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STRING TOPOLOGY FOR STACKS

Kai BEHREND, Grégory GINOT, Behrang NOOHI & Ping XU

Abstract. — We establish the general machinery of string topology for differentiable
stacks. This machinery allows us to treat on equal footing free loops in stacks and
hidden loops. We construct a bivariant (in the sense of Fulton and MacPherson)
theory for topological stacks: it gives us a flexible theory of Gysin maps which are
automatically compatible with pullback, pushforward and products. Further we prove
an excess formula in this context. We introduce oriented stacks, generalizing oriented
manifolds, which are stacks on which we can do string topology. We prove that the
homology of the free loop stack of an oriented stack and the homology of hidden loops
(sometimes called ghost loops) are a Frobenius algebra which are related by a natural
morphism of Frobenius algebras. We also prove that the homology of free loop stack
has a natural structure of BV -algebra, which together with the Frobenius structure
fits into an homological conformal field theories with closed positive boundaries. We
also use our constructions to study an analogue of the loop product for stacks of maps
of (n-dimensional) spheres to oriented stacks and compatible power maps in their
homology. Using our general machinery, we construct an intersection pairing for (non
necessarily compact) almost complex orbifolds which is in the same relation to the
intersection pairing for manifolds as Chen-Ruan orbifold cup-product is to ordinary
cup-product of manifolds. We show that the hidden loop product of almost complex
orbifolds is isomorphic to the orbifold intersection pairing twisted by a canonical class.
Finally we gave some examples including the case of the classifying stacks [*/G] of a
compact Lie group.

Résumé (Topologie des cordes des champs différentiels). — Nous construisons un cadre
général pour traiter la topologie des cordes des champs différentiels. En particulier,
ce cadre s’applique aussi bien aux lacets libres d’'un champ qu’aux lacets fantémes,
champs d’inertie. On construit une théorie bivariante (au sens de Fulton et MacPher-
son) pour les champs topologiques et on en déduit ’existence de morphismes de Gysin
compatibles avec les opérations standards: produits, produits fibrés, recollements. Par
ailleurs on démontre une formule d’excés pour les fibrés normaux sur des champs dif-
férentiels. On définit une notion de champs orientés, qui généralise celle de variétés
orientées, qui sont les champs sur lesquels on dispose des opérations de la topologie
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des cordes. En particulier, on démontre que ’homologie du champ des lacets libres
d’un champ orienté ainsi que ’homologie de son champ des lacets fantomes sont mu-
nies de structures naturelles d’algébres de Frobenius. De plus le morphisme naturel
entre ces champs de lacets est un morphisme d’algébres de Frobenius. Par ailleurs,
on prouve que ’homologie du champ des lacets libres est muni d’une structure de
BV-algébre compatible avec la structure d’algébre de Frobenius au sens ou ces struc-
tures sont extraites d’une théorie homologique conforme des champs a bords com-
pacts. On applique également nos techniques pour étudier un analogue du produit
de Chas-Sullivan, ainsi que des opérations puissances compatibles, sur ’homologie
des champs de morphismes des sphéres dans un champ orienté. Notre cadre permet
aussi de construire un produit d’intersection pour les orbifolds quasi-complexes (non-
nécessairement compacts) qui est, en un sens, le dual de Poincaré du produit de Chen
et Ruan. On démontre de plus que le produit a la Chas-Sullivan des lacets fantomes
d’un orbifold quasi-complexe est isomorphe au produit d’intersection tordu par une
classe naturelle. On étudie plusieurs exemples, notamment le cas du champ [*/G]
classifiant d’un groupe de Lie compact.
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INTRODUCTION

String topology is a term coined by Chas-Sullivan [14] to describe the rich algebraic
structure on the homology of the free loop manifold LM of an oriented manifold M.
The algebraic structure in question is induced by geometric operations on loops such
as gluing or pinching of loops. In particular, He(LM) inherits a canonical product and
coproduct yielding a structure of Frobenius algebra [14, 20]. Furthermore, the canon-
ical action of S! on LM together with the multiplicative structure make Hq(LM)
into a BV-algebra [14]. These algebraic structures, especially the loop product, are
known to be related to many subjects in mathematics and in particular mathematical
physics [2, 13, 19, 23, 59].

Many interesting geometric objects in (algebraic or differential) geometry or mathe-
matical physics are not manifolds. There are, for instance, orbifolds, classifying spaces
of compact Lie groups, or, more generally, global quotients of a manifold by a Lie
group. All these examples belong to the realm of (geometric) stacks. A natural gener-
alization of smooth manifolds, including the previous examples, is given by differen-
tiable stacks [8] (on which one can still do differentiable geometry). Roughly speaking,
differential stacks are Lie groupoids up to Morita equivalence.

One important feature of differentiable stacks is that they are non-singular, when
viewed as stacks (even though their associated coarse spaces are typically singular).
For this reason, differentiable stacks have an intersection product on their homology,
and a loop product on the homology of their free loop stacks.

The aim of this paper is to establish the general machinery of string topology for
differentiable stacks. This machinery allows us to treat on an equal footing free loops
in stacks and hidden loops. The latter are loops inside the stack, which vanish on the
associated coarse space. The stack of hidden loops in the stack X is the inertia stack of
X, denoted AX. The inertia stack AX — X is an example of a family of commutative
(sic!) groups over the stack X, and the theory of hidden loops generalizes to arbitrary
commutative families of groups over stacks.

In the realm of stacks several new difficulties arise whose solutions should be of
independent interest.

First, we need a good notion of free loop stack LX of a stack X, and more generally
of mapping stack Map(Y, X) (the stack of stack morphisms Y — X). For the general
theory of mapping stacks, we do not need a differentiable structure on X; we work
with topological stacks. This is developed in [51] and is discussed in Section 5.1. The
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x INTRODUCTION

issue here is to obtain a mapping stack with a topological structure which is functorial
both in X and Y and behaves well enough with respect to pushouts in order to get
geometric operations on loops. For instance, a key point in string topology is the
identification Map(S! V S, X) = LX x x L¥. Since pushouts are a delicate matter in
the realm of stacks, extra care has to be taken in finding the correct class of topological
stacks to work with (Section 1.6 and [52]). For this reason, we restrict our attention
to the class of Hurewicz topological stacks. These are topological stacks which admit
an atlas with a certain fibrancy property. Without restricting to this special class
of topological stacks, S* V S' would not be the pushout of two copies of S!, in the
category of stacks.

A crucial step in usual string topology is the existence of a canonical Gysin homo-
morphism He(LM xLM) — H,_,(LM x p; LM) when M is a d-dimensional manifold.
In fact, the loop product is the composition

(0.0.1) H,(LM)® Hy(LM) —
— Hpiq(LM X LM) — Hpiq-a(LM xp LM) — Hpiq—a(LM),

where the last map is obtained by gluing two loops at their base point.

Roughly speaking, the Gysin map can be obtained as follows. The free loop man-
ifold is equipped with a structure of Banach manifold such that the evaluation map
ev: LM — M which maps a loop f to f(0) is a surjective submersion. The pullback
along ev x ev of a tubular neighborhood of the diagonal M — M x M in M x M yields
a normal bundle of codimension d for the embedding LM X ps LM — LM. The Gysin
map can then be constructed using a standard argument on Thom isomorphism and
Thom collapse [21].

This approach does not have a straightforward generalization to stacks. For in-
stance, the free loop stack of a differentiable stack is not a Banach stack in general,
and neither is the inertia stack. In order to obtain a flexible theory of Gysin maps, we
construct a bivariant theory in the sense of Fulton-MacPherson [30] for topological
stacks, whose underlying homology theory is singular homology. A bivariant theory is
an efficient tool encompassing into a unified framework both homology and cohomol-
ogy as well as many (co)homological operations, in particular Gysin homomorphisms.
The Gysin maps of a bivariant theory are automatically compatible with pullback,
pushforward, cup and cap-products (see [30]). (Our bivariant theory is somewhat
weaker than that of Fulton-MacPherson, in that products are not always defined.)
Our bivariant theory applies in particular to all orbifolds. Further we gave an excess
formula allowing to compute Gysin maps for relative regular embeddings.

In Section 8.3 we introduce oriented stacks. These are the stacks over which we are
able to do string topology. Examples of oriented stacks include: oriented manifolds,
oriented orbifolds, and quotients of oriented manifolds by compact Lie groups (if the
action is orientation preserving and of finite orbit type). A topological stack X is
orientable if the diagonal map X — X x X factors as

(0.0.2) T-LN-—eE—XxX,
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INTRODUCTION xi

where M and € are orientable vector bundles over X and X x X respectively, and 9%t — €&
is an isomorphism onto an open substack (there is also the technical assumption that
¢ is metrizable, and ¥ — €& factors through the unit disk bundle). The embedding
N — € plays the role of a tubular neighborhood. The dimension of X is rk 9T — rk €.

The factorization (0.0.2) gives rise to a bivariant class § € H(X — X x X), the
orientation of X.

Sections 10-15 are devoted to the string topology operations, focusing on the Frobe-
nius, BV -algebra and homological conformal field theory structures. The bivariant
formalism has the following consequence: if X is an oriented stack of dimension d,
then any Cartesian square

Y — 3

l |

¥ 5 xxx
defines a canonical Gysin map A': He(3) — H,_4(2). For example, the Cartesian
square

L¥xyL¥ —= LXxLX

l |

¥ —2 > xx%
Gives rise to a Gysin map A': Hy(LXxLX) — H,_,(LXx LX), and we can construct
a loop product
*: Ho(LX) ® Ho(LX) — Hoe_q4(LX),
as in 0.0.1, or [14, 20, 21].
We also obtain a coproduct
§: Hy(LX) — @ Hi(LX)® H;(LX).
i+j=e—d
Furthermore, LX admits a natural S'-action yielding the operator D : H,(LX) —
H,1(LX) which is the composition:

Ho(LX) =% Hop1(LE x §') — Hoy1 (LX),

where w € H;(S!) is the fundamental class. Thus we prove that (H,(LX),x,d) is a
Frobenius algebra and that the shifted homology (Heiq(LX),*, D) is a BV -algebra
[7]. Using Sullivan’s chord diagram [20] and our formalism of Gysin maps given
by the bivariant theory, we extend the previous BV and Frobenius structure into
a homological conformal field theory (in the sense of [25, 56]) with closed positive
boundaries (said otherwise non-unital and non-counital) in Section 14. Roughly, this
means that to any compact Riemann surface ¥ with only closed boundaries (with
say m incoming ones and m outgoing ones), and such that any connected component
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xii INTRODUCTION

of ¥ has a positive number of both incoming and outgoing boundary components,
and to any class a in the homology of the mapping class group of X, we associate
an operation p, : H(LX)®" — H(LX)®™ compatible with the glueing and disjoint
union of surfaces.

Since the inertia stack can be considered as the stack of hidden loops, the general
machinery of Gysin maps yields, for any oriented stack X, a product and a coproduct
on the homology H.(AX) of the inertia stack AX, making it a Frobenius algebra,
too. Moreover in Section 12.4, we construct a natural map ®: AX — LX inducing a
morphism of Frobenius algebras in homology.

In Section 15, we explain how to adapt the loop product to the case of spheres spaces
Map(S™, X). We obtain an analogue of the loop product, called the brane product,
and also study power maps \* : Hy(Map(S™, X)) — H,(Map(S™, X)) induced by the
degree k maps S™ — S™. We show that for n > 2, the maps A\* are maps of algebras
with respect to the brane product.

In Section 16, we consider almost complex orbifolds (not necessarily compact).
Using Gysin maps and the obstruction bundle of Chen-Ruan [17], we construct the
orbifold intersection pairing on the homology of the inertia stack. It is in the same
relation to the intersection pairing on the homology of a manifold as the Chen-Ruan
orbifold cup-product [17] is to the ordinary cup product on the cohomology of a
manifold.

The orbifold intersection pairing defines a structure of associative, graded commu-
tative algebra on H™(X) for any almost complex orbifold X. As a vector space the
orbifold homology H™ (%) coincides with the homology of the inertia stack AX, but
the grading is shifted according to the age as in [17, 27].

In the compact case, the orbifold intersection pairing is identified with the Chen-
Ruan product, via orbifold Poincaré duality.

We also prove that the loop product, hidden loop product and intersection pairing
(for almost complex orbifolds) can be twisted by a cohomology class in He(LX x x LX)
or Hy(AX xx AX), satisfying the 2-cocycle condition (see Propositions 10.11, 11.3,
and 16.7). The notion of twisting provides a connection between the orbifold intersec-
tion pairing and the hidden loop product. In fact, we associate to an almost complex
orbifold X a canonical vector bundle Ox @ 9x over AX xx AX and prove that the
orbifold intersection pairing, twisted by the Euler class of Ox ® Ny, is the hidden
loop product of X.

Parallel to our work, the hidden loop product for global quotient orbifolds was
independently studied in [35, 46]. Furthermore, a nice interpretation of the hidden
loop product in terms of the Chen-Ruan product of the cotangent bundle was given
by Gonzalez et al. [35]. A loop product for global quotients of a manifold by a finite
group was studied in [46, 47]. Also purely homotopical techniques to study string
topology of classifying spaces of Lie groups have been recently developed in [16].

We close this introduction by remarking that our construction of string opera-
tions for stacks can in fact be extended to generalized (co)homology theories other
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CONVENTIONS xiii

than singular. For instance, in view of the Freed-Hopkins-Teleman’s work [29], using
K-theory may lead to interesting consequences. In the case of manifolds, Cohen and
Godin have already considered such generalization in [20].

The key point in extending our theory to other (co)homology theories is to cast such
a (co)homology theory as part of a bivariant theory. Once this is done, the formalism
developed in Section 7 applies to produce the desired Gysin maps, and these in turn
give rise to string operations. The main input needed to make the construction of the
Gysin maps is to produce an orientation class @ in the bivariant cohomology of the
diagonal X — X X X, and this is done by making use of appropriate Thom classes
(Definition 4.1) for the given (co)homology theory.

Conventions

Topological spaces. — All topological spaces are compactly generated. The cate-
gory of topological spaces endowed with the Grothendieck topology of open coverings
is denoted Top. This is the site of topological spaces.

Manifolds. — All manifolds are second countable and Hausdorff. In particular they
are regular Lindelof and paracompact.

Groupoids. — We will commit the usual abuse of notation and abbreviate a
groupoid to [X; = Xo]. A topological groupoid, is a groupoid [X; = Xo|, where X;
and X, are topological spaces, but no further assumptions is made on the source
and target maps, except continuity. A topological groupoid is a Lie groupoid (or a
differentiable groupoid) if X, X, are manifolds, all the structures maps are smooth
and, in addition, the source and target maps are surjective submersions.

Stacks. — For stacks, we use the words equivalent and isomorphic interchangeably.
We will often omit 2-isomorphisms from the notation. For example, we may call mor-
phisms equal if they are 2-isomorphic. The stack associated to a groupoid [X; = Xo]
is denoted by [Xo/X;], because we think of it as the quotient. Also if G is a topolog-
ical group acting on a space X, we denote the stack associated to the transformation
groupoid [X X G = X| by [X/G].

Our terminology is different from that in [52]. The quotient stack X of a topological
groupoid [Xo/X1] is called a topological stack in this paper, where as in [ibid.] these are
called pretopological stacks. If the source and target map of [X(/X1] are local Hurewicz
fibrations, then we say that X is a Hurewicz topological stack; see Section 1.4.

Warning 0.1. — In Sections 10, 12.2, 13, 14 and 15, unless otherwise stated, the (base)
stack X will always be assumed to be a Hurewicz stack (see Definition 1.6). Note that
all differentiable stacks (which are our main interest) are Hurewicz (Example 1.2).
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xiv INTRODUCTION

(Co)homology. — The coeflicients of our (co)homology theories will be taken in a
commutative unital ring k. All tensor products are over k unless otherwise specified.

We will write both H(X), He(X) for the total homology groups @ H,(X). We use
the first notation when we deal with ungraded elements and ungraded maps, while we
use the second when dealing with homogeneous homology classes and graded maps.

Similarly, in Section 7, we use respectively the notations H (% 4 ) and H*(X 4 )
for the total bivariant cohomology groups when we want to deal with ungraded maps
or with graded ones.

A 2-commutative (respectively, 2-Cartesian) diagram of stacks will simply be re-
ferred to as a commutative (respectively, Cartesian) diagram.
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CHAPTER 1

TOPOLOGICAL STACKS

We review some basic facts about topological stacks. More details can be found
in [52].

1.1. Stacks over Top

Throughout these notes, by a stack we mean a stack over the site Top of compactly
generated topological spaces with the standard Grothendieck topology. This means,
a stack is a category X fibered in groupoids over Top satisfying the descent condition,
see Appendix A for more details. Alternatively, we can think of X as a presheaf of
groupoids over Top which satisfies descent.

We list some basic facts about stacks.

1. Stacks over Top form a 2-category in which 2-morphisms are invertible. There-
fore, given two stacks X and 2), we have the groupoid Hom(%), X) of morphisms
between them. In the case where the source stack ) = T is a topological space,
we usually use the alternative notation X(T') for the above hom-groupoid. This
is sometimes referred to as the groupoid of T-valued points of X.

Although in practice one may really be interested only in the category of
stacks which obtained by identifying 2-isomorphic 1-morphisms, the 2-category
structure can not be ignored. For example, when we talk about fiber products
of stacks, we exclusively mean the 2-fiber product in the 2-category of stacks.

2. The 2-category of stacks has fiber products and inner homs, so it is Cartesian
closed. The 2-fiber product X x3 %) is characterized by the property that, for
every topological space T, its groupoid of T-valued points is given equivalent to

X(T) x3(7) D(T).
Given stacks X and ) be stacks over Top, the inner hom between them, called
the mapping stack Map(%), X), is defined by the rule

TeTop — Hom(T x9,X%).
Note that we have a natural equivalence of groupoids

Map(9), X)(*) = Hom(9), %),

SOCIETE MATHEMATIQUE DE FRANCE 2012



2 CHAPTER 1. TOPOLOGICAL STACKS

where * is a point. The mapping stack has the exponential property. That is,
given stacks X, 2), and 3, we have a natural equivalence of stacks

Map(3 x 9, X) = Map(3, Map(9), X)).

3. The category of topological spaces embeds fully faithfully in the 2-category of
stacks. This means, given two topological spaces X and Y, viewed as stacks via
the functor they represent, the hom-groupoid Hom(X,Y) is equivalent to a set,
and this set is in a natural bijection with the set of continuous functions from
XtoY.

This way, we can think of a topological space as a stack.

This embedding preserves the closed Cartesian structure on Top. This means
that fiber products of spacqés get sent to 2-fiber products of the corresponding
stacks, and the mapping spaces (with the compact-open topology) get sent to
mapping stacks.

4. The embedding of the category of topological spaces in the 2-category of stacks
admits a left adjoint. That is, to every stack X one can associate a topological
space, together with a natural map 7: X — X,,4 which is universal among
maps from X to topological spaces. (That is, every map from X to a topological
space T factors uniquely through =.); see [52], Section 4.3.

The space X 04 is called the coarse moduli space of X and it should be thought
of as the “underlying space” of X.

In particular, the underlying set of Xp0q is the set of isomorphism classes
of the groupoid X(*), where * stands for a point. In other words, the points
in Xmoa are the 2-isomorphiism classes of points of X, where by a point of X we
mean a morphism z: x — X.

The underlying set of the coarse moduli space of the mapping stack
Map(%), X) is the set of 2-isomorphism classes of morphisms from ) to X.

5. To a point z: ¥ — X of a stack X there is associated a group I, called the
inertia group of X at x. By definition, I, is the group of 2-isomorphisms from
the point z to itself. An element in I, is sometimes referred to as a ghost or
hidden loop; see ([52], Section 10) since its image under the map ¥ = Xmoq is
constant.

The groups I, assemble into a stack AX — X over X called the inertia stack.
The inertia stack is defined by the following 2-fiber square

AX — X
| Jo
x—A>3exae

and will be studied in more details in Section 11.
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1.2. Morphisms of stacks

A morphism f: X — 9 of stacks is called representable if for every map 7' — 9
from a topological space T', the fiber product T' xg X is a topological space. This is,
roughly speaking, saying that the fibers of f are topological spaces.

Any property P of morphisms of topological spaces which is invariant under base
change can be defined for an arbitrary representable morphism of stacks. More pre-
cisely, we say that a representable morphism f: X — 9) is P, if for every map T'— Q)
from a topological space T', the base extension fr: T xg X — T is P as a map of
topological spaces; see ([52], Section 4.1).

This way we can talk about embeddings (closed, open, locally closed, or arbitrary)
of stacks, proper morphisms, finite morphisms, and so on.

We say that f: X — 2) is an epimorphism, if it is an epimorphism in the sheaf
theoretic sense. In the case where f is representable, this is equivalent to saying that
every base extension fr of f over a topological space T' admits local sections.

1.3. Transformation groupoids

Let G be a topological group acting on a topological space X. We define the
transformation groupoid [X x G = X] of this action as follows. As the notation
suggests, the space of objects is X and the space of arrows is X x G. The source map
s: X x G — X is the first projection and the target map is the action X x G — X.
The composition of arrows is induced from the multiplication in G.

More generally, we can associate a transformation groupoid to a groupoid I' =
[’y =3 T'y] acting on a space X . Here, X is equipped with a base map p: X — I'g which
we have suppressed from the notation. As the notation suggest, the transformation
groupoid [X x I'; = X] has X as its space of objects. The space of arrows is

X ><1F1 :ZXXFO Fl,

where I'y — Ty is the source map. As above, the source map s: X xp,I'; — X is the
first projection and the target map is the action X xp, I'y — X. The composition of
arrows is induced from the composition in T'.

There is a natural map of groupoids

[XXPl :;X]—)[Fl jro]

On the level of objects, it is given by p: X — I'g. On the level of arrows it is given
by the second projection X xr,I'y — TI'y.

1.4. Topological stacks

A topological stack ([52], Definition 7.1) is a stack X over Top which admits a
representable epimorphism p: X — X from a topological space X. Equivalently, X is
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equivalent to the quotient stack [Xo/X;] of a topological groupoid [X; = Xj]. This
quotient stack, by definition, is the stack associated to the presheaf of groupoids

T — [X1(T) = Xo(T)].

This stack is equivalent to the stack of torsors for the groupoid [X; = Xj); see ([52],
Section 12). The groupoid [X; = Xo] is recovered from the atlas p: X — X by
setting Xo := X and X; := X xx X. Under this correspondence between topological
stacks and topological groupoids, morphisms of stacks correspond to Hilsum-Skandalis
bibundles.

An important example to keep in mind is the case of a topological group G acting on
a topological space X. The quotient stack of the associated transformation groupoid
[X x G = X] is denoted by [X/G]. For a topological space T', the groupoid [X/G](T)
of T-points of [X/G] is the groupoid of pairs (P, ), where P is a principal G-bundle
over T, and ¢: P — X is a G-equivariant map. In the case where X is a point, the
corresponding quotient stack [x/G] is called the classifying stack of G. Its groupoid
of T-points is precisely the groupoid of principal G-bundles over T'. There is a natural
morphism of stack [X/G] — [*/G].

We can repeat this discussion with G replaced by a topological groupoid I'. The
quotient stack of the associated transformation groupoid [X x I' = X] is denoted
by [X/T]. It comes with a natural morphism of stacks [X/T'] — [[o/T1].

We list some basic facts about topological stacks.

1. Topological stacks form a full sub 2-category of the 2-category of stacks over
Top.

2. The 2-category of topological stacks is closed under fiber products. It, however,
does not seem to have inner hom objects. That is, it does not seem to be the
case in general that the mapping stack Map(Q), X) of two topological stacks X
and 9 is a topological stack. This is the case, however, if ) is the quotient stack
of a groupoid [Y7 = Y] such that Yy and Y; are compact topological spaces;
see Proposition 5.1.

3. The stack associated to a topological space X is topological. It is, in fact, equiva-
lent to the stack associated to the trivial groupoid [X = X|]. Thus, the category
of topological spaces is a full subcategory of the 2-category of topological stacks.

4. Let X = [Xo/X1] be the quotient stack of a topological groupoid [X; =% Xo].
Then, the coarse moduli space X,,4 of X is naturally homeomorphic to the
course quotient space of the groupoid [X; = Xp]. In particular, the coarse
moduli space of the quotient stack [X/G] is the orbit space X/G of the action
of G on X. The coarse moduli space of the classifying stack [*/G] of G is just a
single point.

5. For a point z: * — X of a topological stack X, the inertia group I, is naturally
a topological group. The inertia stack AX is a topological stack, and the natural
map AX — X is representable.
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6. Every morphism 7' — X from a topological space T to a topological stack X is
representable.

1.5. Substacks of a topological stack

Let X be a topological stack. A representable morphism i: ) — X is called an
embedding if for every map T — X, with T a topological space, the base extension
ir: T xx 2 — T is an embedding of topological spaces (that is, iz maps T Xx 9
homeomorphically onto a subspace of T'). In this case, we say that 9 is a substack
of X. We can similarly define open, closed, and locally closed substacks. With a slight
abuse of notation, we often use the notation ) C X for a substack.

Let p: X — X be an atlas for the topological stack X, and let [X; =3 X]| be
the corresponding groupoid presentation. Then, taking inverse image via p induces
a bijection between substacks 2 C X and invariant subspaces ¥ C X. Under this
bijection open (respectively, closed, locally closed) substacks of X correspond to open
(respectively, closed, locally closed) subspaces of X.

Given a family of substacks 2, of X, we define their intersection [, 2. to be the
largest substack of X which is a substack of all of 4. The union |J, Y« is defined
similarly. The intersection and union of substacks always exist. In fact, if p: X — X
is an atlas for X, then the intersection (), 2. corresponds to the invariant subspace
Na Yo of X. The same goes with the union.

Given a substack 2) of X, we define its closure 9 to be the smallest closed substack
containing X. The interior 2° is defined to be the largest open substack of X contained
in ). The complement P° of a substack P C X is the largest substack of X whose
intersection with ) is empty. Given two substacks ) and 3 of X, we define the
difference 9 — 3 to be the substack 2 N 3°. All these exist, are well-defined, and can
be constructed by taking the corresponding invariant subspaces of an atlas p: X — X.

1.6. Hurewicz topological stacks

As we will see in Section 1.7, in order to have nice gluing properties for maps into
a stack X, we need to assume X is a Hurewicz stack. This will be needed later on
when we work with loop stacks. We recall the definition of a Hurewicz stack.

A Hurewicz fibration is a map having the homotopy lifting property for all topo-
logical spaces. A map f: X — Y of topological spaces is a local Hurewicz fibration
if for every € X there are opens z € U and f(z) € V such that f(U) C V and
flu — V is a Hurewicz fibration. The most important example for us is the case of
a topological submersion: a map f: X — Y, such that locally U is homeomorphic
to V x R™, for some n.

Dually, we have the notion of local cofibration. It is known ([57]), that if A — Z is
a closed embedding of topological spaces, it is a local cofibration if and only if there
exists and open neighborhood A C U C Z such that A is a strong deformation retract
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of U.If A — Z is a local cofibration, so is A x T'— Z x T for every topological space
T. Moreover, the following result is essential for our purposes ([58]):

Given a commutative diagram, with A — Z a local cofibration and X — Y a local
fibration

A — X
b
Z —'Y

then for every point a € A there exists an open neighborhood Z’ of a in Z, such that
there exists a lifting (the dotted arrow) giving two commutative triangles

A — X

b

Z —Y
where A’ = ANZ'.

Definition 1.1. — A topological stack X is called Hurewicz if it is equivalent to the
quotient stack [Xo/X;] of a topological groupoid [X; = X,] whose source and target
maps are local Hurewicz fibrations.

Example 1.2. — A topological space is a Hurewicz topological stack. Every substack
of a Hurewicz topological stack is a Hurewicz topological stack. The topological stack
underlying any differentiable stack is a Hurewicz topological stack. In particular, any
global quotient [M/G] of a manifold by a Lie group is a Hurewicz topological stack.

1.7. Pushouts in the category of stacks
The following generalizes ([52], Theorem 16.2).

Proposition 1.3. — Let A — Y be a closed embedding of Hausdorff spaces, which is a
local cofibration. Let A — Z be a finite proper map of Hausdorff spaces. Suppose we
are given a pushout diagram in the category of topological spaces

AC——s Y

l |

Z —> ZNpaY

Then this diagram remains a pushout diagram in the 2-category of Hurewicz topological
stacks. In other words, for every Hurewicz topological stack X, the morphism

X(ZVvaY)— X(2) X x(A) x(Y)
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1.8. ORBIFOLDS AS TOPOLOGICAL STACKS 7

is an equivalence of groupoids.

Proof. — Let us abbreviate the pushout by U = Z V4 Y.

The fully faithful property only uses that X is a topological stack and that U is
a pushout. Let us concentrate on essential surjectivity. Because X is a stack and we
already proved full faithfulness, the question is local in U. Assume given Z — X and
Y — X%, and an isomorphism over A. Let [X; =% Xy be a groupoid presenting X,
whose source and target maps are local fibrations.

Let us remark that both Z — U and Y — U are finite proper maps of Hausdorff
spaces. Thus we can cover U by open subsets U;, such that for every i, both Z; = U;nZ
and Y; = Y NU; admit liftings to Xy of their morphisms to X. We thus reduce to the
case that we have Z — Xy, Y — X, and A — X;. Next, we need to construct the
dotted arrow in

A — Y
X1 —_— Xo

We can cover Y by opens over which this arrow exists, because A — Y is a local
cofibration and X; — X a local fibration. Then for a point © € U we choose an open
neighborhood in U small enough such that the preimage in Y is a disjoint union of
sets over which the dotted arrow exists. Passing to such a neighborhood of u reduces
to the case that the dotted arrow exists. Then there is nothing left to prove. O

1.8. Orbifolds as topological stacks

The most familiar examples of topological stacks are the orbifolds. An orbifold,
by definition, is a topological stack which can be covered by open substacks of the
form [X/G], with G a finite group. Any orbifold is the quotient stack of an étale
groupoid [X; = Xo]. Recall that being étale means that the source (hence also the
target) X3 — Xj is a local homeomorphism — in particular, an orbifold is a Hurewicz
topological stack. Moreover, it can be shown that the diagonal map X; — Xy x X
is a closed map (with finite fibers). In fact, the converse is also true in the locally
connected case. Namely, the quotient stack of a locally connected étale groupoid
whose diagonal map is closed with finite fibers is an orbifold (see [52], Propostion
14.9).

We should point out that there is some inconsistency in the literature about ter-
minology: in the definition of orbifold, some authors assume that the action of G
on X is generically free. For this reason, and by analogy to their algebraic geometric
counterparts, in loc. cit. the term Deligne-Mumford has been used instead of orbifold.
The orbifolds for which the above generic freeness condition is satisfied are sometimes
called reduced orbifolds.
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Although every orbifold X is locally the quotient stack [X/G] of a finite group
action, this may not be the case globally, i.e., ¥ may not be good. (For a characteriza-
tion of good orbifolds in terms of their fundamental group see [52], Theorem 18.24.)
It is known, however, that a reduced differentiable orbifold X can always be globally
written as a quotient stack [X/G], where G is a Lie group acting with finite stabilizers
on a manifold X. This is not known to be the case for general orbifolds though.

Orbifolds clearly form a small subclass of all topological stacks. For instance, every
point on an orbifold has finite stabilizer group, and this is not true for an arbitrary
topological stack. The simplest example of a topological stack which is not an orbifold
is the quotient stack [*/G], where G is any topological group which is not finite.

1.9. Geometric stacks

In this paper we will encounter other types of stacks as well. A differentiable stack
is a stack on the category of C'°°-manifolds, which is isomorphic to the quotient stack
of a Lie groupoid. Every differentiable stack has an underlying topological stack that
is Hurewicz. If the Lie groupoid [X; = Xy| presents the differentiable stack X, the
underlying topological groupoid presents the underlying topological stack. Often we
will tacitly pass from a differentiable stack to its underlying topological stack. For
more on differentiable stacks, see [8].

An almost complex stack is a stack on the category of almost complex manifolds,
which is isomorphic to the quotient stack of an almost complex Lie groupoid, i.e., a
Lie groupoid [X; = Xj], where Xy and X; are almost complex manifolds, and all
structure maps respect the almost complex structures. Every almost complex stack
has an underlying differentiable stack and hence also an underlying topological stack.
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CHAPTER 2

HOMOTOPY TYPE OF A TOPOLOGICAL STACK

2.1. Classifying space of a topological groupoid

We recall the construction of the (Haefliger-Milnor) classifying space BX and the
universal bundle EX of a topological groupoid X = [X; =% X)] from [53].

An element in EX is a sequence (tpag,ti101,...,th0n,...), where @; € R are
such that s(a;) are equal to each other, and t; € [0,1] are such that all but
finitely many of them are zero and > t; = 1. As the notation suggests, we set
(toao, t101, .« . s tnQn, ... ) = (thag, tial, ..., thal,...) if t; =t} for all ¢ and o; = ¢
if t; # 0.

Let t;: EX — [0,1] denote the map (ftoap,t104,...,tn0n,...) +— t;, and
let a;: t;l(O, 1] — R denote the map (toag,t104,...,than,...) — a;. The topology
on EX is the weakest topology in which ¢; Lo, 1] are all open and ¢; and «; are all
continuous.

The classifying space BX is defined to be the quotient of EX under the follow-
ing equivalence relation: two elements (toao,t101,...,than,...) and (t4ag, t1ad, - . .,
than,...) of EX are equivalent, if t; = ¢} for all ¢, and if there is an element v € X,

n
such that a; = ya;. (So, in particular, t(a;) = t(a}) for all 3.)

2.2. Classifying space of a topological stack

Many facts about topological stacks can be reduced to the case of topological spaces
by virtue of the following.

Theorem 2.1. — For every topological stack X, there exists a topological space X to-
gether with a morphism ¢: X — X which has the property that, for every morphism
T — X from a topological space T, the pullback T xx X — T is a weak homotopy
equivalence.

A topological space X with the above property is called a classifying space for X.
A classifying space for X can be constructed by taking the classifying space BX of
a groupoid X = [X; =3 X,] whose quotient stack is X (see [53], Theorem 6.3). The
above theorem implies that the classifying space of a topological stack is unique up
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to a unique isomorphism in the weak homotopy category of topological spaces (i.e.,
the category of topological spaces with weak homotopy equivalences inverted).

In the case where X = [X/G] is the quotient stack of a group action, the Borel
construction X Xg EG is a classifying space for X. Here EG is the total space of the
universal principal G-bundle in the sense of Milnor.

2.3. Paracompactness of the classifying space

In many applications, it is important to find a classifying space for X which is
paracompact. There are various conditions on a groupoid [X; = Xo] which guarantee
that the fat realization of the nerve of [X; =% X] is paracompact. The following is
one.

Definition 2.2. — A topological stack X is called regular Lindelof if it is equivalent
to the quotient stack [Xo/X;] of a topological groupoid [X; = Xp] such that X;, X,
are regular Lindeldf spaces.

The proof of the following proposition will appear elsewhere.

Proposition 2.3. — If X is a regular Lindeldf stack, there ezists a classifying space
for X which is a regular Lindeldf space, in particular paracompact.

Remark 2.4. — Every differentiable stack is regular Lindel6f and hence has a para-
compact classifying space.

2.4. (Co)homology theories for topological stacks

Theorem 2.1 allows one to extend every (generalized) (co)homology theory A to
the 2-category of topological stacks. For instance, let us explain how to define h(%,2l)
for a pair (X,2A) of topological stacks.

Choose a classifying space ¢: X — %, and let A := ¢~ 12. It follows that the pair
(X, A) is well-defined in the weak homotopy category of pairs (i.e., is independent
of the choice of a particular classifying space X). So, we can define h(%X, ) to be
h(X, A). It can be easily verified that this construction is functorial in morphisms of
pairs.

The cohomology theory thus defined on topological stacks will maintain all natural
properties that it had on spaces. For example, it will be homotopy invariant (in
particular, it will not distinguish 2-isomorphic morphisms), it will satisfy excision, it
will maintain all the products (cap, cup, etc.) that it had on spaces, and so on.

In the case where X = [X/G], we will recover the usual G-equivariant (co)homology
of X defined using the Borel construction. That is, h([X/G]) = h(X xg EG).

Every (co)homology theory for topological stacks which is invariant under weak
equivalences is induced from one on topological spaces. This is due to existence of a
classifying space ¢: X — X (Theorem 2.1) which forces the (co)homology of X to be
equal to that of its classifying space X.
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2.5. Eilenberg-Steenrod axioms for topological stacks

We recall the Eilenberg-Steenrod axioms for a homology theory, formulated in the
context of topological stacks. Let H, be a sequence of functors from the category
of pairs (X,2) of topological stacks to the category of abelian groups. (By a pair
(%,9) we mean a topological stack X and a substack 2.) This sequence is equipped
with natural transformations 8: H;(X,2) — H;_1(2), called the boundary maps. The
Eilenberg-Steenrod axioms are the following:

1. Homotopy. If f,g: (X,2) — (2,B) are homotopic as morphisms of pairs of
stacks (in the sense of [52], Definition 17.2), then they induce the same map
on H, for all n.

2. Ezxcision. Let (X,2) be a pair of topological stacks. Let 4 be a substack of X
such that the closure of 4 is contained in the interior of . Then, the inclusion
map (X — U, A — U) — (X,9A) induces an isomorphism in homology.

3. Dimension. Hy,(x) = 0 for all n # 0, where * is the one point space.

4. Additivity. For any collection {X,} of topological stacks, H,(]],%Xa) =
Do Hn(%a)

5. Ezactness. For every pair (X,?) of topological stacks, the maps i: 2 — X and
j: (%,2) — (%,2) induce a long exact sequence

o Ho (%) 25 Ho (%) 25 Ho (X, %) -2 Hyy(A) — -

In the case of singular homology with coefficients in an abelian group A, we have
H, =0 for all n < 0 and Hy(x) = A.

2.6. Singular homology and cohomology

We will fix once and for all a coefficient ring and drop it from the notation consis-
tently.

Singular homology and cohomology for spaces extend to topological stacks. The
singular (co)homology of a topological stack X can be defined to be the singular
(co)homology of its classifying space, as we saw in Section 2.4. Alternatively, but
equivalently, we can define singular (co)homology as follows [6].

Let X := [X; =3 X,] be a topological groupoid presentation of X. Let X, =
X1 Xx, -+ Xx, X1 (p-fold) be the space of composable sequences of p arrows in the
groupoid X. It yields a simplicial space X,

(2.6.1) X = X1 == Xo.

The singular chain compler of X, is the total complex of the double complex
C.(X,), where Cy(X}) is the linear space generated by the continuous maps A, — X,,.
Its homology groups H,(X,.) = H, (C. (X.)) are called the singular homology groups
of X. The singular cochain compler of X, is the dual of Co(X,), i.e., it is the total
complex of the bicomplex CP(X,). It gives rise to singular cohomology groups of X.
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These groups are Morita invariant (i.e., they only depend on the quotient stack
[Xo/X1]). In fact, they are naturally isomorphic to the (co)homology groups of the
quotient stack X = [X/X;] defined in terms of a classifying space of X (see Sec-
tion 2.4).

This above definition of singular (co)homology extends to pairs (X,2l) of topolog-
ical stacks in the obvious way and, again, it coincides with the definition in terms
of classifying spaces. In particular, Eilenberg-Steenrod axioms are satisfied and we
also have cup products. These (co)homology groups coincide with the usual singular
(co)homology when (%, %) is a pair of topological spaces. In the case when X = [X/G]
is the quotient stack of a topological group action, with 2 C X the substack associated
to an invariant subspace A C X, H(X,) is the G-equivariant (co)homology of the
pair (X,%).

The Kiinneth formula also holds for singular (co)homology of topological stacks.
We only formulate the cohomology version but the homology one holds as well (with
the same proof).

Proposition 2.5 (Kiinneth formula). — In the case of field coefficients, singular coho-
mology of topological stacks satisfies Kinneth formula. That is, we have an isomor-
phism of graded groups

H*(X,2) @ H*(,B) X H* (X x D, X x BUAX D).

Proof. — Like other properties of singular cohomology, this is proved by choosing
classifying spaces X — X and Y — ) and pulling back everything along X xY —
Xx9. d

Remark 2.6. — When the coefficient is only a ring, there are still natural cross-
product homomorphisms H*(%,2) ® H*(Y,B) —» H(X x P, X x BUA X DY) in
cohomology and in homology as well Hq (X, )@ He(Y,B) — He(X XY, XX BUAXY)
(the later being further a monomorphism). As for the proof of Proposition 2.5, this
can be seen by choosing classifying space or, alternatively, by working directly with
the singular (co)chain complexes of associated groupoid presentations.

Proposition 2.7. — Let X be a topological stack and A, B C X substacks. Then, we
have a cohomology long exact sequence

C S HMTHLANDB) — HY(X,AUB) — H™(X,B) — HM(A,ANDB) > H* (X, AUB)--- .

Proof. — By Excision H™(2, AN B) = H*(A U B,*B). The result follows from the
long exact cohomology sequence for the triple (X,24U 9B,B). O

The following less standard fact is also true about H.

Proposition 2.8. — Let A — B — X be closed embeddings of topological stacks. Sup-
pose that X is reqular Lindeldf . Then, there is a natural product

H™(%,X-B) H"(B,8 - A) - H™(X,X - A)
which coincides with the cup product if B = X.
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Proof. — One uses the fact that the classifying space is paracompact (Proposi-
tion 2.3). It is a general fact (for instance see [43]) that if F is a sheaf over a
paracompact space X and Z C X is closed, then h_m) I'(U F) = TI'(Z,F), where U

U>z
is open. Then the result follows from the same argument as for topological spaces in

[30], Section 3. O
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CHAPTER 3

VECTOR BUNDLES ON STACKS

We begin with the definition of a (representable) vector bundle on a stack.

Definition 3.1. — Let X be a (topological) stack. A real vector bundle on X is a rep-
resentable morphism of stacks € — X which makes € a vector space object relative
to X. That is, we have an addition morphism & X y € — € and an R-action Rx & — &,
both relative to X, which satisfy the usual axioms. A complex vector bundle is defined
analogously.

A linear map between two vector bundles is defined in the obvious way. Vector
bundles on X and linear maps between them form a category. (Notice that since a
vector bundle € is representable over its base X, we only get a category and not a
2-category.)

There are alternative ways of defining vector bundles over a stack X as we will see
in the next proposition. All definitions are equivalent to the one given above.

Proposition 3.2. — The following three definitions for a vector bundle on a stack X
are equivalent to the one given in Definition 3.1, in the sense that the corresponding
categories of vector bundles over a given stack X are naturally equivalent as linear
categories:

1. A vector bundle on X is a representable morphism of stacks € — X such that,
for every f: U — X with U a topological space, the pullback Ey — U is endowed
with the structure of a vector bundle. Here, Ey := f*€ =U xx €.

EU—>~€
b
U — X
f

We also require, for every a: V — U, that the natural isomorphism
fa: (foa)'€ - a*(f*€)
be a bundle map.
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2. A vector bundle on X is assignment of a vector bundle Ey — U to every
morphism f: U — X from a topological space U, together with isomorphisms
Yo a*Ey — Ey of vector bundles, for every 2-commutative triangle

1% 4 U

X/

X

We require the isomorphisms ¢ to satisfy the cocycle condition

Paock = ¥b 0 (b*¢a)
for every pair of composable triangles a and b. (Note the abuse of notation: the
vector bundle Ey also depends on f, and the isomorphism ¢, also depends on
the 2-morphism a.)

3. Let X = [s,t: X1 = Xo] be a groupoid presentation for X. Then, a vector bundle
on X is an X-equivariant vector bundle. Recall that an X-equivariant vector
bundle consists of a vector bundle E over Xy, and an isomorphism : s*E —
t*E of vector bundles over Xy such that the three restrictions of ¢ to X1 X x, X1
satisfy the cocycle condition.

Proof. — We briefly explain how to go from one definition to the other.

Let € — X be a vector bundle in the sense of Definition 3.1. It is clear that the
pullback vector bundles Ey satisfy the conditions of (1).

To go from (1) to (2) is obvious.

Given a vector bundle in the sense of (2), we obtain a vector bundle Ex, on X
corresponding to the quotient map p: Xo — X. It follows from the cocycle condition
on (2) that this is an X-equivariant bundle.

Finally, given an X-equivariant vector bundle E, we define € to be the quotient
stack of the groupoid [E; =% Ey|, where Ey := E and E;, := s*F = X; xx, E.
The source map E; — Ej is the projection map pry: X; Xx, E — Ey. The target
map is pryotp. It is easy to verify that € is a vector bundle over X in the sense of
Definition 3.1. O

3.1. Operations on vector bundles

The standard operations on vector bundles on spaces (e.g., direct sum, tensor prod-
uct, exterior powers, and so on) can be carried out on vector bundles on stacks mutatis
mutandis. This is more easily seen if we think of a vector bundle as in Proposition 3.2
(2). In this case, we simply perform the desired operation simultaneously on the Ey,
for varying U, and the resulting family of vector bundles, say Fy, will give rise to a
vector bundle § on X.

In view of Proposition 3.2 (3), operations on vector bundles on X correspond to
operations on X-equivariant vector bundles.

ASTERISQUE 343



3.2. TANGENT, NORMAL, AND EXCESS BUNDLES 17

Similarly, we can define a metric on a vector bundle. More precisely, a metric on €
is the same thing as a compatible family of metrics on Ey, for varying U. Given a
presentation X = [X; = Xj] for X, a metric on € is the same thing as an invariant
metric on the X-equivariant vector bundle E. (The latter simply means a metric on the
vector bundle E over Xy such that the isomorphism : s*E — ¢*E is an isometry.)

Example 3.3. — Let X be a paracompact topological space (say, a manifold) and G
a compact Lie group acting on it. Set X := [X/G]. Then every vector bundle € on X
admits a metric. In fact, metrics on € are in bijection with G-invariant metrics on the
vector bundle F := p*€ over X. (Here p: X — X is the quotient map.)

3.2. Tangent, normal, and excess bundles

The main examples of vector bundles we encounter in this paper are tangent and
normal bundles. In this section we explain how they are defined.

3.2.1. Tangent bundle. — Let X be a differentiable stack and choose a differ-
entiable groupoid [X; = Xy] presenting it. Taking tangent bundles gives rise to a
new differentiable groupoid [T'X; = T Xy|. The quotient stack [T'X,/TX;] is denoted
by ¥X and is the tangent bundle of X. The base maps induce a groupoid morphism
[TX, = TXo] — [X1 = Xo]. After passing to quotient stacks, this induces a mor-
phism of stacks X — X which we regard as the base map of ¥X. It is not hard to
see that, up to isomorphism of stacks over X, TX is independent of the choice of the
groupoid presentation. The tangent bundle TX is functorial in the obvious sense.

Example 3.4. — Let X be a differentiable orbifold. Choose a presentation for it by
a smooth étale groupoid X = [s,t: X; = Xj]. The tangent bundle T X, of X, is
naturally X-equivariant because the two pullbacks s*(T'X,) and t*(TXy) are both
naturally isomorphic to 7X;. The corresponding vector bundle on X is the tangent
bundle of X.

Warning 3.5. — The above example shows that, when X is a differentiable orbifold,
the tangent bundle X is indeed a vector bundle in the sense of Definition 3.1. This,
however, is not the case for arbitrary differentiable stacks. This is seen by observing
that the fiber ¥, X of the map ¥X — X over a point z in X is not a vector space in
general. In fact, the map TX — X may not even be representable.

NOTATION: when X is an orbifold we use the notation TX for the tangent bundle.

Example 3.6. — Let G be a Lie group, and let X = BG = [*/G] be its classifying
stack. Let g be the Lie algebra of G. Then, ¥BG = B(g x G), where G is acting on g
by the adjoint action. The fiber of the base map $BG — BG over the point * — BG
is Bg = [*/g]. (Here, g is regarded as a group via its vector space addition. The stack
Bg = [*/g] is a simple example of a “2-vector space.”)
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18 CHAPTER 3. VECTOR BUNDLES ON STACKS

As indicated in Example 3.6, the definition of the tangent bundle for a general dif-
ferentiable stack X requires a more general class of vector bundles which are quite a bit
subtler. These are what some authors call ‘stacky vector bundles’ or ‘2-vector bundles’
and have the property that their fibers are, in general, 2-vector spaces. In particular,
the structure map € — X of a stacky vector bundle is no longer representable.

Locally, the tangent 2-vector bundle of X can be presented by a length 2 complex
of vector bundles (“the tangent complex”). A suitable model for this is the complex
E % TX, where p is the anchor map of the Lie algebroid associated to a Lie groupoid
presentation [X; = X] for X. Here F is the normal bundle of the unit map n: X —
X;1. It is naturally identified with the relative tangent bundle 7} of the target map
t: X; — X and the anchor map p is the composition p : E & n*(T}) — n*(T3)®TX =
7 (TX1) 2 n*(Ts) ®TX — TX where Ty is the relative tangent bundle of the source
map s : X; — X. In Example 3.6, the tangent bundle T'BG can be represented by the
complex of vector spaces g — 0 (viewed as a complex of vector bundles on a point).

In the rest of the paper, the only instances where we encounter tangent bundles
are when X is an orbifold.

3.2.2. Normal bundle. — Let 2 be a differentiable stack and X — ) a differ-
entiable substack. We would like to define the normal bundle of X in ). When X
and Y are smooth manifold, one defines the normal bundle either as the quotient
(TY|x)/TX, or as the orthogonal complement to TX in TY|x (upon fixing a metric
on the latter).

None of these definitions are available to us in the context of stacks (except when
92 is an orbifold). Nevertheless, it is possible to define the normal bundle as a vector
bundle on X. To do so, pick an atlas Y — ) and let X C Y be the invariant
submanifold corresponding to X. Let Nx/;y = (TY|x)/TX be the normal bundle
of X in Y. This is an equivariant vector bundle with respect to the induced groupoid
structure on X, hence, after passing to the quotient, gives rise to a vector bundle
on X, which we denote by Mx /g and call the normal bundle to X in .

Example 3.7. — Let 9 be a differentiable orbifold. Then, we have Ny, =
(TY|x)/TX. In fact, since we can always choose a metric on T%) (because X is
paracompact), we have a direct sum decomposition T9)|x = Nx/p & TX.

3.2.3. Excess bundle and transversality. — Consider a 2-Cartesian diagram of
differentiable stacks

xl ( J ml

P l l q

in which the horizontal morphisms are embeddings. (Note that if ¢ is a submersion,
1 being an embedding implies that j is an embedding. When ¢ is representable, this
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3.2. TANGENT, NORMAL, AND EXCESS BUNDLES 19

is seen by pulling back everything along an atlas Y — 9). The general case reduces
to the representable case by pulling back j along an atlas Y’ — 2)’.) The bundle
Ny /g is naturally a subbundle of p*Mx,q. (This is seen using the same pullback
argument we just gave to prove that j is an embedding.) We call the quotient bundle
€ := (p*Nzx,9)/(Nx/9), which is a vector bundle on X', the excess normal bundle
of the diagram. We say that q is transversal to f if € is trivial.

Example 3.8. — Let i: X — 9 and j: Y — 3 be embeddings of differentiable stacks.
Consider the 2-Cartesian diagram

f N

I
P — 3
The excess normal bundle for this diagram is i*My),3. The excess normal bundle for

the transpose diagram
X9

.
joi
is also i*91y, 3, because we have a short exact sequence

This can be checked by choosing an atlas for 3.
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CHAPTER 4

THOM ISOMORPHISM

Definition 4.1. — We say a vector bundle p: € — X of rank n on a topological stack
X is orientable, if there is a class p € H™(€&, &€ — X) such that the map

Hi(¥) 5> Ht(¢,¢-X%)
c = pgUp

is an isomorphism for all ¢ € Z. The class y is called a Thom class, or an orientation,
for p: € — X.

Lemma4.2. — Let € — X be an oriented vector bundle and p € H"(&,& — X) a
Thom class for it. Let f: Y — X be a morphisms of stacks. Then f*€ — Q) is an
oriented vector bundle and f*(u) is a Thom class for it.

Lemma 4.3. — Let € — X be a vector bundle. Let f: Y — X be a trivial fibration of
topological stacks, and let v be a Thom class for the vector bundle f*€ — ). Then,
there is a unique Thom class p for € such that f*(u) =v.

Proposition4.4. — Let p: € — X be an orientable vector bundle of rank n, and
let p € H*(€,€ — X) be a Thom class for it. Let & C X be a substack. Then, the
homomorphism

H*(%X,X—-R) -5 H*t"(¢,¢—-R)
c = pup
is an isomorphism. Here, we have identified 8 with a substack of € via the zero section
of € - X.

Proof. — Let 4 =X — K. The map ¢ — p*(c) U u induces a map between long exact
sequences

= HOM(Ey, €y — 1) — H*(€,€-%) — H*""(E,E—8) — ---

o =4 4
H* (%) H*(X) — H**""(X,X—R) — ---.
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22 CHAPTER 4. THOM ISOMORPHISM

(The top sequence is long exact by Proposition 2.7.) The claim follows from 5-
lemma. 0O

Proposition 4.5. — In Proposition 4.4, identify X with a closed substack of € via the
zero section. Then, for every c € H*(%X,X — R), we have 7(c) = c- u, where - is the
product of Proposition 2.8.

Proposition 4.6. — In Proposition 4.4, assume that € is metrized, and let ® denote its
disc bundle of radius r. Set £ = p~1(R)ND. and let p: H*(&,&— &) — H*(€, €~ ¥F)
be the restriction homomorphism. Then the homomorphism
H*(X,X-8/) > H'*"(¢,¢—-%)
c = p(p*(c)Up)

is an isomorphism. In particular, the map p is an isomorphism.

Proof. — Let 4 = X — &. In the case where 8 = X, a standard deformation retraction
argument shows that p is an isomorphism, so the result follows from Proposition 4.4.

The general case reduces to this case by considering the map of long exact sequences
induced by ¢ — p(p*(c) U p),

L~ HY(Ey, €y~ Dly) — HYM(E,E—D) — H*(EE—2) — -

| =} 4

He(U) H* (%) Ht(X,X—R) — ---,

and applying 5-lemma. O
The following lemma strengthens Proposition 4.4.

Lemma 4.7. — Let p: € — X be an orientable vector bundle of rank n, and let p €
H"(€,& — X) be a Thom class for it. Let & C X be a closed substack, and & C € a
closed substack of € mapping isomorphically to & under p. Then, we have a natural
isomorphism H®(X,X — 8) & H*t"(&, € — R').

Lemma4.8. — Let p: € — X and ¢: § — X be vector bundles over X, and assume
that € is oriented. Then, an orientation for § determines an orientation for € @ §,
and vice versa. Indeed, if u is an orientation for €, and v an orientation for §, then
u-p*(v) = v-¢* (1) is an orientation for E®F. Here, - is the product of Proposition 2.8.

Proof. — We only prove one of the statements, namely, the case where € and € ® §
are oriented. We show that § is also oriented. Assume € and § have rank m and n,
respectively, and let p € H™(&,&—X) and v € H™"(EDF, €EdF— X) be orientations
for € and € @ §. The class ¢*(1) € H™(ED F,€ ® F — §) is an orientation for the
pullback bundle ¢*(€) =& € @ § over §; note that the bundle map ¢*(€) — § can be
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CHAPTER 4. THOM ISOMORPHISM 23

naturally identified with the second projection map n: €®F — §. By Proposition 4.4,
applied to the vector bundle 7: € & § — §, we have an isomorphism
H'(3,§—-X) —» H'""™(€aF caF—X%X)
c — m()Uq(p).
The inverse image of v under this isomorphism is the desired orientation class

in H"(3,3 — X). ]

In Lemma 4.8, we call the orientation on € @ § the sum of the orientations of &
and §, and the orientation on § the difference of the orientations on € @ § and €.

Lemma4.9. — Let 0 —» € — 9 — § — 0 be a short exact sequence of vector bundles
over a topological stack X. Then, the choice of orientations on two of the three vector
bundles uniquely determines an orientation on the third one. Moreover, we have the
following relation between the orientation classes:

e - P (ug) = pom-
Here, p stands for the morphism of pairs (9, M—€) — (F,F—X), and - is the product
of Proposition 2.8.

Proof. — Apply Lemma 4.3 to the trivial fibration f: 9 — X to reduce the problem
to the split case and then apply Lemma 4.8. O

Lemma 4.10. — In Lemma 4.7, assume we are given another oriented vector bundle
§ — X of rank m, and endow € & §F with the sum orientation. Let R C €D F be a
closed substack mapping isomorphically to & under the projection € & F — €. Then,
the diagram

H*(%,% — R) H*" (€, & — /)
PN e

Ho+n+m(€ @ 87 e @ 3 _ R”)

commutes. (All the isomorphisms in this diagram are the ones of Lemma 4.7. So, in
the case where & = R = K", the isomorphisms are simply the Thom isomorphisms of
Proposition 4.4.)

Finally, we prove a lemma about compatibility of Thom isomorphism with excision.

Lemma 4.11. — Let X be a manifold, and let E — X and N — X be vector bundles
of rank n. Assume that E is oriented. Leti: N — E be an open embedding which sends
the zero section of N to the zero section of E. (Note that N is naturally isomorphic
to E, hence oriented, via the isomorphisms TX @ N X TE 2 TX @ E.) Then, the
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24 CHAPTER 4. THOM ISOMORPHISM

following diagram commutes:
H*t"(N,N — X) —SZBn . getn(E E — X)

s S
H*(X).
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CHAPTER 5

LOOP STACKS

5.1. Mapping stacks and the free loop stack

Let X and ) be stacks over Top. Recall from Section 1.1 that the mapping stack
Map(9), X) is defined by the rule

TeTop — Hom(Tx9,%),

where Hom denotes the groupoid of stack morphisms. The mapping stack Map(9), X)
is functorial in X and ) and satisfies the exponential law:

Map(3 x 9, X) = Map(3, Map(9), X)).

It follows from the exponential law for mapping spaces [63] that when X and Y
are spaces, with Y Hausdorff, then Map(Y, X) is representable by the usual mapping
space from Y to X (endowed with the compact-open topology).

Proposition 5.1. — Let X be a topological stack and A a compact topological space.
Then Map(A, X) is a topological stack.

Proof. — This follows from Theorem 1.1 of [51]. O

Let X be a topological stack. Then LX = Map(S?, X) is also a topological stack.
It is called the loop stack of X. By functoriality of mapping stacks, for every t € S?
we have the corresponding evaluation map ev;: LX¥X — X. In particular, denoting
by 0 € S! the standard choice of a base point, there is an evaluation map

(5.1.1) evg: LX — X.
Similarly, the path stack of X, which is defined to be Map(I, X), is a topological stack.

For the next result, we need to assume that X is a Hurewicz topological stack.
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Lemma 5.2. — Let A, Y, and Z be as in Proposition 1.3. Let X be a Hurewicz topo-
logical stack. Then the diagram

Map(ZVaY,X) — Map(Y,X)

l l

Map(Z,X) —— Map(4, %)

is a 2-Cartesian diagram of topological stacks.

Proof. — We have to verify that for every topological space T' the T-points of the
above mapping stacks form a 2-Cartesian diagram of groupoids. This follows from
Proposition 1.3 applied to Ax T,Y X T, and Z x T. a

We denote by ‘8’ the wedge S* V S! of two circles.

Corollary 5.3. — Let X be a Hurewicz topological stack, and let LX be its loop stack.
Then, the diagram

Map(8,%X) — LX

| l

Lx X

is 2-Cartesian.

5.2. Groupoid presentation

Let us now describe a particular groupoid presentation of the loop stack. For this
we will assume that X is a Hausdorff Hurewicz topological stack. Thus X admits a
groupoid presentation X: = [X; =% Xq], where X, and X; are Hausdorff topological
spaces, X; — Xo X Xy is proper, and source and target maps are local fibrations. We
will fix the groupoid X.

We will construct a groupoid LX: = [L; X = LoX] out of X which presents LX. This
groupoid presentation is useful in computations (see Section 12). Our construction
resembles the construction of the fundamental groupoid of a groupoid [50].

Let MX = [M;X = MyX] be the morphism groupoid of X. Its object set is MpX =
X1 and its morphism set M;X is the set of commutative squares in the underlying
category of X:

t(h) < t(k)
(5.2.1) hT Tk

s(h) "2 s(k)
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The source and target maps are the horizontal arrows in square (5.2.1). The groupoid
multiplication is by (vertical) superposition of such squares. Thus we have M;X =
X3 = X1 Xx, X1 Xx, X1. The groupoid MX is another presentation of the stack X
and is Morita equivalent to X.

Let P C S! be a finite subset of S which contains the base point of S. The points
of P are labeled according to increasing angle as Py, P,..., P, in such a way that
Py = P, is the base point of S'. Write I; for the closed interval [P;_1, P;]. Let SE
be the disjoint union S§ = [[~, I;. There is a canonical map S{ — S'. Let Sf
be the fiber product S¥ = S x1 SE. There is an obvious topological groupoid
structure [S¥ = S¥]. The compact-open topology induces a topological groupoid
structure on LPX = [LY'X = LEX], where L{ X is the set of continuous strict groupoid
morphisms [S{ = SF] — [X1 = Xo] and L¥X is the set of strict continuous groupoid
morphisms [Sf =3 SF] — [M:1X = MpX].

The finite subsets of S! including the base point are ordered by inclusion. The
ordering is directed. For P < @ there is a canonical morphism of groupoids LX —
LOX. Using the fact that X, and X; are Hausdorff, it is not difficult to prove that
LPX — L9X is an isomorphism onto an open subgroupoid. Define the topological
groupoid

LX = lim LPX= |J LPX.
pcst Pcst

Proposition 5.4. — The groupoid LX presents the loop stack LX.

Proof. — First, we need to construct a morphism LfX — LX, for every P. The
presentation LoX — LX will then be obtained by gluing these morphisms using the
stack property of LX and the fact the L¥X form an open covering of the topological
space LoX.

The structure map LE x S — X, gives rise to a morphism L x S§ — X. This
morphism descends to LY x S — X, by Proposition 1.3, because S is obtained from
S{ as a pushout covered by that proposition. By adjunction, we obtain the required
morphism L{ — LX.

The fact that | Jp L{X — LX is an epimorphism of stacks, follows as in Proposi-
tion 5.1.

The fact that L; X is the fibered product of LyX with itself over LX reduces imme-
diately to the case of L¥X, for which it is immediate. O

It is easy to represent evaluation map and functorial properties of the free loop
stack at the groupoid level with this model.

Remark 5.5. — In particular, there is an equivalence of the underlying categories
between LX and the groupoid whose objects are the set of generalized morphisms
from the space S! to X and has equivalences of such as arrows.

Corollary 5.6. — If X is a differentiable stack then LX is regular Lindeldf .
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5.2.1. Target connected groupoid. — Assume the groupoid X is target con-
nected. This means that if T is a topological space, and ¢: T' — X; a continuous
map, then for every point of T there exist an open neighborhood TV C T and a ho-
motopy ®: T x I — X, such that &, = ¢ and &; = t o ¢, where ¢t : X; — X is the
target map. For example, any transformation groupoid with connected Lie group is
target connected.

For every finite subset P C S! and z € LfX, there are arrows g; € X; with
t(g;) = P, € I, and s(g;) = P, € I;41 (or Py € I if i = n). These arrows can
be continuously deformed to the identity point P, € I,. Thus there is an element
T € Map(S', Xo) € L1 X, and an arrow v € LYX with s(y) = Z and t(v) = z. From
this observation, we deduce:

Proposition 5.7. — If X is target connected, then the groupoid [LX; =3 LX,] with
pointwise source map, target map and multiplication presents the loop stack LX. Here
LX; is the usual free loop space of X; endowed with the compact-open topology.

In particular, LX is Morita equivalent to the groupoid [LX; = LX).

Example 5.8. — If G is a connected Lie group acting on a manifold M, then Propo-
sition 5.7 implies that L[M/G] = [LM/LG].

5.2.2. Discrete group action. — To the contrary, if G is a discrete group acting
on a space M one can form the global quotient [M/G] which is represented by the
transformation groupoid X := [M x G =3 M]. For any z € L¥ X, one can easily find
an arrow v € L¥ X such that s(y) = z and t(y) € L{%X,. Furthermore, since G
is discrete, an element of L X; is described by its source and one element g; € G
for i =0,...,|P|. From these two observations one proves easily:

Proposition 5.9. — Let G be a discrete group acting on a space M. Then L[M/G] is
presented by the transformation groupoid

[ 2Mm ) xc= 1] 2,Mm

geG geG

where PyM = {f:[0,1] — M such that f(0) = f(1).9} and G acts by pointwise
conjugation.

Note that if G is finite, one recovers the loop orbifold of [45].

Remark 5.10. — An element f € ;M has a canonical extension into a map f: R —
M satisfying f(z + k) - g* = f(z).
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CHAPTER 6

BOUNDED PROPER MORPHISMS
OF TOPOLOGICAL STACKS

Definition 6.1. — Let f: X — ) be a morphisms of topological stacks and € a metriz-
able vector bundle over 9). A lifting i: X — & of f,

is called bounded if there is a choice of metric on € such that ¢ factors through the
unit disk bundle of €. A morphism f: X — Q) of topological stacks is called bounded
proper if there exists a metrizable orientable vector bundle € on %) and a bounded
lifting ¢ as above such that ¢ is a closed embedding.

Definition 6.2. — A bounded proper morphism f: X — %) is called strongly proper
if every orientable metrizable vector bundle € on X is a direct summand of f*(€’)
for some orientable metrizable vector bundle & on ). (Note that, possibly after
multiplying by a positive R-valued function on %), we can arrange the inclusion € —
f*(€') to be contractive, i.e., have norm at most one.)

Example 6.3. — 1. Every bounded proper map f: X — Y of a topological spaces
with Y compact is strongly proper. In that case, one can use the fact that every
vector bundle on a compact space is a subbundle of a trivial bundle.

2. Let X be a topological stack such that A: X — X x X is bounded proper. Then A
is strongly proper. This follows from the fact that every vector bundle on X can
be naturally extended to X x X. Similarly, the iterated diagonal A(™): ¥ — %"
is strongly proper.

3. Let X,Y be compact G-manifolds (with G compact) and f: X — Y be a
G-equivariant map. Then the induced map of stacks [f/G]: [X/G] — [Y/G] is
strongly proper.
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It does not seem to be true in general that two bounded proper maps compose to
a bounded proper map, but we have the following.

Lemma6.4. — Let f: X — 9 and g: Y — 3 be strongly proper morphisms. Then
go f: X — 3 is strongly proper.

Proof. — 1t is trivial that every orientable metrizable bundle on X is a direct sum-
mand of one coming from 3. Let us now prove that g o f is proper. Suppose given
factorizations

¢ ¥

x—9 9 - 3

for f and g. By enlarging &, and using that g is strongly proper , we may assume
that € = g*(&’), for some oriented metrized vector bundle €’ on 3. Let i': X — €& be
the composition pr o7 where pr: € — &' is the projection map. The following diagram
shows that g o f is proper:

¢goF O
(5f) 7 l

=
X — 3

gof

6.1. Some technical lemmas

In this section we prove a few technical lemmas that will be needed in Section 7 to
define bivariant groups.
Let f: X — 2 be a morphism of topological stack that admits a factorization

For example, every bounded proper f has this property (Definition 6.1). The follow-
ing series lemmas investigate certain properties of the relative cohomology groups
H* (€, € - X).

Lemma 6.5. — Let f: X — ) be a morphism of topological stacks, and assume we are
given two different factorizations (i, €) and (i',€") for it. Then, there is a canonical
isomorphism H*+%€(¢ € — X) = Ho+k€ (¢ ¢ — %),
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Proof. — Embed X in € ® € via (i,i'): X — € ® €. Consider the diagram
(€, ¢ %) — (€BEEBE—X) — (¢ E—X)

of pairs of topological stacks. It follows from Proposition 4.4 that we have natural
isomorphisms

H0+rk e/(el, ¢ — x) o Ho+rk3+rk€(el ® €, ¢ DE— x) o~ H0+rk€(€’ ¢ — x)
We can now apply Lemma 4.7. O

Using a triple direct sum argument, it can be shown that given three factorizations
(i, €), (¢, ¢), and (", €") for f, the corresponding isomorphisms defined in the above
lemma are compatible. Also, if we switch the order of (i, €) and (¢, €') we get the
inverse isomorphism. Finally, when (i, &) and (¢, €’) are equal we get the identity
isomorphism. Therefore, the group H*(€, € — X) only depends on the morphism f.

Lemma 6.6. — Let f: X — ) be a morphism of topological stacks, and let ¢ :=
fopr: X x I — %), where I is the unit interval and pr stands for projection. Suppose
we are give a factorization

¢
.7
XxI rae pJ)

for ¢. Let 0 < a < 1, and define t,: X — € to be the restriction of v to X = X x {a}.
Then, the natural map ¢q: H® (€, E—1,(X)) — H*(€, E— (X xI)) induced by the map
of pairs (€,€ — (X x I)) — (€, € — 1,(X)) is an isomorphism and it is independent
of a.
Proof. — We may assume that the image of + does not intersect the zero section
of €. (For example, we lift everything to € ® R via (¢,1): X — € & R and apply
Proposition 4.7 to the vector bundle € R — €.).

Let ¢ = € ® R and define 3: X x I — & by B(z,t) = (.(z,0),t). This is a closed
embedding, so by Lemma 6.5, we have a commutative diagram

H*(€, & — (X xI)) —= H*(¢,¢& — B(X x I))

. 2

H*(€,€ — 14(X)) —— H*(€,€ - (%))

This reduces the problem to the case where our map is 3 instead of ¢, in which case
the result is obvious. a
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CHAPTER 7

BIVARIANT THEORY FOR TOPOLOGICAL STACKS

We define a bivariant cohomology theory [30] on the category of topological stacks
whose associated covariant and contravariant theories are singular homology and co-
homology, respectively. Our bivariant theory satisfies weaker axioms than those of [30]
in that products are not always defined. We show, however, that there are enough
products to enable us to define Gysin morphisms as in [30].

The underlying category of our bivariant theory is the category TopSt of topological
stacks. The confined morphisms are all maps and independent squares are 2-Cartesian
diagrams.

7.1. Bivariant groups

To a morphism f: X — 9 of topological stacks, we associate a category C(f) as
follows. The objects of C(f) are morphisms a: & — X such that fa: & — 2) is bounded
proper (Definition 6.1). A morphism in C(f) between a: 8 - X and b: £ —» X is a
homotopy class (relative to X) of morphisms g: 8 — £ over X.

Lemma 7.1. — The category C(f) is cofiltered.

Once and for all, we choose, for each object a: 8 — X, a vector bundle € — 9
through which fa factors, as in Definition 6.2.

We define the bivariant singular homology of an arbitrary morphism f: X — 9 to
be the Z-graded abelian group

H (2 L 9) = lim BV (e, ¢ - 8).
<6))]

The homomorphisms in this direct limit are defined as follows. Consider a mor-
phism ¢: & — & in C(f). From this we will construct a natural graded pushforward
homomorphism ¢,: H*t™(€, & — &) — H*t" (¢, ¢ — &'), where m = rk €& and
n=rk¢&.

Let § = € & ¢’ with the sum orientation. Let p: € — 9) be the projection map.
Then, p*(€) is an oriented vector bundle over €. Note that the projection map
m: p*(€) — €' is naturally isomorphic to the second projection map § = €@ ¢’ — ¢&';
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34 CHAPTER 7. BIVARIANT THEORY FOR TOPOLOGICAL STACKS

this allows us to view § as an oriented vector bundle of rank m over . Let ® C §
be the unit disc bundle. It follows from the assumptions that & C ®, hence also
AC £:=7"1(&)ND. The restriction homomorphism

Qu: HP™(F & — 8) - H P (F 5 — £) = H T (¢, ¢ — /),

induced by the inclusion of pairs (§,§ — £) — (§,§ — R) is the desired pushforward
homomorphism; here, we have used the isomorphism of Proposition 4.6.

Next we have to show that the map ¢, is independent of the homotopy class of .
Consider aopr: Ax I — X, and let pg, p1: K — & x I be the times 0 and time 1 maps.
Note that aopr: 8 x I — X is an object of C(f). Since every homotopy (relative
to X) between maps with domain £ factors through £ x I, it is enough to show that
Po,x = p1,». This follows from Lemma 6.6.

Remark 7.2. — The objects of the category C(f) should be regarded as supports of
our theory, so by taking the colimit in the definition of the bivariant groups we are
ensuring that the (homology theory) associated to our bivariant theory is compactly
supported, which is what is expected from singular homology. If we did not do this
we would end up with a Borel-Moore homology theory.

Remark 7.3. — Let 8 — 2 be a bounded proper morphism. It follows from
Lemma 6.5, that the cohomology H*(€, € — ) is independent of choice of the vector
bundle ¢ and the embedding i: & — €&, up to a canonical isomorphism. Further-
more, the pushforward maps constructed above are compatible with these canonical
isomorphisms. So, H*(f) is independent of all choices involved in its definition.

Lemma7.4. — Let f: X — 2 be a bounded proper morphism and X Le o 2 a
factorization for f, where i is a closed embedding (but € is not necessarily metrizable).
Then we have a natural isomorphism

He (% L 9) = HoH<¢(g ¢ - X).
In particular, when f: X — Q) is a closed embedding, then the bivariant group
. f ~ 7
H*(X — )= H* (9,9 - X)

coincides with relative cohomology.

Proof. — Follows from Lemma 6.5. O
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7.2. Independent pullbacks

Consider a Cartesian diagram
xl _f,> m/

b

-3

We define the pullback h*: H(X 4, ) — H(X' E ') as follows.
Pullback along h induces a functor h*: C(f) — C(f'), & — h*R := X' xx R
Furthermore, we have a natural homomorphism

H*t k&g € — R) — H*T™*¢(h*¢ h* € — h*R)
induced by the map of pairs (h*€, h*€ — h*R) — (€, € — R). Using Lemma 6.5, this
induces the desired homomorphism of colimits

R*: lim H*t™*¢(¢, ¢ — R) — lim H*t™ ¢ (¢, ¢ — 8.
— —
c(f) )

7.3. Confined pushforwards
Let h: X — 9 be a morphism of topological stacks (Definition 6.1) fitting in a
commutative triangle

f JELIG))

N Y
3

We define the pushforward homomorphism h,: H(%X N 3) —» H(P - 3) as follows.
There is a natural functor C(f) — C(g), which sends a: 8 - X to ha: £ — 9. A
factorization for fa gives a factorization for gha in a trivial manner:

R € R ¢
b oW
X — 3 9 >3

Using Lemma 6.5, this induces the desired homomorphism

he: lim H*V¢(€, € - &) — lim H**™*¢(¢, € - R).
() C(9)
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7.4. Products

Unfortunately, we are not able to define product for arbitrary pairs of composable
morphisms f and g. However, under an extra assumption on g this will be possible.

Definition 7.5. — A morphism f: X — 2 of topological stacks is called adequate if
in the cofiltered category C(f) the subcategory consisting of a: & — X such that
fa: 8 — ) is strongly proper is cofinal.

Example 7.6. — 1. Every strongly proper morphism is adequate. (Because in this
case C(f) has a final object that is strongly proper over 9).)
2. A morphism f: ¥ — Y in which Y is a paracompact topological space is ade-
quate. (In this case every object in C(f) is strongly proper over Y; see Exam-
ple 6.3)

Let f: X — %) and g: Y — 3 be morphisms of topological stacks, and assume g is
adequate. Then we can define products of any two classes @ € H(f) and 8 € H(g).
The construction of the product is as follows. Consider objects (R,a) € C(f) and
(£,b) € C(g), and choose factorizations

R ¢ s F
o) |
3

9

We may assume gb: £ — 3 is strongly proper. There exists a metrizable oriented
vector bundle &' over 3 such that b*€ is isomorphic to a subbundle of (gb)*(€’) as
vector bundles over £. Note that, possibly after multiplying by a positive R-valued
function on 3, we can arrange the inclusion b*€& — (gb)*(€’) to be contractive (i.e.,
have norm at most one). Let us denote b*€ by &g, (gb)*(€') by &;, and the codimension
of &, in &; by c.

We define the product

H (€,¢-R)QH(F,F—L) > H P (¢ aF ¢ aF—Rxy ?).
as follows. (Note that (& xg £, aopr) belongs to C(go f) and we have a factorization
Axy 2 W @z

l i

x 3

gof

for it. We explain this in more detail shortly.) By pulling back the map ¢ along
w: € — €, we obtain a closed embedding & xg £ — €. On the other hand, we
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have a closed embedding €; — & @ §; this is simply the pullback of j along the
projection map 7: & & F — JF. Using the inclusion &, — €;, we find a factorization
(4,9)
— T
ﬁme C— ¢ — ¢ - €7

Now, let a € H"(&,&—R) and 8 € H*(§,§— £) be two cohomology classes. We define
a-f € HTH(EaF, €' dF—Rxy £) to be 7(w*(a)) - 7*(B), where the latter - is the
product of Proposition 2.8. In more detail, we have 7*(8) € H*(¢' @ §, €' @ F — €,),
w*(a) € HT(GQ, Go—ﬁme), and 7: Hr(eo, eo—ﬁX@f) — Hr+c(€1, 61—.@X2)f) is
the Thom isomorphism of Proposition 4.4 for the vector bundle &, over &y; to obtain
this Thom isomorphism, we have used that, since the bundles are metrizable, &g is a
direct summand of &; and its complement is oriented (Lemma 4.8). Finally, our - is
the one in Proposition 2.8 with the inclusions & xg £ — €; — &' ®F, n =r+cand
m = s.

7.5. Kiinneth formula

For bivariant singular cohomology with field coefficients we have the following
Kiinneth formula.

Proposition 7.7 (Kiinneth formula). — Let f: X — Q) and f': X' — )’ be morphisms
of topological stacks. Then, we have a natural isomorphism of graded groups

H*(f x )= H*(f)® H*(f'),
where f x f': X X X' — 9 x Q' is the product map.

Proof. — First, suppose that f and f’ are bounded proper, and choose factorizations
as in Definition 6.2. We obtain a factorization

exe
'

Xxx (f_f;'.)QJX@/

for f x f'. Note that the total space of the vector bundle € K ¢’ is € x ¢, Let { =
€ —i(X) and &' = € — §(X’). Then, € x & — (i,i’)(X x X') = € x & UL x €. So, by
Proposition 2.5, we have

(7.5.1) H*(fx f') = H 7 (@x & — (i, ) (X x X)) 2 HT(€, ) @ H* ™ (¢, 41),

and the latter is equal to & H*(f) ® H*(f').

To prove the isomorphism for general f and f’, consider the functor P: C(f) x
C(f") — C(f x f’) which sends a pair (a,a’) € C(f) x C(f’), with a: & — X and
ad: R — X, toaxa: &x K — X x X' Since we know the result for bounded
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proper morphisms, to prove the Kiinneth isomorphism for f and f’ we observe that,
in general, for every directed system indexed by C(f x f’), the induced directed system
(via P) indexed by C(f) x C(f’) has the same colimit. This is due to the fact that P
has a left adjoint Q: C(f x f') — C(f) x C(f’), defined by sending a: £ — X x X’
to (pry oa, pry0a) € C(f) x C(f'). a

When the coefficient is only a ring, the cohomology cross-product (see Remark 2.6)
yields a bivariant cross-product.

Proposition7.8. — Let f: X — 9 and f': X' — )’ be morphisms of topological stacks.
Then, we have a natural homomorphism of graded groups

H*(f)® H*(f') — H*(f x f')
where f x f': X x X' - P x Y’ is the product map.

Proof. — The proof of Proposition 7.7 applies with the only difference that the last
isomorphism in the sequence (7.5.1) of isomorphisms is replaced by the cross prod-
uct H* ' (& x & — (4,4')(X x X)) — H*t"(€,4) @ H**™ (¢, ') homomorphism
(Remark 2.6). a

7.6. Associated covariant and contravariant theories

By definition, the nt* graded piece of the contravariant theory associated to the

bivariant theory H is give by
H™(%) = H*(X -3 %) = lim H"'™*¢(¢, ¢ — 8).
—5
C(idx)

The category C(idx) has a final object (X,X), so the above colimit is isomorphic
to H™(%,X — X) = H™(%), the usual singular cohomology.

The nt? graded piece of the covariant theory associated to H is defined to be

Hp(X) = H™"(X - pt) = lim H*""(E,E - K) = lim H,(K).
(%) K—%

Here, C(X) is the category whose object are pairs (E, K) where E is a Euclidean space
of dimension e and K is a compact subspace of E together with a map K — X. In the
latter colimit, we have used the Spanier-Whitehead duality H,(K) & H* "(E, E-K),
and the limit is taken over the category of all maps K — X with K a compact topolog-

ical space that is embeddable in some Euclidean space. By the following proposition,
the latter colimit is, indeed, isomorphic to the singular cohomology H,(%).

Proposition 7.9. — Let X be a topological stack. Then, we have a natural isomorphism

lim Ho(K) & Ha(X),

K—-X
where the limit is taken over the category of all maps K — X with K a compact
topological space that is embeddable in some Euclidean space.
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It is possible to generalize the axiomatic framework for (skew-symmetric) bivari-
ant theories [30] to include the present case, where products are only defined for a

composition X Sy S ziy Lz belongs to a subclass of morphisms called
adequate. See Appendix B for the axioms. Details will appear elsewhere.
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CHAPTER 8

REGULAR EMBEDDINGS, SUBMERSIONS, AND
NORMALLY NONSINGULAR MORPHISMS

8.1. Submersions

Definition 8.1. — Let p: X — 2 be a morphism of differentiable stacks. For p rep-
resentable, we say it is a submersion if its base extension along any differentiable
map Y — 9 from a manifold Y is a submersion of manifolds. (It is enough to check
this for one atlas Y — 9).) If p is not necessarily representable, we say that p is a
submersion if for some (hence every) atlas ¢: X — X, the composition pogq: X — 9
is a submersion.

Example 8.2. — The following are some simple examples of submersions.

1. A differentiable map p: X — Y of manifolds is a submersion in the above sense

if and only if it is a submersion in the usual sense.

Any projection ¥ x ) — X is a submersion.

3. Let € be a vector bundle over X. Then, the base map p: € — X is a submersion.
More generally, if p is an affine bundle (for example, a surjection € — F of
vector bundles over a base X), then p is a submersion.

4. Let p: X — X be an atlas for the differentiable stack X. Then p is a submersion.
In other words, if X = [X,/X1] is the quotient stack of a differentiable groupoid
[X1 = Xo), then the quotient map p: X¢ — X is a submersion.

N

Lemma8.3. — Let p: X — ) and q: Y — 3 be submersions. Then, we have the
following.

1. The composition gop: X — 3 is a submersion.
2. For an arbitrary morphism ' — 2 of differentiable stacks, the base extension
p': X' — 9 of p is a submersion.
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Lemma 8.4. — Consider the 2-Cartesian diagram of differentiable stacks
x/ ( j; @/

v |

in which the horizontal morphisms are embeddings and q is a submersion. Then, q
is transversal to i. That is, p*Ng,9 = Nx//g: (equivalently, the excess bundle € is
trivial).

Proof. — Precomposing ¢ with an atlas Y’ — 2)’, we are reduced to the case where ¢
is representable. By making a base change along an atlas Y — 9), we reduce further
to the case where we have a diagram of smooth manifolds, in which case the result is
clear. 0

8.2. Regular embeddings

In differential topology existence of a tubular neighborhood for a submanifold is a
strong tool which allows one to linearize the situation by passing to the normal bundle
of the submanifold. Unfortunately, this tool is not always available in the world of
differentiable stacks, as a substack may not necessarily admit a tubular neighborhood.
To our knowledge, the only situation where existence of tubular neighborhoods is
guaranteed is when the ambient differentiable stack is the quotient stack of a compact
Lie group action on a smooth manifold (Example 8.7).

In this section, we introduce a class of embeddings of differentiable stacks, called
regular embeddings, which behave as if they have tubular neighborhoods. We begin
with a preliminary definition.

Definition 8.5. — We say that an embedding i: X — ) of topological stacks admits
a tubular neighborhood if there is a vector bundle 91 over X and a factorization

xSndy
for i, where s is the zero section of 91 and j is an open embedding. The bundle N is

called a tubular neighborhood of X in ). (Note that the vector bundle 91 is canonically
isomorphic to the normal bundle N /g.)

Example 8.6. — Let X be a topological stack and & a vector bundle over X.
Let s: X — €& be the zero section. Then s admits a tubular neighborhood. The
normal bundle and the tubular neighborhood of X in & are both € itself.

Example 8.7. — Let 9 = [Y/G] be the quotient stack [Y/G] of a topological group G
action on a topological space Y. Let X C 9) be a closed substack of ), and let X C Y
be the corresponding invariant subspace. Then, tubular neighborhoods of X in ) are
in bijection with G-equivariant tubular neighborhoods of X in Y. In particular, if 9
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is a differentiable stack which is isomorphic to the quotient stack [Y/G] of a compact
Lie group G action on a smooth manifold Y, then any differentiable substack X
of 9) admits a tubular neighborhood. This follows from the G-equivariant tubular
neighborhood theorem; see ([11], Section VI, Theorem 2.2) and also the proof of
Proposition 8.18.

Embeddings which admit tubular neighborhoods have the expected nice properties,
but they are not flexible enough for our purposes. For instance, composition of two
such embeddings does not appear to admit a tubular neighborhood in general. Also,
pullback of such an embedding X < %) along a submersion onto g) (even along the base
map of vector bundle € — 2)) does not seem to always admit a tubular neighborhood.
Definition 8.11 is devised to fix these deficiencies.

Definition 8.8. — Let ) be a differentiable stack. Let i: X — ) a differentiable sub-
stack with normal bundle 9 = N g). Let c € H*(9,9M — X) be a cohomology class.
We say that a class ¢ € H*(9),2) — X) is compatible with c if for every differen-
tiable atlas q: Y — 9, the class ¢*(c) € H¥(N,N — X) corresponds to the class
¢*(¢) € H*(Y,Y — X) under the isomorphism H*(N,N — X) = H*(Y,Y — X) ob-
tained by identifying N := p*M = Ny ,y with a tubular neighborhood of X := px
in Y (and applying excision).

N — XY
»| a
N — x> 9

Since tubular neighborhoods of submanifolds are unique up to isotopy, the isomor-
phism H¥(N,N — X) = H*(Y,Y — X) in the above definition is independent of the
choice of the tubular neighborhood.

Lemma 8.10 justifies the above definition. Before proving it we quote a useful
Lemma from [64].

Lemma 8.9. — Let X be a differentiable stack and M a smooth manifold. Let f: M —
X be a continuous map (i.e., a morphism of underlying topological stacks). Then, there
exits a differentiable atlas q: X — X such that f lifts to a continuous map f M -Y.
If f is differentiable (i.e., a morphism of differentiable stacks), then fcan also be taken
to be differentiable.

Proof. — The case where f is differentiable is Lemma 3.10 of [64]. The case where f
is only continuous is proved using the same argument given in loc. cit. O

Lemma 8.10. — Notation being as in Definition 8.8, the class ¢ € H*(9),2 — %) s
unique (if it exists).
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Proof. — The statement is true when %) is a manifold. So, it follows that if ¢;,¢; €
H*(9,9 — %) are two such classes, the difference d := & — ¢, has the property that
g*(d) € H*(Y,Y — X) is zero for every differentiable atlas ¢: Y — ). We claim that
this can only happen if d = 0.

Suppose that d € H*(9,2 — %) is a nonzero cohomology class. Choose a clas-
sifying space ¢: Yy — 9 for 9 (see Section 2.2). Then ¢*(d) € H*(Yy, Yy — Xo)
is nonzero, where Xo = ¢~ }(X) C Y,. We can find a finite simplicial complex
K and a map f: K — Yj such that f*¢*(d) € H*(K,K — L) is nonzero, where
L = f~'¢~}(X) C K. By embedding K in some Euclidean space and choosing a small
tubular neighborhood M of K which retracts to K, we obtain a manifold M and a
continuous map g: M — Y, such that g*¢p*(d) is nonzero. Therefore, we have suc-
ceeded in finding a manifold M and a morphism (of topological stacks) pog: M — 9
which sees d. It follows from Lemma 8.9 that the map pog: M — 9 factors through
a differentiable atlas ¢: Y — ). So, g also sees d, that is ¢*(d) € H*¥(Y,Y — X) is
nonzero, which is what we wanted to prove. O

Definition 8.11. — We say that an embedding X — 9 of differentiable stacks is a
regular embedding if for every orientation class u € H™(91,91 — X) (i.e., a Thom class
as in Definition 4.1), there is a class & € H"(2),9) — X) compatible with it in the sense
of Definition 8.8. Here, 91 = Ny /9 is the normal bundle to X in 2) and n is its rank.

Lemma 8.12. — Regular embeddings enjoy the following properties:

1. Any embedding of smooth manifolds is a regular embedding.
2. Any embedding i: X — ) which admits a tubular neighborhood (Definition 8.5)
is a reqular embedding.

Proof. — By excision, H*(M,M — X) = H*(Y,Y — X). This implies (2), and (2)
implies (1). a

Lemma 8.13 (Composition). — Ifi: X — 9 and j: Y — 3 are regular embeddings,
then joi: X < 3 is also a regular embedding. Moreover, if u; € H™(Nx 9, Nz /9 — X)
and p; € H"(MNy 3, Ny /3 —2) are orientations (Definition 4.1) and fi; € H™(, 2 -
X) and i; € H™(3,3 —9) are the corresponding compatible classes, then the induced
orientation pjo; € H™™(Ngz3,MNg/3 — X) (see Lemma 4.9 and Erample 3.8) is
compatible with Ti; - i, where the latter product is the one of Proposition 2.8. In other
words, Tjo; = i - .

Proof. — As we saw in Example 3.8, we have a short exact sequence
0— NX/ED — Nx/3 - ’i*NgD/3 —0

of vector bundles over X. By Lemma 4.9, the orientation classes y; and i*u; induce
an orientation class pijo; := p; - p*i*(u;) on Ng,3, where p stands for the map of pairs
(Nx3,Nz;3 — Nxsp) — (i*Ny;3,i*Ny,3 — X). To prove the lemma, we have to
show that [ - 7r; is compatible with p;.;. By definition of compatibility, it is enough
to verify this after pulling back everything along an atlas Z — 3. That is, it is enough
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to prove the lemma in the case of smooth manifolds. By choosing a suitable tubular
neighborhood for the embedding X — Z, we can further reduce to the case where
the given embeddings are zero sections of vector bundles, in which case the result is
trivial. O

Lemma 8.14 (Pullback). — Consider the 2-Cartesian diagram

x! C i’ 2)/

S

Suppose that i is a regular embedding and q is a submersion (Definition 8.1). Then, i’
is a regular embedding. Furthermore, if u € H™(MNx g9, Nz p — X) is an orientation
class and i € H™(),Y — X) is compatible with p, then ¢*(i) is compatible with the
pullback orientation on Ny /9 = p*Nx 9. Here, ¢*: H*(Y,Y-X) — H*(Y',Y'-X')
is the induced map on relative cohomology.

Proof. — Tt follows from the definition of compatibility (Definition 8.8) that an em-
bedding i: X — %) is a regular embedding if and only if its base extension along every
atlas Y — 9 is. This, combined with Lemmas 8.3.1 and 8.4, proves the lemma. [

In the above lemma, the case we are particularly interested in is where g is an affine
bundle (e.g, when ¢ is the base map of a vector bundle, see Example 8.2.3).

8.3. Normally nonsingular morphisms of stacks and oriented stacks

Definition 8.15. — We say that a representable morphism f: X — 9 of stacks is
normally nonsingular, (nns for short), if there exist vector bundles 9t and & over the
stacks X and ), respectively, and a commutative diagram

m s ¢

! v

=7

where s is the zero section of 1, ¢ is an open embedding, and € is oriented. When N is
also oriented, we say that the diagram is oriented. (For the definition of on orientation
on a morphism f see Definition 8.21 below.) The integer ¢ = rk 91— rk € depends only
on f and is called the codimension of f. (Note that in the case where € is of rank
zero this coincides with Definition 8.5, so f admits a tubular neighborhood.)

A diagram as above is called a normally nonsingular diagram for f. The vector
bundle N is a tubular neighborhood of X in € in the sense of Definition 8.5.
The following are two extreme examples of nns morphisms.
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Example 8.16. — Let X be a topological stack and € a vector bundle over X.
Let s: X — € be the zero section. Then, the diagram

e 4 ¢

sT Lid

is an nns diagram for s. Here, we are regarding € as a rank zero vector bundle over
itself. The diagram is oriented if and only if € is. The codimension of s is equal to rk &.
(For future use, let us also record the fact that s is a strongly proper morphism.)

Example 8.17. — Let X be a topological stack and € an oriented vector bundle over
X. Let p: € —» X be the base map. Then, the diagram

¢ 4 ¢

al ]

is an oriented nns diagram for p. Here, we are regarding € as a rank zero vector
bundle over itself. The codimension of p is equal to —rk . The normal bundle and
the tubular neighborhood of € in € are both €& itself.

Proposition 8.18. — Let G be a compact Lie group, and X andY smooth G-manifolds,
with X = [X/G] and Y = [Y/G] the corresponding quotient stacks. Assume further
that X is of finite orbit type. Then, for every G-equivariant smooth map X — Y, the
induced morphism f: X — 9 of quotient stacks is normally nonsingular.

Proof. — First we claim that, there is a vector bundle 0 — BG and a smooth
embedding j: X — U, as in the following commutative diagram:

Py

7

This statement is equivalent to the fact that every G-manifold X of finite orbit type
embeds G-equivariantly into a linear G-representation V' ([11], Section II, Theo-
rem 10.1). We can arrange for the G-action on V to be orientation preserving by
simply replacing V with V@ V.
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Let € := 9 X g U be the pullback of U over ). We obtain the following commu-
tative diagram

¢

ry 9
Observe that (f,j) is a smooth closed embedding (this can be checked by pulling
back the whole picture along a chart, say * — BG, for BG). Let 91 be the normal
bundle of (f,7)(%X) in €. By the existence of G-equivariant tubular neighborhoods

([11], Section VI, Theorem 2.2), we find a vector bundle 9t over X and an open
embedding i: 9 — € making the following diagram commutative:

nmcts ¢

ST ( £:3) [p

X — 2
This is exactly what we were looking for. O

Example 8.19. — The action of a finite group on a manifold has finite orbit type. More
interestingly, the action of a compact Lie group on a manifold whose Z-coefficient
homology groups are finitely generated has finite orbit type. This is Mann’s Theorem,
see [11], Section IV.10.

Definition 8.20. — Let f: X — ) be a strongly proper morphism. A bivariant class
e HX 4, ), not necessarily homogeneous, is called a strong orientation if for ev-

ery g: 3 — X, multiplication by 6 induces an isomorphism H (3 L %) H (3 fog
2).

The above definition can be made for every adequate morphism in a (generalized)
bivariant theory. However we do not need this generality.

Definition 8.21. — A strongly proper morphism f: X — 9 of topological stacks is
called strongly oriented, if it is normally nonsingular and it is endowed with a strong
orientation 8y € H(f), where ¢ = codim f; see Definition 8.15. A topological stack X
is called strongly oriented if the diagonal A: X — X x X is strongly oriented. In this
case, we define dim X := codim A.

Remark 8.22. — As we have avoided the discussion of 2-vector bundles in this paper,
we will not give an intrinsic definition of orientation in terms of the tangent 2-vector
bundle of a differentiable stack X. However, we point out that an orientation for X
(in the bivariant sense) amounts to an orientation for the “tangent complex” of X, by
which we (rather imprecisely) mean the anchor map E % TX of the Lie algebroid
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associated to a Lie groupoid presentation [X; = X] for X; see Example 3.4. (By an
orientation on a complex V; — V4 of vector bundles on a manifold we simply mean
an orientation on V; @ V}. Note that this sloppy definition works because we are using
singular (co)homology.) Conversely, assuming that A: X — X x X has a normally
nonsingular diagram as in Definition 8.15, an orientation for E 5 TX gives rise to
an orientation for A (hence, by definition, for X).

Lemma 8.23. — Let f: X — ) and g: P — 3 be strongly proper morphisms, and
let @ € H(f) and ¢ € H(g) be strong orientation classes. Then, 8 - ¢ is a strong
orientation class for go f: X — 3. (Note that go f is strongly proper by Lemma 6.4.)

Lemma 8.24. — Let f: X — ) be a strongly proper map and § € H(f) a strong
orientation class for it. Then multiplication by 0 induces an isomorphism H(X) =
H(f). If ¢ € H(f) is another orientation class for f, then there is a unique unit
u € H(X) such that ' =u-6.

The following result states that an oriented normally nonsingular diagram gives
rise a canonical strong orientation.

Proposition 8.25. — Let f: X — %) be a strongly proper morphism of topological stacks
equipped with an oriented normally nonsingular diagram. Then, f has a canonical
strong orientation class 0y € He(f), where ¢ = codim f.

Proof. — The proof is essentially the same as the one given in [30]. (The ‘strongly
proper’ assumption is a technical condition we need to impose on f in order to be
able to multiply bivariant classes. This does not come up in [30] as they only use
trivial vector bundles when defining bivariant classes and the decent condition of
Definition 6.2 is automatic in this case.) a

Example 8.26 (Euler class). — Let X be a topological stack and € an oriented vector
bundle over X. Let s: X — € be the zero section. As we saw in Example 8.16, s is
a strongly proper morphism equipped with a natural nns diagram. It follows from
Proposition 8.25 that s has a canonical strong orientation class § € H"(s), where
n = rk €. Consider the following 2-Cartesian diagram:

¥ 4 x

d |

x?e

The pullback s*() € H™(idx) = H™(X) is the Euler class of €.

Lemma 8.27. — Let i: X — ) be an embedding of codimension n of differentiable
stacks. If i is nns then it is a regular embedding (Definition 8.11). In fact, for any
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choice of orientation p € H™(M, N—X) for the normal bundle N = Ng,y, the canon-
ical strong orientation class 6; € H™(i: X — ) = H™(9,2 — X) (Proposition 8.25)
coincides with the compatible class i € H™(,Y — X) (Definition 8.8).

Proof. — Pick an nns diagram
owls e

o |7

* =9

for i. We have a natural isomorphism 9’ 2 Ny ¢. This gives rise to a split short exact
sequence

0—-N—->N > €Ex—0
of vector bundles over X. Recall that, by definition, € is oriented. By regarding O’ as
a vector bundle over 9t which is the pullback of &|x along the base map N — X, we
obtain isomorphisms

H*(9,9 - X) = H*"(€,€ - X) = H*'" (€, € — js(%)),

where 7 = rk F. In the last equality we have used Lemma 4.7. Also, we have isomor-
phisms
HMN-X)2HT" (N, N - X) = H (€, ¢ — js(X)),

where in the last equality we have used excision because 91 can be identified with
an open substack of & via j. Under the above identifications, the orientation class
w € H*(M, 9 — X) corresponds to its compatible class g € H"(),Y — X) and the
strong orientation class 0; € H"(i: X — 9) = H""(€, € — js(X)). (This latter
equality is the very definition of bivariant cohomology.) O

The following proposition shows that any morphism between strongly oriented
topological stacks has a natural strong orientation. Proposition 8.30 shows that this
class is multiplicative.

Proposition 8.28. — Let f: X — 2 be a strongly proper normally nonsingular mor-
phism of topological stacks, and assume that X and 9 are both strongly oriented (Def-
inition 8.21). Let d = dim X and ¢ = dim Q) — dim X. Then, there is a unique strong
orientation class 05 € H°(f) which satisfies the equality 0 -0y = (—1)°%0x - (85 x ),

as in the diagram
.0,

[A AL
xxx 2 g«
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Proof. — By Proposition 8.25, there exists a strong orientation 6 for f. It is easy to
see that 6 x 0 is a strong orientation for f x f: X x X —» 2 x 2. By Lemma 8.23,
6 - 0y and Ox - (6 x 0) are both strong orientation classes for X — 2) x 9. Therefore,
by Lemma 8.24, there is a unit u € H%(X) such that 6 -0y = u-0x - (6 x 0). It follows
that §7: = (=1)%%u - 0 has the desired property; see Lemma 8.29 below. O

Lemma 8.29. — Let X be a topological stack and 6 € H(X 2 xx X). Let u,v €
HO(%), and let u x v € HO(X) x H°(X) be their exterior product. Then, 0 - (u x v) =
u-v-0, as classes in H(A).

Proof. — Since uxv = (ux1)-(1Xxv), it is enough to prove the statement in the case
where v = 1. Recall that u x 1 is defined via independent pullback in the righthand
square in the diagram

Yoo A X

o ol s

r A xxyx 22

The equality follows from the skew commutativity of the bivariant theory applied to
the lefthand square. O

Proposition 8.30. — Assume f: X — 9 and g: Y — 3 are strongly proper normally
nonsingular morphisms of strongly oriented topological stacks. Let 65 € H°(f), ¢ =
codim f, and 6, € H d(g), d = codimg, be the strong orientations constructed in
Proposition 8.28. Then, go f is a strongly proper normally nonsingular. Furthermore,
Of -0y =0goy.

Proof. — By Lemma 6.4, go f is strongly proper. Consider the normally nonsingular
diagrams for f and g

mci- ¢ w3
[ S B
X —=%9 9 53

By adding a vector bundle to €, we may assume that € = g*(&’) for some orientable
vector bundle & over 3. The following is a normally nonsingular diagram for g o f

ffmen s o

T l

x gof 3
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where k is the composite
Foen P mee P g e

This proves that g o f is normally nonsingular.
The equality 8¢ - 05 = 0405 follows from the identity in Proposition 8.28. O

If X is strongly oriented (Definition 8.21), its iterated diagonals A(™: ¥ — X" are
strongly proper (Example 6.3).

Corollary 8.31. — Let X be a oriented stack. Then the diagonals A™ : X — X" are
canonically strongly oriented.

Proposition 8.32. — Notation being as in Proposition 8.18, assume further that X and
Y are oriented and that the G-actions are orientation preserving. Then, every nor-
mally nonsingular diagram for f: X — %) is naturally oriented. In particular, when f
is strongly proper, we have a strong orientation class 6y € H°(f), c=dimY —dim X.
Furthermore, this class is independent of the choice of the normally nonsingular dia-
gram.

Proof. — Let us first fix a notation: given a manifold X with an action of G, we
denote [TX/G] by T%. (So, TX does depend on X, and not just on X. Since in what
follows all stacks are quotients of a G-action on a given manifold, this should not
cause confusion.)

Consider a normally nonsingular diagram

m s ¢

o |»

=79

as in the proof of Proposition 8.18. We show that 91 is naturally oriented. By
Lemma 4.9, there is a natural orientation on T'&, because it fits in the following short
exact sequence

0-p'€—>TE—pTX — 0.
In particular, we have an orientation on f*(T'€). We have an isomorphism of vector
bundles over X
TX® N f*(TE).

It now follows from Lemma 4.8 that 0N also carries a natural orientation. This proves
the first part of the proposition. In particular, when f is proper, we obtain a class

0 € H(X N ) as in Proposition 8.25.
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Now, we show that the class 0 is independent of the normally nonsingular diagram
above. Consider another oriented normally nonsingular diagram for f

ml. F

/| |a

X —
~ 2
We have to show that the following diagram commutes

H.(x) i_ Ho+rkm(€, ¢ — x)

=l =

H.(:f) i Ho+rk9ﬁ(3"3f _ x)

where the horizontal isomorphisms are the one of Proposition 8.25, and the vertical
isomorphism is the one of Lemma, 6.5. First we prove a special case.

Special case. Assume € = §, and is = tj. In this case, we can choose a third vector
bundle ¥ — X and an open embedding k: £ — € that factors through both 91 and
9. The two orientations induced on £ from 9% and N, as in Lemma 4.11, are the
same (because they are equal to the orientation induced from €, as described above).
The claim now follows from the commutative diagram of Lemma 4.11 (applied once
to the open embedding £ <— 9 and once to the open embedding £ — 9M).

General case. To prove the general case, we make use of the following auxiliary oriented
nonsingular diagrams:

ne g Pl cay  mere L zge
(s.0)] | (tis)| |
x 7 2 X 2

Here, the two maps pr stand for the projection maps f*§ = X xg9 § — § and
f*€& =X xg € — €. Let us denote the ranks of €, §, 91, and 9 by e, f, n, and m.
(Hopefully, presence of two different f in the notation will not cause confusion!) The
first normally nonsingular diagram gives rise to the following commutative diagram
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of isomorphisms:
@

>

H*(X) == H*"""/Me 5N fF-%) — H " (EnF caf—X)

=L ) =| =

H* (%) H (9,9 — ) = H*+n (€, € — %)

The commutativity of the left square is because of Lemma 4.10, and the commu-
tativity of the right square is because Thom isomorphism (vertical) commutes with
excision (horizontal).

Similarly, the second normally nonsingular diagram gives rise to the following com-
mutative diagram of isomorphisms

4
//—\;-

H(X) == H*"™te(Ma f*€,M f'E—X) — H+V™eFoeE,5o¢—X)

| Y g

H*(%) = He+m (90, M — X) = H*™(3,5 - %)

On the other hand, using the special case that we just proved, the two normally
nonsingular diagrams give rise to the following commutative diagram:

H'(X) —— H**"t/(€@F,caf-X)

=l l:

H*(X) Z—> H'mte(F o €, 3 ¢ — X)

The general case now follows from combining this diagram with (the other rectangles)
of the previous two diagrams. O

Corollary 8.33. — Let X be a stack that is equivalent to the quotient stack [X/G] of
smooth orientation preserving action of a compact Lie group G on a smooth oriented
manifold X having finitely generated homology groups. Then, the diagonal X — X x X
1s naturally oriented. In particular, the diagonal of the classifying stack BG of a
compact Lie group G is naturally oriented.

Remark 8.34. — Let X, ) and f be as in Proposition 8.32. There are two ways of
giving a strong orientation to f. Either we can use Proposition 8.32 directly, or we
first apply Corollary 8.33 to endow X and 9) with a strong orientation, and then apply
Proposition 8.28. The orientations we get are the same for f. We denote 6 this strong
orientation.
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Proposition 8.35. — Let X be a paracompact orbifold whose tangent bundle (Ezam-
ple 3.4) is oriented. Then the diagonal X — X x X is strongly oriented and in partic-
ular, X is naturally oriented.

Proof. — Locally, we can find a tubular neighborhood for the diagonal. The result
follows using partition of unity. O
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CHAPTER 9

GYSIN MAPS

As in [15, 21, 23|, the main step in our construction of the BV-structure on
the homology of the loop stack is the systematic development of Gysin maps for
oriented morphisms of stacks. To this end, we use (a slightly generalized version of)
Fulton-MacPherson’s bivariant theory. This is in spirit very close to Chataur’s bordism
approach which relies on Jakob’s bivariant theory for differentiable manifolds [15],
although bivariant theories are not explicitly mentioned in [15].

9.1. Construction of the Gysin maps

We recall the construction of Gysin homomorphisms associated to a bivariant class
[30].

Fix an element § € H*(X N ). Let u : 9 — 2 be an arbitrary morphism of
topological stacks and X’ = X xg 9’ the base change given by the Cartesian square:

(9.1.1) x’

Then 6 determines Gysin homomorphisms
6': Hj(9') — Hj—s(X')
and
6: H(X') —» HY ().
For the cohomology Gysin map, we need to assume that f’ is adequate. These homo-
morphisms are defined by

0'(a) = (u*(9)) -a, for a€ H;j(W')=H (Y — pt),

and
6i(b) = f.(b-u*(8)), for be HI(¥)=H (¥ L %),
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The homology Gysin map is defined because the map X' — * is adequate (see Exam-
ple 7.6).

9.2. Standard Properties of Gysin maps

By Proposition 8.25, when the map f: X — 9 in Diagram (9.1.1) is strongly
oriented, it has a canonical strong orientation ;. In this case, we have a canonical
Gysin morphism

Fli=(05)"s Ho(®') = He—o(X),
where c is the codimension of f. In this subsection we collect some of the standard
properties of these Gysin morphisms.

1. Functoriality. Assume given a commutative diagram of Cartesian squares
(9.2.1) ¥ — 9 — 3

oo

xéf-g)L:f,

with f: X — 2 and g: Y — 3 strongly oriented of codimensions ¢ and d,
respectively. Then, the induced Gysin morphisms f': He(2)') — He_.(X') and
g': He(3') — He_4(9)') satisfy the functoriality identity

! vt
(gof) =Ffog.
2. Naturality. Assume given a commutative diagram of Cartesian squares

(9.2.2) ¥ — "
’U\L Lu
x/ I @/

b

x o9

with f strongly oriented. Then, the induced Gysin morphisms satisfy
veo fl = flou,.

3. Commutation with cross product. Given two Cartesian squares

X — X — 9,
| oo Jo
X Ri% D1 X2 LN 22
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consider the induced product square

(9.2.3) X x Xy, — 2, xD,

l Lu,xuz

X1 x X2 ixfe D1 x D2

If f; and fo are strongly oriented, then so is fi X fa. Moreover, the three Gysin
morphisms satisfy the equation

(fi x f2) (= x =) = fi' (=) x f' (=)

4. Commutation with pullback. Given a Cartesian square

(9.2.4) y Ly
T
x - 9

with f strongly oriented and y' € H*(2)'), we have
f!(yl N _) — (_l)deg(y')codim(f)fl*(yl) n f!(_)-

Proof of Properties 1,2,3 and 4. — Everything follows from the axioms of a bivariant
theory. By Proposition 8.30, the products of two strongly oriented maps is canonically
strongly oriented. Thus Property 1 follows from Axiom A13. Property 2 is Axiom A3
followed by Axiom A123. Taking direct products of vector bundles shows that strongly
proper and normally nonsingular morphisms are stable by products. Hence Property
3 follows from the definition and naturality of the cross product (Proposition 7.8).
Property 4 is a consequence of the skew-commutativity. O

Remark 9.1 (Cohomology Gysin maps). — When in Diagram (9.1.1) f’ is adequate,
there is an induced cohomology Gysin map f': H*(¥') — H**t¢(9)'). Properties 1,2,3
and 4 above have obvious analogs in cohomology when all the relevant maps involved
are adequate. Recall that a strongly oriented map is strongly proper hence adequate.

Remark 9.2. — We have emphasized the case of strongly oriented maps for simplicity
and because it is sufficient for our purpose. Nevertheless, by pullback axiom, any
bivariant class § € H"(f) yields a bivariant class u*(): H"(f') and thus a Gysin
map He(Q') —» He_r(X'). Properties 1,2,3 and 4 above will hold true in this more
general setting.
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9.3. A special case: G-equivariant Gysin maps

Let M, N be oriented compact manifolds and G a Lie group acting on M, N
by orientation preserving diffeomorphisms. By Proposition 8.32, if f: M — N is a
G-equivariant map, then f is canonically strongly oriented. Gysin maps for equivariant
(co)homology were already considered, for example, by Atiyah and Bott [4].

Proposition 9.3. — The Gysin maps fi, f' associated to f in (co)homology coincide
with the equivariant Gysin maps in the sense of Atiyah and Bott [4].

Proof. — Gysin map in [4] are obtained by the use of fiber integration and Thom
classes over the spaces Mg = M xg EG and Ng = N xg EG. These spaces are respec-
tively classifying spaces of the stacks [M/G] and [N/G] and thus are respectively the
pullbacks [M/G] x[./c) BG, [N/G] X [+/g) BG. The pullback of the normally nonsingu-
lar diagram of Proposition 8.18 along the natural maps [M/G|x,/q BG — [M/G] and
[N/G] X{x/c) BG — [N/G] yields a bundle Mg =N X+/q) BG over Mg and a bundle
€ = € X[»/q) BG over Ng. This defines a nonsingular diagram for the induced map
fa: Mg — Ng. Unfolding the definition of bivariant classes, it is straightforward to
check that the Gysin map associated to the strong orientation class of Proposition 8.32
is induced by the Thom isomorphism associated to the bundle Mg over Mg. O

Let G be a subgroup of a finite (discrete) group H. Let Y be a manifold endowed
with a (right) H-action (and thus a G-action). Consider the quotient stacks [Y/G]
and [Y/H)]. There are well known “transfer maps” tr§: HZ(Y) — HE(Y) (see [9])

Lemma 9.4. — When G is a finite group, the Gysin map associated to the Cartesian
square

[Y/G] — [Y/H]

l l

[*/G] — [*/H]

where the lower map is induced by the inclusion G — H, is the usual “transfer map”
HHE(Y) — HE(Y) in equivariant homology.

Proof. — The space Y x H is endowed with a natural right H-action given
by (y,h).k = (y.k,k~1h) as well as a right G-action (y, h).g = (y, hg). These two ac-
tions commutes hence we can form the quotient stack [Y x H/HxG] & [Y x(H/G)/H].
Clearly the map (y, h) — yh is equivariant with respect to the G action on the tar-
get and H x G-action on the source. One easily checks that this map induces an
equivalence [Y x (H/G)/H] = [Y/G]. We are thus left to study the Gysin map of an
equivariant covering with fibers the set H/G. The argument of Proposition 9.3 easily
shows that it coincides with the usual transfer maps for coverings by a finite group
and thus with the transfer. O

ASTERISQUE 343



9.4. THE EXCESS FORMULA 59

Assuming we take coefficient in a field of characteristic coprime with |H| for the
singular homology, we have

Ho([Y/H]) 2 HI(Y) = (Ho(Y)) -
In that case the map tr§: (Ho(Y)), — (He(Y)),, is explicitly given by

(9.3.1) @) = Y ha

heH/G

9.4. The excess formula
The main result of this subsection is the following.

Proposition 9.5 (Excess formula). — Consider the 2-Cartesian diagram
x/ ( ] gl

ST

in which i and j are regular embeddings with normal bundles M, N, respectively.
Let € = p*(M)/N' be the excess bundle (see Section 3.2). Fix orientations on M and
N and endow € with the induced orientation as in Lemma 4.9. (In the case where
N and N’ have equal ranks the orientation on N’ is uniquely determined by the one
on N.) Let 6; € H*(Y,Y — X) = H™(i) and 6; € H(Y',Y’ — X') = H" (j) be the
classes compatible with the orientations on M and N, respectively (Definition 8.8).
Then,

(9.4.1) q"(0:) = e(€) - 0;,
where e(€) € H*(X') is the Euler class of € (see Example 8.26).

Proof. — In the case where g is a submersion the proposition follows from Lemmas 8.4
and 8.14. We use this to reduce the problem to the case of manifolds.

By Lemmas 8.4, 8.10, and 8.14, and the fact that bivariant product commutes
with pullback, it is enough to prove the formula after passing to an arbitrary atlas
Y’ — 9. So, we may assume that )’ =: Y’ and X’ =: X’ are smooth manifolds. By
Lemma 8.9, we can find an atlas Y — 9) through which ¢q: Y’ — 9) factors. Since the
atlas Y — 9 is a submersion and the proposition is true for submersions, we may
assume, after pulling back everything along Y — ), that ) =: Y and X =: X are
also smooth manifolds. From now on, we use the notation N, N’ and E instead of N,
N and €.

We are reduced to proving the result in the case of manifolds. Since q: Y’ — Y
factors as the composition

vy xy —y
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of an embedding and a submersion, it is enough, by functoriality of pullbacks, to
consider the cases where ¢ is a submersion and ¢ is an embedding separately. The
former case is easy, as € is the zero bundle and ¢*(;) = 6; by Lemma 8.14.

It remains to prove the proposition in the case where ¢ is an embedding. By choosing
appropriate tubular neighborhoods, we reduce to the case where Y = F is a vector
bundle over X and i: X — F is the zero section. We may also assume that X’ is
a submanifold of X and Y’ = N’ is a vector bundle over X’ which is a subbundle
of F|x/, having zero section j: X' — N’. Moreover, after choosing a metric on F,
we may write F|x, = E & N'. Finally, replacing F' with F|x/, we may assume that
X = X'. Summarizing all the reduction we have made, we are in a situation where
we have a manifold X, with vector bundles N’ and E on it, so that the 2-Cartesian
square of the proposition has the form

x . N

p=id L lq

X & EoN

Here, the horizontal maps are zero sections and q is the inclusion of the summand N'.
We expand this square to the 2-Cartesian diagram

x 4 x o L N

Joo

X s EC s E@N'
\_/

1

where s stands for the zero section. Let 8 be the strong orientation class of X — E,
and @’ the strong orientation class of E — E@®N’. By Lemma 8.13, we have §; = 6g-0'.
Then, since pullback respects bivariant product, and s*(0g) = e(E) (Example 8.26),
we find

¢ (6:) = e(E) - "(6').
Making the rightmost square in the above diagram upside down and using the obvious
projection maps, as in the diagram

EC—s EgoN'

x <l N
we see that £ — E @ N’ has 7*(6;) as its canonical strong orientation, that is §' =

7*(0;). Hence, ¢*(6’) = 6;, and the above displayed formula becomes ¢*(8;) = e(E)-6;,
which is the desired excess formula. d
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It is worth noticing that when ¢ and j are nns, then, by Lemma 8.27, the classes
6; € H*(i: X — ) and 0; € H"(j: X' — 2)’) are precisely the canonical strong
orientations constructed in Proposition 8.25.

The following immediate corollary of Proposition 9.5 is useful in computing Gysin
maps.

Corollary 9.6. — Consider the 2-Cartesian diagram
[ QJ//

4

x! _]>_ 2)/

pl Lq

in which the lower square is as in Proposition 9.5. Let n and n' be the ranks of M and
N respectively. Let

i': Ho(D") = He—n(X"),
j't Ho(9") = He_n (X")
be the corresponding Gysin maps. Then, for any c € Hqo(Y") we have the equality
i'(c) = u"e(€) - 5'(c).

In particular, if q is transversal to i (e.g., when q is a submersion), then i' = j'.
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CHAPTER 10

THE LOOP PRODUCT

In this section we consider (Hurewicz) strongly oriented stacks (Definition 8.21).
We obtain a loop product on the homology of the free loop stack of an oriented stack
which generalizes Chas-Sullivan product for the homology of a loop manifolds [14].
Recall that a stack X is called strongly oriented if the diagonal A: X — X x X
has a strong orientation class (Definition 8.20). For instance, oriented manifolds and
oriented orbifolds are oriented stacks. More generally, the quotient stack of a compact
Lie group acting by orientation preserving automorphisms on an oriented manifold is
an oriented stack.

Note that it is possible to have two different group actions, say a Lie group G act-
ing on a manifold X and another Lie group H acting on another manifold Y, which
give rise to the same quotient stacks, i.e., [X/G] & [Y/H]. By definition, our notion
of orientation, as well as our construction of the loop product (and all other string
operations that we construct), are independent of the choice of the presentation and
only depend on the resulting quotient stack. Put differently, and slightly more gener-
ally, what we do is we use a Morita invariant notion of orientation for Lie groupoids,
and for such oriented Lie groupoids we construct Morita invariant string operations.

10.1. Construction of the loop product

Let X be a Hurewicz oriented stack of finite dimension d. The construction of the
loop product

H,(LX) ® Hy(LX) — H,(LX)

is divided into 3 steps.

STEP 1 : There is a well-known external product (called the “cross product”)

Hy(LX) ® Hy(LE) > Hpyo(LX).
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STEP 2 : The diagonal A: X — X x X and the evaluation map evp : LX —
X (5.1.1) yield the Cartesian square

(10.1.1) LX xxLX¥ — LXxLX
l/ L(GVO,evo)
X = Xx X

We will usually denote by e : LX x LX — X x X the map (evy,evp). Since X is
Hurewicz, Corollary 5.3 implies that there is a natural equivalence of stacks
LX xx LX = Map(8, X),

where the figure “8” stands for the topological stack associated to the topological
space S'V S1. The wedge S* Vv S is taken with respect to the basepoint 0 of S*.
Since X is oriented, its diagonal A: X — X x X is oriented normally nonsingular
and according to Section 9.1, there is a Gysin map
A': Hy(LX x LX) = Ho_q(LX xx LX) = H,_4(Map(8, X)).
1

STEP 3 : The map S* — S Vv S! that pinches 3 to 0, induces a natural map

of stacks m : Map(8,X) — LX, called the Pontrjagin multiplication. Hence we
have an induced map on homology

my: He(Map(8,%) — Ho(LX).
We define the loop product to be the following composition

(10.1.2)
Hy(LX) ® Ho(LX) > Hpo(LX x LX) S Hpyq_a(Map(8, X)) ™5 Hpyqa(LX).

Theorem 10.1. — Let X be an oriented (Hurewic2V)) stack of dimension d. The loop
product induces a structure of associative and graded commutative algebra for the
shifted homology He(LX) := He14(LX).

The loop product is of degree d = dim(X) because the Gysin map involved in Step
2 is of degree d. If we denote H(LX) := Hq, dim(x)(LX) the shifted homology groups,
then the loop product induces a degree 0 multiplication He (LX) @ He (LX) — He (LX).

Indeed one can introduce a “twisted” version of loop product. Let a be a class
in @,>0 H"(LX xx LX). The twisted loop product

%o: Ho(LX) ® Ho(LX) — Ha(LX)
is defined, for all z,y € Ho(LX),
Txa y=ms(A'(z x y) Na).

(1) Recall that every differentiable stack is Hurewicz.
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Remark 10.2. — The twisted product %, is not graded since we do not assume a to
be homogeneous. However, if @« € H"(LX xx LX) is homogeneous of degree r, then
*e: Ho(LX) ® Ho(LX) — Hq_4—(LX) is of degree r + dim(X).

Let us introduce some notation. We denote, respectively,
P12,P23: LX X% LX x¢ LX - LX x LX
the projections on the first two and the last two factors. Also let
(mx1): LX xx L¥ xx LX —» LX xx LX
and
(I xm): LX xx LX xx LX¥ - LX xx LX

be the Pontrjagin multiplication of the two first factors and two last factors respec-
tively. Furthermore, there are flip maps

o: LX x LX —» LX x LX,

0:LX xxLX - LX xx LX
permuting the two factors of LX x LX.

Theorem 10.3. — Let o be a class in @, H"(LX xx LX).

1. If o satisfies the 2-cocycle condition
(10.1.3) Pha@) U(mx1)*@) = pila) U xm)"(@)

in H*(LX xx LX xx LX), then x. : Ho(LX) ® Ho(LX) — H,(LX) is associative.
2. If a satisfies the flip condition o*(a) = a, then the twisted Loop product
*q 0 H(LX) ® H(LX) — H(LX) ¢s graded commutative.

Example 10.4. — If E is an oriented vector bundle over a stack X it has a Euler
class e(F). Note that the rank may vary on different connected components of X. In
particular, any vector bundle E over LX X x LX defines a twisted loop product xg :=
*e(): H(LX) ® H(LX) — H(LX). Moreover, 6*(e(E)) = e(E) whenever 6*E = E.
Since identities between Euler classes are equivalent to identities in K-theory we have:

Corollary 10.5. — Let X be an oriented (Hurewicz) stack and E a vector bundle over
LX xx LX.

1. If E satisfies the cocycle condition
Pi2(E) + (m x 1)*(E) = p33(E) + (1 x m)*(E)

in K -theory, then xg is associative.
2. If o*E = E, then the twisted Loop product xg : H(LX) ® H(LX) — H(LX) is
graded commutative.
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Remark 10.6. — Let M be an oriented manifold and G a finite group acting on M
by orientation preserving diffeomorphisms and ¥ = [M/G] be the associated global
quotient orbifold. Using Proposition 5.9, Proposition 9.3 and the argument of the
proof of Proposition 17.10 below to identify evaluation maps and Pontrjagin map,
it is straightforward to prove the Loop product x : He (LX) ® He(LX) — H,(LX)
coincides with the one introduced in [46].

10.2. Proof of Theorems

The Pontrjagin multiplication m : Map(8,%) — LX is induced by the pinch map
S — S§1v SL. The latter is homotopy coassociative, thus there is a chain homotopy
equivalence between

m(m x id): Co(LX xx LX xx LX) — C.(LX)
and m(id xm). This proves the next lemma:
Lemma 10.7. — The Pontrjagin multiplication satisfies
ma ((id x m),) = m.((m x id).).
Proposition 10.8. — The loop product Hy(LX) ® Hy (LX) > H,_4(LX) is associative.
Proof. — It is well known that the cross product is associative so that
S®: H, (LX) ® Hy (LX) ® Hy(LX) — Ho(LX x LX x LX)
is equal to both S(S x 1) and S(1 x S). We write m(?) for the iterated map
my(m X 1), = m,(1 X m).
as in Lemma 10.7 and A(®) the iterated diagonal
AAx1)=A(1xA): ¥ — X3,
Also let e : Lx*3 — %*3 denote the product evy x evg X evg of the evaluation map
on each component. It is enough to prove that, for all z,y,z € He (LX),
(zoy)ez= m(z)(A(Z)!(:I: Xyxz))=ze(yez).

The first equality is given by the commutativity of the following diagram:
(10.2.1)

H(LX) ® H(LX) ® H(LX)
(2)

se1y *

(2!
H(LE x LX) ® H(LX) ——> H(LX x L¥ x LX) 2= H(LX xx LX x x LX)

algy ®) yaxi! (e I
H(LE xx LX) ® HLX) 3> H(LX xx L¥xLX) & H(LX xx LX xx LX)
—_ ~®
m.®1) (mx1). | @ ymx1
s Al }
H(LX)® HLX) —— H(LX xLX) ——— H(LX xx LX) —— H(LX).
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The commutativity of the bottom left square follows from the naturality of the cross
product, and the bottom right triangle from the associativity of m. according to
Lemma 10.7. The three remaining squares commutes thanks to the following reasons:

SQUARE (1) : There is a diagram of Cartesian squares

LXxxLX xxLX — LX xxLX¥xLX — LXxLXxLX

l/ l;\\;{) Xevg Le(z)

% = Ix X A1 Ex XXX

Thus the commutativity follows from the functoriality of Gysin maps.

SQUARE (2) : Note that the map évp in square (1) is equal to evg om. The com-
mutativity follows, by naturality of Gysin maps, from the tower of Cartesian
diagrams:

LX Xz LX xxLX — LX xxLX xLX

mxll/ l/mxl

LE xx LE LX x LX
=) !
% = % x X

SQUARE (3) : It is commutative by compatibility of Gysin maps with the cross
product.

Hence it follows that, for all z,y,2 € H(LX), one has (zoy) ez = m(2)(A(2)!(w X

1
y x z)). One proves in a similar way the identity m®(A® (z x y x 2)) =z o (y ® 2)
from which the equation (z e y) e z = e(y e 2) follows. O

Proposition 10.9. — The loop product H, (LX) ® H,(LX) = H, (LX) is graded com-
mutative.

Proof. — Essentially, this result follows from the homotopy commutativity of the
Pontrjagin map m : LX xx LX = Map(8,%) — X. More precisely we need to prove
that, for z € H,(LX),y € H,y (LX), we have

m.(A'(z x y)) = (=1)P9(m. (A (y x z)).
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is the one labeled by (1) which becomes

H(LE xLE x LX) & H(LE xLE xx L¥) 2% H(LE x LE xx LX)

lel’ LA’
H(LX xx LX x LX) H(LX xx L% xx LX)

N (a) l Lﬂpss(a)

pTa(c)

H(LE xx LX x LX) -2 H(LE xx L¥ xz L¥) 2% H(LX xx L¥ xx LX).

Since Gysin maps commute with pullback, for any y € He(LX X LX x LX),
Allynfi(@) = A'ly)N(fiods)" ()
= A'y)n(mx 1) (a).

Similarly, A'(y N f3(a)) = A'(y) N (1 x m)*(). From square (1) of diagram 10.2.1 we
deduce that the commutativity of the square is equivalent to the identity

(Ao A x 1) N(m x 1)*(a) Npiy(a) = (Ao 1 x A') N (1 x m)*(a) N p33(c)

! !
= AP N ((mx1)*(a) Upiy(a)) = A®D N ((1 x m)* () Upls(a)).
The last equality follows immediately from the 2-cocycle condition (10.1.3). O

Proposition 10.12. — If 5*(a) = «, then the twisted loop product *o: H(LX) ®
H(LX) — H(LX) is commutative.

Proof. — The proof of Propositions 10.9 applies verbatim. O
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The tower of pullback squares

LX xxLX — LXxLX

d I

LE xx L 24 L¥xLX

L Js

X XxXx

implies that
G.o Al(z x y) = (-1)P1A'(y x z).

Here 5: LX X LX —» LX¥ X LX¥ and 0: LX x L¥ — LX x LX are flip maps. Hence the
result follows from m, oo, = m, in homology. The latter is an immediate consequence
of the existence of a homotopy between the pinch map p: S* — S'VvS?! and gop: S! —
SV S! obtained by making the base point 0 € S goes to 3 € S. Passing to the
mapping stack functor Map(—, X) yields a homotopy equivalence between m o ¢ and
m. O

Remark 10.10. — Note that the homotopy between the two pinch maps does not
preserve the canonical basepoints. Hence it is crucial to work with the free loop stack
(in other words with non pointed mapping stack functors) in this proof.

Proposition 10.11. — If o € H*(LX xx LX) satisfies the cocycle Equation (10.1.3),
then the twisted loop product x: H(LX) ® H(LX) — H(LX) is associative.

Proof. — We write

flzLxxxLxxL%—»L.’fxxL.’f,

f3 :LX X LX xx LX — LX xx LX

for the canonical projections. Also we have canonical maps

js : LX xx LX x5 LX — LX xx LX x LX,

J1:LX xx LX xx LX — LX x LX xx LX.

Using the naturality of cup product and cross product, we can write an associativity
diagram similar to (10.2.1) for %, for which the only non obviously commuting square
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CHAPTER 11

HIDDEN LOOP PRODUCT FOR
FAMILY OF GROUPS OVER A STACK

The Chas-Sullivan product generalizes the intersection product for a manifold M.
Indeed, the embedding of M as the space of constant loop in LM makes Hq(M)
a subalgebra of the loop homology and the restriction of the loop product to this
subalgebra is the intersection product [14].

In the context of stacks, there are more interesting “constant” loops, namely, loops
which are roughly constant on the coarse space, but not necessarily on the stack itself.
In mathematical physics such loops are sometimes called ghost loops. The ghost loops
form a stack, called the inertia stack.

11.1. Hidden loop product

In this section we construct a hidden loop product for the inertia stack. From the
categorical point of view the inertia stack AX of a stack X is the stack of pairs (z, ¢)
where z is an object of X and ¢ an automorphism of z. If X is a Hurewicz topological
stack then so is AX. However, if X is differentiable, AX is not necessarily differentiable.
Let X be a topological groupoid presenting X. Let SX = {g € X1]| s(g9) = t(g9)} be the
space of closed loops. There is a natural action of X on SX by conjugation. The asso-
ciated transformation groupoid AX = [SX x X; =3 SX] is called the inertia groupoid.
It presents the inertia stack AX. We have a morphism of groupoids evg: AX — X,

(1111) evop: [SX x X1 = SX] - [Xl = X()]

which on the level of objects sends a closed loop g to its base point s(g) = ¢(g). On
the level of arrows, we have evg(g,7) = 7. The groupoid morphism evg : AX — X
induces the evaluation map

(11.1.2) evp: AX - X

on the corresponding stacks.

The construction of the hidden loop product can be made in 3 steps.
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STEP 1 : The external product induces a map:
H,y(AX) ® Hy(AX) S H,,,(AX x AX).

STEP 2 : We can form the pullback of the evaluation map evg : AX — X along
the diagonal A: X — X x X, thus obtaining the Cartesian square

(11.1.3) AX xx AX —= AX x A%
i/ L(evo,evc.)
x a X x X

Again we denote by e : AX X AX — X x X the map (evg, evp). Since X is strongly
oriented, so is its diagonal A: X — X x X. Hence we have a Gysin map:
A': Hy(AX x AX) — He_4(AX xx AX).

STEP 3 : The stack AX xx AX is known as the double inertia stack. Its objects are
triples (z, ¢, 1) where z is an object of X and ¢ and 1 are automorphisms of z.
On the groupoid level the stack AX xx AX is presented by the transformation
groupoid

[(SX X X, SX) x X; = SX X X, SX]
where X acts on SX x x, SX by conjugation diagonally. The double inertia stack
is endowed with a “Pontrjagin” multiplication map m : AX xx AX — AX given
by m(z, p,¥) = (z, ). It induces a morphism on homology

my: He(AX x5 AX) —» H (AX).
Composing the three maps in the above steps one obtains a product
*: Hy(AX) @ Hy(AX) — Hpyq-a(AX),

called the hidden loop product:
(11.1.4)

Hy(A%) ® Ho(AX) 5 Hpig(AX x AX) S Hpiq a(AX xx AX) ™ Hpyq—a(AX).

As for the loop product, the hidden loop product is a degree 0 multiplication on the
shifted homology groups: He(AX) = Heyq(AX).

A!
—

Theorem 11.1. — Let X be an oriented stack of dimension d. The shifted homology
He(AX) of the inertia stack is an associative graded commutative algebra.

Before proving Theorem 11.1, let us remark that the “Pontrjagin” map m : AX xx
AX — AX corresponds to the multiplication is associative. Thus, passing to homology
one has the following lemma.

Lemma 11.2. — m,: Ho(AX xx AX) — Ho(AX) satisfies the associativity condition:
ma ((id x m).) = m.((m x id),).
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Less obvious is that it is also commutative: indeed there is a 2-arrow o

AX Xx AX

which associates to (x,¢,%) in the double inertia the isomorphism ¢ =1

(11.1.6) s g
‘P_IL o~ L o1
P
— w
between (z, pt) and (z,¥p) in AX.
Proof of Theorem 11.1. — Associativity follows mutatis mutandis from the proof of

Theorem 10.8, substituting L¥ with AX in the argument. Similarly, the proof of
Theorem 10.9 leaves us to proving that the induced map m, 0 7: Ho(AX xx AX) —
H,(A%) in homology is equal to m,. Here again ¢ is the flip map. Passing to any
groupoid X representing X and denoting AX xx AX = [(SX X X, SX) xX; = (SX X X,
SX)], it is enough to check that the induced map

m, 00y : He (AX xx AX) — H,(AX)

in groupoid homology is equal to m.. At the level of groupoids, the 2-arrow o of
diagram (11.1.5) yields the identity

mu(o(n1,n2)) = p(nz,ni)
= (:u(nlvnQ))nz

for all z = (n1,n2,7) € (SX xx, SX) x X;. Here p : SX xx, SX — SX is the
restriction of the groupoid multiplication of X. Thus m.(o(n1,n2)) is canonically
conjugate to m.(ni,n2) and in a equivariant way. It follows that after passing to
groupoid homology, one has m, = m, 0. An explicit homotopy h : Cp,(AX xx AX) —
Cr+1(AX) between m, and m, o & at the chain level is given by h = Y7 (—1)*h;
where

hi((n11n2)7gla"'vgn) = ((N(nlanZ))n; %) PEEE

s i (g1 90) M na(g1 - 6i)s Giv1s- -+ Gn)

-1
for i > 0 and ho((n1,n2),91,.-,9n) = ((u(nl,ng))"2 yN2, g1, .- ,gn>. O
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If o is a cohomology class in @, »¢ H"(AX xx AX), one defines the twisted hidden
loop product

%o He(AX) ® Ho(AX) — Ho(AX)
as follows. For any z,y € He(AX),
Txoy =m.(AYz x y) Na).
We use similar notations as for Theorem 10.3: denote

P12,P23: AX xx AX xx AX — AX xx AX

the projections on the first two and the last two factors

Proposition 11.3. — Let o be a class in @, >o H"(AX xx AX).
1. If a satisfies the cocycle condition:
(11.1.7) Pia(@)U(m x1)*(a) = py3(e)U (1 xm)*(a)

in H*(AX xx AX xx AX), then xo: H(AX) ® H(AX) —» H(AX) is associative.
2. If a satisfies the flip condition 6*(a) = a, then the twisted hidden loop product
*o: H(AX) @ H(AX) — H(AX) is graded commutative.

Proof. — The argument of Proposition 10.11 and Proposition 10.12 applies. O
Corollary 10.5 has an obvious counterpart for inertia stack.

Corollary 11.4. — Let X be an oriented stack and E a vector bundle over AX xx AX.
1. If E satisfies the cocycle condition

p12(E) + (m x 1)*(E) = p33(E) + (1 x m)*(E)

in K-theory, then xg is associative.
2. If 7*E = E, then the twisted Loop product xg : H(AX) ® H(AX) — H(AX) is
graded commutative.

11.2. Family of commutative groups and crossed modules

The hidden loop product can be defined for more general “ghost loops” stacks than
the mere inertia stack. In fact, we can replace the commutative family AX — X by
an arbitrary commutative family of groups.

A family of groups over a (topological) stack X is a (topological) stack & together
with a morphism of (topological) stacks ev : & — X and an associative multiplication
m:® xz & — &, A family of groups & — X (over X) is said to be a commutative
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family of groups (over X) if there exists an invertible 2-arrow o making the following
diagram

(11.2.1) Bxx® > &

flip m

@Xx@

commutative. Clearly, the inertia stack is a commutative family of groups (see Equa-
tion 11.1.6).

In the groupoid language, a nice class of commutative family of groups can be rep-
resented by crossed modules as follows. A crossed module of (topological) groupoids
is a morphism of groupoids

N, >~ Ty

Wl

No — Ty

which is the identity on the base spaces (in particular Ny = I'g) and where [N = Ng]
is a family of groups (i.e. source and target are equal), together with a right action
(7,m) = nY of ' on N by automorphisms satisfying:

1. For all (n,y) € N x Ty, i(n?) = vy~ ti(n)y;

2. For all (x,y) € N xp, N, £'¥) = y~1zy.
Note that the equalities in (1) and (2) make sense because N is a family of groups.
We use the short notation [NV = I'] for a crossed module.

Remark 11.5. — In the literature, groupoids for which source equals target are some-
times called bundle of groups. Since we do not assume the source to be locally trivial,
we prefer the terminology family of groups.

Since a crossed module [N — I'] comes with an action of I' on N, one can form
the transformation groupoid A[N - T := [N; x I'; =3 N;], which is a topological
groupoid. Furthermore, the projection N; xp, I'y — I'; on the second factor induces
a (topological) groupoid morphism ev : A[N = '] — I'. Let & and X be the quotient
stack [N1/N; x I'y] and [[o/T';] respectively. Then ev : & — X is a commutative
family of groups over X.

We say that a commutative family of groups is a strong commutative family of
groups if it can be presented by a crossed modules as above.

Clearly, the inertia stack AX corresponds to the crossed module [ST — I'] for any
groupoid presentation I' of X. Obviously A[ST < I is the inertia groupoid AIL'. The
inertia stack is universal among commutative family of groups over X:
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Lemma 11.6. — Let ev : & — X be a strong commutative family of groups over X.
There exists a unique factorization

6 — AX

O e

Xx.

In fact, for any crossed module [N = '], there is a unique map e : A[N BR Il - AT
making the following diagram commutative:

AN 5T] == AT

I.

Example 11.7. — Let X be an abelian orbifold, that is an orbifold which can be locally
represented by quotients [X/G] where G is (finite) abelian. Then the k-twisted sectors
of [17] carries a natural crossed module structure [Sk - T'] where  is the k — 1-fold
multiplication SE — Sr followed by the inclusion ¢. Of course, for k = 1, it is well-
known that the induced stack is the inertia stack and that the abelian hypothesis
can be dropped. The associated commutative family of groups is AxX — X where
ArX = AX Xx --- Xz AX is the k*P-inertia stack.

Let & — X be a commutative family of groups over a stack X. If X is strongly
oriented, Section 9.1 yields a canonical Gysin map
A': Hy(6 x 8) — Hy_4(6 xx 8).

Thus one can form the composition

(11.22) *: Hy(®) ® Hy(®) > Hpio(® x 8) = Hyyqa(® xx ©) ™5 Hppg—a(®)

Since m : & xx & — & is associative and commutative as for the inertia stack in
Section 11.1, Step 3, the argument of Theorem 11.1 yields easily

Proposition 11.8. — Let & be a commutative family of groups over an oriented stack
X (with dim(X) = d). The multiplication x (see Equation (11.2.2)) endows the shifted
homology groups He(®) = Hey4(®) with a structure of associative, graded commuta-
tive algebra.

Remark 11.9. — 1t is easy to define twisted ring structures on H,(®) along the lines
of Theorem 11.3. Details are left to the reader.

Remark 11.10. — If X is a oriented stack and if & — X is a family of groups which
is not supposed to be commutative, the product x (Equation (11.2.2)) is still defined.
Moreover the proof of Theorem 11.1 shows that (He (&), %) is an associative algebra.
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The kh-inertia stack AyX = AX Xx --- xx AX is an example of non (necessarily)
commutative family of groups.

Remark 11.11. — Unlike for free loop stacks in Section 10, we do not need to assume
X to be Hurewicz in this Section. However, we do not know any interesting example
in which it is not the case.
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CHAPTER 12

FROBENIUS ALGEBRA STRUCTURES

The loop homology (with coeflicients in a field) of a manifold carries a rich algebraic
structure besides the loop product. It is known [20] that there exists also a coproduct,
which makes it a Frobenius algebra (without counit).

It is natural to expect that such a structure also exists on H,(LX) for an oriented
stack X. In Section 12.2 we show that this is indeed the case. We also prove a similar
statement for the homology of inertia stacks.

In this section we assume that our coefficient ring & is a field, since we will use the
Kiinneth formula He(X ® 9) — Ho(X) ® He(9) (Proposition 2.5).

12.1. Quick review on Frobenius algebras

Let k be a field and A a k-vector space. Recall that A is said to be a Frobenius
algebra if there is an associative commutative multiplication p : A®2 — A and a
coassociative cocommutative comultiplication §: A — A®? satisfying the following
compatibility condition

(12.1.1) dopu=(p®1)o(l1®d) =10 o(dol)

in Hom(A®2, A®?). Here we do not require the existence of a unit nor a counit. Also
we allow A to be graded and the maps p and J to be graded as well. When both maps
are of the same degree d, we say that A is a Frobenius algebra of degree d. Note that
this grading is adding signs in an usual way to the story so that the multiplication
becomes associative and graded commutative after shifting A to A[d] and similarly
for the comultiplication if one shifts A to A[—d]. The precise relationship between the
involved signs are given by the structure of a d-dimensional homological conformal
theory as in Section 14; also see [24, 32]. The tensor product of two Frobenius algebras
A and B is naturally a Frobenius algebra with the multiplication (u ® p) o (23) and
comultiplication 755" o (6 ® §) where 753: AQ B® A® B — A®2 ® B®? is the map
permuting the two middle components.
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Warning 12.1. — We need a few words of caution concerning our definition of Frobe-
nius algebras. In the literature, one often encounters (commutative) Frobenius alge-
bras which are both unital and counital such that, if ¢ : A — k is the counit, then
cop:A® A — k is a nondegenerate pairing.

Remark 12.2. — 1t is well-known [3, 55| that a structure of 1 + 1-dimensional Topo-
logical Quantum Field Theory on A is equivalent to a structure of unital and counital
Frobenius algebra on A such that the pairing copu : A ® A — k, where c is the
counit and p the multiplication, is non-degenerate. Theorem 12.5 and Theorem 12.3
below imply that He(LX) and He(AX) have the structure of 1 + 1-positive boundary
TQFT in the sense of [20]. Positive boundary TQFT are obtained by considering
only cobordism ¥ with boundary 0% = —S; [[ Sz such that S, S, # @ (see [20] for
details).

Further, in the case of the free loop stack, we will see in Section 14.2 that the
TQFT structure on He(LX) can be extended to a whole homological conformal field
theory with positive closed boundary (Theorem 14.2).

12.2. Frobenius algebra structure for loop stacks

In this subsection we prove the existence of a Frobenius algebra structure on the ho-
mology of the free loop stack of an oriented (Hurewicz) stack. Let evg,evy/2: LX — X
be the evaluation maps defined as in Equation (5.1.1), where X is a Hurewicz topolog-
ical stack. To simplify the notations, let & be the evaluation map (evo,evy/): LX —
X x X.

Lemma 12.3. — The stack LX xx LX fits into a Cartesian square

(12.2.1) LX xxLx ™— LX
x 2. ¥xx

where A: X — X x X is the diagonal.

Proof. — Since S! is compact and X is a Hurewicz topological stack, Lemma 5.2
ensures that the pushout diagram of topological spaces

OH%

pt][pt —— S?

L l

pt —— Stv !

becomes a pullback diagram after applying the mapping stack functor Map(—, X).
This is precisely diagram (12.2.1). O
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Remark 12.4. — The argument of Lemma 12.3 can be applied to iterated diagonals
as well. In particular, LX X x - - - x x L¥ (with n-terms) is the mapping stack Map(S! Vv
---V 81, %) (with n copies of S') and moreover there is a Cartesian square

(12.2.2) LX xx---xxLX Lx

l l(eVO)evl/n’“wevn—l/n)

X A Xx---xX.

Now assume further that X is oriented of dimension d. According to Section 9.1,
the Cartesian square (12.2.1) yields a Gysin map

A': H(LX) — H,_4(L¥ xx L%).

By diagram (10.1.1), there is a canonical map Map(8,%) = LX xx LX 2 Lx x LE.
Thus we obtain a degree d map

§: Ho(LX) 2 Ho_g(LE xx LX) 55 Ho_g(LX x LX) & P HiLx)® H;(LX).
i+j=e—d

Theorem 12.5. — Let X be an oriented Hurewicz stack of dimension d. Then
(Ho(LX),*,0) is a Frobenius algebra, where both operations * and § are of degree d.

Proof. — It remains to prove the coassociativity, cocommutativity of the coproduct
and the Frobenius compatibility relation. Denote by ds : He(XX%9)) — Ho(X)QHl (D)
the inverse of the cross product induced by the Kiinneth isomorphism and 659") for its
iteration.

i) Coassociativity Let 2 : LX — X x X x X be the iterated evaluation map
(evo,evy/3,evy 3). According to Corollary 8.31, the iterated diagonal A?:x -
X x X x X is naturally normally nonsingular oriented. Thus, Remark 12.4 implies

that there is a Gysin map A(z)!. Similarly there is a canonical map
7@ LX xx LE xx LX = Map(S* v §* v 8%, %) — LX x LX x LX.
The argument of the proof of Theorem 10.8 shows that it is sufficient to prove that

the following diagram is commutative (which is, in a certain sense, is the dual of
diagram (10.2.1)).
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(12.2.3)
H(LE) ® H(LX) ® H(LX)

ss@1} x @
) o
H(LX x LX) ® H(LX) <>— H(LX x LX x LX) <— H(LX xx LX xz LX)
ja®14 () Ax1). ) I

k) j )«
H(LE xx LE) ® H(LE) 5 H((LX x x LX) x LX) < H(LX x x LE x5 LX)

@)

INPSY) ® ath @ ah S

H(LX) ® H(LX) ~——— H(LX x LX) ~——— H(LX xx LX) Q" gy
s Jx Al

where p and p denote, respectively, the projections LXXL¥ — LX and LXxxLX —
LX on the first factor. Square (5) is commutative by naturality of the cross coproduct
ds and the upper left triangle by its coassociativity. We are left to study the three
remaining squares (1), (2), (3) and triangle (4).

SQUARE (1) : The square commutes in view of the identity j(* = (j x 1) o (1 x j)
which follows from the natural isomorphism

(LX xx LX) x LX 2 LX xx (LX x LX).

Here the map LX x LX — X is the composition evyop. In the sequel, we use
this isomorphism without further notice.

SQUARE (2) : Since éop = (éop) 0j : LX xx LX — X x X, the commutativity of
square (2) follows immediately, by naturailty of Gysin maps, from the tower of
Cartesian diagrams

LX xx LX xx LX — LX xxLX

o) !

mx1

LX xx LX xLX —— LX xLX

! o

A

X —— XxX

SQUARE (3) : The square commutes by the same argument as for square (3) in
diagram (10.2.1).
TRIANGLE (4) : The sequence of Cartesian diagrams

(12.2.4) LX xx LE xx L =X L¥xxL¥ = LX

L ‘Léo; L(evo,ev% ,ev% )

x — 8 L oxxx 2L xxxxx
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implies, by naturality of Gysin maps, that
(12.2.5) Alo(Ax1) = A®@'

There is an homeomorphism h : S 5 S which, together with the flip map o,
induces a commutative diagram

(12.2.6) LX xx LX xx L% "Tx\h* LX
l &(2) l/ l(evo,ev% ‘evi)

2) 1xo
X —— = XIXxXxX — XxXxX

As h* = Map(—, X)(h) is a homeomorphism and (1 x ¢) 0o A® = A®) dia-
gram (12.2.6) identifies A®' with the Gysin map (denoted A®' by abuse of
notation) associated to Diagram (12.2.4). Since (A x 1)! = A' the commutativ-
ity of Triangle (4) follows from Equation (12.2.5).

ii) Let’s turn to the point of cocommutativity. It is sufficient to prove that
(12.2.7) A = FooA,

where o: LX xx LX — LX x5 LX is the flip map. There is a natural homotopy
F: I x LX xx LX — LX between m o g and m (see the proof of Theorem 10.9).
Equation (12.2.7) follows easily by naturality of Gysin maps applied to the Cartesian
squares below (where t € I)

F(t,—)
LX xxLX —— LX

t) l(t,n

(lop,F)
IXxLXxxLX — "I xLX

L

X Xx X

The map (¢t,1): LX — I x LX is the map LX 5 {t} x LX — I x LX. The left
upper vertical map is similar. The maps (¢,1) are homotopy equivalences inverting
the canonical projections I x LX — L%, I x LX xx LX¥ — LX x LX.

iii) It remains to prove the Frobenius relation (12.1.1). To avoid confusion between
different Gysin maps, we now denote m': = A': Hy(L¥) — Ho_q(LX xx LX) and
j' = A': Hy(LX x LX) — Ho_q(LX xx LX) the Gysin maps inducing the product
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and coproduct. The Cartesian squares

LE xx LE xz LX 2% LX xxLX

! i

A

X — = XxX
and

LX x5 LX xz LX —> LX x LE xz LE

L L(evo X evo)o(1xp)
X XxX%X

give rise to Gysin maps (see Section 9.1)
(1 xm)': Hy(LX xx LX) —» He_g(LX xz L¥ xx LX)
and

7' Hy(LX x LX xx LX) - He_4(LX xx L¥ xx LX).

There is a canonical map 3 sitting in the pullback diagram

LX xz LX xx L¥ —2> (LX xx LX) x LX

‘L 1/0\’0 Xevg

X XxXx

Consider the following diagram
(12.2.8)

m)’ 1XJ5)x
HoLE x LX) —— ™o Ho o(LE x L xx LE) 2% H,_4(LX x LE x L)

!
' l @ 2@ l? v l/(jxl)!

Ho_g(LE xx LY) ——> Ho_24(LX xx LX xx LX) 7> H,_54(LX xx LX x LX)

—~

IxXzm’
m.l/ (b) lm,xxl (¢) lm.xl
Hy g(L¥) —————— He—2a(LX xx LX) ———— Ho_2q(LX x LX)
m’ *
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where mby: Ho(LX X LX) — He_24(LX x 2 LX x x LX) is the Gysin map determined
by the Cartesian square (applying Corollary 8.31)

jo(lxxm)

LX¥ xxLX xx L¥ 55 & Lx xLX

| Jovo

x A® TxEXX

The triangle (a) in diagram (12.2.8) is commutative because we have a sequence of
Cartesian squares

Ixxm

(12.29)  LExxL¥ xzLx¥ 2 Lx xxL¥ —1> LX x L%

l l/éo; Levo x¢&

x = Exx 2 xxxxi

Similarly, triangle (a’) is commutative, i.e., jlo (1 xm)"' = m),. By naturality of Gysin
maps, the towers of Cartesian squares

LE x5 LE x 2 LE ~27 LE x ¢ LX LX xx LX x L¥ —> LX x LX xx LX
N
L¥xzL¥ —™ = 1% LE x x L x LX —-~ > LX x LX x L¥

l [ e’v“oo(lx,,)l l(eVoXeVO)O(lxm
x—2 s xxx, x 2 IxX

give the commutativity of squares (b) and (b’) in diagram (12.2.8). The commu-
tativity of Square (c) is trivial. Thus diagram (12.2.8) is commutative. Up to the
identification He(LX x LX) & H,(LX) ® Ho (LX), the composition of the bottom hor-
izontal map and the left vertical one in diagram (12.2.8) is the composition §(— % —).
The composition of the right vertical map with the upper arrow is (a x b!)) ® b2,
Finally commutation of the Gysin maps with the cross product yields the identity

8(axb) =axbM @@,
The proof of identity d(a x b) = a® ® a® x b is similar. ]

12.3. Frobenius algebra structure for inertia stacks
In this section we show that the homology of the inertia stack is also a Frobenius
algebra, similarly to Theorem 12.5.

Let X be a topological stack of dimension d and X a topological groupoid repre-
senting X. Thus its inertia stack AX is the stack associated to the inertia groupoid
AX = [SX x X; = SX], where SX is the space of closed loops. Any loop S — X
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on a topological space X can be evaluated in 0 but also in 1/2. It is folklore to think
of AX as a ghost loop stack. Hence evaluation map at 0 and 1/2 should make sense
as well. We first construct these evaluation maps for the inertia stack which leads to
the construction of the Frobenius structure on H,(AX) when X is oriented.

First of all, let us introduce another groupoid AX which is Morita equivalent to AX.
Objects of AX consist of all diagrams

kg_l\ ng\
(12.3.1) z y T

in X. Note that the composition g;g2 is a loop over x. Arrows of AX consist of
commutative diagrams

g1 92
P P S
T y T
ol mal e
xl yl x/

Note that the left and right vertical arrows are the same. The target map is the top
row
g1 92

— T
T Y T

while the source map is the bottom row
— -1
hglgihija hija92h0

)] LT ) T ’
T y A

The unit map is obtained by taking identities as vertical arrows. The composition is

obtained by superposing two diagrams and deleting the middle row of the diagram,
i.e.

is mapped to

8

T
hohéT hl/Zh,l/g,T Thghf,
z " "

~— ~—

In other words, AX is the transformation groupoid SX (X1 x X1), where SX =
{(g1,92) € X2|t(g1) = s(g92)}, the momentum map SX — Xy x X is (¢,t), and the
action is given, for all compatible (ho, h1/2) € X1 x X1, (91,92) € SX, by

.

(91,92) - (hoyh1j2) = (halglhl/%h;/lggZhO)'
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One defines evaluation maps taking by the vertical arrows of 3'3{, ie.,
V(gl,yz,ho,hl/z) € AX; define

evo : (91,92, ho, h1/2) = ho,  evija: (91,92, ho, h1j2) = hyja.

It is simple to prove

Lemma 12.6. — Both evaluation maps evq : AX — X and evyya: AX — X are
groupoid morphisms.

There is a map
(12.3.2) p: AX — AX

obtained by sending a diagram in Kgl = SX (X1 x X1) to the composition of the
horizontal arrows, i.e.,

91 92 9192
T .

T Y T is mapped to T z
hoT hl/ZT Tho hOT Tho
z v ’ d x!
~— N — —

In other words p(g1, 92, ho, h1/2) = (9192, ho)-
Lemma 12.7. — The map p: AX — AX is a Morita morphism.

Proof. — The map pg : ./Tf{o — AXj is a surjective submersion with a section given
by g+ (g, 1)) for g € SX. Let g, ¢’ € SX. Assume given (g1, 92) € X2 with g;go = g

g1 g2
e

and (g7,9%) € X2 with gigs = ¢’. Then any arrow in AX from z“ y T
91 95

to x y“ "z isuniquely determined by hy € X, satisfying hg 1919200 = ¢/ d5.

Indeed, h;/; is given by hy ;o = gzhog’z_l. O

As a consequence the groupoid AX also presents the inertia stack A%, and
Lemma 12.6 implies that there are two stack maps evo,evy/y: AX — X.

We now proceed to construct the hidden loop coproduct. As in Section 11.1 above,
AX xx AX is the transformation groupoid

[(SX X X, SX) X X, 38X X X, SX],

where X acts on SX X x, SX by conjugations diagonally. Its corresponding stack is
AX x x AX.
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Lemma 12.8. — The stack AX xx AX fits into the Cartesian square
AX xx AX T— AX

J( l/(evo,evl/g)
X 2. XxX.

As in Section 12.5, we denote € := (evg,evy/3): AX — X x X the right vertical map
in the diagram of Lemma 12.8.

Proof. — We use AX as a groupoid representative of AX. By the definition of the
evaluation maps, the fiber product

XXXXX;{X —_— /TX

L l(evg,evl/z)

X 2. XxX

can be identified with the subgroupoid of ./TX, which consists of (g1, g2, ho, h1/2) such
that ho = hy/2. The latter is simply the transformation groupoid

[(SX X Xo SX) A X1 = SX X Xo SX]
which is precisely AX xx AX. Moreover the composition
AX XxAX§XXXXx1/{§§—PI,\\X£>AX,

where p is defined by Equation (12.3.2), is precisely the “Pontrjagin map” m : AX xx
AX — AX in Section 11.1. |

Remark 12.9. — It is not hard to generalize the above construction to any finite
number of evaluation maps and obtain the following Cartesian square (see the proof
of Theorem 12.3 below)

AX xx - Xz AX — AX

l i

X — Xx---xX.

If X is oriented of dimension d, the Cartesian square of Lemma 12.8 yields a Gysin
map (Section 9.1)

A': Hy(AX) — Ho_g(AX xx AX).

As shown in Section 11.1, there is also a canonical map j : AX xx AX — AX x AX.
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Theorem 12.10. — Assume X is an oriented stack of dimension d. The composition

Ho(AX) 25 H, o(AX xx AX) -5 Hog(AX x AX) = @ Hi(AX) ® H;(AX)
i+j=n—d
yields a coproduct §: He(AX) — @, j—e—q Hi(AX)® H;(AX) which is a coassociative
and graded cocommutative coproduct on the shifted homology He(AX) := Heyqa(AX),
called the hidden loop coproduct of AX.

Proof. — The proof is very similar to that of Theorem 12.5. We only explain the

difference.
i) First we introduce a third evaluation map evy/3: AX — X similar to evy,.

Taking a representative X of X, the idea is to replace the Lie groupoid AX presenting

AX by another groupoid If\\X, where ./nglconsists of commutative diagrams:

9 92 93
LT T P
z y z T
hoT h1/2’[ hz/sT Tho

’ /
T
~— ~— —

The source and target maps are, respectively, given by the bottom and upper
lines. The multiplication is by superposition of diagrams. There are evaluation maps
€evo, €Vi/2,€Vy/3: AX — X, respectively, given by ho,hyi/2,92/3. A proof similar to
those of Lemmas 12.7 and Lemmas 12.8 gives the following facts:

1. the groupoid AX is Morita equivalent to AX. Hence it also presents the stack
AX.

2. The evaluation maps induce a Cartesian square

A%X:{A%XxAx AX

| o

x — 2% xuxExx
which yields a Gysin map A@". Hy(AX) — Hq_24(AX xx AX xx AX).

It follows that one can form a diagram similar to (12.2.3) for AX and prove that
all its squares (1), (2), (3), (5) are commutative mutatis mutandis. The proof of the
commutativity of triangle (4) is even easier: it follows immediately from the sequence
of Cartesian square

AX xx AX Xz AX — AX xx AX =—» AX

! fs e

X -8 o XxXx _axt XIxXxX.

SOCIETE MATHEMATIQUE DE FRANCE 2012



20 CHAPTER 12. FROBENIUS ALGEBRA STRUCTURES

ii) Since p o & is conjugate to p, the proof of the cocommutativity of ¢ is similar to
the proof of Proposition 12.5 and of Proposition 11.1. O

Theorem 12.11. — The homology groups (He(AX),e,8) form a (non wunital, non
counital) Frobenius algebra of degree d.

Proof. — According to Theorems 11.1, 12.3 it suffices to prove the compatibility
condition between the hidden loop product and hidden loop coproduct. The argument
of the proof of Theorem 12.5.iii) applies. O

Remark 12.12. — If X has finitely generated homology groups in each degree, then by
universal coefficient theorem, H*®(AX) inherits a Frobenius coalgebra structure which
is unital iff (H,(AX),d) is counital.

12.4. The canonical morphism AX — L%

There is a morphism of stacks ®: AX — LX generalizing the canonical inclusion of
a space into its loop space (as a constant loop).

Remark 12.13. — Objects of AX are pairs (x,¢) where = is an object of X and ¢
an automorphism of . The morphism ® may be thought of as maps (x,¢) € AX to
the isotrivial family over S, which is obtained from the constant family X; over the
interval by identifying the two endpoints via (.

We show in this Section that & induces a morphism of Frobenius algebras in ho-
mology.

Let X be a groupoid representing the oriented stack X (of dimension d) and AX its
inertia groupoid representing AX. Proposition 5.4 gives a groupoid LX representing
the free loop stack LX. We use the notations of Section 5.2. Recall that the topological
groupoid LX is a limit of topological groupoids L¥X where P is a finite subset of S!
which can be described as an increasing (with respect to a cyclic ordering on S')
sequence {Py, Py,...,P,_1}. We take n = 1 and {Py} = {1} C S! the trivial subset
of S1. We will construct a morphism of groupoids AX — LFX inducing the map
AX — LX%.

Any (g,h) € SX x X; = AX; (i.e. g € X; with s(g) = t(g) determines a commu-
tative diagram ®(g, h) in the underlying category of the groupoid X:

(12.4.1) t(h) < t(h)

i fn

sth) " sh).
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The square ®(g, h) (defined by diagram (12.4.1)) being commutative, it is an element
of M;X. Since P is a trivial subset of S, a morphism [ST = S| — [M1X = MoX]
is given by a path f: [0,1] — X; and elements k, k' € X; such that the diagram

k

HF(0) < t(f()
f(O)T Tf(l)
s(F(0)) <= s(£(1)))

commutes. In particular, the diagram ®(g,h) € M;X yields a (constant) groupoid
morphism [Sf = SF] — [M1X = MyX] defined by t — f(t) = h. The map (g,h) —
®(g,h) is easily seen to be a groupoid morphism. We denote by ®: AX — LX its
composition with the inclusion L¥X — LX. It is still a morphism of groupoids. Hence
we have the following

Lemma 12.14. — The map ®: AX — LX induces a functorial map of stacks AX —
LX.

In particular there is an induced map ®,: Hqe(AX) — H,(LX) in homology.

Theorem 12.15. — Let X be an oriented Hurewicz stack. The map ®,: (Ho(AX),o,0) —
(Ho (LX), *,d) is a morphism of Frobenius algebras.

Proof. — Let X be a groupoid representing X. For any (g,h) € SX x X; = AXj, one
has

evy (‘I>(g, h)) = h=evg(g,h)

where evg stands for both evaluation maps LX — X, AX — X. Thus the Cartesian
square of Step (2) in the construction of the hidden loop product factors through the
one of the loop product and we have a tower of Cartesian squares:

(12.4.2) AX xx AX —> AX x AX

:,;L l<1>><<1>

LX xxLX¥ — LXxLX

l/ leVO X evg

¥ — 2 . xxx

where ® is induced by ® x ®. The square (12.4.2) shows that
(12.4.3) Ao(@x®), = .04

Since LX is a presentation of LX, the Cartesian square LX xx LX presents the stack
LX xx LX. Given any (g1, 92, h) in (SX xx, SX) x X; = AX xx AX, one can form a
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commutative diagram &J(gl, g2, h):

t(h) ~— t(h) = t(h)

hT Th Th
s(h) s(h) s(h),
hlg1h h~'gzh

which induces canonically an arrow of LX xx LX as in the construction of ®. The
map (g1, g2, h) — ®(g1, g2, h) presents the stack morphism ®. Since

m(;f’(gl,!h, h)) = ®(g192,h)
the diagram
(12.4.4) AX xx AX — LX x¢LX
7 fm
AX 2 LX

is commutative. Hence, diagram (12.4.4) and Equation (12.4.3) implies that ®, is an
algebra morphism. Similarly ®, is a coalgebra morphism since the diagram

AX xx AX T— AX

g o

L¥xxLx — LXx

| [

X A, xxXx

is commutative. O

Remark 12.16. — 1If the stack X is actually a manifold X, then its inertia stack is X
itself and LX = LX the free loop space of X. It is clear that the map ® becomes the
usual inclusion X — LX identifying X with constant loops. For manifolds, the map
®, is injective but not surjective (except in trivial cases). However, for general stacks,
®, is not necessary injective nor surjective. See Section 17.4.
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CHAPTER 13

THE BV-ALGEBRA ON THE HOMOLOGY
OF FREE LOOP STACK

13.1. BV -structure

In this section we construct a BV-algebra structure on the homology of the loop
stack. First we recall the definition of a BV -algebra.

A Batalin-Vilkovisky algebra (BV-algebra for short) is a graded commutative as-
sociative algebra with a degree 1 operator D such that D(1) = 0, D? = 0, and the
following identity is satisfied:

(13.1.1)  D(abc) — D(ab)c — (=1)%laD(bc) — (—1)Ual+ Dl D(ac)+
+ D(a)be + (-1)1%aD(b)c + (—1)!e*labD(c) = 0.

In other words, D is a second-order differential operator.

Now, let X be a topological stack and LX its loop stack. The circle S* acts on itself
by left multiplication. By functoriality of the mapping stack, this S'-action confers
an S'-action to LX for any topological stack X. This action endows He(LX) with a
degree one operator D as follows. Let [S] € H;(S') be the fundamental class. Then
a linear map D : Hy(LX) — Hqy1(LX) is defined by the composition

HoLx) ‘Bl H,,  (Lx x §Y) 25 Ho (LX),

where the last arrow is induced by the action p : S x LX — LX.
Lemma 13.1. — The operator D satisfies D? = 0, i.e. is a differential.

Proof. — Write m : S x S — S* for the group multiplication on S'. The naturality
of the cross product implies, for any z € Hq (LX), that

D?(@) = pu (ma (18] x [8']) x 7)) = 0
since m.([S'] x [S!]) € H2(S!) = 0. O
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Theorem 13.2. — Let X be an oriented (HurewicZV)) stack of dimension d. Then the
shifted homology He (LX) = He44(LX) admits a BV-algebra structure given by the loop
product x: He (LX) ® He (LX) — He(LX) and the operator D : Hy (LX) — Heyq (LX).

Remark 13.3. — We will give a proof of Theorem 13.2 using conformal field theory
in Section 14.2. However, here we wish to give a direct proof, hoping this proof can
also be applied to some family of commutative groups as introduced in Section 11.

13.2. Gerstenhaber bracket and proof of Theorem 13.2

We start by some well-known facts on BV -algebras. Let (A4, -, D) be a BV -algebra.
We can define a degree 1 binary operator { ; } by the following formula:

(13.2.1) {a;b} = (-1 D(@-b)-(-1)%D(@)-b—a- D)

The BV-identity (13.1.1) and commutativity of the product implies that { ; } is a
derivation of each variable (and anti-symmetric with respect to the degree shifted
down by 1). Further the relation D? = 0 implies the (graded) Jacobi identity for { ; }.
In other words, (4,-,{; }) is a Gerstenhaber algebra, that is, a commutative graded
algebra equipped with a bracket { ; } that makes A[l] a graded Lie algebra and
satisfying a graded Leibniz rule [21].

Indeed it is standard (see [31]) that a graded commutative algebra (A, -) equipped
with a degree 1 operator D, such that D? = 0, is a BV-algebra if and only if the
operator { ; } defined by the Formula (13.2.1) is a derivation of the second variable,
that is

(13.2.2) {a;be} = {a;b} - e+ (~1)Ial+ Dy (g c).

By Theorem 10.1 and Lemma 13.1, the shifted homology (He (LX), *, D), equipped
with the loop product and operator D induced by the circle action on LX, is a graded
commutative algebra and D? = 0. In order to prove Theorem 13.2, we will thus prove
the identity (13.2.2). First, we identify the bracket { ; } given by Formula (13.2.1).
We need to introduce some notations to do so.

Let

evp:Sle}:xL.'{——»X><£
be the (twisted by p) evaluation map defined by

evo(y) x evg(B) if 0<t<1/2

evo(t,7,8) = {eV2t~1(7) xevi(B) if 1/2<t<1

(1) Recall that any differentiable stack is Hurewicz.
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where ev, : LX — X is the evaluation map defined in Section 5.1. We let L (X x %)
be the pullback stack of the diagonal along ev,:

(13.2.3) L(Xx%) —2 §'xLXxLX

l LevP

¥ — 2 o oxxx

Note that L,(X x X) & S x Map(S* v S, %) (by Lemma 5.2) and that, under this
identification, i, becomes the map

(ty) o 4 (B Y@, p2)(v?))  if 0<t<1/2
M (o2t - )W), 4@) i 1/2<t<1

where v — (y(1),4(?)) is the map
Map(S' v S, %) 2 L¥ xx L¥ — L¥ x LX.
For any 0 < t < 1/2, we have a pinching map p; : S — S! v S? defined by

(0,2u — 2t) if 0<u<t
pe(u) = (2u — 2¢,0) if t<u<t+1/2
0,2u—1—-2t) if t+1/2<u

Here, we have identified S' V S! with the union of two basic circles of S* x S1.
For 1/2 <t < 1, we similarly define

(2u—2t+1,0) if u<t—1/2
pe(u) =4 (0,2u—2t+1) if t—1/2<u<t
(2u — 2t,0) if u>t

Note that po = p; is the pinching map of Section 10. We let m, : L,(X x X) — LX
be the map (¢,v) — v o p; induced by the above pinching maps.

Remark 13.4. — Informally, the map m, can be described as follow. An element
in L,(X x X) is given, for each 1/2 > t € S, by two loops a,b € LX such that
evg(a) = evys(b). Then m,(t,a,b) is the loop starting at evo(b), describing b until it
reaches evy;(b) = evg(a) where it follows the loop a and then follows b back to evq(b).
There is a similar picture for ¢ > 1/2. Note that, in the proof of Theorem 13.2, we will
use several times an informal description similar to the one of m, to describe various
maps that are rigorously defined using a parametrized pinching procedure as above.

When X is an oriented stack of dimension d, then the pullback diagram (13.2.3)
induces a Gysin map A}o : Hy(S* x LX x LX) — Hoya(Lp(% x X)).
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Lemma 13.5. — If X is an oriented stack and a,b € Ho(LX), one has

{a;b} =m,, oA}o([Sl] X a X b).

Proof. — The proof is the stack analogue of a result of Tamanoi [60, Theorem 5.4]
and [60, Definition 3.1]. To apply the proof of [60], we only need to use the evaluation
maps as we did to define L, (X x X) and Gysin maps induced by the pullback along the
diagonal A: X — X x X which is strongly oriented by assumption. Then all identities
involving Gysin maps in [60] follow using the Gysin map given by the bivariant theory
(see Section 9.1, and the techniques of the proofs of Theorem 10.1 and Theorem 12.5)
so that the proof of the Lemma for manifolds [60] goes through the category of
oriented stacks. O

Proof of Theorem 18.2. — We already have proved that (H, (LX), *) is a graded com-
mutative algebra (see Theorem 10.1) and that the operator D: He (LX) — He4q (LX)
squares to zero: D? = 0 (Lemma 13.1). Thus, we only need to prove identity (13.2.2)
in order to prove Theorem 13.2.

By Lemma 13.5, given a,b,c € H(LX), the left hand side of identity (13.2.2) is
f([S*] x a x b x c¢) where f: H(S* x (L.’:E)a) — H(LX) is the composition

H(S* x (LE)°) '8 H(S" x L x LX xx LX)

id xm A, Mp,
XM H(SY x L x LX) —2 H(L,(% x X)) =25 H(LX).
We denote L, (%X x X x X) the pullback

Loy (X Xx%) — 8" xLX x LX xx LX

" Jim

L(% x X) Y . §'xLXxLE

of S! x LX x LX xx LX along i,. We also denote m,; : L, (%X x X x X) — LX the
composition m, o . Consider the following tower of pullback squares:

(13.2.4) Loyp(Xx £x %) —— S'xLXxLX xxLX

" faxe

L,(% x %) i ' x LE x LX
| o
x = IxX
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The naturality of Gysin maps with respect to this tower yields that
(13.2.5) {a;bxc} = my1,0AL 0(idxA) (S xaxbxc)

where Ai,,l : H(S'XLXXLXxxLX) — H(L,1(XxXx X)) is the Gysin map obtained
by pulling-back the Gysin map of the strongly oriented diagonal A : X — X x X along
ev, o(id xm).

Now the main point is to analyze the composition Ai,’l o (id xA"). By Section 9.1
each Gysin map is obtained by pulling back the normally non-singular diagram of the
diagonal A : X — X x X (see Definition 8.21) along, respectively, ev,o(id xm) and
id x evg X evg and taking the Thom class of the associated diagram.

Recall that each normally non-singular (nns for short) diagram yields a tubular
neighborhood in the sense of Definition 8.5 (after replacing the target by a fiber bun-
dle) and similarly after taking pullbacks. Then the composition Ai,,l o (id xA') is the
product in the bivariant theory (see Section 7) of these Thom classes. It is essentially
obtained by considering fiber products (over S x LX x LX x LX) of the above pulled-
back normally non singular diagrams; more precisely by taking suitable pullbacks of
the (pulled-back along ev, o(id xm) and id X evg X evg) tubular neighborhoods (as in
Section 7.4) and composing them in a way similar to the proof of Lemma 8.13. As in
Definition 8.21, we let o € H%(X — X x X) be the strong orientation class of X and
Oa € H?4(X — X x X x X) be the strong orientation class of the iterated diagonal
(see Corollary 8.31).

In order to carry on the analysis, we divide the circle S! into the joint of 4-intervals
I; (i =1,...,4) corresponding to [0,1/4], [1/4,1/2], [1/2,3/4] and [3/4,1] (here we
identify S = [0,1]/(0 ~ 1)) with the obvious identifications. Note that the regular
embeddings (induced by the nns diagram of the diagonals) inducing the Thom classes
can be obtained by gluing together the regular embeddings restricted over each I; x
LX x LX x5 L%, that is by taking the fiber product (over the regular embeddings
obtained by restricting to {i/4} X LX X LX x £ LX) of the regular embeddings over each
I; x LX x LX x x LX. We first consider a restriction of S x (LX)3 to [1/2,1] x (LX)3.
It yields a commutative diagram of pullback squares:

(13.26) Poi(XxXxX) — [},1]xLExLE xxLX¥ — [},1] x (LX)3

! [

Lop(XxXEx %) —% S'xLX xLX xx LX Voxp
L o
2 3 4
x Axid x T340(id X AXid) x

where 73 4 : X* — X* switches the last two factors. The vertical map evf,z) is the com-

position (evp o(id xm), m oevp) (where 1 is the projection on the first component),
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that is the map defined by

(evo(7),evae(B),evo(7)) if 0<t<1/2
(evae-1(7),evi(B),eva—1(7)) if 1/2<t<1

Similarly, the map ev,y, is the map defined by

evi(t,v,8,n) = {

eV p(t, 7, 8,m) = (evae—1(7),evi(B), evae—1(7),evi(n))
for 1/2 < t < 1. By diagram (13.2.6), the (restriction to [1/2,1] x (L}f)3 of the)
product evﬁ,z)*(OA) - (idevg xev0) (8a) is computed by ev,x,* (0a® ).
We let Aj be the standard two dimensional simplex
Az = {(u,s),0<u<s<1}

and consider the following diagram (in which Py (% x X x X) is defined so that the
square is Cartesian)

LX <~—"Pg(XxXxX%X) — Ay xLExLXxLX

l lem

Ex X axa x4

Here the vertical (evaluation) map evy is defined by

evy ((u,8),a,b,¢) = (evu(a),evo(b), evs(a),evo(c))
and mpy: Py(X x X x X) — LX is defined similarly to the map m,: L,(X — X) —
LX; that is, mH((u, s),a,b, c) (with u, s, a, b, ¢ satisfying the pullback relation) is the
loop starting at evg(a), describing a until it reaches ev,(a), then describing b back
to evo(b) = evy(a), following a again until it reaches ev,(a), then following c until
reaches evj(c) = evs(a) again and finishes to follow a back to evi(a) = evo(a). Here
we use an informal description of the map mpy that can be obtained by a pinching
procedure as explained before Lemma 13.5 above.
Let ¢ : [1/2,1] — Ay be the map «(t) = (2t,2t). The diagram

(13.2.7) Pa(ExXxX) — [3,1] x (LX)

e oo

LX <_m_H PH(:{ X X x f) — AZ X (Lx)3 eVoxp

L eva |

XxX x4

is commutative. Since the subset {(u, s), u = s} C A, is a boundary component of the
dimension 2 simplex, it follows from Lemma 6.6 and diagram (13.2.7) that, to compute
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the Thom class of the composition of the top lines in diagram (13.2.6), we can replace
the top line of diagram (13.2.6) by the restriction to the subset {u =0 or s =1} C A,
(that is the complementary boundary of As) of the top line of diagram (13.2.7).

Now we analyze the restriction of diagram (13.2.7) to I, x (LX)® = [3/4, 1] x (LX)3
which reduces to the analysis of the pullback square

(13.2.8) Py (X xXx%X) — [3,1] x (LX x LX) x L%
l/ l/evp X evg
xz AXA .'f4

and its induced tubular neighborhood (given by the pullback along ev, x evq of the
nns diagram of the diagonal). Here the vertical map ev, x evg is the map

ev, X evo(t,a,b,c) = (evg—_3(a),evo(b), evo(a),evo(c))

(and Py, (X x X x X) is defined by the pullback property). Furthermore, the restriction
of the map mp: Py (XxXxX) — LX (considered above) to this boundary component
identifies with the map my,, : Py,(X x X x X) — LX which maps (¢, a, b, c) to the loop
starting at evg(a), following a until it reaches evy:_3(a) = evy(b) then follows b until it
gets back to evy(b) = evg(b), follows a back to evy(a) = evg(c) and then goes through
c. Similarly, the restriction of diagram (13.2.7) to I3 x (LX)® = [1/2,3/4] x (LX)?
yields a pullback P;,(X x X x X) similar to the pullback (13.2.8) as well as a map
m3p: P3p(x x X x Zf) — LX.

Furthermore, restricting diagram (13.2.4) to [0,1/4] x (LX)3 yields a Cartesian
square

(13.2.9) P (XxXxX) — [0,4] x LX x LX x L%
L ‘Lev,J X evo
x2 AxA x4

where ev, X evq(t,a,b,c) = (evo(a),evs(b),evo(b),evo(c)) and, similary, restricting
[1/4,1/2] x (LX)3, a Cartesian diagram

(13.2.10) P (XxXx%X) — [ xLxxLEXLE
p 472
l/ Levp X evo

where ev, X evo(t,a,b,c) = (evo(a),eva—1(c), evo(b), evo(c)). Note also that restrict-
ing the map m,1 : L,1(X x X x X) —» LX to I = [0,1/4] and I, = [1/4,1/2] gives
rise to two maps my,, : P1,(X¥ x X x X) — LX and ma, : P, (X x X x X) — LX.
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Now, to compute m, 1, © Ai),l o (id x A", i.e., the Thom classes
(ev, xid) o (id xm)*(6a) - (id x evg x evp)(6a)

we are left to study the pullbacks of the tubular neighborhood induced by the nor-
mally non-singular diagrams of the iterated diagonal A x A along the 4 various
ev, x evo-maps (corresponding to the spaces P; ,(X x X x X)) and to join them (as
noted above). First, we remark that the restrictions to the points {1/4} and {3/4} of
the Cartesian squares (13.2.9), (13.2.8), (13.2.10) and of the maps m; , are identical.
Thus it is enough to study first the joint

SY :=[3/4,11U[0,1/4]/(3/4 ~ 1/4)

of I and I, with the boundary points identified and the Thom class induced by
the Cartesian squares (13.2.8), (13.2.9). Note that diagram (13.2.8) factors into the
following diagram whose vertical squares and top horizontal square are Cartesian:
(13.2.11)

LX LX xx LXxC LX x LX

ma,, m} xid
ma,p / ’ /

P (X x XX X) = Pyp(Xx X) x LX ———— [3,1] x (LX)3

mp

L leVO X evg
x X x X ev, X evg

A

x2 . X x X2 - x4
id xA Axid

Here m; and 72 3 denote the projection on the last factors. By functoriality and nat-
urality of the construction of Gysin maps, we get that

ma,p, ((ev, X evo)*(Baxa)) = m,, ((evo X evg)*(8a)) - (m;L X id)*((ev,, X evg)*(0a))

There is a diagram similar to (13.2.11) associated to the Cartesian square (13.2.9).
Joining these two diagrams, we get:
(13.2.12)

LE <2 LX xx LXC LX x LX

el

Lyp(Xx %) x LEC—— = S x (LX)3

l/eVo

X XxXx evp
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which exhibits the restriction to S x (LX) of my,, (AL, o (idxA')) as
mp*(eVS(GA) - (m} x id)*(eva(OA))). Note that the above diagram (13.2.12) is

precisely the diagram defining {a, b} * ¢; in other words,

mp*(eVS(OA) - (mF x id),,(ev;;(oA))) (ISY] x a x bx c)
= m,, o0A'o (m} xid). oAi,([S_}_] xaxbxc) = {a,b}*xc
The above arguments for S_lF apply similarly to study the joint
S! :=[3/4,1]U10,1/4]/(3/4 ~ 1/4)
of I and I with the boundary points identified. It yields that
mp*(eVS(HA) . (m5 x id)*(ev{;(GA))) (IS xaxbxc) = (—1)Plel{q,c} b

where the sign comes from the fact that one has to exchange b and ¢ in that case (with
a transposition similar to the one appearing in the bottom line of diagram (13.2.6)).
Recall from above that the restrictions to the points {1/4} and {3/4} of the Cartesian
squares (13.2.9), (13.2.8), (13.2.10) and of the maps m; , are identical. It follows

that the computation of the Gysin maps for S! x (qu’€)3 factors through the one

of (81 Vv .SL) x (L}f)3. Thus, we deduce from the above computations for S and S*
and identity (13.2.5) that

{a,bxc} = {a,b} xc+ (—1)"€l{a c} xb
that is identity (13.2.2) holds, by graded commutativity of the loop product. O
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CHAPTER 14

HOMOLOGICAL CONFORMAL FIELD THEORY
AND FREE LOOP STACKS

In this section, we extend the BV -structure of Theorem 13.2 and the Frobenius
structure of Theorem 12.5 into the whole structure of an homological conformal field
theory (with positive boundaries) following ideas of Cohen-Godin [20, 32| for mani-
folds and Chataur-Menichi [16] for classifying spaces of groups. As in Section 12 (and
for the same reasons), we assume in this section that our ground ring k is a field.
Note that, unlike in Godin’s paper [32], we will only allow closed boundaries and a
positive number of both incoming and outgoing boundaries components.

14.1. Quick review on Homological Conformal Field theory with positive
boundaries

We start by recalling some definitions of Homological Conformal Field theories.

We will make strong restrictions on the type of boundary we consider (which simplify
greatly the theory). We follow [24, 25, 32, 56].

A (closed)® homological conformal field theory is an algebra over the PROP of the
homology of the stack (or moduli space) of compact oriented Riemann surfaces or,
equivalently a symmetric monoidal functor from the (homology of the) Segal category
of Riemann surfaces [56] to the category of graded vector spaces. Let us start by giving
more details on what this definition means, following [23, 24, 25, 31].

We first recall that, a complex cobordism from a family [[;-, S ! of circles to another
family [i~, S* of circles is a closed (non-necessarily connected) Riemann surface ¥
equipped with two holomorphic embeddings (with disjoint images) pin: [[/n; D > =
and poyt: ]_[,Ail D? of closed disks. The image of p;, is called the incoming boundary
and the image of poy¢ the outgoing boundary. Two complex cobordism ¥; and X,
(from [, S to [[i~, S*) are equivalent if there exists a biholomorphism h: £; = I
which fixes the boundary (i.e. commutes with pi, and pout)-

(1) Unless otherwise stated, we only consider closed cobordism in this paper.

SOCIETE MATHEMATIQUE DE FRANCE 2012
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We denote M, ,, the moduli space of equivalence classes of complex cobordism
from [[i=; S to []i~, S!, that is the (coarse moduli space of the) differentiable stack
[S1,m/Bihol] obtained as the quotient of the space G,, , of holomorphic embeddings
of disks inside compact Riemann surfaces by the group of biholomorphism fixing the
boundary. Note that, there is an isomorphism of stacks

(6n,m/Bihol] = [[[*/Tn,m ()]
(%]
where the union is over a set of representatives of the isomorphism classes of cobor-
disms (with n incoming and m outgoing closed boundaries components) and

Tom(%): =0 (Diff, (%))

is the isotopy classes of the group Diff;m(E) of oriented diffeomorphisms preserving
the boundaries pointwise of a surface ¥ with n incoming and m outgoing closed
boundary components.

The disjoint union of surfaces yields a canonical morphism
M(n,m) x M(n',m’') - M(n+n',m+m’).
Further, given £; € M(¢,n) and X3 € M(n, m), using the embeddings of disks

n
o < [[D? < 2,
i=1
we can glue ¥ on ¥; along their common boundary. We denote X5 0 31 € My, the
Riemann surface thus obtained. Applying the singular homology functor to the above
operations yields linear maps

He(|])
Ho@ ) ® Ho ) 22D, 51 (04 )

and
He (o0
Ho( M) ® Ho (M 1my) —2 H,(My,1m)

that satisfy natural associativity and compatibility relations. It follows that the col-
lection (H. (smnm))n m>0 are the morphisms of a graded linear symmetric monoidal
category Gon whose ;)bjects are the nonnegative integers n € N and the monoidal
structure is induced by k ® £ = k + £ on the objects and disjoint union of surfaces on
morphisms.

A homological conformal field theory is a symmetric monoidal functor from the
category Gsn to the symmetric monoidal category of graded vector spaces (equipped
with the usual graded tensor product). Informally, this definition simply means that
an homological conformal field theory is a graded vector space A with an operation
p(c): A®™ — A®™ for any homology class ¢ € He(My ) such that p(cod) =
u(c) o p(d) and p(c]d) = p(c) ® u(d).

Unlike oriented closed manifolds, oriented stacks do not have unit for the loop
product (nor counit) in general (see Section 17.4 for instance). This forces us to
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consider non-unital and non-counital homological conformal field theory which are
symmetric monoidal functor from the category Ggz"™¢ to the category of graded vector
spaces , where 63" C Gon is the (monoidal) subcategory obtained by considering
only cobordisms in 9, ,, for which every connected component has at least one
ingoing and one outgoing boundary component. We may also refer to such algebraic

structure as an homological conformal field theory with positive (closed) boundaries.

We wish to make the homology H, (LX) of the free loop stack of an oriented stack
an homological conformal field theory (without (co)units). However, since the basic
operations we consider are non-trivially graded (for instance the loop product is of
degree dim (X)), we need to plug in a notion of dimension in the definition of conformal
field theories to take care of this phenomenon and encode the sign issues. We follow
the ideas and presentation of Costello [24] and Godin [32], where the grading is taken
into account by a local coefficient system det® on the moduli spaces My, .

The local coefficient system det is a graded invertible locally constant sheaf (i.e. a
graded k-linear locally constant sheaf of dimension 1). To a closed Riemann surface
¥ € My, m, We associate a compact Riemann surface £°¢ with boundary by remov-
ing from ¥ the interior of (the images of) the closed disks pin: [[j=; D* — ¥ and
Pout: |11 D? — X. Restricting pin to the boundary [[j—; S' of the disks, we get
a diffeomorphism from [}, S® onto the incoming boundary of £¢. Following [24]
and [32, Section 4.1], we define the fibre of the local coefficient system det at a surface
¥ € My, m to be

det(S): = det (HO(2*, pin(ﬁsl))) ® det (H (S, pin f[ 51)).

Here, given a finite dimensional k-vector space V', det denotes the determinant, that is
det(V) = /\dim(v) V is the top exterior power of V, and we consider the (relative) ho-
mology groups of a pair. This defines the local coefficient system det on (M m)n,m>0
and similarly, for an integer d, the local coefficient system det®? obtained by tensoring
det with itself d-times.

It is proved in [16, 24, 32] that the composition of surface induces a natural
isomorphism det(X2) ® det(X;1) — det(X3 o ¥1) which is associative and compatible
with the canonical isomorphism det(X] []35) = det(X]) ® det(X5). This allows us

to see the collection of homology groups (H. (M 5 det®d)) with value in
n,m>0
t®d

the local coeflicient de as the morphism of a graded linear symmetric monoidal
category Ggy 4e19¢, and as above we also get a graded linear symmetric monoidal
category ﬁgyf:t@d by restricting to cobordism with at least one incoming and one
outgoing boundary on each connected component.

According to [24, 32|, we have the following

Definition 14.1. — A (non-unital, non-counital) d-dimensional homological conformal
field theory is a symmetric monoidal functor from the category &;"1" o, to the cat-
egory of graded vector spaces.
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14.2. The Homological Conformal Field Theory with positive closed
boundaries associated to free loop stacks

It is known (see [23, 31, 48]) that an (non-unital) homological conformal field
theory (HCFT for short) carries the structure of a (non-unital) BV -algebra as well as
that of a Frobenius algebra (without (co)unit). For instance the associative and com-
mutative operation of the BV or Frobenius structure is induced by the pair of pants
surface lying in 95 ;. The main result of this Section enriches the above structures

already obtained for loop stacks into an HCFT over G1" 1" o4-

Theorem 14.2. — Let X be an oriented (HurewicZ?) stack of dimension d. There is
a d-dimensional non-unital, non-counital homological conformal field theory on the
homology He(LX) of the free loop stack which induces the BV-algebra and Frobenius
structure on the homology He(LX) given by Theorem 13.2 and Theorem 12.5.

Remark 14.3. — The proof of Theorem 14.2 actually implies the ones of Theo-
rems 13.2 and Theorem 12 as well. However, this proof does mot apply to prove
similar statements (for instance Theorem 12.3) for inertia stack (and thus to define
the intersection pairing as in Section 16) or any other family of groups over a stack
considered in Section 11. Further, it is not obvious that this proof will also apply to
the twisted versions of the loop product studied in Section 10 and aforementioned in
Section 16.2.

To prove the above Theorem 14.2, we follow the approach of [16, 24, 32|, using
chord diagrams/ribbon graphs, but using a stack point of view (instead of a purely
homotopical one) and the benefits of the bivariant theory of Section 7. We will first
determine the value on a particular cobordism %, . of the HCFT, which will be
given by the linear map (14.3.9) below.

First, we need to recall some preliminaries on Sullivan’s chord diagrams and fat
graphs which are taken from [20, 25, 39]. By a graph, we mean a pair G = (V, H)
consisting of a finite set of vertices V), of half-edges (which can be thought as oriented
edges) H equipped with a map s : H — V and an involutive map with no-fixed points
e — € on the set of half-edges. A fat graph is a graph equipped, at each vertex v,
with a cyclic ordering of the half-edges emanating from v. The geometric realization
of a fat graph is thus a 1 dimensional cell complex plus extra data. It is well-known
that the classifying space of fat graphs is equivalent to the moduli space of Riemann
surfaces (see [24, 25, 32, 39, 61] for much more precised statements). In particular,
every (isomorphism class of a) Riemann surface ¥ € M, ,,, is a deformation retract
of (the geometric realization of) a fat graph with n-incoming boundary cycles and m
outgoing ones (we refer to [20, 39] for the definition of these boundary cycles).

A chord diagram (see [20]) is a special kind of (geometric realization) of a fat graph.
A chord diagram of type (g,n, m) is a union of n disjoint circles with a disjoint unions
of trees whose endpoints are glued on the circles (on distinct points), and such that

(2) Recall that any differentiable stack is Hurewicaz.
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the induced cell complex is (the geometric realization of) a fat graph representing a
surface of genus g with n+m boundary components. The first circles are refered to as
the incoming circles and the set of (necessarily path-connected) trees will be denoted
I (cg,n,m)- The set of points in the circle in which the endpoints of the trees lies is
denoted Y(cgn,m) (and called the set of circular vertices).

We let cgnm be a chord diagram of type (g,n,m) and ¥y, » be the surface
represented by cg n, m. Here g is the genus of ¥4 , 1, that is the sum of the genera of its
components. In particular, the Euler characteristic of X ,, ,, is given by x(Zgnm) =
2#X g m,n—2g—n—m where #X, » m is the number of (arcwise) connected components
of £y nm. Then ¢y pn m is a deformation retract of g, ;. Welet 74 m @ Zgpnm —
Cgn,m be the retraction and tgnm : Cgnm — Xgnm be the inclusion. Note that
since every connected component is assumed to have positive incoming and outgoing
boundary component, x(X4 n m) is always non-positive in our case.

Given a tree t € J(cgn,m), We can associate the subset V(t) C ¥(cgn,m) of
circular vertices given by the endpoints of ¢ and we get a canonical inclusion map
I_[ve‘l/(cg,,.,m){pt} — Hteg(cg,"'m)t. Applying the mapping stack functor, we get a
map

d II Mapt,x) — x"(comm)

teT(cg,n,m)

Cg,n,m :
which was already considered in [16].

Lemma 14.4. — Let X be an oriented stack of dimension d. Then there is an orien-
tation class

by, € H o) (] Map(t, %) “22 gVCnnm),

cg,n,m
teI(cg,n,m)

Proof. — Each tree is a deformation retract onto any of its vertex, hence we have

Lt
deformation retract ¢t < pt for each t € I (cg,n,m) and a factorization
Tt

ry dc nym
wn) P Tl b6 D) 2222 2

A(#‘V(Cg,n,m)—#g(cg,n,m))

The bottom line is an iterated diagonal, hence strongly oriented by Corollary 8.31.
Then we take 6, to be the pushforward (I1r?),(6) of the orientation class
0 € HA#Y(conm)=#7(co,n,m)) (%7 (co.mm) —, £V(co.mm)) of this iterated diagonal. Since
the Euler characteristic of the chord diagram agrees with the one of the surface it
represents, we get #V(cgn,m) — #I (Cgn,m) = —X(Zg,n,m) as in [20] and the lemma
follows. O
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14.3. Construction of the operations

We now define the operations associated to (the isomorphism class of) a Rie-
mann surface £, , m, € My, (nOt necessarily connected). We will first define certain
quotient stacks of mapping stacks by diffeomorphism groups. Let ¢4 m be a chord
diagram representing X, ,, ,. We still denote rc, . .t Xgnm — Cgnm the retrac-
tion and ¢, ,, . * Cgn;m — Xgnm the inclusion, which yield an homotopy equiva-
lence Tgn.m: Map(cgn,m,X) — Map(Zgn,m,X) (and tgnm: Map(Zgnm,X) —
Map(cg,n,m, X))

The circular vertices, which are the points where the trees in 7 (cgn,m) are glued
to the n disjoint circles, yields pushout diagram

iy

Hve‘V(cg,n,m){”} H?:l st

| |

Hteg(cg,n,m) t —— Cg,n,m
which, by Lemma 5.2, induces a pullback of stacks

(14.3.1) Map(cg,n,m, %) (LX)~

l lew

Hte?(cg,n,m) Ma,p(t, x) g9,m,m

x‘V(Cy,n,m)

where evy: (LX)" — %X¥(¢amm) is the evaluation map induced by the inclusions
iy oev(cqnm{v} = [Tiz1 S*. We denote

(14.3.2) 6% =evl‘i,(0dcg‘n,m)6H_d"(zg'"'m)(Map(cg,nym,x)—»(L.’{)n)

g,n,m

the bivariant class induced by the pullback diagram (14.3.1) and the orientation class
04 of Lemma 14.4.

Cg,n,m
The retraction rg , m: Map(cg,n,m,X) 5 Map(Zg,n,m, X) sits inside a commutative
diagram:

(14.3.3) Map(Zg,n,m, %)

tg,n,m
//7 Pin
Tg,n,m

Map(cg,n,m, X) (LxX)™

where the map Map(Xg . m,X) — (LX)™ is induced by the inclusion of the incoming
boundary in g, m. Applying the pushforward map along rg » ., given by the above
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diagram (14.3.3) to the bivariant class 6, ,, (see (14.3.2)) gives us a bivariant class

(14.3.4) P mma (0nm) € HXE0mm) (Map(Synm, %) — (LE)").

Quotienting by diffeomorphisms. — To shorten notations, we write Gy for the
group Diff,} | (Eg,n,m) of oriented diffeomorphisms of $g  » preserving the bound-
aries pointwise. The group Gy = Diff,tm(Eg,n,m) acts on X, .., and thus
on Map(Xg nm,X) (by functoriality, see Section 5.1) and the restriction map
pin: Map(Xg nm,X) — (LX) is equivariant (where the action on (LX)™ is trivial
since the boundary is pointwise fixed). Similarly to the construction of the transfor-
mation groupoid of a topological group acting on a space (see Section 1.4), we can
pass to the quotient of the above stacks by the Gg-action:

Lemma 14.5. — The action of Gs on Map(Zgnm,X) gives rise to a quotient
topological stack [Map(Sgn m,X)/Gs] together with an natural topological stack
epimorphism pgy: Map(Zgnm,X) — [Map(Eg,mm,%)/Gg] and, similarly,
a quotient stack [(LX)"/Gs]| with an natural topological stack epimorphism
pey: (LX)" — [(LX)"/Gx] such that

1. there is a Cartesian square

Gs x Map(Zg nm,X) — Map(Zgnm,X)

pr2 l LPG):

y4
Map(Zgnm, X) ——= [Map(Sg,n,m, %)/GCs)

where the top arrow is given by the Gx-action as well as a similar Cartesian
square with (LX)" instead of Map(Xg n.m, X);

2. The map pgy : Map(Xg n m,X) — [Map(Zg,n,m, %)/Gg] makes Map(Xg n,m, %)
a Gx-torsor and similarly for (LX)";

3. There is a topological stack isomorphism [(LX)"/Gx] = (LX)" x [* /Gx] and
the following diagram is commutative

~

[(Lx)"/Gz] — (LX)™ x [*/Gg]

yZe) T
1d Xq(;z

(LX)

where qgy,: x — [ * /Gg] is the canonical map.

Proof. — We know from Section 5.1, that the stack Map(Xy , m,X) is the fibered
groupoid over Top given by the rule T' € Top — Hom(T X X4, m,X), where Hom
is the groupoid of (stack) morphisms. Then we can define another fibered groupoid
T +— My ¢y (T) where the set of objects of Mx ¢ (T') is the set of stack morphisms
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hom(T x X4 m,X) (here hom(X,%)) denotes the set of objects of the groupoid of
stack morphisms Hom(%,9))). The morphisms of Mx ¢ (T') are

Mor(Iz,5(T)) = { (s, f) € Gz x Mor(Hom(T x £, %))}

with source and target maps given by s(g, f) = s(f) and t(g, f) = t(g - f) (where

denotes the action of Gy). The rule T — IMx . (T) is easily seen to define a
prestack. We let [ Map(Zg,n,m,X)/Gx] be the stackification of Mz ¢y, (—). We define
in the same way the stack [(LX)"/Gx] as the stackification of a fibered groupoid
Lx,65(T). Since the action of Gy on (LX)™ is trivial, there is an isomorphism (of
fibered groupoids) in between

Lx,65(T) = {(g, f) € Gx x Mor(Hom(T X ]_nI S'l,.'f))} = hom(T" x ﬁSl,x)
i=1

i=1

and G x Mor(Hom(T x [[i=; S*, X)) = hom(T x [[i—; S*, X). Hence an isomorphism
of stacks [(LX)"/Gx] = (LX) x [* /Gsx].

Choosing g = 1, the unit of Gy, induces a prestack morphism p: Map(Xy n m, %) —
Mx G5 which yields the canonical map pg, : Map(Xg nm,X) — [Map(Zg,n,m, %)/Gz]
after stackification. This map is shown to be an epimorphism and a Gx-torsor as in
the usual case of transformation groupoids (see [8, 51, 52]). The case of (LX)" is
similar and assertion 3. of the lemma follows immediately.

In order to prove that these quotient stacks are topological stacks, we note that
if X — Map(Xgn,m,X) is a chart for Map(Xg » m,X) (that is a representable epi-
morphism from a topological space), then the composition X — Map(Xg nm,X) —
[Map(2g,n,m,%X)/Gx] is again a representable epimorphism. The existence of X is
given by Proposition 5.1.

By construction, the fibered groupoid Mzx ¢, is defined so that the diagram

Gs x Hom(T x £y p m, X) —> Hom(T x g n m,X)

pra | |7

Hom(T X £,n,m, %) Mx,6x(T)

is 2-Cartesian. Since the stackification functor commutes with 2-fiber products, it
induces the Cartesian square asserted in the Lemma. O

Since the map p;, is equivariant, it passes to the quotient to give a stack mor-

phism [pin/Gs]: [Map(Zg,n,m, X)/Gs] — [(LX)"/Gs]. Furthermore, we have the
following lemma.
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Lemma 14.6. — Let p/g,, : (LX)" — [(LX)"/Gx] be the quotient map (of stacks)
given by Lemma 14.5 and similarly for Map(2g n,m,X). The following diagram

Map(Zg.n.m, X) Pin (Lx)"

l LP/GE

[Map(Zg,n,m, X)/Gsx] —Mf—L [(LX)"/Gs).

is a Cartesian square.

Proof. — Unfolding the definition of [Map(Xg,n,m,%)/Gx] and [(LX)"/Gx] in the
proof of Lemma 14.5, we see that, since pi, is Gs-equivariant, it induces a map
of fibered groupoids Mx ¢ (T) — Lx,65(T). After stackification, we get the map
[pin/Gx]: [Map(Zg,n,m,X)/Gs] — [(LX)"/Gx]. Further, the diagram pictured in
the Lemma follows from the same diagram of fibered groupoids. In order to check
that this diagram is 2-Cartesian, we note that both vertical arrows are Gx-torsors (by
Lemma 14.5) and the lemma follows from the usual interpretation of transformation
fibered groupoid as groupoids of torsors recalled in Section 1.4 (also see [8, 52]). O

Remark 14.7. — Lemma 14.5 and Lemma 14.6 (as well as the constructions under-
lined there) basically follow because we are considering strict actions of a topological
group on a stack (induced by the mapping stack construction). These statements are
actually particular cases of more general statements about quotient of topological
stacks by (topological) groups which will be studied by the second and third author
in a work in progress.

By Lemma 14.6, any bivariant class in

H* ([ Map(Z 1 2)/Gs] loese] [(L%)"/Gx))

can be pulled-back along p,g.

Lemma 14.8. — There is a bivariant class

i € HAnmn)([Map(Sy nm 2)/65]) "5 (02163

gYan

is the class rg.nm, (03, m), see (14.3.4).

whose pullback p’/‘G2 (aBE g,n,m)

gnm)

Proof. — An element g € Gy acts on Xy 5 » and thus on tgn m(cgn,m). The image
0 - tgn,m(Cqn,m) is a chord diagram diffeomorphic to cg,n,m, by a diffeomorphism
fixing the boundary circles of cg , m. Further X ,, ,, also retracts on o -ty n m(Cg,n,m)
and, indeed, T+ g tgn,m(Tgn,m(g~! - )) is a retraction of £, ,, m on Cg,n,m-

A proof similar to the one of Lemma 14.5 shows that we can form the quotient stack
[Map(cg,n,m, X)/Gx] induced by the above action on ¢y, . In particular the action

SOCIETE MATHEMATIQUE DE FRANCE 2012



112 CHAPTER 14. HOMOLOGICAL CONFORMAL FIELD THEORY

of Gy, factors through an action of the orientation and circles preserving diffeomor-
phism Diff}',' (¢g,n,m) group of ¢y n m. Note that the n disjoint circles are pointwisely
fixed by an element of Diff} (cg,n,m). It follows that this group actually acts on the
disjoint union of the trees [[g(, . .t (and preserving the circular vertices).

Thus, applying Lemma 14.6 and its proof we get the diagram of pullback squares
(14.3.5)

Tg,n,m

Map(Cg,n,m, %) Map(Zg,n,m, %) - (Lx)"

| | e

[Map(cg nm, X)/Gz] ") [ Map(Sgmm, X)/Gx] [pn/6] [(LE)"/Gx].

For simplicity, we also denote pi, the composition pi; © 7y n.m. This pullback square
will allow us to reduce the statement of the lemma to an analogue statement with
Cg,n,m instead of 3y, . Indeed, assume we have a class

5* c H_dX(Eg,n,m) ([Ma'p(cg,n,m, x)/Gz] [Piic)):]

g,n,m

[(Lx)"/Gs))

Then, since pushfoward and pullbacks commute in
a bivariant theory (see Axiom A.13 in Appendix B.2), we get that

Plos ([1/Gs) (Fnm)) = Tomm. (BFnm)-
x

Thus to finish the proof of the Lemma, it suffices to define the class 7, ,, ,,, satisfying
PGy (Ein’m) = 0% (where %, , is the class defined by the identity (14.3.2)). To

g,n,m g,m,m
do so, we follow the proof of Lemma 14.4 to get an orientation class

Ou,o, € H-¥Fonm) (] [Map(t,X)/Gx) — [XV(0nm) /Gy]).
teT(cg,n,m)

such that pj._ (6%, ) =0F

g,n,m g,n,m*

Each tree is a deformation retract onto any of its circular vertex, hence we have, for
each t € I (cg,n,m), a factorisation

Hr:/Gz

[£7(Conm) /Gs] [ieo(c, ) [Map(t, X)/Gx]

\\ J’dCQ'"‘"‘/Gz
A(#V(Cg,n,m)—#g(cg,n,m [xty(c-‘?'"*m)/Gz]

/Gx

where the 7} /Gy, BT€ retractions. Note that, similarly to the proof of Lemma 14.5.3.,
there are topological stacks isomorphisms
[x‘V(Cg,n,m)/Gz] o x‘y(cg,n,m) X [* /GZ]

and
[xg(Cg,n,m)/Gz] o xg(cgyn,m) X [* /GZ}]
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since the action of Gx on the circular vertices is trivial. Further, under this isomor-
phism, the map d., , .. /G identifies with d, X id/@,. Thus, by Proposition 7.7,
an orientation class @ (as the one given by Lemma 14.4) in H=X&snm) (%7 (gnm)
%x¥(cnm)) determines an orientation

Cg,n,m

Xi

0 ®1e H_dX(Eg,n,m) (%g(cg,n,m) X [* /GE] dcg‘m d xv(cg,n,m) X [* /Gz])

Further, it follows from the proof of Proposition 7.7 that the pullback pjg_ (0®1)is
the original orientation class 8. Taking, as in the proof of Lemma 14.4,

(14.3.6) bd,c, = (HT:/GE)*(O ®1)

to be the pushforward of the orientation class 6§ ® 1, we see that

(14.3.7) Pias(04/6,) = Bacynms

that is, the pullback p’;GE (Gd /Gz) is the class fg, of Lemma 14.4 (once again using
that pullback and pushforward commute in a bivariant theory).

Now, let us consider the following commutative diagram

(14‘3.8)

Map(cg,n,m, x) bin (Lx) "

/ ’ [Pin/GE] {GZ
[Map(Cg’n’m,x)/GE] [(Lx)"/Gg] evy

l eer/Gz
1 Map(t, X) comm xV(cgn,m)
te 9 (cg.n,m) /
/ deg nom P/Gx
H [Map(tv x)/GZI] ! s [f(y(cg,n,m)/Gz]

teT(cg,n,m)

The bottom vertical and lower horizontal square are pullbacks and so is the top
horizontal square. It follows that the front vertical square is a pullback too. We denote
by 3%, . the pullback evy ey (bag,,) in

g,n,m

H—dx(zg,n.m) ([Map(cg,n,ma x)/GE] [pm_/f;'z] [(L%)"/Gz])

of the class (14.3.6)
u, € H_dxo:g,n,m)( I  [Map(t%)/Gs] — [xV(Conm) /Gz])

teT(cg,n,m)
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defined above. By definition of 63, . (see identity (14.3.2)), one has the identities

oyx’n)m = ev):l/(edcg,nym )

evy (p)gy(0a,c, ) by relation (14.3.7)
= Pl (eV‘V;Gg (0a,,, )) by diagram (14.3.8)
= p;Gz (E;n,m)

x

which prove that the class o, ,,, satisfies the expected identity and thus finishes the
proof of the lemma. O

Defining the homology conformal field theory and Proof of Theorem 14.2. — The
inclusion of the outgoing boundary components [[i~; S* < Z; » m is also Gz-equiv-
ariant. Thus, similarly to the ingoing boundary case, we get a stack morphism

[Pout/Gs] - [Map(Zg,nm, X)/Gs] — [(LX)™/Gs).

Since Gy, acts trivially on (LX)™, the terminal map Gy — {1} yields a stack mor-
phism
(L2)™/Gz] — [(LX)™/{1}] = (LX)

By Section 9.1, the bivariant class ain’m given by Lemma 14.8, yields a Gysin map

(0F,m)' H([(LX)"/Gs]) —» H([Map(Zgn,m,X)/Gxs]).

Composing with the homology pushforward of the two preceeding stacks morphisms,
we get, for every (isomorphism class of a) surface ¥4 ,, mm, the following linear map:

(o5,

) B ([ Map(Sg mm» X)/Gx)

[Pout /GE] .
—

(14.3.9) ps,...: H([(LX)"/Gx])

H([(Lx)™/Gs]) — H((LX)™)

This map indeed defines the (non-unital, non-counital) homological conformal field
theory structure of H,(LX) asserted by Theorem 14.2 as we will now prove (recall
from Lemma 14.5 that [(LX)"/Gx] = (LX)" x [ * /Gx]).

Proof of Theorem 14.2. — We wish to define the d-dimensional homological confor-
mal field theory structure by assigning to any positive integer n, the graded space
H.((LX)"). First note that, by Lemmas 14.4 and 14.8, the map (14.3.9) above

HSgnm Ho([(LX)"/G5]) = Herax(s, mm) (LX)™))

is of degree —dx(Xg n,m). Further, since Gy = Diﬂ':;m(Eg,n,m) acts trivially on the
incoming boundary of £  ,, and thus on (LX)™, there is (see Lemma 14.5) a canonical
isomorphism of topological stacks

[(Lx)"/Gs] = (LX)" x [* /Gs]
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and thus natural isomorphisms
H ([(L%)"/Gs]) = Ho((LX)") ® Ho(BGs) = Hy((LX)") ® Ho(BT'nm(%)).

It follows that the maps ux, , . induce, for any ¥, m € M, m, a well defined map
from H,((LX)") to H,((LX)™), which we still denote yx, .. This map has the
correct degree shifting with respect to the twisting local coeflicient system det®?.
Further, since we are only considering closed boundaries, the bundle corresponding to
this local system is oriented by [32] and locally trivial over the category I, ., by [24,
25]. It follows that in order to check that the rule n — H,((LX)") together with the
maps px, . defines a symmetric monoidal functor from i?"m",&im to the category
of graded vector spaces (i.e. a non-unital non-counital d-dimensional homological
conformal field theory), it suffices to check the behavior of the maps ux, , . with
respect to disjoint union and gluing of surfaces. This will be done below similarly to
the proof of associativity and coassociativity of the loop product in Theorems 10.1
and 12.5 as well as in Chataur-Menichi [16].

We first deal with the gluing of surfaces. Let ¥, , ., € M, and Z'g,’n,m € Mum

be two surfaces. We denote 7
Gx = Diff], (Zg¢n) and Gy =Diff} (S0, )

the corresponding diffeomorphisms groups. Since these groups are fixing the bound-
aries pointwise, it follows that we have an injective morphisms of topological groups
Gz x G5, — Hyyox where Hyoxr = Diﬂzm(Z;,,nym 0 Xg¢n) is the group of ori-
ented diffeomorphisms fixing pointwise the boundary of the surface Z;',n,m 0 Xgen

o' nm- For simplicity, henceforth, we denote X, =

0 X4 this gluing. Since the boundary circles are fixed pointwise, both

obtained by gluing ¥, ., and X
ZJ;]’,n,m
Gs x G%, and Hsox acts trivially on (LX)Z and (LX)™ so that we have stacks mor-
phisms [(LX)‘/Gs x Gy] — (LX)®, [(LX)*/Hsion] — (LX)* defined and that we
have these equivariant maps is the same as the ones of Lemma 14.5 and Lemmal4.6).
The morphism Gy X Gy, — Hsyox induces a commutative diagram of stacks

[/Gs] x [+ /Gy] — [*/Hsox]
m[,n X s):n'n,'rn, ° Qﬁzm

)

and a similar diagram after passing to homology with twisted coefficient. We thus have
to prove that sy,  opsx, , = B - The above group morphism Gy, x Gy, — Hsvox
g',n,m o

induces an action of Gy x G%, on Map(io,x) and a diagram of Cartesian squares
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(applying, mutatis mutandis, the proof of Lemma 14.6) of topological stacks

Pin

(14.3.10) Map(Z,, X) (Lx)

l |

~ [Pin/GE XG(D/] ¢
[Map(S,, %)/Gx x G ] (LX) /Gs x Gy ]

l L

[Map (s, X)/Hsox] Loz [(Lx)e/H}:'oz]]

Furthermore, the group Gy x G%, also acts on Map(X,,,X) (through the above
ziction of G, and the trivial action of G%,) and similarly on Map(Z}, , .., X). Since
Yo =X}/ 1 mOZg,en is obtained by glueing ¥y 4 » on X}, | - along the n-disjoint circles
of their common boundaries, applying Lemma 5.2 and (the proof of) Lemma 14.6, we
get another Cartesian square

(14.3.11)

[reS‘m /Gs x G;:,]

[Map(Zo, X)/Gx x Gy, ] [Map(Zg,0,n, X)/Gs x G

reéSout L L

[pin/GEXG;;r] n
[Map(S), ;. m, %)/CGs x G5 ] [(LX)"/Gs x Gf/]

g’,n,m?

of stacks (also see [16]), where res;, is the restriction map induced by the inclusion

Zg’g,n — Eo.

The inclusion of the outgoing boundary of ¥4 ¢ ,, induces a stack morphism
Pmia: [Map(Zg.e,n, X)/Gx x G| — [(LX)"/Gs x G%] — [(LX)"/G%/]

since the group Gy acts trivially on (Lx)”. Similarly, we have a topological stacks
morphism

ﬁout: [Map(zlg’,n,mvx)/G, '] - [(Lx)m/G’ ’] - (Lx)mv

Pous: [Map(Eo, X)/Hsrox] — [(LE)™/Hsvox] — (LE)™

and a composition of morphisms of topological stacks

T80t [Map(E, X)/Gx x G%/] — [Map(Z, %)/Gx x G%/]

g’,n,m>

— [Map(Z} . m» X)/Cx].

By Lemma 14.8 applied to the surfaces X4 ¢, 2;,’,17,” and flo, there are bivariant

x 1 X ~% . . e .
classes 0,y ., 0"y 1 m and G5 inducing (as for the definition of ux, , ,.), respectively,
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the Gysin maps

(14.3.12) (0%,0)': H([(LX)"/Gx]) — H([Map(Sg,e.n, X)/Cx]),
(14.3.13) (0% nm): H([(LX)"/G%]) — H([Map(Zg n,m, X)/G5]),
(14.3.14) @) H([(LX)"/Hsyos]) — H([Map(Eo, X)/Hsrox])-

The first Gysin map above is equivariant with respect to the action of G%, since this
group acts trivially on 3, 4, thus passes to quotient stack to define a Gysin map

(143.15) (0%, H([(LX)*/Gx x G5]) = H([Map(Eg,en, X)/Gs x G]).

Further, the proof of Lemma 14.8 applied to £ ¢, with respect to the action of the
group Gy x G%, (and not the full Hy/ox) also yields a bivariant class agng' and
=/

an associated Gysin map

(14316)  (5&,xc,)": H([(LX)'/Gx x G]) — H([Map(Ze, %)/Cs x G]).
The Gysin maps (&ész;:,)! (morphism (14.3.16)) and (¢}, ,,)' (morphism (14.3.15))
are related as follows. We choose ¢4 ¢, to be a chord diagram associated to ¥g ¢ n,
Cyt .n,m t0 be associated to Xy nm and Coigem = Cyr pm © Cq,e,n the one associated
to X, obtained by gluing the two previous ones (see [20] for the composition of chord
diagrams). By construction (i.e., use of Lemma 14.8), the bivariant class ai ¢.n 18 Ob-

tained as a class whose pullback along the stack morphism (L%)e — [(Lx)l /G xGY, ]

is Tg,6m,% (O;Z,n) where 95,4,71 is given as in Formula (14.3.2) and Lemma 14.4. Sim-

ilarly, the bivariant class Egsz, is obtained as a class whose pullback along the
E’

stack morphism (L%)“Z - [(L%)E/Gz X G| 18 Tgrgt tmx (01 g 4.m)> Where, again

the class 9;€+g',e,m is given by Formula (14.3.2) and Lemma 14.4.

We now relate the classes 6, , .. and 67, . The chord diagram ¢4, ¢m has
¢-disjoint circles, a set of disjoint trees & (cg,¢,n) (corresponding to to the trees of ¢4 ¢,n)

4’ n,m) Such that the union §(Eg+g/,g,m) =

T (cgemn) ] gl(c;,,n’m) is the set of trees associated to Cy4g/¢,m. We define similarly

and an additional set of disjoint trees 7" (c

the set of circular vertices V(cg,¢,n), ‘V'(c;,’n’m) and ’(V(Eg+g’,l,m)' We thus get a
diagram of pullback squares (obtained as for the square (14.3.1)):
(14.3.17)

res,

Map(cg,n,m,X) —— (LX)"

l evyr l ev';

[ Map(t,X) — £V € nm) ] Map(t,X) — £V Corg t,m)
teg(’gg_‘_g,ye'm) teT(cg,n,m)

Map(zg+g’,l,ma %)
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The left Cartesian square above (14.3.17) and the proof of Lemma 14.4 gives us a
bivariant class

~ resy,
oisfn = evy (oglies_c ) € H(Map(cﬁg’,l,m’x) - Map(cg,n,m,x))

Since the classes 0;E+ ¢ 0,m and 0; ¢,n are also induced by pullbacks along evy; of classes
given by Lemma 14.4 (corresponding to the bottom line of (14.3.17) and the various
chord diagrams involved here), it follows from the functoriality of pullbacks (Ax-

iom A.3 in Appendix B.2) that 6%, , , = =60%. 67, .

Since the following diagram (induced by the various restriction maps)

Map(E,, X) Map(Zg.4.n, X)
Tg+g’,l!,mT T"'g,l,n
- res{,
Map(Cg+g',6,m, X) Map(cg ¢,n, X)

is commutative, it follows that

Tg+g,’e’m’* (0§+9',e,m) = 'rg+g’1evm?* (orxes,cn) ' rg,e,n,* (eievn) ‘

Unfolding the argument of the proof of Lemma 14.8, we get that the bivariant class
Tgtg' t;m,x (Ose ) is the pullback of a class

oX € H([Map(zg,e,n’;{)/az % G ,] [reSin/ﬁxczl] [

resin

Map(io, X)/Gs x Gfg,])

and further that the Gysin maps induced by the classes G5, g/ » 0ap, and o5,
0 9, in
satisfy the identity

(14.3.18) (FEnxcy,) = (0%s,) © (95en)"

Now, using the above defined maps, we can consider the following diagram
(14.3.19)

H([(LE)"/Gx x Gy ]) 24" B ([ Map(Z 0 X)/G x G ]) 222> H([(LX)"/Gly])

A’.’f\A L(arxesin)! (2) l(agx/,n,m)!
)

Gy xa! , -
e H([Map(Z,,%)/Gz x Gg]) = H([Map(Z} , ., %)/Gx])

TeéSoutx

(1) l/ 3) l;;oun

(1) Hva]) e (Mo ) i) = H(12)")

o Poutx

The left vertical map ad the bottom line represents the map us/, oz, ,, while
9',n,m [
the top line and right vertical composition represents the composition uyx/,  ous , ..
g’ ,n,m I
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Thus to prove the glueing property, it is enough to show that the diagram (14.3.19)
is commutative. The commutativity of the upper left triangle is precisely iden-
tity (14.3.18) above. The commutativity of the trapezoid labeled (1) follows from
the tower of pullback squares (14.3.10) and naturality of Gysin maps with respect to
towers of pullback squares, since all the classes involved are obtained by pullback from
a class induced by Lemma 14.8. The commutativity of the square labeled (3) follows
from the fact that the restriction to the outgoing boundary of ¥, coincides with
the restriction to the outgoing boundary of Eg n,m- Finally the square labeled (2)
is commutative thanks to the naturality of Gysm maps applied to the Cartesian
square (14.3.11).

We are left to the case of disjoint union of surfaces, that is, to prove that

S gmm LT = s = Eps,nm Ok,

where the sign is induced by the Koszul rule and the local coefficient det®?. The
sign follows as in [16, 24, 25, 32]. Let c¢(g,n,m) and ¢/(¢’,n’,m’) be chord di-
agrams representmg respectively ¥, ., and Eg n'm- Then the disjoint union
c(g,n,m)[Ic'(g',n',m’) is a chord diagram representing Xgnm[[Zy ./ and
moreover, the diffecomorphism group Diff;" snr mam (Bgnm [Ty 7 me) is the Carte-
sian product of Gy = Diff;} | (Z4,n,m) and Gz = Diff}, m,(E; ntym)- Let 0a, and
04, be the respective strong orientation classes given by Lemma 14.4 applied

Q,
to ¥gn,m and T, ., ... For simplicity we simply denote ¥ = Xy, m, &' =X, ./ 00,
¢ = cgnm and ¢’ = ¢, ., .. Since we are working over a field, by Proposition 7.7,

we get that the tensor product

nl m/

®0s, € H—dX<EHE’>( [ Map(t, %) —=% chuc'))
g(ch’)

identifies with the class 64 given by Lemma 14.4 applied to the sur-

cg,n,m ]_[ o, n!,m!
face Xg nm [ Xg/,n/,m’- This is a co;sequence of the fact that this class is induced by
taking the products of the diagrams inducing 64 and 64, . It follows that
the same property holds for the classes obtained by applying ﬂer;ma 14.8, namely

g+g ntnmbm! = a;n m® ag n,m- Further the restriction to the incoming and out-

going boundary yields a commutative diagram

Cg,n,m

(Lx)n+n’ - P Map(Zg,n,m [ ] Elg’,n’,m’ ,X) _ Pouwt (L.’f) m+m/

= =3 []g

(Lx)" x (Lx)" p.m Map(Sg,n,m, %) x Map(E), i &) ——> (LX) x (Lx)™
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It now follows similarly to the case of the glueing of surfaces (and actually more
easily) that the operation By nm = is us, ,m ® Bz
,m,m g’ n/, 1T

m’ g’n’

Now we only need to identify the operations of the BV -structure and Frobenius
structure with the one given by the homological conformal field theory we just defined.
By [16, 31, 32], we know that the BV-operator Hy(LX) — Hqy1(LX) is induced by
the generator of degree 1 in the homology H,(9;,1) corresponding to the diffeomor-
phism of a cylinder given by the Dehn twist along a generator of the degree 1 homology
of the cylinder ¥¢ 1,;. In other words, this generator is induced by the fundamental
class of S', and passing to the quotient stack Map(Zo,1,1, X) — [Map(Zo,1,1, X)/S?],
we see that the action of this generator on pout(Map(Eoylyl, f{)) = LX coincides with
the operator D of Theorem 13.2.

Now the product and the coproduct are respectively given by pair of pants (with
different incoming and outgoing boundaries). The first one correspond to the chord
diagram with two circles and one edge connecting them while the second one cor-
respond to the chord diagram with one circle and one diameter. They are given by
degree 0 homology classes in Ho(My,1) and He(M; 2), thus to identify them, it is
enough to consider the Gysin maps obtained via Lemma 14.4 before passing to the
quotient by the diffeomorphim groups. Unfolding the proof of Lemma 14.4, we see that
these Gysin maps coincides with the ones defining the loop product in Section 10.1
and loop coproduct in Theorem 12.5. O
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CHAPTER 15

REMARKS ON BRANE TOPOLOGY FOR STACKS

Brane topology, as coined by Sullivan and Voronov [23], is an higher dimensional
analogue of string topology defined for free mapping sphere spaces instead of free
loop space. Many aspects of Brane topology for manifolds have been studied in [15,
23, 38, 42] for instance. Roughly, Brane topology is concerned with the algebraic
structure of the homology of MS" = Map(S™, M), where M is an oriented manifold
and S™ the standard n-dimensional sphere. In this section we sketch how to apply
our general machinery to define Brane topological operations for oriented stacks.

By Proposition 5.1, for any topological stack X, the mapping stack Map(S™, X) is
a topological stack. Here S™ is the n-dimensional sphere. Let evg: Map(S™,%X) — X
be the map induced by the evaluation in 0, the based point of S™. There is a standard
pinching map pgn: S™ — S™ V S" obtained by collapsing an equator to the based
point. This map is homotopy coassociative. By Lemma 5.2, if X is Hurewicz, there is
a Cartesian square

Map(S™V S™,X) —= Map(S™, X) x Map(S™, X)

l l/eVg X evg

X XxX

and thus, if ¥ is oriented of dimension d, a Gysin map A': H.(Map(S",%) X
Map(S™, X)) — He_q(Map(S™ V 5™, X)). Composing A' with the map induced by
the pinching map pgn, yields the brane product

(15.0.20) *gn: H(Map(S™, %))® 2 H(Map(S™, X) x Map(S™, %))
A, H(Map(S™ V S™, X)) (pgn) H(Map(S™, X)).
Proposition 15.1. — Let X be an oriented stack of dimension d. The brane product

makes the shifted homology H, (Map(S™, X)) = Heiq(Map(S™, X)) a graded commu-
tative algebra.
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Proof. — The argument is the same as the ones of the proof of Theorem 10.1 and
Proposition 10.9. O

Remark 15.2. — The brane product (15.0.20) can be “twisted” by a class a €
@r>0 H"(Map(S™ v S™, X)) similarly to the loop product as in Section 10. The
analogue for brane product of Theorem 10.3 holds true, the proof being the same. For

instance, the twisted brane product is associative if the class o satisfies the 2-cocycle
condition (10.1.3).

Let ¢F: S™ — S™ be the kt"-iterated power map defined by the composition
k
(k) id
(15.0.21) gk 5™ s \[ sm Vi gn
i=1

where p(®): S™ — \/ S™ is the kt’-iterated pinching map and \/id : \/ S™ — S™ is the
identity on each sphere of the bouquet \/ S™. The map ¢* induced by precomposition
maps A\*: Map(S™, %) — Map(S™, %), f — M*(f) = f o ¢*. We have

(15.0.22) Mo Xt = )k

Theorem 15.3. — Let X be an oriented (Hurewicz) stack of dimension d and assume
n > 2. Then the maps \*: Hy(Map(S™, X)) — H,(Map(S™, X)) are maps of algebras
(for the brane product *gn ).

Moreover, if the ground ring k contains Q, there is a decomposition

H. (Map(S™, %)) = [ H (%),

i>0

where Hgi)(%) is the eigenspace of \¥ (with eigenvalue k'), that makes (H.(Map(S”,%)),*sn)
a bigraded commutative algebra (with respect to the shifted total degree and the grading
induced by the decomposition).

Proof. — By identity (15.0.22), the maps A\*: Map(S™,X) — Map(S™, X) equip
H,(Map(S™, X)) with the null multiplication (and not the brane product xg») a A-ring
with trivial multiplication as in [44]. The existence of the decomposition then follows
from standard properties of A-ring, see [5, 44]. Thus in order to prove the Lemma,
we are left to prove that the maps A\¥ are maps of algebras with respect to the brane
product. This is an easy consequence of the commutativity of the following diagram

(15.0.23)

22

& H(Map(s" v 8", %)) —————> Map(5", %)

H( Map(s™ [] s, x))

(vid)H(v id)l/ Al L(Vid)v(vid) l/vid

k  gn p(2)

s (ant\, 57 TT VA 57 ) v (2, 57w (V. 570, 2)) 2 by 57, )

(R Hp(k)t lpmv,,(k) l,,(k)

(2)
H(Map(s™[] 5™, x)) a! H(Map(s™ v 5™, %)) BN Map(S™, X)
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!

Vie, s»

k k
evy X evg: Map ((V S")H(\/ 5™),%) > X x X

=1 i=1

where the Gysin map A is obtained as the pullback by

(the evaluation at the base points of each component) of the diagonal A: X — X x X.
Let

k k k
Vp(2): Map ((\/ S")V(v S™), %) — V Sm

be the map obtained by applying a permutation on the bouquet of spheres (so that
the first and k + 1-sphere are put next to each other, and then the second sphere with
the k + 2-sphere and so on) and then applying p? k-times. It follows immediately
from this definition that the top right square of diagram (15.0.23) is commutative.
The left squares are seen to be commutative by applying the naturality of Gysin maps
as in the proof of Theorem 10.1. The maps
k k
p®) o vp® : Map ((\/ $™) v (\/ 8"), %) — Map(S™, %)
i=1 i=1
and p® o (p*) v p(*)) involved in the lower right square of diagram (15.0.23) are
not equal. However, since n > 2, they are homotopic to each other (the proof being
similar to the commutativity of the higher homotopy groups). The result follows. O

Remark 15.4. — In view of Section 17.1, Theorem 15.3 holds for oriented manifolds,
which did not seem to be known in the literature according to the authors knowledge.

The brane product described above shall belong to a bigger algebraic structure.
Namely, we believe that the following

Claim . — Let X be an oriented Hurewicz stack of dimension d. Then H, ( Map(S™, X))
is an algebra over the homology H,(&ac(™) of the n-dimensional cacti operad Gac(™
(see [23, 62] for the definition).

is true for stacks (the corresponding property for manifolds is due to Sullivan-
Voronov [23]).

The case n = 1 follows from Theorem 14.2 since the operad H.(??ac(l)) is the
BV-operad (see [23, 31, 54]). (Indeed, 1-dimensional cacti can be seen as special
kind of chord diagram).

We believe the methods introduced in Section 10 and Section 14 could be applied
to prove the above claim provided one has a model for the n-dimensional cacti operad
in which cacti are obtained by gluing the various lobes using trees.

Remark 15.5. — According to a result of Sullivan and Voronov [23, Theorem 5.1.1],
there is an isomorphism of operads between H,(&ac(™) and the homology operad
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Ho(DI") of the framed little n-dimensional disks operad 9" (studied in detail
in [54]). Hence the claim, if proved, implies such a structure on H, (Map(S™, X)).

Remark 15.6. — As in 23], one can prove that the claim follows from a n-dimen-
sional cactus algebra structure of the free sphere stack Map(S™, ¥) in the category
of correspondences of topological stacks (and not of topological stacks). This category
Cor has Hurewicz topological stacks for objects and morphisms from X to 2 given
by diagram X «— 3 — 9). The composition is defined by taking pullbacks. The proof
of [23] applies verbatim to the framework of stacks. However, applying this idea to
pass to homology is rather subtle as one needs to be careful with Gysin maps and do
not seem to be straightforward.
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ORBIFOLD INTERSECTION PAIRING

In this Section, unless otherwise stated, X will be an almost complex orbifold.
Then AX is again an almost complex orbifold. In particular, X and AX are oriented
orbifolds. Care has to be taken, because even if X is connected and has constant
dimension, AX usually has many components of varying dimension (the so-called
twisted sectors). Using the (almost) complex structure and our bivariant theory, we
will define a refinement of the hidden loop product, which is the (Poincaré) dual of
the orbifold cup-product [17].

Warning 16.1. — 1In this section, all (co)homology groups are taken with coeflicients
in C, the field of complex numbers. In particular, this is true for singular homology
H,(%), de Rham cohomology (denoted Hp, (%)) and compactly supported de Rham
cohomology (denoted Hpy .(X)).

16.1. Poincaré duality and orbifolds

For (any) oriented orbifolds, there is the Poincaré duality homomorphism &P :
H;(X) —» H%%(X), see [6]. Here X is an oriented orbifold which has constant (real)
dimension d = dim(X). Let us recall briefly the definition of the Poincaré duality ho-
momorphism, see [6] for details. There is the canonical inclusion H;(%X) — (H '(X))*
which is an isomorphism if H;(X) is finite dimensional. Since X is of dimension d, there
is the Poincaré duality isomorphism (H, ir) = gl‘{’; o» 5ee [6]. Let inc: Hpp (%) —
HYR (%) be the canonical map. The Poincaré duality homomorphism 2 is the com-
position

(16.1.1) Hy(%) — (H'(X))" —> (Hpr(%))* — Hpg' (%)
5 Hig' (%) = HH(2).
If the orbifold X is proper, then : Hq(X) — H%*(%) is an isomorphism.

Recall that the inertia stack AX usually has many components of varying dimen-
sion. The inverse map I: AX — AX is the isomorphism defined for any object (x,¢)
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in AX, where z is an object of X and ¢ an automorphism of X, by I(z, ) = (z,¢~1).
In the language of groupoids, if X is presented by a Lie groupoid X, the map I is
presented by the map (vy,a) — (y71,8) for any (y,a) € SX xx, X;.

The age is a locally constant function age: AX — Q. If X = [M/G] is a global
quotient with G a finite group, then

=[ I M2 ) /6

geG

and for z € M9, the age is equal to Y k; if the eigenvalues of g on T, M are exp(2imk;)
with 0 < k; < 1. The age does not depend on which way X is considered as a global
quotient. So it is well-defined on AX for any arbitrary almost complex orbifold, because
any such X can be locally written as a global quotient [M/G]. Similarly, the dimension
is a locally constant function dim: AX — Z. The age and the dimension are related
by the formula (for instance see [17, 27])

(16.1.2) dim = d-—2age—2ageol
where I: AX — AX is the inverse map (as above). The orbifold homology of X is

Hfrb(x) = He_zageor(AX) = @H-—Zq [Ax]ageolﬂz)
9€Q

where [AX]age—n is the component of AX for which the age is equal to n. In plain
english, we define the orbifold homology of X to be the homology of AX with a local
degree shifting given, on a component of a certain fixed age, by —2age o I. According
to Formula (16.1.2), the local degree shifting is also equal to dim —d + 2age.

The orbifold cohomology is HS, (X) = H*~228°(AX) (see [17, 27]). Note that the
shift of degrees are not the same, but rather are Poincaré dual. Indeed, since AX is an
oriented orbifold, there is the Poincaré duality homomorphism #: H,(AX) — H*(AX)
obtained as the composition (16.1.1) above on every connected component of AX.
Since AX has in general several connected components of different dimensions, this is
not a graded map with respect to the usual grading. However, we have the following.

Lemma 16.2. — The Poincaré duality homomorphism
H.(A%) -2 H*(A%)

maps HP™ (%) into H3#(X). We call it the orbifold Poincaré duality homomorphism

orb
P Ho(X) — HiTH(%).
Proof. — It follows from Formula (16.1.2). d
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16.2. Orbifold intersection pairing and hidden loop product

Recall that, if X is a manifold, then the homology H, (%) has the intersection pairing
and the cohomology H*(X) has the cup-product. The Poincaré duality homomorphism
is an algebra map. However, if X is not compact, the intersection ring and cohomology
ring may be very different from each other (for instance, if X is not compact, He(%)
has no unit).

Chen-Ruan [17] defined the orbifold cup-product on the cohomology HJ,, (%) of
an almost complex orbifold X, generalizing the cup-product for manifolds. We will
define the analogue of Chen-Ruan orbifold product in homology. Our construction
generalizes the intersection pairing for manifolds. Note that we do not assume our

orbifolds to be compact.

Our definition of the orbifold intersection pairing is as follows. There are the canon-
ical maps j : AX xx AX —» AX x AX and m : AX xx AX — AX (see Section 11.1) and
a Gysin homomorphism j': H(AX x AX) —» H(AX xx AX) (in homology) because j
is strongly oriented. Note that this Gysin maps is not the same as the one obtained
by pulling back (as in Section 11.1) the orientation class of the diagonal X — X x X
in general.

The main ingredient in the definition of Chen-Ruan orbifold cup-product is the so
called obstruction bundle whose construction is explained in detail in [17] and [27].
Another very nice reference for this is [40]. The obstruction bundle is a bundle over
AX xx AX denoted Dx. We denote ex = e(Ox) the Euler class of Ox. The orbifold
intersection pairing is the composition:

(16.2.1) H(AX) ® H(AX) =5 H(AX x AX) <5 H(AX xx AX)
2% H(AX xx AX) 25 H(X).

Theorem 16.3. — Suppose X is an almost complex orbifold of (real) dimension d.

1. The orbifold intersection pairing defines a bilinear pairing
HY™ (%) ® HY™ (%) = HZS_4(%).
2. The orbifold intersection pairing M is associative and graded commutative.
3. The orbifold Poincaré duality homomorphism P°°: HI™(X) — HI1*(X) is
a homomorphism of C-algebras, where Hg;;(%) is equipped with the orbifold
cup-product [17].
Recall that graded commutative means that, for any z € H;([AX]ageor=k) C
Hb, (%) and y € H;([AX]ageor=¢) C H;?_"_bze(%), one has
TMy= (_1)(i+2k)(j+2e)y A .

Proof. — 1. By Riemann-Roch, the obstruction bundle Oy satisfies the following
well-known formula (see [27] Lemma 1.12 and [17] Lemma 4.2.2):

(16.2.2) rank(Ox) = 2(age o p1 + age o py — age o m) + dimy — dim om
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where p1,ps : AX xx AX — AX are the projections on the first and second factor
respectively, dimg: AX X AX — Z is the dimension function of the orbifold AX xxAX
and rank : Ox — Z is the rank function of the vector bundle Ox (as a real vector
bundle). Since j : AX x5z AX — AX x AX has codimension equal to dim op; +dim ops —
dimg, the result follows from Formula (16.2.2) and Formula (16.1.2).

2. Since flip(Dx) = Ox (for instance see [27]) and ex is of even degrees (thus
strictly commutes with any class), the commutativity follows as in the proof of 11.1.
It remains to prove the associativity. Consider the Cartesian diagrams

(16.2.3) . AX xx AX X AX
J(12)3 %
AX x5 AX xx AX AX x AX
AX Xx AX
(16.2.4) AX x AX xx AX

J1(23) ma3
/
AX xx AX x¢ AX

%

AX Xx AX

AX x AX

\

The map j12)3, ji(23) are the canonical embeddings induced by j : AX xx AX —
AX x AX (applied, respectively, to the last two and first two factors). The maps m;;+1
(¢ = 1,2) are induced by multiplication of the components 7,3+ 1. Similarly we denote

Dij: A X Xx AX xx AX - AX, i#j
the map (p;, p;) induced by the projections on the component ¢ and j and

j12=ind:AxX3—*A:£XxAxXAx,

joz =id xj : AX*3 — AX x AX xx AX

the respective embeddings. The excess bundle €;; associated to diagram (16.2.3) is
defined as follows . There is a canonical map from the normal bundle Nj,, . of

J12)3

AxxxA.’{xfof — A.’i-:xxA%xAx
to the restriction m}, N; of the normal bundle of AX xxAX 2 Ax. By definition €5 =

Coker(Nj,,,, < mizN;). Similarly, there is the excess bundle €53 = Coker(Nj, ;) —
m34N;) associated to diagram (16.2.4). The proof of Theorem 10.8 together with the

ASTERISQUE 343



16.2. ORBIFOLD INTERSECTION PAIRING AND HIDDEN LOOP PRODUCT 129

commutativity of ex with any class, shows that
(amB)my = m. (j!(mm*(j!u(a x B x ) Npiyex)) Nex)
= my (mi2. (j(12)3!((j!12(a X B X 7) Npiyex) Ne(€12)) Nex)
! * *
= m,(gz) (](2) (a X IB X ’)’) npuex ﬂ 6(612) ﬂ mlzex) .

The second line follows from the excess bundle formula (see Proposition 9.5) applied
to diagram (16.2.3). Similarly,

am(Bmy) = m® (j(z)!(a X B xv)Npszex Ne(Ezz) N m§3ex) .
Hence we need to prove that the bundles Ox and €;; satisfy the following identity
(16.2.5)  pi(Dx) + mia(Ox) + €12 = pi3(Ox) + ma3(Ox) + €23

in the K-theory group of vector bundles over A¥X xx AX xx AX.

The main property of the obstruction bundle O% is that it precisely satisfies an
“affine cocycle condition” see Equation (16.2.9) below. In fact, there are two Cartesian
squares (for 7 = 1,2), analogous to (16.2.3), (16.2.4)

(16.2.6) AX xx AX
Piit+1 m
y \
AX xx AX xx AX AX
AX Xx AX

Since p12 = p12 © j(12)3 and p1 = p1 0 j, it is easy to check that the “excess” bundles
associated to diagram (16.2.6) for ¢ = 1,2 coincide with &;2 and €,3 respectively.
Indeed, we have the following identities

(16.2.7) €12 = piom ™ Thax + ThxxxAxxxAx — PIaTaxxxax — M2 TAxx x A%,
(16.2.8) €33 =posm™ Tax + TaxxxaxxzAx — Po3TAxxxAx — Moz TAxx x A

in the K-theory group of vector bundles over AX xx AX xx AX. It follows from
Lemma 4.3.2 and Proposition 4.3.4 in [17] (also see Lemma 1.20 and Proposition 1.25
of [27] for more details) that O satisfies the following “associativity” equation

(16.2.9) P12(0x) + mx(Ox) + €12 = p33(Ox) + my3(Ox) + €23

in the K-theory group of vector bundles over AX xx AX xx AX. This is precisely
identity (16.2.5); the associativity of m follows.

3. Since dim : AX — Z is always even, $ commutes with the cross product. Using
general argument on the Poincaré duality homomorphism in [6], Proposition 9.3 and
tubular neighborhood (see Section 8), it is straightforward that P o f' = f*& for
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any strongly oriented map of orbifolds f: ¥ — ). Hence the following diagrams are
commutative

HY(AX) ® H*(AX) > H*(AX x AX) —> H*(AX xx A¥)

d d d

X J

H.(AX) ® Ho(AX) = H.(AX x AX) —> H,(AX xx AX),

H*(AX xx AX) =% H*(AX xx AX) > H*(X)
o o |
Ho(A% xx AX) 2 H,(AX xx AX) 7% H.(%).
Now the result follows from Lemma 16.5 below. O

Remark 16.4. — If X is compact, the orbifold Poincaré duality map is a linear iso-
morphism, thus an isomorphism of algebras according to Theorem 16.3.3.

Lemma 16.5. — The Chen-Ruan orbifold cup-product [17] is the composition
H*(AX) ® H*(AX) =5 H*(AX x AX) 5 H*(AX xx AX)
Uex He (A% xx AX) T H(AX).

Proof. — The Chen-Ruan pairing in [17] is defined, for compact orbifolds, by the
formula

(16.2.10) (@ Uorb By V)orb = [\x i pi(a) Ups(B) Um*(I*(v)) Uex.

Until the end of this proof, let us write u for the pairing given by the formula of
Proposition 16.5. We compute (u(a, 8),¥)orb- Denoting [, . the orbifold integration
map defined in [17], we find

(s B), Vors = /A M@ BUI W)

Il

/ m! (p}(c) Upy(8) Uex) U I* ()
AX

I

[ @@ up(8) Uex ume ()
AX

[ s@up@um ) ve.
AXXxxAX

By nondegeneracy of the orbifold pairing, we get a Uom 8 = u(a, B). O
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Similarly to the twisted hidden loop product 11.1, we now introduce orbifold in-
tersection pairing twisted by a cohomology class.

Definition 16.6. — Let o € H*(AX xx AX) be a (not necessarily homogeneous) coho-
mology class. We define the orbifold intersection pairing twisted by o, denoted M*, to
be the composition

H(AX) ® H(AT) = H(AX x A¥) 2
N(exVUa)

H(AX xx AX) "5 H(AX xx AX) 25 H(X).

For a vector bundle € over AX xx AX, we call m*(®) the orbifold intersection pairing
twisted by €.

With similar notations as for Theorem 10.3, we prove the following.

Proposition 16.7. — 1. If a satisfies the cocycle condition:
piz(a) U (m x 1)*(a) = p33(a) U (1 x m)*(a)

in H*(AX xx AX xx AX), then m*: H(AX) @ H(AX) — H(AX) is associative.
2. If € is a bundle over AX xx AX which satisfies the cocycle condition

(16.2.11) P12(€) + (m x 1)*(€) = p33(€) + (1 x m)*(€)
in the K-theory group of vector bundles over AX xx AX xx AX, then me(® s
associative.

Proof. — It follows as Theorem 11.3 and Theorem 16.3.2. O

We will now explain the relationship between the hidden loop product and the
orbifold intersection product. Namely, the first one is obtained by twisting the second
one by an explicit vector bundle over AX x x AX.

The inverse map I: AX = AX induces the “inverse” obstruction bundle D;l =
(I xx I)*(Ox) which is also a bundle over AX xx AX. We let 9x be the normal
bundle of the regular embedding AX xx AX 5 AX.

Theorem 16.8. — For any almost complex orbifold X, the hidden loop product co-
incides with the orbifold intersection pairing twisted by D;l @ Ngx, i.e., for any
z € H (AX),

zxy =z Pz ON) o

The proof will reduce to the following two lemmas.

The first lemma relates the hidden loop product with the Gysin homomorphism
j't H(AX x AX) — H(AX xx A¥) and yet another canonical bundle on AX xx AX.
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We define the full excess bundle §x as the excess bundle associated to the Cartesian
diagram

AX
noNT
AXzAX X

mN e
A

X

i.e., §x = Coker (NA N

Exx AXDAZ - Axi’.x)‘
Lemma 16.9. — Let X be an almost complex orbifold. The hidden loop product * :
H(AX) ® H(AX) —» H(AX) is equal to the composition

H(AX) ® H(AX) =5 H(AX x AX) 2o H(AX xz AX)

"B H(AX xx AX) ™5 H(AX).

Proof. — Apply the excess formula (Proposition 9.5). |

The next Lemma relates the four bundles introduced above.
Lemma 16.10. — The obstruction bundle satisfies the identity

Dz +Ne + O =Fx
in the K -theory group of vector bundles over AX xx AX.
Proof. — Recall that Ox is solution of the Equation (16.2.9):
Pi2(Ox) + miy(Dx) + €12 = po3(Ox) + my3(Dx) + €as

in the K-theory group of vector bundles over AX xx AX xx AX.

For any permutation 7 € X3 of the set {1,2, 3}, there is a map ¥, : AX xx AX —
AX xx AX defined as the composition

P12

A xx AZPPRE s AT xx AX — > AX xz AX xz AX 22 AX xz AX,

where 7 is the permutation of factors induced by 7. It is well-known (see [17], [27]
Lemma 1.10) that 7 (Ox) & Ox.

Let r be the map
(P1,p2, T op2): AX xx AX — AX xx AX xx AX.
Note that

pizor =id, (migor)=TI0T 13,  pazor=(p2,1opa).
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and furthermore r*mj;Taxxax = pi(Tax). It follows (using Equation (16.2.7),
Equation (16.2.8) and Mx = m*Tprx — Tazxxeax) that the pullback of Equa-
tion (16.2.9) along r yields the identity

O+ 07" +Mx = ev'Tx — Taxxzaz — PiTaz — P3Tax
+77p23(Dx) + 7'ma3(Dx)

in the K-theory group of vector bundles over AX xx AX. Since the right-hand side of
the first line is isomorphic to Fx, it suffices to prove that r*p35(Ox) and r*m33(Ox)
have rank 0. This is an easy application of the Riemann-Roch Formula (16.2.2). O

Remark 16.11. — One can easily check that the full excess bundle also satisfies the
“associativity” Equation (16.2.9). It thus follows from Lemma 16.10 that the twisting
bundle Ny + D;l satisfies Equation (16.2.11).

Proof of Theorem 16.8. — By Lemma 16.9, it suffices to prove that e(Fx) = ex U
e(D%" ® MNzx) which is trivial by Lemma 16.10. O

Remark 16.12. — Let us sum up the philosophy underlying Theorem 16.8. In Sec-
tion 11.1, we have defined an associative product on H,(AX) by using the Gysin
map A': Hy(AX x AX) — He_4(AX xx AX) for general oriented stacks. In the case
of orbifolds, one can directly use the regular embedding j: AX xx AX — AX x AX
(more precisely the regular embeddings associated to the various connected compo-
nents of AX) to define a Gysin map j'. Due to the excess formula (Proposition 9.5),
the map j' does not induce an associative product, so that to get such a product one
needs to twist this map by a class satisfying the “affine cocycle” condition (16.2.5). In
the case of almost complex orbifold, the obstruction bundle is a small bundle satis-
fying this equation. The excess formula ensures that the Gysin map A' is the Gysin
map j' twisted by the Euler class of a bundle (the full excess bundle by Lemma 16.9).
Then Lemma 16.10 proves that the obstruction bundle is a (virtual) subbundle of the
full excess bundle and indeed, measures the difference between these two bundles and
hence between the two Gysin maps.

Remark 16.13. — According to Theorem 16.8, Theorem 16.3.3 and Remark 16.4, if X
is compact, the orbifold Poincaré duality homomorphism #°™ induces an isomorphism
of algebras between the hidden loop algebra (H,(AX), *) and the orbifold cohomology
equipped with Chen-Ruan orbifold cup-product twisted by the class e(D}IX ONx). A
nice interpretation of this isomorphism has recently been found by Gonzalez, Lupercio,
Segovia and Uribe [35]. They proved that the hidden loop product of compact complex
orbifolds is isomorphic to the Chen Ruan product of the cotangent bundle T*X of X.

16.3. Examples of orbifold interesection pairing

Let us consider now a few examples. Note that the orbifold cup-product has been
computed for many compact orbifolds. For instance one can refer to [17, 18, 27, 34].
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Complex toric orbifolds were dealt on in [33, 41]. By Theorem 16.3, the intersection
pairing coincides with the orbifold cup-product in these cases.

Example 16.14. — Let G be a finite group. Then [x/G] is a complex orbifold. It follows
from Theorem 16.8 that the intersection product is the same as the hidden loop
product in that case. Note that all the ages are trivial and thus HP™®(X) = H;(AX)
for all i’s. Thus the algebra (H2™, M) is concentrated in degree 0 and isomorphic to
the center Z(C[G]) of the group algebra C[G], see Example 17.7.

Now let V be a C-linear representation of G of dimension n > 0. Then the quotient
stack [V/G] is a complex orbifold. Since all invariant subspaces V9 (g € G) are con-
tractible, the homology H,.(A[V/G]) is still concentrated in degree 0 and isomorphic
to (C[G])g as a vector space. However, the ages are no longer trivial (and depends on
the specific representation) and add an interesting combinatorial grading to (C[G])g-
It follows that

H™(G)= @ Clage(s™)]
lglec(a)
where C(G) is the set of conjugacy classes of G and C[q] means C placed in degree g.
Since the age is invariant by conjugation, Z(C[G]) (which is isomorphic to H™*(G)
as a vector space) inherits a non-trivial grading induced by the age. Since [V/G] is of
dimension n > 0, the hidden loop product is trivial. Similarly, the pairing [g] @ [h] = 0
if either V9 or V" is non-trivial, while if V9 = V* = {0}, [g] @ [h] is non-zero and
behaves as in the case of [x/G]. It follows that there is an isomorphism of graded
algebras
(HIP([V/G)),m) = Zv,g ® Anny,c

where Zy ¢ is the (graded by the age) subalgebra of Z(C[G]) generated by the el-
ements with trivial invariant subspace and Anny g is the complementary subspace
equipped with the zero multiplication. Finally, the orbifold cohomology ring H3, (%)
is isomorphic, as a graded ring, to Z(C[G]) equipped with the age grading. Thus for
a generic representation none of the three rings are isomorphic as rings, though they
are as vector spaces.

Example 16.15. — We consider the Kummer surface orbifold & = [(S')*/Z/2Z]
where Z/2Z acts diagonally by z — 1/z (on each factor). Then £ is a complex
orbifold with 16 orbifolds points {((—1),...,(—1)§)}. We identify the above sets
with (Z/2Z)* (and we will denote € = (e1,...,€4) an element in (Z/2Z)*). The age
of the generator 7 of Z/2Z is one at every orbifold point. Thus, as a graded vector
space,
Hb(8) = Ho(®) © (C[-20)((2/22)")

where C[—2] is the vector space C placed in homological degree 2. Since the coefficient
ring is C, the cohomology of £ is computed by the cohomology of invariant form

Q((Sl)4)Z/ ?% and its homology by the homology of Z/2Z-coinvariant chains. Hence

Hy(R) = C-160C[-2)(a;j, 1 <i<j<4)@®Cl-4aga
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where ag is the fundamental class of & and a; ; is the class given by the cross product
of the fundamental classes of the i*" and j* circles in (S 1)4. Thus

HI™®(R) 2 C- 10 C[-2/(ai;, 1 <i<j<4)a (C[-2]){(Z/2Z)*) & C[-4]ag

The computation of the intersection pairing is similar to the computations in Sec-
tion 17.3. We find that ag is a unit for the orbifold intersection pairing and that
a;,; Mag,; = 1 if the 4 indices are distinct and 0 otherwise. The (degree 2) generators
€ € (Z/2Z)* comes from the degree 0 homology of the corresponding orbifold point.
Hence eMe =1 and eMe’ = 0 if € # €. A degree argument also shows that ema; ; = 0.
This finishes the description of the whole intersection pairing of 8. The hidden loop
product of £ is a little bit different since € x € = 0 for the latter product.

Example 16.16. — Here is a (rather trivial) non compact example of orbifold product.
Let d be a positive integer and consider the weighted projective stack P(d, d,...,d) =
[V/C*], where V := C"*! — {(0,0,...,0)} and the action of A € C* is multiplication
by (A%, A%, ..., A%). Let 4l be an open substack of P(d, d, ..., d). Denoting u4 the group
of d**roots of unity, we have
A= JTu

£€pa
Note that the coarse moduli space of P(d, d, .. ., d) is CP", and the coarse moduli space
of 4 is an open U in P". Combining the results of Example 16.14 and Remark 17.2
we see that the orbifold homology ring of  is

H™ () = Clud] ® Ha (),

where H,(U) is the usual homology of U endowed with intersection product, and
C|ud) is the group ring of the group ug of d** roots of unity (sitting in degree zero).

Example 16.17. — We compute the orbifold homology of the weighted projective line
P(m,n). Recall that, for m and n positive integers, P(m,n) := [V/C*], where V :=
C% — {(0,0)} and the action of A € C* on V is by multiplication by (A™,A"). We do
not assume n and m to be relatively prime integers.

Note that, except for CP! = P(1,1), a weighted projective line is never a (orbifold)
global quotient as it is simply connected. We can, however, cover P(m,n) by two
global quotient open substacks as follows. Denote the point [0 : 1] € P(m,n) by 0 and
the point [1 : 0] € P(m,n) by co. Then

B(m,n) — {00} & [C/una] and P(m,n) — {0} = [C/pm],
where p,, & Z/nZ stands for the group of nt® roots of unity. The action of £ € p,, on C
is given by z +— ¢9z, where d = gcd(m, n). It follows that the inertia group of the point
0 is 4y, and the inertia group of oo is pm,. The inertia group of every other point is ug.
2in/d _ (ezm/n)n/d
m/d

Note that pg sits inside p, as the cyclic subgroup generated by e

and similarly, it also sits inside m, as the cyclic subgroup generated by (e%"/™)
Let us describe the inertia stack AP(m,n). Over the point 0 € P(m,n) consider a
disjoint union of n copies of [*/u,] indexed by p.,. Similarly, over the point co consider
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a disjoint union of m copies of [*/u,,] indexed by p,. For every ¢ € pgq, “join” the
copies of [*/uy,] and [*/um] corresponding to ¥ € p, and ¥ € uy,, respectively, by
viewing them as the 0 and the oo points of a new copy of P(m,n) (indexed by ).
Then, AP(m,n) is the union of all these, that is,

AP(m,n) = ( H [*/'u"]) Upq ( H lP’(m,n)) Upna ( H [*//‘m])

£€un PYEp4 CELm

The map AP(m,n) — P(m,n) is the obvious one (it is the identity on each copy
of P(m,n) in AP(m,n)).

Let us now describe the orbifold homology HS™(P(m,n)). First we determine the
ages of the twisted sectors of P(m, n). For every ¥ € ugq, the age of P(m,n), is zero.
For ¢ = %™/ € p,,, the age of [*/uy)¢ is {dl/n}. (For r € R, we define 0 < {r} <1
to be the residue of 7 modulo 1.) Similarly, the age of [*/um]c, ¢ = €2™/™ € p,y,, is
{dk/m}. Observe that the ages of two twisted sectors [*/pin|¢ and [*/ )¢ are distinct
unless they lie on some P(m,n), (that is, if £ = ( = 9, for some ¥ € puq).

The above decomposition of AP(m,n) implies that HS™(P(m,n)) is a union of
three subrings Ry, R and R, (given by the sectors/copies over the point 0, co and a
generic point of P(n,m)) . Only R is a unital subring.

The ring R is the homology of [],¢,, P(m,n) and is isomorphic, as a graded ring,
to C[ua]® H,e (CP'), where the elements of the group ring p4 are sitting in degree 0 (this
computation is the one done in Example 16.16). More precisely, if 8 € Ho(CP') = C
is the homology class of a point and a € H(CP') = C is the fundamental class, then
1 ® B corresponds to the homology of a point in Ho(P(m,n)y) and ¥ @ a corresponds
to the fundamental class of P(m,n)y. In particular, the unit element of R (and also
of the whole HS™(P(m,n)) is 1 ® c.

The ring Ry is isomorphic, as a vector space, to Clu,] (as in Example 16.14).
For & € pn, the basis element & € C[u,] corresponds to the generator of He ([*/pnle,) =
Hy(%) = C. Its degree is equal to 2 — 2{—dl/n}, where § = €?7/. Note that if
Y = &n/q € pa C Pn, then [*/pn]y C P(n,m)y and the class £, q is identified with
the degree 0 generator of Hy(P(n,my). Every class & in Ry is given by (a degree
shifting of) an ordinary degree 0 homology class of the point 0 viewed as lying in the
&;-fixed point locus 0% . The map m: AP(m,n) XPp(n,m) AP(n,m) — P(n,m) clearly
maps 0%% (the intersection locus of the copies of [*/pn]e, and [*/ule; indexed by &;
and ;) to 0%+i (the copy of [x/un] indexed by &:4;). If & is in pg (that is, it is of the
form ¢n/d), then & m§; = 0 for degree reasons, since &; is a degree zero homology
class. Thus to compute the intersection pairing, it now remains to analyze the
obstruction bundle in the other cases. For an integer i, let us denote 0 < {i}, < n/d
the residue of i modulo n/d. From (the Riemann-Roch) Formula (16.2.2), we find
that, for &;,¢; ¢ pq, the obstruction bundle (over the copies indexed by &; and §;) is
of rank 0 if

{i}n +{j}n < n/d
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and is of rank 2 otherwise. Indeed, if {i}, +{j}n < n/d, then {d(i+j)/n} = {di/n}+
{dj/n} and dimy = 0 = dimom. If {i}, + {j}» > n/d, then {d(i + j)/n} = {di/n} +
{dj/n} — 1 and dim; = 0 = dimom. If {i},, + {j}» = n/d, then {d(i + j)/n} =
{di/n} + {dj/n} — 1 and dimy; = 0 but now dim om = 2 (the dimension of the copy
P(n, m)Ei+j)'

Thus, it follows that the orbifold intersection pairing &; M &; of basis elements &;
and §; is given by

&@éz{gﬂ if {i}n + {j}n <n/d  and &, ¢ pa

! 0 if {i}n +{j}n>n/d oré& oré; e uq

In particular, R is generated, as a graded ring, by the elements £1,£1n/a,--.- It is
easy to describe the action of R on Ry. Indeed, for degree reasons, (¢ ® 8) m§; = 0.
However, since the fundamental class of P(n, m)g,, , intersects [*/un]¢, for any &; € pn
with a trivial obstruction bundle, we have ({sn/qa ® a) M& = &y4n/a (in particular
1® B acts as the unit). Summing up, we have

{ @epHnE = 0
Eenja®a)M& = &iymya

(16.3.1)

(16.3.2)

The ring R, is isomorphic, as a vector space, to Cluy,]. For (x € pm, the basis
element {; € Clum] corresponds to the generator of He([*/ptm]¢,) = Ho(*) = C. Its
degree is equal to 2—2{—dk/m}, where ¢ = e*™/™ We denote 0 < {i},, < m/d the
residue of any integer ¢ modulo m/d. A computation similar to the one of Ry shows
that, the orbifold intersection pairing {, M (4 of basis elements (,,({; € pm is given by

Co MGy = Cptq if {P}m +{g}m <m/d and Cps Cq & pa
P 0 if {p}m + {a}m > m/d or {, or {; € pg
and that the R action on R is given by
{ @®pnG = 0
(Cema® @) Ml = Cpiemya-

Since the points 0 and oo do not intersect, it is immediate that Ry M Ry, = {0}.

(16.3.3)

(16.3.4)

From the above descriptions (identifying the sectors [x/unle,,,, with their image
in P(n,m)e,, ,), we find that the orbifold homology HZ™(P(n,m)) is the graded ring

H™ = Ro ® R® Roo/(§en/a = Em/a ® & = Cemya ® & = Comya)

where the product structure is given by Formulas (16.3.1), (16.3.2), (16.3.3)
and (16.3.4).

The reader can check that the orbifold product on H™ (P(m,n)) is Poincaré dual
to the Chen-Ruan orbifold cup product in Example 5.3 of [17] (note that loc. cit.
only considers the relatively prime case). It is not hard to check that the hidden loop
product is different. Indeed, the grading is different (concentrated in degree 0 and 2)
and the only non zero products of basis elements are those involving ¥ ® .
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CHAPTER 17

EXAMPLES

17.1. The case of manifolds

Smooth manifolds form a special class of differentiable stacks with normally non-
singular diagonal (Definition 8.15). Denote by the same letter M a manifold and its
associated (topological) stack. The diagonal A: M — M x M is strongly oriented iff
the manifold M is oriented.

Proposition 17.1. — Let M be an oriented manifold. The BV-algebra, Frobenius al-
gebra and (non-unital, non-counital) homological conformal field theories structures
of Hy(LM) given by Theorem 13.2, Theorem 12.5 and Theorem 14.2 coincide with
Chas-Sullivan [14], Cohen-Jones [21], Cohen-Godin [20] and Godin [32] ones.

Proof. — By Proposition 5.7, the free loop stack of M is isomorphic to the free
loop space LM. It follows from Proposition 9.3 and Proposition 8.32 (in the case
G = {1}), that the Gysin maps of Sections 10, 12, 13 coincide with the Gysin maps
in [21] Section 1 (also see [28] Section 3.1). O

Remark 17.2. — When M is an oriented manifold, the hidden loop product
on H(AM) = H,(M) is simply the usual intersection pairing. It is also imme-
diate that, if M is an almost complex manifold, the orbifold intersection pairing of M
also coincides with the usual intersection pairing.

Remark 17.3. — Similarly, the brane product for manifolds given by Proposition 15.1
coincides with Sullivan-Voronov one [23] and Chataur one [15].

17.2. Hidden loop (co)product for global quotient by a finite group

An important class of oriented orbifolds are the global quotients [M/G], where G is
a finite group, M is an oriented manifold together with an action of G by orientation
preserving diffeomorphisms. In this case, the homology of the inertia stack H(A[M/G])
is well known. Assume that our coefficient ring k is a field of characteristic coprime
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with |G| (or 0). The inertia stack of [M/G] is represented by the transformation
groupoid

(17.2.1) I Mo x =] Mo

9geG geG
where the action of k € G moves y € M9 to y - h € M*™'9"_ Furthermore,

Axxx Ax=[ [ Mo*/G),
g,heG

where M9" = M9INM", and the “Pontrjagin” map m : AX xx A¥X — AX is induced by
the embeddings iy »: M9" — M9". Since |G| is coprime with char(k), the homology
groups of the inertia stack A[M/G] are

HAM/G)=H, | ][] M9> o (@ H.(M9)> )
G G

g€G g€G

The excess bundle Ex(M, X, X') of the diagram of embeddings

X
7N
zZ=XxNX' M
~. 7

Xl

is the cokernel of the bundle map Nz x — (Nx/—nm)/z. Thus Ex(M,X,X') is
the virtual bundle Ty — Tx — Tx' + Tz (each component being restricted to Z).
For g, h € G, we denote Ex(g,h) := Ex(M, M9, M"). The bundles Ez(g, h) induce a
bundle Ex on A[M/G] x[51/6) A[M/G] whose Euler class is denoted e(Ez). Since the
diagonal G — G x G is a group monomorphism, there is a transfer map

8ot (P Ho(M?) ® Hi(M™)axe — ( @D Ho(M?) ® Ho(M")),,
g,h€eG g,heG

explicitly given (see Equation (9.3.1)) by

trng(x) = Z z-(g,1).

geG

The maps ig4: M9P — M9, 4, : M9* — M" yield Gysin morphims (i, x
in)': Ho(M9 x M") — Hy(M9h).
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Proposition 17.4. — The hidden loop product x : H(A[M/G]) ® H(A[M/G]) —
H(A[M/G)) is the composition

<@ H(Mg)) ® <@ H(M")) - ( @ H(M? x Mh)> "G xo ( @ H(M? x Mh))
G G GxG G

geG heG g9,h€G 9,h€G
ioxin )
69(’_9_,”” (@ H(Mg,h)) nNe(Ez) (@ H(Mgvh)> M, (@ H(Mk)>
g,heG G g9,h€G G keG G

The proof of Proposition 17.4 relies on Lemma 17.5 below, which is of independent
interest. Note that there is a oriented stack morphism

(17.22)  @: AIM/G] xmye AIM/G = | [] Mgvh/G] — A[M/G] x A[M/G]
g9,heG

induced by the groupoid map (z,g) — (ig(x), 9, in(x),9).
Lemma 17.5. — The Gysin map @' is the composition

(@ H(M? x M")> Vexp (GB H(M? x M")) Ditoxn) <€B H(Mg’h)) :
GxG G G

9,heG g,heG 9,heG

Proof. — The G-equivariant map M9" — M9 x M", given by z — (iz(z),ir()),
induces an oriented stack morphism

By Proposition 9.3, ¢' = @(i, x i3)'. Then, the result follows from the functoriality
of Gysin maps and Lemma 9.4. O

Proof of Proposition 17.4. — We use the notations of Section 11.1. The Cartesian
diagram (11.1.3) (where X = [M/G]) and the excess Formula 9.5 shows that,

A' = ¢'(z) Ne(Ex).

Thus the result follows from Lemma 17.5. [}

Similarly we compute the hidden loop coproduct. For any g € G, the unit 1, €
Hy(M?) induces a map

1,: H(M?) — Ho(M9) ® H(M?) — H(M? x M?).

Proposition 17.6. — The hidden loop coproduct is induced (after passing to G-invari-
ant) by the composition

trS @i!
P ro) ®lq P Hmo x M) "S5 P HMP x M) 2 (P H(MOR)

geG geG 9,heG 9,h€G
E. ig i)
"E P Hor) O @D o x Py = @D HMY) © H(MP).
9,h€CG 9,h€G 9,h€eG
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Proof. — Let X be the transformation groupoid [M x G =3 M M]. Unfolding the defi-
nition of the groupoid AX (see Section 12.3), one finds that AX is the transformation

groupoid
(Gx HM") x G2 =G x [] M,
hea heG

where the action of (ho,h/2) € G? on (g,m) € g x M" is (halghl/g,m.ho). The
Morita map p: AX — A[M/G] (Equation (12.3.2)) has a section  defined, for m € M"
and hg € G, by k(m, hg) = (h,m, hg, ho). In particular x induces an isomorphism in
homology and commutes with Gysin maps. Thus the Gysin map A' of Section 12.3
is the composition of k. with the Gysin map associated to the sequence of Cartesian
diagrams

(17.2.3) LI Mo*/G] — [Gx[[M"/G] — [G x [[M"/G x G]

l | |

[M/G) [M x M/G] —— [M/G] x [M/G].

By Proposition 9.5 and Lemma 9.4, the Gysin maps associated to the left square and
the right square are, respectively, i;’h(-) Ne(Ez(g,h)) and TrS, . Since k, = ®1,,
the result follows. O

Example 17.7. — Consider [*/G] where G is a finite group. By Proposition 5.9, the
stack morphism ®: A[x/G] — L[*/G] (see Lemma 12.14) is an isomorphism. Let k be
a field of characteristic coprime with |G|. Then

Ho(A/G) = (D k)= (P*)° = Z(k(G)
g€G 9g€eG

where Z(k[G]) is the center of the group algebra k[G]. By Propositions 17.4, the iso-
morphism H,(A[*/G]) = Z(k|G]) is an isomorphism of algebras. By Proposition 17.6,
the hidden loop coproduct is given by d([g]) = > px—4[h] ® [k]. Thus the Frobenius
algebra structure coincides with the one given by Dijkgraaf-Witten [26].

17.3. String topology of [S?"*+!/(Z/2Z)"*!]
Consider the euclidean sphere
S+ = {122 + -+ |zf? = 1,2, € C}

acted upon by (Z/2Z)"*! identified with the group generated the reflections across
the hyperplanes z; = 0 (0 < i < n). Let R = [S?"*1/(Z/2Z)"*!] be the induced
quotient stack which is obviously an oriented orbifold of dimension 2n + 1. We now
describe the Frobenius algebras associated to AX and LX. Until the end of this section
we denote R = (Z/2Z)"+1.
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The hidden loop product has a very simple combinatorial description. Let A™ be a
n-dimensional standard simplex. Denote vy, ..., v, its n + 1-vertex and Fy,..., F, its
n-faces of dimension n— 1. In other words F; = A(vy,...,7;,...,y,) is the convex hull
of all vertices but v;. More generally we denote F;, ;. := F;, N---NF;, the subface
of dimension n — k given by the convex hull of all vertices but v;,,...,v;, . We assign
the degree 2n — 2k + 1 to a face F;, . ;, of dimension n — k.

Proposition 17.8. — Let k be a ring with 1/2 € k. Then Ho(AR) is the free k-module
with basis indezed by elements r € R — {1} of degree 0 and all faces F;, . ;, in degree
2(n — k) + 1 (in particular Fy = A™ has degree 2n + 1), i.e.,

Ho(AR) = k'Rl‘l@( fan kF)

k=0...n
0<i1 << <n

The hidden loop product x is defined on the basis by the identities
Fi i * iy = Fiy i, O Fj, 5

if the two subfaces have transversal intersection in A™, and is 0 otherwise. The element
A™ = Fy is set to be the unit and all other products involving a generator of kIFI—1
are trivial.

In other words, Ho(AR) = k!f1=1, and Hy;,;(AR) is the free module generated
by the subfaces of dimension 7 of the simplex A™. The product is given by transverse
intersection in A™.

Proof. — Write s; (i=0...n) for the reflection across the hyperplane z; = 0. Then,
for 0 <k <n,

(52n+1)8i1-..8ik o (Zo, e, Zn) e (Cn+1 / E Izj|2 =1 o~ SZn—2k+1'
JFi1,. ik
Thus
H, ((Szn+l)3i1.--3ik) >k ‘/slil...s [2(n - k) + ]_]
Since these generators are R-invariant, |R| is invertible in k and (S?7+1)so-sn = g,
one has

®kF]
k

i ’ll...'ik

H.(Afﬁ) &~ @ H.((SZn+I)Q)R o @ H.((SZn-}-l)g)

g—{1}€R g—{1}€R
By Proposition 17.4, the hidden loop product is the composition of tr&, . with
igXin)' e(Ex
(17.3.1) H((S2”+1)9 X (32n+1)h) (Qi’h) H((32n+l)g,h) n (E_(S)I»h))
H((S2n+1)g,h) my H((S2n+1)gh)

Clearly trgx g is multiplication by the order of R. Furthermore F;, ; and Fj, _; are
transversal iff the sets {41,...,4x} and {j1,...,5;} are disjoint iff the submanifolds
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(§2nt1)si--six and (S§2n+1)%1-% are transversal in (S2"*1). In particular, if F;, ;,
and Fj, . j, are transversal,

(Szn+1)8i1...sik,SjI..‘sjl — (S2n+1)3i1...Sik.Sjl...Sjl’

the excess bundle is of rank 0, m, = id and by Poincaré duality,

. . / _ ’
(231'1“-31‘,0 X zsjl---sn) ( 1.3k X Fh Jt) - Fll k1.t
If F;, i, and Fj, . j are not transversal, one finds
. ' ’ _ ’ ’ /
(zsil"'sik X 7’31'1"'31;) (Fll gk X FJl ]l) - F’h ik n F]l g F{il,m,ik}U{jx,n-,jl}

and (§27+1)si Sk contains (§27H1)%i1--%ik:%i1--% a5 a submanifold of codi-
mension > 0. It follows that

M (F{,il,...,ik}u{jl,...,jt} n e(Ea:)) =0
for degree reason. Similarly, F;, . g = 0 for any g € R. The result follows by
identifying F;, . ;, with 27"7'F/ . as basis element. O

Remark 17.9. — 1t is easy to show that the hidden loop coproduct is trivial. Indeed,
for degree reason, only the class of Fi might be non zero. Proposition 17.6 shows the
hidden loop coproduct is induced by the composition

nee((32n+l)

H(s2n+1) Z__:’; @H((S%H—l)g) @H S2n+1)g)

Since (S2"*1)" is an odd dimensional sphere, its Euler class is 2-torsion, hence trivial
by our assumption on k.

Since R = (Z/2Z)™*! is abelian, its group algebra is a Frobenius algebra (see
Example 17.7 above).

Proposition 17.10. — Let k be a field of characteristic different from 2. There is an
isomorphism of BV-algebras as well as Frobenius algebras
(17.3.2) H,(LR) = H,(LS*™)® k[(Z/2Z)"1].

The BV-operator on the right hand side is B ® id where B : H,(LS*"*!) —
Hq,1(LS?™*1) is the BV-operator of the loop homology of S?"*1.

Proof. — According to Proposition 5.9, the free loop stack LR is presented by the
groupoid
X =[] Ze8+* x R= [ 2,5
gER gER
Hence
H,(LX) = (@ Ho(2,5)

geR

R’

Since R is a subgroup of the connected Lie group SO(2n + 2), which acts on S?"+1,
for all g € R there is a continuous path p : [0,1] — SO(2n + 2) connecting g to the
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identity (that is p(0) = g, p(1) = 1). In particular, any path f € P,S?"*! can be
composed with the path f(0).p(t) yielding a loop T,(f) € LS?"+1. It is a general fact
that T,: P,8%"*T! — LS?"+1 i5 a G-equivariant homotopy equivalence (see [46] for
details). We write
T: [] #es* - [ L™+
geR g€R

for the map induced by the maps T, for g € R. Since the G-action on LM = P, M is
trivial, the isomorphism (17.3.2) follows.

It remains to prove that the linear isomorphism (17.3.2) is an isomorphism of
Frobenius algebras and BV-algebras. To do so, we need the evaluation map evg :
LR — R at the groupoid level. One checks that evy is represented by the maps

evy: g)gSZ"H xR— Sl xR

defined by ev, ((f,h)) = (f(1),h). Let (f,g) € P.5?"+1 x P52+ be such that
f(1) = g(1). The composition of the path f(—) and g(—)-h gives an element m(f, g) €
P18 *1. This composition induces the stack morphism m : LR xx LR — L.
Denote by m the map

H L52n+1 X g2n+1 LS2n+1 7—n> H LS2n+1

g,h€R geER

which maps an element (v,7') € LS?>"*! X g2nt1 LS?™*! in the component (g, k) to
the element m(y,7’) in the component gh. Here m is the usual composition of paths.
The map Ty: PyS?"*+! — LS?+1 induces a commutative diagram of R-equivariant
maps

Hg,h PgSZ"“ X PhS2"+1 - Hg,h PgS2n+1 X g2n+1 Ph52n+1 s Hg PQSZ"+1
“_[*rgx'rh HTnghl/ lHTg

[Iy,n LS x L2 <— [, , LS H! X gonsr LG2+1 s [ LS?nH1,

Since LS+l — §2ntl @ G+l _, G2n+1 are fibration, the vertical arrows are
R-homotopy equivalences. It follows easily that the map

%’r : Hy([ [] LS*™*'/R]) - H,(LS*™*') ® k[R]
gER

1
is a morphism of algebras. One proves similarly that ﬁ*r is a coalgebra map.

Now we need to identify the BV -operator. Denote again LX the transformation
groupoid

[H mg52n+1 X R= H gjgs2n+l]

g€ER geER
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and recall Remark 5.10. Since the stack S! is canonically identified with the quotient
stack [R/Z], the homology H,(S*) coincides with the homology of the groupoid I :=
[R x Z = R]. The 0-dimensional simplex (0,1) € R x Z = I'} defines an element
in Co(T}) C C1(I) which is the generator of Hq(S'). The map I x LX 41X
defined, for (z,n) e R X Z, f € P4 and h € R, by 6(z,n, f,h)(t) = (f(t + z),g™h) is
a groupoid morphism representing the S!-action on LX. Since Y(6((0,1),f) = f, T
commutes with the BV -operator. O

Remark 17.11. — For the sake of completeness, we recall [22] that, H,(LS?"+1) =
k[u,v] with |v] = —2n — 1 and |u| = 2n for n > 0, and H,(LS?"+1) & k[[u, u™!]][v] if
n = 0. Thus

H, (L[S?"*1/(Z/2Z)" 1Y) = k[(Z/2Z)"* ! [u,v] if n >0, and
H,(L[S*/Z/2Z]) = k[[u,u™]][r,v]/(T? = 1) with |v| =1, |u|=0if n = 0.

Remark 17.12. — The stack morphism ®: AX — LX of Section 12.15 is represented
at the groupoid level by [[,cp(S?"11)9 — [[,cg PoS***! where z € (S?"*1)9 is
identified with a constant path. It follows easily that the Frobenius algebra morphism
is given by ®(Fg) = e, ®(F;,..;,) = 0 and ®(g) = gv.

17.4. String topology of L[x/G] when G is a compact Lie group

Any topological group G naturally defines a topological stack corresponding to the
groupoid [G = {*}], which is denoted by [*/G]. In this section we study the Frobenius
structures on the homology of its loop stack and inertia stack assuming that G is a
compact and connected Lie group. It turns out that in this case the two Frobenius
structures obtained are indeed isomorphic since A[*/G] and L[*/G] are homotopy
equivalent. In this section, we assume that G is of dimension d and we will work with
real coefficients for (co)homology groups.

First we will identify the homology groups H,(A[*/G]) and He(L[*/G]).

Lemma 17.13. — The inertia stack A[x/G| is represented by the transformation
groupoid [G X G = G|, where G acts on itself by conjugation, while the stack
Al*/G] X/ Al*/G] is represented by the groupoid [(G x G) x G = G x G| with the
diagonal conjugacy action.

The following result is well known [12].

Lemma 17.14. — The map A[x/G] 2 L[x/G] is an homotopy equivalence.

Proof. — Since G is connected, by Proposition 5.7, L{*/G] can be represented by the
loop group [LG =3 {*}]. On the other hand, BLG = LBG is homotopy equivalent
to EG x¢g G [9], [12]. This equivalence can be seen as follows. Denote by e the unit
of G and let P.G be the based path space of G, that is P.G is the set, endowed with

the compact-open topology, of paths [0,1] 4, @ such that f(0) = e. There is an
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action of the loop group LG on EG x P.G given, for (z, f) € EG x P.G and v € LG,
by

(e, f) -1 =(e-7(0),7(0) ™" * f x7)
where * stands for the (pointwise) multiplication in G. This action is clearly free, thus
BLG = (EG x P.G) x ¢ {pt}. The map (z, f) — (z, f(1)) induces a continuous map
p: (EG x P.G) x ¢ {pt} = EG x¢ G. Since G is connected, for any g € G, there is
a path f, € P.G with f,(1) = g. The map

EG x G > (z,9) — (z, fy) € G x P.G

induces a well-defined map ¥: EG xg G — (EG X P.G) x1¢ {pt}. It is easy to see
that 9 is independent of the choice of the f; and is a left and right inverse of p. Hence
the homotopy equivalence BLG = EG xg G follows. Through the isomorphism in
between L{*/G] and [*/LG] (Proposition 5.7), the map ® of Lemma 12.14 is transfered
to the map

¥: B|G/G] — (EG x P.G) x ¢ pt = B[pt/LG].
The result follows. O

As an immediate consequence, we have

Corollary 17.15. — The map ®.: Ho(A[*/G]) — Hl(L[*/G]) is an isomorphism of
Frobenius algebras.

Thus it is sufficient to study the Frobenius structure on the homology of the inertia
stack A[x/G).

According to Remark 12.12, there is a dual Frobenius structure induced
on (H*(A[x/G]),*,6). We refer to

6: H*(A[x/G]) — H*(A[+/G]) ® H*(A[+/G])

and

*: H*(A[x/G]) ® H*(A[x/G]) — H*(A[+/G])
as the dual hidden loop coproduct and dual hidden loop product respectively. Since
it is technically easier, we will describe the Frobenius structure of H®(A[*/G]). The

following result is standard [49]. We write EG for a free G-space which is contractible
and BG = EG x¢ {*} its classifying space so that H*([*/G]) = H*(BG) = Ha(x).

Proposition 17.16. — 1. The cohomology of G, as a topological space, is
H*(G) = (Ag")® = A(y1, 92, -, t0)
2. The cohomology of [x/G] is
H*([+/G)) = (5"(8"))° = S(z1,33,..., )
3. The cohomology of [G/G] is
H*(IG/G]) = (5"(8")° ® (Ag")® = S(z1,2,-.,71) ® A(y1, ¥a, -, )
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4. The cohomology of |G x G/G] is

H(GxG/G) = (5"(e")° ® (A(g"®g")°
S(fl?l,l'z,--.,(l?l) ®A(y17y2a"'7ylayj,layé7"~ayi))
5. The cohomology of [G x G/G x G| is

H*([GxG/GxG]) = (S*(g" @) ®(A(g" ®g"))°

o

[a=3

S(x1,Z2, ..., %1, T),Thy .., T])
®A(y17y27~~ '7ylayllvy,27"'7y;)

Here | = rank(G), deg(y;) = deg(y}) = 2d; — 1, deg(z;) = deg(z}) = 2d; and d;
are the exponents of G.

To compute the Frobenius structure of H*(A[x/G]), we need an explicit construc-
tion of some Gysin maps.

Let M be an oriented manifold with a smooth (G x G)-action. Consider G as a
subgroup of G X G by embedding it diagonally. In this way, M becomes a G-space and
we have a morphism of stacks [M/G] — [M/G x G], which is indeed a G-principle
bundle. According to Section 9.1, there is a cohomology Gysin map A,: H*[M/G] —
H*~4M/G x G], which should be in a certain sense fibration integration.

Recall that when G is a compact connected Lie group, the cohomology of the
quotient stack H*([M/G]) with real coefficients can be computed using the Cartan
model (Qg(M),dg), where Qg(M) := (S(g*) ® Q(M))G is the space of G-equivariant
polynomials P: g — Q(M), and

da(P)(§) := d(P(§)) — e P(§), VEeg.

Here d is the de Rham differential and ¢¢ is the contraction by the generating vector
field of £. Given a Lie group K and a Lie subgroup G C K, let G act on K from the
right by multiplication and K act on itself from the left by multiplication. The submer-
sion K — K/G is a principal K-equivariant right G-bundle. There is an isomorphism
of stacks [M/G] = [K xg M/K] which induces an isomorphism in cohomology. It
is known [49] that, on the Cartan model, this isomorphism can be described by an
induction map Ind$ : Qg(M) — Qg (K xg M). Here G acts on K x M by

(k,m)-g=(k-g,g7" -m).

The induction map is the composition

Qa(M) D Qxxe (K x M) & Qx (K xe M),

where Qg (M) ) kxc(K x M) is the natural pullback map, induced by the pro-

jections on the second factor K x G — @G, and

QKXG(K X M) % QK(K Xa M)

is the Cartan map corresponding to a K-invariant connection for the G-bundle K —
K/G [49]. We now recall the description of this map.
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Let © € 2!(K) ® g be a K-invariant connection on the G-bundle K — K/G. The
associated principal G-bundle
KxM
G

carries a pullback connection, denoted by the same symbol © . We denote F® =

G- KxM-— 2K xgM

1
de + 5[(9, ©] its curvature, which is an element in Q% (K x M) ® g. The equivariant
momentum map p© € (8 ® Q°(K))X ® g is defined by
get p®(f) = -0

where ¢¢ is the contraction along £ € X(K), the generating vector field of £&. Then
F® + u® is the equivariant curvature of © [10]. Observe that

Qxa(K x M) = (S(g*) @ Qx(K x M))°

is the space of G-equivariant polynomial functions from g to Qg (K x M). Hence if
z € g® Q% (K x M) and P is a homogeneous degree ¢ polynomial on g, then by
substitution of variables, we get an element P(x) in Q2% (K x M). The Cartan map
Qrxa(K x M) — Qg (K xg M) is the composition

Powe (S(g*) ® Qx (K x M))® — P(F® + 1®)w € Qg (K x M)
— Hor(P(F® + ue)w) € Qg (K xg M),

where Hor: Q(K x M) — Q(K xg M) is the horizontal projection with respect to ©.
If moreover F€ = 0 and K x M — K X¢ M admits a horizontal section o: K x¢
M — K x M, we have the following lemma.

Lemma17.17. — Let P ® w be an element in (S(g*) ® UM))® = Qg (M). Then,
Ind$ (P®w) € QUK xeM) is the K -equivariant polynomial on t with value in Q(K x ¢
M) defined, for any & € &, by

Ind (P ® w): & — o™ (P(u° (€))pr3 (w))-
Proof. — First of all,
Pul(P®w) € (S((t®g)*) ® K x M)) ¢
is the map £ ® y — P(y)prj(w) for any £ € € and y € g. Then, by hypothesis,
Hor(P(F® + p®)w) = o* (P(u®(£))prs(w)) € (S(e*) ® QK x¢ M))*
and the lemma follows. a

Now let K be the Cartesian product group G x G. We view G as the diagonal
subgroup of K. The K action on itself by left multiplication commutes with the right
G-action. We have a principal right G-bundle

G— K(=GxG) —G
(9,h) - gh™l.
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The left Maurer-Cartan form 0%, € 2'(G) ® g on G yields a K-invariant one-form
O = prj (9,’(40) € 0}(K) ® g by pullback along the projection on the second factor.
Then O is a K (= G x G)-invariant connection. Moreover it is flat, thus its equivariant
curvature reduces to the equivariant momentum pu®: ¢=g@dg— Q°(K)®g.

Lemma 17.18. — For any (e, B) € ¢(= g @ g), and (9,h) € K(= G x G) one has
(@, B)l(g.n) = — Adp—1 B.

Proof. — The generating vector field for the left G-action on G is given, for all S € g
by
R 0
ﬁ'h = E exp(t,@')h = Lh (Adh—l ﬂ) .
t=0

It follows, for any (g,h) € K = G x G, that
p2(, B)lgn) = —tap (©Olm)

_L[; eLMc|h
= —O%cl|, (Adp-1 B) = — Adp-1 B.
O

Let M be a K (= G x G) space. It is then a G-space. Thus we have an induction
map
IndS, o: Qa(M) = Qexa((G x G) xg M) = Qaxa(G x M),
The group G x G acts on G x M by
(k1,k2) - (g, m) = (kigky ', (k1,k2) - m).
Lemma 17.19. — 1. The map
(GxG)xgM — G x M, (ki,ka,m) > (kiky', (k1,k2) - m)

is a (G x G)-equivariant diffeomorphism.
2. The map

0:GXM—-KxM, o(g,m)= (g,l,(g“l,l) -m)

is a horizontal section for the principal G-bundle G - K x M — K xg M =
Gx M.

As a consequence, we have an isomorphism
Qaxc((G x G) xg M) = Qaxa(G x M).
Thus there is an induction map
dS, ¢: Qa(M) — Qaxc(G x M).

To obtain the Gysin map H*([M/G]) — H*~%([M/G x G]), one simply composes
the induction map Ind$, o: H*([M/G]) — H*([G x M/G x G]) with the equivariant
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fiber integration map [4] H*([G x M/G x G]) — H*"%4([M/G x G]) over the first
factor G.

Proposition 17.20. — Given a (G X G)-manifold M, the Gysin map
Hg(M) — Hg G(M)
is given, on the Cartan model, by the chain map ¥: Qg(M) — Qagxa(M), VPQuw €
(S(g*) ® QM))®,
aran)  wrew = (@&~ [ PCar©), Yabes
G

where p: G x M — M is the map (g,m) v> (g~1,1) - m, and [ stands for the fiber
integration over the first factor G.

Proof. — The induction map Ind$, o: Qg(M) — Qexc(G x M) is a chain level
representative of the stack isomorphisms

[M/G] < [G x G x M/G x G x G] = [G x G xg M/G x G].
induced by Morita equivalences of groupoids. Thus the Gysin map
Ay: H'[M/G] — H* %[M/G x G]
is the composition of Indng with the Gysin map
H*([G x M/G x G]) = H*"%([M/G x G))

which, by Proposition 9.3, is the equivariant fiber integration.

We now need to express the induction map more explicitly. Recall that, for any
a € Qg(M), IndS, () € Qexc(G x M). That is, IndS, (a) is a polynomial
function on (= g®g) valued in Q(G x M). Write ¢: Gx M — M for the composition
¢ = pryoo. Thus ¢(g,m) = (g7 %,1) - m. According to Lemma 17.17, it suffices to
compute o* (P(u®(£1,£€2))pr3(w)). By Lemma 17.19.3 and Lemma 17.18 we find that

o™ (P(u®(é1,€2))) = P(—¢2).
Now the very definition of ¢ yields that for any a = PQw € Qg(M) =
(S(g*) ® QM))€, and V&, ¢&; € g,

Indg g (@) (é1,62) = P(=£2)9" (w).
This concludes the proof. O

Remark 17.21. — If we identify an element of Qg (M) with a G-equivariant polyno-
mial Q: g — Q(M), then Equation (17.4.1) can be written as follows. V(£1,&;) € €=

gy,
wwmm»=4w@em»
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We now go back to our special case. Denote by m : GXxG —- Gand A: G - GxG
the group multiplication and the diagonal map respectively. The diagonal map induces
a stack map A: [G x G/G] — [G x G/G x G} and thus a Gysin map

Ar: H*(IG x G/G]) — H* (G x G/G x G)),

which is given by Proposition 17.20. Similarly the group multiplication m induces a
stack map m : [G x G/G] — [G/G] and thus a Gysin map

my: H*([G x G/G]) — H*~%([G/G)).

Since m is G-equivariant, this is the usual G-equivariant Gysin map on manifolds
according to Proposition 9.3.

Note that HZ(G) is a free module over H*([x/G]) & S(z1,...,z;). In fact,
H(G) = H*([*/G))[y1, ..., u] (the y;s are of odd degrees). Thus elements of H%(G)
are linear combinations of monomials yi'...y;*, where each ¢; is either 0 or 1.
Similarly H&(G x G) is the free H&(G)-module generated by the monomials

7
€1, /€1 /€

vitytut ey
Lemma 17.22. — The map my is a H*([x/G]) linear map defined by

’ ’ ’
€. 1€ €1t+e;—1 e1+e—1

mi(yst iyt = Y

with the convention that yj_1 =0.

Proof. — Since m : G x G — G is G-equivariant, the Gysin map
my: H*([G x G/G]) — H*([G/G))

is a map of H*®([*/G])-module, and by Proposition 9.3, it is the equivariant fiber
integration of the principal bundle G x G — G. It can be represented on the

Cartan cochain complex by integration of forms, see [37] for details. In particular
€1 l€,1

mi(yy -yt yf;) is determined by the equation
(17.4.2) [ m* (@) A7y 7yt = / a Amu(yr gy ? eyt
GxG G

Since the volume forms on G and G x G are respectively given by yi...y and
Y1..0yY} - .y,, Equation (17.4.2) implies that mi: H*(G x G) — H*~%(G) sends
yf‘...yf’y’f’l .. .yf; to y;1+€1_1...yf'+6’_1. This finishes the proof. O

The hidden loop product and coproduct on He([G/G]), by universal coeflicient
theorem, induces a degree —d coproduct

§: H*([G/G]) — H*([G/G]) ® H*(|G/G])
and degree —d product
*: H*([G/G]) ® H*([G/G]) — H*([G/G])

which makes H*(|G/G]) into a Frobenius algebra, called the dual Frobenius structure
on H*([G/G)).
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More explicitly, these two operations are given by the following compositions:
§: H'([G/G)) ™ H*([G x G/G]) = H*%(Gx G/G x G])
- @ H(G6/6) e H(G/A),
i+j=e—d
and
(17.4.3) *: H*([G/G)) ® H*(|G/G)) = H*([G x G/G x G]) &
H*([G x G/G) & H*~4[G/q)).

Theorem 17.23. — Let G be a compact connected Lie group. The dual hidden loop
coproduct on H*([G/Q]) is trivial. And the dual hidden loop product on H*(|G/G]) is

giwen as follows. For any P(z1,...,z)y;"...y;" and Q(z1, . .. ,.wrl)yi,1 yf; in Hy([G/G)),
we have

(P, .,z 9) * (Qat, - zdyih o)

= (PQ)(z1,... ,wl)y;1+€,1_1...yl€l+€;-1
with the convention that yj_1 =0.
Proof. — On the Cartan model, by Proposition 17.20, the hidden loop coproduct is
given by the following composition of chain maps:
06(G) 25 Q6(G x G) L Qaxc(G x G) =5 Q6(G) ® U(G).
Here the last map is Kiinneth formula, and the first map
P Q6(G) = (S(g") ® AQ))° — Qa(@ x G) = (S(g") ® UG x G))°

is S(g*)-linear and given by

p(P®w)=Pem*(w), YPRwe (S(g*) ®Q(Q))°.
Note that the space

26(6) ® 26(0) = (5(8") ® (G)° ® (S(8") ® AC))®

has a S(g*)®-module structure, which is given by multiplication on the second factor:
i.e.

VQ € S(g*), PL®wi ® P, ®w: € Q6(G) ® N(G),
one defines Q - (P @ w; ® P> ® wa) by

(£1,&2) = Pi(&) ®w1 ® Q(—&2)P2(&2) @ w2 € A(G) @ R(G).
By Proposition 17.20, we know that the Gysin map ¥*: Qg(G x G) — Qaxa(G x G)
is indeed a S(g*)®-module map.

There are two kinds of elements P ® w in H*([G/G]) = (S(g*))G ® A(g)€. One
consists of those where w is a top degree form, i.e. a multiple of y; A --- A y;, and
the others are those where w corresponds to a form in Q*<?¢(G). In the latter case,
U(P ® w) vanishes after fiber integration for degree reasons. In the first case, the
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G-action on G is by conjugation. Since the conjugacy action is trivial in cohomology,
Jo ¥*(w) = 0 and by Proposition 17.20, ¥(P ® w)vanishes. Hence the dual hidden
loop coproduct is trivial.

We now compute the dual hidden loop product. First, by a simple computation,
we know that, on the Cartan model, the map A*: Hf, (G x G) — HE(G x G) is
given by

! 7 ! !
A (P(Z1y- -y 1YLy e s YTy ey T 3 YLy -5 Y1)
! 7
=P(z1,. -, T Y1y Y 1y e ey T YLy - - -5 Y))-

In other words, the map A* is an algebra map that leaves the odd degree generators
Yis y; unchanged and send both generators z;, 2} (i =1...7) to the generator z;. By
Lemma, 17.22, one obtains that

(myo A*)(yi‘...yf’,yie,‘ . ..yfei) = y;‘ﬂll—l...quﬂ;_l.
The dual hidden loop product now follows from the explicit S(g*)-module structure.

O

Remark 17.24. — 1t follows that the hidden loop product on H,([G/G]) is trivial
while the hidden loop coproduct has a counit given by the fundamental class of G,
which is dual of the cohomology class y; ... y;.

Remark 17.25. — Let G be either a compact Lie group or a discrete group. As we
have seen above, T the stack [*/G] is strongly oriented and, according to Theo-
rem 12.5, H,(L[*/G]) is a Frobenius algebra. An alternative approach to string topol-
ogy for [*/G] has been carried out in Gruher-Salvatore [36]. It would be interesting to
find a precise link between the result of this Section 17.4 with those of [36]. Similarly,
it would be interesting to find the connection between the construction relate of our
hidden loop product (Theorem 11.1) with that of Abbaspour-Cohen-Gruher [1] for
Poincaré duality groups. Another approach to the BV -algebra structure for L[*/G]|
was recently studied by Chataur-Menichi [16]. Their results seem to agree with ours.
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APPENDIX A

CATEGORIES FIBERED IN GROUPOIDS

The formalism of categories fibered in groupoids provides a convenient framework
for working with lax groupoid-valued functors. In this section, we recall some basic
facts about categories fibered in groupoids.

Let T be a fixed category. An example to keep in mind is T = Top, the category
of topological spaces. A category fibered in groupoids over T is a category X together
with a functor m: X — T satisfying the following properties:

i) For every arrow f: V — U in T, and for every object X in X such that 7(X) =
U, there is an arrow F': Y — X in X such that n(F) = f.
ii) Given a commutative triangle in T, and a partial lift for it to X as in the diagram

there is a unique morphism H: Y — Z such that the triangle commutes and
w(H) = h.

We will often drop the base functor 7 from the notation and denote a fibered
category 7: X — T by X.

For a fixed object T' € T, we let X(T") denote the category of objects X € X
such that m(X) = T. Morphisms in X(T") are morphisms f: X — Y in X such that
™ ( f ) = idT.

It is easy to see that X(7T') is a groupoid. This groupoid is sometimes called the
fiber of X over T. It is also called the groupoids of T'-points of X(T").
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Example A.1. — 1. Let T = Top, and let G be a topological group. Let G be the
category of all principal G-bundles P — T. A morphisms in BG is a G-equiv-
ariant Cartesian diagram

PP — P

oo

T — T

The base functor BG — Top is the forgetful functor that sends P — T to T.
Observe that BG(T) is the groupoid of principal G-bundles over T

2. Let T = Top, and let X be a topological space. Let X be the category of
continuous maps 7' — X. A morphism in X is a commutative triangle

T T

N/

X

The forgetful functor that sends T — X to T makes X a category fibered in
groupoids over Top.

The groupoids X(T') is in fact equivalent to a set, namely, the set of continuous
maps T — X (i.e., the set of T-points of X).

Remark A.2. — There are two ways of thinking of a fibered category X — T. One
is to think of it as a device for cataloguing the objects parameterized by a moduli
problem over T. In this case, an object X € X(T') is viewed as a “family parameterized
by T'.”

The second point of view is to think of X as some kind of a space. In this case, an
object in X(T') is simply thought of as a T-valued point of X, that is, a map from T
to X.

The Yoneda type Lemma A.4 clarifies this dual point of view.

Remark A.3. — 1. Conditions (i) and (ii) imply that, for every morphism f: 7" —
T in T, every object X € X(T') has a “pull-back” f*(X) in X(7"). The pull-back
is unique up to a unique isomorphism. We sometimes denote f*(X) by X|r.

2. The pull-back functors f* (whose definition involves making some choices)
give rise to a lax groupoid-valued functor T' — X(T'). Conversely, given a lax
groupoid-valued functor on T, it is possible to construct a category fibered in
groupoids over T via the so-called Grothendieck construction.

A.1. The 2-category of fibered categories

Categories fibered in groupoids over T form a 2-category. Let us explain how this
works.
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A morphism f: X — 9 of fibered categories is a functor f: X — ) between the
underlying categories such that 79 o f = m%. Given two such morphisms f,g: X — 2,
a 2-morphism ¢: f = g between them is a natural transformation of functors ¢ from
f to g such that the composition my o ¢ is the identity transformation from 7% to
itself.

With morphisms and 2-morphisms as above, categories fibered in groupoids over
T form a 2-category §ibt. The 2-morphisms in Fibt are automatically invertible.

The construction in Example A.1.2 can be performed in any category T and it
gives rise to a functor T — Fibt. From now on, we will use the same notation for an
object T in T and for its corresponding category fibered in groupoids.

We have the following Yoneda-type lemma.

Lemma A.4 (Yoneda lemma). — Let X be a category fibered in groupoids over T, and
let T' be an object in T. Then, the natural functor

HomgibT (T, .’f) - %(T)
is an equivalence of groupoids.

This lemma implies that the functor T — Fiby is fully faithful. That is, we can
think of the category T as a full subcategory of §Fibt. For this reason, in the sequel we
quite often do not distinguish between an object T and the fibered category associated
to it.

A.2. Descent condition

To simplify the exposition, and to avoid the discussion of Grothendieck topologies,

we will assume from now on that T = Top.

We say that a category X fibered in groupoids over T is a stack, if the following

two conditions are satisfied:

i) Gluing morphisms. Given two objects X and Y in X over a fixed topological
spaces T, morphisms between them form a sheaf. That is, the presheaf of sets
on T defined by

U Homx(U)(XIU, Ylu)
is a sheaf.

ii) Gluing objects. Let T be a topological space, and let {U;} be an open covering
of T. Assume we are given objects X; € X(U;), together with isomorphisms
wij: Xjlu,nu; = Xilv,au, in X(U; N U;) which satisfy the cocycle condition

Pij © Pjk = Pik
on U; NU; N Uy, for every triple of indices 7, j and k. Then, there is an object X
over T, together with isomorphisms ¢;: X|y, — X; such that ¢;; 0 ¢; = ;.

The data given in (ii) is usually called a gluing data or a descent data. It follows
from (i) that the object X in (ii) is unique up to a unique isomorphism.
Stacks over T form a full sub 2-category of Fib.
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Example A.5. — 1. The fibered category BG of Example A.1.1 is a stack. This is
because one can glue principal G-bundles over a fixed space T using a gluing
data (and the same thing is true for morphisms of principal G-bundles as well).

2. The fibered category X of Example A.1.2 is a stack. This is because, given a
collection of continuous maps f;: U; — X which are equal over the intersections
U; N Uj, we can uniquely glue them to a continuous map f: T — X.

Note that the cocycle condition over triple intersections does not appear in Exam-
ple A.5.2. The reason for this is that the fiber groupoids X(U) are equivalent to sets.
That is, if there is a morphisms between two objects in X(U) it has to be unique.

In view of Example A.5.2 (and Lemma A.4), the descent condition for a stack X
can be interpreted as follows. Let T be a topological space and {U;} an open covering
of T. Assume we are given morphisms f;: U; — X, together with 2-isomorphisms
wij: filvinu;, = filuinu,, satisfying the cocycle condition ¢;; o jr = @i (This
should be thought of as saying that ¢;; are “identifying f; and f; along U; N U;.”)
Then, we can glue f; to a global map f: T — X whose restriction f|y, to U; is
identified to f; via a 2-isomorphism ¢;: fly, = fi.

A.3. Quotient stacks

To any topological groupoid X = [X; =3 Xj] one can associate a stack [Xo/X;]
called the quotient stack of the groupoid. A quick definition for this quotient stack
is as follows. By definition, [Xo/X] is the stack associated to the (fibered category
associated to the) presheaf of groupoids

T — [X1(T) = Xo(T)].

Since we have not discussed the stack associated to a category fibered in groupoids,
we give an alternative description of [Xo/X;] in terms of principal bundles.

We only describe the case when X is the action groupoid [X x G =2 X] of the
action of a topological group G on a topological space X and refer the reader for the
general case to ([52], Section 12). In the case of a group action, the quotient stack is
denoted by [X/G].

For a topological space T, the groupoid [X/G|(T) of T-points of [X/G] is the
groupoid of pairs (P, ), where P is a principal G-bundle over T, and ¢: P — X
is a G-equivariant map. The morphisms in [X/G](T) are G-equivariant morphisms
f: P' — P such that ¢’ = po f.

It is easy to verify that [X/G] is a stack. When X is a point, the quotient stack
[*/G] coincides with BG of Example A.1.1 and is called the classifying stack of G.
Remark that, by Lemma A .4, the groupoid Hom(T, BG) of morphisms from T to BG
is equivalent to the groupoid of principal G-bundles over T
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GENERALIZED FULTON-MACPHERSON
BIVARIANT THEORIES

In this section we recall the axioms of a Fulton-MacPherson bivariant theory. Our
theory is slightly more general than the original approach of Fulton-MacPherson in
the following ways:

— Since we need to work with stacks, the underlying category of our theory is
indeed a 2-category. All fiber products and commutative diagrams should be
interpreted in the 2-categorical sense. The associated bivariant groups, however,
will be equal for 2-isomorphic moprhisms.

— Fulton-MacPherson have a notion of a ‘confined morphism’ (along which you
can push forward bivariant classes) while we believe it is more natural to have
‘confined triangles’.

— Product of bivariant classes are only partially defined.

In the context of this paper, these differences, however, are not crucial and give us
the right amount of generality to define the desired Gysin maps.

B.1. The underlying (2-)category

The underlying category of a generalized bivariant theory is a category C (rather,
2-category) with fiber products and a final object. The category C is equipped with
the following structure:

— A class of commutative triangles called confined triangles

f

N4

X Y

We usually write this triangle as X Z, v % S. We sometime refer to the
above triangle as a morphism f: X — Y confined relative to S.
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— A class of squares called independent squares

X —- X
| |1
Yy —~

Note: we will distinguish the above square from its transpose, so the transpose
of an independent square may not be independent.
— A class of morphisms called adequate.

We require the following axioms to be satisfied:

A1l. A triangle X ~£—>,X - Z in which f = idx is the identity map is confined.
A2. If the inside triangles in

are confined, then so is the outside triangle.
B1. Any commutative square in which the top and the bottom morphisms are the
identity maps is independent.
B2. Any square obtained from juxtaposition (vertical, or horizontal) of independent
squares is independent.
C. If in the commutative diagram

X’L—Y’L—S'

2 T
X — Y — §
f v
the left square (or its transpose) is independent and f is confined relative to S,
then f’ is confined relative to S’.

D. All isomorphisms are adequate.

Lemma B.1. — Given
xty 7w

if f is confined relative to W then f is confined relative to Z.

Proof. — Use Axioms B1 and C. |
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B.2. Axioms for a bivariant theory

A bivariant theory T on such a category C assigns to every morphism f: X —» Y
in C a graded abelian group T'(X 4, Y), or T(f) for short. We denote the i** graded
component, i € Z, of T by T*. We sometimes denote an element o € T'(X 4, Y) by

xLy.
@
The functor T support three types of operations:
1. Product. For every f: X — Y and adequate g: Y — Z, there is a product
Tix L y)eTi(y 2 2) - Ti+i (X 2L 7).
2. Pushforward. Given a confined triangle

N4

there is a pushforward homomorphism

fo: THX =5 8) — THY —= 9).

X Y

3. Pullback. For every independent square

x L= x
| | s
Y —

]
there is a pullback homomorphism
¢ Tix Ly —1ix Ly,
(Observe the abuse of notation.)

These operations should satisfy the following compatibility axioms:

A1l. Product is associative. Given a diagram

xthy bz hw

@ @ O
where g, h and h o g are adequate, we have
(a-B)-y=a-(B-7)
in T(hogo f).
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A2. Pushforward is functorial. If the triangles in

X——L-Y—&Z

Nk

S
are confined, then
(9o s =guo fi: THX =5 S) — TH(Z - S).
A3. Pullback is functorial. If the squares in

7 ’
X" h X! 9

ol
Y Y — Y
h g

are independent, then
(goh)* =h*og*: TH(X 4, Y) — TY(X" £, Y.
A12. Product and pushforward commute. Given
xLy stz hw
\/

@

with f confined relative to W and h adequate, we have

fula-B) = fu(e)-B

in T(hog).
A13. Product and pullback commute. Given
x Mox
vl e
y ey
s 9@
7 sz

with independent squares, g and g’ adequate, we have
h*(a - B) = h"(a) - h*(B)
in T(g’ o f).
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A23. Pushforward and pullback commute. Given

x Mo ox

f'i fl/

Y v @

L

7z e oz

with independent squares and f confined relative to Z, we have

fu(h*a) = h* fu(a)

in T(g").
A123. Projection formula. Given

x 2. x

ft fLD

y 2.y ooz
\u/

®

with independent square, g adequate and confined relative to Z and h o g ade-
quate, we have

a-g.(B) = g.(g"a- B)
in T(ho f).
We say a bivariant theory T has unital if for every X € C there is an element
1x € T°(X % X) with the following properties:
— For every f: W — X and every a € T(W N X), we have a - 1x = a.
— For every g: X — Y and every 8 € T(X —<,Y), we have 1x - 8 = 3.
— For every g: X' — X, we have g*(1x) = 1x/.

A bivariant theory T is called skew-commutative (respectively, commutative), if for
any square

’

x 2. x

f't ft@
Y 2> Y

®
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that is independent or its transpose is independent, g and f are adequate, we have
g"(@) - B = (~1)ies@) 450 £ (5) .
(respectively, g*(a) - 8 = f*(8) - ).
Note that we don’t assume the class of adequate morphisms to be closed; that is, if
f, g are adequate, g o f might not be adequate. However, in practice, it is convenient
to specify a (large) closed subclass of adequate maps, called the strongly adequate

morphisms. In particular, the product of bivariant classes are always defined and
associative on the subclass of strongly adequate morphisms.

Using the definitions of Section 7 and results of Sections 4, 6, 6.1, it is straightfor-
ward to prove

Theorem B.2. — The bivariant theory of Section 7 is a generalized Fulton-MacPherson
bivariant theory.

Note that, in view of Lemma 6.4 and Example 7.6.1, we can choose the class of
strongly adequate morphisms to be the class of strongly proper maps.
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