65] to generalize Mordell results: the fundamental idea is to compare 
two summations of the solutions, one along the lines of the present paper, the other 
along different lines previously developed by C. Zhang. 

7.4.3. Related other examples. — Mordell also mentions that the following for­
mula of Hardy and Ramanujan: 

1 

dr+d+r+ 

r+oo 

— oo 

ç — i-7r(£ — \x) /CJ 

cosh TTt 
dt = 

-foo gi-TTCüt2-2irtx 

J —oo cosh irt 
dt 

can be proved along similar lines, by noting that both sides are entire solutions of the 
system: 

*(x - 1) +s+s+s+ 
2e^(x-l/2)2/uj 

y—iuj 
*(x + üü) + el<2x+U)^(x) = 2ei7r̂ 3a;/4+x) 

and that the latter admits only one such solution. 
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C L A S S I F I C A T I O N OF I S O G R A D E D F I L T E R E D 
D I F F E R E N C E M O D U L E S 

In this appendix, we tackle a general classification problem, actually an algebraic 
version of the isoformal analytic classification problem of section 2.3. We first describe 
in section A.l an abstract version of the problem, which we discuss but not solve in full 
generality. Then, in section A.2, we describe the category of difference modules over 
difference rings, in which we work in the following sections. The solution in this setting 
is given in section A.6 by theorem A.6.1 and corollary A.6.5. Since it involves some 
homological algebra, we have taken great care in section A.4 to justify our explicit 
description of extension spaces along with their linear structure^. Sections A.7 
and A.8 provide some technical tools for the case of difference fields. 

A.l. General setting of the problem 

Let C a commutative ring and C an abelian C-linear category. We fix a finitely 
graded object: 

p = p1e.. .0jRb, 
and intend to classify pairs (M,;u) made up of a finitely filtered object: 

M = (0 = Mn C Mi C • • • C Mk = MY 

and of an isomorphism from grM to P: 

u=(ui\ MjMi-i ~ Pi)i<i<fc. 

As easily checked, it amounts to the same as giving k exact sequences: 

0 -> M, i ^ Mi 4 R -> 0. 

1. This is all the more necessary since the work [41] by the first two authors strongly relies on 
this explicit description. 
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The pairs (A£,u) and (MLiVL) are said to be equivalent if (with obvious notations) 
there exists a morphism from M to M' which is compatible with the nitrations and 
with the structural isomorphisms, that is, making the following diagram commutative: 

grM 
e+egb+ 

grM' 
u dr+d 

P 

In the description by exact sequences, the equivalence relation translates as follows: 
there should exist morphisms fi : Mi —> M[ making the following diagrams commu­
tative: 

0 f+f+t+ Wi Mi tr Pi 0 

fi-1 fi 

0 • f+tr rtr Mi 
bt 

idp. 

Pi d• 0 

Note that such a morphism (if it exists) is automatically strict and an isomorphism. 
We write J""(Pi,..., Pk) the set ^ of equivalence classes of pairs (M, u). 

A. 1.1. Small values of A;. — For k — 1, the set F (Pi) is a singleton. For k = 2, 
the set T(Pi,P2) has a natural identification with the set Ext(P2,Pi) of classes of 
extensions of P<i by Pi, which carries a structure of C-module (3). The identification 
generalizes the one that was described in proposition 2.3.9 and can be obtained as 
follows. To give a filtered module M = (0 = M0 C Mi C M2 = M) endowed with 
an isomorphism from grM to Pi © P2 amounts to give an isomorphism from Mi to 
Pi and an isomorphism from M/Mi to P2, that is, a monomorphism i from Pi to M 
and an epimorphism p from M to P2 with kernel à (Pi), that is, an exact sequence: 

0 -> Pi A M A P2 -> 0, 

that is, an extension of P2 by Pi. One then checks easily that our equivalence relation 
thereby corresponds with the usual isomorphism of extensions. 

When k = 3, the description of .F(Pi, P2, P3) amounts to the classification of 
blended extensions ("extensions panachées"). These were introduced by Grothendieck 
in [26]. We refer to the studies [5-7] by Daniel Bertrand whose conventions we use. 

2. We admit that ^(Pi,..., Pk) is indeed a set; from the dévissage arguments that follow, 
(see A.1.2), it easily seen to be true if all the Ext spaces are sets, e.g., in the category of left 
modules over a ring. 

3. Note however that the latter comes by identifying Ext with Ext1, and that there are two 
opposite such identifications, see for instance [16], exercice 1, p. 308. We shall systematically use 
the conventions of [13] and, from now on, make no difference between Ext and Ext1. 
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Start from a representative of a class in J^Pi, P2, P3), in the form of three exact 
sequences: 
0 -> M0 ^ Mi ^ Pi -> 0, 0 -> Mi ^ M2 ^ P2 -> 0, 0 -> M2 ^ M3 ^ P3 -> 0. 
Also recall that Mo = 0 and M3 = M. These give rise to two further exact sequences; 
first: 

0 - Pi 
W2 0V11 

M2 v2 P2 0 
Indeed, v\ : Mi —> Pi is an isomorphism, so that v± 1 : Pi Mi is well defined; 
and the exactness is easy to check. To describe the second exact sequence, note that 
v2 : M2 —» P2 induces an isomorphism v$ : M2/w2(Mi) —>> P2, whence : P2 —> 
M2/w2(Mi); then u>3 : M2 ->> M3 = M induces a morphism TüJ : M2/w2(Mi) M', 
where we put M' := M/ws o w2(Mi), and, by composition, a morphism W30 (v^)-1 : 
P2 —M'; last, vs : M3 —> P3 is trivial on w3(M2), therefore on u>3 o w2(Mi), so that 
it induces a morphism V3 : M' —> P3. Now we get the sequence: 

0 P2 
0 (^2) 1 AT ^3 

^3 >0 
We leave for the reader to verify the exactness of this sequence. These two sequences 
can be blended ("panachées") to give the following commutative diagram of exact 
sequences: 

0 - Pi 
w2ov11 

0 0 

M2 v2 P2 >0 

dv w3 o (v2) 1 

0- Pi 
xf-Sj=(q-1;q-1 

M can M' 0 

^3 ^3 

Ps- Ps 

0 0 

(We call can the canonical projection from M to M'.) Conversely, starting from 
such a diagram of blended extensions, we recover a representative (M, u) of a class in 
.F(Pi, P2, P3) as follows. The module M is the one sitting at the center of the diagram. 
The submodule Mi is the image of Pi by the monomorphism ^ o ^ o ^ - 1 . Then, M2 is 
the preimage by can of the submodule of Mf defined as the image of P2 by ws o (t^)-1. 
Of course, Mo := {0} and M3 := M. The structural morphisms Ui, i — 1,2,3, are 
easy to define. It can then be proven that one thus gets a bijective mapping from 
J-"(Pi, P2, P3) to the set of equivalence classes of diagrams of blended extensions. (Note 
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however that D. Bertrand is interested by a slightly different equivalence relation.) 
Actually, one can even define a category on both sides of this correspondence and get 
an equivalence of these categories, see [50]. 

A. 1.2. The dévissage. — Our goal is to give conditions ensuring that T(Pi,..., Pk) 
carries the structure of an affine space over C, and to compute its dimension. The 
case k = 2 suggests that we should assume the C-modules Ext(Pj,Pi) to be free of 
finite rank. (As we shall see, the only pairs that matter are those with i < j.) Then, 
aiming at an induction argument, one invokes a natural onto mapping: 

F(Pu...,Pk) —> .F(Pi,...,Pfc_i), 

sending the class of (M, u) defined as above to the class of (M ,̂ y/_) defined by: 

M!_ = (0 = M0 C Mi C • • • C Mfc_i = M') and u_ = (UT)i<»<fc-i. 

The preimage of the class of (M\ u') described above is identified with Ext(Pfc,M'); 
and note that Ext(Pfc,M') indeed only depends (up to a canonical isomorphism) 
on the class of (ML^vD- Under the assumptions we shall choose, we shall see that 
Ext(Pfe,M') can in turn be unscrewed (dévissé) in the Ext(Pfc,Pi) for i < k, and we 
expect to get a space with dimension Yli<i<j<k dim Ext (Pj, P^). 

Remark A.l.l. — Once described the space .P(Pi,..., Pk), one can ask for the seem­
ingly more natural problem of the classification of those objects M such that grM ~ P 
(without prescribing the "polarization" u). One checks that the group N Aut(P^) op­
erates on the space .F(Pi,..., Pfc): actually, (fa) G FJ Aut(Pi) acts on the "class" of 
all pairs (M, u) through left compositions faom. Then, our new classification comes 
by quotienting ^"(Pi,..., Pk) by this action. We shall not deal with that problem. 

The use of homological algebra in classification problems for functional equations 
is ancient, but it seems that the first step, the algebraic modelization, has sometimes 
been tackled rather casually: for instance, when identifying a module of extensions 
with a cokernel, the explicit description of a map is almost always given; the proof 
of its bijectivity comes sometimes; the proof of its additivity seldom; the proof of its 
linearity (seemingly) never. For that reason, very great care has been given here to 
detailed algebraic constructions and proofs of "obvious" isomorphisms. 

A.2. Difference modules over difference rings 

Our classification of isograded filtered difference modules over a difference field 
will involve an affine moduli space that is actually an affine scheme. To obtain that, 
we will have to consider in section A.5 a functor in commutative C-algebras that 
involves difference modules over difference rings. Thus, in order to study this "relative" 
situation, we must generalize our basic constructions to difference rings. 
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A.2.1. Difference rings, difference operators. — Let K be a commutative 
ring and a a ring automorphism of K. As noticed in 2.1.1, most constructions and 
statements about difference fields and modules remain valid over the difference ring 
(K,a). Our favorite examples are, of course, (C{z},aq), (C({z}), o~q), (CJz], o~q) and 
( C ( ( * ) W . 

More precisely, we shall assume the following situation. Let C be a commutative 
ring (we may think of the the field C of complex numbers, or else some arbitrary 
field of "constants"). Assume that K is a commutative C-algebra and a a C-algebra 
automorphism, that is, a C-linear ring automorphism. We shall always assume that 
the automorphism a is of infinite order, i.e., the iterates ok, k G Z, are all different. 
(In the case of (/-differences, this means that q is not a root of unity.) Then the ring 
of constants: 

Ka := {x G K I ax = x} 
is actually a sub C-algebra of K. The ring of cr-difference operators is defined as the 
Ore-Laurent ring: 

VK,a : - K < T , T " 1 > 
with T an invertible indeterminate, subject to the twisted commutation relations: 

VA: G Z , VA G K , Tk.X = ak(X)Tk. 
Its elements are the non commutative Laurent polynomials S_00</c<+oo akTk. The 
ring T>K,a is actually is a C-algebra with center K°'. As a consequence, the category 
Modx>K^ of left P^-modules is a C-linear abelian category. 

Mapping the element J2akTk G T>x,a to the C-linear endomorphism J2akO'k of 
K, one defines a morphism of C-algebras from VK,G to Cc{K). The image of this 
morphism is the sub-C-algebra K < cr, cr-1 > generated by K (that is, the operators 
of left multiplication by elements of K), a and cr-1. Beware however that neither 
K < a, a~l > nor T>K,a is a if-algebra, since K is not central in either case. 

Since we have assumed that a is of infinite order, one deduces from Artin-
Dedekind's lemma on independence of characters that, when K is & field (more 
generally, when it is an integral ring), the morphism is injective, so that we can 
identify: 

VK,a=K <g,g-x > . 
For this reason, we shall rather sometimes write K < o,o~x > for T>K,O when no 
confusion thus arises, even if K is not an integral ring. 

A.2.2. Difference modules over difference rings. — We are interested in the 
category Modx>K>a of left -modules. We shall give two alternative descriptions of 
these modules. 

To a left P^a-niodule M, we associate the pair (V, $), where the K-module V is 
obtained from M by restriction of scalars and where $ is the cr-linear (or semi-linear) 
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automorphism of V defined by x \-> a.x (external multiplication in the P^-module 
M). The property of cr-linearity means: 

VA e if , Vx G V , *(Ax) = a(\)Q(x). 

Conversely, from such a pair (V, we can recover M as the £>k,<X-module having F 
as underlying group and the external product defined by Ç^akO-k).x := E ^ ^ W -
The fact that we do get a Px?cr-module depends on the cr-linearity of If the 
Px,o-niodule N likewise corresponds to the pair (W, \£), then 2}x,<x-lhiear maps from 
M to N are exactly the same as if-linear maps / : V —> W such that \P o / = / o 
The category Modx>KiCT is therefore equivalent to the following category: objects are 
the pairs (V,$), where V is & K -module and $ is a cr-linear automorphism of V; 
morphisms from (V, <£>) to (W^) are if-linear maps / : V —>> W such that o f = 
/ o Prom now on, we shall move freely from %}CT-modules to pairs (V, $) and 
conversely. 

For any if-module V, write <j*V the X-module obtained by restriction of scalars 
through a : if if. This means that, writing fi.x the external multiplication on 
V, the external multiplication on cr*y is defined by the formula: (À, x) ^ <j(\).x. 
It follows that a <j-linear automorphism 3> : V —)• V is just a if-linear isomorphism 
from V to cr*V. This allows for yet another description of the category Modx>Ki<r-
Noting that CK(V, W) — CK(O~*V, <j*VF), we will find that many linear properties of 
X^fj-modules ^ e definition and study of tensor products in paragraph A.2.4; 
or the definition and study of "internal Horn" in paragraph A.2.5) are then immediate 
consequences of general linear algebra over if. 

From general properties of the restriction of scalars, it follows that a sequence 
M' —> M —> M" in Modx>K^a is exact if, and only if, it is exact as a sequence of if-
modules. However, if an exact sequence 0 —• M' —ï M —> M" —>> 0 splits in Modx>K,a 
it splits in Modx, but not conversely. Any such exact sequence is isomorphic to one 
where M = (V, M' = (V, M" = (V", $"), where V is a sub-if-module of V 
and = and where V" = V/V and 3>" is induced by 3>. 

Definition A.2.1. — A difference module over the difference C-algebra (if, cr) (more 
shortly, over if) is a left P^-module which, by restriction of scalars to if, yields a 
finite rank projective if-module. 

In our second description, this is a pair (V, $) such that V is a finite rank projective 
if-module. We require that the module be projective for technical reasons (such that 
good behaviour under extension of scalars). The finiteness condition is natural in the 
context of functional equations. 

Example A.2.2. — We write 1 and call unit difference module the X^^-module (if, a). 
As a 2}tfj<T-module, is isomorphic to T>K,a/^K,cr(o' — 1). 
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For any invertible matrix A G GLn(if), putting <Î>A(X) := A~1(aX), we define 
a difference module (KU,$A)' For instance, if n = 1 and A = (1), this is 1. Any 
difference module (V, $) such that V is free over if is isomorphic to some (ifn, $A)-

We write DiffMod(K, cr) the full subcategory of Modx>Kr(T with objects the difference 
modules over if. Like Modx>K>cr, it is abelian and C-linear. Thus, monomorphisms, 
epimorphisms, isomorphisms and exact sequences in DiffMod(K, a) are the same thing 
as in Modx>K a- Moreover, since an extension of finite rank projective if-modules is a 
finite rank projective if-module it follows that DiffMod(K,a) is a thick subcategpry 
of ModvKt<7, so that the calculus of extensions in DiffMod(K,cr) is the restriction 
of the calculus of extensions in Modx>K,a- For instance, computing Extz(M, N) in 
DiffMod(K,o~) or in Modx>K,a is the same. 

Remark A.2.3. — Many constructions still make sense, and many properties remain 
true, and moreover useful, without the projectiveness or finiteness conditions. For 
instance, one may want to consider difference extension rings of (if, cr), that is, dif­
ference rings (if',cr') such that if c if' and o~^K — cr; in some interesting cases, if' 
is not a finite if-module: for instance, C({z}) C C((z)). We will sometimes briefly 
mention these generalizations, for future reference. 

A.2.3. The functor T. — Let M := (V, $) and N := (W, *) two difference mod­
ules. Write CA(V,W) := CK(V,CT*W) the if-module of cr-linear maps from V to 
W. For simplicity, we shall also (improperly) write CK(M,N) :— CK(V,W) and 
Ca(M,N) :=£A(V,W). 

For any if-linear map / : V —y W, the map ^ o f — / o $ is cr-linear from V to W. 
The map t*ty : / i - ^ * o / - / o $ from £K(M, N) to £a(M, N) is C-linear and, by 
definition, Hom(M, N) is its kernel. We thus have an exact sequence of C-modules: 

0 Hom(M, AT) -> £K(M, N) *-̂ 4 Ca(M, N). 

This sequence is clearly functorial in M and in N (contravariant in M, covariant in 
N). We shall see later that, under appropriate assumptions, its cokernel is the module 
Ext(M, N) (theorem A.4.1). 

Definition A2 A. — The functor T of solutions is defined as: 

M^T(M) :=Hom(l,M). 

Proposition A2.5. — The functor M ^ T(M) from difference modules to C-modules 
is left exact, and one has an identification: 

r(M) = {v e v I = v}. 
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Proof. — The functoriality and exactness are plain. The identification comes as fol­
lows: under the usual identification / i-» v := f(l) of CK{K, V) with V, the condition 
$ o / = / o a translates into $(v) =v. • 

The i-th right derived functor of V is given by: 

M ^ TUM) = EXTVL, M). 

Remark A2,6. — The contents of this paragraph remain valid without conditions for 
all Px,o-modules. 

A.2.4. Tensor products. — Let M := (V, <£) and N := (W, *) two difference 
modules. According to [12, §3, no 3], one has a canonical isomorphism: 

a*(V ®K W) ~ a*V ®K a*W. 

It follows that there is a unique <r-linear isomorphism: 

m(M,N) := (CK(V,W),T)XC+X+DF 

such that x ® y ^ $(x) ®i&(y). This makes the tensor product M 0 N := (V 0 x 
W, # <g) \£) into a difference module. Note however that the result is not a tensor 
product of 2̂ K?0--modules. 

Proposition A2.7. — The tensor product in DiffMod(K,a) is associative, commuta­
tive, bifunctorial (covariant in each argument) and exact. Moreover, there are canon­
ical isomorphisms: 

L < g > M ~ M ~ A F ® L . 

Proof. — This follows immediately from the corresponding properties for projective 
if-modules, with the same meaning (commutativity is understood up to canonical 
isomorphisms, etc.). • 

Remark A2.8. — The contents of this paragraph remain valid without conditions for 
all P^-modules, except for the exactness in the proposition: this remains true for 
if-projective ©/^-modules but reduces to right exactness for general D/r^-modules. 

A.2.5. Internal Horn. — Let M := (F, $) and N := (W, \£) two difference modules; 
then £K(V, W) is projective of finite rank over if. For any if-linear map u : V -> W, 
the map \P o u o is if-linear. The map V : u «-» \I> o u o «Ê-1 from £K(V, W) to 
itself is a if-linear automorphism, whence a difference module: 

Hom(M,N) := (CK(V,W),T). 

This is called an "internal Horn". For instance, Hom(l, M) is canonically isomorphic 
to M. 
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TheoremA.2.9. — Let M := (V,*), M' := (F7,*7) and N := (W,*) 6e ^ree dtffer-
ence modules. There is a canonical functorial isomorphism: 

Horn (M, Kom(M\N)) ~ Hom(M 0 M', N). 

Proof. — Prom [12, §4.1, prop. Il, we have a canonical (and functorial) isomorphism: 

CK(V", CK(V, W)) ~ CK(V ®k V, W), 

which sends / : V —> CK(VW) to the unique linear map g : V®K V —*W such that 
g{v 0 v') = f(v)(vf). Conversely, g : V ®K V -> W is sent to / : V CK(V, W) 
defined by i; \-> (y' \-> g(v ® v')). This yields the isomorphism of the underlying 
K-modules. An easy computation then shows that: 

^ O q = q O ( $ 0 $') T O f = f O 

with / , # and T defined as above. Functoriality comes from the corresponding asser­
tion in linear algebra. • 

Remark A.2.10. — The contents of this paragraph remain valid without conditions 
for all T>K,a-modules. 

A.2.6. Duality. — We keep the same notations as in paragraph A.2.5. According 
to [12, §4.2], the canonical morphism: 

v : CK(Y, V) ®KW ^ CK(V, V % W) 

is a monomorphism if W is projective and an isomorphism if V or W is projective of 
finite rank. One checks that the following diagram is commutative: 

CK(V,V')®kW v +s+CK(VW)s+ed 

Ck(Y,V) ®kW- V >CK(V,V ®k W) 

The left vertical map is given BY: f®w*-^(<frfofo<fr x) 0 ^(w), while the right 
vertical map is given BY: g \-> (3>7 ® \P) O g O 

Proposition A.2.11. — For any three difference modules, v induces a canonical and 
functorial isomorphism of difference modules: 

Hom(M, Mf)®N~ Hom(M, M' ® N). 

Proof. — Immediate from the discussion above. 
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Definition A.2.12. — The dual of the difference module M is: 

Mv :=Hom(M,l). 

If M = (V,$), then Mv = (F*,$v), where §y (u) := ffouo$_1. For instance, for 
A G GLn(if ), one has (if n, $A)V = (Kn, Av), where ,4V := tA~1 is the contragredient 
of A. 

Corollary A.2.13. — We have a canonical and functorial isomorphism of difference 

modules: 

Mv 0 N ~ HomfM, N). 

Proof. — Set M' := 1 in the proposition. • 

Remark A2.14. — Part of these conclusions stay true for more general P^-modules. 
In the proposition, as well as in the corollary, the map is a monomorphism if M is an 
arbitrary T^a-module ancl AT is a if-projective T>K,O- module; and an isomorphism if 
M or iV is a difference module, the other being an arbitrary £>K,o-module. 

A.3. Finitely filtered difference modules 

A.3.1. Isograded classification of difference modules. — Let (if, a) be a dif­
ference ring, with if is a commutative C-algebra and a a C-algebra automorphism. 
Recall from the previous section that a difference module over if is a left Pj^-module 
which is projective of finite rank as a if-module and that the category DiffMod(K, a) 
of difference modules is abelian and C-linear. Difference modules over if can be 
realized as pairs (E1, where E is a projective if-module of finite rank and $ is a 
semi-linear automorphism of E. In this description, a morphism of difference modules 
from (E, $) to (F, *) is a map u G CK{E, F) such that W O u = u O 

As an instance of the general problem considered in section A.l, we fix difference 
modules Pi (1 < i < k) and consider finitely filtered difference modules M with 
associated graded module P — Pi 0 • • • 0 We assume that each such object 
M = (0 = M0 C Mi C • • • C Mfc = M) comes equipped with an isomorphism 
u={ui: Mi/Mi-! ~ Pi)i<i<k from grM to P. 

In accordance with the general problem described in section A.l, we consider (M, u) 
and (M\ u') to be equivalent if there exists a morphism / : M -> M' that respects 
the filtration: /(M») C M[ for 1 < i < k, and such that, writing gi : Mi/Mi-i -> 
Ml/M-_x the morphisms thus induced by /|MI5 ONE NAS u% = K ° 9% f°r 1 < i < k. 
Since / respects the filtration, one can define grf : grM —> grM' and the above 
condition is equivalent to u = grf o y/_. It is a standard fact (and easy to prove) that 
/ is then automatically an isomorphism. 
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Our goal is to classify such pairs (M_,u) up to this equivalence relation. The 
equivalence classes clearly form a set, which we write F(P\,..., Pk)- In this section, 
we give some matricial descriptions, under additional assumptions. 

A.3.2. Matricial description of difference modules. — Here, we assume that 
the if-module E is free of finite rank n. This assumption will be maintained in A. 3.3 
and A.4.2, where we pursue the matricial description. We then see that the difference 
module M — (E,<f>) is then isomorphic to some (KU,$A) (example A.2.2). Indeed, 
choosing a basis B allows one to identify E with ifn. It is then clear that &(B) is 
also a basis of E, whence the existence of A G GLn(K) such that $(B) = BA'1. 
If x G E has the coordinate column vector X G ifn in basis B, i.e., if x — BX, 
computing $(x) = $(BX) = $(B)a(X) = BA~1a(X) shows that $(x) G E has the 
coordinate column vector A~1a(X); we thus may identify (E, 3>) c± (ifN, $A), where 
<bA{X) : = ^ - V ( X ) . 

Morphisms from (KU,§A) to (KP,$B) are matrices F G Matp?n(if) such that 
(vF)A = BF and their composition boils down to matrix product. In particular, 
isomorphism of modules is described by gauge transformations: 

(ifn, $A) ~ (Kp, $B)<=>n=p and 3F G GLn(K) : B = F [A] := (aFJAF-1. 

Aemark A.3.1. — A similar description can be given for free modules of infinite rank. 
Such a if-module is isomorphic to and one should replace GLn(if ) by GL/(if ) 
and Matp5n(if) by Matjx/(if). Infinite "matrices" are to be understood as follows: 
elements of Endx(if ^ ) are families (o^j) of elements of if indexed by i" x / and such 
that each column (j fixed) has finite support. The set Mat/(if) :— Endif(if(J)) is 
a unitary ring and GL/(if) := A u t / ^ ( i f i s its group of units. There is a similar 
condition for Matjx/(if). 

A.3.3. Matricial description of filtered difference modules. — Let Pi = 
(Gi,^i) (1 < i < k) be difference modules such that each if-module Gi is free of 
finite rank n . For each Gi, choose a basis Vi, and write Bi G GLri(K) the invertible 
matrix such that ^i(Vi) — T>iBi. 

Let M be a finitely filtered difference module with associated graded module P = 
Pi 0 • • • 0 Pk', more precisely, M = (0 = M0 C Mi C • • • C Mk = M) is equipped 
with an isomorphism u — (ui : Mj/M^_i ~ i^)i<i<& from grM to P. Letting Mi = 
(£i, 3>i), one builds a basis Bi of ^ by induction on i — 1, . . . , k in such a way that 
Bi-i C and that B\ := Bi\Bi-\ lifts 2^ via Ui (showing by the way that if-
modules Ei are free of finite ranks r\ + hn). Write $i (resp. $i) the semi-linear 
automorphism induced by $ (resp. by <&i) on (resp. on Ei/Ei-i), and the basis 
of Ei/Ei-i induced by B[, one draws from equality o $j = o m (due to the fact 
that Ui is a morphism) the relation: <&i(Ci) = CiBi, then, from the latter, the relation: 

^(B^) = B[Bi (mod^- i ) . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



124 APPENDIX A. CLASSIFICATION OF ISOGRADED FILTERED DIFFERENCE MODULES 

Last, one gets that the matrix of $ in basis B is block upper-triangular: 

*(B) = B 
(Bi • • ' 

0 d + r d + • 
v 0 0 Bkj 

As in A.3.2, we identify Pi (1 < i < k) with (Kri,$Ai), where Ai := P"1 G GLri{K). 
Likewise, P is identified with (Kn, 3>A0) and M with (Kn, where n := rH hr^ 
and: 

A n -
0 0 

0 0 
0 0 Ak 

et A = 
/Ai • * 

0 '•. • 
0 0 Afc, 

Note that these relations implicitly presuppose that a filtration on M is given, as well 
as an isomorphism from grM to P. If moreover Mf = (Kn,$A'), where A! has the 
same form as A (i.e., M' is filtered and equipped with an isomorphism from grM' to 
P), then, a morphism from M to M' respecting nitrations (i.e., sending each Mi into 
M-) is described by a matrix F in the following block upper triangular form; and the 
induced endomorphism of P ~ grM ~ grM' is described by the corresponding block 
diagonal matrix FQ 

F = 
Fi * *\ 

0 ' • . * 

, 0 0 Fk/ 
et F0 = 

Fi 0 0 

0 '•. n 
^ 0 0 Fk/ 

In particular, a morphism inducing identity on P (thus ensuring that the filtered 
modules M,M' belong to the same class in J-'(Pi,... ,Pk)) is represented by a matrix 
in &(K), where we denote 0 the algebraic subgroup of GLn defined by the following 
shape: 

flri • • 

0 '•. • 
0 0 L, / 

(The unipotent algebraic group 0 was previously introduced in paragraph 2.3.3, 
page 22.) 

Now write Au the block upper triangular matrix with block diagonal component 
An and with upper triangular blocks the Uij G Ma,triirj(K) (1 < i < j < fc); here, U 
is an abbreviation for the family (Uij). For all F G &(K), the matrix F[A[/] is equal 
to Ay for some family of Vij G Matri5rj. (K). Thus, the group <Ö(K) operates on the 
set rii<i<j</c Matri?rj (K). The above discussion can be summarized as follows: 

Proposition A3 2. — The map sending U to the class of(Kn, §AU) induces a bijection 
from the quotient of the set rii<i<j<fc Matri?rj. (K) under the action of the group (3(K) 
onto the set T(Pi,..., Pk). 
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Remark A.3.3. — The point of the above trivial and rather long construction of tri­
angular matrices is not so much that adequate bases exist, but that, by choosing such 
triangular forms, one implicitly fixes the structural isomorphisms Mi/Mi-i ~ Pi. 

A.4. Extensions of difference modules 

Let 0 -> M' —» M -» M" —0 an exact sequence in Mod^K a. If M1\ M" are differ­
ence modules, so is M (it is projective of finite rank because we have a split sequence 
of l^-modules). The calculus of extensions is therefore the same in DiffMod(K,a) 
as in ModvKt(7 and we will simply write Ext(M", M') the group ExtpK CT(M", M') of 
classes of extensions of M" by M'. Prom general homological algebra, we know that 
Ext(M//, Mf) is actually endowed with a structure of C-module, whence a C-module 
structure on J-*(M', M") (as noted at the beginning of section A. 1.1). 

On the other hand, if M', M" are free over K of respective ranks n;, n", proposi­
tion A.3.2 of the previous section allows for a description of F(M'', M") as a quotient 
of the space Matn/)n"(if ) by a C-linear group action. This also provides a C-module 
structure on F(M\ M,f). We shall show in this section that these structures actually 
coincide. For any two left modules M1\M" over a unitary C-algebra, the linear struc­
ture on Ext (M",M') is completely described in [13, §7] ^ and we shall rely on this 
description to make explicit the corresponding structure of C-module of Jr(Mf', M") 
in the case of arbitrary difference modules M' and M". The main result is theo­
rem A.4.1. 

So let M = (£,$) and N = (F, W). Any extension 0 iV ß M -» 0 
of M by N gives rise (by restriction of scalars) to an exact sequence of i^-modules 
0—>F-±G-^E-^0 such that, if R = (G, T), the following diagram is commutative: 

0 — F i G j E 0 

dr r dr 

0 F i G j 
E 0 

(We wrote again z,j the underlying if-linear maps.) Since E is projective, the se­
quence is split and one can from start identify G with the Ä-module F x E, thus 
writing i(y) = (y,0) and i(y,x) = x. The compatibility conditions r o i = i o and 
# o j = j o r then imply: 

T(y,x) = Tu(y,x) :=dr++dr+ u(x),dr+dwith u e Ca(E,F), 

where we write Ca(E, F) the set of a-linear maps from E to F. (This means that u is 
a group morphism such that u(Xx) = a(X)u(x).) Setting moreover Ru := (F x £J, Tu), 

4. And, to the best of our knowledge, nowhere else. 
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which is a difference module naturally equipped with a structure of extension of M 
by N, we see that we have defined a surjective map: 

Ca(E, F) -» Ext(M, N), 

u*-> 0U := class of i2n. 

We can make precise the conditions under which d+ +dr+d Ca(E, F) have the same image 
0U = 6V, i.e., under which Pu and Rv are equivalent extensions. This happens if there 
exists a morphism (j) : Ru -» Rv inducing the identity map on M and N, that is, a 
linear map 4>:FxE^FxE. such that Tv o <\> — </> o Tu (since it is a morphism of 
difference modules) and having the form (x,y) «-»(?/ + f(x),x) (since it induces the 
identity maps on E and on F). Now, the first condition becomes: 

V(y, x) G F x E , (*(y + /(*)) + *(*)) =dr+d+r+d + u(z) + /(*(*)), *(*)), 

that is: 
u — v = fyof — fo&. 

Remark by the way that, for all / G CK{E, F), the map £$,#(/) := \£ o / — / o <I> is 
cr-linear from E to F. 

Theorem A.4.1. — TAe map 0U from CA(E,F) to Ext(M, N) is functorial in M 
and in N, C-linear, and its kernel is the image of the C-linear map: 

t^:CK(E,F)-+Ca(E,F), 

/ ^ * o / - / o $ . 

Proof 

> Functoriality. — We shall only prove (and use) it on the covariant side, i.e., in AT. 
We invoke [13, §7.1 p. 114, example 3 and §7.4, p. 119, prop. 4]. Let 0 be the class in 
Ext(M, N) of the extension 0 A i V - ^ Ä ^ M ^ O and g : N -> Nf a morphism in 
DiffMod(K,a). Let 

0 N i R 3 M 0 

\9 h HM 

0 N' 
I R' dr+ M • 0 

be a commutative diagram of exact sequences. If 6' is the class in Ext(M, N) of the 
extension 0 -4 N' ->• R' 4- M -» 0, then: 

Ext(IdM, g)(0) = g o 0 = 6' o IdM = 0'. 

We take: 

R' :=R®N N' = 
fix AT' 

{{i(n),-g(n)) \ n e N} 
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with I7, j ' the obvious arrows, and for R the extension Ru; with the previous notations 
for TV, M, R, and also writing Nf = (F7, \I>7), with compatibility condition ^'og = goty, 
we see that the K-module underlying R ®JV N' is: 

G' := 
F x F x F7 

{(y, 0,-0(2/)) \ yeFY 

endowed with the semi-linear automorphism induced by the map Tu x 3>7 from F x 
E x F' to itself (the latter does fix the denominator). 

The map (y, x, 2/) H-> (yf+g{y),x) from Fx Fx F7 to F7 x F induces an isomorphism 
from G7 to F7 x F and the induced semi-linear automorphism on G7 is (y',x) i-> 
(̂ 7(y7) + #(u(x)), $(#)), that is rpu, from which it follows that Rf = Rgu. The 
arrows I7, j ' are determined as follows: i'(y') is the class of (0, y') in G7, that is, under 
the previous identification, i'(y') = (2/',0); and j'(y' ,x) is the image of an arbitrary 
preimage, for instance the class of (0,x,y7): that image is j(0,x) = x. We have 
therefore shown that the class of the extension Ru by Ext (MM, 9) is Rgu, which is the 
wanted functoriality. It is expressed by the commutativity of the following diagram: 

CJE.F) Ext(M, N) 

Ca(ldM,g) Ext(IDM,S) 

CJE,F') Ext(M, N') 

> Linearity. — According to the remark just before the theorem, the map tç>^ indeed 
sends £K(E,F) to £a(E,F). 

> Addition. — The reference here is [13, §7.6, rem. 2 p. 124]. From the extensions 
0 - > A T A ß 4 M ^ 0 a n d 0 - ^ A r A ß 7 ^ M - > 0 having classes 0,0' e Ext^M, N), 
one computes 6 + 9f as the class of the extension 0 —» AT ̂  i?77 >̂ M —» 0, where: 

Ä":= 
fez')gfixff|p(z)=Pdr++dV)) 

{(-i(y),i'(y)) \yeN} 

and I77(?/) is the class of (0, i'(y)), i.e., the same as the class of (i(y), 0); and p" sends 
the class of (z,zf) to p(z) = p'(z'). Taking R — Ru and R' = Pu>, the numerator 
of i?77 is identified with F x F x F equipped with the semi-linear automorphism 
(y,y',x) i-> (^(2/) + u(x),ty(y') + IG'(#), $(#)). The denominator is identified with 
the subspace {(—y, y, 0) | y G F} equipped with the induced map. The quotient is 
identified with 0 x F x F, through the map (y, y', x) \-+ (0, y77, x), where y" :— y' -f 2/, 
equipped with the semi-linear automorphism 3>77 which sends (0,y77,x) to 

(0, ttfo') + u\x) + *(j/) + u(x), $(x)) - (0, tf (y") + (u + u7)(x), *(*)). 

This is indeed Ru+u' • 
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> External multiplication. — The reference here is [13, §7.6, prop. 4 p. 119]. Let 
À G C. We apply the invoked proposition to the following commutative diagram of 
exact sequences: 

0 N Ru M 0 

XA 

0 - N 

(XA,IDM) 

dr+d+rd+r 

MM 

M 0 

If 0, 6' are the classes in Ext(M, N) of the two extensions, one infers from [13, loc. 
cit.] that: 

0'oIdM = (xÀ)o 0=^<9' = AO. 

The class of the extension R\u is therefore indeed equal to the product of A by the 
class of the extension Ru. 

> Exactness. — It follows immediately from the computation shown just before the 
statement of the theorem. • 

A.4.1. The complex of solutions. — The following is sometimes considered as 
a difference analog of the de Rham complex in one variable, see for instance [2,57]. 

Definition AA.2. — We call complex of solutions of M in N the following complex of 
C-modules: 

t** : £k(E,F) -+ £JE,FY 

/ ^ * O / - / O * . 

concentrated in degrees 0 and 1. 

It is indeed clear that the source and target are C-modules, that the map t$^ does 
send the source to the target and that it is C-linear. 

Corollary AA 3. — The homology of the complex of solutions is H° — Hom(M, N) 
and H1 = Ext(M, N), and these equalities are functorial. 

Proof. — The statement about H1 is the theorem. As regards H°, the kernel of 
is the C-module {/ G CK(E,F) | * O / = / O $}, that is, Hom(M, N)\ and 

functoriality is obvious in that case. • 

Corollary AAA. — From the exact sequence 0 -» N'd+d+e-» N" -> 0, one deduces 
the "cohomology long exact sequence77: 

0 -> Hom(M, Nf) ->Hom(M, N) -+ Hom(M, N") 

-> Ext(M, Nf) -> Ext(M, N) -> Ext(M, N") -> 0. 
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Proof. — We keep the previous notations (and moreover adapt them to N', N"). The 
exact sequence of projective X-modules 0 -> F' -> F -> F" -> 0 being split, both 
lines of the commutative diagram: 

0 CK(E,F>) £K(E,F) CK(E,F") 0 

dr+d+r dr+ dr+d 

0 C*{E,Ff) Ca(E,F) C*(E,F») 0 

are exact, and it is enough to call to the snake lemma. • 

A.4.2. Matricial description of extensions of difference modules. — We 
now assume E, F to be free of finite rank over K and accordingly identify them with 
M = (Km,$A), A G GLm(K) and N = (Kn,$B), B G GLn(K). An extension 
of N by M then takes the form R = (ÜTm+n,^c), where C = ( 0nAm % ) for some 
rectangular matrix U G Matm?n(K); we shall write C = G\j. The injection M -» P 
and the projection R N have as respective matrices +d+r+x+ +sd) and +dr++d+ +d^ )• The 
extension thus defined will be denoted RJJ. 

A morphism of extensions Ru —> Rv is a matrix of the form F = ( 0 ^ * ) for 
some rectangular matrix X G Matmjn(üQ. The compatibility condition with the 
semi-linear automorphisms writes: 

(aF)Cu = CVF <=^U+ (aX)B = AX + V^=ïV-U= (aX)B - AX. 

Corollary A A.5. — The C-module Ext1 (A/", M) is thereby identified with the cokernel 
of the endomorphism X i->> (aX)B — AX ofMatm^K). 

Proof — The above construction provides us with a bijection, but it follows from 
theorem A.4.1 that it is indeed an isomorphism. • 

By taking m — n = 1, and A := (1), B := (cz), we recover example 3.3.2 page 32. 
Letting c := 1 yields the case that was studied in paragraph 2.3.1. 

A.5. Extension of scalars 

We want to see .F(Pi, . . . , Pk) as a scheme over C, that is as a representable functor 
C1 ^ TiC1 (g)c P i , . . . , Cf (g>c Pk) from commutative C-algebras to sets. To that end, 
we shall extend what we did to a "relative" situation. 

Let C be a commutative C-algebra. We set: 

K' := C' 0c K and a := 1 <g>c o. 

Then K' is a commutative C-algebra and a' an automorphism of that C'-algebra. 
Moreover: 

CVF <=^U+ (aX)B = AX + V^=ïV-U= (aX)B - AXx 

These equalities should be interpreted as natural (functorial) isomorphisms. 
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Prom any difference module M = (E, #) over (if, cr), one gets a difference module 
Af = (£' ,$ ') over (K',a') by putting: 

Ë = if' 0K E = C 0C E and #' = a' 0K $ = 1 0C 

(This is indeed a left VK>,O'-module and it is projective of finite rank over if'.) We 
shall write it M' = C 0 k M to emphasize the dependency on C. The following 
proposition is the tool to tackle the case k = 2. 

Proposition A3.1. — Let M,N be two difference modules over (if, cr). One has a 
functorial isomorphism of C-modules: 

ExtVKfaf (C 0c Af, C" 0C N) ~ C 0C ExtpK)ff (M, N), 

and a functorial epimorphism of Cf -modules: 

C 0c HompX!ff (M, N) -» Hom©^, (C ®C M, C" ®c # ). 

Prro/. — We shall write Af' = C 0C M, E' = Kf 0K E etc. The if-modules F, F 
being projective of finite rank, there are natural isomorphisms: 

C" 0c CK(E,F) = CK>{Ef, F') et C 0C Ca(E,F) = Ff). 

(This is immediate if E and F are free, the general case follows.) By tensoring the 
(functorial) exact sequence: 

0 HOMD̂  (Af, N) -> JCK(E, F) (£, F) -> E x f e ^ (Af, AT) 0, 

we get the exact sequence: 

C 0c H o m r ^ (M, AT) -» C" ®cd+rd+r+d+ +dF) 

-» C" <g>c £<T(E, F) -> C 0c ExtpK)CT (Af, AT) -> 0. 

Both conclusions then come by comparison with the exact sequence: 

0 RomvKf af{M',N') -> CKr{E',Ff) -+ £af(Ef, Ff) -> ExtvKf^(M\Nf) -+ 0. • 

Proposition A.5.2. — Let 0 = M0 C Afi C • • • c Mk = Af 6e a k-filtration with 
associated graded module Pi 0 • • • 0 P&. 17ien7 setting M[ := C" ®C Af* and P{ := 
Cf 0cPi, we get a k-filtration 0 = MQ C M{ C • • • C M'k — M' with associated graded 
module P{ 0 • • • 0 P'k. 

Proof. — The Pi being projective as if-modules, the exact sequences 0 —>• Mi-i —>> 
Mi —» Pi —> 0 are if-split, so they give rise by the base change K'0K to exact 
sequences 0 -» M[__x Af/ -> P[ 0. • 

If ( Af, m) denotes the pair made up of the above fc-filtered object and of a fixed 
isomorphism from grM to Pi 0 • • • 0 P/c, we shall write (C 0c M, 1 0c u) the corre­
sponding pair deduced from the proposition. 
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Definition A.5.3. — We define as follows a functor F from the category of commutative 
C-algebras to the category of sets. For any commutative C-algebra C, we set: 

F{C) := T{C ®cPu-*-,C'®c Pk)-
For any morphism C -» C" of commutative C-algebras, the map F(C) —» F(CU) is 
given by: 

class of (ML, v/_) class of (C" <g>fe/ ML, 1®cuL)-

The set F(C) is well defined according to the previous constructions. The map 
F(C!) -> F(Cff) is well defined on pairs thanks to the proposition, and the reader 
will check that it goes to the quotient. Last, the functoriality (preservation of the 
composition of morphisms) comes from the contraction rule of tensor products: 

C " <g>c" (C" ®c' ML) = C" ®c, ML. 

A.6. Our moduli space 

To simplify, herebelow, instead of saying "the functor F is represented by an affine 
space over C (with dimension d)", we shall say "the functor F is an affine space over 
C (with dimension d)". This is just the usual identification of a scheme with the space 
it represents. 

Theorem A.6.1. — Assume that, for 1 < i < j < k, one has Hom(Pj, Pi) = 0 and that 
the C-module Ext(Pj, Pi) is free of finite rank Sij. Then the functor C' ^ F(C) := 
I(C ®c Pi, • • •, C ®c Pk) is an affine space over C with dimension,^21<i<-<jcöij. 

Proof — When k = 1, it is trivial. When k = 2, writing V the free C-module of 
finite rank Ext(P2,Pi), and appealing to proposition A.5.1, we see that this is the 
functor C ^ C <g>c V, which is represented by the symmetric algebra of the dual 
of V, an algebra of polynomials over C. For k > 3, we use an induction based on a 
lemma of Babbitt and Varadarajan [3, lemma 2.5.3, p. 139]: 

Lemma A.6.2. — Let u : F —» G be a natural transformation between two functors 
from commutative C-algebras to sets. Assume that G is an affine space over C and 
that, for any commutative C-algebra C', and for any b e G(C), the following functor 
"fiber above b" from commutative C'-algebras to sets: 

C" ^Uç},(G(C' ->C")(b)) 

is an affine space over C. Then F is an affine space over C. 

In loc. cit., this theorem is proved for C = C, but the argument is plainly valid for 
any commutative ring. Here is its skeleton. Choose B = C[7\, . . . , representing G. 
Take for b the identity of G(B) — Hom(P, B) ("general point"); the fiber is represented 
by B[S\,..., Se}. One then shows that C[Xi,..., Td, Si,..., Se] represents F. This 
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gives by the way a computation of dim F as dim G + dim of the general fiber. In our 
case, all fibers will have the same dimension. 

On our way to the proof of theorem A.6.1, we shall now have a closer look at these 
fibers. 

A.6.1. Structure of the fibers. — Before going to the proof of the theorem, we 
need an auxiliary result. Remember that, all along, we assume that Hom(Pj, Pi) = 0 
for 1 < i < j < k. 

Proposition A.63. — Let C be a commutative C-algebra and let M' be a difference 
module over K' := C 0 c K, equipped with a (fc — 1)-filtration: 0 = MQ C M[ C • • • C 
M'k_x = M' such that grM' ~ P[ ® • • • 0 P'k_x (as usual, P[ := C 0 c Pi)- Then 
the functor in commutative C-algebras C" ^ Ext(C" 0 c Pk, C" 0 c M') is an affine 
space over C with dimension Xa<i<fc^,fc-

Proof — After proposition A.5.1, this is the functor C" —> C" 0 c Ext(Pj^,M/). 
Prom each exact sequence 0 —» M[_x M[ —>• P[ —» 0 one draws the cohomology 
long exact sequence of corollary A.4.4; but, from proposition A.5.1, one draws that, 
for any commutative G-algebra C', one has Hom(G/ 0 c Pj,C 0 c Pi) — 0 and that 
the C'-module Ext(C 0 c Pj,C 0 c Pi) is free of finite rank Sij. According to the 
equalities Hom(Pj, P/) = 0, the long exact sequence is here shortened as: 

0 -» Ext(Pi MU) -»• Ext(P^, Mi) -»• Ext(P^, P/) -4 0, 

and, for i = 1, . . . , fc — 1, these sequences are split, the term at the right being free. 
So, in the end: 

Ext (PL, M') 
i<i<k 

Ext(p^,p;), 

which is free of rank J21<i<k As in the case k = 2 (which is a particular case of 
the proposition), the functor mentioned is represented by the symmetric algebra of 
the dual of this module. • 

For all £ such that 1 < £ < fc, let us write: 

Vf.= 
i<i<e 

Ext(Pe,Pi), 

W, := 
i<i<j<e 

Ext(Pj,Pi), 

dr+d+r+ 

d+r+dr+ 

Ext(p;,p/): 

dr+d+r+d+re+ 

l<i<j<£ 
Ext(p;,p/) 
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We consider Vi, We as affine schemes over C and V[, W[ as affine schemes over C , so 
that: 

vi = c ®C vi, - a 0c w£. 
We improperly write C 0c V the base change of affine schemes Spec C ®spec c V. 
Also, we do not distinguish between the direct sums of the free C-modules Ext(P/, Pi) 
and the product of the corresponding affine schemes. Note that, in the proof of the 
proposition, the isomorphism Ext(P'k,M') ~ V[ is functorial in C. This entails: 

Corollary ASA. — Each fiber Ext(P^, M') is isomorphic to V£ as a scheme over C. 

A.6.2. End of the proof of theorem A.6.1. — Now we end the proof of the 
theorem. Besides functor F(C'), we consider the functor C ^ G(C) := T(C 0c 
Pi , . . . , C 0c Pk-i)i of which we assume, by induction, that it is an affine space 
of dimension Ei<i<i<fc-i ^ij- The natural transformation from F to G is the one 
described in A.1.2. An element b G G(Cr) is the class of a pair (M\uf), a (k — 1)-
filtered object over C , and the corresponding fiber is the one studied in the above 
auxiliary proposition A.6.3. The lemma A.6.2 of Babbitt and Varadarajan then allows 
us to conclude. • 

Looking at the proof of A.6.2, one moreover sees that, if all fibers of u : F —> G are 
isomorphic to a same affine space V (up to obvious extension of the base), then there 
is an isomorphism F ~ V Xc G such that u corresponds to the second projection. 
With the previous notations, we see that, writing Tt the functor Cf ^ T{C' 0c 
Pi , . . . ,C 0c Pi), corollary A.6.3 gives an isomorphism of schemes: 

Ti ~ Tt-\ x Vn. 

By induction, we conclude: 

CorollaryA.6.5. — The functor in C-algebras C ^ T{C' 0C P\,..., C 0c Pk) is 
isomorphic to the functor C ^ (Bi<i<j<e Ext(C 0c Pk, C 0c Pi)- That is, we have 
an isomorphism of affine schemes over C: 

dr++dr++dft)^ 
l<i<3<£ 

Ext (ft, P.). 

A.7. Extension classes of difference modules 

We shall now describe more precisely extension spaces in the case of a difference 
field (K, a). We keep all the previous notations. Our main tools are theorem A.4.1 
and its corollaries A.4.3 and A.4.5. We shall give more "computational" variants of 
these results. 

We use the cyclic vector lemma (lemma 2.1.1): the proof given in [18] is valid for 
general difference modules, under the assumption that the characteristic of K is 0 and 
that a is not of finite order (e.g., q is not a root of unity). Although most of what 
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follows remains true for D-modules of arbitrary length (because V is principal [13]), 
the proofs, inspired by [49, II. 1.3], are easier for V/VP. Recall that, the center of V 
being C, all functors considered here are C-linear and produce C-vector spaces. For 
a difference module M — (E, $), we still write E the C-vector space underlying E. 

Proposition A.7.1. — Let M := V/VP and N := (F, ̂ ) two difference modules. Then 
Extz(M, N) = 0 for i > 2 and there is an exact sequence of C-vector spaces: 

0 -> Hom(M, N) -» F ^ F -+ Ext1 (M, N) -> 0. 

Proof. — From the presentation (in the category of left V-modules) : 

v ^ T P - ^ m - ^ O , 

one draws the long exact sequence: 

0 -> Hom(M, N) ->Hom(£>, N) -> Hom(£>, N) 

-> Ext1(M, N) -> Ex t1^ , N) -> Extx(P, N) -» • • • 

• Ext*(M, TV) -> Ext*(2>, iV) -> Ext*(£>, AT) —» • • • 

Since £> is free, Ex t^AT) = 0 for i > 1 and the portion Exti_1(£>, Af) 
Ext*(M, iV) —> Ext*(X>, AT) of the long exact sequence gives the first conclusion. 

We are left to identify the portion Hom(P, M) —> Hom(P, M). Of course, 

x H+ \x := {Q H+ Q.x = Q(V)(x)) and / ^ f(l) 

are isomorphisms from M to Hom(D, M) and return reciprocal to each other. Then, 
the map to be identified is / \-> f o (xP), where, of course, xP denotes the map Q »->> 
QP. Conjugating it with our isomorphisms yields x H-» (\X O (XP))(1) = (P.l)(^)(x), 
that is, P(tf). • 

Remark A.72. — The complex F —> F (in degrees 0 and 1) thus has cohomology 
Hom(M, AQ, Ext1 (M, N). This is clearly functorial in N. On the other hand, there 
is a part of arbitrariness in the choice of P, but, after [13] §6.1, the homotopy class 
of the complex depends on M alone. 

Corollary AJ 3. — Let M = (F, #). The complex of solutions of M: 

E ^ E 

has cohomology T(M), F^M). 

Proof — In the proposition, take M := 1, P := aq - 1 and N := (E, #). • 

Note that this is functorial in M. 
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Remark AJ A. — Applying the corollary to Mv <g>N implies that the map / \-> ^ o / o 
3>-1 — / has kernel Hom(M, N) (which is obvious) and that its cokernel is in one-to-one 
correspondence with Ext1(M, N), which is similar to the conclusion of theorem A.4.1. 
However, in this way, we do not get the identification of the operations on extensions: 
this would be possible using [13, §6.3]. 

Corollary AJ,5. — Let M = V/VP. Then, for any dual Pv of P, the complex: 

K dr+d+ K 

has cohomology T(M), TX(M). 

Proof. — In the proposition, take N := 1 = ( Ä » . This gives T(MV), T1(MV) 
as cohomology of K —> K. Now, replace M by Mv. (Of course, no functoriality 
here!) • 

ExampleA.7.6. — For u e K* = GU(K), where K = C({*}) or C((z)), put Mu := 
(K,<bu) = Vq/Vq(aq — u~x). A dual of aq — u~l is, for instance, aq — u. One has 

= Mu-i and MU®MV = Muv. 
From the corollaries above, we draw that Kd+ +d+r+d+ d+rK, resp. K ^—^ K has 

cohomology T(MU), Tl(Mu). From the proposition, we draw that K Vdrd+rK has 
cohomology Hom(Mn, My), Ext1(Mu, Mv). 

A.8. The cohomological equation 

We here prepare the grounds for the examples of chapter 7 by giving some practical 
recipes. 

A.8.1. Some inhomogeneous equations. — Like in the theory of linear differ­
ential equations, many interesting examples come in dimension 2; see for instance 
example 3.3.2 page 32 , and the more detailed studies of chapter 2, paragraph 2.3.1 
and chapter 7, section 7.1. 

So let a,b e K* and u e K. Extensions of Mb := (K, $5) by Ma := (K, $a) have 
form NA^^U := (K2,$AU) where AU := (§ An isomorphism of extensions from 
Na,b,u to Na^v would be a matrix F :— ( J {) such that baf — af = v — u. More 
generally, the space Ext(M&, Ma) is isomorphic to the cokernel of the C-linear map 
bo — a from K to itself. We shall call cohomological equation the following first order 
inhomogeneous equation: 

(A.L) baf — af — u. 

This can be seen as the obstruction to finding an isomorphism F from A§ to AU. 
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More generally, let L := an 4- \- anan eT>. By vectorializing the corresponding 
equation we get a system with matrix: 

A = 

o i n o 
o o l ..dr. o 

o o o ... 1 
—ao/an —ai/an —a2/an —... —an-i/an 

Actually, M := (Kn,$A) ~ (V/VL)V. From corollary A.7.5, we deduce: 

Coker L ~ rx(M) ~ Ext(l, M). 

This can be seen as an obstruction to finding an isomorphism I U. x o 1 from A c o 1 ) to 
A Us \ 0 1 In fact, an isomornhism 

o l from A u o 1 to A V 
0 1 I would correspond tc 

a solution of aX — AX = V — U. Assuming for instance an = 1 and writing Xi the 
components of X, this gives the equations axi — xi = Vi — Ui (i = 1, . . . , n — 1) and 
axn + aoXi + • • • + an-\Xn = vn — un. From this, one can solve trivially to get an 
equivalent of U with components 0, . . . , 0, u (exercise for the reader). And, if U has 
this form, finding an isomorphism ( 7Q ^ ) from ( o î ) ^ ° ( o Y ) ^ s equivalent to solving 
Lx\ = u. Still more generally, it is easy to see that finding an isomorphism ( 7Q f ) 
from ( o B ) t° (OB) *s equivalent to solving (aX)B — AX — U, and to obtain anew 
an identification of the cokernel of X (aX)B - AX with Ext((Kp, $#), (Kn, $>A)). 

A.8.2. A homotopy. — The following is intended to be an explanation of the 
equivalence of various computations above. Let (K, a) be a difference field with 
constant field C. The cr-difference operator P := an + a\on~x H h an gives rise to 
a C-linear complex K —> K. Writing Ap the companion matrix described in 2.1.2.1, 
we also have a complex Kn —>> Kn, where we have set A := a — Ap. We then have a 
morphism of complexes: 

K p K 

v i 

K1 A dr+d 

where V(f) := 
dr+d+r+d 

dr+d+r 

and 1(g) := 

'0\ 

n 
g) 

(The equality A o F = / o P is obvious.) We now introduce the operators Pi := 
on~% + a\an~l~l H h an-i (they are related to the Horner scheme for P). We then 
have a morphism of complexes in the opposite direction: 

K p K 

7T1 

K7 A dr+d 
n , where 7Ti 

' / r 

dr+d 
:= /i and II 

dr 

\9n/ 

n 
vr 

i=l 
drvr 
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(Of course, one must check that IIo A = Pom.) Clearly (m, Ü)o (V, /) is the identity 
of the first complex. We are going to see that (V,/) o (TTI , II) is homotopic to the 
identity of the second complex, whence their homological equivalence (see [13, §2.4, 
def. 4,5 and prop. 5]). To that end, we introduce a backward operator Kn Kn 
defined by the following relation: 

A' 
f9i 

,9nt 
dr 

dv 

vr 
where gidr+d+r 

j+k=i-i 
o~J9k 

V o 7T-[ - Id^N = A ; o A . 
IoU~ldKn =AoA'. 

(The computations are mechanical and again left to the reader.) This implies that 
the two complexes are indeed homotopic. 
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fundamental annulus, 15 
gauge transformation, 11, 49 

generic for Ao (A is), 84 
generic for Ao (partition), 82 
germ of sector within distance e from divisor 

A, 62 
good covering, 49 
holomorphic vector bundle associated to a 

g-difference module, 95 
holomorphic vector bundle over Eq, 92 
horizon, 39, 40 
index, 29, 30 
index theorems, 28 
infinitely tangent to the identity (automor­

phisms), 48 
integral slopes, 31 
internal Horn, 120 
internal End, 31 
internal Horn, 10 
invariant open set, 39 
irregularity, 28, 30 
irregularity (sheaf theoretical interpretation), 

96 
isoformal analytic classes of analytic 

-̂difference modules, 25 
isoformal classification, 55 
isograded classification of difference modules, 

122 
isograded filtered difference modules, 116 
Jacobi theta function, 7, 59, 63, 98 
Jacobi's triple product formula, 7, 71, 98 
level of an inhomogeneous equation, 33 
local Galois group, 109 
local monodromy group, 109 
locally free sheaf over Eq, 92 
long exact sequence, 134 
matricial description of «F(Pi,..., P&), 22 
matricial description of difference modules, 

123 
matricial description of extensions of differ­

ence modules, 129 
matricial description of filtered difference 

modules, 123 
Mock Theta functions, 107 
module structure on T(M', M"), 125 
moduli (space of), 18, 21, 27 
moduli space, 116, 131 
multiplicity, 13 
multisummable functions, 79, 80 
multisummation process, 107 
Newlander-Niremberg integrability theorem, 

54 
Newton function, 13 
Newton polygon of a ̂ -difference module, 13 
Newton polygon of a -̂difference operator, 13 
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non-abelian cohomology set if1(Eq, A), 92 
normalization process, 35 
one level case, 21, 91 
open parallelogram, 49 
partial fraction decomposition, 65 
partition compatible with Ao, 82 
partition generic for Ao, 82 
polynomialnormal form, 32 
privileged cocycle, 91 
prototypal example, 18 
pure, 15 
pure isoclinic, 15 
pure isoclinic vector bundle, 92 
van der Put, 16 
quotient (badly behaved), 21 
ramification, 14 
rank, 10 
regularly separated subsets, 51 
relative divisors, 78 
residues, 65 
resummation problem, 23 
Reversât, 16 
Riemann problem (generalized), 1 
semi-group, 39 
semi-linear automorphism, 9, 117 
sheaves on Eq of asymptotic functions, 40, 45 
slope filtration, 16 
slopes, 13 
slopes (arbitrary), 16 
slopes (integrality assumption), 3, 31 
small parallelogram, 49 
stable open set, 39 
stable strict subset, 39 

Stieltjes-Wiegert polynomials, 109 
Stokes phenomenon, 29, 84, 85, 97 
Stokes sheaf, 49 
Stokes sheaf (cohomology), 55 
strict subset (stable), 39 
summability, 82 
summation divisor, 82 
summation in an authorized direction of sum­

mation, 88, 89 
summation processes (wealth of), 6 
support of a divisor, 60 
Taylor jets, 44 
tensor product, 10, 120 
theta function, 7, 59, 63, 98 
transverse subsets, 51 
triple product formula, 7 
Tshakaloff series, 14, 21, 33, 88, 97 
Tshakaloff series (square of), 103 
two levels asymptotics, 78 
two slopes case, 21, 91 
unipotent algebraic group, 22 
unit difference module, 118 
unity, 10 
values of F on A at 0, 70 
values of F over a relative divisor, 78 
van der Put, 16 
weight of a divisor, 60 
Whitney (C°° function in the - sense), 43 
Whitney conditions, 43, 44 
Whitney extension theorem, 51 
Whitney theorem, 43 
wild fundamental group, 3 
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