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PHASE-SPACE ANALYSIS AND PSEUDODIFFERENTIAL
CALCULUS ON THE HEISENBERG GROUP

Hajer Bahouri, Clotilde Fermanian-Kammerer & Isabelle Gallagher

Abstract. — A class of pseudodifferential operators on the Heisenberg group is defined.
As it should be, this class is an algebra containing the class of differential operators.
Furthermore, those pseudodifferential operators act continuously on Sobolev spaces
and the loss of derivatives may be controled by the order of the operator. Although
a large number of works have been devoted in the past to the construction and the
study of algebras of variable-coefficient operators, including some very interesting
works on the Heisenberg group, our approach is different, and in particular puts into
light microlocal directions and completes, with the Littlewood-Paley theory initiated
in 2000 by Bahouri, Gérard and Xu, a microlocal analysis of the Heisenberg group.

Résumé (Analyse dans Pespace des phases, et calcul pseudodifférentiel sur le groupe de
Heisenberg). — Nous définissons une classe d’opérateurs pseudo-différentiels sur le
groupe de Heisenberg. Comme il se doit, cette classe constitue une algébre contenant
les opérateurs différentiels. De plus, ces opérateurs pseudo-différentiels sont continus
sur les espaces de Sobolev et ’on peut controler la perte de dérivée par leur ordre.
Si un grand nombre de travaux ont été déja consacrés a la construction et a I’étude
d’algébres d’opérateurs & coefficients variables, y compris des travaux trés intéres-
sants sur le groupe de Heisenberg, notre approche est différente et en particulier elle
conduit & la notion de direction microlocale, et compléte ’élaboration d’une analyse
microlocale sur le groupe de Heisenberg commencée par Bahouri, Gérard et Xu en
2000 par le développement d’une théorie de Littlewood-Paley.
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CHAPTER 1

INTRODUCTION AND MAIN RESULTS

1.1. Introduction

1.1.1. The Heisenberg group. — The Heisenberg group is obtained by construct-
ing the group of unitary operators on L?(R™) generated by the n-dimensional group
of translations and the n-dimensional group of multiplications (see for instance the
book by M. Taylor [53]). It is an unimodular, nilpotent Lie group whose Haar measure
coincides with the Lebesgue measure, and its remarkable feature is that its represen-
tation theory is rich as well as simple in structure. It is actually the first locally
compact group whose infinite-dimensional, irreducible representations were classified
(see [22]). It can be identified with a subgroup of the group of (n + 2) x (n + 2) real
matrices with 1’s on the diagonal and 0’s below the diagonal.

It has a dual nature, in the sense that it may be realized as the boundary of the
unit ball in several complex variables (thus extending to several complex variables the
role played by the upper half plane and the Hilbert transform on its boundary) as
well as being closely tied to quantum theory (via the Heisenberg commutators). We
refer to the book by E. Stein [52], Chapter XII, for a comprehensive presentation of
that duality.

Harmonic analysis on the Heisenberg group is a subject of constant interest, due on
the one hand to its rich structure (though simple compared to other noncommutative
Lie groups), and on the other hand to its importance in various areas of mathematics,
from Partial Differential Equations (see among others [7], [12], [16] [29], [30], [44],
[45], [59], [60]) to Geometry (see [2], [18], [31], [47]) or Number Theory (see for
instance [42], [55]). Many research articles and monographs have been devoted to
harmonic analysis on the Heisenberg group, and we shall give plenty of references as
we go along.

1.1.2. Microlocal analysis on R". — Microlocal analysis in the euclidian space
appeared in the early seventies ([50]-[51]), and has at its foundation the theory
of pseudodifferential operators. The main idea of microlocal analysis is to study
a function simultaneously in the space variables of the physical space and in the
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2 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

Fourier variables. Indeed, some phenomenon need both analysis to be correctly un-
derstood. As an example, let us consider the obstuctions to the convergence to zero
in L2(R?) of two sequences, one of the form u, = h;, 4/ 2% (%) and the other of the

form v, = exp (z%) ¢(x) where h, — 0 and ¢ is in the Schwartz class for exam-
ple. Of course, the point z( is a point of concentration in the space variables for the
sequence u, and as such, a point of obstruction to strong convergence to zero of the
sequence. Similarly the oscillations in the direction &y correspond to concentration in
Fourier variables for the sequence v,,, and they are also an obstruction to the strong
convergence of the sequence.

With this point of view, it appears crucial to be able to use localization operators
in space variables and in frequencies: the latter are Fourier multipliers. The theory of
pseudodifferential operators provides a framework in which both points of view are
unified: multiplication operators and Fourier multipliers are indeed pseudodifferential
operators. More precisely, a pseudodifferential operator is defined by its symbol which
is a function on the phase space: the symbol of the operator of multiplication by ¢(z)
is the function (z,€) — ¢(z) and the symbol of the Fourier multiplier x (D) is the
function (z, &) — x(§)-

With pseudodifferential operators comes the concept of properties which hold mi-
crolocally. A function f satisfies a property (P) locally if for all cut-off function x, the
function x f satisfies (P); similarly, replacing the functions x by a pseudodifferential
operator with symbol supported in a given subset {2 of the phase-space, one gets a
property satisfied microlocally in €. This notion allows a closer perception of the sin-
gularities of a function: in the 70’s was developed the notion of wave fronts, analytic
wave front, &°° wave front, etc. The idea is to associate with a given function f a
region of the phase space where, microlocally, f is analytic or £ or whatever else:
this region is by definition the complement of the wave front.

One should notice that the phase space corresponds to the space of positions-
impulsions of Quantum Mechanics, and thus enjoys nice geometric properties. It can
be understood as the cotangent space to R¢ (or to a submanifold if one works on
a manifold) and is a symplectic space once endowed with the adapted symplectic
form. This geometric aspect has been used successfully in numerous works and is one
of the satisfying aspects of microlocal analysis (see for example the development of
microlocal defect measures, semi-classical measures and Wigner measures as in [34]
and [35] for example).

Microlocal analysis allowed for a very general study and classification of linear
Partial Differential Equations with variable coefficients, using for example Littlewood-
Paley operators which select a range of frequencies; such operators are pseudodiffer-
ential operators. In the case of nonlinear Partial Differential Equations, the situation
is of course much more complicated, but paradifferential calculus ([13]) turned out
to be a very powerful tool, for instance to analyze the propagation of singularities
of solutions to such equations, or to study the associate Cauchy problem (see for
instance [3], in the case of quasilinear wave equations).
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1.1. INTRODUCTION 3

Pseudodifferential operators on the euclidian space form an algebra, which is a
very important fact. This algebra contains Fourier multipliers such as differentiation
operators, microlocalisation operators, Littlewood-Paley operators, paradifferential
operators.

1.1.3. Microlocal analysis on the Heisenberg group. — The development of
microlocal tools adapted to the geometric situation at hand is an important issue: we
refer for instance to the work of S. Klainerman and I. Rodnianski [40] in the case of
the Einstein equation, where the construction of an adapted Littlewood-Paley theory
is a crucial tool to reach optimal regularity indexes for the initial data. Microlocal
theory on R" easily passes to submanifolds. Other constructions have been performed
on the torus, or more general compact Lie groups (see for instance [49]).

A number of articles can be found in the literature, which develop a pseudodif-
ferential calculus on the Heisenberg group. For example, in [52], [53], this question
is investigated through the angle of the Weyl correspondence (see also the previous
work [37]): as recalled above, that correspondence is one of the rich features of the
Heisenberg group, and is thoroughly developed in those references. The important
work [33] consists in constructing an analytic calculus enabling one to obtain para-
metrices for a class of operators which are analytic hypoelliptic; we also refer to [43]
and [10] as well as [17] where a parametrix is constructed for sum-of-squares type
operators. One also must mention the series of papers by P. Greiner and his coauthors
(see for instance [9], [32] and [36] and and the references therein) in which in partic-
ular symbols of left-invariant vector fields are constructed, from the point of view of
Laguerre calculus as well as using the Hermite basis and the recent works [56]-[57],
where a symbolic calculus on the Heisenberg group is developped, related to contact
manifolds. Finally, we refer to the work [21] where is constructed a pseudodifferential
calculus based on Hérmander calculus, using exclusively the convolution rather than
the Fourier transform.

Our approach here is not quite of the same nature as in the works refered to above,
as we aim at defining an algebra of operators on functions defined on the Heisenberg
group, which contains differential operators and Fourier multipliers, and which has
a structure close to that of pseudodifferential operators in the Euclidian space. The
difficulty in this approach is that there is no simple notion of symbols as functions
on the Heisenberg group H¢, since the Fourier transform is a family of operators on
Hilbert spaces depending on a real-valued parameter A. Those operators are built using
the so-called Bargmann representation, or the Schrodinger representation (obtained
from the previous one by intertwining operators). One can easily check that what may
appear as the symbol associated with a left-invariant vector field is itself a family of
operators. This family reads in the Schrédinger representation of H? as a family
of differential operators belonging to a class of operators of order 1 for the Weyl-
Hoérmander calculus (see [38]) of the harmonic oscillator. That basic observation is
the heart of the matter achieved in this paper. Let us point out that in fact symbols
on the Heisenberg group cannot depend only on the harmonic oscillator, and this has
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4 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

to do with the dependence on the parameter A. This induces a number of technical
problems that are dealt with by introducing also a specific calculus in the A direction.

A symbol on the Heisenberg group is thus a function on H¢ valued in the space of
families of symbols of the Weyl-Hérmander class associated to the harmonic oscillator,
indexed by the parameter A. Then, to this symbol, one associates a pseudodifferential
operator as is usually done by use of the inverse Fourier transform as well as the
family of Weyl-quantized operators associated with the symbol.

Once those pseudodifferential operators have been defined, we first prove that they
are operators on the Schwartz class, which results from classical Fourier analysis on
the Heisenberg group. We then prove that the adjoint of a pseudodifferential operator
and the composition of two pseudodifferential operators are also pseudodifferential
operators. Our arguments here are deeply inspired by the analysis of the classical case
as developped for instance in the book of S. Alinhac and P. Gérard [1]. We analyze
first the link between the kernel of a pseudodifferential operator and its symbol, using
the Fourier transform and its inverse. Then, it is possible to compute the function
which could be the symbol of the adjoint of a pseudodifferential operator or of the
composition of two pseudodifferential operators and to prove that it actually is a
symbol. This comes from the careful analysis of oscillatory integrals. We also give
asymptotic formula for the symbol of the adjoint or of the composition. These formulas
result from a Taylor formula in the spirit of what is done in the Euclidian space but
adapted to the case of the Heisenberg group; in particular, we crucially use functional
calculus. The specific feature of these asymptotic formula is that there is no gain on
the Heisenberg group: the commutator of two horizontal vector fields is a derivation.

We also study the action of pseudodifferential operators on Sobolev spaces. We
prove in particular that zero order operators are bounded on L2 (]HId) and more gen-
erally a pseudodifferential operator is continuous from one Sobolev space to another,
the link between the regularity exponents of the Sobolev spaces being controled by
the order of the symbol. The arguments of this proof are inspired by the Euclidian
proof of R. Coifman and Y. Meyer [20] whose approach consists mainly in decom-
posing the symbol of the pseudodifferential operator on R™ (which is a function on
the phase space T*R") into a convergent series of reduced symbols for which the
continuity is a consequence of paradifferential calculus of J.-M. Bony [13]. The main
interest of this approach is that it requires little regularity on the symbol and that it
can be carried out when the pseudodifferential calculus has no gain, which is the case
in our situation. Roughly speaking, the proof of R. Coifman and Y. Meyer is done
in three steps. In the first step, a symbol is decomposed using a dyadic partition of
unity. This reduces the problem to the study of symbols compactly supported in the
frequency variable. Next, using a Fourier series expansion, the symbol is expressed
as a sum of reduced symbols which are much easier to deal with. Finally, taking
advantage of the Littlewood-Paley decomposition on R", the continuity on Sobolev
spaces of the associate operator is established. To adapt that method to the setting
of the Heisenberg group H¢, we begin by decomposing the symbol associated with a
given operator (defined as explained above via the Weyl-H6rmander calculus of the
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1.1. INTRODUCTION 5

harmonic oscillator), using a suitable dyadic partition of unity. Then, we use Fourier
series to write the symbol as a convergent series of reduced symbols. But, in contrast
to the R™ setting, the reduced symbols in that case cannot be treated as a sum of
Littlewood-Paley operators on the Heisenberg group. To overcome this difficulty, we
use Mehler’s formula to prove that these operators can be related in some sense to the
reduced symbols obtained in the R™ case. This allows us to finish the proof in more
or less the same way as in the R™ case, up to the fact that an additionnal microlocal-
ization is needed because the spectral parameter is made of two different variables —
as pointed out above, this is due to the special structure of the Heisenberg group.

This paper completes, with the Littlewood-Paley theory developed in [7] and [5],
a microlocal analysis of the Heisenberg group. It calls for developments : a significant
application would be the generalization of the concept of wave front set to the setting
of the Heisenberg group, in order to obtain results related to the propagation of
singularities as in [58] for instance. One can also expect a construction of parametrices,
as well as the development of a notion of microlocal defect measure (or H-measure).
Such studies are postponed to a future work.

Generalizations to other locally compact Lie groups should also be considered. The
generalization of the Littlewood-Paley decomposition is in itself a challenge : although
it is known (see [39]) that a frequency localization process can be defined in general
as a convolution product with a function of the Schwartz class, Bernstein inequalities
seem very difficult to obtain in general (and these inequalities are the crucial property
that allow to construct a Littlewood-Paley theory). Once that difficulty is overcome,
the next step should be the understanding of the phase space in more general contexts.

1.1.4. Structure of the paper. — The structure of the paper is the following.
The rest of this chapter is devoted to a recollection of the main facts on the Heisenberg
group which will be useful for us, as well as to the statement of the main results. More
precisely, in Section 1.2.1, we introduce our notation and give the basic definitions and
in Section 1.2.2, we recall the definition of the Fourier transform, using irreducible
representations. The purpose of the next section of this chapter is to provide the
setting for symbols and operators on the Heisenberg group, and it also contains the
statement of the main results; for this some elements of Weyl-Hérmander calculus
are required, and the necessary definitions are recalled. The main results stated in
this chapter (in Section 1.4) concern the continuity of pseudodifferential operators on
Sobolev spaces, along with the fact that those classes of operators form an algebra.

The second chapter is devoted to the analysis of examples and to the proof of
some fundamental properties of pseudodifferential operators, such as their action on
the Schwartz class, the study of their kernel, their composition with differentiation
operators.

In the third chapter, we prove that the classes of pseudodifferential operators de-
fined in the previous chapter are stable by adjunction and composition and prove
asymptotic expansion of their symbol.
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6 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

In the fourth chapter we give an outline of the basic elements of Littlewood-Paley
theory on the Heisenberg group developed in [7] and [5] recalling in that framework the
properties of Besov spaces that we shall need later on. Next, we compare Littlewood-
Paley operators with pseudodifferential operators. This is of crucial importance in
the next chapter. More precisely, we prove that in some sense, a pseudodifferential
operator associated to a truncated symbol, in the Weyl-Hérmander calculus of the
harmonic oscillator, is close to a Littlewood-Paley operator.

In the fifth chapter, we prove the continuity on Sobolev spaces, by a (non trivial)
adaptation of the technique of R. Coifman and Y. Meyer [20] to the case of the
Heisenberg group; in particular an additional microlocalization is required, compared
to the classical case.

Finally this paper comprises two appendixes. Appendix A is devoted to the proof of
some technical lemmas and formulas concerning the Heisenberg group that are used in
the paper. In Appendix B we prove a number of important results used in the proofs
of the main theorems of this paper, but for which the arguments are too lengthy or
too technical to appear in the main text; they are mainly related to Weyl-Hérmander
calculus.

Acknowledgements. — This project originates in a discussion with G. Lebeau,
and we are happy to acknowledge his influence in this study. We also thank J.-Y.
Chemin , P. Gérard and N. Lerner for numerous fruitful discussions. H. Bahouri
gratefully acknowledges the hospitality of the Fondation Sciences Mathématiques de
Paris which supported a stay in the Institut de Mathématiques de Jussieu, during
which part of this project was accomplished. Finally we extend our thanks to the
anonymous referee for a careful reading of the manuscript and fruitful remarks.

1.2. Basic facts on the Heisenberg group H?

1.2.1. The Heisenberg group. — Before stating the principal results of this pa-
per, let us collect a few well-known definitions and results on the Heisenberg group H.
We recall that it is defined as the space R?4*! whose elements w € R??*! can be writ-
ten w = (z,y, s) with (z,y) € R? x R%, endowed with the following product law:

(1.21) w-vw' =(z,9,8) (,y,s)=@C+z,y+y,s+s -2z-y +2y-2),

where for z,2’ € R?, z - 2’ denotes the Euclidean scalar product of the vectors z
and z’. Equipped with the standard differential structure of the manifold R2%+1 | the
set H? is a non commutative Lie group with identity (0,0). Note also that
Vuws= (x,y»S) € Hd, wl = ('-‘SU, -y, —S).
The Lie algebra of left invariant vector fields (see Section A.1 of the Appendix) is
spanned by the vector fields

def def

X, %0, +2y;0,, ¥; <0, — 22,8, withje{l,...,d}, and S

1
0s = Z[YJ’XJ]
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1.2. BASIC FACTS ON THE HEISENBERG GROUP H¢ 7

for j € {1,...,d}. In the following, we will denote by X the family of vector fields
generated by X; and by X4 =Yj for j € {1,...,d}. Then for any multi-index a €
{1,...,2d}*, we write

o def

(1.2.2) 2 X, . X,

Using the complex coordinate system (z, s) obtained by setting z; = x; +iy;, we note
that

V((z,8),(2,s)) e HE x HY,  (z,s) - (2/,8') = (24 2,5 + &' + 2Im(z - 7)),

where z - Z' = Z?=1 2;Z;. Furthermore, the Lie algebra of left invariant vector fields
on the Heisenberg group H? is generated by the vector fields:

— 1 —
Z]' = sz+iij83, ZJ' = B;j —iZjas, Wlth_] € {1, e ,d} and S= 83 = Z[Z],ZJ]

Denoting by Z the family of vector fields generated by Z; and by Z;;4 = 7j for j €
{1,...,d}, we write for any multi-index o € {1,...,2d}*

(1.2.3) 7%z, ... Z,,.

One can easily check that for all j € {1,...,d},

1.2.4 X;=2;+7Z; and Y; =i(Z; — Z;).
j j j J J j

The space H¢ is endowed with a smooth left invariant measure, the Haar measure,

which in the coordinate system (z, y, s) is simply the Lebesgue measure dw® dzx dyds.
It satisfies the fundamental property:

(1.2.5) Vf e L*(H?), Vo' € HY, / f(w) dw =/ f(w' - w) dw.
H4 H
The convolution product of two functions f and g on H? is defined by

fro@® [ fw-v o= [ fo)go upds

It should be emphasized that the convolution on the Heisenberg group is not commu-
tative. Moreover if P is a left invariant vector field on H%, then one has

(1.2.6) P(f xg) = f*(P(g)).
Indeed, thanks to the classical differentiation theorem, we have
P(f % g)( / f@)P(g(v™! - w))dv.

Due to (A.1.23), one can write

P(g(v™! - w)) = (Pg)(v™" - w),
which yields (1.2.6). However in general f x (P(g)) # (P(f)) g
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8 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

Note that the usual Young inequalities are nevertheless valid on the Heisenberg
group, namely
1 1 1

V(p,g,7) € (1,001, [IF *gllrey < Ifllprayllgllpoqey, 1+ - + 7

In fact, Young inequalities are more generally available on any locally compact topo-
logical group endowed with a left invariant Haar measure u which satisfies in addition

(A~ = u(A) for all borelian sets A.
Let us also point out that on the Heisenberg group ]I-]Id, there is a notion of dilation
defined for a > 0 by
(1.2.7) da(z,8) def (az,a®s).
Observe that for any real number a > 0, the dilation ¢, satisfies

0a(2,8) - 64(2',8") = 6a((2,8) - (¢/,§))

and that the vector fields Z; change the homogeneity in the following way:
(1.2.8) Z;(f 084) = a(Z;f) 0 8.
This fact is crucial in order to obtain Bernstein or Hardy inequalities [4] (see Chap-
ter 4).

Let us also remark that the Jacobian of the dilation d, is a where N 4f 9d + 2 is
called the homogeneous dimension of H¢.

Let us now recall how Sobolev spaces on the Heisenberg group are associated with
the system of vector fields X for nonnegative integer indexes.

Definition 1.1. — Let k be a nonnegative integer. We denote by H*(H?) the inho-
mogeneous Sobolev space on the Heisenberg group of order k which is the space of
functions u in L>(H®) (for the Haar measure) such that

X%u € L?  for any multi-index o € {1,...,2d}N with |a| <k.

Moreover, we state

def
(1.2.9) ol ey = | D0 10U 22 0
|a|<k

Remark 1.2. — FEquivalently, powers of the Laplacian-Kohn operator defined by
d d d
(12100 A €Y (X2+Y2) =23 (2,7, +7;2;) =4 _(2,Z; + i),
J=1 Jj=1 Jj=1
can be used to define those Sobolev spaces, which take into account the different role
played by the s-direction. Thus

k
lwll g ey ~ 1(I1d — Apga) 2wl 2 ey

where ~ stands for equivalent norms.
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Note that homogeneous norms may also be defined, where the summation in (1.2.9)
is replaced by a summation over |a| = k, and above (Id — Apa)? is replaced
by (—Aga)%.

When o is any nonnegative real number one can, as in the case of classical
Sobolev spaces on R™, define the space H°(H?) by complex interpolation (see for
instance [11]). As in the euclidian case, other equivalent definitions of Sobolev
spaces H?(H?) can be used: the definition using integrals and kernels (see [48]
and [52]), or the definition using Weyl-Hormander calculus (see [17]). Finally, a
definition using the Littlewood-Paley theory on the Heisenberg group, in the same
spirit as in the Euclidian case and due to [7], will be given in Section 4.4.2.

There is a natural Heisenberg distance to the origin defined by

Pz 8) E (2" + %)%,
where 2|2 = 2?21 z;Z;. Similarly, we define the Heisenberg distance by
(1.2.11) dw,w')=p(w™' w).
The distance d incorporates left translation invariant properties
(1.2.12) v € HY, d(@-w, @ w') = d(w,w’).

To define Hoélder spaces on the Heisenberg group, we shall introduce another distance
on H%. Denote by P = P(Xj, ..., Xa4) the set of continuous curves which are piecewise
integral curves of one of the vectors fields £Xi,...,£+X24. To any such curve 7 :
[0,T] — H%, we associate its length I(7) T 1t is known (see for instance [27, 28])
that, for any couple of points w and w’ of H?, there exists a curve of P joining w
to w’ and that the function

(1.2.13) d(w,w') = min{l('y), v € P, «y joining w to w'}

is a distance on the Heisenberg group, which turns out to be equivalent to the one
introduced in (1.2.11).

Now, up to the change of the Euclidean distance into J, the definition of Holder
spaces on the Heisenberg group is similar to the definition of Holder spaces on R%.

Definition 1.3. — Let r = k + o, where k is an integer and o € 10,1[. The Hoélder
space CT(IHId) on the Heisenberg group is the space of functions u on H® such that
X u(w) — Xu(w’)|

d(w, ')’

lullor gy = sup (¥ ullz + sup ) < co,
a|<k wH#w’

lel<
where d denotes the distance on the Heisenberg group defined by (1.2.13).

Remark 1.4. — Thanks to (1.2.12) and the fact that the distances d and d are equiv-
alent, the spaces C’(]I-]Id) are invariant under left translations. It will be useful to
point out that Hélder spaces on the Heisenberg group can be also defined using the
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10 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

Littlewood-Paley theory on the Heisenberg group, in the same way as in the Euclidian
case (see Section 4.4.2).

Finally let us define the Schwartz space.

Definition 1.5. — The Schwartz space J(H?) is the set of smooth functions u on H?
such that, for any k € N, we have

def .
lulleg = sup  [Z%((|2]* = is)*"u(z,5))| < 0.
|a|<k,n<k
(z,s)EIHId

The Schwartz space on the Heisenberg group J(H®) coincides with the classi-
cal Schwartz space J(R***!). This allows to define the space of tempered distri-
butions ¢’ (H?). The weight in (2, s) appearing in the definition above is linked to the
Heisenberg distance to the origin p defined above.

1.2.2. Irreducible representations and the Fourier transform. — Let us now
recall the definition of the Fourier transform. We refer for instance to [23], [45], [52],
[53] or [54] for more details. The Heisenberg group being non commutative, the
Fourier transform on H? is defined using irreducible unitary representations of He.
As explained for instance in [53] Chapter 2, all irreducible representations of H? are
unitarily equivalent to one of two representations: the Bargmann representation or
the L? representation. The representations on L? (Rd) can be deduced from Bargmann
representations thanks to intertwining operators. The reader can consult J. Faraut
and K. Harzallah [23] for more details. Both representations will be used here.

1.2.2.1. The Bargmann representations. — They are described by (u*,# ), with A €
R\{0}, where # is the space defined by

H\ {F holomorphic on C%,||F| 4, < oo},
with
of (21A)°
(12.14) 171, < (22) [ emmier e,
s cd
while u* is the map from H? into the group of unitary operators of %' defined by

{ui,sF(s)“éfF(s~z)ew+2*<€<z—lzl2/2> for A0,

1.2.15 | )
R W) JF(€) E F(€ = 2)ere PETL/2 for x <0,

Let us notice that # ) equipped with the norm || - || %, defined in (1.2.14) is a Hilbert
space. The monomials

Fa,x\(&) déf ( 2\l/)\—l'€)a7 o€ Nda
(63

constitute an orthonormal basis of J .
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The Fourier transform of an integrable function of H? is given by the following
definition.

Definition 1.6. — For f € L'(H?), we define
THNE [ fwdde.
Hd

The function F(f), which takes values in the space of bounded operators on Hy, is
by definition the Fourier transform of f.

Note that one has
F(fxg)(A) = F(£)(A) o F(9)(N)-
We recall that an operator A()\) of # » such that
D AN Fars Fap)s,| < 400
a€eNd
is said to be of trace-class. One then sets
(1.2.16) tr (AN) E Y (AN Fa, Fap)s, -
aEeN?

We recall that if besides the operator A(\) has a kernel, namely that if there exists a
function k) (¢, £’) such that

(1.2.17) VE € Hy, ANF(€) = /C & E)F(EhaE,
then its trace is given by
(1.2.18) o (A0) = [ ka6, )de.

Cd

Now if A(X)*A(X) is trace class, then A(X) is said to be a Hilbert-Schmidt operator.
The quantity

1AM s,y = < 3 ||A<A>Fa,u|2>

acNd
is then a norm on the vector space of Hilbert-Schmidt operators. The following prop-
erty on Hilbert-Schmidt norms, which can be found in [46] (Volume 1 Chapter VI.6)
will be of frequent use in what follows. Let A and B be two bounded operators on J ,
with A Hilbert-Schmidt. Then

(1.2.19) BAlrs@e.) + 1ABllas@) < 1Bl el Al say)-
Similarly if A and B are two Hilbert-Schmidt operators, then AB is trace-class and
(1.2.20) [tr(AB)| < AN | s 1B zrs(aey)-

These notions are important for stating the Plancherel theorem for the Heisenberg
group. The proofs of the two following results can be found for instance in [23].
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12 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

Theorem 1. — Let @ denote the Hilbert space of one-parameter families A =
{A(N)}aer\{0} of operators on £ which are Hilbert-Schmidt for almost every A € R,
with ||A(N) || gs(#,) measurable and with norm

def 2d—1 e 2 d %
) (Wdﬂ L A rsortir) < oo

The Fourier transform can be extended to an isometry from Lz(]HId) onto & and we
have the Plancherel formulas:

2d—l e8]
1220 e = g7 [ IO sy AdA and

2d—1 e o}
122 (l9pmy = 257 ) & (OO TOW) N

Remark 1.7. — If A= {A(X)}rer\ ({0} and B = {B(X)}recr\{0} are two families in G,
then

[ AMBONIAK dx < 41 1B,

Moreover, the following inversion theorem holds.

Theorem 2. — If a function f satisfies

(12.23) S [ IGO0 Pl A < o0

aeNd " T
then we have for almost every w,

d—1 0
f) = s [ (@) Nar

Remark 1.8. — The above hypothesis (1.2.23) is satisfied in J(H®) (see for ezam-
ple [6]). Therefore, if we consider for wy € H, the Dirac distribution in wq, G, (w),
defined by

vf € d(Hd)a < 6100 ) f > = f(w0)7
we have an expression of 6, as a singular integral

241 A d
(1.2.24) By (W) = m/wtr (w1, ) Il

Now let us study the action of the Fourier transform on derivatives. Straightforward
computations (performed in Lemma A.3 page 101 for the convenience of the reader),
show that

T(Z;HN) = T(HNQ;,
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where Q;‘ is the operator on %, defined by

QFar ¥ —\2Nya; F1Fasa,n HA>0
(1.2.25) © AN @G Far,n A <O
and in the same way,
IZ; )N = I(HNG;,
where @; is the operator on % defined by

Q) Far & 2Dy @GFacr,n HA>0
(1.2.26) © 2NV F 1Far,n A<,
while we have written o +1; = 8 where By = oy if k # j and 8; = a; £ 1.
Observe that (%Q;‘)* = %@; and that

—2Alg; if A>0 _ B, if A>0,
A& A0 ggh=] % I A
O, if A <0, —2|Al¢; if A<0.

(1.2.27) Q) = {

We therefore can write

F(~Agaf)(N) = F(f)(N) o Dy where Dy =23 (Q;Q; +Q;Q)
J

Using (1.2.25) and (1.2.26) we notice that

(1.2.28) Va € N%, Dy Far € 4|N|(2le] + d) Far.

Powers of —Apa can therefore be defined in the following way: for any real number p,

F((=Aua)?f)(A) = F(f)(A) o D{ and
F((Ad = Aga)? F)(A) = F(f)(A) o (Id + Dy)*.

Notice that (1.2.28) shows that the quantity |A|(2|e| + d) may be considered as a
"frequency" on the Heisenberg group. Finally one sees easily that

F(0:F)N) = AT (F)(N)-

This explains why the partial derivative Js is usually considered as a second-order
operator, though one notices here that its "strength" is somewhat weaker than that
of the Laplacian since its action, in Fourier space, corresponds to a multiplication
by A while the Laplacian produces 4|A|(2|a| + d).

Finally it will be useful later on to notice that due to formulas (1.2.25), (1.2.26)
and (1.2.28), the operators D;m/ 20(Q3\)m and D;m/ 20(@?)’" are uniformly bounded
on ¥, for any integer m.

Note that one can also prove, in the same fashion as in the Euclidean case, rela-
tions between & ((is — |2|?)f) () and F(f)(A); we refer to Proposition 1.11 below
for formulas.

(1.2.29)
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14 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

Remark 1.9. — The above computations show that for any function f € J(H),

2d—l o
Ziw = L [ w@ag(mme)
d—1 oo
Zif(w) = %ﬁ/_ tr(ug\u_lg(f)()\)é;) [A|¢dX, and

2d——l oo
—Dpef(w) = — / tr (upy—1 F(F)(A)Dy) [A[%dA.

In particular, if we consider the derivatives of the Dirac distribution 6,,(w) defined
as usual by duality through

< Zj(st,f >= - JWO,ij >= —ij(wo) and
< 7j5w0,f >=-< (5w0,7jf >= —ij('wo)

for all f € S(H?) and for some fized wy € H?, we obtain an expression of the
derivatives of the Dirac distribution as singular integrals

24-1 o A A) 1y e
Z;60s(w) = —Fﬁ/_ootr (qu_lej) IA[4dA,
— 2d—1 *© A —A d
Zibuwo(w) = —;(H—l/—ootr (uwo_lej) IA|%dA, and
2d—1 ¢S} N 4

It turns out that for radial functions on the Heisenberg group, the Fourier transform
becomes simplified. Let us first recall the concept of radial functions on the Heisenberg
group.

Definition 1.10. — A function f defined on the Heisenberg group H? is said to be
radial if it is invariant under the action of the unitary group U(d) of C%, meaning
that for any u € U(d), we have

f(z,8) = f(u(2),5), V(z,5) € H".
A radial function on the Heisenberg group can then be written under the form
f(z,8) = g(|2l, ).

Then it can be shown (see for instance [45]) that the Fourier transform of radial
functions of L?(H?), satisfies the following formula:

g(f)(’\)Fa,)« = R|a|(/\)Fa,A

where

R (X) d——e-f< mtd-1 ) /ei’\sf(z,s)Lﬁ,‘f‘l)(2|A||z|2)e‘|)‘”z|2dzds,

m

ASTERISQUE 342



1.2. BASIC FACTS ON THE HEISENBERG GROUP H¢ 15

and where LS,’{) are Laguerre polynomials defined by

(1.2.30) L(p)(t)defZ( 1)’°<m+p ) o 120 (m,p) € N°.
k=0

Note that in that context, Plancherel and inversion formulas can be stated as follows:

m+d—1 :
1512 qaey = (ﬂdﬂ Z( ) / | m(A)|2|A|ddA)
and

(1.2.31) f(z,8) d+1 Z / —iAs g (N)LED2[A||2]2)e~ M= | A dd.

The context of radial functions allows to compute the Fourier transform of (is—|z|?)f,
as stated below (see [7] for a proof).

Proposition 1.11. — For any radial function f € J(H*), we have for any m > 1,

g((is_ |z|2)f)(m,)\) = dii):gf(mv)‘) - T(gf(va) - gf(m - 17)‘)) Zf)‘ > 0, and

d d
T ((is — 21%)1) (m, X) = =T f(m, X) + ﬁl-;}—(gf(m,x) —TFm+1,N) A <0.
1.2.2.2. The L? representation. — In order to define pseudodifferential operators, it

will be useful to use rather the L? (or Schrodmger) representations, denoted in the
following by (v} ,f)(£), where 5 belongs to R? and f to L?(R?). As recalled above,
the representatlons vi"s and “z,s are equivalent. The intertwining operator is the

Hermite-Weber transform K : # ) — Lz(Rd) given by
aet M2 52 ( 1 3) ~Inl e
1.2 K -
(1.2.32) (Kr8)©) &~ e (~ 5 e
which is unitary and intertwines both representations: we have indeed K Au;\,s =
v} K and
(1.2.33) v} f(€) = ePET2mVEO £ 27), VAER".

A short proof of this fact is given in Appendix A.2 for the convenience of the reader (see
Proposition A.1 page 98). We also recall that the inverse of K is known as the Segal-
Bargmann transform (see for instance [24]). Let us denote by h, the multidimensional
Hermite function defined by

Vo= (a1,...,aq) € N4, Wt =(t1,...,ta) € RY ho(t) E hay (t1) - - ha, (ta),

with

ha(t) & (27 nlym) V2 e 2H, () and  Hy(t) & et (—%)n(e—t’).
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16 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

Introducing the scaling operator

(1.2.34) Vf e L*(RY), Trf (&) def A"/ F (N Y2),

and setting hqo » = Ty ho We observe that
(1.2.35) Vo€ N4, KyFo = haa

where hq ) is an eigenfunction of the rescaled harmonic oscillator —A¢ + |A||€|%. This
implies by straightforward computations that

K\QMK3 =0, — [N¢; and  EaQ, K5 =3, + [N if A>0,
—\ .
K"Q?K; =0 +[M¢; and K\Q; Ky =0, — |Ay; if A<O.

Defining the operator

(1.2.36) I ¥ 1K),

and observing that
Ta(=B¢ + EPINTY = IN(=A¢ + [€1%),
we infer that

DT = VIN (B, — &) and LQ;J5 = IN (8, +6&) if A>0
—X
Q=N (8, +¢&) and QT3 = IN (9, — &) if A <0,

which finally implies that

(1.2.37)

(1.2.38) IADAT} = 4A|(—A¢ + [£7).

In view of Remark 1.9, the Laplacian —Apya is associated with the operator Dy of
in the Bargmann representation; by Equation (1.2.38), it is associated with the
harmonic oscillator in the L?(R?) framework.

These computations indicate that symbolic calculus on ) is, via the unitary
operator Jy, equivalent to symbolic calculus on the harmonic oscillator. That theory
is well understood: it consists in Weyl-Hérmander calculus associated with a harmonic
oscillator metric. This is made precise in the next section.

Before proceeding further, it is instructive to compute the Fourier transform for
instance of the function Zj7j fforfed (]I-]Id). Indeed, we notice that with the previous
notations, for A > 0,

T(—iZ)(=iZ;)£) (V)

F(=iZ; £) NI I (=ide, + i€5)
T(FYNT5IA (e, — i€;)(—id, + i&;) T
T(FYNTIMNE - 8 + 1),

This implies that symbols on the Heisenberg group must not only include harmonic
oscillator type symbols, but also functions such as powers of .
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1.3. Weyl-Ho6rmander calculus

Let us recall in this section some results on the Weyl-Hérmander calculus of the
harmonic oscillator which we shall be using. We shall only state the definitions that
will be needed in the following, and for further details, we refer for instance to [14],
[15], [17], [19], [38] and [41].

1.3.1. Admissible weights and metrics. — Let us denote by w[©, ©'] the stan-
dard symplectic form on T*R® (which we shall identify in the following to R2?) :
if @ =(¢,m) and © = (¢/,7), then w[O, O] défn - L

For any point © = (£,7) in R?, we consider a Riemannian metric go (which
depends measurably on ©) to which we associate the conjugate metric gg by

T, 7|
T de w T 1/2 — |(IJ[ ) .
VT e R*, (98(T)) S5 se (T2
We also define the gain factor
w T)

1.3.1 Ao inf 80D,
(13.1) ° 7T go(T)
Definition 1.12. — We shall say that the metric g is of Hormander type if it is:

1. Uncertain: For all © € R??, Ag > 1.
2. Slowly varying: There is a constant C > 0 such that

o) g

ge(T)/

3. Temperate: There are constants C > 0 and N € N such that for all (6,0') €
R

go(0-0)<T " > sup (
TeR24

oM\ L NF
. (B3 scu oo

In the following any constant depending only on C and N will be called a structural

constant.

In the definition above we have used the notation
(ge(T) )il def 9o(T) | ger (D),
g9e/(T) 9o/ (T) = go(T)
We also define a weight as a positive function on R?¢ satisfying the same type of
conditions as a Hérmander metric.

Definition 1.13. — Let g be a metric in the sense of Definition 1.12. A positive func-
tionm on R*? is a g-weight if there are structural constants C >0and N €N such
that

—— + —

L go(0-0)<T 7' = (mO)* < 7.
+1 — —
2. (2&F)” <CT(1+gs0-0)V.
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It is easy to see that the set of g-weights has a group structure (for the usual
product of functions).

For such metrics and weights, one can then define the class S(m,g) of smooth
functions a on R?? such that, for any integer n,

|01, ...07,a(0))|

j<n,0€R* m(©) ’

ge(T;)<1

where dra denotes the map (da,T). Now, if a is a symbol in S(m,g), then its Weyl
quantization is the operator which associates to u € J(R?) the function op®(a)u
defined by

(133) VEeR?, (op*(ahu) (©* m) | 610 (25 ) w(e)ag'an
R24d

The main interest of this quantization is that op”(a)* = op®”(@).
Observe also that if a(§,n) = a(£), the operator op*(a) is the operator of multi-
plication by the function @ and if a(§,n) = a(n), the operator op®(a) is the Fourier

def
(1.3.2) llalln;s(m,g) =

multiplier @(D). In particular one has op"’(n;-C )= (%3§j)k for any k € N.
Besides, for all symbols a € S(mi,g) and b € S(msg,g) where m; and mo
are g-weights, we have the following composition formulas:

op¥(a) o op¥(b) = op”(a#b) with a#b € S(mims,g) and

(1.3.4) (a#b)(©) = 24 / e 2w[0-61,6-8214(9,)h(0,)dO,dO,.

R2d X R2d
The (non commutative) bilinear operator # is often referred to as the Moyal product.
This leads to an asymptotic formula

1
(1.3.5) a#bzab+ﬂ{a,b}+...+m,

where ab belongs to S(mimg,g) and %{a,b} belongs to S(A~'mjma,g), recalling
that {a, b} is the usual Poisson bracket
d

{a,0} 2" (8,0 0¢,b — 8,a.8,,b) .

=1

Finally for any integer N, the remainder ry belongs to S(A~Nm;ms,, g).
Let us mention that the operator op*”(a) has a kernel k(&,¢’) defined by

— i(E=¢")- + !
(1.36) Ko, &)= @m [ etema (S2E ) ay
R
which is linked to its symbol through
! !
(1.3.7) olen = [ e (e+5e- ) e
Rd 2 2

Let us also point out that a concept of Sobolev space H(m,g) was introduced by
R. Beals in [8]. We will use the following characterization of those spaces.
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Definition 1.14. — Let g and m be respectively a Hormander metric and a g-weight, in
the sense of Definitions 1.12 and 1.13. We denote by H(m, g) the set of all tempered
distributions u on R? such that, for any a € S(m,g), we have op¥(a)u € L*(R%). In
particular H(1,g) coincides with L?(R%).

Note that the study of Sobolev spaces associated with a Hérmander metric g and
a g-weight has been developed in [8], [14], [15], [17] and [53] and in particular in [14],
it was shown that these spaces are “almost independent” of the metric g. The Weyl
quantization defined by (1.3.3) can be extended to an operator on ¢’ (R%) which acts
on the Sobolev spaces H(m, g) in the following way.

Proposition 1.15. — Let g be a Hormander metric, and let m and m; be g-weights.
There exists a constant C, depending only on the structural constants of Defini-
tions 1.12 and 1.13, such that the following holds. Let a be in S(my,g). Then, there
exist an integer n and a constant C' such that for any u in H(m,g), we have

lop” (a)ull g mm=1 gy < Cllallnssm, o) |ull 2 (m,g)-

In particular, there exist an integer n and a constant C such that if a € S(1,g), then
for any u € L2(R?) one has

(1.3.8) llop™ (a)ul| L2(ray < C llalln;s(1,0) 1/l L2 (R4)-

1.3.2. The case of the harmonic oscillator. — As pointed out in Section 1.1.2.2,
it is natural to base the quantization of symbols on the Heisenberg group on the

calculus related to the harmonic oscillator. In that case one is considering the metric
defined by

def d€2 + d”72

1.3.9 VO = (¢,1) € R*, dé,dn) = —————
(1.3.9) (&mn) ge(d§, dn) T+t
while the g-weight is

(1.3.10) VO = (6,7) € R¥, m(0) X (1+ 2 +n?)5.

It is an exercise to check that g is a Hérmander metric in the sense of Definition 1.12,
and that m is a g-weight in the sense of Definition 1.13. This will in fact be performed
in the proof of Proposition 1.20 below in a more general setting.

We will be interested in the class of symbols belonging to S(m*, g) for some real
number u, where we notice that (1.3.2) can simply be written equivalently in the
following way:

(1311)  falluseeg E sup (L+€ +72) T3 a6, m)] < oo.
1B1<n,(£,m)€R>?

It is useful, in particular in the framework of the Littlewood-Paley transformation
on the Heisenberg group investigated in Chapter 4, to be able to write the Weyl symbol
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of functions of the harmonic oscillator on L2(R%). The formula for such symbols is
derived using Mehler’s formula (see [26] for instance)

(1.3.12) e—t(ﬁz—Ae) = (Ch t)—d Opw (e_(fz""’lz)tht) .

More precisely, we have the following result, whose proof is postponed to Appendix B
(see page 110).

Proposition 1.16. — Consider R a smooth function satisfying symbol estimates:

(1.3.13) JueR, 3IC>0, VneN, ||A+]-)"HO"R| ey < O™

Then R(£? — A¢) is a pseudodifferential operator. Moreover one has formally
R(&* — A¢) = op®(r(§* +1%))
with for all x # 0,

1

(1.3.14) r(z) = %

/ (cos 7)™ % 8T =¢T) R(¢)dr dE.
R xR

Besides (€,m) — r(£2 4+ n?) is satisfies the symbol estimates of the class S(mH,g), in
the sense of (1.3.11).

Note that r is not well defined at £ = 0 in general, which explains why the rela-
tion R(&% — A¢) = op™(r(€? + n?)) is only formal. One also has the inverse formula

1 )
(1.3.15) op” (r(y” +1%)) = 5 / P(r)et W' —MAreter () 4 72)=d/2g

This yields that the operator J}op®” (r(y% +n?))J, is diagonal in the basis (Fu,»)qen¢
and thus commutes with operators of the form x(D,) for all continuous bounded
functions x, where x(D,) is the operator

(1.3.16) X(Dx)Fax = x(4]A[(2a] 4+ d)) Fa,x.

Remark 1.17. — Let us note that the operator Id — A¢ + €2 has for symbol m?, while
the symbol of 4(—A¢ + £2) is m2(&,n) where m2(€,n) def 2(£2 + n?)3.

Besides, for p € R, Proposition 1.16 shows that there ezists a function m, €
S(mH, g) such that 2#(Id — A¢ + £2)/2 = op¥(m,,). In particular, for any p, i’ € R,
MuFEMY = Mpyy .

Finally if p > 0, then there exists a function m, € S(mH,g) such that 2#(—A¢ +
€2)1/2 = op¥(m,,). In particular, for any p,u’ € R, m,#m, = Myt . Note that the
restriction to p > 0 is natural and holds also in the euclidean case.

1.4. Main results: pseudodifferential operators on the Heisenberg group

In this section, motivated by the examples studied in the previous sections of this
chapter, we shall give a definition of symbols, and pseudodifferential operators, on the
Heisenberg group. Then we will state the main results proved in this paper concerning
those operators.

ASTERISQUE 342



1.4. MAIN RESULTS: PSEUDODIFFERENTIAL OPERATORS ON THE HEIS. GROUP 21

1.4.1. Symbols. — Our approach inspired by the Euclidian strategy of R. Coifman
and Y. Meyer [20] allows to consider symbols with limited regularity with respect the
Heisenberg variable. Therefore, in what follows, we shall define a positive, noninteger
real number p, which will measure the regularity assumed on the symbols (in the
Heisenberg variable). This number p is fixed from now on and we emphasize that the
definitions below depend on p. We have chosen not to keep memory of this number
on the notations for the sake of simplicity.

Definition 1.18. — A smooth function a defined on H® x R* x R24 is a symbol if there
is a real number p such that for all n € N, the following semi norm is finite:

def 18l 18l—p
lallnsae = sup sup [A7Z (1+[A(1+6%)) = [[(A0x)*08a( A, O)llcr(aa)-
MAO |8l +h<n
©cR

Besides, one additionally requires that the function
(1.4.) (w, X, &n) = (@) (w, A, &,m) = a (w, N sgn(N) o, L)
VIAL VIA

s smooth close to A = 0 for any (w,&,n) € H? x R*. In that case we shall write a €
Spa()-

Remark 1.19. — The additional assumption (1.4.1) is necessary in order to guar-
antee that pseudodifferential operators associated with those symbols are continuous
on J(H%) (see Proposition 2.6). It is also required to obtain that the space of pseu-
dodifferential operators is an algebra.

In the remainder of this section, we shall discuss two points of view. The first
consists in considering the symbol a € Sy«(1) as a symbol on R?? depending on the
parameters (w, A) in H? x R and belonging to a A-dependent Hérmander class (see
Proposition 1.20). The second point of view consists in emphasizing the function o(a)
(see Proposition 1.22). Both points of view are in fact interesting, and both will be
used in the following.

Let us first analyze the properties of a € Sga(u) for a fixed A. The following
proposition is proved in Appendix B (see page 107).

Proposition 1.20. — The (\-dependent) metric g defined by
aof IN(d€? + d?)
14+ |A|(1+ ©62)
is a Hormander metric in the sense of Definition 1.12, and the function
m®(0) € (14 A|(1+6%)"?

is a g™ -weight. Moreover the constants C and N of Definitions 1.12 and 1.13 are
independent of A.

Finally if a is a smooth function defined on HY x R* x R*¢, then a belongs
to Spa(u) if and only if (1.4.1) defines a smooth function and for any k € N, the

VA#£0, VO e R*, gl (de,dn)
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22 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

function (A\0y)*a is a symbol of order u in the Weyl-Hormander class defined by the
metric g*) and the g™ -weight m™, uniformly with respect to .

Proposition 1.20 has important consequences which are stated below. The first
one will be used often in the sequel and states that the continuity constants of Weyl
quantizations of symbols are independent of A and w.

Corollary 1.21. — Let a be a symbol in Sga(p). Then for any w € H* and A € R*,
the operator op™ (a(w, A)) is continuous from H(m, gM) into H (m(m™)=#, ™) for
any gV -weight m, and the constant of continuity is uniform wih respect to A and w.
In particular for p = 0, the operator op¥(a(w, \)) maps Lz(Rd) into itself uniformly
with respect to w and A.

The second consequence concerns the stability of our class of symbols with respect
to the Moyal product (see (1.3.4)): if a € Sya(p1) and b € Sya(u2), then the func-
tions ab and a#b are symbols in the class Sya(u1 + p2). Besides, the asymptotic
formula can be written

Al 1 1 1 1
b=ab O¢.a —=0,.b
a# ab+ — Z( /_l)\ 77] /I)\ E] /—l)\l ‘fga |)\| n; )+

Let us also point out that if a belongs to Sya(u), then for any j € {1,...,d} the
. 1 1 -
functions W O¢,;a and ma,,ja belong to Sya(u —1).

Let us now mention some properties of the function o(a) defined in (1.4.1). The
following proposition, which is proved in Appendix B (see page 109), will be useful in
the proofs of Chapter 3.

Proposition 1.22. — A function a belongs to Sga(p) if and only if o(a) €
6 (H* x R?***) satisfies: for all k,n € N, there exists a constant Cpj > 0
such that for any B € N satisfying |8| < n, and for all (w,\,y,n) € HY x R24+1

(142 |akef, (@) S Cop (LI +E+72) 7 1+ )

€r(HY)

1.4.2. Operators. — We define pseudodifferential operators as follows.

Definition 1.23. — To a symbol a of order p in the sense of Definition 1.18, we asso-
ciate the pseudodifferential operator on H¢ defined in the following way: for any f €

J(H?),
def 2471

(1.4.3) vw e H, Op(a)f(w) = s, /R tr (up -1 F(f)(A)Ax(w)) |A|? dA,

where

(1.4.4) Ax(w) ¥ T3 op®(a(w, N, €,m)) Jx if A #0.

while Jy is defined in (1.2.36), page 16.
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Examples of pseudodifferential operators are provided in Section 2.1 of Chapter 2.
Observe that the operator Op(a) has a kernel

d-1 [oo
(1.4.5) ko(w,w') = %/ tr (upy -1, A (w)) [A|%dN

since by definition of the Fourier transform, one can write

(1.4.6) Op(a)f / ko(w,w') f(w') dw'.

We shall prove in Chapter 2 an integral formula giving an expression of the kernel in
terms of the function o(a) defined in (1.4.1): see Proposition 2.4 page 30.

(N

Let us denote by m,"’ the function

(1.4.7) m (€, m) € mu (VINE VM),

where m,, is defined in Remark 1.17, page 20.
Then we note that if a is a symbol of order u, then the operators

Ax(Id + Dy)~#/? = J}op® (a(w, )\)#m )JA and

(Id + Dy)"#/%Ay = J*opw(m #a(w,)\))JA

are uniformly bounded on % ) (see Corollary 1.21, page 22). More precisely we have,
for some integer n,

(14.8)  [|Ax(Id + Dx) ™|l sy + IITd + DA) 2 Ax |l 2s2) < Crllallngs, (u)-

1.4.3. Statement of the results. — Let us first state a result concerning the
action of pseudodifferential operators on the Schwartz class. This theorem is proved
in Chapter 2.

Theorem 3. — If a is a symbol in Sya(p) with p = +00, then Op(a) maps continuously
S(H?) into itself.

Notice that Theorem 3 allows to consider the composition of pseudodifferential
operators, as well as their adjoint operators. The following result therefore considers
the adjoint and the composition of such operators. It is proved in Chapter 3.

Theorem 4. — Consider Op(a) and Op(b) two pseudodifferential operators on the
Heisenberg group of order p and v respectively.
— If p>2(2d+1) + ||, then the operator Op(a)* is a pseudodifferential operator
of order p on the Heisenberg group. We denote by a* its symbol, which is given
by (8.1.2).
— Ifp > 2(2d+1)+|p|+|v|, then the operator Op(a)oOp(b) is a pseudodifferential
operator of order less or equal to p+ v. We denote by a #ya b its symbol.
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24 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

We have the following asymptotic formulas for A € R,

(1.4.9) a*=a+5jﬁi§: ({Z;a@, n; +i&} +{Z;a, n; —ig;}) +

1<j5<d
(1.4.10)
a#tgab=>b#a
1 _
+—— S (Zb# ({a, m; +i&}1) + Z;0# ({a, n; — i&})) + 72
2 '/\l 1<j<d

where r1 (resp. r2) depends only on Z%a (resp. Z*b) for |a| > 2.

One can find precise formulas for a* and a #yab respectively in (3.1.3) and (3.3.3).

The first term appearing in the asymptotic formula for a#ab is not a#b as could
be expected: this is due to the fact that in Definition (1.4.3) the Fourier transform is
composed on the right.

Note that the asymptotic formulas only make sense when the semi norms ||| ;s,, ()
are finite for p > 0 large enough. Let us also emphasize that due to (1.4.10), the pseu-
dodifferential operator [Op(a), Op(b)] is of order p+v. Actually the same phenomenon
occurs when Op(a) and Op(b) are differential operators: there is no gain in the order
of the commutators.

It is also important to point out that the asymptotics of (1.4.9) (respectively of
(1.4.10)) can be pushed to higher order, as shown in Section 3.4 of Chapter 3. We will
discuss in that section in which sense the formula are asymptotic. In fact, in the case
where Op(a) is a differential operator, one obtains a complete description in (1.4.9)
and in (1.4.10) since the asymptotic series are in fact finite.

Finally, we point out that even though a is real valued, a* is generally different
from a.

The final result of this paper concerns the action of pseudodifferential operators
on Sobolev spaces.

Theorem 5. — Let i1 be a real number, and p > 2(2d+1) be a noninteger real number.
Consider a symbol a in Sya(p) in the sense of Definition 1.18. Then the operator
Op(a) is bounded from H*(H®) into H*~*(H?), for any real number s such that |s —
u| < p. More precisely there exists n € N such that

10P(a) | p(ars ey, o —w mayy < Cnllallngsya(w)-
If p > 0, then the result holds for 0 < s — p < p.

Remark 1.24. — The weaker result for small values of p is due to the fact that the
adjoint of a pseudodifferential operator is also a pseudodifferential operator is only
known to be true under the assumption that p is large enough. A way of overcoming
this difficulty would be to have a quantification, stable by adjonction (of the type of
the Weyl quantization in the Euclidean space). Unfortunately, the non commutativity
of the Heisenberg group seems to make such a quantization difficult to define.
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Theorem 5 is proved in Chapter 5. The idea of the proof consists, as in the clas-
sical case, in decomposing the symbol into a series of reduced symbols. The new
difficulty here compared to the classical case is that an additionnal microlocalization,
in the A direction, is necessary in order to conclude. This requires significantly more
work, as paradifferential-type techniques have to be introduced in order to ensure the
convergence of the truncated series (see for instance Proposition 4.15, page 74).
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CHAPTER 2

FUNDAMENTAL PROPERTIES OF
PSEUDODIFFERENTIAL OPERATORS

The main part of this chapter is devoted to the proof a number of important proper-
ties concerning pseudodifferential operators on H¢ defined in Definition 1.23 page 22,
which will be crucial in the proof of the main results of this paper. Before stating
those properties, we first present several elementary examples of pseudodifferential
operators, and analyze their action on Sobolev spaces. Then, we study the action of
pseudodifferential operators on the Schwartz space, and prove Theorem 3 stated in
the introduction.

2.1. Examples of pseudodifferential operators

Let us give some examples of pseudodifferential operators and their associate sym-
bols. In this section and more generally in this article we will make constant use of
functional calculus.

2.1.1. Multiplication operators. — It is easy to see that if b is a smooth function
on H¢, then Op(b) is the multiplication operator by b(w) and clearly maps H*®(H®)
into itself provided that there exists p > |s| and a constant C such that ||b||c, < C.

2.1.2. Generalized multiplication operators. — Consider b(w,)) a C?(H?)
real-valued function depending smoothly on A so that for some C' > 0,

sup [16(-, Ml e ey < C-
If b is rapidly decreasing in A in the sense that

VE €N, sup|(1+ [A)*OKb(, M)l gey < oo,
A€ER

then b is a symbol of order 0 and the operator op¥(b(w,A)) is the operator of
multiplication by the constant b(w, A), which does not depend on (y,n). Therefore,
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28 CHAPTER 2. FUNDAMENTAL PROPERTIES OF PSEUDODIFFERENTIAL OPERATORS

Ax(w) = b(w, ) is a uniformly bounded operator of . Moreover, if f € L2(H?)
then {F(f)(A) o Ax(w)}x € & (as defined in Theorem 1), then

1F(F)A) 0 Ax(w)ll sy = 16w, VT (F)Mmsrs) < CIFH)Mas@rn)
which implies that
10P(®) fllL2mey < C || fllL2mey-
Besides, one observes that for allm € Nand all j € {1,...,d}, we have by Lemma A.3,
7 (27" (0p(d)f)) (V) 7 (Op(b)f) () o (@)™
b(w,X) T ((=Daa)™f) () 0 D3™% 0 (@)™

Il

I

with D;m/ %o (@)™ uniformly bounded on . A similar fact occurs for Z;. This
computation shows that Theorem 5 is easily proved for all s, by interpolation and
duality. More precisely, there exists a constant C such that

10p(®) fll 1 (may < C | fll o (eaey-

2.1.3. Differentiation operators. — Let us prove the following result, which pro-
vides the symbols of the family of left-invariant vector fields.

Proposition 2.1. — We have for 1 <j<d, peR, v >0

22, = 0p (VN + 650N &), 57, = Op (v ~ iseaN ).
X; = Op(2isgn()) /|Am;), ¥; = —Op(2i /A&,
§ = 0p(iA), —Ags =40p (N7 +€2))
(1d— Aga)% = Op(m® (€,n), (~Age)¥ = Op@N (€, m))-

In particular Z;, _Z—]-, X; and Y; are pseudodifferential operators of order 1, while S
and Aya are of order 2 and (Id — Aya)¥ is of order 2u.

Observe that if 1Z; = Op(d;), 1Z; = Op(d;), we have using the map o defined
in (1.4.1) page 21,

o(d;)(&m) =n; +i&; and o(d;)(§,n) = o(d;)(§n) =n; — 1&;.

Proof. — We perform the proof for Z;. For A > 0, we have from (1.2.37) along with
Lemma A.3 stated page 101,

7(3zf)m = 1

~F(HN) 0 Q5

1
= TNW o RV (G0, — 3¢) I
= () o I} op® (VA (s +i&5)) I
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On the other hand, for A < 0,
TN o VN (306, +36) I

7 (32:1)
()N o T30p* (/1M (n; — i€;)) I

The other cases are treated similarly, except for the operators (Id — Aga)*
and (—Ape)”, for which we refer to Remark 1.17, page 20. This concludes the
proof of Proposition 2.1. O

2.1.4. Fourier multipliers. — A Fourier multiplier is an operator K acting on
J(H?) such that

F(EFA) = T(F)A) e Uk ()

for some operator Uk (\) on J .

For instance, the differentiation operators Z; and Zj are Fourier multipliers,
and Ugk()) is respectively equal to Q} and @;‘ as given in formulas (1.2.25)
and (1.2.26) page 13. Similarly the Laplacian —Ap« is a Fourier multiplier,
with Uk (A) = Dy according to (1.2.29).

An interesting class of Fourier multipliers consist in the operators obtained from the
Laplacian by means of functional calculus: for ¥ bounded and smooth, the operator
W(—Apa) is a bounded operator on H*(H*) for all s € R, and

Vf e LA(HY), F(U(=Aya)f)A) = F(F)(N) o ¥(Dy).
Such operators commute with one another, and so do the operators ¥ (D)) for different
functions ¥. The Littlewood-Paley truncation operators that we will introduce later
(see Chapter 4) are of this type, and we will see that they are pseudodifferential
operators (see Proposition 4.18 stated page 79). Observe too that if ¥ € €;°(R), then
the operator ¥(—Aya) is a smoothing operator which maps H*(H¢) into H> (H?) for
all s e R.

Another class of Fourier multipliers which are also pseudodifferential operators, is
built with functions b in S(m#, g) with p > 0 in the following way.

Proposition 2.2. — If a(w,\,&,n) = b (sgn IV IAE VA 77) with b € S(m#,g)
and p > 0, then a belongs to Sya(u), and the operator Op(a) is a Fourier multiplier.
Moreover,

(2.1.1) Vu € HS(Hd)» ”OP(G)U”Hs—u(Hd) < C”b”n;s(m“,g)”u”HS(]H[d)'
Finally 0(a) = b as given in Definition 1.18.

Proof. — The fact that a belongs to Sya () and that the operator Op(a) is a Fourier
multiplier are straightforward. Now let us prove (2.1.1). We have

d—1
Op(a)u(w) = % /Rtr (uf‘v-l F(uw)(N)Ay) [N dA,

with Ay = J§ op¥(a) Jx.
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In view of the Plancherel formula (1.2.21) recalled page 12, to estimate the
H* *-norm of Op(a)u, we evaluate the Hilbert-Schmidt norm of & ((Id - AHd)s_;EOp(a)u) (A).
We have

7 ((1d - Aga) T*Op(a)u) (A) = T(w)(N)Ar(1d + D) 7
=7 ((Id — Agae)3u) (A)(Id + Dy) "2 A5 (Id + Dy) =",

In light of (1.4.8) page 23, the operators (Id + Dy)~ % Ax(Id + Dy)“2" are uniformly
bounded on £(# ) by C||b||n;s(mn,g) Which ends the proof of the estimate thanks to
property (1.2.19), recalled page 11. This ends the proof of Proposition 2.2. O

More generally, a pseudodifferential operator which is a Fourier multiplier has a
symbol which does not depend on w. For this reason, Theorem 4 is easy to prove in
that case.

Proposition 2.3. — Consider a and b two symbols of Sya(u) which do not depend on
the variable w. Then Op(a)* = Op(@) and Op(a) o Op(b) = Op(b#a).

Proof. — By the Plancherel formula,
d—1

(00(0)1.9) = 2z [ 5 ((F@W) TN A
with Ay = Jyop™(a(A))Jx. Therefore,

7 (Op(a)*g) (A) = F(g)(A) A5
The fact that A} = Jyop™(@(A))Jx gives the first part of the proposition.
Let us now consider Op(a) o Op(b). We have
F(Op(a) o Op(b)f)(A) = F(f)(A) o Bx o Ay

with By = J{op”(b(A))Jx. The fact that op™(b) o op”(a) = op™(b#a) finishes the
proof. O

2.2. The link between the kernel and the symbol of a pseudodifferential
operator

The kernel of a pseudodifferential operator on the Heisenberg group is given
by (1.4.5) page 23. The following proposition provides an integral formula for the
kernel of a pseudodifferential operator, as well as a formula enabling one to recover
the symbol of an operator, from its kernel.

Proposition 2.4. — The kernel of the pseudodifferential operator Op(a) is given by

1 . ’ ’ . ’ . ’ . ’
k(w,w') — 271_2—d+1 /621/\(1-3, —y-z )U(G,)(w, /\’ 5’ ()ez)\(s —8)+2iz-(y' —y)—2i¢ - (z —z)d)\ dé dCa

where o(a) is defined in (1.4.1), page 21.
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Conversely, one recovers the symbol a through the formula
(2.2.1) o(a)(w, A, &,n) =/ % (W &= M Ak y(w') 1) du’.
Hd

Before proving the proposition, we notice that it allows to obtain directly the
symbol of a pseudodifferential operator if one knows its kernel: the following corollary
is obtained simply by using Proposition 2.4 and Relation (1.4.1) between a and o(a).

Corollary 2.5. — Let Q be an operator on H® of kernel k(w,w’) such that for some y €
R, the function defined for (w,€,n) € H? x R% by

(2.2.2) a(w,\&,n) def / e2i\/|7|(sgn(A)y'~§—w’~n)eiAs’k(w,w(w/)—l)dw/
He

belongs to Sya(p). Then Q = Op(a).

Proof of Proposition 2.4. — Let us start by recalling (1.4.5), which states that

2d—1 . w
k(w,w') = — /tr( -1 Jx0PY (a(w, X)) Jx) |A|%dA.

Note that everywhere in the proof, integrals are to be understood as oscillatory in-
tegrals. The Bargmann representation ), and the Schrodinger representation v} are
linked by the intertwining formula u} = K}vg K), so using the operator T = J K3

we have

d—1
k(w,w') = 2d+1 /tr (v} -1 Txop® (a(w, X)) Ty) |A|%dA.

By rescaling it is easy to see that

(2.2.3) T3 op" (a(w, A)) Th = op” (( AL m))

so we get

(2.2.4) k('w,w’)zzﬂl;1 tr [ v)_1,0p" [ a Y E— [A]4d.
¥

In order to compute the trace of the operator v;})_lw,op“’ (a (w, MV m)), we

shall start by finding its kernel 6(¢,¢’), and then use the formula (1.2.18) page 11,
giving the trace of an operator in terms of its kernel.
So let us first compute 6(&,¢’), which we recall is defined by

v _1,,0p% (a( IA] - |)\ )) /0 & f

We also recall that

Opw (a’ ( P‘l ’ m)) f(é) = /A(E’ g)f(él) dgla
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where as stated in (1.3.6) page 18,

Ae.€) = m) [ % (w,A, (825, \/:W) &,

Finally using Formula (1.2.33) page 15 defining v _,,,, we get

o iNG—25-9420. E—2%+EY B\ imieoanen
6(¢,¢') = (2m)~deE22 U2 6)/a(w,)\, |)\|( ; = (-2 g
2 VIAl

where @ % w=1lw'. Using the relation (1.2.17) given page 11 between the trace and
the kernel of an operator and (2.2.4) above, we infer that

1 e on o ios = =
ko) = g / e’*“‘”‘y“y'&)‘%'wa( (€ - 2), —=

MNddrd=d
1

s / e"““"g'z‘z"'”'”a( fsgn ), %)dxdzdc

where we have performed the change of variables £ — Z = |Tlsgn()\), and E =
To end the proof of the proposition, one just needs to notice that

_ 1 —is'—2iy’- iz
k(w,w(w')™!) = CyerEsy /e s =20y 2422 (g) (w, N, 2, ¢)dz dC dA
and to apply an inverse Fourier transform (in the Euclidean space). O

2.3. Action on the Schwartz class

The aim of this section is to prove Theorem 3, stating that if a belongs to Sya ()
and p = +0o, then Op(a) maps continuously J(H?) into J(H?).

Before entering the proof of that result, let us point out that the smoothness
condition (1.4.1) (see page 21) is necessary in order for Op(a) to act on J(H). A
counterexample is provided in the proof of the next statement. Actually one can
define Op(a) without that condition, and typically the counterexample provided below
provides an operator which is continuous on all Sobolev spaces.

Proposition 2.6. — Let p be an odd integer. There is a function a such that ||a||n;s,, ()
is finite for all integers m, and such that the operator Op(a) is not continuous

over J(H?).
Proof. — Let us define u = 2k+1 and the function a(w, A, £, 1) = A(X), where A(\) =
|AJ¥*2. Let f be defined by

F(H N Foxr =N Fox, F(HINFar=0 Va#0,
where ¢ is a nonnegative, smooth, compactly supported function such that ¢(0) = 1.

An easy computation shows that f € J(H?). Indeed writing
2d 1

f) = 2 [ (g 0)0) A ar
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and using the definition of the Fourier transform of f given above, a simple compu-
tation shows that for some constant C,

f(w) = C/e—i/\s(ﬁ()\)e—lMlzlz (/ 21 IIEI? d€> A2 d

which gives the result since ¢ is smooth and compactly supported. Now let us con-
sider Op(a)f. A similar computation shows that if N is any integer, then for some
fixed constants C’ and C” one has

sVOp(a)f(w) = C / sVe g (N) A(A)e~ I x4 dx
= ¢’ / e (PN A e~ M=) da,
For any fixed z, this is the (real) Fourier transform at the point s of the function

A B (BOVAFA( e M=),

Let us evaluate this integral at the point z = 0. Taking N large enough, the result is
clearly not bounded in s. O

Proof of Theorem 3. — Consider f € J(H?), and let us start by proving that Op(a)f
belongs to L (H?). By definition of Op(a), we need to find a constant Cy such that
for all w € H?,

(2.3.1) ' / tr (upy—1 T (F)(A)Ax(w)) |A|%dA| < Co.

Consider x a frequency cut-off function defined by x(r) =1 for |r| < 1 and x(r) =0
for |r| > 2. We write

/ 1 (o T(F) (N Ax(w)) IN4dA = I, + I
where
1% [ b (T (DD Arw) A

and we deal separately with each part.
Let us first observe that for any k¥ € N and by Remark 1.7 stated page 12, we have

1< ([ 1T + Dy sy AA)

1
2

(23.2) ([ 10+ D) (D) A3 0) s W)
Besides, using (1.2.19) page 11, there exists a constant C such that
[uy-+ F(F) NI + D) gsany < CITE)N) A + Da)* [l mrs s
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34 CHAPTER 2. FUNDAMENTAL PROPERTIES OF PSEUDODIFFERENTIAL OPERATORS

and
[(Id + D)~ X (D) Ax(w) || ms(,)
< |(d + Dx) ™% Ax(w)l| 2(ss) | (Id + D) 2 ~*x(Dx) | sy
< Cl(Id + D) 2~ x (D)l ms )

where we have used (1.4.8) (see page 23) for the last bound. We then observe that on
the one hand

F(HNAd + Dr)* = F((1d - Aga)* (V)
so that by the Plancherel formula

2d—1
Tt [ 1T+ D3 iy A0 = 10 = Ao 12

On the other hand
[ 10+ D) E (D) s A

= 3 [ 1+ D) Ex(D) Faalfy, A0
aeN?

= 3 [ @+ nElal + )5 x| @lal + d)IAA
aeNd

hence

J 13-+ D EF (DA slAar

<C Y @m+d)? 1+ M@m + d)F TFx(A(2m + d))[A[4dA
meN

where we have used that the number of a € N? such that |a| = m is controlled by
md9~1. Then, the change of variables 3 = (2m + d)\ gives

/||(Id+DA)#—kx(D,\)”%ISD\Idd)\ <C (Z ﬁ%) /x(|ﬂ|)(1 + 1)) 5 k4.

meN
Therefore, (2.3.2) becomes

W) /x(lﬂl)(l +18))2F+4dB < Cy

L] < C||(1d = Aya)* fll 2 ey (Z

meN

for any k.
A similar argument applies to I, and allows to get

12| < Ol — Age)* | 2y (Z 1Tlm_) [ xsp@ + 1808 *+4ag

meN
where ¥ is a frequency cut-off function defined by X(r) =1 for |r| > 2, and X(r) =0
for |r| < - The choice k > 1+ d + & achieves the estimate of the term Io.
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2.3. ACTION ON THE SCHWARTZ CLASS 35

The end of the proof of Theorem 3 is a direct consequence of the following lemma.
We will emphasize later other formulas of that type which will be useful in the fol-
lowing sections. O

Lemma 2.7. — For any symbol a € Sya(p) and j € {1,...,d}, there are sym-
bols bgl), b'? belonging to Sya(n+ 1) and 0(1),c§2) € Spa(p—1) and p € Sya(p) such
that
[2;, Op(a)] = Op(t"), [Z;, Op(a)] = OP(b;™),
[, Op(a)] = Op(c{")), [%;, Op(a)] = Op(c}”),
[is, Op(a)] = Op(p).

In particular, one has

bg.l) = Zja+ \/ [AH{a,n; +isgn(A)¢;} and b§-2) = 7'a + 1/ |A{a,n; — isgn(A);},

=57 A|{“ i = sg(n} and oY = o A|{“ (i€ + sgn(\)y ).
Remark 2.8. — Notice that contrary to the classical case (see [1] for instance),

[Z; , Op(a)] is an operator of order u+1 instead of u, due to the additionnal Poisson
bracket appearing in the definition of b;l) (and the same goes for [Z;, Op(a)]).

On the other hand, [z; , Op(a)] and [Z; , Op(a)] are of order p—1 as in the classical
setting, but [s,Op(a)] is only of order .

Let us now prove Lemma 2.7.

Proof. — Let us consider a function f in J(H?), and a symbol a belonging to Sy ().
We have for 1 < j <d,
d—1

Z,00(@f () = 2z [ 1 (20T NN ANW) + 8 TNNZiAr ) A i

with Z;Ax(w) = J{op™(Zja(w, X)) Jx

Thanks to Lemma A.3 page 101, we have Z;u)\ -1 = QJ -1, recalling that Qg\ is
defined in (1.2.25) page 13. Therefore, since & (Z ) =F(HN) j“, and using the
fact that tr(AB) = tr(BA), we obtain

d—1

12, Op(@f ) = 2z [ (T (D) ([Ar(w), Q] +Z54r())) W .
We then use (1.2.37) page 16 to find, for A > 0,

[An@), @] = J3 [op (a(w, V) , VN, - &)] In
and for A <0,

[Axw), Q)] = J5 [op® (a(w, ) , V/IN(@, +&)] J»
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Therefore, by standard symbolic calculus, using in particular the fact that if b is a
polynomial of degree one in (&, 7), then

(2.3.3) [op* (@), 0p™ (b)] = —OP “({a,b}),

we get

([Ax(w), Q}] + Z; Ax(w)) = J}op® (\/X{a(w,)\),nj +i&} + Zja(w, )\)) for A > 0,
([Ax(w), Q}] + Z;Ax(w)) = Jop® (\/—_A{a(w,)\),nj —i& Y+ Zja(w,)\)) for A <0,

which are the expected formula. We moreover observe that if a € Sye() and 1 <
j < d, then /|\|0¢;a and /|\|0y,a are symbols of order y + 1. Indeed since a is of
order. u, there exists a constant C such that, for k € Nand 8 € NQd,

pl-1

2+|8] p=1Bl=1
|00 %00, ) (VINBga)| < CVINT (L+ NI+ [P +1nf?) 2

18] 9 ==
AL (L4 M@+ (€17 + %)

A similar computation gives the result for [Z;, Op(a)].
Let us now consider the other types of commutators. For f € J(H?) and 1 < j < d,
we have
2d 1

5, OP(@IS (W) = 2 [ (23 = )tr (w10 Ar(w) F0) NN

By Lemma A.2 page 100, we have zju, = 35 [Q], u)]. Therefore, setting @ =

w™lw’ = (%,3), we get, using (1.2.37) page 16 along with the fact that A)(w) =

J3op" (a(w, X)),

tr (EjugAA(w)) = \ég)‘—ltr ([JX (e, + sgn()\)ﬁj)J,\,uf},]AA(w))

= Sgn(li?tr (J3[8e, + sgn(N)&;, Jaug J3]op® (a(w, N))J»)

2\/|T r ([op™(

By standard symbolic calculus, this implies that

tr (u;},ijop“’({a, sgn(A)n; — & 1))

a(w, ), sgn(X)d, + &1 rug J3) -

(2.3.4) tr (ZjupAx(w)) = Wi

which gives the announced formula. Besides, the same argument as before gives that
if a is a symbol in Sya«(p) and if 1 < j < d, then \/lTa ~a and \/ﬁ@ma are symbols

of Sya(p — 1). Indeed, for k € N and § € N*¢

p—18l—-1

(A0, < O+ A+ (€17 + n1?)

(&m) VoY 3
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2.3. ACTION ON THE SCHWARTZ CLASS 37

A similar argument gives the result for the multiplication by Z;. In particular, one
finds for all A € R*,

(2.3.5) tr (ZjujAx(w)) = — tr (uJ3op™ ({a,sgn(A\)n; + ;1) Jx) -

1
2vIAl
Finally, let us consider the last commutator. We have

2d—1
[is,Op(a)]f(w) = W/z(s—s Jtr (upy -1 Ax(w)) f(w’ ) [A|4dAdw’

Since with @ = w™'w’, we have § = s’ — s — 2Im(z2’) and in view of the preceding
results, it is enough to observe

241 '3 A / d /
—T | 48t (U -1 Ar(w)) f(w') |A|%dAdw

2d—1
= gatl /tr( w-1w JAOP (g )J)‘(w)) fw') |/\|dd)\dw'

where we have used Lemma A.4 stated page 102 and where g is defined by (A.2.4),
whence the fact that [is, Op(a)] is a pseudodifferential operator of order u. a

We then observe that the arguments of the proof above give the following propo-
sition.

Proposition 2.9. — For j € {1,...,d} and a € Sya(y) in CP(H?) with p > 1, we have
Z;0p(@) = Op(Za+a#/IN(—sen(Ng +iny))
Op(@)Z; = Op (y/IN(-sgn(N)g +in)#a)
Z;0p(a) = Op(Z;a+ a#y/IN(sgn(Ng; +1ny))
Op(@)Z; = Op (y/INl(sen(Ng; +in)#ta)

Besides, for N € N and p > 2N, then (—Age)VOp(a) and Op(a)(—Aga)" are pseu-
dodifferential operators of order u+2N. If k € R and p > 2k then Op(a)(Id — Ay )*
and (Id — Aga)*Op(a) are pseudodifferential operators of order u + 2k.

Proof. — The four first relations are by-product of the preceding proof and they
directly imply that (—Age)YOp(a) and Op(a)(—Age)" are pseudodifferential oper-
ators. Then for k£ € R, we write

d—1

Op(a)(1d — M) F(w) = Tz [ tr (s TN A+ D) (w)
Observing that
(Id + Dy)* Ay (w) = J}op® (mzk)#a(w /\)) I,
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38 CHAPTER 2. FUNDAMENTAL PROPERTIES OF PSEUDODIFFERENTIAL OPERATORS

where mg‘c) is the symbol defined by (1.4.7) page 23, we obtain that Op(a)(Id — Aga)*
is a pseudodifferential operator of order u + 2k. We argue similarly for Op(a)(I1d —
AHd )k . D
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CHAPTER 3

THE ALGEBRA OF
PSEUDODIFFERENTIAL OPERATORS

This chapter is devoted to the analysis of the algebra properties of the set of
pseudodifferential operators. The two first sections are devoted to the study of the
adjoint of a pseudodifferential operator: we first compute what could be its symbol,
and then prove that it actually is a symbol. In order to prove that fact, the method
consists in writing the formula giving the symbol as an oscillatory integral, and in
writing a dyadic partition of unity centered on the stationary point of the phase
appearing in that integral. This creates a series of oscillatory integrals which are all
individually well defined (since each integral is on a compact set). The convergence
of the series is then obtained by multiple integrations by parts using a vector field
adapted to the phase, as in a stationary phase method.

The approach is similar for the analysis of the composition of two pseudodifferential
operators and this is achieved in the third section. Finally, asymptotic formulas for
both the adjoint and the composition are discussed in the last section. These formulas
result from a Taylor expansion in the spirit of what is done in the Euclidian space
but adapted to the case of the Heisenberg group.

3.1. The adjoint of a pseudodifferential operator

In this section, we prove that the adjoint of a pseudodifferential operator is a
pseudodifferential operator. We first observe that if a € Sy«(p), then A def Op(a)
has a kernel k4(w,w’) as given in (1.4.5) page 23, and the kernel of A* = Op(a)* is
k(w,w") = ka(w’,w), whence

2d_1 * Tk w *
k(w,w') = ——WdH/Rtr((u(*wq—lw) J30p" (a(w', )" Jx) A% dA
2d—1 N 4
(3.1.1) sy /R tr (udy)-10 JX0PY @(w', X)) Jx ) |AI¢ dA

where we have used the fact that tr(AB) = tr(BA), the formula for the adjoint

of a Weyl symbol, and tr(B) = tr(B*). Therefore, in view of Corollary 2.5 stated
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40 CHAPTER 3. THE ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS

page 31, if Op(a)* is a pseudodifferential operator, its symbol a* will be given for all
(w, )\, &,n) € H? x R* x R*? by
d—1

a*(w,\€&n) = 2 2 VM (sen(\)y'-6—a’-m)+iXs’
T+ Jp « ma

(3.1.2) X tr (uz\:u,)_l Jxop® (@(w(w’)™1, X)) JA,) IN|4dN dw'.

It remains to prove that the map a +— a* which is well defined on J(H? x R?¢*+1)
can be extended to symbols a € Sya(u) and that for such a, their image a* is also in
Spa(u). Therefore, it is enough to prove the following proposition.

Proposition 3.1. — The map a — a* extends by continuity to Sya(u) since for all
k € N there exists n € N and C > 0 such that

Va € ‘S’]Hld(}u’)v ”a*”k;Sﬂd(u) <C ”a”n;S’Hd(ﬂ)'

It is not at all obvious that the formula (3.1.2) for a* gives the expected result
for the examples studied in Section 2.1 of Chapter 2. To see that more clearly, it is
convenient to transform the expression of a* into an integral formula.

Lemma 3.2. — Let a € J(H? x R?**), then the symbol a* of Op(a)* given in (3.1.2)

can also be written

a*(w, M E,1) = / o2V (s8n(N)y' £~ m) +is' (A=X)~2iy/ IV [(sgn(N) 29/ ~C-2')
T 27T2d+1 R2d+1 x [d

x @ (ww)™L N, 2,¢) |N|%d¢ dz dX dw'.

The formula given in Lemma 3.2 allows to revisit the examples of Section 2.1,
Chapter 2. Indeed if a = a(), €, n), then integration in s’ gives A = X/, then integration
in 2’ (resp. y')) gives ¢ =7 (resp. z = y'); whence a*(w, \, £, 7) = a(), &, n).

If a = a(w), then integration in ¢ (resp. £) gives ' = 0 (resp. y’ = 0); then integration
in &' gives A = X, whence a*(w) = a(w) as expected.

Remark 3.3. — Let o(a) be defined by (1.4.1) page 21, then o(a*) and o(a) are related

by
1 . s ! . ! ’
1. * A — 21y’ (§—2z)—2iz’-(n—¢)+is' (A=X")
(3 1 3) U(a )(w7 ,57 77) or2d+1 /]RZd+1 - e
x o(a) (ww') ™ X, z,¢) d{ dzdX dw'.
Proof of Lemma 8.2. — The first step consists in computing the trace term using the

link between the trace and the kernel stated in (1.2.18) page 11. So let us start by
studying the kernel of our operator. Using Jy» = T\» K/, we write

(3.1.4) tr (ulyyy-1 J30p® (@@, X)) I ) = tr (K1 K3 Thop® (@@, X)) T )

where W = w(w’)~! and we observe that K,\fuf‘;,)_lK;‘\, = vf‘;,)_l where ’u(}‘;ﬂ)_l is
the Schrédinger representation given by (1.2.33) page 15. We shall use the same type
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3.2. PROOF OF PROPOSITION 3.1 41

of method as for the proof of Proposition 2.4. We recall that if U is an operator on
L2(R?) of kernel ky(€,€'), then the kernel of the operator

Udjf 'U(,L:)/) 10U
is the function kj given by
k(}(g, 5/) — e—i)\’(s’+2$/~yl+2y'-.£) kU(§ + 2w/,£/)‘

This comes from the definition of the kernel in (1.2.17), page 11, and the definition
of v()‘l;,)_l in (1.2.33), page 15. We take now

U = T}op” (a(w(w)™!, X, &,n)) Tx.
As in (2.2.3) page 31, we have

T:,Opw (a(w(w,)—17 )‘I’ 57 77)) T\ = Opw ('d(’w(,w/)—l, )\,7 \/m ) /’;’)\")

and using (1.3.6) page 18 this gives

wie )= [ (w(w')—l,x, Vv (825, \/|:/\_|) =) gz,

This implies

/k£€

_ / —iN (s'+22" -y’ +2y’ E)kU(g + 22’ ,€)d¢
]Rd

— (271_)—d/RZd —iN (s’ +22" ' +2y - £)+2iB -z -( -1 )\/ /|)‘, (£ +$1) \/TT) d= d¢.

We finally obtain via (3.1.2) and (3.1.4)

. _ 1 2i/IN(sgn(\)y’ €' -m)+is' (A=N)=2iN (2 -y +y -€)+2ia’-E
a (W,A»ﬁaﬂ) - 27r2d+1 /]de_H « He €

xa (w(w')—l, N INIE + ), \/IZA_’I> IV|9d= dé dN' du'.
The change of variable 1/|N|(€ + z’) = sgn(\')z and E = 1/|X|¢ gives the formula of
the lemma. O

3.2. Proof of Proposition 3.1

To prove Proposition 3.1, we shall use Remark 3.3 and Proposition 1.22. Our aim is
to analyze the symbol properties of the oscillatory integral of (3.1.3) in order to prove
that what should be the symbol of the adjoint actually is a symbol. More precisely,
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42 CHAPTER 3. THE ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS

we want to prove that for all k € N, there exists a constant C > 0 and an integer n
such that for any multi-index § € N2? and for all m € N, if m + |8] < k, then
181

VY €R™ VA0, (1+M(1+Y2) 7 H()\B,\)mafm)a(a*)(-, A Y)“C

o (HY) < C”a”n;Sﬂd(u)-

The first step consists in proving this inequality when & = 0, then, in a second
step, we will suppose k > 1 and consider derivatives of the symbol a(a*).

We follow the classical method of stationary phase, as developed for instance
in [1]. Noticing that the phase in (3.1.3) is stationary at the point (0,0,0,£,7,\)
in RY x R? x R x R% x R? x R, we introduce a partition of unity centered at zero:

1=14(u)+ Y 9p(27Pu), Yue R
p€EN

where v is compactly supported in a ring and 1[) in a ball. Then decomposing the
integral (3.1.3) using that partition of unity, we notice that each integral

of 1 - - _ - - -
bp('lU,)\’fyﬂ) d:fW/ d)gQ p$/,2 py,a2 p3,72 p(z‘€)72 p(("?)»Q p()\l_)\))

R24+1 x H
x e (6=2)=2ia"-(n=Q)+is’ A=N) 715y (w(w)™', N, 2,¢) d{dz dX dw'
is well defined since it is on a compact set. Notice that this is not the usual Heisenberg
change of variables as could be expected, but for technical reasons this change of
variables seems more appropriate. The convergence of the series ),y b, will come

from integrations by parts which will produce powers of 27P. Indeed, the change of
variables

o =2°X,y =2PY, s’ =2PS, 2 =€+ 2Pu, ( =n+2Pv, N = A+ 2PA

gives with w(p) & w - (2P X, 2PY, 2P §) !

bp(w, A, §,n) = c—— / ¥ (X,Y,S,u,v,A) e 1277 (Y u-2X v+SA)
P 7Yy ,TI - 27'I'2d+1 R2d+1x]}][d ) ) My Wy Uy

x o(a) (w(p), A + 2PA, € + 2Pu,n + 2Pv) dudv dX dY dA dS.
Let us define the differential operator

det1

1 1 1
L= —(X24Y 24+ 8% 4u+v?+A2%) 7! (%X@v +5v0x = 5Y 0y — Judy — Sop — A83> ,
?

which satisfies

Le—i22p(2Y‘u—2X-v+SA) — 22pe—i22p(2Y-u—2X-U+SA)‘
We remark that the coefficients of (L*)V are uniformly bounded on the support of ¥.
Performing N integration by parts (here we assume that p > N) we obtain

2—p(2N—4d—-2) i22p(2Y u—2X-v+SA)
ME) = T B o
bp(w, ,6,m) or2d+1 /de+1 x H¢ ¢

x (L) ( (X, Y, 5,u,v,A) 0(a) (w(p), A + 2P, & + 2°u, 0 + 2Pv) ) dudv dX dY dAdS.
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We then use that o(a) satisfies symbol estimates, so

|(L)Vo(@) (w(p), A + 27, € + 27u,n + 2°)|

< C2V [lall,s,00) (L+ A+ 2PA] + [€ + 2Puf? + [ + 270]2) /2

Peetre’s inequality

(14 |+ 2PA| + € + 2Pul? + | + 2P0[2)*/?

< (L4 M+ € +72)"% (1 + 22A] + [27uf? + 2°0f2) ¥/

yields

(L+ X+ €2 +0%) ™% (L) V(@) (w(p), A + 2°A, € + 27u,n + 270)

Iul/2
< Cllalln, sy (1+ [2PA] + [27uf® + |270]7) "7

Therefore,
(14 A+ €24+ 72) ™2 By (w, A, €,)] < O llally, 5,0 ) 27421,

which gives the expected inequality for k = 0 choosing N > 4d + 2 + |u].
Let us now consider derivatives of o(a*). We observe that by integration by parts,

Oa(a®)(w, A&, n)
= — g 2iy’ (€—2)—2iz' - (n=C)+is’ A=X") o/ 1\ nN—1 \/ ,
= 271—2d+1 ‘/]RZd_Hx]Hde y'( ) (n—¢) 3’ (a) ('U)(’U)) »/\,Z,C) dCdZd/\/dw

1 L .1 . ’ _—
= g [ Y OOR 0N (53] ()X, 2,0)) dC s dN du
R x H

Since for m € N, 970 (a) satisfies the same symbol estimates as o(a), the arguments
developed just above allow to deal with the derivatives in A. Similarly, integrating by
parts

272d+1€j8€k0(a*)(w’ )" Ev 77)

— 22/ e2iy"(g—z)—2iw'-(7]—c)+isl(A—)\/)y;cgj 0(‘1) ('ID,)\I,Z, C) dC dz d)\, dwl
R2d+1 X ]H[d
— _/ eZiy’.(g—z)——2iz’.(7l—-c)+is'(,\—)\’)y;€ (ay; _ 2’LZJ) (U(a) (’lI),)\/,Z,C)) dc dz d)\, dwl
R2d+1 X Hd

=L / 2 (=) 202" (=04 AN (5, — 2iz) (o(a) (@, X, 2,() ) dC dz AN du,
2 R24+1 x [d J

with @ = w(w’)~!. So, for m € N and o € N*¢, (¢;0,)™0(a) satisfies the same
symbol estimates as o(a), thus we can treat these derivatives as above with exactly
the same arguments. Besides, it is also the case for derivatives in 7. This concludes
the proof of Proposition 3.1. O
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3.3. Study of the composition of two pseudodifferential operators

We consider now two pseudodifferential operators Op(a) and Op(b) and study their
composition. We shall follow the classical method (see for instance [1]) consisting in
studying rather Op(a) o Op(c)*, where ¢ is such that Op(c)* = Op(b).

We recall that if A (resp. B) is an operator of kernel k4 (w,w’) (resp. kp(w,w')),
then the kernel of Ao B is

kaop(w,w') = /k:A(w,W)kB(W,w’)dW.

If moreover B = C* with C of kernel k¢ (w,w’), then
kg(w,w’) = kc(w',w).
Those (well-known) results applied to A = Op(a) and C = Op(c), imply that the
operator Op(a) o Op(c)* has a kernel k(w,w’) given by
(3.3.1) k(w,w') = / ka(w, W)ke(w', W) dW.
He

If Op(a)oOp(c)* is a pseudodifferential operator of symbol d, then, by Proposition 2.4
page 30, the symbol d is given by its associated function o(d) which satisfies,

(3.3.2) o(d)(w, N\, & n) = / 2 E=2" AN 0y (') 71) du'.
Hd

We shall now study the map (a,c) — d which is well defined for a, c € J(H?).

Proposition 3.4. — The map (a,c) — d extends by continuity to Sya(p) X Sya(u')
since for all k € N there exist n € N and C > 0 such that
”d”k;SHd(u+u’) <C ”a”n;SHd(M) ”C"n;SH.t(u’)'
Note that the Proposition implies that the symbol d of A o B satisfies

"d”k;SHd(u+u’) <C ”a”";SMd(I‘) ”b”"§S]Hd(H/)

since c is the symbol of B* and ||c|,;s

a(w) < C|blln;s,q(u) for all n € N by Propo-
sition 3.1.

Proof. — The proof is very similar to the one for the adjoint written in the previous
section: one writes the function o(d) as an oscillatory integral that we study with
standard techniques. We first obtain, thanks to Proposition 2.4 page 30, (3.3.1) and
(1.2.1), that the kernel of Op(a) o Op(c)* is

_(—2_7;5(1;@ /O'(Cl)(’w, )‘17 21, Cl);—(—c_j(wv )‘2’ 22, C?)

xeiz\181+2iy1~z1—2iw1-(1—i>\282—Ziyz~zz+2i42-mzd)\1 d)g dzy dzo dCl d(2 AW

k(w,w) =

where w™'W = (z1,91,81) and W™ W = (x9, Y2, s2). Therefore, recalling that

a(d)(w,)\,é,n) — / e2i(y/,§_zf.n)+i>\s'k(w,w(w/)_1)dw/
Hd
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where k is the kernel given above, we get
(333 0@ A& = Gz [ 70w AL 21, )T W) Ae 20, G)
x Wi’ A12a,21.22,006) g0 dg dzy dzg dCy dCe AW du',

where the phase function ® (depending on w, A, £ and 7) is given by
(33.4) @ =Xs'+ X151 -8 +2(y E+y1 -z —y2-22) —2(¢ -+ G — 22 ()
with w; = (z1,91,51) = w W and we = (T2,¥2,82) = w'w™'W; in particular
wo = w'w; so writing W = (XY, S) and using the group law on H?, we have

si=X -z, s=X-z+2, 1 =Y -y, o=Y —y+y,s =5 —s—2Xy+ 21V,
(3.3.5)

s9=8—s+8 -2 —-z) Y +20¢/ —-y)- X +22' - y—2y - =.

The function ® is polynomial of degree 3 in its variables and straightforward com-
putations give
P =151, 00, =—53, 0,,2=2y1, 0, =2y
06,8 =221, 0, ®=2x9, OgP=A—Ay, O5®=2A1 — X2
0y ® = —=2(n— () +2A2(Y —y), Oy®=2(—22) — 2X2(X — 2)

Ox® = —2(¢1 — &) = 202y + 2y(A2 — A1), Oy ® = 2X27” — 22( N2 — A1) + 2(21 — 22).
Therefore, one can check easily that the phase ® satisfies d® = 0 if and only if
w=W,w' =0, A=di=X, z1=20=6 G =C =1
In the following we shall denote by Uy € RP that critical point, with D = 4(2d +1):

UO déf (II), Y8, 07 )‘7 )‘7 €7 57 m 77)
By a tedious but straightforward computation, we check that ®(Uy) = 0, d®(Up) =0
and that d?®(U) is invertible for all (w,\,&,n): computing the Hessian ma-
trix d2®(Uy) one notices easily that each lign of the matrix has at least one constant
term (and the others are either zero or linear in A, z,y).

We then argue as in the proof for the adjoint by use of a partition of unity centered
in the point Uy where ® degenerates. For simplicity we denote the new set of variables
by

V= (X7 Y,X,il,‘,, y/73/,)\17/\2, 21, 22,C1’€2) € RD .
In the phase ® there are terms of order 3 and we observe that the only derivatives of
order 3 which are non zero are

0% rpy®=—2 and 8,, ,®=2.

We write, for any point U € R, ®(U) = ®,(U — Up) + G(U — Uy) where by a direct
application of Taylor’s formula, one has

YW eRP, @y(V)Y %D2<I>(UO)V .V oand GV)E M-N((Y-y) -2 — (X -2)-y).
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We are therefore reduced to the study of an integral under the form

I= / f)e*Wqy,
]RD
where we have defined
(3.3.6) VU € RP,  f(U) = o(a)(w, A1, 21, 1) (c)(w(w') ™, Aa, 22, C2).

We shall decompose this integral into a series of integrals by a partition of unity:

I= / FO)e* WU - Up)dU + )
]RD

q€EN

= [ SO OG0 O + 2P [ 10+ 2y Wy,
R q€N RP

F)e (279U - Up))dU
RD

where ¢ and ¢ are functions defining a partition of unity, in the sense that they are
nonnegative, smooth compactly supported functions (f in a ball and ¢ in a ring) such
that
VU eRP, (U -Uo)+ Y (279U -Up)) =1.
qeN
Each integral is now well defined, and the main problem consists in proving the
convergence of the series in ¢ € N, as well as in proving symbol estimates. We shall
concentrate on the second integral and leave the (easier) computation in the case of ¢
to the reader.
Consider

I, & 290 / F(Uo + 29V)((V)eiZ BoV+i2C(V) gy,

We shall use a stationary phase method, which will be implemented differently ac-
cording to whether in the phase 22¢®( (V') + 23¢G(V), the dominant term is the first
or the second of the two terms. More precisely, let § € ]0, %[ be any real number and
let us cut the integral I, into two parts depending on whether [VG(V)| < 279(1+9) or
not. For this, we introduce a smooth cut-off function x € £5° (R) compactly supported
on [—1,1] and write I; = I} + I2, where

I ¥ gl / X (2290FDVG(V)[?) f(Uo + 29V )¢(V)ei2 2 +2HEVIgy  and

= / (1= x) (22HDVG(V)[2) f(Uo + 27V )¢ (V) 2oV I+ZHEWgy,

o

2
1
Let us first analyze I, ;. We introduce the differential operator

def 1 V®(V)

= iV Y

which satisfies
N [em’wo(V)] — 22qui22‘1<1>0(V).
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Note that the computation of the Hessian mentioned above allows easily to obtain a
bound of the following type for V®,:

1 C
(33.7) YV Suwp¢, IVe(V)I™ S e
where C is a constant. It follows that L is well defined, and its coefficients are at
most linear in A, z and y. One therefore checks easily that on the support of ¢ the
operator (L*)" has uniformly bounded coefficients (the bound is uniform in V as well
as in w, A, £ and 7). Therefore one can write

I = 2qD2—2Nq/ei22q<I>o(V)(L*)N [C(V)X (22"(1+5)|VG(V)|2) 2760 (1, + 2qv)] dv.
Using the Leibniz formula, we have

(33.8) | [(V)x (29HIVGV)P) M £(Us + 29V )|

<c Y BV [0 W) [om (x (2240w G ) ) ) I6v))

€|+ |m|+|n|<N

where ¢, m,n are multi-indexes in NP and where ¢ is a function, compactly supported
on a ring, defined by

(V) = sup [9¢(V)].

lil<N

Now the difficulty consists in estimating each of the three terms containing deriva-
tives on the right-hand side of the above inequality. Recalling that f is defined
by (3.3.6), f satisfies the following symbol-type estimate:

(3.3.9)

16°(f (Uo+29V))| < €27 sup (1 + A+ 29V, | +[€ + 29V, > + [ + 29V, [?)
{j1,--,56 }€{1,...D}4
4

X (14 A +29V, |+ €+ 29V |* + In + 29V [?) 2 .

Now let us prove an estimate for the second term. We use Faa-di-Bruno’s formula,
which in general can be stated as follows:

N
DN(eF(V))[hlv""hN] = Z Z Z r 1

Con Pol it e 1l rplp!
X CF(V) [-D1~1 F(V)(ha(l)v cee 7h0'(T1))) cee ’DTPF(V)(hU(N*Tp'Fl)’ e h"’(N))]'
But on the support of ¢, the function G is bounded as well as its derivatives, so this
implies that on the support of x,

[n]
lan(ei23qG(V))| < Ci Z _1—___23,”, (2—q(1+6))K

ril. . rplp!
p=lri+trp=|n| 1 rP
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48 CHAPTER 3. THE ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS

where K % card{j, r; = 1} is the number of integers j in {1,...,p} such that r; = 1.
We notice that the worst situation corresponds to the case when {j, r; = 1} = &,
which means in particular that 7; > 2 for all j (in the above summation it is implicitly
assumed that the r; are not zero). The largest possible p for which such a situation
may occur is p = |n|/2 (or (|n|—1)/2 if |n| is odd). But one notices that since § < 1/2,

3p|n|

277 < 92nlp—dinlp

so using the fact that for any p < |n| one has clearly 22P4—P2% < 22Inla=Inla8 we infer
that

(3.3.10) 9" (2" C(M))| < Cg2Inla=Inlas

Finally let us consider the last term, namely 8™ (x (22¢+9)|VG(V)|?)). Tak-
ing |m| = 1 and writing 8; for any derivative in R” we have

D
%aj (x (2290+D|VG(V)[?)) = 2200+’ (220+D |V G(V)[2) 3 03 G(V)G(V)

i=1
which can be written
1 D
§6j (X (22"(1+‘5)|VG(V)|2)) — 94(1+9) Z h; (2q(1+6)VG(V)) aisz(V),
i=1
where h; is the smooth, compactly supported function defined by

VU e RP, h(U) %

Uix'(IU]?).
So, using that the derivatives of G are bounded and by Leibniz formula, one gets
05 (x (2209 wG(V)12))| < c200+9),
and arguing in the same way for higher order derivatives one finds finally
(3.3.11) Iam (x (224(1+6)|VG(V)|2))‘ < C2lmla(i+6)
Plugging (3.3.9), (3.3.10) and (3.3.11) into (3.3.8), we get
9—2qN+qD ’(L*)N [C(V)X (22‘1(1+5)|VG(V)|2) ei23"G(V)f(UO n 2qv)] ‘

<C sup 9l£lg92|nlg—|n|gdglm|q(1+6)
{d1,-...de}€{1,...D}4 |€|-+|m|+|n|<N

12
2

X (14X 429V, | + (€ + 27V}, [ + [n + 29V}, ?)

.

X (1+ A +29V, | + €+ 29V, + [n+ 29V, [?) 7.
Noticing that
9—2¢N+¢D Z 9ltlag2Inlg—Inlgdglmlq(1+8) < Cqu(z—Nq5 + 2Nq(5—1))
|e]+|m|+|n|<N

ASTERISQUE 342


file:///n/qo
file:///n/qo

3.3. STUDY OF THE COMPOSITION OF TWO PSEUDODIFFERENTIAL OPERATORS 49

it suffices to choose N large enough and to use Peetre’s inequality as in the case of
the adjoint to conclude on the summability of the series, and on the symbol estimate
on Y, I}

Let us now focus on I, qz. In that case ®( is no longer predominant, so we shall use
the full operator

Ly(v)% det 1 V& (V) +2IVG(V)
i [V®(V) +29VG(V)|?

which is well defined on the support of { and satisfies

Y

L (V) [ 1229 ( V)+z23qG(V)] — 9214 122°<I>0(V)+123"G(V)
This implies that I? is equal to
geP-2Na / (L)) [ = X) (2DIVG(V)[2) f(Uy + 29V )((V)] €2 2 VIHZHEW) gy,

and it is not difficult to prove by induction that for V € N, the operator (L;)N is of
the form

N Fo(V)+207,(V) + -2k i (V)
s k20|a|§ . [2o(V) +29VG(V)[?* o*F(V),

where the f; are uniformly bounded functions on the support of (. As in the case
of I ;, we apply the Leibniz formula to write

|02 [(1 = x) (220 DIVGV)?) £(To + 22V (V)] |
<C Y U +2V))| o ((1 - x) (220 VGW)R))| (V)L
[€]+]m|<|e|

where £ and m are multi-indexes in N” and where ( is a function, compactly supported
on aring. The first term of the right-hand side was estimated in (3.3.9), and the second
one may be estimated similarly to (3.3.11) since as soon as |m| > 1, the support
of ™(1 — x)(V) is in a ring far from zero. It follows that

|07 [ =20 (ZEDIVEW)E) fTo+2V)E(V)]| <€ YT 2Mlagimiaad)
[€l+m|<|a|

I3
X osup (LN 20V €20V + I+ 2V )
{j1,...de}€{1,...D}¢

w
X (14 |A+ 29V, + €+ 29V | + In + 29V, |°) ®

Since on the other hand, on the support of (1 — x) (221+94|VG(V)|?) and on the
support of ¢,

fo(V) +29f1(V) +--- 28 (V) < O9-ka92ka(1+)
|®o(V) + 29VG(V)|2k - ’
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50 CHAPTER 3. THE ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS

this implies that
def *
XN E (Ly(V))Y [(1 = x) (220DYVGV) ) £(Uo +29V)(V))]
may be bounded by
N
IX;\’l < Cz Z Z 9—ka92k(1+8)g9ltlag|mig(1+4)
k=0 |a|<N -k |€|+|m|<|c|

x osup (L 20V [+ 20V 7 o [+ 20V, )
{j1,--,de }€{1,...D}4

12
2

SR,

X (L4 A+ 29V, | + 1€ + 29V |* + [n + 27V |*) 7
Since
N
Z Z Z 2~kq92k(1+8)qgltlaglmia(1+8) <« oNag2Ndq
k=0 |a|<N -k |£|+|m|<|al
we conclude that
X <O NatN0arND  sup (14 [N+ 29V, |+ [€ + 29V5 |7 + In + 27V, %)
{41,--de}E{1,...D}@
X (14 A+ 29V, | + 1€ + 29V, 2 + |n + 29V, )
The choice of § € ]0,1/2[ allows to conclude as in the previous proof via Peetre’s
inequality.
The analysis of derivatives of o(d) is very similar. Let us for the sake of simplic-
ity only deal with the A-derivative, and leave the study of the other derivatives to

the reader. Taking a partial derivative of o(d), defined in (3.3.3), in the A direction
produces a factor is’ in the integral, namely

aAa(d)(w!)‘v 6)7’) = -(57‘_21—_._1)2/iSIG(a)(w,Al,zl,cl)'O'—(a(’LU(’w,)_l,)\2,22,C2)

x et Wow', A1,22,21,22,61.02) g ) d Ny d2y d2g dCy dCo AW du'.

12
2

I
2

But one notices that

a}\z (ez‘<I>(W,w’,>\1 ,A2,21,22,(1 yCz))

= —i(S—s+5 +2zY — 20X — 20/ (Y — y) + 2/ (X — z)) xe 2 (W' A1 A2,21,22.1.Ga)
which can also be written, using (3.3.5)
is'e’® = (=B, —is1)e'® —i(—22'y; + 2y'z1)e™®.
On the other hand an easy computation, using the formula defining @ in (3.3.4) above,
allows to write that
is16'® = 6,\1e“’, 2iy1ei¢ = lee“’, and — 2iz,e'® = 8¢1ei¢
so we find the following identity:
is'e’® = (=0, — O, +'0,, + Y0, ).
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Finally (2724+1)29y0(d)(w, A, &€, 1) is equal to

/ e, 0 () (w(w') ™, Az, 22, G2)0 (@) (w, A1, 21, G ) A1 dAg dzy dez dGy dGa AW du’
+ /ei‘l’a,\lo(a)(w, A1, 21,G)o(0) (w(w') ™ Az, 22, Ga)dA dAg d2y dzp Ay dCa W du'
+ / €%0,,0(a)(w, M1, 21, 1) (@ — 7)o () (w(w') !, Xy, 22, (o)dMs AN 2y d2p A dCy AW du!
B /eiq)xazla(a)(w, AL, 21, 1)o () (ww') ™ A, 22, (o)A dAg 2y dzy dGy dCz W du’
B / €°20;,0(a)(w, M, 21, ()1’ — 9)o (@ (W)™, Do, 22, C2)dN dy d2n dzs s dCa AW du

- /ewyaclf’(a)(m M,y 21, Qo (Q)(w(w') ™ Ag, 22, Go)dAs d)z ey dzp dGy dGy AW du'.

Since o(a) and o(c) satisfy symbol estimates, the expressions above can be dealt
with exactly by the same arguments as those developed above. One proceeds similarly
for all the other derivatives. Details are left to the reader. O

3.4. The asymptotic formulas

In this section, we give the asymptotics for the symbol of the adjoint and of the
composition, up to one order more than in Theorem 4. The proof that we propose
does not use the integral formula obtained for a* and a#yab but relies more precisely
on functional calculus, which suits more to the Heisenberg properties to our opinion.

Proposition 3.5. — Let a € Sya(u1) and b € Sya(p2). Then the symbol of the adjoint
of Op(a) is given by

a*=a + > (BT +Z;T))a+ —— g > (2T + Z,T}) (2T + 2T} )a
I’\' 1<j<d I , 1<j,k<d
1 1 L
+ a -0y + 'é Z (7]]'87“ +§]~85j) Sa+m
1<j<d

whereas the symbol of the composition Op(a) o Op(b) is given by

a#yab=b#a+ (Zib# Tja+ Z;b#Ta)
H 2\/-—1§<d J J J J
1

+ gml Z (Z;Zb # T;Tra + Z?kb#T;‘Tga + Z;Zxb# TjTa+ Z; Zkb# T Tra)

<jk<d

1 1 -
+ aSb# -0y + 3 Z (nja,,j +£j3§j )) a+ 7o

1<j<d
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where S denotes 0s, 71 (resp. 7o) depends only on Z%a (resp. Z°b) for |a| > 3 and
finally where

of 1
Tja o 23,,ja — sgn(A)9g;a.

Recall that formulas for a* and a #peb are provided respectively in (3.1.3)
and (3.3.3).

In view of the second term of the asymptotic expansion, one understands better
in what sense these formula are asymptotics. Let us comment the development of a*.
The first term is a symbol of order u — 1, it is of order strictly smaller than a.

The first part of the second term is of order u — 2; however, the second part of
this term is the product of A~! by a symbol of the same order p. This is a smaller
term only for large values of A. In view of the proof below, it is easy to see that one
could obtain an expansion to any order and that the term of order k will be the sum
of terms of the form: A~7 times a symbol of order p — k +2j for 0 < 2§ < k. It is in
this sense that this asymptotic has to be considered.

We shall not discuss here the precise feature of the remainder and will discuss this
point in further works for applications where these asymptotic expansions could be
useful.

We point out that the asymptotic formula for a* and a#yab have their counterpart
for o(a*) and o (a#yab). By the definition of the function o(a) associated with a
symbol a (see (1.4.1)), the following corollary comes from Proposition 3.5. While the
asymptotics of Proposition 3.5 appear as especially useful for large A, the asymptotics
on o(a) seems more pertinent for A close to 0.

Corollary 3.6. — Let a € Sya(p1) and b € Sya(p1) then

-1 R
U(a*) = 0’(0,) + '2— Z (ngj + ngj)a(a)
1<j<d
1 o S
+ = Y (ZiT+ Z,T;)(ZkTx + ZT3)o(a)
8| '15j,kgd
1
- ;S Oo(a) + a(1)

and similarly

o (a #yab) = o(b) #r0(a) + % Z (Zja(b) #1 T jo(a) + Z;o(b) #a g;a(a))

1<j<d

+% S (2,2c0() #2 T,40(0) + Z; 240 (b) #2 T} Tho (a)

1<j,k<d

+ Z,Zx0(b) #x T ;T 50 (a) + Z; Zko (b) # 9;9ka)

- %Sa(b) #x Oxo(a) + o(2)
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where 71 (resp. 72) depends only on Z%a (resp. Z*b) for |a| > 3 and where for all
functions f = f(§,n) and g = g(§,n)

VO e R, f#,9(0) % ()7 /R e He10-910-011£(6,)9(6,)46, dO,
‘7 fd'e'f laﬂaf 6§Jf

The proof of the corollary is straightforward by (1.4.1) and (1.3.4).
Let us now prove Proposition 3.5.

Proof. — It turns out that the proof of the asymptotic formula for the composition
and the adjoint are identical, so let us concentrate on the product from now on.
In view of (1.4.5) and (1.4.6) page 23, we can write

2d—1

(Op(a) 0 Op(b)) f(w) = (W) / 1 (U 1,0 0 Ax(w)) tr (uly) -1, 0 Bx (')
X f(w)| NN |4dX dN dw' dw”

with
Ax(w) = Jyop¥(a(w,A)) Jx and By(w) = Jyop®¥(b(w, \)) Jy.
Now, we shall take into account the framework of the Heisenberg group and use the

dilation &;(w=tw’), t € [0,1] (see (1.2.7) page 8) to transform b(w’,-) by a Taylor
expansion:

b(w', A, y,m) = b (wd (w™w'),\,y,7m)

= b(w, \,y,n) + (ib(wét(w Yw', N\ y,n )>|t—0

+ ! (ﬁb(wd (w™tw'),\y n))
dt2 t IEATR -3 =0

1 2d3 -1,/
+2/0 (1-1¢) pres (woe(w™ w'), A\, y,m) dt.

-1

Setting w = (%,3) = w™'w’, we get by the group rule (1.2.1),

& bt () = 265Sb(wS (@) + 3 [ (32, bwdi() + 24,0, (wd()))
1<j<d

+ G (8, b(wd,()) — 22;0,b(wb())) ]
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This leads by straightforward computations to

d _ - -
(Sowsw o) rum) = Y iz + 52w Ay
=0 1<j<a

d? _ - == . = 5
(——2b (w‘st(w lwl)v ’\> Y, 77)) = Z [(szj + Zij) o (szk + szk)] b(wv ’\7y777)
dt =0 1<jk<d

+ 25 Sb(w, A, y, 7).
Therefore, we deduce that
By (w') = Cx(w,w) + Rx(w,w’")

where R) depends only on derivatives of order 3 of b and C)(w,w’) depends polyno-
mially on w:

(34.1) Cx(w,w') ¥ By(w) +CM(w) - (5,3) + CP (w)(5,3) - (5,5) + 5C (w),
where Cf\l)(w) is the 2d dimensional vector-valued operator

OV ¥ (ZBa(w), ZBx(w)),
while C')(?) (w) is the 2d x 2d matrix-valued operator

0P ¥ 2 ((2,7) © (2,7)] Ba(w)

and Cf\s) (w) def SBy(w).

To summarize (Op(a) o Op(b)) f(w) is the sum of two terms:
(Op(a) 0 Op(b)) f(w) = (I) + (J)
with

d—1\ 2
(I = (%) / 1 (-1 AN (0)) 1 (Uyy 1,0 O (w,w) ) F(w") A [N |*dAN duw' .

Let us now focus on the term (I) which will give the terms of the asymptotics in
which we are interested.

Let us begin by the study of the contribution (I)o of the term of degree 0 of the
polynomial function Cy(w,w’). By (3.4.1), we get

e 2d—1 2 ,
(I)o % (Wm) [ 450 A3 0)) 5 (100 B () SN X AN ' "

2d—1 2 ,
- (W) / b1 (13, -2 Wy - 88 ()10 B () Ax(w))
x f(w)| A2 N |4dAdN dw' dw”.
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The change of variables w’ — w”w’ turns the integral (I)o into

d-1\2 ,
(72731“1) / tr(u;_lw,, [ / uly tr (w1 By (w)) |X|dd,\’dw'] A,\(w)) F(w")A¢ drduw”.
w' A\

By the inverse Fourier formula, we obtain that the term between brackets is

: gd-1\ 7
/uf‘ul tr (uz\w,)_lB,\r(w)) [N [4dN dw' = (W) By (w),

which gives

2d—l
(Do = —g7¢ / tr (u—10 Ba(w) Ax(w)) f(w”)| N dAdw”.
We then use classical Weyl symbolic calculus to write

op” (b(w, A)) 0 op™ (a(w, A)) = op” ((b#a)(w, A)).
Thus we have
B (w) o Ax(w) = JXop”((b#a)(w, A))Jx,

whence
2d—1 A * W " d "
(Io = W/ tr (uy -1, Jx0D™ ((b#a)(w, X)) Jx) f(w")|A|* dAdw",

which gives thanks to (1.4.5) and (1.4.6) the first term in the asymptotic formula for
the composition.

Let us now consider the second term of the asymptotic expansion which comes
from the term of order 1 of the polynomial function C)(w,w’). To treat this term, we
shall use the following relations for 1 < j < d,

zjtr (uhJop™ (a(w, \)Jy) = 2\/1mtr (ug Jxop® ({a, —i&; + sgn(A\)n;})J»)
_ 1 A 7x __w .
(3.4.2) = 5 |)\|tr (ugJ3op” (Tja(w, \)))
— 1
Str (s o el V) =~ Totr (ud 00" (o s + s, 1)
(3.4.3) = Lt (T op (T a(w, V)

2V

that come respectively from (2.3.4) and (2.3.5) page 37.
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This allows to write the second term under the following form

9d-1)? , _
I, & (;m) / 1 (U 14y AN (0)) tr (U100 (5, 7) - CF) (w)
x f(w") A% N [4dAdN dw' dw”
1 (2‘1—1>2Z / ( N )) ) ( Y ( I))
=——| = tr (U -1, JXOPY (Tja(w, A))Jx) tr{uly, -1, Z;B(w, A
9 /_|/\| rd+1 S J (w’) 7
x f(w")| A4 | N |2dAdN dw’ dw"
1 (2d—1)22 ( \ ) ( N _ /)
+——| = /tr Uy 10 Ix0DP" (T a(w, A))JIx) tr(ufy, -1, Z;B(w,A’)
2/ \ 7ot 1<j<d ! e !
x f(w") N2 |V |4dAdN dw' dw".

Therefore, arguing as for the first term, we get

1 2d—1
ID1= ——=—37 /tr(u;_lwu],’(op"’ Zib(w, \)#Tja(w, A)
2 /IA' rd+1 1§Sd (

+Z;b(w, N#T; a(w, A)) JA) F")| N4 dAdw”,

which leads by (1.4.5) and (1.4.6) to the second term in the asymptotic formula for
the composition.

In order to compute the third term of the expansion, we shall consider the terms
of order 2 of the polynomial C(w,w’) and use Lemma A .4 stated page 102. First, let
us recall that due to (3.4.1), we have

N 2
(1)2‘1—‘?(%) / tr (w1, Ar (W) 1 (w1 (3CY (w) + O (w)(2,3) - (2,7)))

x f(w”) NN |4drdN dw' dw”

where C0) (w) = §Bj(w) and C? = 1 [(2,2) ® (Z,Z)] Ba(w).
We first focus on the term in C’,(\?). Let us call (I)2; its contribution, we have

do1 2
(D2 & (%) Z /tr(ug\u_xw,A,\(w))

1<j,k<d
%t (w10 (525 + % 2;) (2 Zk + 2 Zx) By (w)) ) £(w”) A4 [N [*dAdX duw'dw’.
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We treat those terms as those of (I);. We shall explain the argument for one of those
terms and leave the analysis of the other terms to the reader. Set

2

(I)2,j,k o (%) /tr( 1w Ar(w)) tr (u(w,) 1o (252625 Zk)BX))

x f(w")|A|® [N |2dAdN dw'dw'.
Using (3.4.2) and (3.4.3), we obtain
z; Zetr (up Jiop”(a(w, N)Jn) = tr (uhJ3op” (T Tha(w, \))Jx)
whence, arguing as for (I);
1 9d—1Y 2
D)2,k = PR (}m) /tr( w1 JA0DY (T Ty aw, X)) Jx)
tr (WQoyry 100 Z5 26 B(w, X)) F(w”)X* [N |?dAdX dw'duw”

1 2d—l _
= 2—\/|-T—|;d+—l/tr<u —1gnJy0pY (Z]-Zkb(w,)\)#TjT,:a(w,)\))J)\)f(w”)l)\ldd)\dw”.

To deal with the last term
2d—1 2 , _ 3
(;‘m) / tr ( 41er,\(w)) tr (uz\w/)—lw//s C(,)('UJ)) f(w”)l)\ld IAllddAd)\,dw/dw”
let us apply Lemma A.4 (see page 102) writing
241" Y (3) d|yd
~ ! !
(WTI—) /tr( -1 Ar(w)) tr (u(w,)_lwusC,\, (w)) FA* N |“dAdN dw’ dw”

2
1 [ 241 '
=3 <W) / tr (upy -1, J30PY (9(w, A)) i) tr (u?w’)_lw“ci:’;)(w)) F(w") A% dAdw".

where g is the symbol of Sy«(p1) given by (A.2.5) (in particular we have o(g) =

=05 (a(a)).

Finally, arguing as before we get

2d—1 2
(;ﬂ-—l) /tr( -1 Ax(w)) tr (u(w, 1y 5C8 (w)) F)AE N |4 dAdN dw' dw”

1 2d—1
= ;W/ tr (g1, Jx0P™ (S b(w, N)#g(w, N)) Jx) f(w”)|A|¢ drdw”.
This ends the proof of the asymptotic formula for the composition. O
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CHAPTER 4

LITTLEWOOD-PALEY THEORY

In this chapter, we shall study various properties related to Littlewood-Paley op-
erators, and their link with various types of pseudodifferential operators.

In the first section, we focus on the Littlewood-Paley theory available on the Heisen-
berg group. Similarly to the R? case, this theory enable us to split tempered distri-
butions into a countable sum of smooth functions frequency localized in a ball or a
ring (see Definition 4.1 for more details). In the second section, we recall some basic
facts about Besov spaces and introduce paradifferential calculus. Like in the R? case,
it turns out that Sobolev and Ho6lder spaces come up as special cases of Besov spaces.
The paraproduct algorithm on the Heisenberg group is similar to the paraproduct
algorithm on R? built by J.-M. Bony [13] and allows to transpose to the Heisenberg
group a number of classical results (see for instance [4], [5] [6] and [7]). As already
mentioned in Section 2.1 of Chapter 2, the Littlewood-Paley truncation operators are
Fourier multipliers defined using operators which are functions of the harmonic oscil-
lator. Therefore, it is important for our theory to be able to analyze the Weyl symbol
of such operators; this is achieved thanks to Mehler’s formula in the third section
where we compare Littlewood-Paley operators with pseudodifferential operators; this
will be of crucial use for the next chapter. Finally in the last paragraph we introduce
another dyadic decomposition, in the variable A only, which will also turn out to be
a necessary ingredient in the proof of Theorem 5.

4.1. Littlewood-Paley operators

In [7] and [5] a dyadic partition of unity is built on the Heisenberg group H¢,
similar to the one defined in the classical R? case. A significant application of this
decomposition is the definition of Sobolev spaces (and more generally Besov spaces)
on the Heisenberg group in the same way as in the classical case.

Let us first define the concept of localization procedure in frequency space, in the
framework of the Heisenberg group. We start by giving the definition in the case of
smooth functions. The general case follows classically (see [7] or [5]) by regularizing
by convolution, as shown in the remark following the definition. We have defined, for
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60 CHAPTER 4. LITTLEWOOD-PALEY THEORY

any set B, the operator 1 p;ip On Fx by

Vf € JHY), Ya e N4, F (N1, ~ipla, z & 1(2|a|+d) 18(A) F(£)(A) Faa-
Definition 4.1. — Let 6, .,y = €(0,71,72) be a ring and B, = B(0,7) a ball of R
centered at the origin. A function f in J(H?) is said to be

— frequency localized in the ball 2° B 7, if

F(EYN) = TN, N
— frequency localized in the ring 2° 6 s, /i), if
TN = TEHNporgame,. ).

In the case of a tempered distribution u, we shall say that u is frequency localized

in the ball 27?3 v+ (respectively in the ring 2P €( s /7)), if
uxf=0

for any radial function f € (J(Hd) satisfying F(f)(A)1 Dilowg . = 0 (respectively
for any f in J(H%) satisfying F(f)(A\)1p-

192
y 228, 7z
frequency localized in the ball 2° B /- (respectively in the ring 2?6 s /7)), if and

only if,

)y = 0). In other words u is

U= U* Pp,
where ¢, = 2NP$(2s-), and ¢ is a radial function in J(H*) such that
F(#)(A) = T ()N R(D»),

with R compactly supported in a ball (respectively an ring) of R centered at zero.
Let us now recall the dyadic decomposition and paradifferential techniques intro-
duced in [7] and [5], which we refer to for all details and proofs.

Proposition 4.2. — Let us denote by By and by € respectively the ball {T € R, |7| < 3}
and the ring {r € R, % < |7| < §}. Then there exist two radial functions R* and R*

the values of which are in the interval [0,1], belonging respectively to D(Bo) and
to D(6o) such that

(4.1.1) VreR, R'(r)+» R*'(27%r)=1
p>0
and satisfying the support properties
lp— /| > 1= supp R*(27%") Nsupp R*(27%%")
p>1= supp R*N supp R*(27%#) = o

1%}

Besides, we have

(4.1.2) vreR
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4.1. LITTLEWOOD-PALEY OPERATORS 61

The dyadic blocks A, and the low frequency cut-off operators S, are defined as
follows similarly to the R? case.

Deﬁnition 4.3. — We define the Littlewood-Paley operators associated with the func-
tions R* and R*, for p € Z, by the following definitions in Fourier variables:
YWeN, F(S,H0) = F(HNE (277Dy),
VpeN, F(Apf)(A) F(fYNR* (272 D),
F(D-_1f)(N) F(Sof)(N),
Vp< -2, F(Apf)(A) 0.

The operator S, f may be alternately defined by
Spf = > A.f.

q<p-1
Since F(Apf)(A) = F(f)(A)R*(272PD,), it is clear that the function A,f is fre-
quency localized in a ring of size 2P. Along the same lines, one can notice that the
function S, f is frequency localized in a ball of size 2P.
Moreover, according to the fact that the Fourier transform exchanges convolution
and composition, the operators A, and S, commute with one another and with the
Laplacian-Kohn operator Aya.

Remark 4.4. — For simplicity of notation, we do not indicate that S, depends on R*
and that A, depends on R*. That is due to the fact that according to Lemma 4.8
below, one can change the basis functions (hence the Littlewood-Paley operators),
keeping only the fact that one is supported near zero and the other is supported away
from zero and satisfying (4.1.1), while conserving equivalent norms for the function
spaces based on those operators.

It was proved in [39], in the more general context of nilpotent Lie groups, that
there are radial functions of J(H®), denoted ¢ and ¢ such that

TW)(A) =R (Dy) and F(p)(A) = B (Dx).
We also refer to [7] and [5] for a different proof in the case of the Heisenberg group,

the ideas of which will be used below to prove Lemma 4.17. Using the scaling of the
Heisenberg group, it is easy to see that

Apu = ux2NPp(8+) and  Spu = u % 2VPe(Gze-)

which implies by Young’s inequalities that those operators map L9 into L? for all ¢ €
[1, 00] with norms which do not depend on p.
Let us also notice that due to (1.2.8) (see page 8), if P is a left invariant vector
fields then
P(A ) = 2°(u % 2V P(p)(550-)).
This property is the heart of the matter in the estimate of the action of left invariant
vector fields on frequency localized functions (see Lemma 4.7 below).
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In view of Mehler’s formula (see [26]) and Lemma 4.5 in [25], one can prove that the
Littlewood-Paley operators on the Heisenberg group are pseudodifferential operators
in the sense of Definition 1.23. This is discussed in Section 4.5 below.

4.2. Besov spaces

Along the same lines as in the R? case, we can define Besov spaces on the Heisenberg
group (see [7]).

Definition 4.5. — Let s € R and (q,r) € [1,00]2. The Besov space BgYT(IHId) is the
space of tempered distributions u such that

[
q,r

2P%|| Apul| La(may

< o0.
o

Remark 4.6. — It is also possible to characterize these spaces using only the operator
Sp : for s > 0, we have

(42.1) £l Bs. . aaey ~

and for s <0,

(4.2.2) 1155, ey ~ | 271SpS Nzacaey

where ~ stands for equivalent norms.

2°%||(1d — Sp) fll Lo e

e’

e’

It is easy to see that for any real number p, the operators (—Aya)? and (Id — Aya)?
are continuous from Bg’T(Hd) to By 2 (H%). Note that Besov spaces on the Heisen-
berg group contain Sobolev and Holder spaces. Indeed, by (4.1.2) and the Fourier-
Plancherel equality (1.2.21), the Besov space B§’2(Hd) coincides with the Sobolev
space H*(H?). When s € RT\ N, one can show that B3 (H%) coincides with the
Hoélder space C*(H?) introduced in Definition 1.3.

Let us point out that a distribution f belongs to B;,T(]H[d) if and only if there exists
some constant C' and some nonnegative sequence (c,)pen of the unit sphere of £"(N)
such that

(4.2.3) VpeN, 27°|ApfllLams < Cop

This fact will be useful in what follows.

Arguing as in the classical case, one can prove using this theory many results, such
as Sobolev embeddings, refined Sobolev and Hardy inequalities (see [5],[4]). This is due
to the fact that the dyadic unity decomposition on the Heisenberg group behaves as
the classical Littlewood-Paley decomposition. The key argument lies on the following
estimates called Bernstein inequalities, proved in [5].

Lemma 4.7. — Let r be a positive real number. For any nonnegative integer k, there
exists a positive constant Cy, so that, for any couple of real numbers (a,b) such that 1 <
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a < b > oo and any function u of L“(]HId) frequency localized in the ball 2P 6\/;, one
has

1_1
(4.2.4) 'Z‘I'l_pk "%ﬂu”Lb(Hd) < Ck2PN(a b )+pk“U“La(Hd),

where AP denotes a product of |B| vectors fields of type (1.2.2), page 7.

Let us also point out that the definition of B;’T(Hd) is independent of the dyadic
partition of unity chosen to define this space. This is due to the following lemma
proved in [7].

Lemma 4.8. — Let s € R and (p,7) € [1,00]2. Let (up)pen be a sequence of LI(H?)
frequency localized in a ring of size 2P satisfying

1127 el oy [l gy < 005
then u % > _pen Up belongs to Bg’r(]HId) and we have
lull ey < Coll2 Nt Loy L -

Contrary to the R? case, there is no simple formula for the Fourier transform of
the product of two functions. The following proposition (proved in [5]) ensures that
spectral localization properties of the classical case are nevertheless preserved on the
Heisenberg group after the product has been taken.

Proposition 4.9. — Let ro > r1 > 0 be two real numbers, let p and p' be two integers,
and let f and g be two functions of J'(H®) respectively frequency localized in the
ring 2P 6(\/;,\/5) and 2F g(\/ﬁﬂ/ﬁ-). Then
— there exists a ring €' such that if ' —p > 1 then fg is frequency localized in
the ring 2°' 6’.
— there ezists a ball B such that if [p —p| <1, then fg is frequency localized in
the ball 27 '

Remark 4.10. — The proof of this proposition is based on a careful use of the link be-
tween the Fourier transform on the Heisenberg group and the standard Fourier trans-
form on R®***Y. For a detailed proof, see [5].

Proposition 4.9 implies that if two functions are spectrally localized on two rings
sufficiently far away one from the other, then their product stays spectrally localized
on a ring.

Taking advantage of this result, one can transpose to the Heisenberg group the
paraproduct theory constructed by J.-M. Bony [13] in the classical case. Let us con-
sider two tempered distributions u and v on H®. We write

u=ZApu and v=ZAqv.
p q
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Formally, the product can be written as

uy = Z ApuAgv
Pq
Paradifferential calculus is a mathematical tool for splitting the above sum into three
parts: the first part concerns the indices (p, ¢) for which the size of the spectrum of Apu
is small compared to the size of the one of Ajv. The second part is the symmetric of
the first part and in the last part, we keep the indices (p, q) for which the spectrum
of Apu and Agv have comparable sizes. This leads to the following definition.

Definition 4.11. — We shall call paraproduct of v by u and shall denote by Tyv the
following bilinear operator:

(4.2.5) T Z Sq—1uAgv
q

We shall call remainder of w and v and shall denote by R(u,v) the following bilinear
operator:
(4.2.6) Ru,0)E 3 Ajudgw
[p—q|<1
Remark 4.12. — Just by looking at the definition, it is clear that
(4.2.7) wv = T,v + Tyu + R(u, v).

According to Proposition 4.9, S,_1uAgv is frequency localized in a ring of size 29.
But, for terms of the kind ApuAgv with [p — q| < 1, we have an accumulation of
frequencies at the origin. Such terms are frequency localized in a ball of size 29.

The way how the paraproduct and remainder act on Besov spaces is similar to the
classical case. We refer to [5] for more details.

Taking advantage of this theory, one can prove the following useful estimates.

Lemma 4.13. — Let o be a positive, noninteger real number and consider a real num-
ber s such that |s| < o. Then, there exists a positive constant C such that for all
functions f and g,

(4.2.8) £ 90| zz=mey < Cll fllco eyl gl e (ay-

Moreover, for any integer M there exists a positive constant C such that for any
function f,

(4.2.9) 1Sm fllce ey < Clfllce ey
(4.2.10) I1(1d = Sm) fll oo ey < C27 M2 fll oo ey
and more generally, for 0 < o < p,

(42.11) 1(1d = Sa) fll e ey < C27MC £l coguey-
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Note that Inequality (4.2.8) is not sharp, but is sufficient for our purposes. The
sharper result (proved by the same type of method) would be
1 £9ll s may < CUIF Nl Lo mey 19l e may + I fll o may 191 22 aey)-

The proof of this lemma is classical: it is the same proof as in R? for the classical
Littlewood-Paley theory and has no specific feature to the Heisenberg group. We
provide it here for the sake of completeness, as it will be used often in the rest of this

paper.
Proof. — The first ingredient of the proof of Estimate (4.2.8) is Decomposition (4.2.7)
which consists in writing

f9=Tig+Tof + R(f,9)-

Let us begin with the study of T¢g. By definition of the paraproduct and thanks to
Proposition 4.9, one has

Af(Trg) = Y Dg(Sp-1fApg),
|[p—q|<No

where N is a fixed integer, chosen large enough. We deduce thanks to the continuity
of Littlewood-Paley operators on Lebesgue spaces, that

29| Ag(Tr@)l L2 mey < Z 29| Ag(Sp-1f Apg)ll L2 me)

|p—q|<No

<C Z 2%\ Sp—1.fll oo ey | Ap 9l L2 e
|p—q|<No

<C [ fll poomay Z 29| Apgll L2 (may-

|p—gq|<No
Using Littlewood-Paley characterization of Sobolev spaces, we infer that

29| Ag(Trg)llpoquey <C N fllpooqmey Y, 209727 Apgll 1 (pay
|p—q|<No

< c ”f”LOO(]HId) ||g||Hs(Hd) Z Q(Q‘P)Scp
|p—q|<No

where, as in all what follows, (c,) denotes a generic element of the unit sphere of £2(N).
Taking advantage of Young inequalities on series, we obtain

2% Aq(Trg) || L2 ey < Cllf oo mey 191l o () cq
which ensures the desired estimate for Trg namely
1Tt 9l s ey < Cllfllce ey 1191 s (raay-

Let us now consider the second term of the above decomposition of the product fg.
Again using spectral localization properties, one can write that

T.f) Z A p lgApf)

|p—q|<No
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Therefore
290 A0 (Tof)llpemey < 27 D [18q(Sp-198pF)ll L2 uey
|p—q|<No
< 02 3 |Sp-19ll ey 1A Sl oo ity
|p—q|<No
(4.2.12) < Cllfllormsy2® Y. 18p-19llp2qmey2 .

|{p—q|<No

By (4.2.2), we have in the case where s < 0,
1Sp—19ll L2(may < Cligll e mey2 ™ cp,

where (cp) still denotes an element of the unit sphere of ¢£2(N). We deduce in that
case that

22| Aq(Te ) llL2may <€ Nfllcer@mey 19l s may 2%° Z 27Pocp27P7
|p—q|<No

<C | fligemayllgll ge ey 27 }: 2~ -0 o=lebe
Ip—q|<No
<C |fllcomay 191l o ey cq-
This leads in that case to

1To fll s may < Clifllco ey 191 s may-
Let us now estimate Ty f in the case where s > 0. We have
1Sp-19llL2mey <C Z 1 Ap gl 2 (mey
p'<p—2
<C gllme@ey Y, 277 cy-
p'<p—2
Thus (4.2.12) becomes
29| 8y (Tef)leey <C N fllcomey lglgema2® D, D, 2777277 %y

|p—q|<No p’<p—2
<C Nflceme lollgusy2® Y, 2777
|[p—ql<No
<C | fllcomay 19l s may 2-a(o=s)
<C ”f“C"(]H[d) "9||H8(Hd) Cq-

This obviously ends the estimate of || Ty f|| 7= ey for any s satisfying |s| < o.
Finally, let us consider the remainder term R(f,g). Taking into account the accu-
mulation of frequencies at the origin, we can write

AdR(f9) = D Y. AfApfApg).

q¢<p+No |p—p’|<1
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Thus
28R Dz < €2 3 3 1Sl aanllAralzzn
g<p+No |p—p’|<1
< C”f”Ca(Hd)“g”Hs(Hd)2qs Z E 2—pa2—Pscp,
g<p+No |p—p’|<1
= C”f"Cv(Hd) "g”Hs(]H[d)2qs Z 27PIQ P,

q<p+No

In the case where s > 0, we infer that

27| Ag(R(f, 9 L2ey < Cllfllco @ey N9l aro uaey Z 2= (PDsc,,

g<p+No

Then, thanks to Young inequalities, we get

21| 8g(R(f, )l 2uey < Clifllco ey 191l 1o aeyea

which implies that

|R(f, g)”Hs(]H[d) < C”f”C"(lH[d) ||9||H8(Hd)~

Now, in the case where s < 0, we have

2qs”Aq(R(f,g))||L2(Hd) < C“f”m(lmd) ||9”Hs(mld)2_q(7 Z 2_(p_q)(a_'s])cp-
g<p+No

Again, Young inequalities allow to conclude. This achieves the proof of the estimate

I1R(f, Dl g=mey < Cllfllce may 19/ s may,

for any |s| < 0.
Let us now turn to the proof of Inequality (4.2.9). By definition of the C'*-norm,
we recall that

S8 fllco(aaey = sup 21| Ag Sa £l Lo (ma2)-
q
Using commutation properties of Ay and Sy, we obtain

”SMf”CP(lHl") = Ssup 2qp”SMAQf”L°°(]H[d)
q

IN

C sup 2%°||Ag f | oo (may
q

C | fllcemey

thanks to the continuity of Littlewood-Paley operators on Lebesgue spaces, which
ends the proof of Estimate (4.2.9). Moreover, it is obvious that

l(Id — Sr) fll oo ey < Z 1&g £l oo (meys
g>M—-N;

IN
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where N is a fixed integer, chosen large enough. Therefore, according to definition of
the C?-norm, we get

I(1d = Sa) fliromey <C Y. 27| fllorque)

q2M—N,
<C | fllee@e Z 27
q>M—-N,
< Clfllge w2 M7
Cr(H%)

This achieves the proof of Inequality (4.2.10). Along the same lines, for 0 < o < p,
one has

1(Id = Sam) fllco mey < Z 297]|Ag(Id — Samr) fll oo (mey-
q>M—N;

Using again the continuity of Littlewood-Paley operators on Lebesgue spaces, it comes

I0d = Sm) fllceay <C D 29Agf ]| oo (uey

qg>2M—-N,
< Clfloemey Y, 297”
q>M—N;
< Clfllerme2 M=,
thus the desired estimate. This ends the proof of Lemma 4.13. O

4.3. Truncation pseudodifferential operators

In this section we shall compare Littlewood-Paley operators with the pseudodiffer-
ential operators Op (®(272P|A|(£2 + 7)), for ® compactly supported in a unit ring.

We shall see that Op (®(272P|)|(£2 + n?)) is “close” to A, in the sense that the
operator A,Op (®(27%|\|(£2 +7?)) is small in £(H*(H?)) norm if |p — g is large.
This is made precise in the next proposition.

Proposition 4.14. — Let 6y € (0,1) and ® be a smooth function, compactly supported
in ]0,00[. There is a constant C such that the following result holds. For any p > 0,
define the symbol

ap(w, A, &,1) = p(I\(E2 +7°)), where @p(r) = &(27%r), Vr > 0.
Then for any integer ¢ > —1 and any real number s,
440D (ap)ll peemeyy < C2-%P=11,

where A4 is a Littlewood-Paley truncation, as defined in Definition 4.3.
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4.3. TRUNCATION PSEUDODIFFERENTIAL OPERATORS 69

Proof. — We shall start by reducing the problem to the case s = 0. Let u be-
long to J(H?) and let ¢ > 0 be given (the case ¢ = —1 is obvious). The norm
||AgOp(ap)ul|m- is controlled by the quantity

1/2
22)8,0p(az s = 2° ( [ 1T 0IN AR 221D sy A )

where Ay = Jyop”(ap)Jx. Defining a smooth, compactly supported (away from zero)
function % such that £R* = R*, one has

| F (W) (AN ANR* (272 Dx) | s en) = |F (W) (A)AAR* (2729Dx) R(27%4D)) || ms(x,)-

But A, is a diagonal operator in the diagonalisation basis of D), thus it commutes
with the operator R*(2724D,). So

[ F (w)(A\)ANR*(27%9Dx) R(27* D) |l s ) = ||9(Kqu)()\)A/\R*(2_2qDA)||HS(m),

where Zq is the Littlewood-Paley operator associated with £(272¢.). Using (1.2.19)
stated page 11, we get

I (w) N ANR* (2722 D) R(2 D) | msn) < 1T (Bgu)Nlmsees) AR (27 Da)ll 2y

and Remark 4.4 gives the expected result: we have reduced the problem to the L2(H?)
case, and by the Plancherel formula (1.2.21) and Inequality (1.2.19), it is enough to
study the norm as a bounded operator of L?(R%) of the operators

R'(27%IA(€2 — Ag)) op®(a,) and R*(2729|\|(€% — A¢)) 0p®(ay).

For this, we use Mehler’s formula to turn op™(a,) into an operator given by a function
of the harmonic oscillator in order to be able to use functional calculus. From now on
we suppose to simplify that A > 0.

We will denote, as in Definition 4.3, by R* and R* the basis functions of the
truncation A, (with R* supported in a unit ball of R and R* supported in a unit ring
of R).

In view of (1.3.15) (see page 20), one has

(€7 —A)Arctg(27 %P A7)

Y (®p(AE*+17%)) = 7) — dr.
@OE+) = g (B0

But
IR (272AE = 86)) 08 (@) sy = 500 (s VI B (2 A2 + )

and a similar relation holds for R—;, so we are reduced to estimating, for a € N?¢ and
A2724(2|a| + d) in a unit ring (or ball if ¢ = —1)

1 ~ i(2|a|+d)Arctg(272PAT)
Ip(a,)\)déf_/q)Te ’
2m (14 (272A7)2)2

and we shall argue differently whether ¢ < p or ¢ > p.

dr,
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o The case when q > p. We argue differently depending on whether 272P|)\| < 2977
or 272P|)\| > 297P. Let us first suppose that 272P|\| < 297P. Noticing that

d o (2lal+d)Arctg(22P A7) _ 27 )\(2]a| + d) oi(2lal+d)Arctg(272P A7)

dr 1+ (2-2P)7)2
we have

i ; 2y, d 3(r)
I ,/\ — i(2|a|+d)Arctg(2 aT) @ d
@V = Gz © F\ v @mnnia)

so using the fact that 2|a| +d > 1,

R* ((2lal + d)A2729) |I(, A)| < C2%(P~9) ( / |8 (7)|(1 + (27%A7)2) 1~ 2 dr
~ 2-4P )21
+ / |<1>(T)|(1 " (2—2%)2)%‘”)‘

Let us consider the first integral. If d > 2, it is bounded by [|®'||z:. On the other
hand, if d = 1, we observe that

|8'(T)|(1 + (272PA1)?) =% < C|1®'(r)| (1 + 272 A|7)).
Therefore, since (1 + |7|) |¢$’ (1)] € LY, there exists a constant C such that

22(p—9) / |8/ (7)|(1 + (272PA1)?) " 2dr < C22P—9) (14 207P) < C 270D,

Let us now concentrate on the last integral. We have clearly

2-9) [ 13 274 N% 7| 2(p—q) 92 ~
2°\P—4 |®(7)| Tdr < 2PV 272P|)\| [ |®(7)|dT,
T+ @)t

whence a constant C such that

~ —4p 2
200 [18)| 2 21 ar <o,
(1+ (2-22A7)2)3

We now suppose that |[A\[272P > 297P and we perform the change of variables
u = A27?P7 in the integral expression of I,(c, \). We obtain

D ;
/(I) (22PA_1’U,) (1 + u2)—d/2ez(2|a|+d)Arctgu du.

I(a, ) =

Using that |®(r)| < C|r]|~1%, we get
'(’I; (2217)\—1")\ < 0(2—2p'/\|)1—60|u|—1+60'
This yields that there exists a constant C such that
(e V] < C @A [ #9001 +2) 42 < €200,

As a conclusion, we have proved that in that case, for all a € Z,
R* ((2la] + d)A2729) | I (a, \)| < C2%(P~9),
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e The case when ¢ < p. The idea is to compare I,(a,A) to ®(A\272P(2|a| + d)).
Taking the inverse (classical) Fourier transform we can write

ei(2|a|+d)Arctg(2-2”T/\)

1+ (2 2ra2)

() — 802 (2lal + ) = 5 [ 8(r) ( ) eﬂ%”'“'*‘”) dr
R

or again
L(a,\) — ®(A27%P(2|a| + d)) = Jp(a, A) + Ry(a, N),
with
def 1 [ =~ i(2|a|+d)Arctg(272PAr) _ i27 2P Ar(2|al+d)
Jpla, \) E %/R‘I)(T) (e otg —e ) dr.

It is easy to see that
IR, (e, \)| < C272P) / |r®(r)| dr
R

so since ® belongs to (R), we have
R* ((2la] + d)A27%9) [Ry(e, A)] < CR*((2la| + d)A2729) 2727
< 02—2(10—(1),
using the fact that 2|a| + d > 1. Similarly
R*((2|a] + d)A) | Rp(a, A)| < C 272
So now we are left with the estimate of J,, which we shall decompose into two parts:

Jp=Jy+J2, with

1 def 1 2 i(2lal+d)Arctg(22PAr) _ i272PAr(2|al+d)
Jp(a,A) = o /|.-r2—217>‘|51/2 ®(7) (e e ) dr.

The estimate of Jg is very easy, since clearly as above

[Tp(a, )] < €272 / |r®(r)| dr
R
< C027%),
SO
R* ((2la] + d)A2729) |J2(a, \)| < C 272(—9)
and

R* ((2lal + d)X) |J2 (e, N)| < C27%.
Now let us concentrate on JZ}. We can write
1 ~ o . -
J;(a,)\) — %/ (I)(T)eﬂ 2P AT(2lal|+d) (ez(2|a|+d)2 2P Ah(T) _ 1) dr,
|r2-2pA|<1/2

with

—1)n (272 \r)2
h(T)=Tn;1( )2(n+1 ) ,
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72 CHAPTER 4. LITTLEWOOD-PALEY THEORY

which is well defined, and analytic, for [7272P)\| < 1/2. Observe that the function
h depends on the integer p and on A, and that one has to control this depen-
dance. In particular, we notice that h'(7) can easily be bounded, by 1/3, on the
domain |7272P)| < 1/2. But

1
ST 1 = i(2fa] + d)2 P AR(r) [ Gl gy
0
SO

Jl a )‘) / / ) 27 2”A(2]a|+d)(r+th(-r))(2la|+d)2 2p/\h(7‘)dtd7’
2 |r2- 2PA|<1/2

Integrating by parts, we get

1 ! :0—2p 6(7-)
Jl a, A) = —— / / ez2 /\(2|a|+d)(7+th(T))aT ( h(r dtdr
pld) 21 Jo Jira-2eai<1/2 14 th'(7) (7)

1 1 ;92— 2P ( )
+ = ezZ AQla|+d)(r+th(r)) __ F\') h( ) dt.

o T+t ()] e o

Writing the above formula as J) = K} + K2, with

1
KZ(O‘ A) = _1_/ [ei22pA(2]a|+d)(7+th(T)) <I>(7') h(r )} dt
) / b
21 Jo 1+ th'(7) [r2-2p2|=1/2
it is obvious that
=~ 1
IK2(0,\)| < C l@(%z2p,\—l)h(§22m—l) :
Writing
_ (=1)™(27%PA7)*" 2py, 2 )™ (272P A7)t
h(7')—‘rng1 1 = 27°PAT ,; o T 1 ,

we deduce that
~ 1
|KZ2(a,N)| < 02—2p,\|<1>(§221’,\—1)241’,\—2|
< 027%),

where the second estimate comes from the fact that ® is a rapidly decreasing function.
To bound K} we just need to notice that

®(r)
1+th/(1)

SO

B2, . _y (D
h(r) = —l—-iT'(T)z 2 Ag(r), with g(7) = 7§1 2n+1 ’

(%Q(T)) \ drdt < C272P),

1
|K} (@, \)| < C27%PA / / 0,
0 Jir2—-2p)|<1/2
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We conclude as previously that
R*((2la] + d)X2720) |72 (@, \)] < C272¢P=9 and  R*((2la] + d)A) |J3(a, A)| < C27%.
Combining those results, we conclude that if p > g, then

R* ((2lal + d)r272) |@ ((2le] + d)A27%P) — I,(a, )| < C272(P~9),

But clearly R* ((2|a| + d)A2729) & ((2|e| + d)A27%P) is equal to zero if |p — g| is large
enough, so we have proved the expected result if p > q.
That concludes the proof of the proposition. O

4.4. )-truncation operators

We shall use, in the proof of Theorem 5, truncation operators in the variable A.

Let us consider 9 and ¢, two smooth radial functions, the values of which are in
the interval [0, 1], belonging respectively to D(B) and D(&), where B is the unit ball
of R and @ a unit ring of R, and such that for D =1

(4.4.1) V¢ EeRP, 1=9(0)+ ) ¢(27%¢).
p20
We set
A, = Op(¢(27%X)) and A_; = Op(y(N)).

We notice that A, commutes with all operators of the form Op(a(},y,n)), and in
particular with powers of —Apa.

Then the operators A, map continuously H*(H¢) into H*(H%) independently of p
and we have the following quasi-orthogonality relation: there exists Ny such that

(4.4.2) ApAy =0 for |p—gq| > Ny,
which implies that
(4.4.3) [ Apull L2 may < cpllull L2 gy,

where ¢, is an element of the unit sphere of ¢2(Z). More precisely, there exist con-
stants C; and C, such that if f belongs to H*(H?), then the following inequality
hold:

(4.4.4) Cr Y NI Flle oy < 1F 1o ey < Co D 1A Flle 0y

Besides, we are able to say something about the A,,-localization of a product by
an easy adaptation of Lemma 4.1 and of Proposition 4.2 of [5]. More precisely, we
have the following result which ensures that some A,,-spectral localization properties
are preserved after the product has been taken.
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Proposition 4.15. — There is a constant M, € N such that the following holds. Con-
sider f and g two functions of J(H®) such that

F(HN) Lamg(NF(f)(A)  and
F(9)(N) Lyem g (AT (9)(X)

for some integers m and m'. If m' — m > My, then there exists a ring € such that
F(F9)N) = 1,5, z(NF (£ (V).

On the other hand, if |m' — m| < M, then there ezists a ball B such that
F(f9A) =1,,.,7NF(f9N).

Proof. — The proof of that result follows the lines of the proof of Proposition 4.2
of [5], and is in fact simpler. We write it here for the sake of completeness. By density,
it suffices to prove Lemma 4.15 for f,g in D(R?***?).

For simplicity, we will only deal with the case where A > 0.

By definition of F(f)()), we have

TONFar©) = [ fera)id Far() deds
- ./ f(z,8)Fax(§ — E)Gi)‘s”’\(g'z_lzlz/z) dzds.
Hd

Let us write £ = &, + i€, and z = 2z, + i2p, where &;, 2,4, & and z; are real numbers.
Straightforward computations show that

eiAsF2A(E2—121%/2) _ o=i(=2X6b-2a—2XEa-2b—X8) =X (1€~Z|7 = [€]%)

Then we can observe that

(4.4.5) T(H) NV Far(€) = (A2 ¢f) (~2AEp —2Aa, —N),

R2d+1

where hA denotes the usual Fourier transform of h on and where

(4.4.6) %6F(2,8) = Fap(§ =) 7 (2 ).

Therefore, one can write

~

F(f9) N Far(€) = (AS e fg) (=2X0&, —2X0&a, —N).
Noticing that for any multi-index 3 of N¢ satisfying 8 < a, we have
Fox(§) = Ca,p Fa—ﬂ)\(f) : FBA(&)»

[N

with Cp g = < g ) , we deduce that A .fg = Bf’gf . A‘;Eﬁg, where

BY f(2,8) = Fg (€ — 2)(2,5)
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R2d+l

and 8 < a. Using the fact that the standard Fourier transform on exchanges

product and convolution, we get

(A3 ¢£9) (—2X, 270, —A) = Carg (BLof) * (A5°9) (=276, 270, —N),

where x denotes the convolution product in R+ and still for any multi-index 8

of N¢ satisfying ﬂ <o The questlon is then reduced to the study of the supports of
the functions (BY Ne f) and (A3 g)
According to (4.4.5), the support in A of the function

(A5%9(2, s)) (—22, —2XEa, —\)
is included in the ring 22m' @, Now, Lemma 4.15 readily follows from the properties of
the standard convolution product in R2%*1 for the supports, and from the following

lemma, whose proof is given below.
This ends the proof of Lemma, 4.15. O

Lemma 4.16. — Under the hypothesis of Lemma 4.15, we have
(Bf,gf)A(—zxa,, ~2Ma, = }) = 12mg(N) (Bf,gf)A(—u&b, ~2Ma, — ).
Proof. — By definition of the standard Fourier transform on R??*1, we have
(BS cf) (2265, ~2360,-3) = [t R BE (s, ) dzds
— /ei (2A&o-2a+2Ma- 2+ X8) Fiy | (£ — 7) f (2, 5) dz ds
Denoting 2A(& - 2o + &a - 2b) + As by Ji(s, 2,&), it follows that
(Bf\”gf)A(—Z/\fb, —2X\Ee, —\) = /eiJA(s,z,ﬁ)e—A(IE—?lz—IEIZ)F[M(g —2)er 6=~ £ 5) deds.

Using that

AT = 3 (- o) Alel (g - 2

(62
a€Nd

and observing that the above series is normally convergent on any compact, we deduce
that

5 !
M s e-2) = Y E-2) (—) &% (B+a) Forpa(€ —2).

a€eNd p!
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This leads, since f € D(R**1), to

9 lo]
(Bf,ﬁf) (_2A§ba - 2)\541, —A) = Z e_)‘|§lz (é) 2 % (,B ;'a)'

2
a€eNd

X /e”*(S*Z’ﬁ)e")‘('g_zlz_|5|2)Fa+g,>\(£ —2)(€ — 2)*f(2,5) dz ds.

Recalling that
A3 ¢f(z,8) = Far(€ —2)e 571D £ (2, ),
we get

~

lol
(BS.f) (—2)&,—2X&,-X) = > e—w(%) 2 % W

a€eNd

x (4557 @€~ 2)°f) (~22, ~22E, - ).

Let us study separately each term of the above series. By Lemma A.2 and using the
fact for A > 0, Qj = 0¢,;, we obtain

1
T (2 f)NF = 5310¢;, T (HV]F.
In particular, for any v € N%,

T(5HNFAE) = 55 (96 TN Fra©) ~ TN, Fya©)).

The frequency localization of the function f in the ring 2™ &()) implies then that
the support in A of F((€; — 2;) f)(A) Fy,x(€) is included in the same ring 22™ €()). An
immediate induction implies that for any multi-index « the support in A of F((£ —
2)*f)(A)FyA(€) is still included in the same ring 22™ % (\). Therefore, the support
in A of

(AZE(€ ~ 2)°f) (—2A&, —2X6a, —N)

is included in the ring 22m&(X).
As each term of the series is supported in a fixed ring, the same holds for the
function

(B o f) (—2X&, —2X6, - ),
which ends the proof of the lemma. a

The following results will also be useful in Chapter 5.

Lemma 4.17. — There exists a constant C' such that for any function f,

(4.4.7) [AmAgfll Lo ey < CllAGf Nl oo ey
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for any integers m and q.
Moreover if p is a nonnegative real number, then there exists a constant C' such that
for any function f

(4.4.8) [ Am fll Lo may < C27™| fllco uaey-

Proof. — Let us first prove (4.4.7). We shall only give the general idea of the proof, as
the method follows closely a strategy initiated in [7] for the study of Littlewood-Paley
operators, and followed also in [6] in the analysis of the heat operator.

Recall that

F(AmAg)N) = ¢~ NT ()N (F)R*(27%Dy).
where ¢ and R* are smooth radial functions with values in the interval [0, 1] supported
in a unit ring of R. This can be also written
T(AmBef)A) = 27" NI (VR (27Dx)R*(2724D;)

where_ R* is a smooth radial function compactly supported in a unit ring so
that R*R* = R*.

According to the fact that the Fourier transform exchanges convolution and com-
position, we have

A Agf = Agf x hm g,

where the function h, 4 is defined by

T (hm,q)(A) = (27> "N R*(2729D;).

Taking advantage of Young’s inequalities, it therefore suffices to prove that the func-
tion h,, , belongs to L!(H?) uniformly in m and g.
By rescaling, we are reduced to investigating the function h; defined by

def

T (hj)(N) = $(27 X R*(Dy).

By the inversion formula (1.2.31), we get
(4.4.9)

hi(e,8) =~ Z/ ~i2s (272 \)R* ((2m + d)A) LD (2]Al|2]2)e= M= | A|2dA.

In order to prove that h; belongs to L! (H%) (uniformly in j), the idea (as in [7]
and [6]) consists in proving that the function (2,s) — (is — |2|?)*h;(2,s) belongs
to L°°(H?) with uniform bounds in j.

Let us start by considering the case £ = 0. It is easy to see that the Laguerre
polynomials defined in (1.2.30) page 15 satisfy for all y > 0

ISV (y)e 2| < Ca(m +1)*
Since ¢ is bounded, this gives easily after the change of variables 8 = (2m + d)\

(44.10) izl <Y = [ 1R @)as.
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To deal with the case k # 0, we use the result proved in [7] (see also Proposition 1.11
recalled in the introduction) stating that for any radial function g, one has

I ((is = 121°)9(2, 5)) (M) Far = Qjo) (W) Far,

where for all m > 1,

Q) = Q) = T@nN) = @ua() 1>,
AN = 2@+ QN ~ Quny) A<

X A

while @,, is given by
I (9(2,8)) (AN Fax = Qla|(A) Fa,x.

The proof then consists in applying Taylor formulas in the above expressions in
order to reduce the problem to an estimate of the same type as (4.4.10). The only
difference with the case treated in [7] and [6] lies in the dependence on j. However
it can be noticed that due to the support assumptions on ¢ and I~2*, there are two
positive constants ¢; and ¢y such that

2d—1

hi(er9) = 2 3 [ € 0@ R (2m + AVLED @Na)e M A

mrd+1
meC;

with C; def {meN, ¢;27% < 2m +d < ¢327%}. Now let us decompose h; into two

parts:
hj(z,8) = h}(z,s) + h?(z,s), where

ef 241 —i)s D* - —A\lz|?
h;(z,s)dzm > /e A3 b ((2m+d)N) R* (2m~+d)X) L™V (2] 2|2)e M= | A 2d.

meC;
The term h} is dealt with exactly in the same way as in [7] and [6].
For h? we shall use the Taylor formula

$(277X) — ¢((2m + d)A) = (27% — (2m + d))A / WA+ (- ) (@m o+ d)) dr
0

But for any m € Cj, one can find o, € [c5 1 cl_I] such that
274 = q,;,(2m + d).
It follows that one can write
1
A(27H)N) — p((2m + d))) = (am — 1)(2m + d)A / ¢ (tam + (1 = t)}(2m + d)X) dt
0
and the change of variables u = ta,, + (1 —t) gives
R*((2m + d)X) (6(272) — ¢((2m + d)N)) = (2m + d)AR*((2m + d)A)
< / ¢ (u@m + d)A) 1, du.
R
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This form is of the same kind that considered in [7], and allows to end the proof
of (4.4.7) exactly in the same way.

Let us prove now (4.4.8). On the support of the Fourier transform of ApA.,, we
have Dy ~ 227 and |A| ~ 22™. Therefore, 22(P~™) has to be greater than or equal to
1. This implies that the only indexes (p, m) that we have to consider are those such
that 0 < m < p. So

Apf=An(Id - Sn-1)f.
Therefore using (4.4.7), we have

Amflleo@msy < C Z | Am Ag £l oo (e
g2m—1
< C Z 1Aq £l oo (mey
g2m—1
< ¢ Y 27| fllosme,
q2m—1
so finally
Am fll oo ey < C27™2|| fll oo (uaey-
That proves the lemma. O

4.5. The symbol of Littlewood-Paley operators

Applying Proposition 1.16 of Chapter 1 (see its statement page 20) to A-dependent
functions of the harmonic oscillator, we obtain the symbol of our Littlewood-Paley
operators, as stated in the next proposition. The proof of the proposition relies heav-
ily on that of Proposition 1.16 which is itself proved in Appendix B. Therefore we
postpone the proof also to Appendix B, page 119.

Proposition 4.18. — The operators A, (resp. Sp) are pseudodifferental operators of
order 0. Besides, if we denote by ®,(X\,&,n) (resp. Yp(A, &,n)) their symbols, there
exist two functions ¢ and v in > (R?) such that for A # 0,

®,(\,&,m) = 27PN, 27PIN|(E2 +10%)) and Tp(X,€,n) = P27, 27IN|(€* +n?)).

More precisely one has

(4.5.1) VA#£0, ¢\ p) = ng\l)‘ /(cos )~ %X (-TT+AteT) R* (4r)drdr,

and a similar formula for 1.

Remark 4.19. — The stationary phase theorem (see Appendiz B) implies that the
function ¢(X,p) of (4.5.1) has an asymptotic expansion in powers of A as \ goes
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to 0, the first term of which is R*(p). Besides, the change of variables T — —T gives
that ¢(—A, p) = (X, p). Therefore, the function

(y, 77) = QP (A sgn A) \/!T \/IT)

is equal to ¢(272P|X|,272P(£2 4+ 1?)) and is smooth close to A = 0.
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CHAPTER 5

THE ACTION OF PSEUDODIFFERENTIAL
OPERATORS ON SOBOLEV SPACES

In this chapter we shall be giving the proof of Theorem 5. In the first paragraph we
reduce the study to the case of operators of order zero, and in the second paragraph we
show that it is possible to restrict our attention to a fixed regularity index in a certain
range. We then follow the strategy of the proof of continuity of pseudodifferential
operators in the R? case due to R. Coifman and Y. Meyer [20]. The proof is based on
the two following ideas: we introduce the notion of reduced symbols (see Section 5.3)
of which we prove the continuity. Then, we obtain in Section 5.4 that any symbol a of
order 0 on the Heisenberg group is a sum of a convergent series of reduced symbols,
and finally deduce the continuity for the operator Op(a).

Let us mention that the proof below would be much easier if the symbols were only
functions of (w,y,n), and not also of A : in that case, one would not need to use an
additional cutoff in A via the operators A, (see Section 5.5), which will induce some
technicalities.

5.1. Reduction to the case of operators of order zero

In this paragraph we shall reduce the study to the case of zero-order operators.
Suppose therefore that the result has been proved for any zero-order operator, meaning
that for any operator b € Sya(0) of regularity C*(H?) and for any |s| < p if p >
2(2d + 1) (resp. 0 < s < p if p > 0), the operator Op(b) maps continuously H*(H%)
into itself.

Let a be a symbol of order u € R. Then for any f € H*(H?),

2d—1
Op(a)f(w) = 27 [ tr (L T(HO)Ar(w)) P dx
with
TEHWNAw) = TN T500" (a(w, X))y
T((1d — Age) £)N)J30p" (m¥)#a) 1.
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This can be written
Op(a) f(w) = Op(b)(Id — Apa) % f(w),

where b % m(_)‘ll#a is a symbol of order 0. The boundedness of Op(b) from H* * to
H*~* for |s — p| < p (resp. 0 < s < p if p > 0) then yields the existence of constants
C and C’ such that

I0p(@)flzro-n < Cll(Ad — Agga) % fllzs-n < C" |1 £]lzr--

Therefore it suffices to prove the theorem for symbols of order 0, which we will
assume from now on.

5.2. Reduction to the case of a fixed regularity index

In this paragraph, we shall reduce the study of the continuity of pseudodifferential
operators of order 0 on Sobolev spaces from arbitrary Sobolev spaces H t(IHId), to
one Sobolev space H*(H") with a regularity index s such that 0 < s < o, where o
(chosen equal to p—[p]) will be the index entering the assumptions of Proposition 4.14,
page 68.

In order to do so, let us suppose that the continuity in H*(H¢) is proved for any
symbol of order 0 with 0 < s < §p (note that §y < p). Consider a symbol a(w, A, £,7)
of order 0. Let o be a multi-index in N* with |a| < [p] and, using Proposition 2.9,
define the € symbol b, by

Op(ba) = Z*Op(a)(Id — Ags) ™% .
Then Op(by) maps H*(H?) into itself for 0 < t < §y. Therefore, there exists a constant
C such that for any f € Ht*PI(H?),

Lo
10P(@) fll3estnmay = 2 10P(ba)(Id — Aya) = fll3pe(ue)
lee|<[p]
lo|
< C Z (Id — Aga) 2 f”ip(u-nd) =C ”f”?{tﬂpl(l[{[d)'
la|<[p]

Therefore, Op(a) maps H*(H) into itself for s = t+[p], t < §o, whence for 0 < s < p.
Assuming p > 2(2d + 1) and using the fact that the adjoint of a pseudodifferential
operator is a pseudodifferential operator of the same order, we get the continuity on
H*(H?) for 0 < |s| < p.
Then s = 0 is obtained by interpolation.

5.3. Reduced and reduceable symbols

Let us start by defining the notion of reduced and reduceable symbols.
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Definition 5.1. — Let t be a symbol. Then t is reduceable if it can be decomposed in
the following way: for all (w, A, &,n) € H® x R* x R*

t(w,\,&n) = Ztk(w,)\,g,n), where
kezzd
tF(w, A, 6m) = b (w, )TF(N &) + D bE(w, \)BE(A, €, 7).
p=0

with
ok &,m) L EE(V/IAE, V/IAIm) while BE(g,n) K ek TTE2TN (2720 (62 + 1p?))

and ® is a smooth function with values in [0,1], compactly supported in |0, c0].
Similarly

T, €,m) LT (/IME, /IAIn) where TF(¢,n) ek @M w(e2 4 p?)

and U a smooth function with values in [0,1], compactly supported in |—1,1].
Finally the functions b’;(-, \) belong to the Hélder space CP(H) with

(5.3.1) sup 165 (-, Ml oo (may = Ak < 00.
p,

The symbols t* are called reduced symbols.
It follows from the analysis of the examples of Chapter 2, Section 2.1 that for any

k € 2** and p € N, the operator Op(bk(w, \)@k(X, €, 7)) is bounded in H*(H) since
one can write by easy functional calculus

Op (B (1w, @5 (A, £,m)) = Op(b(w, 1)) 0 Op (@5 (2, £,1))

where the two operators of the right-hand side are bounded operators on H* (]HId) (see
Chapter 1, Sections 2.1.2 and 2.1.4 respectively).

The same fact is true for Op (b’i L(w, N)TE(N €, n)) Besides, by Proposition 2.2 stated

page 29, there is a constant C (independent of k) such that

(5.32)  [|OP(®E ; (w, VTP, &)l paremeyy < CAk [ ¥¥|lnis,g) and
0B} (w, REN, &)l prrsmeyy < C Ak 1R lnss(1,0)

where we recall that g is the harmonic oscillator metric of Section 1.3.2 in Chapter 1.

The main ingredient in the proof of Theorem 5 is the following result.

Proposition 5.2. — Let k be fired in Z* and t* be a reduced symbol as defined in
Definition 5.1. The operator Op(t*) maps continuously H*(H) into itself for 0 <
s < p. Its operator norm is bounded by CAx(1+ |k|)" for some integer n, where C is
a constant (independent of k).

The proof of this proposition is postponed to Section 5.5.
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Remark 5.3. — Due to Proposition 5.2, a reduceable symbol t is the symbol of a
bounded operator on H*(H®) as soon as (Ag(1 + |k|)™)xez2e belongs to £1(Z>?).

5.4. Decomposition into reduced symbols and proof of the theorem
The aim of this section is to prove the following lemma.

Lemma 5.4. — Let a be a symbol of order 0. Then a is reduceable and, with the no-
tation of Definition 5.1, for any integer N, there is a constant Cn such that for
any k € Z2d,

Cn
5.4.1 A < ——mM—.
(5.4.1) A (P

In view of Remark 5.3, Lemma 5.4 gives directly Theorem 5 (up to the proof of
Proposition 5.2).

Proof. — Let us consider ¢ and ¢ defining a partition of unity as in (4.4.1) page 73:
one can write

(5.4.2)  V(\&n) €R*xR™, 4 (A +07) + D¢ (27N (E +7%) = L.

p>0
Then
a(w, &) = a(w,\ &) (IAE+7%) + D alw, A &m)¢ (272IN(E +n?))
p=>0
= b_i(w,A, \/Nf, \/mn) + Z bp(w, A, 2_”\/N§, 2_p\/|_’\_|"7)
p=>0

with

boi(w, A &6n) ¥ G(w, A\ n)Y(E +n?) and

bp(w, N 6,m) % G(w, A, 27, 2Pn)$(€2 +n?) for p>0,

where a(w, \, &, 1) def a(w, A, ﬁ, —\/JIITI) The functions b, are compactly supported

in (£,7), in the ring & for p > 0 and in the ball 8 for p = —1. Moreover, denoting
by 0 a differentiation in £ or 1, we have, for all p > —1,

Ab,(w, A, €, 1) = 2P(8@)(w, X, 2P€,2Pn) (€% + n?) + 2£4/ (€% + n°)a(w, A, 2P€, 2Pn).
We deduce that

2p
|abp(wa Aa €v 77)' S

¢ 1+ X+ (2°6)2 + (2°1))? |6(&” +0™)| + Clel [¢' (€7 + 7)),

and

[A0bp (w; A, € m)| < C|AOAG(w, A, 27€, 27n))|
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so using the boundedness of the symbol norm of a and the fact that ¢ is compactly
supported, and arguing similarly for higher order derivatives, one gets the following
uniform norm bound on by:

(5.4.3) sup (A0 by( A& Mlgney < Come
P &m)

Now, since for p > 0 the functions b, are compactly supported in (§,7), in a ring &
independent of p, we can write a decomposition in Fourier series:

bp(w, N, &,m) = D e EMbk(w, X)g(e? + 7%),

kez?d

where a is a smooth, radial function, compactly supported in a unit ring, so that ¢$ =
¢. We have of course

1

(5.4.4) bh(w, \) = e

/ e~ €M, (w, X, &, m)dédn.
Along the same lines, we get

boi(w, N &) = Y eFEMRE (w, \)(€? +n?),
kez2d

where 1Z is a smooth, radial function, compactly supported in a unit ball, so that 1/){5 =

.
Defining

Bk (g,n) & etk EMG(e? 4 p?),

it turns out that

a(w, \,&n) = b_y(w, X, /IAE VA + D bE(w, N)BF(27P/|A€, 277/ |Am)
p,k
b—l(w7 )‘7 V IAlgv IAIT’) + Z tk(wv A,gv 77)
k

That concludes the fact that a is reduceable. It remains to prove (5.4.1). From the
integral formula (5.4.4), we infer that for any multi-index § and, to simplify, for p > 0

1 e
g L b w0, ) dedn

< c/ ]a@nb w)\,g,n)’dgdn

]kﬁb';(w,x)\

Using (5.4.3), we deduce that
(5.4.5) sup ”kﬁb’;(-, )\)‘
DA

Ccr(HY) —

and Lemma 5.4 is proved. O
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5.5. Proof of Proposition 5.2

Now it remains to prove Proposition 5.2. We will first give the main steps of the
proof and peform some reductions, and then prove the result.

5.5.1. Reductions. — Let us give the main steps of the proof. An easy computation
gives that there is a constant C such that for any integer p and any k € Z%¢,

(551) "‘Ilk”n;S(l,g) + ”E)I;”n;S(l,g) < C(l + |k|)n

Therefore, in view of (5.3.2), one has

00 (51 NTFA M) 1 g, S AR+ )™

It remains to consider p € N, and in particular to control the sum over p. The fact
that b’;(w,)\) depends on A induces a serious difficulty, which we shall deal with
by considering a partition of unity in A. Thus by the same trick as before, we use
functions ¢ and 9 such that (4.4.1) holds and we write

bE(w, \) = b (w, NY(A) + D bE(w, N)g(27" ).
reN

Using the fact that ¢ is compactly supported, we decompose the function b’;(w, 22" \)é(N)
in Fourier series and write

bE(w,X) = Y b (w)ep(N) + Y b (w)e'? T Ag(27r ),
Jc€Z reN,jez

where
b’;f_l(w)z /ﬁ e bk (w, N)p(A) dA, byl (w) = /ﬁ e T b (w, 27" A)p(A) dA

and ¢, 1/) are smooth and compactly supported respectively in & and 9B, such that
¢¢ ¢, and 'qb;/) 1. We observe that Estimate (5.4.3) satisfied by b, ensures that
for all integers N, there is a constant C such that for all indexes p, 7, j, k, we have

Cn
5.5.2 sup1+JNb |,,d_————

Indeed, by the Leibniz formula

jnkﬁb';fr(w)\ < C) /ﬁ e~ A (A22T) ™ KR (85E) (w, 22T A)A T (B ™ ) (A) dA

m<n

< C sup [P (u0,) bl (w, )|
m<n

S C SI;I\]Z) ()\a)\)ma&,n)bp(wa)‘ayvn)l .
m<n
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Owing to (5.4.3), we deduce that (5.5.2) holds. That estimate will ensure the conver-
gence in j of the series. In the following, we therefore consider, for each j and k, the
quantities

Fiw,\em) 3B (W) (N@E(N€,m) and

p
9w, M\ 6m) E S b (w)g! (277N BE(N €, 1)

p,r

where ¢7()\) = e ¢()), and 17 () = e*)()). Then we will consider the summation
in k and j of t*/ and %7,

The analysis of the convergence of ¥/ follows the same lines as that of t*/ with
great simplifications since the summation is only on one index, namely p. Therefore,
we focus on the convergence of t*/ and leave to the reader the easy adaptation of the
proof to the case of £,

Let us therefore now study t*. We truncate b%7. into high and low frequencies, by
defining (for some integer M to be chosen large enough later, independently of all the
other summation indices),

(5.5.3) bpr & S abh and Ry % (1d — Sy pr)bE

P,
where Sj, is a Littlewood-Paley truncation operator on the Heisenberg group, as de-
fined in Chapter 4, Section 4.1. Let us notice that by Lemma 4.13, one has the
following norm estimates on £, and hp,:

sup [6prllcoey < sup 1657 [l oo (aaey
p,T p,T

IA

sup [|hpr || oo (ma) 2772 sup |65, || oo (sae)
T p,r

IA

sup ||hpr [l oo me) 277~ sup |b, || o (e
™ p,r

for 0 <o <p.
This allows us to write t*/ = t# + *, with

Bw, A 61 Y by ()¢ (277N 27P/IA€,277y/IAIn)  and

p,’l‘
Pw,\6m) S b (w)g 272 N@F(27P4/IN €,27P |\ 7).
p,T

We have dropped the indexes k and j to avoid too heavy notations. Before performing
the study of each of those operators, we begin by a remark which will happen to be
crucial for our purpose.

5.5.2. Spectral localization. — In this subsection, we take advantage of Propo-
sition 4.14 of Chapter 4 (see page 68) to use spectral localisation. We first observe
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that
k _ iy/INk(27Pg27P -2 2, .2
XN, &,m) = eVIRETE2TIN272))|(€2 + p?))

= VIRIRETE2TNG (2|3 (¢2 + 72) B2 || (€2 + 7)),

where ® is a smooth radial function compactly supported in a unit ring so that o0 =
.
Symbolic calculus gives that for any N € N, there exists a symbol r,(ejz,) such that

op™ (®F)

op“’(<I>’; “ap)
= op¥(@%) 0 0p®(ap) + op®(riY))

where a,(y,n) = ( ~2P|\|(y? + n?)) and for any integer n one has
N _
Iy nssca,g) < C(L+ [RN 27N,
One obtains that for some integer n,
wy, (N) < C(1 k N+'n,2—Np
llop™ (ri ) e(L2meyy < C (1 + |K]) )
and since Op(r,(cl,\;)) is a Fourier multiplier we get
(5.5.4) ||OP(T1(CI,\,I,))U||HS(H‘1) < C27 NP (14 (RN lull gre aey -
Since we deal with Fourier multipliers, we have
Op(@X)u = Op(a,)Op(®E)u + Op(r) u.

Finally, by Proposition 4.14 of Chapter 4, we get

Op(@f,)u = A,,Op(a,,)Op((D';)u + Z Aqu(ap)Op(fbﬁ)u + Op(r,(ﬁ,))u
q#p
(5.5.5) = A,0p(a,)0p(®)u+ > AyR, ;Op(@E)u + Op(ri™))u,
q#p
where
(5.5.6) IRl (rre aey) < C2%P=al,

Therefore we can write

Op(t) = Op(t") + Op(t") + Op(t")

ASTERISQUE 342



5.5. PROOF OF PROPOSITION 4.1 89

with, writing ¢7()\) = ¢7(272"))
(5.5.7) Op(t) = ) hpr(w)ArA,0p(ay)Op(¢i0F)

p,"'
+ ) hpr(w)Ar Ay Ry sOp(¢1 BF

p’r
q#p

(5.5.8) Op(tb) = ZKp,.(w)A,ApOp(ap)OP((ﬁiq)’;) and
DT
2 b ()Ar Ao Ry, OB(4185)

D,
q#p

(5.5.9) Op(th) - Zbkj (w) A, Op( Tl(c]\]/;))

with A, = Op($(2_2T)\)) and ¢ is a compactly supported function in € such
that ¢¢ = ¢

In the following, we are going to study each of these three terms, beginning
by Op(t%) which is a remainder term. Besides, in order to simplify the notation we
shall write

upl & Op(¢i®})u,

and we recall that due to (5.5.1) and to the fact that Op(¢i®F) = Op(¢7)Op(®F)
with Op(¢?) of norm 1, there is a constant C such that for all indexes p,, k, j,

(5.5.10) ”u Nzs < CA + kD)™ ||ul| s
Moreover, by quasi-orthogonality (see Chapter 4, Subsection 4.4), we have
(5.5.11) [ApA-urillze < C (1+ k)" cper 277° ||ull e

where C' is a constant and c,, ¢, denote from now on generic elements of the unit
sphere of ¢%(Z).

5.5.3. The remainder term. — We drop the kj-exponent in b';’jr for simplicity
and decompose b, in A-frequencies: by, = 3., Ambp » 50 that Op(t!) is now a sum
on three indices. We decompose this sum into two parts, depending on whether r <
m+ My or r > m+ M; where M; is the threshold of Proposition 4.15 stated page 74.

Let us consider the first case, when r < m + M;. We choose o such that s <o < p
and by Lemma 4.17 page 76, we find constants C' such that

N
1A (b A OB ull sy < € (bl ey IOPE Yl g e
< C2_m(p—a)Ak“OP(TI(CI,\;))UHHS(H"‘)
< 02 ™) g 07 NP(1 4 |k()N+"”U||Hs(Md)
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where we have used estimates (4.4.8) and (5.5.4). We then obtain

S Aw(bpr) AOp(riY)u

m,p,r<m+M, Hes(HY)

<cC <Z(m + M1)2""(”“’)2‘NP) (1 + kDN Al e ey

m’p
which ends the first step.
We now focus on the sum for 7 > m + M; and we use that by Proposition 4.15, the
function A, (by,) A Op(rk p))u is A-localized in a ring of size 2". Therefore, in view
of (4.4.4), it is enough to control the H*(H%)-norm of Yopm Am(bpr) A Op(r(N))u by

¢, with (c,) € £2. We observe that by Lemma 4.17 and (4.4.4), there exists a constant
C such that

1A (bp,r) ArOD(riD Yl o ey

IA

N
CllAm (bp,r) | oo ey er 10P(r ul s e
< 0277 Ak, 27PN (14 KDYl e ey

where s < 0 < p and where we have used again (4.4.8) and(5.5.4). Therefore, we
obtain

ZA pr A Op("‘](cl\:;)) <er (Z 2—-m(p—-0)2—Np> (1 + |k')N+nAk”u“H3(]HId)

Hs (]H[d) m,p

which achieves the control of the remainder term.

5.5.4. The high frequencies. — Let us estimate Op(t!)u in H*® for any |s| < p.
For any function u belonging to H*(H®), we have

Op(t)u =) (uf, +wh,) with

p7r

= hprDpArOp(ap)ufl and wh, =" hp AgArRy qubi
qF#p

Let us deal with ugr. As noticed in Chapter 4 Section 4.4, on the support of the
Fourier transform of A,Op(#(272"))) we have Dy ~ 227 and |A| ~ 22", Therefore,
22(r—7) has to be greater than or equal to 1. This implies that the only indexes (p,r)
that we have to consider are those such that 0 < r < p. We will then simply bound
the sum of norms of the terms u’}w.

To do so, let us choose o such that |s| < o < p. This leads, by Lemma 4.13, to the
following estimate

lubollzrs < C27PC= el gt e
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Finally, thanks to (5.5.10) and to the definition of h,, recalled in (5.5.3), we obtain
for some integer n (recalling that 0 < r < p)

STk g < €@+ kD lullae Y p277C=7) sup||hprlice
IJ T
< CO+ kD Mullas Y p27PP) Ap.
p

Since 0 < p and p > -1, we infer that u — 3 . u;‘,,. is bounded in the
space L(H*(H?)), by the constant C(1 + |k|)"Ay.

Let us now study w” Arguing as before, we restrict the sum on the integers r
such that » < ¢ and we get

Sl e <€ 3 2770~ Dgsup e llor2™ /P71 + k)" ful-
p,r P,q#P
As before, we get a control by C(1 + |k|)" Ak.
So the high frequency part of t*7 satisfies the required estimate.

5.5.5. The low frequencies. — We recall that by (5.5.8), we have for any func-
tion u belonging to H*(H%)

Op(t*)u = Z(u;’w + w;’,r) with
p,r
uh, = lprDpAOD(ay)ull  and wh, = £ AgARy qubl.
q#p
In the following, we are going to use the frequency localization induced by A, in
the sense of Definition 4.1. In particular, using Proposition 4.1 of [5] (the statement is
recalled in Proposition 4.9 page 63), we will be able to say something of the localisation
of a product of localised terms. We want to use also the localization in A induced by A,..
For that purpose, we truncate £,, and in doing so, we add a new index of summation.
We set £, = ,, Apfpr and we immediately remark that since £, is a low frequency
term, then for m > p we have A,,{,, = 0. Therefore, the index m is controled by p.
According to (4.4.8), one deduce that

(5.5.12) A mLpr || oo ey < C27™ sup 1657l o ey
p,T

where C is a universal constant.
We can now go into the proof of the proposition for u . Let us start by studying

ukd, Al Ay A, Op(ay)uk

prm

As soon as the threshold M is large enough, up,m is frequency localized, in the sense
of Definition 4.1, in a ring of size 2P due to Proposition 4.9 page 63. So we can use
Lemma 4.8 to compute the H® norm of Zp pom-

Consider the threshold M; given by Proposition 4.15. We shall argue differently
depending on whether r <m — My, 7 > m+ M, or |[r —m| < Mj.

SOCIETE MATHEMATIQUE DE FRANCE 2012



92 CHAPTER 5. THE ACTION OF PSEUDODIFFERENTIAL OPERATORS

For r < m — My, it is enough (due to Lemmas 4.8 and 4.15) to prove that for any
p,m €N,

(5.5.13) D lublallee < C Akl + k) cp comllull =277,
r<m—M;
We observe that

kj

l[uprmlz2 1AmLorllz 4pA-Op(ap)upl]l 2

<
< CllAmbpr|lLeo cper(1+ |K))™ 277 ||ull

by (5.5.10) and (5.5.11). Therefore, for all integers m we have

ol < COHE) G2 llullae Y. crllAmborllie

r<m—M, r<m—DM;
C (L + [k])" cp 277 |lul| e V'msup [|Amlpr|| o
p,T

IA

IN

by the Cauchy-Schwartz inequality. So it is enough to have

(5.5.14) < CAy

£2(N)

to ensure that (5.5.13) is satisfied, which is implied by (5.5.12).
Let us now consider the indexes r > m + M;. This time, it is enough to prove

\/ﬁ sup ”Amepr”L‘”
p,T

(5.5.15) > e < CAL+ kD™ cper 277 Jull gre.

m<r—M;
We have, following the same computations as above,
S Nl SC Y WAmbprllzescpen (1+ D ull 277,
m<r—M; m<r—M;

Therefore, if

(5.5.16) > " sup [|Ambprllre < CAg,
m pr

we obtain the expected result, namely (5.5.15). Condition (5.5.16) is obviously ensured
by (5.5.12) which achieves the estimate of (5.5.15).

Finally, let us consider the case |[r — m| < M;. We shall analyze for 5 € NU{-1}
the quantity Aj: (AmfprApArOp(ap)ul?). We claim that
(5.5.17)

> Ay (AmbprBpAOp(ap)uff)|| < C Akl + k) cjr cpllull 2777,

|r—m|<M; L2

which by quasi-orthogonality will prove the result.
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We observe indeed that by Proposition 4.15, there exists a constant Ma such that
Z Aj' (AmeprApArOp(aP)u’;z) = Z A]" (AmepT‘APATOp(a’P)uzi) °

nm Ir—ml <M,
ir—ml <M, r>j'~Ma

Therefore arguing as before,

> Ay (AmlprDpA-Op(ap)usl)

rm
|r—m|<My L2
<SCQA+IE) 27 lullgs Y. crsupl|AmbprllLee.
./ p,T
j'<r—M;
[r—m|<M;
The property
(5.5.18) Jep > 0, sup(sup ||Amlpr|lLo27%) < CAg
m nLp

induces that the sequence ) .~ ;, 27™ ¢y, belongs to 22 i which is enough to prove the
claim (5.5.17). Estimate (5 5.12) implies (5.5.18) Wthh concludes the proof of (5.5.17).

Now let us turn to w . We shall separate ww into three parts, depending on
whether ¢ > p or ¢ < p, or ¢ ~ p. More precisely, let Ny € N be a fixed integer, to
be chosen large enough at the end, and let us define

'v=vu+v"+vt‘:Z:(v’j +1} +v prr with w pr—l—'upr while

> b ARy ull and vl = Y L AGARy qull
q2p+No g+No<p

Recall that to compute the H® norm of v, one needs to compute the £2 norm in j
of 27%||Ajv|| 2. We are going to decompose as before £, = 3", Al and consider
the cases m < r — My, m > r + M; and |r — m| < M;. For each term, we use the
same strategy as the one developed before, in the case of u';,r. We shall only write the
proof for the indexes m < r — M; and leave the other cases to the reader.

By quasi-orthogonality, it is enough to prove

(5.5.19) 1807 ]|: < CARQ+ D™ ¢ ¢ 277 [l e,

where vy = 3" wy, and x stands for §}, b or fj.

o The term v*: Let j > —1 be ﬁxed We recall that £, is frequency localized in a
ball of size 2°~M and AJAr Ry, qu in a ring of size 29, so by the frequency localization
of the product (see Propos1t10n 4.9 page 63), there is a constant N; such that

Z Z Z Aj (AmEPTAqATRp,q“ISZ) .

m<r—M; |j—q|<Ni ¢2p+No
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Therefore, we have

2900l <20 Y Y D 1A (AmberAgA Ry qufd) 12

m<r—M, |j—q|<N; ¢2p+No

<c2t 3 Y YT Ambprllie | ARy quf | 2

m<r—M;i |j—q|<N; ¢2p+No
<e Y Y Y 200 Aty ey 2P (1 + (k) e,
m<r—M; |j—q|<N1 ¢2p+No

where we have used the fact that

29| AgAr Ry qupl | 2

IN

Ceqer ”Rp,qul;i | s

Ce, crzéo(p—q) ”uzj | zs

by (5.5.6), and then (5.5.10). Assuming (5.5.16), the result follows from Young’s in-
equality which ends the proof of (5.5.19) for v* thanks to (5.5.12).

e The term v’: Using again the frequency localization of the product, one can write
that for some constant Nj,

290480 e <C2° Y7 D0 D [AmbprlzellAA Ry, qugiize

m<r—M,; j—p<Ns g+No<p

<C2e . Y Y IAmbrllze2"%cr cqll Ry qupillae

m<r—M; j—p<Ns q+No<p

<C2* > YT DT I Ambprlle27 e g2 P [ubd | s

m<r—M; j—p<N3 qg+No<p

< CQ+ |k))cr ||| gs Z | Ao || Lo Z 9(i—p)s Z cq2(5o—s)(q—P)

m<r—M; Jj—pP<N3 g+No<p

IA

thanks to (5.5.6) and (5.5.10).
Applying Young inequality, we thus obtain for 0 < s < §

(5:5:20) 2780 < CA+ ) erllulme D MAmbprle Y 2077,
m<r—M, |7—p|<Ns

This ends the proof of the result by Estimate (5.5.12).
e The term v": We recall that

h— kj
vl = Amlpr DgAr Ry quy.
m<r—M; |p—q|<No

It follows that

2080l < 02 ) Y IAmbprllze[AgAr Ry qup [ 22
m<r—M; —1<5<q+Ns
|p—ql<No
(5.5.21) < C+ kD)™ |lullas Z (| A o || oo Z 9(i=)s ¢ 980(a=p),
m<r—M, J<q+N3

|[p—g|<No
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and we conclude as in the case of v’. We point out that it is at this very place that
we crucially use that s > 0.
The proposition is proved. O

SOCIETE MATHEMATIQUE DE FRANCE 2012






APPENDIX A

SOME USEFUL RESULTS
ON THE HEISENBERG GROUP

A.1. Left invariant vector fields

Let us recall that on a Lie group G, a vector field

X:G—TG
is said to be left invariant whenever the following diagram commutes for all h € G :
G > G
X 1 X
¢ % TG

where 71, is the left translate on G defined by 7,(g) = h - g. It turns out that for
any h € G,

(A.1.22) Xot, =drpo0X.

In particular,
X (h) = drn(e)X(e),
where e denotes the identity of G. Therefore, as soon as the vector field X is known
on e, so is its value everywhere.
Let us mention that this infinitesimal characterization is equivalent to saying that,
for all smooth functions f,

(A.1.23) (X fn) = (X )n,

where f, is the left translate of f on H?, given by fn = fo.
To start with the proof of the equivalence of the two characterizations, let us
perform differential calculus in (A.1.22). We infer that (A.1.22) is equivalent to

(X omp)f = (drh o X)f,
for any function f € §°°(G). This can be written for any h, g belonging to G
(X f)(mn(9)) = df (n(9))(dTn(9) X (9)) = d(f © )(9) X (9) = X(f o ™) (9).
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In other words
(Xf)omn =X(f o),
for any h € G, which leads to the result.

A.2. Bargmann and Schrédinger representations

In this paragraph we discuss some useful results concerning Bargmann and
Schrodinger representations, starting with the formula giving the Schrédinger rep-
resentation, if the Bargmann representation and the intertwining operator are
known.

In a next subsection we prove some useful commutation results.

A.2.1. Connexion between the representations. — In section we shall give
a formula for the Schrodinger representation, which is linked to the Bargmann rep-
resentation by an intertwining operator. This formula is of course classical, but we
present it here for the sake of completeness.

We recall that the Bargmann representation is defined by

u} JF(€) = F(€ — z)est2A&=-1217/2) for X >0,
ud JF(§) = F(€ — 2)es~2MEZ17/2) for X <0,

and we also recall the definition of the intertwining operator, as given in (1.2.32)
page 15:
X% a2

def _ L O e
(r)(€) 2 Le 5 (i) e

Proposition A.1. — Let v)) be the Schrédinger representation, defined by
VF € #y, Kyu)hF =v)K\F.
Then v} , is given by the following formula:
v} f(€) = P72V f(e _9z), WVAER".
Proof. — It turns out to be easier to split the representation ), into three parts,
using the simple fact that
w=(z+1y,s)=(0,s+2y-z)-(z,0)- (iy,0).

Let us prove the following relations: for A € R, z,y € R? and s € R, VF € % and
neE R%:

(A-2.1) (Exufo. F) () = ™ (KaF) (),
(A-2.2) (Exueo)F) (1) = (KaF)(n—2a),
(A.2.3) (Kxufy 0 F) (n) = &7 (K\F)(n).
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Notice that those relations give

(Kxuﬁ,F) (77) = (KAu?O,s+2m~y)ui\z,0)ui\iy,0)F) (m)
= N (Knug oyl F) (1)
eiA(3+2y~m) (KAUf‘iy,o)F) (77 _ 21:)
eiAs+2iAy-n—2iAy~z(K)\F)(n _ 2.’B).
which is precisely the expected result.
So it remains to prove the basic relations (A.2.1)—(A.2.3). The first one comes

trivially from the fact that u, ., is the multiplication by the phasis e,
(0,s)

For the two other ones, we write, for any function F in J# and using Proposi-
tion IV.2 of [23],

#F) o) = (2

AT ; : 2
) ez / e~ 2xv-(n=n) =M’ B () dv dny'.
™ R2¢
Therefore, for A > 0, we have on the one hand

A A4 a2 o= 2% (n=')=ln' [~ Xly[>+2ixy-(iv) /
(Kxuyo) Fo=Z) o7 | AT I P (i + y) dv dy
R

lg_l_ i \ap (e’ —in) — 95 Xagomy 2_ 12 .
( ) >\ +2iXy- n/ e~ 2iAu(n—n'—iy)=2ddy-n'+Aly|" = Aln’| F(w)dudn’
]R2d

5d/4
< ) NLILEPH ,,/ e—ziAu-(n—n”)—Aln”lzF(iu) dudn”
RZd
= N (K\F) ().

On the other hand, one has
5d/4
(o) = (3) &7 [ emmmtrmaan Fenien el iy — 2y dv
’ m R2d

A\ 2Y4, 2 2
— <;) e)\—'7§—+2>\|z| —2/\n~x/ e—2i)\u(n—n'—z)—)\ln'—-z|2F(Z~u) dudn'
]de

A\°4 | im=2e?
— (_) e)\"_z.__ / e—2iAu(n—2z—7]")-—)\|n"|2F(iu) du dn//
s R2d

= (KxF)(n - 2z).
Similarly, for A <0,

(Kay) Py = (-2) e

e2iz\v~(n—n’)+/\|n'I2+>\Iy|2+2iz\y‘(iv)p(,-(v +y))dvdy’
R?d

A 5d/4 j___ . v . ’ 2 72
(__) -2 +2sz17/ Zidu(n=n"+iy) =2y’ =Myl X' T B (4, dudny’
™ R2¢
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)\ 5d/4 |17|2 . . " 7”12
= __> e_/\T+21>\y"7/ gZiAuw (n=n")+AIn"| F(iu) du dn”
T ]R2d
= 2 (K, F)(n)
and
A A\ 244 a2 2ixo(n—n")+ A7’ |2 ~2Xiz-v+Ale|® p; '
(KAU(EYO)F) = (-2) e /de . F(iv —z)dvdn
A

5d/4 Mi 2 . ’ ’ 2
— (_ ) e—A b= —2)|z| +2>\n~a:/ e2z>\u(r)—n —z)+A|n' —z| F(w) du dﬂ'
™ R2¢

5d/4

= <_é) e—/\——'"_zz"z/ e2i/\U(n—21—n")+>\In”|2F(iu) dudn’
™ R2d

= (K\F)(1 — 20).

This proves the estimates, hence the proposition is proved. O

A.2.2. Some useful formulas. — This section is devoted to various properties
for Bargmann representation that we collect in the following lemma.

Lemma A.2. — The following commutation formulas hold true:

1 _ 1

ﬁ[Q;,u;},] = —zjuf; and ﬁ[Qj,ufl‘,] = zju,’),.
for any A € R* and any w = (z,s) € H%.

Proof. — In order to prove Lemma A.2, let us first recall formulas (1.2.27) giving the
expression of Q;‘ and Q;\

=2|Alg; if A>0, — O, if A>0,
Q) = IME 3 and Q;‘ = & 1 '

O, if A<0, =2|Al; if A<O.

Let us now prove the first formula, in the case when A > 0. On the one hand, it is
obvious that

Qup F(€) = —2Xul F(€).

On the other hand, an easy computation implies that
. 2
up Q) F(§) = —2X(§; — 7;)eX P E B2 p(g — 7).
which implies that —z;u}, = %[Q?,u;},], for A > 0. In the case when A < 0 one has
JunF(E) = O, (uyF(€))
= updg, F() — 2276 RET /P — 2)
= uy0¢, F(£) — 2)zjul F ()

which ends the proof of the commutation properties —z;u;, = %[Q?, ul).
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It remains to check the formula for [@;‘, u)]. Arguing as before, one gets for A > 0

QUuAFE) = O WiF(©)

= ude, F(€) + 2Az;e 1/ D pe _3)

= ul 0, F(€) + 22 zjuy, F (),
which gives the formula in the case when A > 0. Finally, for A < 0

QUL F(E) = 206U F(€)
and
wbQ; F(§) = 27(& — 2 ub F ().

This leads easily to the second commutation property. O

Lemma A.2 allows to infer the following result, which is useful in particular to
prove Lemma 2.7.

Lemma A.3. — One has the following properties:

A PP A A
Zjuy -1 = Qfuy— and  Zjuy, 1 = Q) ui‘)_l.

for any A € R* and any w = (2,s) € He.

Proof. — First, let us compute Zjuf; _; in the case when A is positive. By definition,
one has

ZjtyF(€) = (9s; +1%;0s)ug-1 F(€)
(8:, +7;05) F (€ + Z)e~ A2 (—&2—12*/2)
= (—2Xg — AZ; + iZ;(—iN))ug, 1 F(€)
= —2Xug 1 F(§).

Whence the first formula thanks to (1.2.27).
Along the same lines, when ) is negative one can write

Ziuy-1 F(§) = (8, +1i%;0,)up 1 F(€)

(8z,- +i3j(98)F(€+ Z)e—i/\s—Zz\(—§~E—|z]2/2)
(N2 + 2, (<iA)ur FIE) + b 106, F(€)
2Zh - F(E) + 10, FIE).

We deduce thanks to (1.2.27) that Z;u;, _, = 2AZ;u,_, +u;,_,Q}. Let us remind that
by Lemma A.2, Q;.‘ ud —u) Q;‘ = —2)\Ejufl‘, which can be also written

XA A O~ oz
Q7 Upy—1 — Up—1 QF = 2AZjuy, 1.

This implies that Zjug_l = Q;\ uf; _1, which ends the proof of the first assertion.
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Now, let us compute ZUZ\U _,. Again, one can write for A > 0
Ziupg 1 F(§) = (85, —iz;05)up-1 F(£)

= (8s, — i2;0,)F(€ + 2)e™ N t2A—exlal’/2)
= wl106, F(§) — (A + iz (—i)uha F(E)
= u) 10 F(€) — 2hzju_. F(€).

We point out that, again by (1.2.27), this can be expressed as follows
_Zju,l);}_1 = u;_laj)f — 2AZ]’U,1AD_1

But Lemma A.2 states that @;‘uﬁ, - u;\U_Q; = 2)\z;u;) which can be also written

raly A A A
juw_1 bt U,w_le = —2/\Zju,w_1.

. b - .
This ensures that Z,;u>_, = Q- u_, in the case when \ > 0.
I 5w J w

Finally, in the case when A < 0, one gets
Zjup-1F() = (8, —1i20s)up-1F(€)
= (85, —iz0,)F(E+ z)e—iAs—ZA(—f-E—|z|2/2)
= (2§ + Azj — iz;(—iN))ud . F(€)
= 20ug 1 F(€)
= Qui-F©
where we have used one more time (1.2.27) for the last equality. This ends the proof

of the lemma. O

Finally let us state one last result, which provides the symbol of the multiplication
operator by s.

Lemma A.4. — Let a € Sya(p), @ = (%,3) € H* and w € H?, then

[ = G5 I30p" atw, M) N7 dr = [ e (500" (o, X)) ) I A
with g € Sya(p) and
(A.24) o(g) = —0x(o(a))

or equivalently

1
(A.2.5) g= "a)\a + ﬁ Z (njaflj + éjaej )a

1<j<d

Proof. — Let us first observe that by Proposition 1.22 page 22, the function g defined
by (A.2.4) is a symbol of order y since

u—18| ©—18]
) 2 (

L+ ADTF <@+ A +92+0%) 2 (L+[AD7

T+ N+y*+7
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Besides, by the definition of u;) (see (1.2.15)) we have
huy = (is+2¢-z—|2*)uj for A>0,
Auy = (is—2¢-zZ+2*)uj for A <0.
Therefore, using Lemma A.2 and using formulas (1.2.27), we have for A > 0

isud = Ohud — Z ( 2}‘2QA[QJ, w]+4/\2[ 2, [@;,uﬁ,]])

1<5<d
1 —X —A
= ol -7 > (@I +QudQj).
1<5<d
Similarly, for A < 0, we have

isud = Ohud + Z ( 2/\2Q [Q, w]+4)\2[ ?7 [@;,uqﬁl])

1<j<d

- bt 3 (W@ + T Q)).
1<j<d

Setting Ax(w) = Jyop¥(a(w, A))Jx and using tr(AB) = tr(BA) we get

tr (i5uj Ax(w))

(@l ) - 57 2 o (43 [@ ) @)@+ @A w)]) iAo,
1<j5<d
tr (i5uj Ax(w))
= tr (Oaud Ax(w W > wr(ud @), A + T Arw)]) iEr<o.
1<j<d

By (1.2.37), using the fact that op*(n;) = —i0¢, and op*(§;) = &;, along with
formula (2.3.3) recalled page 36, we get for A > 0,

[@), A (w)@+Q) Ay (w)]
= A J3 [, + &, 00" (a(w, \)(3, — &) + (9, — &;)op® ()] J

=2\ Jyop¥ <~2da+ Z (n; + €;)(i0¢,a — Oy, )) Jx.

1<j<d

Similarly, for A < 0,
=\ =)
[ ?7A/\(w)Qj +Qj AA(w)]

= -2\ Jyop® <—2da + Z (n; +1&;)(i0¢;a — 8,,ja)> Jx.

1<5<d
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Set
(A.2.6) b(w,\,y,n) = —2da + Z (nj + i€;)(i0¢,a — Oy, a),
1<5<d
we have obtained
(A27)  VA£O, tr(iulAr(w)) = tr (BaudAx(w)) — %tr (udT3op® (b) 13

We focus now on the term 9 u} Ax(w). We have
tr (OrugAa(w)) = 0y (tr (uhAx(w))) — tr (ujOrAa(w)) .
This implies, by integration by parts, that
/ tr (Bxud Ax(w)) N4 dr = — / Lir (u} Ax(w) P4 dA - / tr (ubOrAx(w)) [A* dA.
We claim that

(A.2.8) OrAx(w) = Jyop® (a/\a(%w) + % > (&0n,a— nja‘fja)) Jx.

1<j<d

This yields, with (A.2.6) and (A.2.7),

~ na i
/tr (i8ud Ax(w)) [A|4dX = /tr(uf},J,\Op <—-Xa—3>\a— o Z (§0n,a — m;0¢;a)

1<j<d
d 1 L g
+Xa——2—x (nj + i&;)(i0¢,a — Oy a) | Ix ||A|* dA
1<5<d
1
_ A Tx __w . d
= / tr (qu)‘op (—BAa+ -ﬁz;d(maﬂj +gjag,.)a) J,\> [A|2dA.

We then set

1
g=—0\a+ ﬁ Z (nja,,j +§j85j)a
1<j<d

and observe that a simple computation implies (A.2.4). Therefore, in order to finish
the proof of the lemma, it only remains to prove (A.2.8).
Let us now prove (A.2.8). We have, recalling that Ay (w) = Jyop”(a(w, A))Jx and
using the fact that 0x(JyJ}) =0,
a,\A)\(’w) = J;Opw ((9,\(1()\,10)) Iy + J; [op“’(a(w, )\)) y (BAJ,\)J;] Ix.
Besides, for a € Nd, we have JyF, » = h, whence
(OaJI2)Fax = —JIr(0rFa,n)-
Let us recall that for £ € e, Fo(€) = (\/|)\|)|°’|\/% so that O\ Fy » = '—%Fa,x. We
get
lo

1
Va €N, (0rJ3)J5ha = (On3)Fap = —gyha = =15 (€7 = B¢ = dha
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Therefore,
* 1 2 d
(OadN)J5 = 5\ (& —Ag)+ 4)\Id.

We then obtain
[op®(a), (OxJx)J3]

1 w
L fop"(a) , €~ A]
i w
= 5 Z op” (§;0n,a — n;0¢,a),
1<j<d

which proves the lemma. O
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APPENDIX B

WEYL-HORMANDER SYMBOLIC CALCULUS
ON THE HEISENBERG GROUP

In this appendix, we discuss results of Weyl-Hormander calculus associated to the
Harmonic Oscillator, and in particular we prove Propositions 1.20, 1.22 and 1.16 and
stated in the Introduction.

B.1. A-dependent metrics

This section is devoted to the proof of Proposition 1.20 stated page 21. We therefore
consider the A-dependent metric and weight

det |A|(d€® + dn?)

VA;éO, VO e y Yo ( §7d7l) 1+|)\|(1+62)

and
def 1/2
mM(©) ¥ (1+ A1+ %),
and we aim at proving that the structural constants, in the sense of Definition 1.12
page 17, may be chosen uniformly of A; the second point stated in Proposition 1.20
is obvious to check.

It turns out that the proofs for the metric and for the weight are identical, so let
us concentrate on the metric from now on, for which we need to prove the uncertainty
principle, as well as the fact that the metric is slow and temperate.

The uncertainty principle is very easy to prove, since of course

w 14 |A|(1 + 62
96" (d¢, dn) = 1+l + &)

2
B (d€? + dn?)

and
A <14 A1+ ©2).
The slowness property is also not so difficult to obtain. We notice indeed that, with

obvious notation,

Mg _ gy~ NEe—e
96" (® e)_1+|)\|(1+82)
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and we want to prove that there is a constant C, independent of ), such that if
Ao -2 <T 1+ M1 +62),

then
L+ A(1+62%)  1+|M\(1+67?) <O
1+ N(1+672)  1+|M\1+62) —
To do so, we shall decompose the phase space R?¢ into regions in terms of the respec-
tive sizes of ©2 and ©’2. In the following we shall write ©2 <« 0’2 if, say ©2 < 1002,
and |6| ~ |©'| will mean that, say {:0% < 62 <1002
Suppose first that ©2 < ©'2. Then of course

1+ M1 +0%) <14 M\1+6?),

so we assume that C > 1. Moreover, using the obvious algebraic inequality
07 <210 — 0|2 + 207,
we deduce that
IA©72 < 2|A||@ — ©'2 + 2A|0% < (20" +2)(1 + |A|(1 + ©2))
which leads immediately to the result as soon as
2C +2<C.
Conversely if ©2 > 0’2, then it is clear that
1+ |A[(1+6%) <1+ A1+ 6?).
Along the same lines as above we get
IN©2 < 2A02%+20 1+ [A(1+62)
< (207 +2)(1+ N1 +62),

which choosing C large enough (independently of \) gives the result. Since the esti-
mate is obvious when |©| ~ |©’|, the slowness property is proved, with a structural
constant independent of A.

Finally let us prove that the metric is tempered, with uniform structural constants.
This is again slightly more technical. We need to find a uniform constant C such that

1+ A1+ 6?) )*1 _( 1+ (1 +6?) ,2)
Sl b S A < 1+ ——————72©0-0 .
(1 Tparer) SOUF U |

Notice that in the case when |©| ~ |©’|, then the estimate is obvious because the
left-hand side is bounded by a uniform constant. Let us now deal with the two other
types of cases, namely |0|? < |©'|2, and |©'|2 < |O|2.

Let us start with the case when the left-hand side has power +1. If |9]2 < |©'|?,
then the left-hand side is uniformly bounded so the result follows with C > 1. Con-
versely if |©’|2 < |©|?, then we notice that if 0 < |A] < 1, then the left-hand side is
bounded by 2+ ©? while the right-hand side is larger than C(1 +cO2(1 +©?)) so the
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estimate is true. On the other hand when |A| > 1 then factorizing the left-hand side
by A and using the fact that |A|™! <1 and (J]A\|71+14+©0?%)71 < (1+0?)"! we get
1+ A1+ ©2?) 1+062

<2 <2(1+46%).
T Narer) S2iyer SHHE)

Again, since in that case |© — ©'|2 > c©?, it comes

1+ |A/(1 +©2)
(1+ 5

which implies easily the result.

Now let us deal with the case when the left-hand side has power -1. The arguments
are similar. Indeed if |©’|? < |©|? then the left-hand side is uniformly bounded so
the result follows. Conversely if |©|?> < |©’|? then when 0 < |A| < 1 we use the fact
that the left-hand side is bounded by 2 + ©2 whereas the right-hand side is larger
than ¢(1 4+ ©'2). When |A| > 1 then as above we write

1+ A1 +07) 1+ 07

<2 <21+ 07
1+A(14+02) —"1+02 — (1+6%),

|© — (-)’|2) > (1+cO%(1+ 6?))

and the result follows again from the fact that since in that case |© — ©'|2 > cO'2,
one has

14 |A(1 2
(IREILIELY

Al
The proposition is proved. O

|© — 6’|2> > (14c07%(1+6?) > (1+c07?).

B.2. A-dependent symbols

In this subsection we shall prove Proposition 1.22 stated page 22, giving an equiv-
alent definition of symbols in terms of the scaling function o.
For any multi-index § satisfying |3| < n, we have

_1a §
I)\I 2 (3&7’)(1) (w,)\,sgn()\)\/—ﬁ, —m)‘

k=181

”a”n;SHd(u) (1 + ,)" + §2 + 772) 2
Besides, there exists a constant C > 0 such that for A € R,

((A@A)ka) (w, A, sgn()\)ﬁ, ﬁ) ‘

+CY L ATEE )

Il

8, (o(a)(w, 1,&m)|

(B.2.1)

IA

|(A02)E (o (a)(w, A, €,m)| < C

-2
2

< Cllallk,sya(w) L+ A+ € +7%) 7.
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The converse inequalities come easily: one has a € Sya(p) if and only if for all
k,n € N, there exists a constant C,, x such that for any 8 € N¢ satisfying |8] < n and

for all (w, \,y,n) belonging to H? x R4+
v—18]
(B.2.2) H(A@A)kagn)(a(a)) gngey S Ok (LH A +€ %)

We then remark that if |A| < 1, the smoothness of o(a) yields that (B.2.1) implies on
the compact {|A| < 1},

—181

w=18]
L+ WD* 8508y @), o < e (L N+ €2 4+ 2)

&m) &P (H?)
Besides, for |A\| > 1, (B.2.2) gives
k5B 2, 2y552 —k
85081 (@@ gy < O (14 N+ 47) 5 14 1)

Conversely, if (1.4.2) holds, then one gets (B.2.2) since the function (1—557 is bounded
for any integer p € {0,...,k}. This ends the proof of the proposition. O

B.3. Symbols of functions of the harmonic oscillator

In this section we aim at proving that an operator R(£2 — A¢) given as a function
of the harmonic oscillator by functional calculus is a pseudodifferential operator, and
at computing its (formal) symbol. We refer to Proposition 1.16 stated page 20 for
a precise statement. Taking the inverse Fourier transform, we have by functional

calculus
1

R(* = Ag) = o /}R e TE A R(r) dr.

We then use Mehler’s formula as in [25], which gives (1.3.14) after an obvious change
of variables.
We therefore have formally

(B.3.1) r(z) = %/}R R(cos’r)_dei(“gT_yT)R(y)dT dy,
X

and let us now prove that the function r is well defined outside = 0, and that the
map (£,n) — r(£2 + n?) satisfies the symbol estimates of the class S(m*, g).

If z € R* is fixed, then (B.3.1) defines r(z) as an oscillatory integral. Indeed the
change of variables u = tgr performed on each interval of the form ] -5 tkmkr+ 3 [
for k € Z turns the integral into a series of oscillatory integrals: we have r(z) =

S kez Tk(x) with

re(z) = %(—l)kd /Reizuﬁ (km + Arctgu) (1 + qﬂ)%—ldu

- %(—l)kd / eiwu—iyArctgu—z’ykﬂR (y) (1 + u2)%—1du dy.
RxR
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We remark that these integrals have a non stationary phase for |k| > 1. This fact will
be used below. We also observe that for Ny € N, by integrations by parts,

1 . . . d
kNOT'k(Il‘) — —é;kNo(—l)kd /R . eza:u—zyArctgu—zyka (y) (1 4 u2)§-1du dy
X
1 (2 o izu—iykm 4_ —iyArctgu
o (7'('.’\)70 (‘1)kd/RXRe vkT (1 +u?)? 18{,% (R(y)e yArctg ) dudy

_ 1 (=)
T 2n 7o
where fn, (y, u) = e¥Arct8ugNo (R(y)e~"wArctev), The fact that the integrals 7y (z) are

well defined away from zero and that the series in k converges then comes from the
following lemma.

(_1)kd/ ei:vu—iyk‘)r—iyArctgu(l + UZ)%—lfNO (y, u)du dy
R xR

Lemma B.1. — Let f and g be two smooth functions on R such that
vneN, 3C >0, VueR, [0"g(u)| < C1 +u?) T
VneN, 3C >0, WeR, |0"f(y)| <C(1L+y?) T,

for some u,v € R. Then for any a > 0, there exists a constant Cy > 0 such that the
function
def

1(f,9)(z) /R i AT ) (u)dy du

satisfies
Viz| > a, |I(f,9)(z)| < Co(1+2?)%.

Before proving this lemma, let us show how to use it. The function fx,(y,u) above
writes as a sum of terms satisfying the assumptions of the Lemma. Therefore, (1 +
|z|)~#kNory () is uniformly bounded in k and = whence the convergence of the series.
To prove the symbol estimate, we notice that two integrations by parts give

zr'(z) = zz/ (cosT) ~%tgTe'™ 8T~ R(y)dydT
R xR
tgr . :
= a:/ (cosr)_dEe”th“””TR'(y)dydT
R xR T

= —i/ (cosr)_dtir-(l + (tgr)®) 1o, (emtg'r) e~ R/ (y)dydr
RxR T

) ) t
= z/ e T HiTteT l—z’y ((COST)_dE(l + (tgr)z)“l)
R xR T

t
+0, ((cosr)_dg(l + (tgr)z)”l)] R'(y)dydr.
This last integral is an oscillatory integral of the same kind as the one defining r(z),

and can also be studied using Lemma B.1. This allows to obtain the symbol bounds,
by iteration of the argument to any order of derivatives.
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Now let us prove Lemma B.1. The idea, as is often the case in this paper, is to
use a stationary phase method. The variable £ may be seen as a parameter in the
problem, and one notices easily that  may be factorized out of the phase after having
the change of variable y = (1 +t). Moreover one notices that the phase is stationary
at the point ¢t = u = 0, when £ = 0. This implies that one should use a dyadic
partition of unity centered at that stationary point. One furthermore notices that
if Ju|? < |t then the u-derivative of the phase is bounded from below, so it is enough
to use a 9, vector field in the integrations by parts. As it produces naturally negative
powers of ¢, one can deduce the convergence of the dyadic series. In the case |t| < |u|?
however that vector field cannot work since the u-derivative of the phase may vanish.
One must then use the whole vector field (in both u and ¢ directions), and gaining
negative powers of u turns out to be more difficult.

So let us start by performing the change of variables y = z(1 + t) so that I(f,g)
writes

I(f,0)(z) = z ™ok / 0 (a(1 4 )g(wd,

where

Dy (u,t) def (u — Arctgu) — t (Arctgu + k) .

The phase @, satisfies

u? —t

0;®r = —Arctgu — kr and 9,Pr = —-
t*k g u Xk 1+ u2
When k # 0, ®; is therefore non stationary, whereas when &k = 0, ¢ has a non-
degenerate stationary point in (0, 0). Therefore, we introduce a partition of unity on
the real line:
VZER, 1= Y ((2)

peENU{-1}

with ¢_; compactly supported in a ball and for p € N, (,(2) = ((27P2) where ( is
compactly supported in a ring. We get

I(f,g) =e7 k" N L.(f9)

p,geNU{-1}

with

Lo(f,9)(@) < o /R P0G (0, () (a(1 + )gu)dtd

These integrals are now well-defined because they are integrals of smooth compactly
supported functions. We have to prove the convergence of the series in p and ¢. As
explained above, we shall argue differently whether |u|?> < [t| or not. So let us fix
a parameter ¢ < 1/3, to be chosen appropriately below, and let us separate the
study into two subcases, depending whether 27 > 22¢(1+¢) (which corresponds to the
case |u|? < |t|) or 2P < 22a(1+e),
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Let us suppose p > 2q(1 + €). We observe that in that case one has u? — ¢ # 0
on the support of {,(t)(q(u), so as explained above one can use integrations by parts
with the vector field

def

(B.3.2) 0= (i0,9r) 7" 8,

Of course one has
£ (exp (iz®y)) = z exp (iPx) .
Performing N integrations by parts for N € N, we find

Lafua)@) = @ [ &) (ol + D)o 06w e

We then write

= —f0+ic
where
aef _ 05%, _,u(+t) (1+uh)? | u(l+t)
€T T 0.3 T (1w @2 C(w2-t)?

Let us analyze the properties of £*. If (u,t) belongs to the support of {g(u)(y(t), we
have for p > 2¢(1 +¢)
2P < 2P — 0129 < |t —u?| < C12P(1 + 2%97P) < O, 2P,
We infer that
|0u®k|"! < C27P*27 and |c| < C27PH9.
P

Using ¢ < ey Ve have

1
—p+2q<<—1+-—)p=— p< g—sq

1+e l14¢ 1462
so that there exists some § > 0 such that on the integration domain

(B.3.3) |0u@k| ™t + || < C 279+,

By induction one actually also can prove that

(B.3.4) VmeN, |0mc| < 2 méPt+a),

Now we shall use the Leibniz formula in order to evaluate (£*)V ( flz(1 +

t))g(u)Cp(t)(q(u)). This generates three typical terms:

(0u®k) VAN (¢o(w)g(w)) f(a(L+1))Go(8),
2) L N (wg(w)f(@(l+1))C(¢) and
B) E ST e (8,k) P82 (C(uw)g(w)) F(@(1+1)CH(2).

n+m+p=N
n,m,p<N

Due to the estimates (B.3.3) and (B.3.4), it turns out that the term (3) is an inter-

mediate case between (1) and (2) so we shall only study the two first types of terms
here.

def
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We observe that defining ((u) = sup,<n |¢ (") (u)| and using the symbol estimate
on g, we have

182 (Ca(w)g(w) | < C (1 + ful)” 277V, (u)
so by (B.3.3) and using the symbol estimate on f we obtain that
()] < € 27 N2 NEHD (1 4 juf)” (1 + |2 (1 + 1)) G (£)Cq(w).
Using Peetre’s inequality
1+ e+ )" < C 1+ |z)*(1 + |ot])™,

we therefore conclude that (recalling that z is away from zero)
(B.3.5) zl—N/ |(1)|dtdu < C leﬂm1—N+Iul2—5N(p+q)+qv+pluf+p+q—qN.
R xR

A similar argument allows to deal with the second term. Indeed we have
(B.3.6) 2)] < € 27N ®HD (14 [u])” (1 + (L + )])* Gp(2)¢e(w)

By integration we obtain

xl—N/ [(2)| dudz < C'$|#!$|I—N+Iul2—6N(p+q)+qV+plu|+p+q'
R xR

Therefore, choosing N > §~!Max(v + 1, |u|+ 1), we obtain the convergence in p and q
of the series, uniformly with respect to k& and z in the set {|z| > a}, with the expected
bound |z|H.

Let us now suppose p < 2¢(1 + ). The objective is now to gain negative powers of
24. The difficulty then comes from the fact that 0, P, may vanish. We observe that
for this range of indexes p and g, we have ¢ > 0 so that the integral is supported far
from u = 0. For this reason, if x is a smooth cut-off function, compactly supported in
the unit ball and identically equal to one near zero, then the function

tw - x ()

uK/

is a smooth function for any x € R. The value of x will be chosen later.
We now cut I, ; into two parts, writing I, , = I} . + I2 | with

I, (z) defy /R " el=®r (1 - X (t ;:‘2 )) Flz(1+1))g(w)¢p ()¢, (u)dt du.

Let us study first I} .. We notice that on the domain of integration, one has |t — u?| >
C|ul®, so on the support of {, we have [t — u?| > C 2*4. It follows that

‘t—u2

o 202('%—2%1,
u

which leads to
(B.3.7) |0, @57 < C 27 (v,
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Therefore the u-derivative of the phase does not vanish in this case, so we may use
again the vector field £ defined in (B.3.2). The coefficients of that vector field are now
of order 2~(*~2)¢ and one has

q P
(B.3.8) le| = |-2 (U(21 +ti;)2 < 2 (;2-;2 ) < ¢ 9~ 2mat3a(lte),
u —
We therefore choose  such that 2k > 3(1 + €). By induction, one sees that
(B.3.9) vmeN, [0™c| < C 2~ ™ma—2ka+3q(1+e)

We can write

N
I;’q(:v) =g! /

R xR

2

g ()" [(1-x (12) swia(w)] e +0)G (0t

Compared to the case studied above, the terms generated by (E*)N are of the form

@) = @anol ((1-x(58)) (o) £+ 0)60,

g
e,

@) 2 e (1-x(25)) (@@ + 0)6@

t — u?
/u/K

@ Y o ((1-x (X)) Gmew) 10+ 060,

n+m+p=N
n,m,p<N

As in the previous case and due to (B.3.8) and (B.3.9), it is enough to control the
two first terms.

Thanks to (B.3.8), the term (2’) is bounded exactly as before, assuming that 2« >
3(1+¢). Now let us study (1’). As above we apply the Leibniz formula, which compared
to the previous case generates derivatives of y. However they produce negative powers
of 29, as one differentiation gives the term

,<t—u2)[ 2 n(t—uz)]
X ur us—1l oy ur

which may easily be bounded by

,(t—uz)[ 2 n(t—u2>]
X K Kk—1 o K
u u U U

assuming moreover that x < 2, which is possible since e < 1/3. Similarly m derivatives
produce 2-9%*~1™ and it is easy to conclude that (1’) may be dealt with as above,
hence can also be summed over ¢ and p (recalling that p < 2¢(1 + ), so that decay
in 29 is enough to conclude to both summations).

Now let us study IIf’q, which is more challenging as the u-derivative of the phase
can now vanish. We therefore need to use the full vector field

of 1 _
L% SIVe Ve, -V

< 02791 D 979y < g2 a(v—D)

which satisfies
Ly, (exp (iz®k)) = z exp (ixPy) .
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Let us check that this vector field is well defined: on the one hand if £ = 0, then the
assumption ¢ > 2(1 9 implies ¢ > 0, thus u is supported on a ring and |Arctgu| > ¢
on the support of {;(u). On the other hand one notices that |[V®;|? > (Arctgu+kr)? >
c% for k > 1. It follows that there is a universal constant such that for any k¥ > 0 and
on the domain of integration, the following bound holds:

[Vei|~! < C.
Moreover we have
Ly =Ly +ck
with
1
Ck d—i-f ——;V . (|VtI>k|_2V<I)k)
1 812L<I)k 0, Pk 2 2 at‘ik
- [ T 2w s (aP0uP + O DOD) 207, i q;k]
1[ 02® 2
] [lvliinﬁ2 V[ ((Gu®r) "0 +2at2"<pk8‘q)ka"¢k)] '
In view of
u(l +t) 1
2o, =2——""L d 820, — —
u*xk (1 n u2)2 an 3ut<I)k 1T o2
we have
(B.3.10) lek| < C |V<I>k|‘2 (217—3«1 + 2—2q) < C9—(1-20)q
An easy induction left to the reader actually shows that
(B.3.11) Va € N?, 198, ekl < ¢ 2-(el+1)(1-2e)q

We then write for N € N

=o' [e @ [f (L2 160+ g6 060 dtdu

Now we need to understand the action of the operator (L})™. The main difficulty
will come from the t-derivative, which does not produce directly negative powers of u.
However we notice that on the domain of integration, one has

t=u?+ Zu™ with|Z| <1,
so since k has been chosen smaller than 2, there is a constant ¢ > 0 such that
It > [uf® = |Zu"| 2 clul®.
This means that the domain of summation is actually essentially restricted to
(B.3.12) 2 <p<2l+e)

so it suffices to gain negative powers of ¢ to conclude to convergence.
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The constant term c; has already been computed and estimated in (B.3.10)-
(B.3.11). Moreover following similar computations to above, for any given function F’
one may write that

(LOYF| < ClslupN!@&,t)FHlCiVFl
al=

(B.3.13) + C > 108 yokl lekl™ 100, o F -

la+B|+m=N
le],1Bl,m<N

The first step of the analysis therefore consists in estimating, for any |3| < N, the

quantity
> orey ( (

mem'=|g]

) G OF (1 +1)).

=) 9(u)q (w).

Let us start by studying the action of the wu-differentiations on x (t;,‘j
On the one hand one has, using the symbol estimate on g,

187 (Co(w)g(w))] < C29¢ ™™ (u)
where E(J(u) def sup,,<n |0;'¢q(u)|- This can in turn be written
(B.3.14) 107 (G (w)g(w))| < C29~™((27 %)

where ( is a nonnegative, smooth compactly supported function such that ¢ = 1 on
the support of (.
On the other hand, as we have seen above one has the following identity:

o (x(55)) - (55) o= - 5 (52)]

so since the support of x’ does not touch zero, one has on the support of ¢, the
following estimate:

o (x(45))

as soon as k < 2. Actually by induction one also has

.2
(o5 s

The Leibniz formula yields for any m < N
, t—u?
o ()
uKa

w65 )wom) s 3 (1)

whence by (B.3.14) and (B.3.15) the estimate

o (x (=) Gyt

< 0(2—q(~—1) +279 < CQ—q(K—l),

(B.3.15) Vm €N,

7 (Co(wg(w)|

(B.3.16) < 02av=(r=)m)F(g=ay,),
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Now let us consider t-derivatives. The Leibniz formula again implies that for any m’ <
N

(B.3.17) 8" (x (

t —u? t—u?
uﬂ K

)66 +m) =x (L) o (G060 +0)
> (’Z,')a?’ ( (=) o (e + ).

o<n’'<m/’

For the second term in the right-hand side of (B.3.17), one uses the fact that on the
support of (4, one has the estimate
2
uK/

o t—u2)) 1
o (X< ur ’ |u|n'=

(B.3.18) < C27R,

In order to also control the action of multiple differentiations in the ¢ and u directions
2
of 8, (X (t_“ )), it is useful to notice that

uk

t—u? 2, t—u? k_(t—u?
au X K =X K +-X K
U u Uu u u

~ t —u?
where X is a smooth compactly supported function. So t-derivatives of 0, (X ( — ))
u

are controled exactly like 0; (X (t;fZ ))
Estimate (B.3.18) gives, along with the symbol estimate satisfied by f, for any n’ <

m/,

o (x(12)) o (010 + )

where again ( is a nonnegative, smooth compactly supported function such that ¢ = 1
on the support of (.
Peetre’s inequality allows finally to write that for any m’ < N and any 0 < n’ < m/,

o (x (25)) o= (s +1)

hence for any m’ < N, we get

m' / —u? m —n'
Socw < ( y )a? (x(52)) e (@(t)f(x(lﬂ)))i
< €279 PO =) (L | (1 + |at]) #IC(27Pt)
(B.3.19) < C2-astPlrl(1 4 |z|)HHIHIC(27Pt).
Finally let us deal with the first term on the right-hand side of (B.3.17). We write,

using Peetre’s inequality again, that

X (t—;ﬁ) o (G0 f(=(1 + t)))l < C2Pm D (L [afy g2,

< 027 R P =) (1 4 |z(1 + t)|)¥ C(27Pt),

< C2—qn2—p(m'—n')(1 + |x|)u(1 + |xt|)|”'f(2"’t),

(B.3.20)
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and plugging (B.3.19) and (B.3.20) into (B.3.17) therefore gives

or (x(22) ¢ osaa+v))

Putting the above estimate together with (B.3.16) allows to obtain that

ooy (x (58 ettt + 1)

mem/=|B|

< CC(27P8)C(27 %) Z 24(v=(x—1)m) (g=gr+plul 4 2—p(m'—lu!))(1 + |z|)HIH]
m+m’=|8|

< CC(27Pt) (270w tPlul fo=p(m =Dy (1 4| g|)HtInl,

hence, bounding p by 2¢(1 + €), we get
(L4 [2) 5 Sy 800 (x (522 Cw)g ()G () £ (2(1 + 1))
(B.3.21)< CZ(Q‘Pt)Z(Q—qu) Em+m’=|ﬁ] 2q(l/+2|#|(1+e)“(l€—1)m)(2—qn + 2—pmf).

Finally let us go back to (B.3.13). Denoting def 2|p|(1 + e) and choosing

P (o) 1+ 0ot 116w,

one has the following estimate:
(1+|x|)-ﬂ—|ul|(L;;)NF| < CZ(Q—pt)Z(Z—qu)Qq(u+ﬁ)

x Z Z 2~ (lal+1)(1-2e)a—n(1-2e)a—a(k—1)m 9—ax 4 9=p(I6]-m))

|a|+|8|+n=N m<|B|
|a,|B],n< N

+ 02~ N(-2)a 4 CF(27P)F(27 %) 290+ ) > gmalsmm(gman g gy
m+m/'=N
using the above estimate along with (B.3.11) and (B.3.21).
The conclusion comes from (B.3.12). This ends the proof of the proposition. [

B.4. The symbol of Littlewood-Paley operators on the Heisenberg group

In this section we shall prove Proposition 4.18 stated in Chapter 4.1, giving the
symbol of the Littlewood-Paley truncation operators. The proof relies on the argu-
ments of the previous section, proving Proposition 1.16.

Recall that as defined in Definition 4.3,

T(Dpf)N) = F(HYNR* (27 Dx) = T(HNIAR* (274N (- Ag + 7))

If x is a smooth cut-off function compactly supported on R and such that x(\) =1
for || <4 and x(\) = 0 for |A| > 5, then

T(Apf)(N) = F(H)NIXR* (274N (= A¢ + €)X (272 1) .

It will be important in the following to notice that for fixed p, we are only concerned
with bounded frequencies A.
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We now apply Proposition 1.16 and write

R* (274N |(— A + £%)) = 0p® (®,(\, €, m))
with

1
B41) (A& = oo /R R(cosr) e (€ +n")te7=rm) R (=242 | \ |1\ dr dr.
X

For A # 0, a change of variable shows that ®,(\,&,m) = ¢(272P|)|,272P|\|(£2 + n?))
as stated in Proposition 4.18.

Let us prove now that ®,, € Sy« (0). Actually due to the comment above, it is enough
to prove that the function (X, &,7n) — ®,(X,&,1)x(272P)) is a symbol in Sy« (0). It is
moreover enough to prove it for p = 0.

We first observe that by Proposition 1.16, ®q (/\ sgn(/\)\/IT \/IT> (A, €2 +

n?) is well defined for A # 0 and is a symbol in S(1, g) for any \. Besides, Remark 4.19
gives that ®( has the required regularity close to A = 0, and as noted above one can
also restrict our attention to a compact set in A. All those observations imply that to
prove that the function ®o(),&,n) belongs to the symbol class Sy« (0), it is enough
due to Proposition 1.20 to prove the following estimate: for any compact set K of R*,
(B.4.2)

Vk,n €N, 3Cin >0, Vo R, VAEK, |(1+0%)% (00 076(\,p)| < Crp.

We point out that by Proposition 1.16, we already now that this estimate is true
for X fixed in R*. Moreover since A belongs to a compact set, it is enough to consider
the Ady derivatives and to prove that (A9))¢(A, p) may be bounded independently
of A

In fact we shall prove that A\9x¢p()\, p) has the same integral form as ¢, which
by a direct induction will allow to conclude the proof of the proposition. So let us
compute Adx¢(A, p). We have

1 i )
AOrD(A, p) = —— [ (cosT)~dex(pteT—rT) (—l(ptgr —rr) — 1) R*(4r)dr dr,

20w A

so integrating by parts we get
t
AOrd (N, p) /(cos'r dex (ptgT—rT) [BT ((p—ii - r)R*(4r)) + R*(4r)] drdr,
which gives finally
ArG(A, p) = — / (cosT)~ e (pteT—17) [4"'%7—"” (R*)’(4r)] dr dr.
2Am T

One then notices that

pet P18 = 2(1 4 (1g7)%) 10, (e30%7),
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which allows to transform the integral into

Ao\, p) = /\i/(COST)_de%(pth_rT)(R*)I(47‘) drdr
N — /(cos )_ (1 -:g(:gq—)Z) —irraT (efptgr) (R*)'(47‘) dr dr.

The first integral on the right-hand side is exactly of the same form as ¢, so to conclude
we need to prove that the second integral can also be written in a similar way. Let
us perform an integration by parts in the 7 variable. This produces the following
identity:

—d tgT —irT iptgr
/(COST) ;(—:H-(tTP)e K 87- (e*” & )dT’dT

_ —irr+iptgr [ —d tgT *\/
= /e xPte (1,7' -0, ((COST) ———~T(1 n (tg-r)2))) (R*)'(4r) dr dr
which again is of a similar form that can be dealt with as in the proof of Proposi-
tion 1.16.
The proof of Proposition 4.18 is complete. O
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