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PHASE-SPACE ANALYSIS AND PSEUDODIFFERENTIAL 
CALCULUS ON THE HEISENBERG GROUP 

Hajer Bahouri, Clotilde Fermanian-Kammerer & Isabelle Gallagher 

Abstract. — A class of pseudodifferential operators on the Heisenberg group is defined. 
As it should be, this class is an algebra containing the class of differential operators. 
Furthermore, those pseudodifferential operators act continuously on Sobolev spaces 
and the loss of derivatives may be controled by the order of the operator. Although 
a large number of works have been devoted in the past to the construction and the 
study of algebras of variable-coefficient operators, including some very interesting 
works on the Heisenberg group, our approach is different, and in particular puts into 
light microlocal directions and completes, with the Littlewood-Paley theory initiated 
in 2000 by Bahouri, Gérard and Xu, a microlocal analysis of the Heisenberg group. 

Résumé (Analyse dans l'espace des phases, et calcul pseudodifférentiel sur le groupe de 
Heisenberg). — Nous définissons une classe d'opérateurs pseudo-différentiels sur le 
groupe de Heisenberg. Comme il se doit, cette classe constitue une algèbre contenant 
les opérateurs différentiels. De plus, ces opérateurs pseudo-différentiels sont continus 
sur les espaces de Sobolev et l'on peut contrôler la perte de dérivée par leur ordre. 
Si un grand nombre de travaux ont été déjà consacrés à la construction et à l'étude 
d'algèbres d'opérateurs à coefficients variables, y compris des travaux très intéres­
sants sur le groupe de Heisenberg, notre approche est différente et en particulier elle 
conduit à la notion de direction microlocale, et complète l'élaboration d'une analyse 
microlocale sur le groupe de Heisenberg commencée par Bahouri, Gérard et Xu en 
2000 par le développement d'une théorie de Littlewood-Paley. 
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CHAPTER 1 

INTRODUCTION AND MAIN RESULTS 

1.1. Introduction 

1.1.1. The Heisenberg group. — The Heisenberg group is obtained by construct­
ing the group of unitary operators on L2(Rn) generated by the n-dimensional group 
of translations and the n-dimensional group of multiplications (see for instance the 
book by M. Taylor [53]). It is an unimodular, nilpotent Lie group whose Haar measure 
coincides with the Lebesgue measure, and its remarkable feature is that its represen­
tation theory is rich as well as simple in structure. It is actually the first locally 
compact group whose infinite-dimensional, irreducible representations were classified 
(see [22]). It can be identified with a subgroup of the group of (n + 2) x (n + 2) real 
matrices with l's on the diagonal and O's below the diagonal. 

It has a dual nature, in the sense that it may be realized as the boundary of the 
unit ball in several complex variables (thus extending to several complex variables the 
role played by the upper half plane and the Hilbert transform on its boundary) as 
well as being closely tied to quantum theory (via the Heisenberg commutators). We 
refer to the book by E. Stein [52], Chapter XII, for a comprehensive presentation of 
that duality. 

Harmonic analysis on the Heisenberg group is a subject of constant interest, due on 
the one hand to its rich structure (though simple compared to other noncommutative 
Lie groups), and on the other hand to its importance in various areas of mathematics, 
from Partial Differential Equations (see among others [7], [12], [16] [29], [30], [44], 
[45], [59], [60]) to Geometry (see [2], [18], [31], [47]) or Number Theory (see for 
instance [42], [55]). Many research articles and monographs have been devoted to 
harmonic analysis on the Heisenberg group, and we shall give plenty of references as 
we go along. 

1.1.2. Microlocal analysis on Rn. — Microlocal analysis in the euclidian space 
appeared in the early seventies ([50]-[51]), and has at its foundation the theory 
of pseudodifferential operators. The main idea of microlocal analysis is to study 
a function simultaneously in the space variables of the physical space and in the 
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2 CHAPTER 1. INTRODUCTION AND MAIN RESULTS 

Fourier variables. Indeed, some phenomenon need both analysis to be correctly un­
derstood. As an example, let us consider the obstuctions to the convergence to zero 
in L2(Rd) of two sequences, one of the form un = hnd^2(j) ( ^7^ ) and the other of the 

form vn = exp (i<l>(x)<l>(x) where hn —• 0 and </> is in the Schwartz class for exam­
ple. Of course, the point XQ is a point of concentration in the space variables for the 
sequence un and as such, a point of obstruction to strong convergence to zero of the 
sequence. Similarly the oscillations in the direction £0 correspond to concentration in 
Fourier variables for the sequence vn, and they are also an obstruction to the strong 
convergence of the sequence. 

With this point of view, it appears crucial to be able to use localization operators 
in space variables and in frequencies: the latter are Fourier multipliers. The theory of 
pseudodifferential operators provides a framework in which both points of view are 
unified: multiplication operators and Fourier multipliers are indeed pseudodifferential 
operators. More precisely, a pseudodifferential operator is defined by its symbol which 
is a function on the phase space: the symbol of the operator of multiplication by (/>(x) 
is the function»-> (/»-> (/>(x) and the symbol of the Fourier multiplier x(D) is the 
function1 • x1 • x(0-

With pseudodifferential operators comes the concept of properties which hold mi-
crolocally. A function / satisfies a property (P) locally if for all cut-off function %5 the 
function xf satisfies (P); similarly, replacing the functions x by a pseudodifferential 
operator with symbol supported in a given subset ft of the phase-space, one gets a 
property satisfied microlocally in ft. This notion allows a closer perception of the sin­
gularities of a function: in the 70's was developed the notion of wave fronts, analytic 
wave front, "6°° wave front, etc. The idea is to associate with a given function / a 
region of the phase space where, microlocally, / is analytic or i?00 or whatever else: 
this region is by definition the complement of the wave front. 

One should notice that the phase space corresponds to the space of positions-
impulsions of Quantum Mechanics, and thus enjoys nice geometric properties. It can 
be understood as the cotangent space to M.d (or to a submanifold if one works on 
a manifold) and is a symplectic space once endowed with the adapted symplectic 
form. This geometric aspect has been used successfully in numerous works and is one 
of the satisfying aspects of microlocal analysis (see for example the development of 
microlocal defect measures, semi-classical measures and Wigner measures as in [34] 
and [35] for example). 

Microlocal analysis allowed for a very general study and classification of linear 
Partial Differential Equations with variable coefficients, using for example Littlewood-
Paley operators which select a range of frequencies; such operators are pseudodiffer­
ential operators. In the case of nonlinear Partial Differential Equations, the situation 
is of course much more complicated, but paradifferential calculus ([13]) turned out 
to be a very powerful tool, for instance to analyze the propagation of singularities 
of solutions to such equations, or to study the associate Cauchy problem (see for 
instance [3], in the case of quasilinear wave equations). 
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1.1. INTRODUCTION 3 

Pseudodifferential operators on the euclidian space form an algebra, which is a 
very important fact. This algebra contains Fourier multipliers such as differentiation 
operators, microlocalisation operators, Littlewood-Paley operators, paradifferential 
operators. 

1.1.3. Microlocal analysis on the Heisenberg group. — The development of 
microlocal tools adapted to the geometric situation at hand is an important issue: we 
refer for instance to the work of S. Klainerman and I. Rodnianski [40] in the case of 
the Einstein equation, where the construction of an adapted Littlewood-Paley theory 
is a crucial tool to reach optimal regularity indexes for the initial data. Microlocal 
theory on Rn easily passes to submanifolds. Other constructions have been performed 
on the torus, or more general compact Lie groups (see for instance [49]). 

A number of articles can be found in the literature, which develop a pseudodif­
ferential calculus on the Heisenberg group. For example, in [52], [53], this question 
is investigated through the angle of the Weyl correspondence (see also the previous 
work [37]): as recalled above, that correspondence is one of the rich features of the 
Heisenberg group, and is thoroughly developed in those references. The important 
work [33] consists in constructing an analytic calculus enabling one to obtain para-
met rices for a class of operators which are analytic hypoelliptic; we also refer to [43] 
and [10] as well as [17] where a parametrix is constructed for sum-of-squares type 
operators. One also must mention the series of papers by P. Greiner and his coauthors 
(see for instance [9], [32] and [36] and and the references therein) in which in partic­
ular symbols of left-invariant vector fields are constructed, from the point of view of 
Laguerre calculus as well as using the Hermite basis and the recent works [56]-[57], 
where a symbolic calculus on the Heisenberg group is developped, related to contact 
manifolds. Finally, we refer to the work [21] where is constructed a pseudodifferential 
calculus based on Hormander calculus, using exclusively the convolution rather than 
the Fourier transform. 

Our approach here is not quite of the same nature as in the works refered to above, 
as we aim at defining an algebra of operators on functions defined on the Heisenberg 
group, which contains differential operators and Fourier multipliers, and which has 
a structure close to that of pseudodifferential operators in the Euclidian space. The 
difficulty in this approach is that there is no simple notion of symbols as functions 
on the Heisenberg group Hd, since the Fourier transform is a family of operators on 
Hilbert spaces depending on a real-valued parameter A. Those operators are built using 
the so-called Bargmann representation, or the Schrodinger representation (obtained 
from the previous one by intertwining operators). One can easily check that what may 
appear as the symbol associated with a left-invariant vector field is itself a family of 
operators. This family reads in the Schrodinger representation of Md as a family 
of differential operators belonging to a class of operators of order 1 for the Weyl-
Hormander calculus (see [38]) of the harmonic oscillator. That basic observation is 
the heart of the matter achieved in this paper. Let us point out that in fact symbols 
on the Heisenberg group cannot depend only on the harmonic oscillator, and this has 
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4 CHAPTER 1. INTRODUCTION AND MAIN RESULTS 

to do with the dependence on the parameter A. This induces a number of technical 
problems that are dealt with by introducing also a specific calculus in the A direction. 

A symbol on the Heisenberg group is thus a function on M.d valued in the space of 
families of symbols of the Weyl-Hormander class associated to the harmonic oscillator, 
indexed by the parameter A. Then, to this symbol, one associates a pseudodifferential 
operator as is usually done by use of the inverse Fourier transform as well as the 
family of Weyl-quantized operators associated with the symbol. 

Once those pseudodifferential operators have been defined, we first prove that they 
are operators on the Schwartz class, which results from classical Fourier analysis on 
the Heisenberg group. We then prove that the adjoint of a pseudodifferential operator 
and the composition of two pseudodifferential operators are also pseudodifferential 
operators. Our arguments here are deeply inspired by the analysis of the classical case 
as developped for instance in the book of S. Alinhac and P. Gerard [1]. We analyze 
first the link between the kernel of a pseudodifferential operator and its symbol, using 
the Fourier transform and its inverse. Then, it is possible to compute the function 
which could be the symbol of the adjoint of a pseudodifferential operator or of the 
composition of two pseudodifferential operators and to prove that it actually is a 
symbol. This comes from the careful analysis of oscillatory integrals. We also give 
asymptotic formula for the symbol of the adjoint or of the composition. These formulas 
result from a Taylor formula in the spirit of what is done in the Euclidian space but 
adapted to the case of the Heisenberg group; in particular, we crucially use functional 
calculus. The specific feature of these asymptotic formula is that there is no gain on 
the Heisenberg group: the commutator of two horizontal vector fields is a derivation. 

We also study the action of pseudodifferential operators on Sobolev spaces. We 
prove in particular that zero order operators are bounded on L2(Hd) and more gen­
erally a pseudodifferential operator is continuous from one Sobolev space to another, 
the link between the regularity exponents of the Sobolev spaces being controled by 
the order of the symbol. The arguments of this proof are inspired by the Euclidian 
proof of R. Coifman and Y. Meyer [20] whose approach consists mainly in decom­
posing the symbol of the pseudodifferential operator on M71 (which is a function on 
the phase space T* Rn) into a convergent series of reduced symbols for which the 
continuity is a consequence of paradifferential calculus of J.-M. Bony [13]. The main 
interest of this approach is that it requires little regularity on the symbol and that it 
can be carried out when the pseudodifferential calculus has no gain, which is the case 
in our situation. Roughly speaking, the proof of R. Coifman and Y. Meyer is done 
in three steps. In the first step, a symbol is decomposed using a dyadic partition of 
unity. This reduces the problem to the study of symbols compactly supported in the 
frequency variable. Next, using a Fourier series expansion, the symbol is expressed 
as a sum of reduced symbols which are much easier to deal with. Finally, taking 
advantage of the Littlewood-Paley decomposition on Rn, the continuity on Sobolev 
spaces of the associate operator is established. To adapt that method to the setting 
of the Heisenberg group Hd, we begin by decomposing the symbol associated with a 
given operator (defined as explained above via the Weyl-Hormander calculus of the 
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1.1. INTRODUCTION 5 

harmonic oscillator), using a suitable dyadic partition of unity. Then, we use Fourier 
series to write the symbol as a convergent series of reduced symbols. But, in contrast 
to the Rn setting, the reduced symbols in that case cannot be treated as a sum of 
Littlewood-Paley operators on the Heisenberg group. To overcome this difficulty, we 
use Mehler's formula to prove that these operators can be related in some sense to the 
reduced symbols obtained in the Rn case. This allows us to finish the proof in more 
or less the same way as in the Rn case, up to the fact that an additionnal microlocal-
ization is needed because the spectral parameter is made of two different variables -
as pointed out above, this is due to the special structure of the Heisenberg group. 

This paper completes, with the Littlewood-Paley theory developed in [7] and [5], 
a microlocal analysis of the Heisenberg group. It calls for developments : a significant 
application would be the generalization of the concept of wave front set to the setting 
of the Heisenberg group, in order to obtain results related to the propagation of 
singularities as in [58] for instance. One can also expect a construction of parametrices, 
as well as the development of a notion of microlocal defect measure (or iJ-measure). 
Such studies are postponed to a future work. 

Generalizations to other locally compact Lie groups should also be considered. The 
generalization of the Littlewood-Paley decomposition is in itself a challenge : although 
it is known (see [39]) that a frequency localization process can be defined in general 
as a convolution product with a function of the Schwartz class, Bernstein inequalities 
seem very difficult to obtain in general (and these inequalities are the crucial property 
that allow to construct a Littlewood-Paley theory). Once that difficulty is overcome, 
the next step should be the understanding of the phase space in more general contexts. 

1.1.4. Structure of the paper. — The structure of the paper is the following. 
The rest of this chapter is devoted to a recollection of the main facts on the Heisenberg 
group which will be useful for us, as well as to the statement of the main results. More 
precisely, in Section 1.2.1, we introduce our notation and give the basic definitions and 
in Section 1.2.2, we recall the definition of the Fourier transform, using irreducible 
representations. The purpose of the next section of this chapter is to provide the 
setting for symbols and operators on the Heisenberg group, and it also contains the 
statement of the main results; for this some elements of Weyl-Hormander calculus 
are required, and the necessary definitions are recalled. The main results stated in 
this chapter (in Section 1.4) concern the continuity of pseudodifferential operators on 
Sobolev spaces, along with the fact that those classes of operators form an algebra. 

The second chapter is devoted to the analysis of examples and to the proof of 
some fundamental properties of pseudodifferential operators, such as their action on 
the Schwartz class, the study of their kernel, their composition with differentiation 
operators. 

In the third chapter, we prove that the classes of pseudodifferential operators de­
fined in the previous chapter are stable by adjunction and composition and prove 
asymptotic expansion of their symbol. 
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6 CHAPTER 1. INTRODUCTION AND MAIN RESULTS 

In the fourth chapter we give an outline of the basic elements of Littlewood-Paley 
theory on the Heisenberg group developed in [7] and [5] recalling in that framework the 
properties of Besov spaces that we shall need later on. Next, we compare Littlewood-
Paley operators with pseudodifferential operators. This is of crucial importance in 
the next chapter. More precisely, we prove that in some sense, a pseudodifferential 
operator associated to a truncated symbol, in the Weyl-Hormander calculus of the 
harmonic oscillator, is close to a Littlewood-Paley operator. 

In the fifth chapter, we prove the continuity on Sobolev spaces, by a (non trivial) 
adaptation of the technique of R. Coifman and Y. Meyer [20] to the case of the 
Heisenberg group; in particular an additional microlocalization is required, compared 
to the classical case. 

Finally this paper comprises two appendixes. Appendix A is devoted to the proof of 
some technical lemmas and formulas concerning the Heisenberg group that are used in 
the paper. In Appendix B we prove a number of important results used in the proofs 
of the main theorems of this paper, but for which the arguments are too lengthy or 
too technical to appear in the main text; they are mainly related to Weyl-Hormander 
calculus. 

Acknowledgements. — This project originates in a discussion with G. Lebeau, 
and we are happy to acknowledge his influence in this study. We also thank J.-Y. 
Chemin , P. Gérard and N. Lerner for numerous fruitful discussions. H. Bahouri 
gratefully acknowledges the hospitality of the Fondation Sciences Mathématiques de 
Paris which supported a stay in the Institut de Mathématiques de Jussieu, during 
which part of this project was accomplished. Finally we extend our thanks to the 
anonymous referee for a careful reading of the manuscript and fruitful remarks. 

1.2. Basic facts on the Heisenberg group Md 

1.2.1. The Heisenberg group. — Before stating the principal results of this pa­
per, let us collect a few well-known definitions and results on the Heisenberg group Md. 
We recall that it is defined as the space R2d+1 whose elements w G R2d+1 can be writ­
ten w — (x, y, s) with (x, y) G Rd x Rd, endowed with the following product law: 

(1.2.1) w - w 1 • x ix'y's'] (x + x'.y + y',s + s' 2x-y' 2yx') 

where for x,x' G Rd, x • x' denotes the Euclidean scalar product of the vectors x 
and x'. Equipped with the standard differential structure of the manifold R2d+1, the 
set Md is a non commutative Lie group with identity (0,0). Note also that 

V w = x, y, s Ud w-1 (~x,-y,-s) 
The Lie algebra of left invariant vector fields (see Section A.l of the Appendix) is 

spanned by the vector fields 

qs def dXj 2yjds Yj def qs 2xjds with j G (1 dl and 5 def qs 1 
4 

1 • x 
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1.2. BASIC FACTS ON THE HEISENBERG GROUP Md 7 

for j G { 1 , . . . ,d}. In the following, we will denote by % the family of vector fields 
generated by Xj and by Xj+d = Yj for j G { 1 , . . . , d}. Then for any multi-index a G 
{ ! , . . . ,2d}fc, we write 

(I.2.2; dff def -Xq̂  . . . Xafc . 

Using the complex coordinate system (z, 5) obtained by setting Zj = Xj+iyj, we note 
that 

V (z,s)Az',s') 1 • x1 • x [z,s) 'Z',8') (z + z', s + a' + 2Im( 1 • x 

where z • z' = X)j=iX)j=i Furthermore, the Lie algebra of left invariant vector fields 
on the Heisenberg group M.d is generated by the vector fields: 

Zj = dZj+izjds, Zj = dzj-izjds, with ; G { l , . . . , d } and s = ds 
1 
2i [Zj,ZA. 

Denoting by Z the family of vector fields generated by Zj and by Zj+d = Zj for j G 
{ 1 , . . . , d}, we write for any multi-index a G { 1 , . . . , 2d}k 

(1.2.3) Za def Zai ... Zak. 

One can easily check that for all j G { 1 , . . . , d}, 

(1.2.4) Xj — Zj + Zj and Y = i(Z, - Z , ) . 

The space EI is endowed with a smooth left invariant measure, the Haar measure 
def 

which in the coordinate system (x, y, s) is simply the Lebesgue measure dw = dx dy ds 
It satisfies the fundamental property: 
1.2.5) V/ G L1(Md), Vw' G Md, 

sd 
f(w) dw 

sd 
f(wf - w) dw. 

The convolution product of two functions / and g on HI is defined by 

f*9(w] def 
qs 

f(w-v x)g{v)dv 
Jud 

f(v)g(v 1 • w)dv. 

It should be emphasized that the convolution on the Heisenberg group is not commu­
tative. Moreover if P is a left invariant vector field on Md, then one has 

(1.2.6) P(f*9) X)j=iX)j=i 

Indeed, thanks to the classical differentiation theorem, we have 

P(f*g)(w) 
'md 

X)j=iX)j=iX)j=i w))dv. 

Due to (A. 1.23), one can write 

Pigiv'1 - w)) X)j=iX)j=i 

which yields (1.2.6). However in general X)j=iX)j=i (P(f))*9-
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8 CHAPTER 1. INTRODUCTION AND MAIN RESULTS 

Note that the usual Young inequalities are nevertheless valid on the Heisenberg 
group, namely 

V(p,4,r) G [l,oo]3, \\f*9\\Lr(Md) < II/IILX)j=iX)j=ivxv 1 
1 
r 

1 
V 

1 
Q 

In fact, Young inequalities are more generally available on any locally compact topo­
logical group endowed with a left invariant Haar measure \i which satisfies in addition 

MA"1) X)j=i for all borelian sets A. 

Let us also point out that on the Heisenberg group HI , there is a notion of dilation 
defined for a > 0 by 

1.2.7 X)j=ixc def (az, a2s). 

Observe that for any real number a > 0, the dilation Sa satisfies 

X)j=i X)j=ixc X)j=ic X)j=i 

and that the vector helds Zj change the homogeneity in the following way: 
;i.2.8) Zi fo8a aiZif) 6a. 
This fact is crucial in order to obtain Bernstein or Hardy inequalities [4] (see Chap 
ter 4). 
Let us also remark that the Jacobian of the dilation Sa is aN where N d= 2d + 2 is 
called the homogeneous dimension of M.d. 

Let us now recall how Sobolev spaces on the Heisenberg group are associated with 
the system of vector fields % for nonnegative integer indexes. 

Definition 1.1. — Let k be a nonnegative integer. We denote by Hk(M.d) the inho-
mogeneous Sobolev space on the Heisenberg group of order k which is the space of 
functions u in L2(M.d) (for the Haar measure) such that 

%au G L2 for any multi-index a G {!,...,2d] N with \a\ < k. 
Moreover, we state 

(1.2.9) MI#fe(EId) def 

\a\<k 
WXau\\lHud] 

1 
2 

Remark 1.2. — Equivalently, powers of the Laplacian-Kohn operator defined by 

(1.2.10) dsd 
def d 

3 = 1 
(X2 + Y2) : 2 

d 

3 = 1 
{ZjZj + ZjZj) 4 

d 

sdqs 
{ZjZj + ids), 

can be used to define those Sobolev spaces, which take into account the different role 
played by the s-direction. Thus 

X)j=ixv H(id-Aed; k 
I 2 . u\\L2(Md) 

where ~ stands for equivalent norms. 
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Note that homogeneous norms may also be defined, where the summation in (1.2.9) 
is revlaced bv a summation over la I = k, and above (Id — AMd)2 is replaced 

X)j=iX)j=i 

When a is any nonnegative real number one can, as in the case of classical 
Sobolev spaces on Rn, define the space HA(M.D) by complex interpolation (see for 
instance [11]). As in the euclidian case, other equivalent definitions of Sobolev 
s p a c e s X ) j = i c a n be used: the definition using integrals and kernels (see [48] 
and [52]), or the definition using Weyl-Hormander calculus (see [17]). Finally, a 
definition using the Littlewood-Paley theory on the Heisenberg group, in the same 
spirit as in the Euclidian case and due to [7], will be given in Section 4.4.2. 

There is a natural Heisenberg distance to the origin defined by 

X)j=i 
dei X)j=iX)j=i 

where \zr = yd 
'3 = 1-ZjZj. Similarly, we define the Heisenberg distance by 

(1.2.11) d(w, w ) p(w 1 • w') . 

The distance d incorporates left translation invariant properties 

(1.2.12) X)j=iX)j=i d(w • w,w - w') d(w,wf) 

To define Holder spaces on the Heisenberg group, we shall introduce another distance 
on M.D. Denote by P = P(Xi,..., X2d) the set of continuous curves which are piecewise 
integral curves of one of the vectors fields ± X i , . . . , i X ^ . To any such curve 7 : 
[0, T] —> Hd, we associate its length /(7) =f T. It is known (see for instance [27, 28]) 
that, for any couple of points w and w' of Md, there exists a curve of P joining w 
to wf and that the function 

(1.2.13) d(w, w') mm /(7), 7 € P, 7 joining w to w' 

is a distance on the Heisenberg group, which turns out to be equivalent to the one 
introduced in (1.2.11). 

Now, up to the change of the Euclidean distance into d, the definition of Hòlder 
spaces on the Heisenberg group is similar to the definition of Hòlder spaces on Rd. 

Definition 1.3. — Let r = k + a, where k is an integer and a G ]0,1[. The Hòlder 
space CR(M.D) on the Heisenberg group is the space of functions u on M.D such that 

IN X)j=i SUD 
\a\<k 

||%a^||L- sup 
X)j=i 

X)j=iX)j=i <Xau(wn 

d(wì w'Y 
< 00, 

where d denotes the distance on the Heisenberg group defined by (1.2.13). 

Remark 1.4. — Thanks to (1.2.12) and the fact that the distances d and d are equiv­
alent, the spaces CR(M.D) are invariant under left translations. It will be useful to 
point out that Holder spaces on the Heisenberg group can be also defined using the 
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10 CHAPTER 1. INTRODUCTION AND MAIN RESULTS 

Littlewood-Paley theory on the Heisenberg group, in the same way as in the Euclidian 
case (see Section 4-4-^)-

Finally let us define the Schwartz space. 

Definition 1.5. — The Schwartz space ^(Md) is the set of smooth functions u on Md 
such that, for any k G N, we have 

X)j=i ief sup 
|a|<fe, n<k 

Z.S ) tini 

zc (\z\2-is 2nu{z,s) < 00. 

The Schwartz space on the Heisenberg group <^(Wd) coincides with the classi­
cal Schwartz space < f̂(R2d+1). This allows to define the space of tempered distri­
butions yf'(№.d). The weight in (z, s) appearing in the definition above is linked to the 
Heisenberg distance to the origin p defined above. 

1.2.2. Irreducible representations and the Fourier transform. — Let us now 
recall the definition of the Fourier transform. We refer for instance to [23], [45], [52], 
[53] or [54] for more details. The Heisenberg group being non commutative, the 
Fourier transform on M.d is defined using irreducible unitary representations of Md. 
As explained for instance in [53] Chapter 2, all irreducible representations of M.d are 
unitarily equivalent to one of two representations: the Bargmann representation or 
the L2 representation. The representations on L2(Rd) can be deduced from Bargmann 
representations thanks to intertwining operators. The reader can consult J. Faraut 
and K. Harzallah [23] for more details. Both representations will be used here. 

1.2.2.1. The Bargmann representations. — They are described by {ux,$C\), with A G 
R \ { 0 } , where $C\ is the space defined by 

qsqs def [F holomorphic on Cd \\F\yx X)j=i 

with 

(1.2.14) X)j=i dei 2|A| 
7T 

d 

w< 
p-2|A||*r X)j=iX)j=ix 

while ux is the map from HI into the group of unitary operators of 3(\ defined by 

1.2.15) 
X)j=iX)j=i def X)j=i pi\s+2\(£-z-\z\-1/2) for A > 0, 

X)j=ixc def X)j=i >eiAs-2A(£--*-|z|2/2; fnr A < 0 . 

Let us notice that equipped with the norm || • defined in (1.2.14) is a Hilbert 
space. The monomials 

Fa AO 
def X)j=iw 

wx 
X)j=iwx 

constitute an orthonormal basis of $ { \ . 

ASTÉRISQUE 342 
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The Fourier transform of an integrable function of Md is given by the following 
definition. 

Definition 1.6. — For / G ^ ( i ), we define 

X)j=iX)j=i 
def 

md 
f(w)uwdw. 

The function J 7 ( / ) , which takes values in the space of bounded operators on is 
by definition the Fourier transform of f. 

Note that one has 

X)j=iX)j=i X)j=icv ST(ff)(A). 
We recall that an operator A(X) of $ { \ such that 

a£Nd 

X)j=i X)j=iX)j=i x < +00 

is said to be of trace-class. One then sets 

(1.2.16' tr IA(\Y def 

a£Nd 
[A(X)Fn.x X)j=iX)j=i 

We recall that if besides the operator A (A) has a kernel, namely that if there exists a 
function fcA (£,£') such that 

(1.2.17) X)j=iX)j=i A(X)Flt) 
wx 

X)j=ixc X)j=ivx 

then its trace is given by 

(1.2.18) tr 04(A) 
w 

X)j=iX)j=i 

Now if A(X)*A(X) is trace class, then A(X) is said to be a Hilbert-Schmidt operator. 
The quantity 

U(X)\\ X)j=i 
def 

<a£Nd 

X)j=ixcX)j=i 2 

1 
2 

is then a norm on the vector space of Hilbert-Schmidt operators. The following prop­
erty on Hilbert-Schmidt norms, which can be found in [46] (Volume 1 Chapter VI.6) 
will be of frequent use in what follows. Let A and B be two bounded operators on A, 
with A Hilbert-Schmidt. Then 

Í1.2.19) BA \HS(Xx) \\AB\ HS(JCx. 11*11 X)j=i X)j=i X)j=i 

Similarly if A and B are two Hilbert-Schmidt operators, then AB is trace-class and 

(1.2.20) tr(AB) \\A(X) \HS{Mx №X)\ \HS(JCx)' 
These notions are important for stating the Plancherel theorem for the Heisenberg 
group. The proofs of the two following results can be found for instance in [23]. 
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Theorem 1. — Let S denote the Hilbert space of one-parameter families A = 
{A(A)}/\gr\{o} of operators on${\ which are Hilbert-Schmidt for almost every A G R, 
with \\A(\)\\TTQf<v.\ measurable and with norm 

Ml 
dei 2d-l 

X)j=i 
»oo 

/-oo 
\\A(X)\ i9 X)j=i \X\dd> 

l 
2 < OO. 

The Fourier transform can be extended to an isometry from L2(Wd) onto ffi and we 
have the Fiancherei formulas: 

(1.2.21) 11/ 2 
X)j=i xc 

2d-l 
7T ' 

oo 

— oo 
ll^(/)(A)| | 2 

HS(MX) 
\\dd\ and 

(1.2.22) X)j=i L2(HD) 
X)j=i 
X)j=i 

»oo 

'-oo 
tr((^(9)(A))" 7( / ) (A)) |A|ddA. 

Remark 1.7. — If A = {A(X)}xeR\{o} and B = {^(A)}xgr\{o) ûre two families in 
then 

|tr(A(A)B(A)) \X\dd\<\\A\\ \\B\\ 

Moreover, the following inversion theorem holds. 

Theorem 2. — If a function f satisfies 

(1.2.23) 
aeNd 

'OO 

J — oo 
\mf)(\)Fa,\ ^|A|adA<oo 

then we have for almost every w, 

X)j=i 
2d-l 

X)j=i 
»oo 

— oo 
t r < - ^ ( / ) X ) j = i (A)) |A|ddA. 

Remark 1.8. — The above hypothesis (1.2.23) is satisfied in <̂ (Hd) (see for exam­
ple [6]). Therefore, if we consider for WQ G Md, the Dirac distribution in wo, SWo(w), 
defined by 

V / G d (Md) X)j=ivx /(wo), 

we have an expression of öWo as a singular integral 

(1.2.24) X)j=i 
2d-i 

X)j=i 
fOO 

— oo 
tr X)j=i \X\dd\. 

Now let us study the action of the Fourier transform on derivatives. Straightforward 
computations (performed in Lemma A.3 page 101 for the convenience of the reader), 
show that 

X)j=iX)j=i X)j=iX)j=i 
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where X)j=i is the operator on & \ defined by 

X)j=i def 2IA wxc l^a+l^A if A > 0 

def 2IAI X)j=iX)j=i if A < 0 (1.2.25Ì 

and in the same way, 

X)j=iX)j=i X)j=iX)j=i 

where X)j=i is the operator on $£\ defined by 

C \ 
iJ 

Fa,A def 21 Al 'äjFot-ijtX if A > 0 

(1.2.26) def '2IAI Ctj + lFa+i,-,A if A < 0, 

while we have written a ± 13-, = ß where ßk = otk if k ̂  j and ßj = a3-, ± 1. 

Observe that X)j=i X)j=i and that 

(1.2.27) X)j=i 
•2|A|^ if A > 0, 

% if A < 0, and X)j=i d(j if A > 0, 

—2 At,- if A < 0. 

We therefore can write 

X)j=i X)j=i W ) ( A ) o D x where •Da dei 2 
7 

X)j=i X)j=i 

Using (1.2.25) and (1.2.26) we notice that 

(1.2.28) VaeNd Dx Fa>x def 4|A|(2|a| •d)FatX. 

Powers of —A jjd can therefore be defined in the following way: for any real number p, 

(1.2.29) 
X)j=i X)j=iX)j=i W ) ( A X)j=i and 

£?ï(Id X)j=iX)j=i X)j=iX)j=i >(Id + DA)". 

Notice that (1.2.28) shows that the quantity |A|(2|a| + d) may be considered as a 
"frequency" on the Heisenberg group. Finally one sees easily that 

^W)(Asd) iW{f)(\). 

This explains why the partial derivative ds is usually considered as a second-order 
operator, though one notices here that its "strength" is somewhat weaker than that 
of the Laplacian since its action, in Fourier space, corresponds to a multiplication 
by A while the Laplacian produces 4|A|(2|a| + d). 

Finally it will be useful later on to notice that due to formulas (1.2.25), (1.2.26) 
and (1.2.28), the operators D~m/2o(Q$)m and D~m/2o(Q^)m are uniformly bounded 
on ${\ for any integer m. 

Note that one can also prove, in the same fashion as in the Euclidean case, rela­
tions between £7((is — \z\2)f) (A) and £7(/)(A); we refer to Proposition 1.11 below 
for formulas. 
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14 CHAPTER 1. INTRODUCTION AND MAIN RESULTS 

Remark 1.9. — The above computations show that for any function f G 93 (H ), 

Zjf(w 
orf-l 

X)j=i 
'OO 

— OO 
tr X)j=iX)j=iX)j=i \X\dd\, 

X)j=iX)j=i X)j=i 
X)j=i 

r»oc 

— oo 
tr yw^(f)(X)Q; \X\dd\ and 

X)j=i 
2d-i 

X)j=i 
•OO 

— OO 
tr <-i&{f)WDx) |A| X)j=i 

Jn particular, if we consider the derivatives of the Dirac distribution 5WQ (w) defined 
as usual by duality through 

Zj SWQ, / X)j=ixc Zjf(w0) and 

X)j=iX)j=i X)j=ivc -Zjfiwo) 
for all f G < (̂Hd) and for some fixed Wo € Md, we obtain an expression of the 
derivatives of the Dirac distribution as singular integrals 

ZjàWo (w) 
od-] 
nd+l _ 

>oo 

— oo 
tr Wn W J \X\ddX, 

X)j=iX)j=i 
2d-i 

X)j=i 
OO 

'-oo 
tr U _i 

W0 
X)j=i X\ddX, and 

UddWo (w) 
2a-i 
ird+l 

OO 

'-oo 
tr wn w sd \\\dd\. 

It turns out that for radial functions on the Heisenberg group, the Fourier transform 
becomes simplified. Let us first recall the concept of radial functions on the Heisenberg 
group. 

Definition 1.10. — A function f defined on the Heisenberg group Hd is said to be 
radial if it is invariant under the action of the unitary group U(d) of Cd, meaning 
that for any u € U(d), we have 

X)j=i f(u(z),s) V(z ,« ) X)j=i 

A radial function on the Heisenberg group can then be written under the form 

X)j=i 9(\zus). 

Then it can be shown (see for instance [45]) that the Fourier transform of radial 
functions of L2(M.d), satisfies the following formula: 

^( / ) (A)Fa ,A R\a\()<)Fa,\ 

where 

HmW 
def m -h d — 1 

m 

-î 
eiXsf(z,s) (d-l 

'm (2|A||z|2)e •W^dzds, 
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and where def are Laguerre polynomials defined by 

(1.2.30) xc c(p 
xcm. 

xc def 
m 

k=0 
x c m P 

m k 

tk 
k\ 

t > 0, (m,p) G N . 

Note that in that context, Plancherel and inversion formulas can be stated as follows: 

l/IL2(ed) 
2d-i 

def 
m 

m + d — 1 

m 

xc 

/-oo 
|Äm(A)|2|A|^ 

1 
2 

and 

(1.2.31) def 
2d-i 

def 
m 

e-i\s ßm(A)I d-i 
m 

(2|A||z|> -IAIN2 X\dd\. 

The context of radial functions allows to compute the Fourier transform of (is — \z\2)f, 
as stated below (see [7] for a proof). 

Proposition 1.11. — For any radial function f £ ^(Hd), we have for any m > 1, 

9 \i*-\z\')f) 'm.X 
d 

xc 9f(m,X] m 
X 

m(m,X) def m — 1, A i / A > 0 , and 

9((is - \z\2) )f)(m,X) 
d 
dX Srf(m,\) 

m + d 
xc 

:^/(m ,A) £7-/(m + l,A); ifX < 0. 

1.2.2.2. The L2 representation. — In order to define pseudodifferential operators, it 
will be useful to use rather the L2 (or Schrodinger) representations, denoted in the 
following by fa*sf)(0i where £ belongs to RD and / to L2(Rd). As recalled above, 
the representations vxs and uxs are equivalent. The intertwining operator is the 
Hermite-Weber transform K\ : ${\ —• L2(Rd) given by 

fl.2.32: defdefc def \Md/< 

def 
defxc 1 d 

2|A|Ô£, 
e-lAH«l , 

which is unitary and intertwines both representations: we have indeed K\u^ s = 
defxdef and 

(1.2.33) defdef ei\(s-2x-y+2y£ defdef V A G R * 

A short proof of this fact is given in Appendix A.2 for the convenience of the reader (see 
Proposition A.l page 98). We also recall that the inverse of K\ is known as the Segal-
Bargmann transform (see for instance [24]). Let us denote by ha the multidimensional 
Hermite function defined by 

Vo (ai,...1ad) G N , xc (¿1,... Ad) RD, wx wx def hai(ti) defdef 

with 

hn(t) del (2"n! 7TI 
def e-t2/2tf„(t) and defxc def wx wx 

wx 

wn 
def 
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Introducing the scaling operator 

(1.2.34) def L2(Rd) L2(Rd def |A| -d/4 f(\M-1/20, 

and setting h„ x L2(Rd we observe that 

(1.2.35) Va e Nd, L2(Rd ha,\ 

where ha,\ is an eigenfunction of the rescaled harmonic oscillator —A^ + |A||£|2. This 
implies by straightforward computations that 

KXQ x 
i xxc xc xcx and KxQ A 

3 A L2(Rd \X\Ìj if A > 0, 

KxQ A 
3W wx wx wxwx and KxQ K*x xc \X\Vi if A<0 . 

Defining the operator 

(1.2.36) Jx = TxKx, 

and observing that 

Tilxc x •xc If r iAr ) r ; |A| ( -AC + | ^ ) , 

we infer that 

(1.2.37) JxQU*x A №, - Ci) and L2(Rd |A| ( % xc if A > 0 
L2(Rd |A| % + C i and L2(Rd |A|(%xcxc-Ci) if A < 0 , 

which finally implies that 

(1.2.38; JxDxJ*x 4|A|(-A, + |Cr). 
In view of Remark 1.9, the Laplacian — AHd is associated with the operator D\ of ${\ 
in the Bargmann representation; by Equation (1.2.38), it is associated with the 
harmonic oscillator in the L2(M.d) framework. 

These computations indicate that symbolic calculus on ${\ is, via the unitary 
operator J\, equivalent to symbolic calculus on the harmonic oscillator. That theory 
is well understood: it consists in Weyl-Hormander calculus associated with a harmonic 
oscillator metric. This is made precise in the next section. 

Before proceeding further, it is instructive to compute the Fourier transform for 
instance of the function ZjZjf for / G ^(H.d). Indeed, we notice that with the previous 
notations, for A > 0, 

L2(RdL2(Rd -iZi)f)(\) L2(RdL2(RdL2(Rd | A | ( - % i$i)Jx 
L2(Rdxcxv x|A|( xc xc xcxc -i£j)Jx 

W ) ( A ) J t |A|( xc xcx 1)J\. 

This implies that symbols on the Heisenberg group must not only include harmonic 
oscillator type symbols, but also functions such as powers of A. 

ASTÉRISQUE 342 

file:///X/Vi


1.3. WEYL-HORMANDER CALCULUS 17 

1.3. Weyl-Hormander calculus 

Let us recall in this section some results on the Weyl-Hormander calculus of the 
harmonic oscillator which we shall be using. We shall only state the definitions that 
will be needed in the following, and for further details, we refer for instance to [14], 
[15], [17], [19], [38] and [41]. 

1.3.1. Admissible weights and metrics. — Let us denote by u^O,©'] the stan­

dard symplectic form on T* Rd (which we shall identify in the following to R2d) : 

if e = (£, ri) and 6' = (£', r / ) , then u;[0,6'] d= rj • f ' - rj'. £. 
For any point © = (£,77) in M2d, we consider a Riemannian metric #0 (which 

depends measurably on ©) to which we associate the conjugate metric #@ by 

VT G R2d R2d 1/2 sup 
T/GM2d 

HT,r]\ 
R2dR2d 

We also define the gain factor 

(1.3.1) A0 
def inf 

T 

R2d 

gem 

Definition 1.12. — We shall say that the metric g is of Hormander type if it is: 

1. Uncertain: For all 6 G R2d, A0 > 1. 
2. Slowly varying: There is a constant C > 0 such that 

sd C -1 sup 
TeR2d 

9e(T) 

•96>(T) 

±1 
; c. 

3. Temperate: There are constants C > 0 and N £ N such that for all (0 , © ' ) € 
R4D, 

sup 
TeR2d 

9e(T) 
•9e>(T) 

±1 
C(l s 9e 

sd 

In the following any constant depending only on C and N will be called a structural 
constant. 

In the definition above we have used the notation 

9&{T) 

9B'(T) 

±i 
def 9e(T) 

9S'{T) 

90'(T) 

9s{T) 

We also define a weight as a positive function on R2d satisfying the same type of 
conditions as a Hormander metric. 

Definition 1.13. — Let g be a metric in the sense of Definition 1.12. A positive func-

tion m on R is a g-weight if there are structural constants C > 0 and N eN such 
that 

1. 9i 
R2d m(&) 

m(O0 

±1 
c 

2. m(O) 
m(&') 

±1 xc 1 9g xcx 
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It is easy to see that the set of -̂weights has a group structure (for the usual 
product of functions). 

For such metrics and weights, one can then define the class S(m,g) of smooth 
functions a on R2d such that, for any integer n, 

1.3.2) N1 n;5(m,p) 
def 

sup 
7<n,GGK 
9e(Tj)<l 

R2dR2d 

m 
< co. 

where dra denotes the map (da,T). Now, if a is a symbol in 5(ra,#), then its Weyl 
quantization is the operator which associates to u G <̂ f(Rd) the function opw(a)u 
defined by 

(1.3.3) wxw xw (opw(a)u) (C def (27r)-d 
lR2d 

R2dR2d R2dc 
2 V u(Ç')d?dri. 

The main interest of this quantization is that op™ (a)* = op™(a). 
Observe also that if a(£,rj) = S(£), the operator op™ (a) is the operator of multi­

plication by the function a and if a(£,77) = a(rj), the operator op™ (a) is the Fourier 
multiplier a(D). In particular one has op™ (77̂ ) = (\d^)k for any k G N. 

Besides, for all symbols a G S (mi, g) and b G S(rri2,g) where mi and 7712 
are weights, we have the following composition formulas: 

op-(a) dP№(6) opw(a#b) with a#b S(m1m2,g) mm 

[1.3.4) (a#6) -2d 
7T 'R2d x R2d 

-2»u; 'l »' >2 a 1 If: '2 Id '1 xc '2-

The (non commutative) bilinear operator # is often referred to as the Moyal product. 
This leads to an asymptotic formula 

(1.3.5) a#b ah 
1 
2i R2d - 7*iV, 

where ab belongs to S(m\m2,g) and ^ { a , &} belongs to S(A m\m2,g), recalling 
that {a, 6} is the usual Poisson bracket 

(a, b def d 

3 = 1 
[d^ad^b d^adrjjb 

Finally for any integer JV, the remainder RN belongs to S(A 77117712,0). 
Let us mention that the operator op™(a) has a kernel R2d defined by 

(1.3.6) m e , (27r)-d 
wxxw 

R2dR2d R2d 
2 

xwc dr] 

which is linked to its symbol through 

(1.3.7) R2d 
x 

R2d wx wx 
2 ,c 

wx 
2 

R2d 

Let us also point out that a concept of Sobolev space H(m,g) was introduced by 
R. Beals in [8]. We will use the following characterization of those spaces. 

ASTÉRISQUE 342 



1.3. WEYL-HÖRMANDER CALCULUS 19 

Definition 1.14. — Let g and m be respectively a Hormander metric and a g-weight, in 
the sense of Definitions 1.12 and 1.13. We denote by H(m,g) the set of all tempered 
distributions u on R such that, for any a G S(m,g), we have opw(a)u G L2(Rd). In 
particular H(l,g) coincides with L2(Rd). 

Note that the study of Sobolev spaces associated with a Hormander metric g and 
a ^-weight has been developed in [8], [14], [15], [17] and [53] and in particular in [14], 
it was shown that these spaces are "almost independent" of the metric g. The Weyl 
quantization defined by (1.3.3) can be extended to an operator on (^\Rd) which acts 
on the Sobolev spaces H(m, g) in the following way. 

Proposition 1.15. — Let g be a Hormander metric, and let m and m\ be g-weights. 
There exists a constant C, depending only on the structural constants of Defini­
tions 1.12 and 1.13, such that the following holds. Let a be in S(mi,g). Then, there 
exist an integer n and a constant C such that for any u in H(m,g), we have 

\\opw(a)u\\ H(mm1 1 ,g) C|M|n;S(mi,o)|| Mltf(m,0)-

In particular, there exist an integer n and a constant C such that if a G 5(1, #), then 
for any u G L2(Rd) one has 

1.3.8) l|opw(a)u|| L2(Rd) C\\a\\ n;S(li9) n;S(li9) 

1.3.2. The case of the harmonic oscillator. — As pointed out in Section 1.1.2.2, 
it is natural to base the quantization of symbols on the Heisenberg group on the 
calculus related to the harmonic oscillator. In that case one is considering the metric 
defined by 

ri.3.9) n;S(l R2d, wx fdÇ, dr) def de dì]2 

1 e- rj2 

while the weight is 

1.3.10) n;S(l R2d, m def 1 e wx 1 
I o 

It is an exercise to check that g is a Hormander metric in the sense of Definition 1.12, 
and that m is a weight in the sense of Definition 1.13. This will in fact be performed 
in the proof of Proposition 1.20 below in a more general setting. 

We will be interested in the class of symbols belonging to S(m^,g) for some real 
number /x, where we notice that (1.3.2) can simply be written equivalently in the 
following way: 

(1.3.11) \a\\n]S(m»,g) 
def sup 

l£|<n,(£,77)€R2d 
1 e n2) 

\ß\~ß 
1 dß wwcxvwv OO. 

It is useful, in particular in the framework of the Littlewood-Paley transformation 
on the Heisenberg group investigated in Chapter 4, to be able to write the Weyl symbol 
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20 CHAPTER 1. INTRODUCTION AND MAIN RESULTS 

of functions of the harmonic oscillator on L2(Rd). The formula for such symbols is 
derived using Mehler's formula (see [26] for instance) 

(1.3.12) P-t(r-A€: (cht)-dopw e-(r+^)thO 

More precisely, we have the following result, whose proof is postponed to Appendix B 
(see page 110). 

Proposition 1.16. — Consider R a smooth function satisfying symbol estimates: 

(1.3.13) 3/i R, 3C 0. Vn G K 1(1 + 1-1) n-ßßnR\ 
L°°(R) 

sd 

Then R(£2 — A<) is a pseudodifferential operator. Moreover one has formally 

n;S(li9) xc opw(r(e cv 

with for all x ^ 0 

(1.3.14) r(x) 
1 

2tt ExR 
n;S(li9)n;S(li9)xc R(£)dTd£. 

Besides (£,r?) i—• r(£2 + 772) satisfies the symbol estimates of the class 5(raM, #), in 
the sense of (1.3.11). 

Note that r is not well defined at x = 0 in general, which explains why the rela­
tion R(£2 — A ^ ) = op™(r(£2 + rf1)) is only formal. One also has the inverse formula 

(1.3.15) op" r(y2 n2\ 
1 

2tt 
r(VW (y -A)A.rctg7 n;S(li9) n;S(li9) 

This yields that the operator J^op"'(r(j/2 + r]2))J\ is diagonal in the basis (Fa,\)aeNd 
and thus commutes with operators of the form x(D\) f°r aU continuous bounded 
functions v, where Y(D\) is the operator 

(1.3.16) x(Dx)Fa,x W4A 2a •d))Fa,x. 

Remark 1.17. — Let us note that the operator Id — A^ + £2 has for symbol m2, while 

the symbol of 4(—A^ -f £2) *5 ™2(£>rç) where ra2(£,rj) *= 2(£2 + V2)^ • 
Besides, for a G R, Proposition 1.16 shows that there exists a function ma G 

S(m",a ŝ cft that 2M(Id — A^ + £2)^/2 = op™(mM). In particular, for any /i, / / G R, 
mu#mu> n;S(li9) 

Finally if LL > 0, then there exists a function mu G 5(raM, #) such that 2M(—A< + 
£2)/V2 opw(mJ. In particular, for any /x,// G R, ra„#m„/ = mM+„/. 7Vo£e £Aa£ £/&e 
restriction to u>0 is natural and holds also in the euchdean case. 

1.4. Main results: pseudodifferential operators on the Heisenberg group 

In this section, motivated by the examples studied in the previous sections of this 
chapter, we shall give a definition of symbols, and pseudodifferential operators, on the 
Heisenberg group. Then we will state the main results proved in this paper concerning 
those operators. 
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1.4.1. Symbols. — Our approach inspired by the Euclidian strategy of R. Coifman 
and Y . Meyer [20] allows to consider symbols with limited regularity with respect the 
Heisenberg variable. Therefore, in what follows, we shall define a positive, noninteger 
real number p, which will measure the regularity assumed on the symbols (in the 
Heisenberg variable). This number p is fixed from now on and we emphasize that the 
definitions below depend on p. We have chosen not to keep memory of this number 
on the notations for the sake of simplicity. 

Definition 1.18. — A smooth function a defined on l d x M * x R2d is a symbol if there 
is a real number ¡1 such that for all n G N, the following semi norm is finite: 

Nln;Sed(Af 
def 

SUT 
n;S) 
e<ER2d 

sup 
\ß\+k<n 

A sd fl + |A|(l + fc2 Iffl-M 
2 \(Xdx)kd£ai A, CP(Md)' 

Besides, one additionally requires that the function 

1.4.1 n;S(li9) <7(aj(w,A,ç,77, 
def 

a w. A,sgn(A 1 
IA 

ri 
|A| 

is smooth close to A = 0 for any (w,£,r)) G HI xM .In that case we shall write a G 
SMd (//) 

Remark 1.19. — The additional assumption (1.4-V i>s necessary in order to guar­
antee that pseudodifferential operators associated with those symbols are continuous 
on <^(H.d) (see Proposition 2.6). It is also required to obtain that the space of pseu­
dodifferential operators is an algebra. 

In the remainder of this section, we shall discuss two points of view. The first 
consists in considering the symbol a G Syfid ( / /) as a symbol on R2d depending on the 
parameters (w, A) in Md x R and belonging to a A-dependent Hormander class (see 
Proposition 1.20). The second point of view consists in emphasizing the function a (a) 
(see Proposition 1.22). Both points of view are in fact interesting, and both will be 
used in the following. 

Let us first analyze the properties of a G SMd(/j,) for a fixed A. The following 
proposition is proved in Appendix B (see page 107). 

Proposition 1.20. The (X-dependent) metric g^ defined by 

VA 0, V G R2d, ja: 
sd {dtdrì def \\\(de dn2) 

ì |A|(1 sd 

is a Hormander metric in the sense of Definition 1.12, and the function 

mW def 1 + IAK14 }2> 1/2 

is a g^-weight. Moreover the constants C and N of Definitions 1.12 and 1.13 are 
independent of X. 

Finally if a is a smooth function defined on Md x R* x R2d, then a belongs 
to SMd(fi) if and only if (1.4-1) defines a smooth function and for any k G N, the 
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22 CHAPTER 1. INTRODUCTION AND MAIN RESULTS 

function (\d\)ka is a symbol of order ¡1 in the Weyl-Hormander class defined by the 
metric g (Y) and the g^-weight mSx\ uniformly with respect to A. 

Proposition 1.20 has important consequences which are stated below. The first 
one will be used often in the sequel and states that the continuity constants of Weyl 
quantizations of symbols are independent of À and w. 

Corollary 1.21. — Let a be a symbol in S^d (/x). Then for any w G EI and A G R*, 
the operator op™(a(w, A)) is continuous from H(m,gW) into H (m(m^A^)_M, g^) for 
any g^-weight m, and the constant of continuity is uniform wih respect to X and w. 
In particular for ¡1 = 0, the operator opw(a(w, A)) maps L2(Rd) into itself uniformly 
with respect to w and A. 

The second consequence concerns the stability of our class of symbols with respect 
to the Moyal product (see (1.3.4)): if a G Smd(fii) and b G 5ed(/X2), then the func­
tions ab and a # 6 are symbols in the class 5Hd(/xi + /x2). Besides, the asymptotic 
formula can be written 

a#b ab 
xc 

x2i 

CD 

xc 

1 

IAI 
-.drj a 

1 

xc 
xd^b 

l 
cx 

-d^a 
1 

IAI 
dVjb 

Let us also point out that if a belongs to 5Hd(/i), then for any j G { 1 , . . . ,d} the 
functions —h=de.a and —^=dVja belong to SMd(fi — 1). 

vlAl vlAl 
Let us now mention some properties of the function a(a) defined in (1.4.1). The 

following proposition, which is proved in Appendix B (see page 109), will be useful in 
the proofs of Chapter 3. 

Proposition 1.22. — A function a belongs to SMd(fi) if and only if a(a) G 
g>OC (Hd x R2d+1) satisfies: for all k,n G N; there exists a constant Cn k > 0 
such that for any /3 G N satisfying \(3\ < n, and for all (w, X,y,rj) G IK x R + , 

(1.4.2) 5 sd s sdß 
sds (<r(a)) 

li9) 
Cn,k ( l sd £2 V 

n;S( 
2 (1 IAI wx 

1.4.2. Operators. — We define pseudodifferential operators as follows. 

Definition 1.23. — To a symbol a of order \x in the sense of Definition 1.18, we asso­
ciate the pseudodifferential operator on ff* defined in the following way: for any f G 

n;S(li 

(1.4.3 df d O p a / f e def 
ND-1 

^d+1 df 
tr (u X 

w 
n;S(li9)n;S(li \X\dd\, 

where 

(1.4.4) A\(w] 
def 

J*xopw [a(w,X,Ç,ri J\ if X 0. 

while J\ is defined in (1.2.36), page 16. 
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Examples of pseudodifferential operators are provided in Section 2.1 of Chapter 2. 
Observe that the operator Op (a) has a kernel 

(1.4.5) ka(w,w ) 
2d-i 
7r<m 

s 

—oo 
tr u X 

n;S(9) 
Ax(w)) \M dX 

since by definition of the Fourier transform, one can write 

(1.4.6) Op (a ) /H 
d 

ka(w,w) f(w') dwf. 

We shall prove in Chapter 2 an integral formula giving an expression of the kernel in 
terms of the function cr(a) defined in (1.4.1): see Proposition 2.4 page 30. 

Let us denote by n;S(li9) the function 

(1.4.7) rri (A) 
d &»?) 

H Bf 
sd sds |A|«7), 

where raM is defined in Remark 1.17, page 20. 
Then we note that if a is a symbol of order p, then the operators 

Ax(ld- Dx) -M/2 J*xopw a(w, X m X) 
sqs Jx and 

(Id + 13a) -M/2 4a Jtovw(rrt (A) 
qs a(iy, A))Ja 

are uniformly bounded on A (see Corollary 1.21, page 22). More precisely we have, 
for some integer n, 

(1.4.8) P A ( I d £>a: -M/2| n;S(li9) (Id + Dx -nil A.\\\£(œ. Cn\\Q>\\n;Sud(vL)> 

1.4.3. Statement of the results. — Let us first state a result concerning the 
action of pseudodifferential operators on the Schwartz class. This theorem is proved 
in Chapter 2. 

Theorem 3. — If a is a symbol in SMd(fi) with p = +oo; then Op(a) maps continuously 
n;S(li9) into itself 

Notice that Theorem 3 allows to consider the composition of pseudodifferential 
operators, as well as their adjoint operators. The following result therefore considers 
the adjoint and the composition of such operators. It is proved in Chapter 3. 

Theorem 4. — Consider Op(a) and Op(6) two pseudodifferential operators on the 
Heisenberg group of order p, and v respectively. 

Ifp>2(2d+1) xvcx then the operator Op (a)* is a pseudodifferential operator 

of order p on the Heisenberg group. We denote by a* its symbol, which is given 
by (3.1.2). 

VP 2(2d+l) + |ii| + |i/| then the operator Op(a)oOp(6) is a pseudodifferential 
operator of order less or equal to p + v. We denote by aj^^d b its symbol. 
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24 CHAPTER 1. INTRODUCTION AND MAIN RESULTS 

We have the following asymptotic formulas for A G R*, 

(1.4.9) a* • a 
1 

2 TAI i<j<d 
[Zjd , 7ft •if/ [Zjd , 7ft xc ri 

(1.4.10) 
[Zjd , 7ft 6 : a 

1 

2< cx 
l<i<d 

Zjd , [Zjd , 7ft ZA '{a, 7ft -z£7-}' qsq 

where r\ (resp. r<i) depends only on Z a fresp. Zaò> /or |a| 2. 

One can find precise formulas for a* and a #m<tb respectively in (3.1.3) and (3.3.3). 
The first term appearing in the asymptotic formula for a#MdO is not a#o as could 

be expected: this is due to the fact that in Definition (1.4.3) the Fourier transform is 
composed on the right. 

Note that the asymptotic formulas only make sense when the semi norms || • ||n;sHd (M) 
are finite for p > 0 large enough. Let us also emphasize that due to (1.4.10), the pseu­
dodifferential operator [Op(a), Op(6)] is of order \i+v. Actually the same phenomenon 
occurs when Op (a) and Op (b) are differential operators: there is no gain in the order 
of the commutators. 

It is also important to point out that the asymptotics of (1.4.9) (respectively of 
(1.4.10)) can be pushed to higher order, as shown in Section 3.4 of Chapter 3. We will 
discuss in that section in which sense the formula are asymptotic. In fact, in the case 
where Op(a) is a differential operator, one obtains a complete description in (1.4.9) 
and in (1.4.10) since the asymptotic series are in fact finite. 

Finally, we point out that even though a is real valued, a* is generally different 
from a. 

The final result of this paper concerns the action of pseudodifferential operators 
on Sobolev spaces. 

Theorem 5. — Let ¡1 be a real number, and p > 2(2d+l) be a noninteger real number. 
Consider a symbol a in S^d(fjb) in the sense of Definition 1.18. Then the operator 
Op(a) is bounded from Hs(Md) into Hs-»(Ud), for any real number s such that \s — 

fi\ < p. More precisely there exists n G N such that 

\Op(a) £(ifa(Hd), Hs-n(Md)) Cn\\a\ \n;Smd(p)-

If p> 0, then the result holds for 0 s — fi sd 

Remark 1.24. — The weaker result for small values of p is due to the fact that the 
adjoint of a pseudodifferential operator is also a pseudodifferential operator is only 
known to be true under the assumption that p is large enough. A way of overcoming 
this difficulty would be to have a quantification, stable by adjonction (of the type of 
the Weyl quantization in the Euclidean space). Unfortunately, the non commutativity 
of the Heisenberg group seems to make such a quantization difficult to define. 
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Theorem 5 is proved in Chapter 5. The idea of the proof consists, as in the clas­
sical case, in decomposing the symbol into a series of reduced symbols. The new 
difficulty here compared to the classical case is that an additionnal microlocalization, 
in the A direction, is necessary in order to conclude. This requires significantly more 
work, as paradifferential-type techniques have to be introduced in order to ensure the 
convergence of the truncated series (see for instance Proposition 4.15, page 74). 
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C H A P T E R 2 

F U N D A M E N T A L P R O P E R T I E S OF 
P S E U D O D I F F E R E N T I A L O P E R A T O R S 

The main part of this chapter is devoted to the proof a number of important proper­
ties concerning pseudodifferential operators on M.d defined in Definition 1.23 page 22, 
which will be crucial in the proof of the main results of this paper. Before stating 
those properties, we first present several elementary examples of pseudodifferential 
operators, and analyze their action on Sobolev spaces. Then, we study the action of 
pseudodifferential operators on the Schwartz space, and prove Theorem 3 stated in 
the introduction. 

2.1. Examples of pseudodifferential operators 

Let us give some examples of pseudodifferential operators and their associate sym­
bols. In this section and more generally in this article we will make constant use of 
functional calculus. 

2.1.1. Multiplication operators. — It is easy to see that if 6 is a smooth function 
on Hd, then Op(b) is the multiplication operator by b(w) and clearly mapsHdHd 
into itself provided that there exists p > \s\ and a constant C such that \\b\\cp < C. 

2.1.2. Generalized multiplication operators. — Consider b(w,X) a Cp(M.d) 
real-valued function depending smoothly on A so that for some C > 0, 

sup 
A 

\H;X) CP(Md) C. 

If b is rapidly decreasing in A in the sense that 

VfceN, sup 
qdd 

(l + IAI) k r\k 
r\k sd CP(Md) 00, 

then b is a symbol of order 0 and the operator opw(b(w, A)) is the operator of 
multiplication by the constant 6(u>,A), which does not depend on (y,rj). Therefore, 
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A\(w) = b(w,X) is a uniformly bounded operator of $ { \ . Moreover, if / G L2(M ) 
then {9{f)(X) o Ax(w)}x G ft (as denned in Theorem 1), then 

P(f)(\)owxwxAx(w)\ \HSWx) = \b(w,\)\ mm)\ HdHd C\\9(f)(X)\\ 9(f)(X 

which implies that 

IIOp(6)/| L2(Md) c\\f\ L2(Md)-

Besides, one observes that for all m € N and all j € { 1 , . . . , d}, we have by Lemma A.3, 

9 9(f)(X (0p(6) / ) (A) 9 (Op(&)/) (A) (Q \rr, 

b(w,X) 9 ud 
\m/2 / A D -ra/2 

A 
9)(X |77l 

with D^™/2 o (Qj)m uniformly bounded on ${\. A similar fact occurs for Zj. This 
computation shows that Theorem 5 is easily proved for all 5, by interpolation and 
duality. More precisely, there exists a constant C such that 

l|Op(6)/ Hs(Md : c 11/ Hs{Md)' 

2.1.3. Differentiation operators. — Let us prove the following result, which pro­
vides the symbols of the family of left-invariant vector fields. 

Proposition 2.1. — We have for 1 3 d, fi eR, v 0 

1 

i 
qs On 9(f)(X - i s g n ( A ) ^ ) 

d1 

7. 
wx Op 9(f)(X zsgn(A)^-; 

x. Op(2i sgn(A \Mrti) wx -Op(2 9(f)(X 

s Op(iA), lud 4 Op 9(f)(X9(f)(X 

Id x I* Op(rr ww 9(f)(X ^Md) 
2 O p ( m ^ (£,>?)) 

In particular Zj, Zj, Xj and Yj are pseudodifferential operators of order 1, while S 
and AMd are of order 2 and (Id — AMd)M is of order 2fi. 

Observe that if iZj = Op(dj), \Zj = Op(dj), we have using the map a defined 
in (1.4.1) page 21, 

9(f)(X9(f)(X wx i£j and a(dj){^r]) <7(di)(£,ri) xc i^j. 

Proof — We perform the proof for Zj. For A > 0, we have from (1.2.37) along with 
Lemma A.3 stated page 101, 

9 
1 

i 
Zjf qs 

l 

i 
9(f))(X C x 

j 

(f))(X T* 
Jx 

IAI 
1 

i wx 
wx 

x 
x wx 

(f))(Xxc x r* 
A xwc '\M(ri.i v(f))(X 
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On the other hand, for À < 0, 

9 
1 
i 

wxc ( A ) ^ ( / ) ( A ) wc 
'|A| 

1 
i de 

1 

i 
wx wx 

^(/)(A) ^(/)(A) I Alte - itj))Jx-

The other cases are treated similarly, except for the operators (Id — A d̂)** 
and (—Ajjd) ,̂ for which we refer to Remark 1.17, page 20. This concludes the 
proof of Proposition 2.1. • 

2.1.4. Fourier multipliers. — A Fourier multiplier is an operator K acting on 
r\k such that 

W / ) ( A ) = 2X /XA) 2X/XA 

for some operator {7k(A) on $ { \ . 
For instance, the differentiation operators Zj and Zj are Fourier multipliers, 

and Uk(X) is respectively equal to Qj and Qjc as given in formulas (1.2.25) 
and (1.2.26) page 13. Similarly the Laplacian — AHd is a Fourier multiplier, 
with UK(X) = Dx according to (1.2.29). 

An interesting class of Fourier multipliers consist in the operators obtained from the 
Laplacian by means of functional calculus: for \£ bounded and smooth, the operator 
2X/XA is a bounded operator on HS(M ) for all s G R, and 

Vf G L2 xc 9 xc xc » / ) ( A - F ( / ) ( A ) 2X/XA 

Such operators commute with one another, and so do the operators \I>(D\) for different 
functions \£. The Littlewood-Paley truncation operators that we will introduce later 
(see Chapter 4) are of this type, and we will see that they are pseudodifferential 
operators (see Proposition 4.18 stated page 79). Observe too that if ̂  G ^ ^ ( R ) , then 
the operator \l/(—AMd) is a smoothing operator which maps Hs(Ud) into H°°(Ud) for 
all s G R. 

Another class of Fourier multipliers which are also pseudodifferential operators, is 
built with functions b in S(m^,g) with \x > 0 in the following way. 

Proposition 2.2. — / / a(w,\,Ç,rj) = b (sgn(A) y^A|£, a / ÎÂÏ7?) with b G S^m^^g) 
and /x > 0, then a belongs to SMd(/i), and the operator Op(a) is a Fourier multiplier. 

Moreover, 

(2.1.r Vu G H8(Md). \Op(a)u\ Hs~»(Md] c\\b\\ 2X/XA lull Is (Hd) 

Finally a (a) = b as given in Definition 1.18. 

Proof. — The fact that a belongs to 5ed(/i) and that the operator Op(o) is a Fourie 
multiplier are straightforward. Now let us prove (2.1.1). We have 

Op(a)u(w) 
od-l 

^+1 
wx 

trw V .X 
w~1 

&(u)(\)Ax) \X\ddX, 

with A\ J*xopw(a)Jx. 
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In view of the Plancherel formula (1.2.21) recalled page 12, to estimate the 
#s-/i-norm of Op(o)w, we evaluate the Hilbert-Schmidt norm of 3 ((Id - AHd)£^ii0p(a)w) (A). 
We have 

9 Id Hd 
s-u 2 Op(a)-u (A) = 9(u){X)Ay ld + Dx) 3-V 

9 (Id Hd 
s_ 2 U (A)(Id Dd 2 A* (Id Dx 2X 

2 

In light of (1.4.8) page 23, the operators (Id + Da) 2.AA(Id + D\)s^ are uniformly 
bounded on £{3£x) by C||6|| n;5(m ,̂p) which ends the proof of the estimate thanks to 
property (1.2.19), recalled page 11. This ends the proof of Proposition 2.2. • 

More generally, a pseudodifferential operator which is a Fourier multiplier has a 
symbol which does not depend on w. For this reason, Theorem 4 is easy to prove in 
that case. 

Proposition 2.3. — Consider a and b two symbols of SMd (/i) which do not depend on 
the variable w. Then Op(a)* = Op(a) and Op(a) o Op(6) = Op(6#a). 

Proof. — By the Plancherel formula, 

(Op(a)/,0) 
2d-i 

2X/XA 
K 

tr № Axccc 9(f)(X)Ax) |A ddX 

with Ax J*xopw a(X))Jx Therefore, 

2-(Op(ay9) (A; 2X/XAxcc 

The fact that A*x = J£opw(a(\))J\ gives the first part of the proposition. 
Let us now consider Op(a) o Op(6). We have 

^(Op(a) •Op(6)/)(À) 9(f)(X)oBxoAx 

with Bx = J>p™(6(A))JA. The fact that opw (b) o opw (a) = opw(b#a) finishes the 
proof. • 

2.2. The link between the kernel and the symbol of a pseudodifferential 
operator 

The kernel of a pseudodifferential operator on the Heisenberg group is given 
by (1.4.5) page 23. The following proposition provides an integral formula for the 
kernel of a pseudodifferential operator, as well as a formula enabling one to recover 
the symbol of an operator, from its kernel. 

Proposition 2.4. — The kernel of the pseudodifferential operator Op (a) is given by 

k(w.w'] 
1 

27r2d+l 
/ 2i\{x-y'-yx') 7(a)(w,A,£,C)e i\(s'-s)+2iz-(y'-y)- 2iC,-(x — x UXdÇdC, 

where cr(a) is defined in (I.4.IJ, page 21. 
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Conversely, one recovers the symbol a through the formula 

(2.2.1) or (a ) (w , A, £,77) 
xcx 

Q2i (y' -€-x' -77)ei\s' k(w, w(w ) ) dw . 

Before proving the proposition, we notice that it allows to obtain directly the 
symbol of a pseudodifferential operator if one knows its kernel: the following corollary 
is obtained simply by using Proposition 2.4 and Relation (1.4.1) between a and a(a). 

Corollary 2.5. — Let Q be an operator on Md of kernel k(w, w') such that for some fi € 
R, the function defined for (w, £, 77) eWd x R2d by 

(2.2.2) sgn(A)2/' £- def 

x 

e2i \X\ (sgn(A)2/' £-x'"q e^'kiw^wxccxwiw'y^dw' 

belongs to SMd (fi). Then Q = Op(a). 

Proof of Proposition 2.4- — Let us start by recalling (1.4.5), which states that 

k(w, wf) 
2d-i 

Kd+i tr u X 
w~1w 

kiw^wiw'y^kiw^w Jx) \Mdd\. 

Note that everywhere in the proof, integrals are to be understood as oscillatory in­
tegrals. The Bargmann representation wuy and the Schrodinger representation vwy are 
linked by the intertwining formula uwy = K^v^Kx, so using the operator T\ = JxK\ 
we have 

k(w, w') 
2d-i 

kiw^'y^ 
tr v xc 

w~1w , T ; O P « (a(w,X)) Tx) \X\ddX. 

By rescaling it is easy to see that 

2.2.3 nop™ {a(w,X))Tx xcw a w, A |A| 
A 

so we get 

(2.2.4) k(w, w ) 
2d-i 

Kd+i tr V X 
kiw^wiw'y^ 

xc a wxcwxc IAI 
A 

\\\dd\. 

In order to compute the trace of the operator v*-lw,opw a w, A, Al 
IAI 

we 

shall start by finding its kernel #(£,£')> and then use the formula (1.2.18) page 11, 
giving the trace of an operator in terms of its kernel. 

So let us first compute 6 (£,£'), which we recall is defined by 

kiw^wiw'y^ a w, A, |A| 
IAI 

/ ( 0 kiw^wiw'y^vxwx 

We also recall that 

op a w,X, IAI 
wx 

/ ( 0 kiw^wiw'y^kiw^wiw'y^ 
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32 CHAPTER 2. FUNDAMENTAL PROPERTIES OF PSEUDODIFFERENTIAL OPERATORS 

where as stated in (1.3.6) page 18, 

MM) (2n)-d ei(«-£')-H, w, A. IAI 
+ 

2 

w 

w 
dZ. 

Finally using Formula (1.2.33) page 15 denning kiwwiw'y we get 

0(M) (27T) kiw^wiw'y^wc a w,X, |A 
g - 2ä + Ç 

2 

wx 

|A 
ee-(€-2x-«')dS, 

where wd= w 1wr. Using the relation (1.2.17) given page 11 between the trace and 
the kernel of an operator and (2.2.4) above, we infer that 

k(w, w') 
1 

kiw^wiw 
ei\(s-2x-y+2y-£)-2iZ-xa w, A, \№-Z 

xc 

IAI 
\X\ddXdZd£ 

1 
2ir2d+1 

kiw^wiw'y^vvcv w,X, 
z 

xc 
sgn(A) C 

A 
dX dz dC 

where we have performed the change of variables £ — x — ||jSgn(A), and S = Ç 
To end the proof of the proposition, one just needs to notice that 

k(w,w(w') ] 
1 

27r2d+l 
e-i\s'-2iy' z+2ix'-C, 

a kiw^wiw dz dC dX 

and to apply an inverse Fourier transform (in the Euclidean space). • 

2.3. Action on the Schwartz class 

The aim of this section is to prove Theorem 3, stating that if a belongs to SMd(fi) 
and p = +00, then Op(a) maps continuously <^(Md) into (^(M.d). 

Before entering the proof of that result, let us point out that the smoothness 
condition (1.4.1) (see page 21) is necessary in order for Op(a) to act on £f(Hd). A 
counterexample is provided in the proof of the next statement. Actually one can 
define Op (a) without that condition, and typically the counterexample provided below 
provides an operator which is continuous on all Sobolev spaces. 

Proposition 2.6. — Let p be an odd integer. There is a function a such that |H|n;sHd(M) 
is finite for all integers n, and such that the operator Op (a) is not continuous 
over y$(Md). 

Proof. — Let us define p = 2fc+l and the function a(w, A, £, rj) = A(\), where A(X) = 

|A|fc+i Let / be defined by 

W ) ( A ) F 0 , s d d --è(\)Fn.\, nf ) (A)Fa,A 0 V a ^ O , 

where <j> is a nonnegative, smooth, compactly supported function such that <f>(Q) = 1 
An easy computation shows that / € J(Md). Indeed writing 

kiw^w 
2d-i 
nd+i tr kiw^wiw'y^kiw^wiw \X\d dX 
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2.3. ACTION ON THE SCHWARTZ CLASS 33 

and using the definition of the Fourier transform of / given above, a simple compu­
tation shows that for some constant C, 

/(«>: c e-tXs4>{\)e -|A|W2 kiw^wiw'y^ 
|A|2d dX 

which gives the result since (j) is smooth and compactly supported. Now let us con­
sider Op(a)/. A similar computation shows that if N is any integer, then for some 
fixed constants C and C" one has 

sNOp(a)f(w) C sNe-iXsó(X)A(X)e ^2\X\ddX 

C" sNe-i (6(X)\X\dA(X)e |A||z|2 dX. 

For any fixed z, this is the (real) Fourier transform at the point s of the function 

A (<P(X)\X\dA(X)e -\M\z\2 

Let us evaluate this integral at the point z = 0. Taking N large enough, the result is 
clearly not bounded in s. • 

Proof of Theorem 3. — Consider / G <f$(Md), and let us start by proving that Op(a)/ 
belongs to L°°(Md). By definition of Op(a), we need to find a constant Co such that 
for all w € Md, 

(2.3.1) tr < - ^ ( / ) ( A ) Ax(w)) \X\ddX C0. 

Consider x a frequency cut-off function defined by x(r) = 1 for \r\ < 1 and %(r) = 0 
for \r\ > 2. We write 

tr sNe-isNe-isNe-i \\dd\ = i1+i2 

where 

xc def sNe-isNe-isNe-i (Di)A^(w)) \X\ddX 

and we deal separately with each part. 
Let us first observe that for any k £ N and by Remark 1.7 stated page 12, we have 

|/il sNe-isNe-isNe-i ld + Dx)k\ \2HS(Mx)\AddX 
I 
2 

(2.3.2' \\{Id + Dx)-*x (Dx)Ax(w) HS(rtx)\^\dd^ 

l 
2 

Besides, using (1.2.19) page 11, there exists a constant C such that 

\ui-^(f) fA)(Id + DA)fel| sNe-i C| |^( /)(A)i ;id + DA)fen HS(MX), 
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34 CHAPTER 2. FUNDAMENTAL PROPERTIES OF PSEUDODIFFERENTIAL OPERATORS 

and 
\(ld + Dx)-kx (Dx)Ax(w)\ sNe-i 

\№ + Dx) 2 4\(w)\\£lxx)\ (ld + Dx) 2 K x(DX)\\HS(#X) 

C\\(ld + Dx\ 2 /c-x(D\)\\HSWx) 

where we have used (1.4.8) (see page 23) for the last bound. We then observe that on 
the one hand 

y(/)(A)(Id DX)K 9{{\d sNe-isNe-i 

so that by the Plancherel formula 

2d-i 
nd+x l^(/)(A)(W Dx) WHS(Xx) X\ddX ll(Id ud) |fe/IIÌ2(HD)' 

On the other hand 

\№ + Dx) 1 K x(Dx)fHS(Xx)\X\ddX 

aeNd 
\(ld + Dx)ï-kX Dx)FatX\\%x\X\ddX 

a£Nd 

{l + \X\(2\a\+d)) sNe-i X(\X\(2\a\ + d) \X\ddX, 

hence 

(ld + Dx) ft-* x(Dx)\ \2Hs\MddX 

C 
sNe-i 

(2m + d)d~l (l + |A|(2m + d)) 2 * X(|A|(2ro + d)) |A|ddA 

where we have used that the number of a € Nd such that |a| = m is controlled by 
md-i Then, the change of variables 3 = (2m + d)X gives 

\(Id +Dxr~kx Dx)\\2HS\MddX C 
meN 

1 
1 + m2 

y(\0\)(l + \0\) *-k+ddß. 

Therefore, (2.3.2) becomes 

I'll c | |(id md)k Î\\L2(M^ 

<mGN 

1 
1 + m2 x(\ß\)(l + \ß\) 

%-k+d dß Co 

for any k. 
A similar argument applies to I2 and allows to get 

I/2I C\\(ld UD) /IL2(Hd) 
sNe-i 

1 
1 + m2 x№)(i + \ß\) \%-k+ddß 

where \ 1S a frequency cut-off function defined by x(r) = 1 for \r\ > §, and %(r) = 0 
for |r| < | - The choice k > 1 + d + ^ achieves the estimate of the term 72-
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2.3. ACTION ON THE SCHWARTZ CLASS 35 

The end of the proof of Theorem 3 is a direct consequence of the following lemma. 
We will emphasize later other formulas of that type which will be useful in the fol­
lowing sections. • 

Lemma2J. — For any symbol a E« 5Hd(/i) and j e { l , . . . , d } , there are sym­

bols b^\b^ belonging to Smd(fi + 1) and c^\c^ G SMd(fi — 1) andp € 5Hd(/i) such 
that 

[Zi, Op(a)} sNewxc-i [Zj , Op(a)] swxcNe-i 

[ZJ , Op(o)] sNe-ixcxc Zj , Op(a)l oP(42) ) , 

[is, Op(a)l Op(p). 

In particular, one has 

sN 
e-i Zja \\\{a,rjj isgn(A)£7] and b^ Zja \\\{a,rjj - i sgn(A)^}, 

4'(1) 
1 

2 |A| 
[a,i£j - sgn(\)rjj] and (2) 

°3 
1 

2 |A| 
{a,i£j + sgn(A)r/j}. 

Remark 2.8. — Notice that contrary to the classical case (see [1] for instance), 
[Zj , Op(a)] is an operator of order /J, + 1 instead of ¡1, due to the additionnai Poisson 
bracket appearing in the definition of b^ (and the same goes for [Zj , Op(a)]). 

On the other hand, [ZJ , Op(a)] and [ZJ , Op(a)] are of order fi — 1 as in the classical 
settinq, but [s, Op(a)l is only of order a. 

Let us now prove Lemma 2.7. 

Proof. — Let us consider a function / in ^(Wd), and a symbol a belonging to Smd(fjJ). 
We have for 1 < j < d, 

ZjOp(a)f(w)=sNe-isNe-i1tr(Zj(uxw.l)9-(fsNe-isNe-i)(X)Ax(w)+uxw.19-(f)(\Ax(w))\X\ddX 

with ZjAx(w) = J^opw(Zja(w,X))Jx. 
Thanks to Lemma A.3 page 101, we have ZjU^-x =sNe-i recalling that Qx is 

denned in (1.2.25) page 13. Therefore, since &(Zjf){X) = &(f){X)Q$, and using the 
fact that tr(AB) = tr(BA), we obtain 

[Zj , Op(a)} № 
sNe-i 
sNe-i tr K , - ^ ( / ) ( A ) I [Ax(w),Qx •ZjAx{w)))\X\ddX. 

We then use (1.2.37) page 16 to find, for A > 0, 

Ax(w),Qx 1* opw (a(w,X)) | A | ( % ti) Jx 

and for A < 0, 

[Ax(w),Qx] Jx zpw(a(w,X)), | A | ( % + ^ ) Jx-
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Therefore, by standard symbolic calculus, using in particular the fact that if b is a 
polynomial of degree one in (£,77), then 

(2.3.3) \ovw(a),oi>w(b)] 
1 
i opw({a,b}), 

we get 

~_A\(w),Q$] ZjAx(w) JA*op- \{a(w, \),r)j wx Zjd(w,A) for A > 0, 

[Ax(w),Q$] ZjAxiw)) JA*op- - A j a ^ A ) , ^ - wx Zjd(w, A) for A < 0, 

which are the expected formula. We moreover observe that if a G Smd(fi) and 1 < 
j < d, then \/\X\d^.a and \Z\X\drj.a are symbols of order a + 1. Indeed since a is of 
order /2, there exists a constant C such that, for k G N and 3 G N , 

sNe-isNe-ivv X\d*. a) C 
•2+1/31 

Al (l + |A|(l + KI2 + M2)ì 
/x-|j91-l 

2 

C |A| 
m 

(i + |A|(i + |ei2 + M2) 
u + l-l/31 

2 

A similar computation gives the result for [Zj, Op(a)]. 
Let us now consider the other types of commutators. For / G <^(HID) and 1 < j < d, 

we have 

[zj,Op(a)]f(vi) 
2d-i 

sNe-i 
sNe-isNe-isNe-isNe-isNe-i f(w') \XrdXdw'. 

By Lemma A.2 page 100, we have ZjU* = 4\lQ*i'uw]- Therefore, setting w = 
w~1w' = (z,s), we get, using (1.2.37) page 16 along with the fact that Ax(w) = 
J*xopw(a(w,X))Jx, 

tr (zjulAxiw)) |A| 
2A 

sNe-ixv Sgn(X)^)Jx,U^,]Ax(w)] 

sgn(A 
2 |A| 

t r ( J ^ c x v v sgn(A)£,-, huiJ*x\ opw(a(w,X))Jx) 

1 
2 IAI 

tr([opw(aKA)) sgn(A)% sNcvxe-isNe-i 

By standard symbolic calculus, this implies that 

(2.3.4; tr ZjU^Axiw) 
1 

2v A 
tr (fià^op^l {a, sgn(A)ryj -i£j})J\ 

which gives the announced formula. Besides, the same argument as before gives that 
if a is a symbol in SMd(ii) and if 1 < j < d, then -y=d^a and -^=dVja are symbols 

of SBd(fj, - 1). Indeed, for k € N and /3 € N2D 

;A9a; 1 0{i,n) 
1 

|A| 
sNe-i 7 IAI"" 1 + 1 A|(l Kl2 + M2) 

/x-lffl-l 
2 
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2.3. ACTION ON THE SCHWARTZ CLASS 37 

A similar argument gives the result for the multiplication by Zj. In particular, one 
finds for all A G R* , 

(2.3.5 ti ZjU^Axlw) 
1 

2 |A| 
tr (u^rxopw {a, sgn(A)7fe sNe-i 

Finally, let us consider the last commutator. We have 

is, Op(a) /(«>) 
2d-i 

sNe-i 
i(s — s )tr sNe-isNe-iv f(ti /) |A| ddAdu/ 

Since with w = w 1w', we have s = s' — s — 2Im(zz') and in view of the preceding 
results, it is enough to observe 

2d-i 

wd+i 
istr(u,„-lw,Ax(w)j /(«>') |A|ddAdu/ 

2<i-i 

sNe-i 
trtó-x^opsNe-i" sNe-ivxv / ( « ; ' ) |A|ddAdu/ 

where we have used Lemma A.4 stated page 102 and where g is defined by (A.2.4), 
whence the fact that [is, Op(a)] is a pseudodifferential operator of order fi. • 

We then observe that the arguments of the proof above give the following propo­
sition. 

Proposition 2.9. — For j G { 1 , . . . ,d} and a € SBd(fi) in Cp(Md) with p > 1, we have 

ZjOp(a) Op sNe-isNe-i |A| (-sgn(A)^- +ir]j) 

Op(a)Zj Op Al (-sgn(A)^- •ir)j)#a 

ZjOv(a) Op Zjd wx |A|(sgn(A)fc ÌT)j) 

Op(a)Zj Op |A|(sgn(A)^ irii)#a 

Besides, for N G N and p > 2N, then (—AMd)N Op(a) and Op(a)(—AMd)N are pseu­
dodifferential operators of order p + 2N. If k G R and p > 2k then Op(a)(Id — AMd)k 
and (Id — AMd)kOp(a) are pseudodifferential operators of order p-\-2k. 

Proof. — The four first relations are by-product of the preceding proof and they 
directly imply that (—Amd)NOp(a) and Op(a)(—AMd)N are pseudodifferential oper­
ators. Then for k G R , we write 

Op(a)(Id wx sNe-i 
2d~i 

T.d+1 'R 
t r ( ^ - ^ ( / ) ( A ; (Id •Dx)kAx{w))\\\dd\ 

Observing that 

(id Dx)kAx(w) Jtopw miXJ#a(w,X) wxcx 
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where sNe is the symbol defined by (1.4.7) page 23, we obtain that Op(a)(Id — AMd)fc 
is a pseudodifferential operator of order JJL + 2k. We argue similarly for Op(a)(Id — 
AH«)*-
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CHAPTER 3 

THE ALGEBRA OF 
PSEUDODIFFERENTIAL OPERATORS 

This chapter is devoted to the analysis of the algebra properties of the set of 
pseudodifferential operators. The two first sections are devoted to the study of the 
adjoint of a pseudodifferential operator: we first compute what could be its symbol, 
and then prove that it actually is a symbol. In order to prove that fact, the method 
consists in writing the formula giving the symbol as an oscillatory integral, and in 
writing a dyadic partition of unity centered on the stationary point of the phase 
appearing in that integral. This creates a series of oscillatory integrals which are all 
individually well defined (since each integral is on a compact set). The convergence 
of the series is then obtained by multiple integrations by parts using a vector field 
adapted to the phase, as in a stationary phase method. 

The approach is similar for the analysis of the composition of two pseudodifferential 
operators and this is achieved in the third section. Finally, asymptotic formulas for 
both the adjoint and the composition are discussed in the last section. These formulas 
result from a Taylor expansion in the spirit of what is done in the Euclidian space 
but adapted to the case of the Heisenberg group. 

3.1. The adjoint of a pseudodifferential operator 

In this section, we prove that the adjoint of a pseudodifferential operator is a 
def 

pseudodifferential operator. We first observe that if a G Sma(fi), then A = Op(a) 
has a kernel kA(w,w') as given in (1.4.5) page 23, and the kernel of A* = Op(a)* is k(w, w') = kA{wf, w), whence 

k(w, w') 
2d-i 
od-i MR tT\(u(w')-iw) a(w\ (a(w\X)y Jx)\X\dd\ 

(3.1.1 
od-i 
nd+i m 

tT\(u(w')-iw)xc :âK,A))JA)|A|ddA 

where we have used the fact that tv(AB) = tr(BA), the formula for the adjoint 
of a Weyl symbol, and tr(B) = ti(B*). Therefore, in view of Corollary 2.5 stated 
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40 CHAPTER 3. THE ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS 

page 31, if Op (a)* is a pseudodifferential operator, its symbol a* will be given for all 

(w,A,£ ,77)eHdxR*xR2dby 

a*(w,A,£,r?) 
od-l 

a(w\ 
a(w\ 

e2i '|A|(sgn(À)ï/'-£-:z'.r/)+zÀs' 

3.1.2 tr U(w') j ^ o p ^ ^ M T F L O - s v ) ; XCXC a(w\a(w\a(w\ 

It remains to prove that the map a t-* a* which is well defined on <J(Md x R2d+1) 
can be extended to symbolsa(w\ ( /x) and that for such a, their image a* is also in 
5Md(/x). Therefore, it is enough to prove the following proposition. 

Proposition 3.1. — The map a \—> a* extends by continuity to 5Md(/i) since for all 
k G N there exists n G N and C > 0 such that 

Va G 5Hd(/x); ||a*IU;5Md(/x) CJa||n;V(/x), 

It is not at all obvious that the formula (3.1.2) for a* gives the expected result 
for the examples studied in Section 2.1 of Chapter 2. To see that more clearly, it is 
convenient to transform the expression of a* into an integral formula. 

Lemma 3.2. — Let a G <J(Ud x M2d+1)7 then the symbol a* o/Op(a)* given in (3.1.2) 
can also be written 

a*(w,A,£,r?) 
1 

a(w\ M2d+1 x Jfld 
e2i \\\{sgn{\)y -Z-X -7)) is'(X-X')-2iy \\'\(s&L(\')z.y'-Ç.x') 

x a wlw \-l \ ' , 2 , C J lA ' rdCdsdA' dw • 

The formula given in Lemma 3.2 allows to revisit the examples of Section 2.1, 
Chapter 2. Indeed if a = a(A, £, 77), then integration in sf gives A = A', then integration 
in x' (resp. y')) gives ( = rj (resp. 2 = y')\ whence a*(w, A,£,77) = a(A,^,ry). 
If a = a(w), then integration in £ (resp. £) gives x' = 0 (resp. 2 / = 0); then integration 
in s' gives A = A', whence a*(w) = a(w) as expected. 

Remark 3.3. — Leta(a) be defined by (1.4-1) page 21, thencr(a*) anda(a) are related 
by 

(3.1.3) a(a*)(w,A,£,7?) 
1 

27r2d+l E2d+1 x ed 
„2iy'.(Ç-z)-2ix' (n-o+is'ix-x') 

xa(a)(w(wf) 11 V , z , C ) dCdzdX' dwf. 

Proof of Lemma 3.2. — The first step consists in computing the trace term using the 
link between the trace and the kernel stated in (1.2.18) page 11. So let us start by 
studying the kernel of our operator. Using J\> = T\>K\>, we write 

(3.1.4) tr ( u ^ , ) - ! JA*,op№ (a(w, A')) Jy) = tr (Kyu^K^Ty sdsop™ (a(w, A')) T v ) 

where w = w(w')~1 and we observe that Kyu^yxKywx = w\^,^1 where v^^-i is 
the Schrodinger representation given by (1.2.33) page 15. We shall use the same type 
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of method as for the proof of Proposition 2.4. We recall that if U is an operator on 
L2(Rd) of kernel ku then the kernel of the operator 

U def a(w\a(w\ 

is the function fc^ given by 

a(w\a(w\ -i\'(s'+2x'' a(w\ ku a(w\a(w\ 

This comes from the definition of the kernel in (1.2.17), page 11, and the definition 
of v '̂/a-i in (1.2.33), page 15. We take now 

U T*x,opw a(w(w ) -l a(w\a(w\xc 

As in (2.2.3) page 31, we have 

T*x,opw a(w(w ) -1 A',£,n a(w\ op™ a(w(wf) 1 A' | A % »? 
|A'| 

and using (1.3.6) page 18 this gives 

knit,?) (27r)-d 
Rd 

a w(w') X |A'| sd sd 
2 wx 

a(w\a(w\ 

This implies 

tr(U) 
wx 

k0(M№ 

wx 
-iX (s'+2x'-y'+2y' a(w\a(w\a(w\ 

(27T)-D , 
FW2D 

-i\'(s'+2x'-y \-2v'-£)+2iZ-x a w(w') -l A', \'\(i + x') 
|A'| 

\d~d£. 

We finally obtain via (3.1.2) and (3.1.4) 

a*(w,\,£,ri) 
1 

27r2d+l 'R2d+1 X HD 
e2 |A|(sgn(A)y'-Z-x'-n) is' (\-\'}-2i\' {x'-y'+y'-£\ 2ix' 

x a w(wf)-\\' |(sgn(A)|gn(A) 
ÏA'I 

\\'\dd: d£d\' dw'. 

The change of variable | A ' | « x') sgn(A')£ and |A'|C gives the formula of 
the lemma. 

3.2. Proof of Proposition 3.1 

To prove Proposition 3.1, we shall use Remark 3.3 and Proposition 1.22. Our aim is 
to analyze the symbol properties of the oscillatory integral of (3.1.3) in order to prove 
that what should be the symbol of the adjoint actually is a symbol. More precisely, 
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we want to prove that for all k G N, there exists a constant C > 0 and an integer n 
such that for any multi-index /3 G N2d and for all m G N, if m + |/?| < k, then 

W G M2d. VA ^ 0. [1 + |A|(1 + F2); |(s) 
c |(sgn(A)cv 7(a*)(.,A,y) 

0(Hd) C||ö||n;SHd(M)-

The first step consists in proving this inequality when k = 0, then, in a second 
step, we will suppose k > 1 and consider derivatives of the symbol o~(a*). 

We follow the classical method of stationary phase, as developed for instance 
in [1]. Noticing that the phase in (3.1.3) is stationary at the point (0,0,0, £, rj, A) 
in Rd x Rd x R x Rd x Rd x R, we introduce a partition of unity centered at zero: 

1 |(sgn( 

pen 

ib(2-pu) Vti G R4d+2 

where ip is compactly supported in a ring and ip in a ball. Then decomposing the 
integral (3.1.3) using that partition of unity, we notice that each integral 

6p(w, A,£,77) def 1 
27r2d+l /R2d+1 x Jfld 

it ( 2 - V . 2 - V , 2~V,2-p(*-^ ,2-*(C-»7),2-pi V - A)N 

e2iy'-(C-«) -2icc'-(r?-C)+is/ (A—A' cr(a) (w(w' wx wxwxw d£ dz dA' dit;' 

is well denned since it is on a compact set. Notice that this is not the usual Heisenberg 
change of variables as could be expected, but for technical reasons this change of 
variables seems more appropriate. The convergence of the series JZpgn bp will come 
from integrations by parts which will produce powers of 2~p. Indeed, the change of 
variables 

x' 2pX, yf 2PY, s' 2PS, z £ + 2pu, C wx 2pv, \' X- 2pA 

gives with w(p) def W '2pX, 2pY, 2pS -l 

6p(w, A,£,r?) 
2(4d+2)p 
27r2d+l R2d + 1 x Jffld 

tô(X,y,5,ti,t;,A) Q-i22p(2Y-u-2X'V+SA) 

x aia) (w(p), X -2PA,Ç 2pu, rj 2pv) dudv dX dY dAdS. 

Let us define the differential operator 

L def 
1 
I 

X2 ,y2 , C2 ,̂ 2 , 2+A2 ,-1 I 1 
2 

Xdv 
1 
2 

vdx 
1 

3 
Ydu 

1 
2 

wx sdA wxx 

which satisfies 
|(sgn(A) U-2X-V+SA* 22pe i22p(2Y-u-2X-v+SA) 

We remark that the coefficients of (L*)N are uniformly bounded on the support of ip. 
Performing N integration by parts (here we assume that p > N) we obtain 

bp(w,X,£,r)) 
2-p(27V-4d-2) 

27r2d+l rE2d+l x Jjd 
-i22p(2Y-u-2X-v+SA) 

(L*)N é(X,Y,S,u,v,A a(a) (w(p),X |(sgn(A) 2pu,ri + 2pv dudvdXdYdAdS. 
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We then use that a (a) satisfies symbol estimates, so 

(L*)N*(a) (w(v),X 2pA,£ 2pu,r) 2pv) 

C2pN a |(sgn(A) 1 + |A + 2PA| \t + 2pu\' \V + 2pv\2 ,M/2 

3eetre's inequality 

1 + |A + 2pA \t + 2pu\2 \v + 2pv\2) M/2 

|(sgn(A)|(sgn(A) wxc 1 + |2PA| |2pu|2 \2pv\2} IH/2 

yields 

l + IAI+^ + r?2 -M/2 |(sgn(A)|(sgn(A) A + 2pA,£ + 2pu,»7 2pt>) 

C \\a\\N,Sud(n) 1 + 2pA + 2pm|2 + \2pv\ 2' H/2 

Therefore, 

:i + |A|+£2 + w2' -/i/2 , |&p(w,A,£,7/)| C||a|k,5Hd(^ 2p(4d+2+|M|-iV) 

which gives the expected inequality for k = 0 choosing iV > 4d + 2 + 
Let us now consider derivatives of cr(a*). We observe that by integration by parts, 

d\(T(a*)(w, A,£,r?) 

sd 
2ttm+1 R2d+1 x Hd 

e2iy'.(£-z)-2ix (i7-C)+w,(A-V) sQjQjQjcr(a) sd |(sgn(A) d£ ̂  dA' dit;7 

1 
2*r2d+l K2d+1 x Jfld 

2iy'-{i-z)-2ix' [v-C)+is'(X-X')d a(a) (wiw')-1 dsdfdX'zX d( dz d\f dwf. 

Since for m G N, d™cr{a) satisfies the same symbol estimates as cr(a), the arguments 
developed just above allow to deal with the derivatives in A. Similarly, integrating by 
parts 

|(sgn(A)xwx a(a*)(w,X,Ç,r)) 

2i 
fR2d + l x jjd 

2iy'.{Z-z)-2ix' |(sgn(A)xcx |(sgn(A)|(sdssgn(A) dC dz dX' dwr 

K2d+1 x jjd 
e2iy'.(t-z)-2ix' |(sgn(A)|(sgn( xccx 2izj |(sgn(A)|(sgn(A) d( dz dX' dwf 

i 
2 rR2d+l x jjd 

2iy'.{Z-z)-2ix' (rj-0+is'{X-Xr dzk{dyi-2izj a(a) (w,X'9z,C I d(dz dX' dw, 

with w = w(w/)~1. So, for m G N and a G N , (Çjdçk)m<r(a) satisfies the same 
symbol estimates as <r(a), thus we can treat these derivatives as above with exactly 
the same arguments. Besides, it is also the case for derivatives in 77. This concludes 
the proof of Proposition 3.1. • 
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3.3. Study of the composition of two pseudodifferential operators 

We consider now two pseudodifferential operators Op (a) and Op (b) and study their 
composition. We shall follow the classical method (see for instance [1]) consisting in 
studying rather Op(a) o Op(c)*, where c is such that Op(c)* = Op(6). 

We recall that if A (resp. B) is an operator of kernel kA(w,yjf) (resp. fca(t/;, w ' ) ) , 
then the kernel of A o B is 

kAoB(w,wr kA(w,W] kB{W,w')dW. 

If moreover B = C* with C of kernel kc(w,wf), then 

kßiw^w' kc(wf, w). 

Those (well-known) results applied to A = Op(a) and C = Op(c), imply that the 
operator Op(a) o Op(c)* has a kernel k(w,wf) given by 

(3.3.1) k(w.w') 
sd 

kA(w,W) kciw'W) dW. 

If Op(a)oOp(c)* is a pseudodifferential operator of symbol d, then, by Proposition 2.4 
page 30, the symbol d is given by its associated function aid) which satisfies, 

(3.3.2) a(d)(w<\,£,n) 
sd 

2i(y'-Ç-x'-ri) +iXs,k(w,w(wf)-1)dw' 

We shall now study the map (a, c) »-> d which is well defined for a, c G S Hd ). 

Proposition 3.4. — The map (a,c) >-> d extends by continuity to SMd(/i) x SMd(iJ,f) 
since for all k G N there exist n G N and C > 0 such that 

\\d\\k;SHd |(sgn) cimi n;Smd{n) llclln;SHd (/*')• 

Note that the Proposition implies that the symbol d oî Ao B satisfies 

|(sgn(A)|(sgn(A) C \\a\\n.Smdifl) ll&lln;SHd(/i') 

since c is the symbol of B* and ||c||n;5Hd(/i/) < C ||&||n;SHd(/i') for all n G N by Propo­
sition 3.1. 

Proof. — The proof is very similar to the one for the adjoint written in the previous 
section: one writes the function a(d) as an oscillatory integral that we study with 
standard techniques. We first obtain, thanks to Proposition 2.4 page 30, (3.3.1) and 
(1.2.1), that the kernel of Op(a) o Op(c)* is 

k(wiw) 
] 

(27r2d+l)2 
o-(a)(w,Ai,zi, Ci)<t(c)(w,A2,Z2,C2) 

Xçi\1si+2iy1-z1 — 2ix\-Ct\— ÌX2S2 2ty2Z2-\-<it(i2-X2 d\i d\2 dz\ dz2 dÇi d(2 dW 

where w W |(sgn(A) and w W (X2ÌV2,S2] Therefore, recalling that 

cr(d)(w, A, £,77; 
sd 

-2i(y' -€-x' -ri)+i\s' k(w, w(w ) ) dw 

ASTÉRISQUE 342 



3.3. STUDY OF THE COMPOSITION OF TWO PSEUDODIFFERENTIAL OPERATORS 45 

where k is the kernel given above, we get 

(3.3.3Ì a(d)(w,\,£,ri) 
1 

|(sgn(A) |(sgn(A)|(sgn(A) CI)(t(C)(W(W -l A2,^2,C2; 

x e j&(W,w' ,Ai,A2,2l,Z2,Cl,C2 'dAi dA2 dzi dz2 dÇi |(sgn(A)|(s 

where the phase function $ (depending on w, A, £ and 77) is given by 

(3.3.4) $ = Aa; + Ai«i - A2s2 + 2(j/ • £ + 2/1 • zx - y2 • *2) - 2(x' • 77 + xx • Ci - ^2 • C2) 

with u>i = | ( s g n ( A ) = ^_1W and il>2 = (x2,2/2,s2) = w'w"1^; in particular 
w2 = w'wi so writing W = (X, Y, S) and using the group law on Hd, we have 

Xi X — X, X<2 X-x x ,2/1 Y - y, 2/2 F-2 / |(sgn(A) 5 - s 2X2/ 2x7, 

(3.3.5) 

S2 S-s + s 2(xf - x) - Y - 2(2/ - y) X + 2x' y -2y - x. 
The function $ is polynomial of degree 3 in its variables and straightforward com­

putations give 

|(sgn) 5i, dX2$ |(sgn(A) --2yu dZ2$ -22/2 
|(sgn |(sgn(A) 2x2, <9S>$ : A - A 2 , -A2 Ai — A2 

-A2 -2(r7 - C2) 2A2(F-2/), fly* 2(£ - ¿2) 2A2(X-x) 

-A2 -2(Ci - C2) 2A22/7 2y(\o- Ai), -A2 2A2x' 2x(A2 - Ai) 2(*i - * 2 ) -

Therefore, one can check easily that the phase $ satisfies d$ = 0 if and only if 

w W, wf 0, A Ai = A2, zi = z2 t, Ci C2 = V-

In the following we shall denote by UQ G Rd that critical point, with D = 4(2d + 1): 

um def x, 2/, 5,0, A, A,£,£,r7,77 

By a tedious but straightforward computation, we check that 3>(£/o) = 0, d&(Uo) = 0 
and that d2 (̂C/0) is invertible for all (w, A, £, 77): computing the Hessian ma­
trix d2&(Uo) one notices easily that each lign of the matrix has at least one constant 
term (and the others are either zero or linear in A,x,2/). 

We then argue as in the proof for the adjoint by use of a partition of unity centered 
in the point UQ where degenerates. For simplicity we denote the new set of variables 
by 

V (X,Y,X,x',y',s'., Al, A2, Zi, 22> Ci,c2: $0(U -

In the phase $ there are terms of order 3 and we observe that the only derivatives of 
order 3 which are non zero are 

-A2-A2 —2 and $0(U$0(U 2. 

We write, for any point U G RD, $(£/) = $0(U - U0) + G(U - U0) where by a direct 
application of Taylor's formula, one has 

WeRD, $0(U -def 1 
2 

D2Q(U0)V>V and G(V) Hef (A2 - A) '.(Y - V. x' -{X-x y')-

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



46 CHAPTER 3. THE ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS 

We are therefore reduced to the study of an integral under the form 

I--
'WLD 

f(U)e^{u)dU, 

where we have denned 

(3.3.6) $0(U - xc xxc a(a)(w,Xi,zi, ÇiMcHwiw')-1 ^2,^2, £2)-

We shall decompose this integrai into a series of integrals by a partition of unity: 

I 
wx 

$0(U - $0(U -(U - U0)dV 

gen wx 
$0(U $0(U -C (2 -«(tf-üb) dU 

sd 
f(U)e i*(u)ç(u _ Uo)dU 

qds 

2"D 
sd 

/(Co 2<*VK(V) *VK(V) i23*G(V)dv> 

where £ and £ are functions defining a partition of unity, in the sense that they are 
nonnegative, smooth compactly supported functions ( ( in a ball and C in a ring) such 
that 

VU e RD, C(U - Uq) 
gen 

:C(2-Q(U-U0)) = 1. 

Each integral is now well defined, and the main problem consists in proving the 
convergence of the series in q G N, as well as in proving symbol estimates. We shall 
concentrate on the second integral and leave the (easier) computation in the case of C 
to the reader. 

Consider 

sd 
def 2qD Wo -2"VK(V)e i22q$0(V)+i23gG(V) dV. 

We shall use a stationary phase method, which will be implemented differently ac­
cording to whether in the phase 22q$o(V) + 23qG(V), the dominant term is the first 
or the second of the two terms. More precisely, let S G ]0, | [ be any real number and 
let us cut the integral Iq into two parts depending on whether I V G ^ ) ! < 2~q(1+<̂  or 
not. For this, we introduce a smooth cut-off function \ £ ^o°(K) compactly supported 
on [—1,1] and write Iq = II + I2 where 

qs def 2qD X '22g(i+<5; G(V)f f(U0 + 2"V *VK(V) i23«*o Y)+i23"G(V)dv and 

I2 def 2gD *VK(V) 22<Z(1+(S)| G(V)\2 f(Uo 2qv)avy ei22q$0(V)+i23qG(V] dV. 

Let us first analyze II. We introduce the differential operator 

L def 1 
1 

*VK(V) 

*o(V)\2 

which satisfies 
LN ei22^o(V)l 22Nqei22q^0(V)^ 
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Note that the computation of the Hessian mentioned above allows easily to obtain a 
bound of the following type for V$o: 

(3.3.7) W e Supp C, *o(V)| | -1 c 
l + |A| + |a?| + |y| 

where C is a constant. It follows that L is well defined, and its coefficients are at 
most linear in A, x and y. One therefore checks easily that on the support of ( the 
operator (L*)N has uniformly bounded coefficients (the bound is uniform in V as well 
as in w* A,£ and r?). Therefore one can write 

sd 29£>2-2iVg *VK(V) [L*)N C(V)x '22«(l+«) G(V)\2 \ j23«G{V) f(U0 + 2?V] dV. 

Using the Leibniz formula, we have 

(3.3.8) (L*)N av)x 22?(i+«) 'G(V)f ei23"G(V] f(U0 + 2<!V) 

C 
e\ + \m\ + \n\<N 

*VK(V) •2qV)) \dn *VK(V) fi" X 229(l+«) g(v)\*): \av)\ 

where £, m, n are multi-indexes in N and where £ is a function, compactly supported 
on a ring, defined by 

*V(V) sup 
\j\<N 

\d3C(V) 

Now the difficulty consists in estimating each of the three terms containing deriva­
tives on the right-hand side of the above inequality. Recalling that / is defined 
by (3.3.6), / satisfies the following symbol-type estimate: 

(3.3.9) 

ae(f(u0+2qv) fjn\l\q sup 
*VK(V)*VK(V) 

l + \X + VVh\ *VK(V)v 2 *VK(V)x 2' it 
o 

l + \\ + 2Wji\ *VK(V)xcc *VK(V)xcxc 2 

Now let us prove an estimate for the second term. We use Faa-di-Bruno's formula 
which in general can be stated as follows: 

DN(eF^) hi,... ,/ijv 
<t€<tìv 

N 

p=l riH hrp=i\ 

1 
ri!. ..rp\p\ 

x eFW[Dr*F(V)(ha(1),... ,^(ri)),... ,Dr*F(V)(ha(N-rp+1), • • • ,ha(N))]. 

But on the support of £, the function G is bounded as well as its derivatives, so this 
implies that on the support of x, 

|öni pt23*G(V> C 
\n\ 

p=l riH \-rv = \n 

1 
ri!.. .r'p! 

*VK(V) 2-g(l+(5) K 
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where K = cardjj, rj = 1} is the number of integers j in { 1 , . . . , p } such that rj = 1. 
We notice that the worst situation corresponds to the case when {j, rj = 1} = 0, 
which means in particular that rj > 2 for all j (in the above summation it is implicitly 
assumed that the rj are not zero). The largest possible p for which such a situation 
may occur is p = \n\/2 (or (|n| —1)/2 if \n\ is odd). But one notices that since S < 1/2, 

2 3p\n\ 
qs 22\n\p—ô\n\p 

so using the fact that for any p < \n\ one has clearly 22pq~pqS < 22^q~^qS we infer 
that 

(3.3.10) *VK(V)*VK(V) ç22\n\q-\n\qô ̂  

Finally let us consider the last term, namely dm (x (22q{1+s)\VG(V)\2)) . Tak­
ing \m\ = 1 and writing dj for any derivative in RD we have 

1 
2 9j X 22g(l+5)| G(V)\2) 22q(l+S)y 229(1+*)| G(V)f 

D 

i=l 
d2-G(V)diG(V) 

which can be written 

1 

2 
dj qs 22q{l+5) G(V)\2 2q(l+S) 

D 

i=l 
hi 2<?(l+5) 7(V) d2-*VK(V) 

where hi is the smooth, compactly supported function defined by 

VU € RD7 hilU) def rJix'(\u\2). 

So, using that the derivatives of G are bounded and by Leibniz formula, one gets 

SQ QS 22<?(l+<5) G(V)\2} *VK(V) 

and arguing in the same way for higher order derivatives one finds finally 

(3.3.11) gm X <22q(l+ö) 'G(V)f n2\m\q(l+8) 

Plugging (3.3.9), (3.3.10) and (3.3.11) into (3.3.8), we get 

2-2qN+qD *VK(V) av)x f22q{l+5) 7G(V)\2 i23*G(V) f(U0 -2qV) 

C SUD 
(Ìi.-,J6}( *VK(V) \e\ + \m\ + \n\<N 

2\£\q22\n\q \n\qo <y\m\q(l+8) 

(l + IA + 2 * ^ \Z + 2Wh\2 l»» + 2«KdV 

(l + |A + 2«ttJ \Z + 2«VjA2 Iu + 2'VJ2) 2 

Noticing that 

2~2qN+qD 

|*| + |m| + |n|<iV 

2\i\q22\n\q-\n\qo y\m\q(l+5) C2qD,2-Nq6 2Nq(S-l) 
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it suffices to choose N large enough and to use Peetre's inequality as in the case of 
the adjoint to conclude on the summability of the series, and on the symbol estimate 
on E , ' , 1 -

Let us now focus on J2. In that case 3>o is no longer predominant, so we shall use 
the full operator 

La(V) def 1 
i 

$o(V) 2«VG(y) 
*VK(V) 2iVG{V)\2 

which is well defined on the support of £ and satisfies 

Lq(V) *VK(V(V) i23qG(V) . 22q et22«*0< V)+i23qG{V) 

This implies that J2 is equal to 

2qD-2Nq (Lq(VY)N .(i-x) *VK(V) G(V)f f(U0 + 2«V)«V) i22«*o(V)H i^G(V)dy 

and it is not difficult to prove by induction that for N € N , the operator (L*)N is of 
the form 

VCX NF(V) : 
N 

k=0 I a\<N-k 

MV) + 2if1(V) lkqh(V) 

$0 V 2«VG(V) 2fc 
daF(V), 

where the /j are uniformly bounded functions on the support of £. As in the case 
of Ig, we apply the Leibniz formula to write 

QS ( i - x ) 22(1+<5)9M 'G(V)\2 f(Uo + 2qV)C(V) 

< C 

\l\ + \m\<\a\ 

\d\f(U0 + 2W)) SQ ( i - x : 22«(l+«) •g(vm2 IC(V) 

where £ and m are multi-indexes in ND and where ( is a function, compactly supported 
on a ring. The first term of the right-hand side was estimated in (3.3.9), and the second 
one may be estimated similarly to (3.3.11) since as soon as \m\ > 1, the support 
of dm(l — x)(V) is in a ring far from zero. It follows that 

got ( i - x ) 22(l+5)g| G(V)\* f(U0 + 2*V) QSQ c 
\£\+\™\<M 

2\e\q2\rn\q(l+6) 

sup 
{ii,...,i6}e{i,...md 

1 + IA + 2« SQ ie + 2^2 | 2 SD 2qVh \2' 
iL 2 

[1 + IA 2qVh\ i + 2qVh |2 1*7 + 2%, 2 

Since on the other hand, on the support of (1 - x) (22(1+<5)<?|VG(V)|2) and on the 
support of £, 

\MV) 2qfi(V) 2k«fk(V) 
\*o(V) 2qfi(V)2qfi(V) 

(J2~ kq22kq(l-\-6) 
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this implies that 

V<7 def {Lq(V)*)N ( i - x ) 2qfi(V)2qfi(V) 2qfi(V)2qfi(V)CXC 

may be bounded by 

2qf 
i(V) 

c 
N 

k=0 a\<N-k |*| + |m|<|a| 

2-kq22k(l+6)q2\e\q2\rn\<i(1+S) 

sup 
{ji,...,Ì6}G{l,...r>}d 

(l + \\ + 2«Vh\ K + 2*yja|2 If?+ 2« Vi, I2) 
i£ 2 

(l + |A + 2*U4| IS + 2<%,|2 2qfi(V)VXV 2 

Since 
AT 

fc=0 |a|<JV-fc I *|+|m|<|a| 

9—fcçô Cl+̂ Çol t\q2\rn\q(l+S) r^2^qe2^^^q 

we conemae tnai 
WXW Q2~N1+2NS1+ND sup 

{ji,...,j«}e{i,.-D}d 
l + IA + 2^1 2qfi(V)XCX l»? + 2^.l2 

2 

(l + |A + 2«yjJ ie+2ng2 k + 2 ^ 6 i 2 ; 2 

The choice of 6 G ]0, l/2[ allows to conclude as in the previous proof via Peetre's 
inequality. 

The analysis of derivatives of o~(d) is very similar. Let us for the sake of simplic­
ity only deal with the A-derivative, and leave the study of the other derivatives to 
the reader. Taking a partial derivative of a(d), defined in (3.3.3), in the A direction 
produces a factor is' in the integral, namely 

<9Acr(d)(w,A,£,7?) 1 
(27T2rf+1)2 

is'cr(a)(w,\1,z1,Çi) aicVwiw')-1 A2,£2,C2) 

wp**(W,ii;/JAi,A2,«i,«2,Ci>C2) i\i dXo dz\ dzo dCi d£2dWdw'. 

But one notices that 

dx2( ̂ (Wyw'yXi ,A2,*i ,z2,Ci £2) 

-i(S-8 + s' + 2xY - 2yX - 2x'{Y - y 2y X-x I i${W,w' ,X1,X2,z1,z2£1£2) 

which can also be written, using (3.3.5) 

is e -d\2 - isi SD SDSD 2qfi(V) le'*. 

On the other hand an easy computation, using the formula denning $ in (3.3.4) above, 
allows to write that 

ÖA.e - ÖA.e**, 2 ^ * ÖA.e and 2ixie'* oCle«* 

so we find the following identity: 

is'e1* -dx2 dx1 v'd2l ÖA.e ÖA.e 
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Finally (27r2d^1)2dxcT{d)(w1 A, £,77) is equal to 

w(wT 
a(c)(w(wT\ *2,22,C2)<r(a)(w, Ai, z\Xi)dXi d\2 dzi dz2 dd d(2dWdw' 

w(wTw(wT 
Ai,̂ i,CiV(c)(̂ KSDSSQDD) 1 ^2,^2,(2)^1 d\2 iz\ dz2 dÇi d(2 dW dw' 

el*dZla(a)(w,\i zuCi)(x-x')a(c)(w(wSDSf) X2lz2,(2)dXidX2 dzi iz2dh dÇ2dWdw' 

el^xdZla(a)(w)\i zuCiMc^wiwT1 X2,z2,(2)d\i d\2 dzi dz2 d(x d(2dWdwf 

él^d(^1a(a)(w,Xi zuCM-yHc^wiwSDT1, h,z2,C2)dXi dX2 dz\ dz2 dCi dÇ2dWdw' 

e^ydClo(a)(w,X1 ztXiMcKwiw')-1 X2,z2)(2)dXi dX2 dz\ dz2 dh d(2dWdwf. 

Since a (a) and a(c) satisfy symbol estimates, the expressions above can be dealt 
with exactly by the same arguments as those developed above. One proceeds similarly 
for all the other derivatives. Details are left to the reader. • 

3.4. The asymptotic formulas 

In this section, we give the asymptotics for the symbol of the adjoint and of the 
composition, up to one order more than in Theorem 4. The proof that we propose 
does not use the integral formula obtained for a* and a#Md b but relies more precisely 
on functional calculus, which suits more to the Heisenberg properties to our opinion. 

Proposition 3.5. — Let a £ SMd(fii) and b G SMd(fjL2). Then the symbol of the adjoint 
of Op (a) is given by 

a* QS 
1 

2 SQ 
!<3<d 

{ZjTj + ZjTïïà 
1 

8IA l<j,k<d 
(ZJTJ + ZjT* ZkTk ZkT*k a 

1 

iX 
-A<9x E 

2 
i<j<d 

w(wT w(wT w(wT 

whereas the symbol of the composition Op (a) o Op (b) is given by 

a#Mdb 6 # a 
1 

2 ' A Ki<d 
(ZjbrtTja Zjb#T*a) 

1 

8|A| \<j,k<d 
ZjZkb#TjTka ZiZkb#T*Tka ZjZkb#TjTka ZjZkb#T*Tka) 

1 
WX 

Sb# WX 
1 

r 
l<j<d 

w(wTw(wT a • ro 
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where S denotes ds, f\ (resp. r2) depends only on Zaa (resp. Zab) for \a\ > 3 and 
finally where 

SD de 1 
i 

SDS sgn(A)d^a. 

Recall that formulas for a* and a #wdb are provided respectively in (3.1.3) 
and (3.3.3). 

In view of the second term of the asymptotic expansion, one understands better 
in what sense these formula are asymptotics. Let us comment the development of a*. 
The first term is a symbol of order /x — 1, it is of order strictly smaller than a. 

The first part of the second term is of order /z — 2; however, the second part of 
this term is the product of A-1 by a symbol of the same order /x. This is a smaller 
term only for large values of A. In view of the proof below, it is easy to see that one 
could obtain an expansion to any order and that the term of order k will be the sum 
of terms of the form: A--7 times a symbol of order /i — k + 2j for 0 < 2j < k. It is in 
this sense that this asymptotic has to be considered. 

We shall not discuss here the precise feature of the remainder and will discuss this 
point in further works for applications where these asymptotic expansions could be 
useful. 

We point out that the asymptotic formula for a* and a#Md b have their counterpart 
for cr(a*) and a(a#Mdb). By the definition of the function a (a) associated with a 
symbol a (see (1.4.1)), the following corollary comes from Proposition 3.5. While the 
asymptotics of Proposition 3.5 appear as especially useful for large A, the asymptotics 
on a(a) seems more pertinent for A close to 0. 

Corollary 3.6. — Let a G 5Md(//i) and b e 5Md(/xi) then 

w(wT 3-(a 
1 
2 

w(wT 
k^3^ 3 Z ; S 7 > ( a ) 

1 

8|A i<j,k<d 
Z3T3 w(wTw(wT w(wTWVCXV 

E 
i 

Sdxo(a) (j(fi) 

and similarly 

o(a #Md6) w(wTw(wT 
1 

2 
i<j<d 

Zj(j(b) #A 57>(a) w(wT w(wTw(wT 

1 
SQ 

Ki,k<d 

w(wTw(wT ^'j£7'ko(a) ZjZko(b) X w(wTVXV 

- ZjZkcr(b] w(wTw(wT • ZjZko(b) x ST^kd 

1 

i 
So(b) x d\o(d h (r(r2) 
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where fi (resp. r2) depends only on Zaa (resp. Zab) for \a\ > 3 and where for all 
functions f = /(£, 7]) and g = #(£, rj) 

SD w(wT f#xai dei w(wT -2d 
WX 

w(wT '1, 2 CX '0 2 di 1 C 2, 

WXW ief ] 
1 
dnJ-dtJ. 

The proof of the corollary is straightforward by (1.4.1) and (1.3.4). 
Let us now prove Proposition 3.5. 

Proof. — It turns out that the proof of the asymptotic formula for the composition 
and the adjoint are identical, so let us concentrate on the product from now on. 

In view of (1.4.5) and (1.4.6) page 23, we can write 

(Op(a) 0p(6) f(w) 
2d-i 

Trd+l 

2 
w(wTw(wT >Ax(w)) tr u(w')~1w" Bx,(w' 

x/(«/ ') |A|d X'\ddXdX'dw'dw" 

with 

w(wT hox)w a(w, X) XC and B\(w) Jxopw(b(w,X) CXC 

Now, we shall take into account the framework of the Heisenberg group and use the 
dilation 5t(w~1w'), t G [0,1] (see (1.2.7) page 8) to transform b(w',-) by a Taylor 
expansion: 

b(w\ A, y, n b (WSa (W lwr w(wT 

b(w,\,y,ri] XC 
dt 

b (wö Aw lw' A,?/,// 
\t=0 

1 
2 

d2 
dt2 

b\ wSt(w w') A,?/,r? 
|t=o 

1 
2 

C 

XC 
1 - f 2 d3 

dt3 
2 w(wT w 1w'),\,y,rj dt. 

Setting w = (z.s) = w 1w' we get by the group rule (1.2.1), 

d 
dt 

b(w6t(w)) 2tsSb(wôt(w)) 
Kj<d 

XC [dx.b(wôt w)) 2yjdsb(wöt w 

w(wTw(wTV 2xideb(wôt( w 
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This leads by straightforward computations to 

d 
dt 

b \wòAw w ) w(wT 
;=0 !<7<d 

ZjZj + Zj Zjt w(wTw(wT 

d2 
dt2 

b [wöt(w w' w(wT 
\t=0 l<j,k<d 

+ 2s Sb(w,\,y,r) 

{ZjZj + ZjZ. (zkZk + zkZkt b{w,\,y,r)) 

Therefore, we deduce that 

Bx(wr w(wTw(wT R\{w,w , 

where R\ depends only on derivatives of order 3 of b and C\(w,w') depends polyno-
mially on w: 

(3.4.1) C^ (w, w def XWX WXC w z. z XC [w)(z, z z,z) ~sCf\w), 

where w(wT \w) is the 2d dimensional vector-valued operator 

ci1 
def ZBx(w),ZBx(w)] 

while w(wT (w) is the 2d x 2d matrix-valued operator 

c[2 de: 1 
2 

'(Z, Z Z, Z) Bx(w) 

and Cx3)(w) = SBx(w). 
To summarize (Op(a)oOp(6))/(w) is the sum of two terms: 

Op(a Op(6) f{w) (I] (J) 

with 

(I) 
2d-i 

w(wT 

2 
tr K-iw>Mv>)) tT(U(w>)-iw"Cy w,w f(w")\\\d\X\d< ld\d\fdw'dw" 

Let us now focus on the term ( / ) which will give the terms of the asymptotics in 
which we are interested. 

Let us begin by the study of the contribution (I)o of the term of degree 0 of the 
polynomial function C\(w,w'). By (3.4.1), we get 

[Ih def 2d-l 
w(wT 

2 
w(wTw(wTw(wT tr w(wTw(wTVCV /K)|A|d|AT ld\d\'dw'dw" 

w(wT 
nd+i tr \Uw-1w"Ufw")'1 w(wT w(wTXC By(w) Ax(w) 

x f(w")\Md\X'\d> dXdX'dw'dw". 
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The change of variables wf \-> w"w' turns the integral (J)o into 

2d-i 

w(wT w(wT 
tr w(wT w(wT w(wT -i#A' 111 \\'\dd\'dw' A\(w) f(w")\X\ddXdw". 

By the inverse Fourier formula, we obtain that the term between brackets is 

ui, tr w(wTw(wT IX'fdX'dw' 
2d-i 

w(wT 

-1 
w(wT 

which gives 

f/)n = 
2d-i 

nd+i 
tr (ui-u„„Bx(w)Ax(w) f(w")\X\ddXdw". 

We then use classical Weyl symbolic calculus to write 

ov>w(b(w.X) oop™(a(w,X) opw((b#a w,X) 

Thus we have 

B\(w) o A\(w J*xOPw b#a)(w,X))Jx 

whence 

Wo 
2d~i 

nd+i _ tr <-.„,,,JSopwi (b#a)(w,X))Jx f(w")\X\adXdw", 

which gives thanks to (1.4.5) and (1.4.6) the first term in the asymptotic formula for 
the composition. 

Let us now consider the second term of the asymptotic expansion which comes 
from the term of order 1 of the polynomial function Cx(w, w'). To treat this term, we 
shall use the following relations for 1 < j < d, 

Zjtl [<J*xopw (a(w,X))Jx 
1 

2\ SD 
=tr(4jA*opw [a,SDQDS sgn(A)n,}UA) 

(3.4.2) 1 
2 |A| 

=tr(4JA*opw (TMw,X)) 

ZjtT uiJ*xopwi a(w,X))Jx 
1 

2 D 
=tr (uSDtop­ ia, i£i sgn(X)r)j})Jx 

ra.4.3i 
1 

2 D 
:tr(^^SDOp- [T*a(w,X))' 

that come respectively from (2.3.4) and (2.3.5) page 37. 
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This allows to write the second term under the following form 

w(wT def 2d-l 
w(wT 

2 
w(wTw(wTw(wT tr ,a(w')-1w" [z. z C , 1) w) 

xf(w ) XC \\'\dd\d\fdwfdw" 
1 

W IAI 
w(wT 
w(wT 

2 

l<j<d 
tr{uxw-lw,J*xopw Tja{w,X))Jx) tr I w(wTw(wT [w,X'] 

C w" \\\d\\'\d iXdX'dw'dw" 
1 

2 |A| 
2d-i 
w(wT 

2 

w(wT 
tr w(wTw(wT T*a(w,X))Jx tr w(wTw(wT w(wT 

w(wT AHA' \ddXdX'dw'dw". 

Therefore, arguing as for the first term, we get 

w(wT 1 
2 IAI 

2d-i 
w(wT 

w(wT 
tr w(wTw(wT Zjf t^A) ^ • a ^ A ) 

\-Zjb(w,X)#T*a w(wT Jx f(w")\Md i\dw" 

which leads by (1.4.5) and (1.4.6) to the second term in the asymptotic formula for 
the composition. 

In order to compute the third term of the expansion, we shall consider the terms 
of order 2 of the polynomial C\(w, w') and use Lemma A.4 stated page 102. First, let 
us recall that due to (3.4.1), we have 

(ih def •2d-l 
ird+1 

* 2 
tr (<,_!„,, ;4aM) tr w(wTVX sC$\w C{y\w) w(wT (z,z) 

• f(w")\X\d\X'\d dXdX'dw'd.m' 

where C§\w) = SBx{w) and C f } = \ [(Z, Z) ® (Z, Z)} Bx{w). 
We first focus on the term in CJ?. Let us call (/)2,i its contribution, we have 

002,! def '2d-V 
w(wT 

2 

Kj,k<d 
tT[ut-i.„,Ax(w)) 

tr w(wTV (ZjZj + ZjZj [zkZk zkZk)Bx>(w w(wTVVw(wT dd\d\'dw'dw'. 
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We treat those terms as those of5i°1 We shall explain the argument for one of those 
terms and leave the analysis of the other terms to the reader. Set 

w(wT del 2d-l 

w(wT 

2 
w(wTw(wTw(wT tr X 

1w/ 
{zjZkZjZk)B\>) 

/K ' ) |A|rf|A'| dd\dX'dw'dw'. 

Using (3.4.2) and (3.4.3), we obtain 

Zj h tr uiJiopw(a(w,\))Jx tr I <Jtopw [TjIïafaXiïJx) 

whence, arguing as for (I)i 

I QSQ 
1 

2. IA! 

2d-i 

QS 

9 
w(wTw(wTw(wT TjT2a(w,\))Jx 

tr 7/V Z<ZkB(w,\'] f(w")\X\d\X'\ dd\d\'dw'dw" 

1 

2 X 

2d-i 
nd+i ti w(wTw(wT ZiZMw,X TiT*ka(w,X) Jx f(w")\X\ddXdw". 

To deal with the last term 

2d~i 
nd+i 

2 
tr iuZ-iw,Ax{w), tr .u(w')-1w"^ 

WDS [w) f(w")\\\*\\'\< ld\d\'dw'dw" 

let us apply Lemma A.4 (see page 102) writing 

'2d-i 

w(w 

2 
w(wTw(wTCXC tr U(w')-1w"SL/\' W) /K')|A|d|AT dXdX'dw'dw" 

1 
i 

2d-i 

w(wT 

2 
w(wTCVCw(wT g(w,X))Jx] tr(u*wXWCXC,,C$\w)) f(w")\X\ddXdw". 

where g is the symbol of SBd(/j,i) given by (A.2.5) (in particular we have «7(3) 
dx Ma)). 
Finally, arguing as before we get 

2«-i 
nd+i 

2 

r (uZ-iw,Ax{w) tr uSo-1«,,5C'v)M / («;") I A|D|AR« iXdX'dw'dw" 

1 

SD 

2d-i 
SDSD 

tr(U* x ,,JA*op" (Sb(w,X)#g iw,X))Jx) f(w")\X\ddXdw". 

This ends the proof of the asymptotic formula for the composition. 
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CHAPTER 4 

LITTLEWOOD-PALEY THEORY 

In this chapter, we shall study various properties related to Littlewood-Paley op­
erators, and their link with various types of pseudodifferential operators. 

In the first section, we focus on the Littlewood-Paley theory available on the Heisen­
berg group. Similarly to the Rd case, this theory enable us to split tempered distri­
butions into a countable sum of smooth functions frequency localized in a ball or a 
ring (see Definition 4.1 for more details). In the second section, we recall some basic 
facts about Besov spaces and introduce paradifferential calculus. Like in the Rd case, 
it turns out that Sobolev and Holder spaces come up as special cases of Besov spaces. 
The paraproduct algorithm on the Heisenberg group is similar to the paraproduct 
algorithm on Rd built by J.-M. Bony [13] and allows to transpose to the Heisenberg 
group a number of classical results (see for instance [4], [5] [6] and [7]). As already 
mentioned in Section 2.1 of Chapter 2, the Littlewood-Paley truncation operators are 
Fourier multipliers defined using operators which are functions of the harmonic oscil­
lator. Therefore, it is important for our theory to be able to analyze the Weyl symbol 
of such operators; this is achieved thanks to Mehler's formula in the third section 
where we compare Littlewood-Paley operators with pseudodifferential operators; this 
will be of crucial use for the next chapter. Finally in the last paragraph we introduce 
another dyadic decomposition, in the variable A only, which will also turn out to be 
a necessary ingredient in the proof of Theorem 5. 

4.1. Littlewood-Paley operators 

In [7] and [5] a dyadic partition of unity is built on the Heisenberg group Hd, 
similar to the one defined in the classical Rd case. A significant application of this 
decomposition is the definition of Sobolev spaces (and more generally Besov spaces) 
on the Heisenberg group in the same way as in the classical case. 

Let us first define the concept of localization procedure in frequency space, in the 
framework of the Heisenberg group. We start by giving the definition in the case of 
smooth functions. The general case follows classically (see [7] or [5]) by regularizing 
by convolution, as shown in the remark following the definition. We have defined, for 
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any set B, the operator lD~iB on tK\ by 

V / € J(Hd) Va € Nd, &(f)(\)lD-iBFa,x def l(2|a|+d)"1Bl ( A ) ^ ( / ) ( A ) F A | A . 

Definitional. — Let J?(ri,r2) = ^(0>ri>r2) be a ring and $r = 25(0, r) a 6a// ofR 
centered at the origin. A function f in q$(№.d) is said to be 

— frequency localized in the ball 2P^B^, if 

W)(WXA) w(wTXC w(wTXCC A 

— frequency localized in the ring 2pS?(v^q-?v^-); i/ 

^(/)WX(A) W)(A)WXW1 w(wTw(wT (A: 

In the case of a tempered distribution u, we shall say that u is frequency localized 
in the ball 2PCB^ (respectively in the ring 2p<&(^FTjV^))> if 

w(wT 0 

for any radial function / G <jJ(M ) satisfying 5R(/)(A)lD-i22p^^ = 0 (respectively 
for any / in <^(Hd) satisfying £^(/)(A)lD-i22P^( ^ ) = 0). In other words u is 

frequency localized in the ball 2P<$^ (respectively in the ring 2p£?(v/^jV/^)), if and 
only if, 

u = u* q>p, 

where <\>v = 2Np(j)(S2P'), and 0 is a radial function in <^(H.d) such that 

w(wTw(wT 9-(4>){X)R(DX), 

with R compactly supported in a ball (respectively an ring) of R centered at zero. 
Let us now recall the dyadic decomposition and paradifferential techniques intro­

duced in [7] and [5], which we refer to for all details and proofs. 

Proposition 4.2. — Let us denote by <8Q and by £?o respectively the ball [T G M , \T\ < |} 

and the ring { T G R , § < |r| < | } . Then there exist two radial functions R* and R* 

the values of which are in the interval [0,1], belonging respectively to 2)($o) and 

to 2>(i?0) such that 

14.1.1) Vr G l , w(wT 

p>0 

R*(2-2pr) = 1 

and satisfying the support properties 

\P-P\ 1 supp iT(2-2p.) H supp R*(2~2p >) = 0 

P 1 supp R' Isupp R*(2~2p.) 

Besides, we have 

(4.1.2; V r G l , 
1 

2 
R*(T)2 

p>0 
R*(2-2pT)< 1. 
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The dyadic blocks Ap and the low frequency cut-off operators Sp are defined as 
follows similarly to the Rd case. 

Definition 4.3. — We define the Littlewood-Paley operators associated with the func­
tions R* and R*, for p € Z, by the following definitions in Fourier variables: 

VpGN w(wTVXV F ( / ) ( A ) Ä * w(wTC 

V» € N, CX 
W ) ( A <7(/)(A)iT (2-2pDx), 

9 -i/XC)(A) w(wTXV 

Vp - 2 , C * / ) ( A ) 0. 

The operator Spf may be alternately defined by 

SPf 
1<P-1 

XC 

Since 5r(Ap/)(A) = &{f)(\)R*(2-2pDx), it is clear that the function A p / is fre­
quency localized in a ring of size 2P. Along the same lines, one can notice that the 
function Spf is frequency localized in a ball of size 2P. 

Moreover, according to the fact that the Fourier transform exchanges convolution 
and composition, the operators Ap and Sp commute with one another and with the 
Laplacian-Kohn operator AMd. 

Remark 4.4. — For simplicity of notation, we do not indicate that Sp depends on R* 
and that Ap depends on R*. That is due to the fact that according to Lemma J±.8 
below, one can change the basis functions (hence the Littlewood-Paley operators), 
keeping only the fact that one is supported near zero and the other is supported away 
from zero and satisfying (4-1-1), while conserving equivalent norms for the function 
spaces based on those operators. 

It was proved in [39], in the more general context of nilpotent Lie groups, that 
there are radial functions of <^(HId), denoted and cp such that 

^ W ( A ) R*(DX] and w(wTw(wT R* (DX) 

We also refer to [7] and [5] for a different proof in the case of the Heisenberg group, 
the ideas of which will be used below to prove Lemma 4.17. Using the scaling of the 
Heisenberg group, it is easy to see that 

pu u*2Np(f(S2P- and w(wT u*2Np*P(S2P-) 

which implies by Young's inequalities that those operators map Lq into Lq for all q £ 
[1, oo] with norms which do not depend on p. 

Let us also notice that due to (1.2.8) (see page 8), if P is a left invariant vector 
fields then 

WX WX 2p(u*2"pP(u Ô2P1 

This property is the heart of the matter in the estimate of the action of left invariant 
vector fields on frequency localized functions (see Lemma 4.7 below). 
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In view of Mehler's formula (see [26]) and Lemma 4.5 in [25], one can prove that the 
Littlewood-Paley operators on the Heisenberg group are pseudodifferential operators 
in the sense of Definition 1.23. This is discussed in Section 4.5 below. 

4.2. Besov spaces 

Along the same lines as in the Rd case, we can define Besov spaces on the Heisenberg 
group (see [7]). 

Definition 4.5. — Let s e R and (q,r) € [l,oo]2. The Besov space Blr(Ud) is the 
space of tempered distributions u such that 

\\u\\Bsqr{md def 2ps\\Apu\\Lq{md) 
X oo. 

Remark 4.6. — It is also possible to characterize these spaces using only the operator 
Sp for s > 0, we have 

(4.2.1) / w(wT 2sp\ Id - Sp)f w(wT \\er 
and for s < 0, 

(4.2.2) ll/llß|)r(ed) j2Äpl|ÄP/llL«(ed) X 
where ~ stands for equivalent norms. 

It is easy to see that for any real number p, the operators (—AMd)p and (Id — AUd)p 
are continuous from Bqr(M.d) to Bq~2p(M.d). Note that Besov spaces on the Heisen­
berg group contain Sobolev and Holder spaces. Indeed, by (4.1.2) and the Fourier-
Plancherel equality (1.2.21), the Besov space .BJ 20Kd) coincides with the Sobolev 
space Hs(M.d). When s G R+ \ N , one can show that JBJ0j00(Md) coincides with the 
Holder space Cs(M.d) introduced in Definition 1.3. 

Let us point out that a distribution / belongs to B*^r(M.d) if and only if there exists 
some constant C and some nonnegative sequence (cp)pe?$ of the unit sphere of ir(N) 
such that 

(4.2.3) V p e N , 2ps\\Avf\\ w(wT Ccp, 

This fact will be useful in what follows. 
Arguing as in the classical case, one can prove using this theory many results, such 

as Sobolev embeddings, refined Sobolev and Hardy inequalities (see [5],[4]). This is due 
to the fact that the dyadic unity decomposition on the Heisenberg group behaves as 
the classical Littlewood-Paley decomposition. The key argument lies on the following 
estimates called Bernstein inequalities, proved in [5]. 

Lemma 4.7. — Let r be a positive real number. For any nonnegative integer k, there 
exists a positive constant Ck so that, for any couple of real numbers (a, b) such that 1 < 
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a < b > oo and any function u of La(M ) frequency localized in the ball 2pcBr^, one 

has 

(4.2.4) sup 
ß=k 

\<Xßu\ Lb(Md) 
Cu2pN^~^pk M LA(HD)> 

where %^ denotes a product of \(3\ vectors fields of type (1.2.2), page 7. 

Let us also point out that the definition of Bpr(M.d) is independent of the dyadic 
partition of unity chosen to define this space. This is due to the following lemma 
proved in [7]. 

Lemma 4.8. — Let s G l and (p,r) G [l,oo]2. Let (up)pe^ be a sequence of Lq(M.d) 
frequency localized in a ring of size 2P satisfying 

\2ps\ up\\L<i(Md)\ £R(N) < OO, 

then u def 
pGN AP 

belongs to B^r SD and we have 

\\u\\Bs r(Md) Cs \\2ps\ up\ Li(Md) SD 

Contrary to the R case, there is no simple formula for the Fourier transform of 
the product of two functions. The following proposition (proved in [5]) ensures that 
spectral localization properties of the classical case are nevertheless preserved on the 
Heisenberg group after the product has been taken. 

Proposition 4.9. — Let r2 > r*i > 0 be two real numbers, let p and p' be two integers, 
and let f and g be two functions of '(HId) respectively frequency localized in the 
ring2p(6{v^iV^) and2p'(ëiv^iV^). Then 

— there exists a ring & such that if p' — p > 1 then fg is frequency localized in 
the ring 2P>' &'. 

— there exists a ball such that if \p' — p\ < 1, then fg is frequency localized in 
the ball 2p' <É'. 

Remark 4.10. — The proof of this proposition is based on a careful use of the link be­
tween the Fourier transform on the Heisenberg group and the standard Fourier trans­
form on R2D+1. For a detailed proof, see [5]. 

Proposition 4.9 implies that if two functions are spectrally localized on two rings 
sufficiently far away one from the other, then their product stays spectrally localized 
on a ring. 

Taking advantage of this result, one can transpose to the Heisenberg group the 
paraproduct theory constructed by J.-M. Bony [13] in the classical case. Let us con­
sider two tempered distributions u and ü on tf. We write 

u = 
P 

SD and v = 

S 

qv, 
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Formally, the product can be written as 

uv = 

p,q 

QS QS 

Paradifferential calculus is a mathematical tool for splitting the above sum into three 
parts: the first part concerns the indices (p, q) for which the size of the spectrum of Apu 
is small compared to the size of the one of Aqv. The second part is the symmetric of 
the first part and in the last part, we keep the indices (p, q) for which the spectrum 
of Apu and Aqv have comparable sizes. This leads to the following definition. 

Definition 4.11. — We shall call paraproduct of v by u and shall denote by Tuv the 
following bilinear operator: 

(4.2.5) w(wT 

q 

Sa-luAaV 

We shall call remainder of u and v and shall denote by R(u, v) the following bilinear 

operator: 

f4.2.6> R(u, v 
def 

\p-q\<l 
ipU qv 

Remark 4.12. — Just by looking at the definition, it is clear that 

(4.2.7) uv Tuv + Tvu + R(u,v). 

According to Proposition 4.9, Sq-\uAqv is frequency localized in a ring of size 2q. 
But, for terms of the kind ApuAqv with \p — q\ < 1, we have an accumulation of 
frequencies at the origin. Such terms are frequency localized in a ball of size 2q. 

The way how the paraproduct and remainder act on Besov spaces is similar to the 
classical case. We refer to [5] for more details. 

Taking advantage of this theory, one can prove the following useful estimates. 

Lemma 4.13. — Let a be a positive, noninteger real number and consider a real num­
ber s such that \s\ < a. Then, there exists a positive constant C such that for all 
functions f and g, 

(4.2.8] w(wTw(wT w(wTw(wT 9\ÌHs(Md)' 

Moreover, for any integer M there exists a positive constant C such that for any 
function f, 

(4.2.9) WSM/W CP(Md) c\\f\ \CP(Md)i 

(4.2.10) | ( I d - 5 M ) / | D°°(HId) C2~Mp\ f\\cp(ud) 

and more qenerally, for 0 < a < p, 

(4.2.ir №-sM)fwx\\ CCT(MD) C2-M(p-*)uf\ CP(Md)-
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Note that Inequality (4.2.8) is not sharp, but is sufficient for our purposes. The 
sharper result (proved by the same type of method) would be 

ll/#lltf*(]HId) C(w(wTfghf \\9\\Ha(md) ll/Hc-(Hd)IMlL2(Hd)) 
The proof of this lemma is classical: it is the same proof as in Rd for the classical 
Littlewood-Paley theory and has no specific feature to the Heisenberg group. We 
provide it here for the sake of completeness, as it will be used often in the rest of this 
paper. 

Proof. — The first ingredient of the proof of Estimate (4.2.8) is Decomposition (4.2.7) 
which consists in writing 

fg Tfg TJ -R(f,g)-
Let us begin with the study of Tfg. By definition of the paraproduct and thanks tc 
Proposition 4.9, one has 

w(wT 
\p-q\<N0 

iq(Sp-if P9) 

where No is a fixed integer, chosen large enough. We deduce thanks to the continuity 
of Littlewood-Paley operators on Lebesgue spaces, that 

2qs\ w(wT L2(Hd 
\p-q\<N0 

2**11 iq(Sp-if P9. \L2(Md) 

C 
\p-q\<N0 

2 * l V i / l L°°(ed) ^p9\\L2(Md) 

C ll/llLoo(ed> 
\p-q\<N0 

2qs\\ >P9\ L2(ed)-

Using Littlewood-Paley characterization of Sobolev spaces, we infer that 
2qs\ 

q (Tf9)\\L*№d) C l/llL°°(lHId) 
\p-q\<N0 

2ÌQ-p)s2ps P9 lL2(Md) 

C \\f\\L°°{Wd) \\9\\Hsmdi 
\p-q\<Nc 

w(wTw(wT 

where, as in all what follows, (cp) denotes a generic element of the unit sphere of ^2(N) . 

Taking advantage of Young inequalities on series, we obtain 

2qs s (Tf9)\ÌL2№d) cimi L°°(Hd) ll#lltfs(ed)c<7 
which ensures the desired estimate for Tfg namely 

\\Tf9\\H*(Md) C|l/llcCT(ed) IMI#s(Hd)-
Let us now consider the second term of the above decomposition of the product fg. 

Again using spectral localization properties, one can write that 

w(wTw(wT 
\p-q\<N0 

q(Sp-l9Apf). 
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Therefore 

2«s|| *(Tgf) • I I L 2 ^ ) 
2qs 

\p-q\<N0 

iq(Sp-ig ^pf)\\L2(Md) 

C2qs 

p-q\<N0 

\\Sp-l9\\L2(Md)\\ kp/llL°°(Md) 

(4.2.12) C I l / I l ?CT(Hd) 2qs 

\p-q\<N0 
\SP-i9\\L*(Md)2 pa-

By (4.2.2), we have in the case where s < 0, 

\Sp-i9 L2(Md) C\\g\\ 2~psr 

where (cp) still denotes an element of the unit sphere of ^ 2 ( N ) . We deduce in that 
case that 

2«s\\Ag(Tgf)\\L*m s \\f\\c°(Md) 1 l£lliJs(Hd)2<7S 
\p-q\<N0 

2~pscp2-p(T 

C \\f\\c^(ud) l#llus(Hd) 2~qa 

\p-q\<N0 

w(wTw(wTv 

C \\f\\c°(Md) I #lltfs(HId) cq-

This leads in that case to 

ll^/ll#s(Hd) : C|l/llc-(Hd) I M I f w e d v 

Let us now estimate Tgf in the case where s > 0. We have 

I I ^ - I ^ I L 2 ^ ) c 
p'<p-2 

IP,9\\L2(Md) 

c \\9\\Hs(Md) 
p'<p-2 

2-p'scp,. 

Thus (4.2.12) becomes 

2qs\\ q(Tgf)\\L2(Md] c \\f\\c°(wd) I w(wTw(wT 

\p-q\<N0 p'<p-2 

2-pa2-p sCpf 

c \\f\\c°(wd) \9\\Hs(Md) 2qs 

\p-q\<N0 

2-pa 

c \f\\c°md) \\9\\Hs(md) 2-q(v-s) 

C \\f\\c°(Md) \9\\Hs(Md) °q-

This obviously ends the estimate of H^/H^s^d) for any 5 satisfying |s| < a. 
Finally, let us consider the remainder term R(f,g). Taking into account the accu­

mulation of frequencies at the origin, we can write 

w(wTw(wT 

q<p+N0 \p-p'\<l 
x P. f P'9. 
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Thus 

2qs w(wTw(wT L2(Md) C2qs 
q<p+N0 |P-P'I<1 

w(wTw(wT xxw L2(Md) 

Of C°№d) \9\\Hs№d) 2qs 

q<p+N0 IP-P'I<I 
w(wTw(wT 

c ll/ll ll/ H#lliJs(IHId) 2qs 
q<p+N0 

2-pa2-ps 

[n the case where s > 0, we infer that 

2qs\\ iq(R(f,9))\\ L2(M.d) : C||/|l0CT(IHId) ll#ll#a(lHId) 
q<p+N0 

2-(p-q>scp. 

Then, thanks to Young inequalities, we get 

2*1 q(R(f,9))\ L2(Md) C||/llcCT(Hd: IMI#s(lrId)c<7 

which implies that 

Wf,9)\ Hs(Md) c\\f\ CCT(ed) l#llifs(lrld)-

low, in the case where 5 < 0, we have 

2qs\ q(R(f,9))\ L2(Hd) C||/llcCT(Hd) ll#llf/s(Hd) ^-qa 
q<p+N0 

2-(p-q)((r-N)CP. 

Again, Young inequalities allow to conclude. This achieves the proof of the estimate 

ll#(/>#)llfjs(ed; C||/llc<*oHid) ll#ll/fs(EId)> 

for any |s| < <j. 
Let us now turn to the proof of Inequality (4.2.9). By definition of the Cp-norm, 

we recall that 

||£M/||cWlEd) " SUE 
q 

2qp\\ *SMf\\ L°° (Ho­

using commutation properties of Aq and S M » we obtain 

\\SMf\ CP(Md) sup 
q 

2qp\\SM g/llL°°(ed) 

C sup 
q 

2qp\\ ^/llL°°(ed) 

C ll/llo(Hd) 

thanks to the continuity of Littlewood-Paley operators on Lebesgue spaces, which 
ends the proof of Estimate (4.2.9). Moreover, it is obvious that 

\№-SM)f\ L°°(Md; 
q>M-Ni 

^/llL°°(ed)5 
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where Ni is a fixed integer, chosen large enough. Therefore, according to definition of 
the Cp-norm, we get 

| | ( I d - 5 M ) / | L°°(Md) c 

q>M — N\ 

2~qp\ f\\cp(ud) 

C \\f\\cp(Md) 
q>M-N1 

2-qp 

C\\f\\cp(Md) 2~Mp 

This achieves the proof of Inequality (4.2.10). Along the same lines, for 0 < a < p, 
one has 

| | ( I d - S M ) / l C°(Md) 
g>M-A7i 

2q<7\ kg(Id - S M ] (Ho­

using again the continuity of Littlewood-Paley operators on Lebesgue spaces, it comes 

| ( i d - s M ) / H C°(Md) C 

q>M-Nx 

2q°\ /̂HWXWXWL°°(lHId) 

C||/llcCT 

q>M — Ni 

2q{<y~p) 

c\\f\ 
c\ — M(p — (j) 

CP(Md)* > 

thus the desired estimate. This ends the proof of Lemma 4.13. 

4.3. Truncation pseudodifferential operators 

In this section we shall compare Littlewood-Paley operators with the pseudodiffer­
ential operators Op (4>(2-2p|À|(£2 + r?2)), for $ compactly supported in a unit ring. 

We shall see that Op (^(2~2p\X\(^2 + rj2)) is "close" to Ap in the sense that the 
operator AgOp ($(2-2p|A|(£2 + rf)) is small in £(Hs{Md)) norm if \p - q\ is large. 
This is made precise in the next proposition. 

Proposition 4.14. — Let So 6 (0,1) and $ be a smooth function, compactly supported 
in ]0,oo[. There is a constant C such that the following result holds. For any p > 0, 
define the symbol 

aJw,\,£,r) C||/llcCTC||/llcCT where C||/llcCT $(2"2V VR •0. 

Then for any integer q > — 1 and any real number s, 

C||/llcCT £(Hs(Md) 
(j2~S°\P~Q\ 

where Aq is a Littlewood-Paley truncation, as defined in Definition 1^.3. 

ASTÉRISQUE 342 



4.3. TRUNCATION PSEUDODIFFERENTIAL OPERATORS 69 

Proof. — We shall start by reducing the problem to the case 5 = 0. Let u be­
long to < (̂HId) and let q > 0 be given (the case q = — 1 is obvious). The norm 
||AgOp(ap)it||tfS is controlled by the quantity 

2qs\ qOp(ap)u\\L2 2qs W(u)(\)AxR* [2-ZqDx)\ 2llcCT X\ad\ 
1/2 

where A\ = J^opw(ap)J\. Defining a smooth, compactly supported (away from zero) 
function 01 such that &R* = R*, one has 

\mu)(\)Ax R*(2-2gDx) C||/llcCT \№u)(\)Ay T(2-2gDx) C||/llcCT C||/llcCT 
But A\ is a diagonal operator in the diagonalisation basis of D\, thus it commutes 
with the operator R*{2~2qDx). So 

||£7(u)(A)AAJR*(2-2<^>A)^(2-2^r>A)||^(^) = ||£7-(A<jW)(A)^AR*(2-2«JDA)|iJ?s(^A), 

where Aq is the Littlewood-Paley operator associated with 9l{2~2q-). Using (1.2.19) 
stated page 11, we get 

!|^(^)(A)^AJR*(2-2^£»A)^(2-2^Z>A)||jfir^(^) < ||£^(^«)(A)||jfif^(^)||^lAjR*(2-2«Z>A)||^(^rx), 

and Remark 4.4 gives the expected result: we have reduced the problem to the L2(Md) 
case, and by the Plancherel formula (1.2.21) and Inequality (1.2.19), it is enough to 
study the norm as a bounded operator of L2(Rd) of the operators 

R*(2-2q\\\ sd sd opw(ap) and Ä*(2-2«|A C||/llcCT ipw(ap) 

For this, we use Mehler's formula to turn opw(ap) into an operator given by a function 
of the harmonic oscillator in order to be able to use functional calculus. From now on 
we suppose to simplify that A > 0. 

We will denote, aŝ  in Definition 4.3, by R* and R* the basis functions of the 
truncation Aq (with R* supported in a unit ball of R and R* supported in a unit ring 
of R) . 

In view of (1.3.15) (see page 20), one has 

op™ *p(A(E2+t72V 
1 

2tt R 
$( r ) 

ei(«2-A)Arctg(2-2PAT) 

(1 + (2-2PAr)2, 
d 2 

dr. 

But 

LR* (2-2«IA C||/llcCT opw(ap) C||/llcCT sup 
xc 

Ua,\)\R*(2-2q\ X|(2|a|+d); 

and a similar relation holds for R*, so we are reduced to estimating, for a G N and 
A2"^ (2\a\ + d) in a unit ring (or ball if q = —1) 

Ip(a, A def 1 

2tt sd 
$ ( r ) 

ei(2|a|+d)Arctg(2-2pAr) 

1 + (2-2PAT)2)5 
iT, 

and we shall argue differently whether q < p or q > p. 
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• The case when q > p. We argue differently depending on whether 2 2p|A| < 2q p 
or 2-2p|A| > 2q~p. Let us first suppose that 2~2 |̂AI < 2q~p. Noticing that 

d 
dr 

z(2|a|+d)Arctg(2-2pAr) z2"2^ 2\a\ + d 
1 + (2-2P\ry 

ei(2|a|+d)Arctg(2-2pAr) 

we have 

C||/llcCT 
i 

(2\a\ + d)2~2P\ 
î(2|a|-|-d)Arctg (2"2pAr) d 

ar 

C||/llc 

v(1 + (2-2PAT C||/llT 
dr 

so using the tact that 2\a\ + d > 1, 

R* ((2\a\+d) A2"2*) \Ip(a,X)\ C22(p_9) ( | $ ' ( r ) | ( l + ; 2 -2PAr )2 ) l - fd r 

| $ ( r ) 
2~4PA2T 

(1 + (2-2PAT)2) a 2 
dr 

Let us consider the first integral. If d > 2, it is bounded by H '̂HL1- On the other 
hand, if d = 1, we observe that 

* ' (T ) | ( 1 + (2-2"Ar)2: 1 —i 
I1 3 C | * ' ( r ) | l + 2-2pA|r|) 

Therefore, since (1 + IT!) | * ' ( T ) I € L1, there exists a constant C such that 

22(p-9i | * / ( r ) | ( l + 2-2pAr )2 ) l - fdT C||/llcCT (1 + 29"p C2~{q-p\ 

Let us now concentrate on the last integral. We have clearly 

22(P-9> l * ( r ) | 
2-a»\2\T\ 

(1 + (2-2pAr)2 d 2 
wx 22(P-«) 2_2p| A l*(r) |dr, 

whence a constant C such that 

22(P-«) | * ( T ) 
2-4PA2|r| 

(1 + (2-2PAT)2) 
d 2 

dsd C||/llcCT 

We now suppose that |A|2 2p > 2q p and we perform the change of variables 
n, = À9-2P-7 in the integral expression of Ip(a, A). We obtain 

lp(a,\] 
22PA-1 

2tt 
$ f22pA-1u) l + u2) -d/2ei(2|a|+d)Arctgu sd 

Using that $ ( r ) | C\T\-1+S° we get 

S (22PA-1w] C(2-2p|A|) ,1-äo •u|-,+*'. 

This yields that there exists a constant C such that 

f-nfa. A) C(22p\X\ -1\S0 \u\-1+ôo( l + u2 ~dl2du (j'2-6o(q-p) 

As a conclusion, we have proved that in that case, for all a € Z , 

R* (2\a\ + d)X2-2q) \IJa,\)\ finôo(p-q) 
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• The case when q < p. The idea is to compare Ip(a,X) to $(A2 p(2|o| + a1)). 
Taking the inverse (classical) Fourier transform we can write 

ip(a,A) ^(X2~2p (2|a| + di) 1 
2rr ' M 

*(r) 
pi(2|a|+d)Arctg(2-2prA; 

(1 + (2-2*>rAVM 
. A2-2P\T{2\*\+d) \ dr 

or again 
Iv(a,X) <f>(X2~2p (2\a\ + d)) Jp(a,X) RJa,X), 

with 

Jp(a, A) def 1 
2tt XC 

C||CT t(2|a|+d)Arctg (2"2pAr) ei2-2p\r(2\a\+d) 
dr. 

It is easy to see that 

UUa,A)| C2"2pA 
C 

t$(t)| dr 

so since $ belongs to ^(M), we have 

R* ((2\a\ + d)X2~2^ \RJct, X) CR* (2lal + tf X2-2q\ 2-2pX 

C2-2(p-q) 
using the fact that 2|oj[ + d > 1. Similarly 

R* (2\a\ + d)X) Rr>(a, A) C2"2*\ 

So now we are left with the estimate of Jp, which we shall decompose into two parts: 

Jp SD T2 with 

4 (a, A, def 1 
2tt f|r2-2PA|<l/2 

SD (̂2|a|+d)Arctg| (2~JpAr) eî2-2pAr(2|aH-d)> dr. 

The estimate of J2 is very easy, since clearly as above 

\J2(a,X) C2~2pX 
R 

|t$(t)| dr 

C2~2pX, 
so 

Ä* ((2 |« | d)X2-2q \J2M,X) Q2~2(p-q) 
and 

QS 2 a + d)X) QS fa, A) C2~2p. 
Now let us concentrate on Jp. We can write 

C||/llc 1 
2ti |r2-2PA|<l/2 

$(r)ei2~2PAr(2ta|+d) ei(2|a|+d)2-2pA/i(r) 1 dr, 

with 
h(r] 7 

n>l 

1 in ,2-2"Ar i2n 
2n + 1 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 

file:///RJct


72 CHAPTER 4. LITTLEWOOD-PALEY THEORY 

which is well defined, and analytic, for |r2_2pA| < 1/2. Observe that the function 
h depends on the integer p and on A, and that one has to control this dépen­
dance. In particular, we notice that h'{r) can easily be bounded, by 1/3, on the 
domain k2~2^A| < 1/2. But 

ei(2\a\+d)2-2p\h(r) 1 : i(2|a| + d)2 ~2pXh(r) 
SD 

o 

jt{2\ot\+d)2-2p\h{r) dt 

so 

QS fa. A) 
i 

2tt 

fi 

'o t2-2p\\<1/2 
$ ( t W i2-2p\(2\a\+d)(T+th(r)) [2\a\ + d)2-2p\h(r)dtdr 

Integrating by parts, we get 

'1 a, X 1 
2tt 

1 

0 |t2-2pA|<1/2 
e' 2-2p \(2\a\+d)(T+th(r)) 9S, 

SDSD 

L C||/CT 
7i(r dtdr 

1 

2tt o 
ei2-2p\(2\a\+d)(T+th(r)) * ( r ) 

l + t/i'(r) 
XX 

|t2-2pA| = 1/2 
ft. 

Writing the above formula as il 
CVC 
VXXV 

XC with 

WX a, A 
1 

2tt 

l 

WX 
i2-J!>A(2|a|+d)(T+t/l(r)) 

XC 

1 + th'ir) 
Mr) 

J |t2-2pA| = 1/2 
dt, 

it is obvious that 

K2(a,X)\<C QS 1 
2 

22pA"1)fr 
C1 

fA 
22pA"1) 

Writing 

CV : T 
n>l 

( - 1 ) " C||/llcCT/llcCT 

2n + 1 
= 2-2?At2 

n>l 

( - 1 ) " 2-2PAr)2n-l 
2n + 1 

we deduce that 

Kh a, X C2 -2p; CV 
1 

2 
22PA~1) 24PA-2 

C2~ipX, 

where the second estimate comes from the fact that $ is a rapidly decreasing function. 
To bound Kl we just need to notice that 

Mr) 

1 th'ir) 
h(r) 

$(T)T* 

1 th'ir) 
2-2p A<?(r), with XCXC 

n>l 

( " D n [2'2pXr) 2n-l 

2n + 1 

so 

\KÌ(a,X)\ C2~2PA 
r1 

o r|T2-2pA|<l/2 
XC 

$(r)r2 

1 + tft'(T) 
;9{r) drat C2~2pX. 
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We conclude as previously thai 

R* ((2\a\ + d)X2-^)\J1p(a,X) C2 -2(p-q) and R* '(2\a\+d)X)\J 'a, A) I C2~2p. 

Combining those results, we conclude that if p > q, then 

((2M R* - d)\2-2* *((2|a, - d)X2~2p) 7p(a,A)| C2 -2(p-q) 

But clearly R* ((2|a| + d)A2~29) $ ((2|a| + d)A2"2p) is equal to zero if \p-q\ is large 
enough, so we have proved the expected result if p > q. 

That concludes the proof of the proposition. • 

4.4. A-truncation operators 

We shall use, in the proof of Theorem 5, truncation operators in the variable A. 
Let us consider ijj and 0 , two smooth radial functions, the values of which are in 

the interval [0,1], belonging respectively to 0 ( 2 5 ) and 0 ( 5 ? ) , where $ is the unit ball 
of R and J? a unit ring of R, and such that for D = 1 

(4.4.1) VC e RD, 1 : C|cCT 
p>0 

C||/llcCT 

We set 

DF Op(<?!>(2-2pA)) and A_i )P(V>(A)). 

We notice that Ap commutes with all operators of the form Op(a(A, y, rj)), and in 
particular with powers of — AMd. 

Then the operators Ap map continuously HS(M.D) into HS(M.D) independently of p 
and we have the following quasi-orthogonality relation: there exists NQ such that 

(4.4.2) ApAa 0 for \p — q No, 

which implies that 

[4.4.3) l|Ap |̂|L2(ed) cplMlL2(HId)> 

where cp is an element of the unit sphere of £2(Z). More precisely, there exist con­
stants C\ and C2 such that if / belongs to Hs(H.d), then the following inequality 
hold: 

(4.4.4) Ci 
r 

IIAr/H Hs(Md) C||/llcCT C2 
r 

\\^rf\\2Hs(j^dy 

Besides, we are able to say something about the Am-localization of a product by 
an easy adaptation of Lemma 4.1 and of Proposition 4.2 of [5]. More precisely, we 
have the following result which ensures that some Am-spectral localization properties 
are preserved after the product has been taken. 
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Proposition 4.15. — There is a constant Mi G N such that the following holds. Con­
sider f and q two functions of <J(Wd) such that 

&(f) (X) l22m?=>(A)£7 ( / ) ( A ) and 

&(9) (A) l22m/ g>(A)57 9)W 

for some integers m and m'. If m' — m > M\, then there exists a ring such that 

&U9. (A) C||/llcCT C||/llcCT A). 

On the other hand, if \m' — m\ < Mi, then there exists a ball such that 

C||/llcCT l 
C||/llcCTQSQ 

(\W(fg)(X). 

Proof — The proof of that result follows the lines of the proof of Proposition 4.2 
}f [5], and is in fact simpler. We write it here for the sake of completeness. By density, 
it suffices to prove Lemma 4.15 for f,g in 0(R2d+1). 

For simplicity, we will only deal with the case where A > 0. 
By definition of 5r(/)(A), we have 

0"(/)(A)Fa,A(£ QS 
f(z,8)u*FatX £) dz ds 

'md 
f(z,s)Fa.x(t-zY ti\s+2\(£-z-\z\2/2) dz ds. 

Let us write £ = £a + i^b and z = za + izb, where £a, za, £b and Zb are real numbers. 
Straightforward computations show that 

i\s+2\(t.z-\z\2/2) -i (-2\£b-za-2\£a-zb-\s) e-A(|^-J|2-|^|2)^ 

Then we can observe that 

(4.4.5) SX/)(A)Fa,A(0 C||/lCT -2A&, 2A£a, -A 

where h denotes the usual Fourier transform of h on R2d+1 and where 

(4.4.6) A C 
C C||/llcCT Fa.\(£ - z)e A(|«-ï|2-|«|2) f(z,s). 

Therefore, one can write 

C||/llcCTC||/llcCT A°.tf9 - 2 A 6 , 2A£A, Al 

Noticing that for any multi-index /3 of Nd satisfying ¡3 < a, we have 

Fa.x(t) C||/llcCTVXCV VC||/llcCT 

with Ca,fi 
a 

/3 
, we deduce that A X 

X fg B 0 
X f A *-0. 

C||/llcCT 
where 

BLf(z,8) W X C X C F ^ - z ) f ( z , S ) 
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and (3 < a. Using the fact that the standard Fourier transform on R2D+1 exchanges 
product and convolution, we get 

C||/llcCT -2A&, -2A£„, A C<x, 0 B B 
XC f 

C||/llcCT •2A&,-2A£a,-> 

where • denotes the convolution product in R2D+1 and still for any multi-index /3 
of Nd satisfying /3 < a. The question is then reduced to the study of the supports of 
the functions (J5f^/f and (A"^g). 

According to (4.4.5), the support in A of the function 

A,£ 0 z,s) WX WXW WX 

is included in the ring 22m Now, Lemma 4.15 readily follows from the properties of 
the standard convolution product in R2D+1 for the supports, and from the following 
lemma, whose proof is given below. 

This ends the proof of Lemma 4.15. • 

Lemma 4.16. — Under the hypothesis of Lemma ^.15, we have 

C||/ C||/l ,C||/T 0 • lo2m^(A B ,0 
SD f -2A&,- •2A&, SD 

Proof. — By definition of the standard Fourier transform on R2D+1, we have 

Bl,f - 2 A 6 , •2A£A, -A -i {-2\^h-za-2\^a-zh-\s) C||/T z, s I dz ds 

i (2\€b'Za+2\£a'Zb + Xs) 
F0,x £-z)f(z,s) dz ds 

Denoting 2A(£b • za -f £a • Zb) + As by J\{s, z,£), it follows that 

lcCT -2A^6,-2A^,-A) C||/llcCT (l*-*|2-|*|2) C||/llcCT m-z?-\z\2) f{z)s) dzds. 

Using that 

eA|€-̂ |2 

lcCT 

C||/l 
C||/llcCTxcx 

a! 

and observing that the above series is normally convergent on any compact, we deduce 
that 

e ls 1 £r \ lcCT 

lcCT 
(t-zr 

wx 

<2 

]a| 
2 1 

a! \ 
f(/3 + a)! 

wx 
?a+/3,A(£-Z). 
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This leads, since / G 0(E2D+1) , to 

2A& - 2 A & , - 2 A £ 0 , - A 
aeNd 

e-A|«|2 'A 

1 

d 1 

a! 
Q9 + a)! 

/3! 

eiJA(s,z,̂ )e-> ̂ -*l2-l£l2) 2A&2A&2A& 2A& a 5) dz ds. 

Recalling that 

Aax,f(z,s) 2A&2A&v le 
A(l€-ï|2-|«l2) 2A&2A& 

we get 

2A& 2\Çb,-2\Ça, A 
aGNd 

e-AKI2 A' 
2 

2 1 

a 

((3 + a)\ 

c 

El 2A& 
2A& 

2A&v -2A&,-2A£a , -A) 

Let us study separately each term of the above series. By Lemma A.2 and using the 

fact for A > 0, Qj = , we obtain 

2A&2A&2A& 1 

2A 
[%,W)(A)]wcF. 

In particular, for any 7 G ND, 

9-(zcccwjf)(\)F^) 
1 

2A d€i9-(f)(\)F^x(C £7(/)(A)%.F7,A(|) 

The frequency localization of the function / in the ring 22m£?(A) implies then that 
the support in A of J7((5i — zi)f)(\)F7i\(£) is included in the same ring 22mg?(A). An 
immediate induction implies that for any multi-index a the support in A of £7((£ — 
z)ocf)(X)Fli\(^) is still included in the same ring 22mg?(A). Therefore, the support 
in A of 

IBI 8+a 
xw lt-z)af -2A6 , -2A^a, -A; 

is included in the ring 22mg,(A). 
As each term of the series is supported in a fixed ring, the same holds for the 

function 

2A& •2A&, 2A£a -A), 

which ends the proof of the lemma. 

The following results will also be useful in Chapter 5. 

Lemma 4.17. — There exists a constant C such that for any function f 

(4.4.7) |Am af\ L~ ( H D ) c ^/11 2A&v 
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for any integers m and q. 
Moreover if p is a nonnegative real number, then there exists a constant C such that 
for any function f 

(4.4.8) IIAm/|| llL°°(]HId) C2~mp f\\cp(Md)' 

Proof — Let us first prove (4.4.7). We shall only give the general idea of the proof, as 
the method follows closely a strategy initiated in [7] for the study of Littlewood-Paley 
operators, and followed also in [6] in the analysis of the heat operator. 

Recall that 

2A& • « / ) ( A (j)(2-zrn\) 2A&2A& W{2~2qDx) 

where <j> and R* are smooth radial functions with values in the interval [0,1] supported 
in a unit ring of R . This can be also written 

2A& 2A& 2A&2A& 2A&2A&v 2A&2A& R*(2-2qDx) 

where R* is a smooth radial function compactly supported in a unit ring so 
that R*R* = R*. 

According to the fact that the Fourier transform exchanges convolution and com­
position, we have 

wx wx ^qf * HM^i 

where the function /im?q is defined by 

&{HM<q)(K ó(2-2mX R*(2~2qDx). 

Taking advantage of Young's inequalities, it therefore suffices to prove that the func­
tion hmiq belongs to L1(IH(F) uniformly in m and q. 

By rescaling, we are reduced to investigating the function hj defined by 

2A&2A& del 4>(2-V\)R*(Dx) 

By the inversion formula (1.2.31), we get 
(4.4.9) 

hj(z,s) 
od-l 
2A& 

M 

e-iXs<f>(2-2j\)R* (2m + d)X) L^(2\X\\z\2)e -ww'\\\dd\. 

In order to prove that hj belongs to L1(M<I) (uniformly in j), the idea (as in [7] 
and [6]) consists in proving that the function (z,s) i—> (is — \z\2)khj(z,s) belongs 
to L°°(EID) with uniform bounds in j . 

Let us start by considering the case k = 0. It is easy to see that the Laguerre 
polynomials defined in (1.2.30) page 15 satisfy for all y > 0 

£ r % ) e - t | s d d Cd(m+l)d-1 

Since 4> is bounded, this gives easily after the change of variables (3 — (2m + d)X 

(4.4.10) \hi(z,s)\ C 
M 

1 

m2 
\R*(P)№ 
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To deal with the case k ^ 0, we use the result proved in [7] (see also Proposition 1.11 
recalled in the introduction) stating that for any radial function g, one has 

S?((i8-\z\ 2A&2A& ;A) Ì^ ,A : QL\WFcx,xi 

where for all m > 1, 

04(A) 
d 
d\ 

(Qm(A) m 
X 

(Qm(A)-Qm_l(A); if A > 0, 

04(A) a 
dX Qm(X) 

m + d 

x 
Qm A (Qm(A)(Qm(A) if A < 0 

while Qm is given by 

£ffo(*,s))(A)Fai> : Q|a|(A)ra,A-

The proof then consists in applying Taylor formulas in the above expressions in 
order to reduce the problem to an estimate of the same type as (4.4.10). The only 
difference with the case treated in [7] and [6] lies in the dependence on j . However 
it can be noticed that due to the support assumptions on <j> and R*, there are two 
positive constants c\ and c2 such that 

hj{z,s) 
2d-i 

(Qm(A) 
(Qm(A) 

e-lXsd>(2-2jX)R* (2m + d)X) a 
(d-V 
m 

{2\X\\z\2)e (Qm(A) \X\ddX 

with sd def m G N, d2-2j 2m + d (Qm(A) . Now let us decompose hj into two 
parts: 

hj(z,s) h)(z,s) h2(z,s), where 

(Qm(A) def 2d-l 

7rd+: 
(Qm(A) 

e-iXs(t>((2m+d)X R*((2m+d)X) L(d-i) (2|AIN2)e -|A||*|2 \X\ddX. 

The term /1] is dealt with exactly in the same way as in [7] and [6]. 
For b£ we shall use the Taylor formula 

d>(2-^\) 0((2m + d)X) (2-23 - (2m + d))X 
c 

xc 
ó'(t2-23\ + (l-t (2m + d)A) dt. 

But for any m e Cj, one can find am G Ce>. 1 ci ] such that 
2-2j am(2ra + d) 

It follows that one can write 

H2-2jX) - (/)((2m + d)A) (aTO-l)(2m + d)A 
xc 

o 
<j>1 ([tam + (1 - t); (2m + d)A) dt 

and the change of variables u = tam + (1 — t) gives 

Ä*((2m- d)A) U(2~2jX - </>((2m + d)A)) (2m + d)A#* (2m + d)A] 

E 
(j)f (u(2m d)A) l[i>ttm]dw. 
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This form is of the same kind that considered in [7], and allows to end the proof 
of (4.4.7) exactly in the same way. 

Let us prove now (4.4.8). On the support of the Fourier transform of ApAm, we 
have D\ ~ 22p and |A| ~ 22m. Therefore, 22^_m) has to be greater than or equal to 
1. This implies that the only indexes (p, m) that we have to consider are those such 
that 0 < m < p. So 

Am/ : Aro(Id-5m_i) / . 

Therefore using (4.4.7), we have 

||Am/||L00(ed) c 
q>m—1 

l|AmA,/|| \\L°°(Md) 

c 
a>m—l 

(Qm(A) 

( 
q>m—l 

2 qp\\f\\cp(Md)i 

so finally 

HAm/l \L°°md) C2 mpll/llcp(iHid) 

That proves the lemma. 

4.5. The symbol of Littlewood-Paley operators 

Applying Proposition 1.16 of Chapter 1 (see its statement page 20) to A-dependent 
functions of the harmonic oscillator, we obtain the symbol of our Littlewood-Paley 
operators, as stated in the next proposition. The proof of the proposition relies heav­
ily on that of Proposition 1.16 which is itself proved in Appendix B. Therefore we 
postpone the proof also to Appendix B, page 119. 

Proposition 4.18. — The operators Ap (resp. Sp) are pseudodifferental operators of 
order 0. Besides, if we denote by <J>p(A,£,7/) (resp. \J>P(A, £, 77),) their symbols, there 
exist two functions (f) and in ^^(R2) such that for A 7̂  0, 

(Qm(A) №-2p\W ,2-2p|A|(£2 V2) and \PP A, £,77 ^(2-2p|A| 2-2"|A (e+ri2) 

More precisely one has 

(4.5.1) V A ^ O , <K\,p) 
sgnX 

A 
(cos r ) 

(Qm(A)(Qm(A) 
R*{4r)drdr, 

and a similar formula for i/;. 

Remark 4.19. — The stationary phase theorem (see Appendix B) implies that the 
function 0(A,p) of (4-5.1) has an asymptotic expansion in powers of X as X goes 
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to 0, the first term of which is R*(p). Besides, the change of variables r »-> —r gives 
that </>(—A,p) = </>(A,p). Therefore, the function 

,2 2 ,2 2 A, sgn(A; 
x 

|A| 

V 

|A] 

is equal to <j>{2 2p|A|,2 2p(£2 + r]2)) and is smooth close to A = 0. 
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CHAPTER 5 

THE ACTION OF PSEUDODIFFERENTIAL 
OPERATORS ON SOBOLEV SPACES 

In this chapter we shall be giving the proof of Theorem 5. In the first paragraph we 
reduce the study to the case of operators of order zero, and in the second paragraph we 
show that it is possible to restrict our attention to a fixed regularity index in a certain 
range. We then follow the strategy of the proof of continuity of pseudodifferential 
operators in the Rd case due to R. Coifman and Y . Meyer [20]. The proof is based on 
the two following ideas: we introduce the notion of reduced symbols (see Section 5.3) 
of which we prove the continuity. Then, we obtain in Section 5.4 that any symbol a of 
order 0 on the Heisenberg group is a sum of a convergent series of reduced symbols, 
and finally deduce the continuity for the operator Op (a). 

Let us mention that the proof below would be much easier if the symbols were only 
functions of (w,y,r]), and not also of A : in that case, one would not need to use an 
additional cutoff in A via the operators Ap (see Section 5.5), which will induce some 
technicalities. 

5.1. Reduction to the case or operators or order zero 

In this paragraph we shall reduce the study to the case of zero-order operators. 
Suppose therefore that the result has been proved for any zero-order operator, meaning 
that for any operator b G 5 ^ ( 0 ) of regularity Cp(H.d) and for any \s\ < p if p > 
2(2d + 1) (resp. 0 < s < p if p > 0), the operator Op(6) maps continuously H8(Md) 
into itself. 

Let a be a symbol of order p G R . Then for any / G Hs(E.d), 

O p ( a ) / M 
2d-i 
,2 2 tr K-i9 (f)WAx(w)) \X\dd\ 

with 

<?(f){X)Ax(w] J*xopJop J*xopw(a(w,\) cx 

&((ld x J*xopJ*xop {m%#a)Jx 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 
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This can be written 

O p ( a ) / H Op(ò)(Id sd J*xop 

where 6 =f m ^ # a is a symbol of order 0. The boundedness of Op(b) from Hs~^ to 
Hs~^ for \s — < p (resp. 0 < s < p i f p > 0 ) then yields the existence of constants 
C and C such that 

\\Op(a)f\\Hs-» CII fid ked> 
i£ 2 /\\HS-v CWSWH-

Therefore it suffices to prove the theorem for symbols of order 0, which we will 
assume from now on. 

5.2. Reduction to the case of a fixed regularity index 

In this paragraph, we shall reduce the study of the continuity of pseudodifferential 
operators of order 0 on Sobolev spaces from arbitrary Sobolev spaces #*(№*), to 
one Sobolev space Hs(M.d) with a regularity index s such that 0 < s < So, where So 
(chosen equal to p— [p]) will be the index entering the assumptions of Proposition 4.14, 
page 68. 

In order to do so, let us suppose that the continuity in H8(Md) is proved for any 
symbol of order 0 with 0 < s < So (note that So < p)- Consider a symbol a(w, A, £, 77) 
of order 0. Let a be a multi-index in Nd with |a| < [p] and, using Proposition 2.9, 
define theJ*xop symbol ba by 

O p ( M ZaOp(a)(Id sd 2 

Then Op(6a) maps iJ*(HD) into itself for 0 < t < So- Therefore, there exists a constant 
C such that for any / G # T + M ( № * ) , 

H0p(a)/| l/ft+lp] (Md) 
J*xop 

|Op(òa)(Id xc 2 /ll//t(Md) 

C 

|a|<W 

|(Id xc 
xc 

f\ 2 
HHMd) C H/llH*+W(Hd)-

Therefore, Op(a) maps Hs(Md) into itself for s = t+ [p], t < 50, whence for 0 < s < p. 
Assuming p > 2(2cf-h 1) and using the fact that the adjoint of a pseudodifferential 

operator is a pseudodifferential operator of the same order, we get the continuity on 
Hs(Md) for 0 < |*| < p. 

Then s = 0 is obtained by interpolation. 

5.3. Reduced and reduceable symbols 

Let us start by defining the notion of reduced and reduceable symbols. 
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Definition 5.1. — Let t be a symbol. Then t is reduceable if it can be decomposed in 
the following way: for all (w, A, £, rj) e Md x R* x R2d 

£(w, A,£,77) 
kei2d 

tk(w,X,^v) where 

tk(w,X,^v) &^KA)*fc(A,£,r?) 
OO 

p=0 
p w. A <I>fc 

p 
J*xop 

with 

*S(A,£ ,»? : 
def 
J*xop 

|A|£ f\Mv) while J*xop def tfc.(2-pe,2-pt?) J*xopJ*xop 

and $ is a smooth function with values in [0,1], compactly supported in ]0, oo[. 
Similarly 

*fc(A,f,n) def sd |A|£, |Ab? where J*xop de: J*xopop J*xop<wx 

and \I/ a smooth function with values in [0,1], compactly supported in J—1,1[. 
Finally the functions &£(•, A) belong to the Holder space C"(Hd) with 

(5.3.1) Sup 
J*x 

|6*(-,A) J*xop Afc < CO. 

The symbols tk are called reduced symbols. 

It follows from the analysis of the examples of Chapter 2, Section 2.1 that for any 
k e Z2d and peN, the operator Op{bk{w, A)$£(A,£,7?)) is bounded in Hs(B.d) since 
one can write by easy functional calculus 

Op I ht 
p 

w.X) p ,X^V, Op bk up w.X J*xp J*xopJ*xop 

where the two operators of the right-hand side are bounded operators on Hs(M.d) (see 
Chapter 1, Sections 2.1.2 and 2.1.4 respectively). 

The same fact is true for Op(bk_x(w, X)Vk(A, £, r?)). Besides, by Proposition 2.2 stated 

page 29, there is a constant C (independent of A:) such that 

:5.3.2) O p ^ i ^ A ] **(A,f,i7)) \£{H'(Hd)) CAk J*xopJ*xop and 

HOp p $k\ 
^ r> ' 

A, £,?7 \£(H*(Md)) CAk\ p \\n;S(l,g) 

where we recall that g is the harmonic oscillator metric of Section 1.3.2 in Chapter 1. 
The main ingredient in the proof of Theorem 5 is the following result. 

Proposition 5.2. — Let k be fixed in Z2d and tk be a reduced symbol as defined in 
Definition 5.1. The operator Op(tk) maps continuously Hs(M.d) into itself for 0 < 
s < p. Its operator norm is bounded by CAk(l + |fc|)n for some integer n, where C is 
a constant (independent ofk). 

The proof of this proposition is postponed to Section 5.5. 
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Remark 5.3. — Due to Proposition 5.2, a reduceable symbol t is the symbol of a 
bounded operator on Hs(Md) as soon as (Ak(l + \k\)n)kez2d belongs to ^(Z2d). 

5.4. Decomposition into reduced symbols and proof of the theorem 

The aim of this section is to prove the following lemma. 

Lemma 5.4. — Let a be a symbol of order 0. Then a is reduceable and, with the no­
tation of Definition 5.1, for any integer N, there is a constant CN such that for 
any keZ2d, 

(5.4.1) Ak 
qds 

J*xopJ*xop 

In view of Remark 5.3, Lemma 5.4 gives directly Theorem 5 (up to the proof of 
Proposition 5.2). 

Proof. — Let us consider ijj and (j) defining a partition of unity as in (4.4.1) page 73: 
one can write 

f5.4.2) J*xop G M* R2D ^ ( | A | ( £ 2 -fr,2) 

o>0 
0(2"2P|A J*xopwxc 1. 

Then 

a(w, A, £,7? a ( w , A , £ ,77U J*xopJ*xop 
P>< 

a<w,A,£,n (2-*\\\(e+V2 

b-i(w, A, AC \Mv) 
p>0 

.bJw,\,2-> |A|Ç,2-' Alt?) 

with 

6_i(w,A,£,77) def 
a(w, A, £,77' J*xopJ*xop and 

6p(w ,A,£,^ 
def a(w, A, 2P£, 2 V 0(£2 + r72) for p > 0, 

where a(w, A, £, 77) =f a(w, A, —£=, — 3 = ) . The functions bp are compactly supported 

in (£,77), in the ring l for p > 0 and in the ball 25 for p = — 1. Moreover, denoting 
by 9 a differentiation in £ or 77, we have, for all p > —1, 

dbp(w, A, r?) = V{da){w, A, 2 % 2pr?)̂ (C2 + r/2) + 2 £</>'(£2 + r?2)3(™, A, 2*£, 2"r?). 

We deduce that 

\dbv(w,\,£,n)\ C 
2P 

1 + |A| + (2*>£)2 + (2pv)2 
He+v2)ssdf\+cm\<i>'(e+v2)\ 

and 

|A<9aWw,A,£,77)| C|AÖA5(7i;,A,2^£,2p7/) 
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so using the boundedness of the symbol norm of a and the fact that (j) is compactly 
supported, and arguing similarly for higher order derivatives, one gets the following 
uniform norm bound on bp: 

(5.4.3; sup 
J*xop 

J*xopJ*xop J*xop \CP(Md) J*xop 

Now, since for p > 0 the functions bp are compactly supported in (£, 77), in a ring *6 
independent of p, we can write a decomposition in Fourier series: 

bp(w,\,£,rj) = 
kG7?d 

J*xopJ*xop J*xopwx v2) 

where 0 is a smooth, radial function, compactly supported in a unit ring, so that (jxj) = 
0 . We have of course 

(5.4.4) № , A ) 
1 

(2tt)* xc 
e~ik'^bp\ (w,X^,n)d^dri. 

Along the same lines, we get 

&_i(w,A,£,77) 

kez2d 

J*xopJ*xop J*xopJ*xopx 

where \b is a smooth, radial function, compactly supported in a unit ball, so that ibib = 
qs 

Defining 
J*xop def J*xopJ*xopJ*xop 

it turns out that 

a ( w , A,£,r?) b-i(w, A, |A | | , J*xop 

p,k 
bk(w,X)<S>k(2-p AC, 2~p 1AM 

b-i(w, A, A|£, \Hv) 
k 

V ( w , A , £ , ^ ) . 

That concludes the fact that a is reduceable. It remains to prove (5.4.1). From the 
integral formula (5.4.4), we infer that for any multi-index /3 and, to simplify, for p > 0 

k%{w,\) 
1 

J*xop 1? 

J*xopJ*xop 
w,A,£,77) dÇdrjl 

C 
x 

J*xopJ*xopJ*xop dÇdr] 

Using (5.4.3), we deduce that 

(5.4.5) sup 
p,X 

CP№d 
CP№d CP№d) 

CP№d 

and Lemma 5.4 is proved. 
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5.5. Proof of Proposition 5.2 

Now it remains to prove Proposition 5.2. We will first give the main steps of the 
proof and peform some reductions, and then prove the result. 

5.5.1. Reductions. — Let us give the main steps of the proof. An easy computation 
gives that there is a constant C such that for any integer p and any k G Z2D, 

(5-5.1) ll*fc||n;S(l,a) + \\*X-M1,9) < C ( l + 1*1)"-

Therefore, in view of (5.3.2), one has 

C ^ O M ) * ^ , ? ) ) ! ^ . ^ < CAk(l + | * | ) » . 

It remains to consider p G N, and in particular to control the sum over p. The fact 
that bp(w,\) depends on A induces a serious difficulty, which we shall deal with 
by considering a partition of unity in A. Thus by the same trick as before, we use 
functions (f) and i\) such that (4.4.1) holds and we write 

bkp(w, X) = bk(w, Aty(A) + £ bkp(w, X)4>(2~2rX). 
rGN 

Using the fact that <j> is compactly supported, we decompose the function bp(w, 22rA)0(A) 
in Fourier series and write 

bkp(w, A) = £ «#_i(«/)eyAtf(A) + Yl ^>)e i j '2_2rA?(2-2rA), 
wxwc CP№d 

where 

bkj_1{w)= I e - ^ A 6 > , A M A ) d A , bkpir(w)= [ ^xbkp{w,22rX)ct>{X)dX 

and 0, i\) are smooth and compactly supported respectively in l and b such that 
(j)(j> = <f>, and ipip = if). We observe that Estimate (5.4.3) satisfied by bp ensures that 
for all integers N, there is a constant CN such that for all indexes p, r, j , fc, we have 

(5.5.2) sup(l + | i |)^||oj!i . | |Cp№i< 
xc 

wx 
CP№dxcx 

Indeed, by the Leibniz formula 

CP№dCP№d < C 
m<n IK 

e-ijX(X22r)mkß(d^bk)( >,22rA)A~m(örm0)(A) d\ 

< C sup 
CP 

W(ßdßrbkp(w,») 

C sup 
A 

m<n 

CP№dCP№dCP№d№d 
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Owing to (5.4.3), we deduce that (5.5.2) holds. That estimate will ensure the conver­
gence in j of the series. In the following, we therefore consider, for each j and k, the 
quantities 

CP№dCP№d def 
P 

xc xc 
xc (wW(\)*;(\,t,ri) and 

CP№dCP№d def 

v.r 

xxcx CP№dCP№dCP№d 

where (^(A) = e*jA0(A), and ^ ( A ) = e*jA/0(A). Then we will consider the summation 
in k and j of tkj and P-7. 

The analysis of the convergence of P-7 follows the same lines as that of tk* with 
great simplifications since the summation is only on one index, namely p. Therefore, 
we focus on the convergence of tkj and leave to the reader the easy adaptation of the 
proof to the case of . 

Let us therefore now study tkK We truncate bkir into high and low frequencies, by 
defining (for some integer M to be chosen large enough later, independently of all the 
other summation indices), 

(5.5.3) xcx def Sp—M^ p,r and xc def (Id — SP-M b xwc 

where Sp is a Littlewood-Paley truncation operator on the Heisenberg group, as de­
fined in Chapter 4, Section 4.1. Let us notice that by Lemma 4.13, one has the 
following norm estimates on £pr and hpr: 

snr 
xc 

Kpr||o(ed) sun 
p,r 

bkj II 
p,r II 

CP(Md) 

sup 
r 

\hpr llL°°(ed) 2-PP sup 
p,r 

xcx CP(Md) 

sup 
wx 

hpr llcCT(HD) 2_p(p-a) sup 
p,r 

xcxc 
CP(Md)i 

for 0 < a < p. 
This allows us to write tkj1 = $ + ?, with 

CP№dvCP№d dei 

r>,r 
h„JwW(2-2rX CP№d |A | f ,2- ' A»? and 

?(w,A,£,77Ì dei 

p,r 

epr(w)4r>(2-'r\) $k(2~p '\x\e,2-p |A|i7). 

We have dropped the indexes k and j to avoid too heavy notations. Before performing 
the study of each of those operators, we begin by a remark which will happen to be 
crucial for our purpose. 

5.5.2. Spectral localization. — In this subsection, we take advantage of Propo­
sition 4.14 of Chapter 4 (see page 68) to use spectral localisation. We first observe 
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that 

CP№d x \\\k.(2-"i,2-"v) *(2-2^|A|(^2 + T72); 

e' /iÄife.(2-"C,2-",) CP№dCP№dCP№d *(2-*|A |K2 + »,2)) 

where $ is a smooth radial function compactly supported in a unit ring so that CP№d = 
Q 

Symbolic calculus gives that for any N G N , there exists a symbol r\, J such that 

op™(*5) opw(^-ap) 

opw(^)oopw Op) 0Pw(rff), 

where ap(y,rj) = $(2 2p|A|(?/2 + ry2)) and for any integer n one has 

\r{N) n:5(l,o) I ;c(i + ifcii N-\-n2~Np 

One obtains that for some integer n, 

|op-| r k,p ' ll̂ (L2(Rd); C(l + |fc| AT+n 2~NP 

and since O p ( r ^ ) is a Fourier multiplier we get 

(5.5.4̂  IOp( CP№d Hs(Md) C2~Np(l + \k\ \N+n \u\ÌHs(Md)-

Since we deal with Fourier multipliers, we have 

0 p ( $ > Op(ap)Op{ wsx 
sdx 

Oi r{N)) U. 

Finally, by Proposition 4.14 of Chapter 4, we get 

Op(d>> \pOp(ap)Op Ti U 
q^p 

,0Op(aD)Op ̂  p sd Opi riN 
k,v 

sd 

(5.5.5) ^Op(ap)Op($£)< 
q^p 

>qRPiqOp{ Ti . U Op r(N] 
sd 

where 

(5.5.6) \\RP,q\ £(Hs(Md)) Q2~ào\p-q\, 

Therefore we can write 

0P(t) : Op(t») 0p(*b) 0P(t") 
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with, writing <#(A) = (ßj(2-2RX) 

(5.5.7 Op(t«) 
sd 

hpr(w)Ar ipOp(ap) Op(cft$kp) 

p,r 
sd 

hpr(w)Ar qRp,gOp(4>t^kp) 

(5.5.8) CP№d 
p.r 

£nr(w)Ar ipOp(ap)Op( sd V and 

p,r 
Jpr(w)A7 qRPiqOpU3r k 

P 

(5.5.9) Op(^) 
p,r 

bp, (w)ArOi k,p J 

with Ar = Op(0(2 A)) and 0 is a compactly supported function in 6̂  such 
that <j></>> = ft. 

In the following, we are going to study each of these three terms, beginning 
by Op(^) which is a remainder term. Besides, in order to simplify the notation we 
shall write 

u 
kj 
pr 

def O p ( # p 
and we recall that due to (5.5.1) and to the fact that Op(<#$£) = Op(<#)Op($£) 
with Op(<^) of norm 1, there is a constant C such that for all indexes p,r,k,j, 

(5.5.10) \\<i HS C(l + |fe|)n||tt||ff.. 

Moreover, by quasi-orthogonality (see Chapter 4, Subsection 4.4), we have 

(5.5.11) ipArUp^ j c(i + \k\r Cp Cf 2 U\\H* 

where C is a constant and cp, cr denote from now on generic elements of the unit 
sphere of £2(Z). 

5.5.3. The remainder term. — We drop the /^'-exponent in bkjr for simplicity 
and decompose 6p,r in A-frequencies: bp,r = )Cm Am&p?r so that Op(^) is now a sum 
on three indices. We decompose this sum into two parts, depending on whether r < 
m + Mi or r > m + Mi where Mi is the threshold of Proposition 4.15 stated page 74. 

Let us consider the first case, when r < m + Mi . We choose a such that s < a < p 
and by Lemma 4.17 page 76, we find constants C such that 

CP№d A.CWr! IN) 
xc U\\Hs(Md) C ||Am(6pr) CP№d |Op(r (N) 

k,p U\\Hs(Md) 
C2-m{P-<y)Ak\ Op cxc 

k,p NI#s(iHid) 
C2-m(p-<r)Ak 2 - ^ ( 1 +xxc '"+flNltf.(H') 
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where we have used estimates (4.4.8) and (5.5.4). We then obtain 

ra,p,r<ra+Mi 

Am (bVr) Ar 0p(» 
(N) 
K,p 

U 

\Hs(Md) 

C 

m,p 
(m + M i ) Qj^fc||^||jyS(Hd)^fc||^||jyS(Hd) ^fc||^||jyS(Hd) N+n 

f̂c||̂ ||jyS(Hd) 

which ends the first step. 
We now focus on the sum for r > m -h M\ and we use that by Proposition 4.15, the 

function Am(&p>r) Ar0p(r^NJ)u is A-localized in a ring of size 2r. Therefore, in view 

of (4.4.4), it is enough to control the H5(Hd)-norm of J2p,m Am(&p,r) ArOp(r^)u by 
cr with (cr) G £2. We observe that by Lemma 4.17 and (4.4.4), there exists a constant 
n such that 

Am(òp,r) Ar0p [1 
(N 
k,v )u Hs(Md) C||Am(6p,r)| CCT(EId) cr II Op 

(N) 
k,p U Hs(Md) 

^fc||^||jyS(Hd) Akcr2~pN 1 l*l)"+nIMlH.<H') 

where s < a < p and where we have used again (4.4.8) and(5.5.4). Therefore, we 
obtain 

W&p,r) ArOp AN) 
k,p \u\ 

m,p 

cx 

<m,p 

2~ m(p—cr)2_ -Np ^fc||^||jyS(Hd) xcxcx 
f̂clkllH«(Hd) 

xcxc 

which achieves the control of the remainder term. 

5.5.4. The high frequencies. — Let us estimate Op(t$)u in Hs for any |s| < p. 
For any function u belonging to Hs(Wd), we have 

Op(t*)u 
p.r 

^fc||^||jyS(Hd) with 

cv cv ipArOp(ap)Up3r and cvc 

cvc 

vcv A Ft ukj 

Let us deal with upr. As noticed in Chapter 4 Section 4.4, on the support of the 
Fourier transform of ApOp(</>(2-2rA)) we have D\ ~ 22p and |A| ~ 22r. Therefore, 
22(p~r) has to be greater than or equal to 1. This implies that the only indexes (p,r) 
that we have to consider are those such that 0 < r < p. We will then simply bound 
the sum of norms of the terms upr. 

To do so, let us choose a such that \s\ < a < p. This leads, by Lemma 4.13, to the 
following estimate 

^fc||^||jyS(Hd) C2-p(p-a) hpr\\cp\\UpJr\\H*-
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Finally, thanks to (5.5.10) and to the definition of hpr recalled in (5.5.3), we obtain 
for some integer n (recalling that 0 < r < p) 

p,r 
Hv\\H* C ( l + |fc|)n|| sds 

p 

CP№dCP№d sup 
r 

hpr\\c? 

C ( l + |k|)n||u||*. 
p 

CP№dCP№d 

Since a < p and p > —1, we infer that u i-» J2p,rutr ŝ bounded in the 
space £(Hs(E.d)), by the constant C( l + \k\)nAk. 

Let us now study wpr. Arguing as before, we restrict the sum on the integers r 
such that r < q and we get 

p,r 
CP№d c 

p,q^p 
2-p(p-°)qS\ip 

r 
\Kr\\cr2-à°*-* : I + i*i)bii«iih.. 

As before, we get a control by G( l + \k\) Ak. 
So the high frequency part of tk,j satisfies the required estimate. 

5.5.5. The low frequencies. — We recall that by (5.5.8), we have for any func­
tion u belonging to Hs(B.d) 

Op(tb)u 

p,r 

sd sdqsd with 

pi sd pArUp{ap) ukj 
upr 

and odr 
sdss 

^pr' V A / ? uk3 \qi\.rihpi)q u,pr. 

In the following, we are going to use the frequency localization induced by Ap in 
the sense of Definition 4.1. In particular, using Proposition 4.1 of [5] (the statement is 
recalled in Proposition 4.9 page 63), we will be able to say something of the localisation 
of a product of localised terms. We want to use also the localization in A induced by Ar. 
For that purpose, we truncate £pr and in doing so, we add a new index of summation. 
We set £pr = J2m ^m£Pr and we immediately remark that since £pr is a low frequency 
term, then for m > p we have Am^pr = 0. Therefore, the index m is controled by p. 

According to (4.4.8), one deduce that 

[5.5.12 A / L°°(HD) C2~rni sup 
p,r 

\bkj \CP{Md)i 

where C is a universal constant. 
We can now go into the proof of the proposition for upr. Let us start by studying 

ukj 
prm 

def Arn£r)r ,pArOp(ap) ukj 

As soon as the threshold M is large enough, ukjrm is frequency localized, in the sense 
of Definition 4.1, in a ring of size 2P due to Proposition 4.9 page 63. So we can use 
Lemma 4.8 to compute the Hs norm of ^2pukjrm. 

Consider the threshold Mi given by Proposition 4.15. We shall argue differently 
depending on whether r < m — Mi , r > m + Mi , or \r — m\ < Mx. 
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For r < m — Mi , it is enough (due to Lemmas 4.8 and 4.15) to prove that for any 
p, m G N 

(5.5.13) 
r<m—Mi 

\ukj II r' CAk(l + \k\ ) Cm CP№d 

We observe that 

ll^prmlll/2 ||Am£pr||.£,oo I ipArOp(ap ult\ L2 
C I) Arn£pr H L°° Cv cJl + \k\ CP№d U\\H» 

by (5.5.10) and (5.5.11). Therefore, for all integers m we have 

r<m—M\ 
ll̂ ormlU2 C ( l + |fc ncp2~pt \\U\\H' 

Km-Mi 

CP№dCP№d 

C ( l + |fc| ncp2~ps \V>\\H* 'rasup 
p,r 

I Arn^pr \\LC 

by the Cauchy-Schwartz inequality. So it is enough to have 

(5.5.14) m sup 
p,r 

\^m^pr II L° 
€2(N) 

CP№d  

to ensure that (5.5.13) is satisfied, which is implied by (5.5.12). 
Let us now consider the indexes r > m + Mi . This time, it is enough to prove 

[5.5.15' 
m<r—M\ 

\uhj 
I ̂ prm L2 CAk(l + \k\)n cpcr2 ps\\u\\Hs. 

We have, following the same computations as above, 

m<i—Mi 
CP№d L2 c 

m<r—M\ 
Arn&pr II L°° Cp (1 + 1*1)" \u\\H°2-ps. 

Therefore, if 

(5.5.16) 
m 

sup A-m^pr II CAk, 

we obtain the expected result, namely (5.5.15). Condition (5.5.16) is obviously ensured 
by (5.5.12) which achieves the estimate of (5.5.15). 

Finally, let us consider the case \r — m\ < Mi . We shall analyze for f G N U { — 1 } 
the quantity Ay (Am£prApArOp(ap)i^J). We claim that 
5.5.17) 

r.m 
I?—m\<M\ 

Ajf yArn£prA.p ArOp(ap)u 3 <CAk(\ + \h\)n Ci,Cp|M|tf.2-*a, 

L2 

which by quasi-orthogonality will prove the result. 
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We observe indeed that by Proposition 4.15, there exists a constant M2 such that 

r, m 
\r—m\<M\ 

Aj' (Arn£pr ,pArOp(ap)ukpl] 

\r—m\<M\ 
r>j —M2 

Aj' (Arn£pr ipArOp(ap)UpJr] 

Therefore arguing as before, 

r.m 
\r—m\<M\ 

Aj' (Arn£pr ^ArOp(ap)u^ 

L2 

C ( l + |fc| )n cp2-ps\\u\\H° 
i'<r—Mo 
\r—m\<M\ 

cr sup 
n r 

\Am£pr 

The property 

(5.5.18) 3e0 : 0 sup 
m 

sup 
ds 

I Am£pT j |Loo2meo CAK 

induces that the sequence Y^m>j' 2~me°cm belongs to £2,, which is enough to prove the 
claim (5.5.17). Estimate (5.5.12) implies (5.5.18) which concludes the proof of (5.5.17). 

Now let us turn to wpr. We shall separate wpr into three parts, depending on 
whether q ^> p or q <C p, or q ~ p. More precisely, let JVQ G N be a fixed integer, to 
be chosen large enough at the end, and let us define 

v yt + v^ + v* 

n.r 
\uvr ' vr 1 vr 

p,r 

sfds with wpr : 4 r + V + ^ r while 

upr 
q>p+NQ 

P A A R vkj and VPr 
q+N0<p 

£ A A R vkj 
<,prL±qi\.riLp^q Uipr. 

Recall that to compute the Hs norm of v, one needs to compute the £2 norm in j 
of 2js||Aj?j||L2. We are going to decompose as before £pr = ^2mArn£pr and consider 
the cases m < r — Mi , m > r + Mi and |r — ra| < M2. For each term, we use the 
same strategy as the one developed before, in the case of upr. We shall only write the 
proof for the indexes m <r — Mi and leave the other cases to the reader. 

By quasi-orthogonality, it is enough to prove 

(5.5.19) IIAXIIL* CAk(l + \k\)n Cjcr 2 -^ | | U\\HS, 

where v* — J2pwpr and * stands for jj, b or \\. 
• The term Let j > — 1 be fixed. We recall that £pr is frequency localized in a 

ball of size 2P~M and AqArRp^quk^ in a ring of size 29, so by the frequency localization 
of the product (see Proposition 4.9 page 63), there is a constant N1 such that 

sds 

m<i—Mi \J-q\<Ni q>p+NQ 
sq 

Am£pri >qArRp^qUpty 
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Therefore, we have 

2js sds L2 2js 

m<r—M \J-q\<N! q>p+N0 
d A sd qArRp qUvfy\ L2 

C2j& 
m<i—Mi I J-Q\<Ni q>P+N0 

Am £mr sd 'q A 7? iikj\ 
iyrjripìqapr I 

II2 

C 
m<i—Mi 3-q\<Ni q>p+N0 

2Ü-q)s I Amipr I \L°°Cr Cq )Jo(p-q)i i + |*|)nIH|ff., 

where we have used the fact that 

2qs\\ v A 7? ukj 
\.qivriLpq ti/Dr 

sd CCq Cr\\ R ukj Hs 

C Cq Cf )80{p-q) 
P sd 

by (5.5.6), and then (5.5.10). Assuming (5.5.16), the result follows from Young's in­
equality which ends the proof of (5.5.19) for v$ thanks to (5.5.12). 

• The term v*: Using again the frequency localization of the product, one can write 
that for some constant AT3, 

2js\ y I iL2 C2js 

m<r—Mi j-p<N< q+NQ<p 
I Arn£pr I dd iq Ar Rp,qu!fi\\v 

C2js 
m<r—M j-p<N3 q+N0<p 

I Arn£pr I Loo 2 qSCrCq Rp,qupr\ sd 

C2js 
m<i—Mi j—p<N3 q+N0<p 

II Am£pr (I Loo2~qs^ ca2s^q-ph\ ukj 
apr H3 

Cll + \k\)nc U\\H< 
m<r—M\ 

Am£pr | |L°° 
j-p<N3 

2Ü-P)S 

q+N0<p 

c 2\òo-s){q-p) 

thanks to (5.5.6) and (5.5.10). 
Applying Young inequality, we thus obtain for 0 < s < SQ 

(5.5.20: 2js wxcw 
L2 C(l + \k\rcr\\u\\Hs 

m<r—Mi 
||Am p̂r HL00 

CP№d 
2(j-p)scp. 

This ends the proof of the result by Estimate (5.5.12). 
• The term v^: We recall that 

d 

m<i—Mi \p-q\<Nc 
A-m,£pi qAr-Rp^qUp3,. 

It follows that 

2^s|| >jV*\\L2 C2jé 
m<i—Mi -!<3<q+N3 

\p-q\<No 

Am p̂r x,oo q ArRpnUk3\\L2 

[5.5.21 C(l + \k\ ncr\\u\\Hs 

m<r—M\ 

|Am p̂r | |L°° 
j<q+N3 
\p-q\<N0 

2Ü~q)s c 2ô°(q~pï 
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and we conclude as in the case of v*. We point out that it is at this very place that 
we crucially use that s > 0. 

The proposition is proved. • 
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APPENDIX A 

SOME USEFUL RESULTS 
ON THE HEISENBERG GROUP 

A.l . Left invariant vector fields 

Let us recall that on a Lie group G, a vector field 

X:G- TG 

is said to be left invariant whenever the following diagram commutes for all ft G G : 

G df G 

X X 
TG drh TG 

where Th is the left translate on G defined by Th(g) = ft • g. It turns out that f( 
any ft G G, 

(A.1.22) XoTh~- DRH o X. 

In particular, 
X(H) •• dTH(E)X(E) 

where e denotes the identity of G. Therefore, as soon as the vector field X is known 
on e, so is its value everywhere. 

Let us mention that this infinitesimal characterization is equivalent to saying that, 
for all smooth functions f, 

(A.1.23) (Xfh) (XF)H, 

where fh is the left translate of / on tf, given by fh = f o r^. 
To start with the proof of the equivalence of the two characterizations, let us 

perform differential calculus in (A.1.22). We infer that (A.1.22) is equivalent to 

(XOTH)F: (dTHOX)f, 

for any function / G "6°°(G). This can be written for any ft, g belonging to G 

(XF)(RH(G)) df(Th(g))(dTh(g)X(g)) d(foTH)(G)X(G, X(FORH)(G). 
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In other words 
(Xf)orh X(forh), 

for any h E G, which leads to the result. 

A.2. Bargmann and Schrodinger representations 

In this paragraph we discuss some useful results concerning Bargmann and 
Schrodinger representations, starting with the formula giving the Schrodinger rep­
resentation, if the Bargmann representation and the intertwining operator are 
known. 

In a next subsection we prove some useful commutation results. 

A.2.1. Connexion between the representations. — In section we shall give 
a formula for the Schrodinger representation, which is linked to the Bargmann rep­
resentation by an intertwining operator. This formula is of course classical, but we 
present it here for the sake of completeness. 

We recall that the Bargmann representation is defined by 
CP№d CP№d < i\s+2\{£-z-\z\2/2 for A > 0, 

CP№d CP№d ei\s-2\{£--z-\z\2/2) for A < 0 , 

and we also recall the definition of the intertwining operator, as given in (1.2.32) 
page 15: 

CP№d del |A|d/4 
rd/4 

CP№d 
xc 

1 
2|A 

d 
9£ 

e-|A||«l2_ 

PropositionA.l.—Let CP be the Schrodinger representation, defined by 

VF 6 Mx, KxuxwF v*KxF. 

Then s is given by the following formula: 

CPsdf№d _ ei\(s-2x-y+2y£\ 7 « - 2x) VA G K * . 

Proof. — It turns out to be easier to split the representation,cx0 into three parts 
using the simple fact that 

x (x + iy, s) (0,s + 2yx) {x,0)-(iy,0) 

Let us prove the following relations: for A G R, x, y G Md and s £ №.. VF G ?H\ and 
n G MD: 

(A.2.1) CP№dxc (V) eiXs (K\F (V) 

(A.2.2) CP№dxc sdd [KxF)(ri-2x), 

;A.2.3 CP№dxc sd e2tAvi, ( K ™ (V) 
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Notice that those relations give 

[Kx<F) (V çi\(s ,s-\-2x-y * rt,A TP 
{x,Q)U{iy$)r t 

x 

çi\(s+2y-x) çi\(sçi\(sçi\(sçi\(s x 

çi\(s+2y-x) [K*u(iy,o)F 77 - 2x) 

çi\s+2i\y-r}—2i\yx ( KXF] [rj — 2x 

which is precisely the expected result. 
So it remains to prove the basic relations (A.2.1)-(A.2.3). The first one comes 

trivially from the fact that uxQ ^ is the multiplication by the phasis elXs. 
For the two other ones, we write, for any function F in $£x and using Proposi­

tion IV.2 of [23], 

KXF) (77) 
|A| 
7T 

5d/4 
e 

IAIITJI2 
2 

lR2d 
-2i\v-(r]-rj ) MM2F(iv) dvdrf. 

Therefore, for À > 0, we have on the one hand 

( x y F(n) 
A 

< 7T 

5d/4 A|r?|2 
e 2 

R2d 
-2iAV-(r7-r7')-A|r?'|2-A|y|2 -2iXy-(iv] F i v - y)) dvdrj' 

X 
7T. 

, 5d/4 
eA l^-+2iXyri 

!M2d 

-2i\u-(r]-'n'-iy)-2iXy-ri'+AI y\2-^'\2F(iu)dudr)' 

A 
7T 

5d/4 
eX^+2i\yrj 

R2d 
e~2i\u( çi\(sçi\(sçi\(sc F(m) du A / ' 

2iXyr} (KxF)(V) 

On the other hand, one has 

[KxUds(x,o)F (V. 
X 

,7T 

v5d/4 
P 

AM2 
2 

/TO2d 
e-2iXv(ri-r)')-X\ri'\2+2Xix-v-X\x\2 F(iv — x) dv drjf 

A 
<7T 

, 5d/4 

p 
\MÎ+2A|x|2-2Ar7-x 

/E2d 
— 2iAn(r7—r) — x)—X\r) — x\" F(iu) du dï]' 

A 

x 

5d/4 
x |r?-2x|2 

2 
(R2d 

-2iAn(r?-2x-V/)-A|r7//|2 F(iu) du dr]" 

(KxF)(r>-2x). 

Similarly, for A < 0, 

çi\(sçi\(sv Fin) 
X' 
7T 

5d/4 
e 

Akl2 
2 

/E2d 

e2iXv(r)-ri,)+X\ri,\2+X\y\2+2iXy(iv) F(i(v + y))dv drf 

X 
7T 

5d/4 
€ 

Â 2-+2iA2/.7? 
/E2d 

2iÂ (r7—77'H-i2/) -2iAyV-A|y|2+A|t|/|2 F(iu)dudr)' 
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xc 
7T> 

5d/4 
e 

çi\(sçi\(sçi\(s 

fgf 
2iAu.(ry-»7")+A|V,|' 42tAv(riv(ri 

2iAu.(r2iAu.(r2iAu(r 

and 

42tAv(rivxc A 
7T 

5d/4 Mv\2 
2 /M2d 

42tAv(ri-îï')+A|ti,|2- 2\ix-v+\\x\2 F(w x) dv drj 

A 

7T 

v 5d/4 
e 

-Â -2A|x|2+2Ar7.x 

!R2d 
2i\u(7]—r)'—x)+\\ri'—x\CÀ F(iu) du drj 

A 

7T 

5d/4 
e 

\ ln-2x|2 _A 2 
sd 

e2iAu(r7-2a:-r7/,)+A|r/,,|2 42tAv(ri4dfi 

(üfAF)(f7-2a:). 

This proves the estimates, hence the proposition is proved. • 

A.2.2. Some useful formulas. — This section is devoted to various properties 
for Bargmann representation that we collect in the following lemma. 

Lemma A.2. — The following commutation formulas hold true: 

1 
2> 

42tAv(ri -ZjUw and 1 
2) 

42tAv(ri xcxcxc 

for any A G R* and any w = (z, s) G H . 

Proof — In order to prove Lemma A.2, let us first recall formulas (1.2.27) giving the 
expression of Qj and Qj : 

qsq 
ds 

-2IAI& if A 0 

% if A 0, 
and 

sd 
ssd 

0£, if A > 0, 
-2IAI& if A < 0 

Let us now prove the first formula, in the case when A > 0. On the one hand, it is 
obvious that 

C I ss F(0 -2A&<F(0. 
On the other hand, an easy computation implies that 

uxwQxF(0 --42tAv(riri .A\s+2\(Z-z-\z\2/2) F(£-z). 

which implies that —ZjU^ = ^[Qj,u*], for A > 0. In the case when A < 0 one has 

QUÌF(Z) dçAuXwF(0) 

42tAv(ri wcxcxc ,iAs-2A(̂ -2-|z|2/2) Fit - z) 
42tAv(ri 2\ziUXF{i) 

which ends the proof of the commutation properties cxc 2A 2,A c 
df 
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It remains to check the formula for xc xc Arguing as before, one gets for A > 0 

42tAv(ri 42tAv(rixc 

uid£iF(£)xc 2\z piXs+2X<t'z-\z\2/2 FU - z) 

< d ^ F ( 0 x c x •2XZJUÌFU): 

which gives the formula in the case when A > 0. Finally, for A < 0 

42tAv(ri42 42tAv(ricx 

and 

42tAv(ri 2A (6 - XCVXCXCZi )uXwF{0. 

This leads easily to the second commutation property. 

Lemma A.2 allows to infer the following result, which is useful in particular to 
prove Lemma 2.7. 

Lemma A3. — One has the following properties: 

42tAv(ri 42tAv(ri and 42tAv(ri 42tAv(ri 

for any A G M* and any w = (z, s) G M.D. 

Proof. — First, let us compute ZjU^v_1 in the case when A is positive. By definition, 
one has 

42tAv(rixc (dz. + izjds 42tAv(ri 

(dZj + izjds \F(£ + z)e -i\s+2\(-£-z-\z\2/2 

^ — ZAÇj — AZj %zA-iX))uXiFU 

- 2 A ^ < - 1 F ( 0 . x c x c w c 

Whence the first formula thanks to (1.2.27). 
Along the same lines, when A is negative one can write 

ZjUÌ-iFU) wcw izjds )<->F{Z) 

wcww • iZidsìFiZ - ^)e-^s-2A(-«^-|2|V2) 

(\Zj iZi(-iX) X-iF(Z) ut-^Fu: 
42tAv(ri xccc 42tAv(rixc 

We deduce thanks to (1.2.27) that ZjU^^ = 2XzjuxJ_1 + uxJ.1Qx. Let us remind that 

by Lemma A.2, QX ux — uXJQX = -2XZJU* which can be also written 

QUX- «¿-1 Qj 2XzjuxJ.1. 

This implies that42tAv(ri= Qx42v(ri which ends the proof of the first assertion. 
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Now, let us compute ZjUX _x. Again, one can write for A > 0 

42tAv(ri {d-z,-iZids)uxF{i) 

(05 - iZjda) F(t + z)e -i\s+2\(-£-z-\z\2/2) 

42tAv(ri (Xzj+iZjl - « A ) X _ X F ( £ 

42tAv(rixcx 2XzjU^F{C). 

We point out that, again by (1.2.27), this can be expressed as follows 

42tAri 42tAv(ri 2\zju^1. 

But Lemma A.2 states that QjUx — u^Qj = 2XZJUXJ which can be also written 

42tAv(ri 42tAv(ri -2A«,-<-i 

This ensures that ZjU^-x =42tAv(riin the case when A > 0 
Finally, in the case when A < 0, one gets 

Zj<-iF(S) (dz, - izjds K-iFsds(i 

[dz, - izjds) F(Z + z)e -i\s-2\(-(-J-\z\2/2) 

(2\Çj + XZJ izJ-idfdXVu^Fti) 

42tAv(ri42i 

QjK-sdsiFit) 

where we have used one more time (1.2.27) for the last equality. This ends the proof 
of the lemma. • 

Finally let us state one last result, which provides the symbol of the multiplication 
operator by s. 

Lemma A.4. — Let a G 5ed(/i), w = (z, s) G M.d and w G №.d, then 

tr [isu%, T*xopw(a(w,\))Jx) \\\dd> tr (u?TJ*xopw [g(w,\))Jx) \X\dd\ 

with g G Smd(fj,) and 

(A.2.4) <*{9) = -d\ (<r(a)) 

or equivalently 

(A.2.5) g = -dxa 1 
2A i<j<d 

rijd+2sdstAv(ri)a 

Proof. — Let us first observe that by Proposition 1.22 page 22, the function g defined 
by (A.2.4) is a symbol of order \i since 

(l + |A| + Y2 n2 dfd 
2 Il + |A|)"FC_1 (l + IAI + ^ + R,2 

v M-Ii9|  2 I (l + |A|)-FC. 
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Besides, by the definition of tAvi (see (1.2.15)) we have 

42tAi 'is + 2£ • z - \z\2 ux for A 0, 
42tAv [is-2Ç-z + \z\2 uw for A < 0 

Therefore, using Lemma A.2 and using formulas (1.2.27), we have for A > C 

sdfs dxut-
i<j<< 

1 
2A2 QX[Qi,ui}-

1 
4A2 Qj IQj «à 

dxuxw 1 
4A2 i<j<d 

[ui,Qj] sdf 
dff 

Qx[ux,Qj] 

Similarly, for A < 0, we have 

isux dxuxw 
l<j<d 

1 
2A2 

42tAv(rix 1 
4A2 Qj Q] ux 

11W 

dxuxw- 1 
4A2 

l<j<0 
K,QSDSX; Q-

xx 
cc <,Qj] 

Setting Ax(w) = Jx*opw(a(w,\))J\ and using tr(AB) = tr(BA) we get 

tr (isu^Axiw 

tr (d\uxT. A\(w) 1 
4A2 

l<j<d 
tr UX~ Q) Ax{w)Qx QXAx(w i fA>0, 

tr (isu^,Ax(w) 

tr (dxu^Axiw) ] 
4A2 

KKd 
tr Qj AxMQ- -QUX(W)\) fA<C 

By (1.2.37), using the fact that opw(r]j) = —id^ and opw(£j) = ei along with 
formula (2.3.3) recalled page 36, we get for A > 0, 

Q*,Ax(w)Qx QUx{w) 

\J*X sdsd 6, op™ a(w,X){di:l sd 42tAv(ri opw(a)] Jx 

2Ajropw -2da 
i<j<d 

[Vj +42tAv(ria - dnja) Jx-

Similarly, for A < 0, 

[Qj>A> 42tAv(ri Ax(w) 

-2À J>p* -2dc 
i<j<d 

42tAv(ri 42tAv(ri sx 
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set 

;A.2.6) 42tAv(rix -2da-
i<j<d 

42tAv(rix idc-awxwxx-d^a), 

we have obtained 

'A.2.7' V A ^ O , tr (ISÌÒ.Ax (WW tr (dxu%Ax(w)) 
1 

2; 
tr(^JA*op>)JA 

We focus now on the term dxiò,Ax (w). We have 

tr (dxu^Ax(w) 8^ (tr (uà.Ax(wì) tr (uidxAxli 

This implies, bv integration bv parts, tha 

tr (dxKAx(w)i \X\dd\ = d 
A 

:v (u^Ax(w))\X\ddX tr (u^dxAx(w))\X\ddX. 

We claim that 

'A.2.8' dxAx(w) J*xop™ dxa(X,w) 
I 

2A 
L<7<< 

[^d^a-rjjd^a] Jx 

This yields, with (A.2.6) and (A.2.7), 

tr (isu^Ax(w) \X\adX tr 42tAv(ri à 
> -a -dxa 

1 

sd Ki<à 
Av(ri jd^a-r i jd^a) 

x 
> a 

1 
2A 

i<j<d 
Jli + ¿£7 idç.a- drj.a) Jx \\X\ddX 

tr 42tAv(ri -dxa 
1 

2A 
i<j<d 

ri3d + ^ % ) a h \X\ddX 

We then set 

9 z -dxa-\-
1 

2A 
i<j<d 

42tAv(ri42tAv(ri 

and observe that a simple computation implies (A.2.4). Therefore, in order to finish 
the proof of the lemma, it only remains to prove (A.2.8). 

Let us now prove (A.2.8). We have, recalling that Ax(w) = JAop™(a(it;, A)) Jx and 
using the fact that dx(JxJx) — 

dxAx(w) A*opu dxa(X,w) Jx J*x[opw(a(w,X)) (dxJ\)Jx]J\-

Besides, for a G N , we have JxFa x = ha whence 

[dxJx)Fa,x Jx(dxFa,x) 

Let us recall that for £ G Cd, Fa A(£) z TATI M df 
dfdf 

so that dxFa x H 
2A 

Fa,X We 
get 

Va G Nc (dxJx)Jxha = (diJi)F„ * = a 
2A 

sd 
1 

4A 
:^2 sd d)ha. 
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Therefore, 

(dxJxUl 
s 

4A 
sds sd 

d 

4 A 
Id. 

We then obtain 

[op-(a),(9AJA)JA* 
1 

4A 
op-(a) , £2 s 

i 
2A 

!<3<d 

42tAv(ri 42tAv(ris 

which proves the lemma. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 





APPENDIX B 

WEYL-HÖRMANDER SYMBOLIC CALCULUI 
ON THE HEISENBERG GROUP 

In this appendix, we discuss results of Weyl-Hôrmander calculus associated to the 
Harmonic Oscillator, and in particular we prove Propositions 1.20, 1.22 and 1.16 and 
stated in the Introduction. 

B.l. A-dependent metrics 

This section is devoted to the proof of Proposition 1.20 stated page 21. We therefore 
consider the A-dependent metric and weight 

VA ̂  0, V G R2d 9a (d£,dri 
de 42tAv(rixccc 

i + |A|(i + e2] 

and 

42tAv(ri def 
fi + iAia- x vl/2 

and we aim at proving that the structural constants, in the sense of Definition 1.12 
page 17, may be chosen uniformly of A; the second point stated in Proposition 1.20 
is obvious to check. 

It turns out that the proofs for the metric and for the weight are identical, so let 
us concentrate on the metric from now on, for which we need to prove the uncertainty 
principle, as well as the fact that the metric is slow and temperate. 

The uncertainty principle is very easy to prove, since of course 

qsq (d£, dri 1 IAIÜ- »2i 

s 
[de + dr,2) 

and 
A < 1 + A 1 sq 

The slowness property is also not so difficult to obtain. We notice indeed that, with 
obvious notation, 

(A 
9e 

|A| 12 
1 + IAIM- 2 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



108 APPENDIX B. WEYL-HORMANDER SYMBOLIC CALCULUS 

and we want to prove that there is a constant C, independent of A, such that if 

s e - e ' 2 < c _ 1 1 + |A|(1 + 

then 
1 + |A|(14 >2i 1 + IAlfl '2i 
1 + IAK1 + 2̂  i + IA|(i + e2) 

<c. 

To do so, we shall decompose the phase space R2d into regions in terms of the respec­
tive sizes of ©2 and ©/2. In the following we shall write 02 -C ©'2 if, say ©2 < 10 ©'2, 
and |0| ~ |0'| will mean that, say ^O2 < 0'2 < 10 02. 

Suppose first that 62 <C 0'2. Then of course 

1 + IAK1 e2) i + |A|(i + e,2): 

so we assume that C > 1. Moreover, using the obvious algebraic inequality 

O'2 < 2| ? + 2©2, 

we deduce thai 

|A|©'2 < 2|A| f + 2IAI <(2C 1- -2)(l + |A|(l + e2)) 

which leads immediately to the result as soon as 

2CT1 2 < C. 

Conversely if O2 S> O'2, then it is clear that 

1 + iAid »,2)<i + |A|(i + e2) 

Along the same lines as above we get 

lAie2 2|A|0'J 2C (i + |A|(i + e2); 

(2C 2)(1 |A|(1 qsq 

which choosing C large enough (independently of A) gives the result. Since the esti­
mate is obvious when |©| ~ |©'|, the slowness property is proved, with a structural 
constant independent of A. 

Finally let us prove that the metric is tempered, with uniform structural constants. 
This is again slightly more technical. We need to find a uniform constant C such that 

1 IAKH >2i +i 
s • lAin >'2i 

qs 1 
1 + |A|(1 2) 

A 
2 

Notice that in the case when |9| ~ |©r|, then the estimate is obvious because the 
left-hand side is bounded by a uniform constant. Let us now deal with the two other 
types of cases, namely |6|2 < I©'!2, and |0'|2 <C |0|2. 

Let us start with the case when the left-hand side has power +1. If |©|2 I©'!2, 
then the left-hand side is uniformly bounded so the result follows with C > 1. Con­
versely if I©'!2 < |0|2, then we notice that if 0 < |A| < 1, then the left-hand side is 
bounded by 2 + 02 while the right-hand side is larger than (7(1 + c@2(l + @2)) so the 
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estimate is true. On the other hand when |A| > 1 then factorizing the left-hand side 
by A and using the fact that lA]"1 < 1 and (lA^1 + 1 + O'2)"1 < (1 + O'2)"1 we get 

1 IAK1 + 92] 
l + |A|(l + 6'2) 

2-
i + e2 
1 +G)'2 

2(1+ e2 

Again, since in that case |© — 0'|2 > c©2, it comes 

1 1 + A( l 4- SZ) 

|A| 
e-e'i2 fi + ce2(i + e2) 

which implies easily the result. 
Now let us deal with the case when the left-hand side has power -1. The arguments 

are similar. Indeed if |0'|2 <C |0|2 then the left-hand side is uniformly bounded so 
the result follows. Conversely if |©|2 <C |0'|2 then when 0 < |A| < 1 we use the fact 
that the left-hand side is bounded by 2 + 0/2 whereas the right-hand side is larger 
than c(l + ©,2). When |A| > 1 then as above we write 

i + |A|(i + e/2) 
i + |A|(i + e2; 2 

,1 + e'2 
i + e2 

2 ( i+ e/2), 

and the result follows again from the fact that since in that case |© — 0'|2 > c6/2, 
one has 

] 
i + |A|(i + e2) 

A 
o-o ' l 2 i + c6,2(i + e2)) (l + c6'2) 

The proposition is proved. • 

B.2. A-dependent symbols 

In this subsection we shall prove Proposition 1.22 stated page 22, giving an equiv­
alent definition of symbols in terms of the scaling function a. 

For any multi-index 3 satisfying; \B\ < n, we have 

a(a 
a(a 

[a(a)(w< A, £,7?̂  A 
101 
2 a(aa(a w, A,sgn(A) 

d 

IAI 
df 

A| 

(B.2.1) |a|U;V(M) ' l + |A| + £2 + 772) 
qsqs 

qs 

Besides, there exists a constant C > 0 such that for A G R, 

(\dx)k(o-(a) a(ava(aa(a C (Xdx)ka w, A, sgn(A 
sd 

1Â1 
V 
sd 

C 
<|/3|=fc 

a(aa(aa(aa(a a(av w, A, sgn(A 
sd 

IAI 
V 

A 

< C!|a||fc,sHd(M) (l + IAI + ^ + r?2; sdf 
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The converse inequalities come easily: one has a G SWd(fi) if and only if for all 
k, n G N, there exists a constant Cn^ such that for any ¡3 G Nd satisfying \f3\ < n and 
for all (w, A, v, v) belonging; to Md x M2d+1, 

(B.2.2) (A£>A; 
^fc||^||jyS(Hd) 

(7(a)) ((7(a)) 
I(7(a))xcc 

(7(a)) ( l + | A | + £ 2 + 7 ? 2 
xcxcx 

xc2 

We then remark that if |A| < 1, the smoothness of a (a) yields that (B.2.1) implies on 
the compact {IAI < 1}, 

( l + |A|)fc (7(a))(7(a))(7(a)) 
(7(a)) 

Cn,k ( l + |A| + £2 + r;2) 
(7(a)) 

2 

Besides, for |A| > 1, (B.2.2) § 

dkxd? Jxcvxa(a)) 
(7(acvx))xc cn,k (i+\x\+e+v2 

(7(a)) 
2 ( l + |A|)-fe. 

Conversely, if (1.4.2) holds, then one gets (B.2.2) since the function ( ^ j ^ is bounded 

for any integer p G { 0 , . . . , k}. This ends the proof of the proposition. • 

B.3. Symbols of functions of the harmonic oscillator 

In this section we aim at proving that an operator R(£2 — A$) given as a function 
of the harmonic oscillator by functional calculus is a pseudodifferential operator, and 
at computing its (formal) symbol. We refer to Proposition 1.16 stated page 20 for 
a precise statement. Taking the inverse Fourier transform, we have by functional 
calculus 

me cx 
i 

2TT 
/TO 

eir(7(a))(7(a))xcx(£2-A,)£(r) dr. 

We then use Mehler's formula as in [25], which gives (1.3.14) after an obvious change 
of variables. 

We therefore have formally 

(B.3.1) r(x) 
1 

2TT 'RxR 

(7(a))(7(a))(7(a))(7(a))(7(a)) R(y)dr dy, 

and let us now prove that the function r is well defined outside x = 0, and that the 
map (£,77) > r(£2 + rj2) satisfies the symbol estimates of the class S(m^,g). 

If x G E* is fixed, then (B.3.1) defines r(x) as an oscillatory integral. Indeed the 
change of variables u — tgr performed on each interval of the form ] — § + kir, kit + ^ [ 
for k G Z turns the integral into a series of oscillatory integrals: we have r(x) = 

(7(a))(7(a)) (x) with 

rk(x) def 1 

2TT 
(-l)kd 

'TU 
eixuR (kir + Arctgtx) ( l + u21 i~xdu 

1 

2 ^ 
(-l)fcdwccw 

'RxR 
çixu—iyArctgu—iykTrj, (y)(l-\-u2)^~1dudy. 
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We remark that these integrals have a non stationary phase for |fc| > 1. This fact will 
be used below. We also observe that for N0 G N, by integrations by parts, 

kN°rk(x) : 
1 

2tt 
-kN° -1 \kd 

' 1 x 1 
çixu—iy Arctgu—iyktr R(y)(l + u2] 12 1dudy 

1 

2tt 
((7(a) 

7TN° 
-1 

1 x 1 
çixu—iykir ( 1 + u2 

d 2 ((7(a) R(y)e-iyArctgu" du dy 

1 

2tt 
—i N0 

nN0 
-1 ka 

1 x 1 
çixu—iykir—iy Arctgu l + uz 12 1 fNo(y,u)du dy 

where fNo(y^) = e^Arctgud^° (R{y)e-iyArctgu). The fact that the integrals rk(x) are 
well defined away from zero and that the series in k converges then comes from the 
following lemma. 

Lemma B.l. — Let f and g be two smooth functions on R such that 

Vn G N, 3C 0, VuGR, \dn9(u)\ C(l + u2] v — n 
1 

V n € N . 3C 0, V y e R , dnf(y)\ C(l + y2 2 

for some G R. Then for any a > 0, there exists a constant CQ > 0 such that the 
function 

((7(a)((7(a) xc 
/ 1 x 1 

ixu—iy Arctgu—iy k-K f(y)g(u)dydu 

satisfies 
x cxcc a I A / , *) (*) ! Cn(l +x2 I 2 

Before proving this lemma, let us show how to use it. The function fN0(y,u) above 
writes as a sum of terms satisfying the assumptions of the Lemma. Therefore, (1 + 
\x\)~flkNork(x) is uniformly bounded in k and x whence the convergence of the series. 
To prove the symbol estimate, we notice that two integrations by parts give 

xrf{x) ix 
4 x 1 

(cosr)-dtgre^tgr-î2/T R(y)dydr 

x 
' 1 x 1 

(cost) -<ftg7 çixtgr-iyr R\y)dydr 

wx 
' 1 x 1 

'cost 
((7(a) 

T 
a + (tgr)2 

((7(a) feixtgr\ e-iyrRf(y)dydr 

i 
' 1 x 1 

ç-iyr+ixtgT -iy 'costì 
((7(a) 

T 
(1 + Ctgr)2)-1 

((7(a) (COST) 
-dtg" 

T 
(1 + (tgr) \2\-l \R'{y)dydT. 

This last integral is an oscillatory integral of the same kind as the one defining r(x) , 
and can also be studied using Lemma B.l. This allows to obtain the symbol bounds, 
by iteration of the argument to any order of derivatives. 
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Now let us prove Lemma B.l. The idea, as is often the case in this paper, is to 
use a stationary phase method. The variable x may be seen as a parameter in the 
problem, and one notices easily that x may be factorized out of the phase after having 
the change of variable y = x(l + £). Moreover one notices that the phase is stationary 
at the point t = u = 0, when k = 0. This implies that one should use a dyadic 
partition of unity centered at that stationary point. One furthermore notices that 
if \u\2 <C then the ^-derivative of the phase is bounded from below, so it is enough 
to use a du vector field in the integrations by parts. As it produces naturally negative 
powers of £, one can deduce the convergence of the dyadic series. In the case \t\ < \u\2 
however that vector field cannot work since the it-derivative of the phase may vanish. 
One must then use the whole vector field (in both u and t directions), and gaining 
negative powers of u turns out to be more difficult. 

So let us start by performing the change of variables y = x(l -f t) so that I(f,g) 
writes 

I{f,9){x) -ixkn 
R x R 

((7(a)((7(a)((7(a) 1 + t) g(u)dtdu, 

where 

$k(u,t] det u — Aretes) t (Arctgu + kir) 

The phase Qt satisfies 

((7(a) Arctgit kir and du$k 
u2 -t 

' 1 + u2 

When k 7̂  0, is therefore non stationary, whereas when k = 0, 3>o has a non-
degenerate stationary point in (0,0). Therefore, we introduce a partition of unity on 
the real line: 

Mz e R, 1 
p£NU{-l} 

sdd 

with C-i compactly supported in a ball and for p G N , (p(z) = ((2 pz) where C is 
compactly supported in a ring. We get 

Kf,9) = e — ixkn 

p,q€NU{-l} 
((7(a)((7(a) 

with 

((7(a)((7(a) 
def 

X 
M v R 

ix$k(u,t) :P(t)cq(u)f X(l+t) g(u)dtdu. 

These integrals are now well-defined because they are integrals of smooth compactly 
supported functions. We have to prove the convergence of the series in p and q. As 
explained above, we shall argue differently whether \u\2 <C \t\ or not. So let us fix 
a parameter s < 1/3, to be chosen appropriately below, and let us separate the 
study into two subcases, depending whether 2P > 22̂ 1+£) (which corresponds to the 
case \u\2 < \t\) or 2P < 22^1+£). 
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Let us suppose p > 2q(l + e). We observe that in that case one has u2 — t ^ 0 
on the support of ÇP(t)Çq(u), so as explained above one can use integrations by parts 
with the vector field 

(B.3.2) e def (Uu)) xc xcx 

Of course one has 

£(exp(ix$k)) : ÇP(t)Çq(u) 
Performing N integrations by parts for N G N, we find 

ÇP(t)Çq(u) ÇP(t)Çq(u) 

R x E 
eix*k(t)N f(x(l + t)) g(u>)(p(t)cq(u) dtdu. 

We then write 
t -£ + ic 

where 
def 

C = 
cwwc 

(du$k)2 
- 2 

u{l + t) 
ÇP(t)Çq(u) 

(1 + u2)2 

{u2 -t)2 
- 2 

u{l + t] 
(u2 -1)2 

Let us analyze the properties of £*. If (u,t) belongs to the support of (q(u)(p(t), we 
have for p > 2q(l + e) 

c2 2p 2,2P-C,22c \t-u2 Ci 2p(l + 22q-p) C22p. 

We infer that 
ÇP(t)Çq(u) C2~p+2q and c C2~p+q. 

Using q < JL 
2(l+e)' we have 

-p + 2q -1 
1 

1 + 
v 

F 
1 +f. V 

e 
wcxc 

d 
2 

-eq 

so that there exists some S > 0 such that on the integration domain 

(B.3.3) l a ^ f c l ^ + lc (j 2-s(p+^), 

By induction one actually also can prove that 

(B.3.4) Vra G N , wxwx ÇP(t)Çq(u) 

Now we shall use the Leibniz formula in order to evaluate (£*)N ( f(x(l + 

*))s(«)CP(t)Cr(«) This generates three typical terms: 

(1) 
Hfif 

<wx< NQN (Uu)g(u)) f(x(l + t)XP(t), 

(2) def CNC(u)Q(u)f(x(l •t))CP(t) and 

(3 def 

n-\-m+p=N 
n<m,T)<N 

cnd™c ÇP() ÇP() Uu)g(u)) f(x(l + t))Ut) 

Due to the estimates (B.3.3) and (B.3.4), it turns out that the term (3) is an inter­
mediate case between (1) and (2) so we shall only study the two first tvpes of terms 
Vi urn 
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We observe that defining ((u) = supn<Ar |£(n)(?i)| and using the symbol estimate 
on g, we have 

qN {Ça(u)g(uY C(\ + \u\)v2 -qN' ÇP() 

so by (B.3.3) and using the symbol estimate on / we obtain that 

KDi ÇP()ÇP() -,-SNIp+q) :i + iuir(i + ix(i+t)i(i+t)i: %(«xccv)C,(«). 

Using Peetre's inequality 

xc (i+t)i(i+t)i(i+t)i C (1 + 1*1)" (l + M)"" , 

we therefore conclude that (recalling that x is away from zero) 

(B.3.5) x^N 

KXK 
\(l)\dtdu (i+t)i(i+t)i i-at+ImI ,\2SN{p+q) qv+p\n\+p+q-qN 

A similar argument allows to deal with the second term. Indeed we have 

(B.3.6; 1(2) q 2~àN{p+q) fi + ltiir (î + W i + o i r (i+t)i(i+t)i 

By integration we obtain 

(i+t)i 
'ixR 

\(2)\dudz (i+t)i(i+t)i(i+t)i 2-8N(p+q)+qv+p\ii\+p+q 

Therefore, choosing N > <S_1Max(zv +1, \p\ +1), we obtain the convergence in p and q 
of the series, uniformly with respect to k and x in the set {\x\ > a}, with the expected 
bound \x\^. 

Let us now suppose p < 2q(l + e). The objective is now to gain negative powers of 
2q. The difficulty then comes from the fact that du$k may vanish. We observe that 
for this range of indexes p and q, we have q > 0 so that the integral is supported far 
from u = 0. For this reason, if x is a smooth cut-off function, compactly supported in 
the unit ball and identically equal to one near zero, then the function 

(i+t)i X 
t - u2 

UK 

is a smooth function for any «GM. The value of k will be chosen later. 
We now cut IPtq into two parts, writing IVA = I^q +12 q with 

(i+t)iwxw def 
X 'RxR 

(i+t)i i - x 
't-u2 

(i+t)i 
/ ( * 1+t )ff(«)C(t) )Çq(u)dt du. 

Let us study first ll . We notice that on the domain of integration, one has \t — u2\ > 
C\u\K, bo on the support of C we have \t — u2\ > C2Kq. It follows that 

t-u2 
1 + u2 

(i+t)i(i+t)i 

which leads to 

(B.3.7) xv h. -i : c2~^K~2>q 
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Therefore the ^-derivative of the phase does not vanish in this case, so we may use 
again the vector field £ defined in (B.3.2). The coefficients of that vector field are now 
of order 2~(K~2^q and one has 

(B.3.8) (i+t)i -2 
u(l + t] 
(u2 -1)2 cx 

2g(l + 2P) 

2^q 
<j 2-2«g+3q(l+£) 

We therefore choose K such that 2K > 3(1 + s). By induction, one sees that 

(B.3.9) Vra e N, |dmc| ç 2~mq—2K,q-\-3q(l+e) 

We can write 

(i+t)i Tl-N 
'ixM 

(i+t)i (i+t)i N i - x 
't-u2 

UK (i+t)i(i+t)i / ( * ( ! +t))C„ (t)dt du. 

Compared to the case studied above, the terms generated by (£*) are of the form 

(1) def 
(i+t)i NfiN i - x 

t-u2 

ii.K 
Çq(u)g(u) (i+t)i t))CP(t), 

(2'; def cN 1 X 
't-u2 

UK Cq{u)g(u) (i+t)i t))Ut) and 

3' def 

n+m+v=N 
n,m,p<N 

cnd™c(du$k -pdpJ > i - x 
't-u2 

uK 
CJu)g(u) f(x(l (i+t)i(i+t)i 

As in the previous case and due to (B.3.8) and (B.3.9), it is enough to control the 
two first terms. 

Thanks to (B.3.8), the term (2') is bounded exactly as before, assuming that 2K > 
3(1+6:). Now let us study (1'). As above we apply the Leibniz formula, which compared 
to the previous case generates derivatives of %. However they produce negative powers 
of 29, as one differentiation gives the term 

wx 
t-u2 

UK 
2 

(i+t)i 
K 

U 

t-u2 

(i+t)i 

which may easily be bounded by 

wx t-u2 
uK > 

2 
(i+t)i 

K 

U 
t-u2" 

UK J 
: C(2~q{K~1> .2-<r (i+t)i(i+t)i 

assuming moreover that K < 2, which is possible since e < 1/3. Similarly m derivatives 
produce 2~9(/c-1)m, and it is easy to conclude that (1;) may be dealt with as above, 
hence can also be summed over q and p (recalling that p < 2q(l + e), so that decay 
in 2q is enough to conclude to both summations). 

Now let us study I2 , which is more challenging as the u-derivative of the phase 
can now vanish. We therefore need to use the full vector field 

ds 
def 1 

sd sd -2' sd 

which satisfies 
Lk (exp lia sd x exp (ia sd 
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Let us check that this vector field is well defined: on the one hand if k — 0, then the 

assumption q > 2(i+g) hnplies q > 0, thus u is supported on a ring and | Arctgu| > CQ 

on the support of (q{u). On the other hand one notices that |V$fc|2 > (Arctgu+/c7r)2 > 
CQ for k > 1. It follows that there is a universal constant such that for any k > 0 and 

on the domain of integration, the following bound holds: 

'«ibi"1 C. 

Moreover we have 

L*k = -Lk + ck 

with 

Ck 
1 

7. 
(i+t)i c 

1 

xc 

(i+t)i 

xc 2 
- 2 

x(i+t)i 
xc 

(a2$feau$fe (i+t)i(i+t)i - 2 
(i+t)i 

xc 
(i+t)i(i+t)i 

1 

i 

(i+t)i 

$k\2 

2 

(i+t)i 
(du$k?dl$k - 2dl$kdt$kdu$k 

In view of 

(i+t)i -- 2 
u l + t 

1 + w2 2 
and (i+t)i 

1 

1 + w2 

we have 

(B.3.10) cc C 7$t 1-2 (2P_3<; 2-2^ C2-(l-2£)q_ 

An easy induction left to the reader actually shows that 

(B.3.11) Va € N2, |d?U)t)cfc Cr2-(l«l + 1)(1-2£)9. 

We then write for AT e N 

I2 (i+t)i (i+t)i j * 
xc 

X 
t - u 2 

xc 
f(x(l + t) (i+t)i(i+t)ixw dt du. 

Now we need to understand the action of the operator(i+t)i. The main difficulty 
will come from the t-derivative, which does not produce directly negative powers of u. 
However we notice that on the domain of integration, one has 

t = u2 ZuK vith \Z\ 1, 

so since K has been chosen smaller than 2, there is a constant c > 0 such that 

1*1 u\2 ZuK\ c\u\2. 

This means that the domain of summation is actually essentially restricted to 

(B.3.12) 2q P ; 2q(l + e 

so it suffices to gain negative powers of t to conclude to convergence. 
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The constant term ck has already been computed and estimated in (B.3.10)-
(B.3.11). Moreover following similar computations to above, for any given function F 
one may write that 

\(Ll)NF\ C sup 
\a\=N 

(i+t)i(i+t)i cNkF\ 

(B.3.13) c 

\a+ß\+m—N 
a , ßLm<N 

(i+t)ixc (i+t)i 
c 
(u,t) 

F 

The first step of the analysis therefore consists in estimating, for any \(3\ < N, the 

quantity 

m+m' = \ß\ 

(i+t)i x 
t-u2 

UK 
Çq(u)g(u) Mt)f(x(l + t)) 

Let us start by studying the action of the it-differentiations on x t-u2 
UK 

g(u)(q(u). 

On the one hand one has, using the symbol estimate on 

gm 
^u [(q(u)g(u)) C2q^~m\q(u) 

where (q(u) = supm<N \d™(q(u)\. This can in turn be written 

(B.3.14) \d™(Ca(u)g(u))\ C2q^-m)C(2-qu 

where £ is a nonnegative, smooth compactly supported function such that ( = 1 on 
the support of ( . 

On the other hand, as we have seen above one has the following identity: 

sd 
q 

X 
t-u2 

uK X' 
t-u2 

UK 
2 

uk-\ 
K 

U 
t-u2' 

UK 

so since the support of x! does not touch zero, one has on the support of Çq the 
following estimate: 

qs X\ 
t-u2" 

UK 
< C(2~q{K-l) -2~q C2-q(K-l) 

as soon as K < 2. Actually by induction one also has 

[B.3.15) Vra G N , ^u Y 
t-U2 

UK 
çi<2 — q\K—X)m 

The Leibniz formula yields for any m < N 

X 
t-u2' 

uK (q(u)9 (u) c 

m'<m 

m 

m' 
(i+t)xci xc(i+t)i 

prni—m' 
uu X 

t-u2 

UK 

whence by (B.3.14) and (B.3.15) the estimate 

(B.3.16) gm I 
wu ' X 

t - u2 

UK 
^q{u)g{u) C2q^-^-1)m)((2~qu). 
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Now let us consider ^-derivatives. The Leibniz formula again implies that for any m' < 
N 

(B.3.17) df X 
t-u2 

uK 
)Ut)f(x(l + t)) X 

<t-u2 

UK 
df Çp(t)f{x(l + t)) 

0<n'<m/ 

m' 
n' 

df X 
't-u2 

UK 
I df-n :P(t)f{x(i+t)) 

For the second term in the right-hand side of (B.3.17), one uses the fact that on the 
support of Cp one has the estimate 

df X 
t-u1 
xc 

1 
\u\n'K (i+t)i 

t-u2 
uK 

(B.3.18) C2~qn \ 

In order to also control the action of multiple differentiations in the t and u directions 
of du X t-uz 

lK 
, it is useful to notice that 

du X 
't-u2 

UK 
2 

uK 1 ^ 
t-u2 

UK 
K 

U 
X 

t-u2 

UK 

where Y is a smooth compactly supported function. So ̂ -derivatives of du X 
t-u2' 

UK 
are controled exactly like d+ X 't-u2 ' 

UK 
Estimate (B.3.18) gives, along with the symbol estimate satisfied by / , for any n' < 

(i+t)i 

df c 
t-u2 

ii.K 
dm -n ÇP(t)f(x(l + t))\ (i+t)i(i+t)i(i+t)i(i+t)i (l + |x( l+«) (i+t)iv(i+t)i 

where again £ is a nonnegative, smooth compactly supported function such that £ = 1 
on the support of £. 

Peetre's inequality allows finally to write that for any m' < N and any 0 < n' < ra', 

cv 
cv 

t-u2 

UK 
(i+t)i :jt)f(x(i+t)) fyy — qKn—p(m —n ) (l + |x |r(l + |xt|)^C(2-pt 

hence for any mf < iV, we get 

0<n'<m' 
m 
n' 

d? X 't-u2 
UK (i+t)ivwv kp(t)/0r(i + t)) 

(B.3.19) 

ry—qKf)— p{m —n ) '1+ X )"(1 + \xt\)MÇ{2-H) 

(i+t)i(i+t)i (l + \x\ (i+t)i C(2""t). 

Finally let us deal with the first term on the right-hand side of (B.3.17). We write, 
using Peetre's inequality again, that 

(B.3.20) X 
t-u2 

uK 
a? Ut)f(x(l + t)) £72-p(m'-M) (l + \x\r+M<;(2~pt), 
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and plugging (B.3.19) and (B.3.20) into (B.3.17) therefore gives 

sds [X 
t-u2 

uK 
(i+t)i(i+t)i •t CC(2-pt)(2 -qn+p\ß\ n-p{m -\fi\) (l+\x\)"+M. 

Putting the above estimate together with (B.3.16) allows to obtain that 

rn-\-m' — \ß\ 

Qmgm cv 
t-u2 

UK 
C(u)g(u) (i+t)i(i+t)i •t) 

CC(2-pt)a2-gu) 
m+m' = \ß\ 

2(i(l'~ (K~ i)m) (i+t)i(i+t)i _ 2-P(™'-\V\ (1 + IdV'+M 

hence, bounding p by 2q(l + e), we get 

(1 + 14 (i+t)i jm+m' = \ß grngni X t-u2 
UK (i+t)i(i+t)i \Ut)Hx(l +1 

(B.3.21) CC(2-pi)C(2~9w; (i+t)i(i+t)i 2g(i/+2|iu|(l+e) (K-l)m) e2~QK _|_ 2~PM 

Finally let us go back to (B.3.13). Denoting [x =f 2|//|(1 + e) and choosing 

F def Y 
t-u2 

UK 
f(x(l+t))g< («)Cp(t)Cr(«)» 

one has the following estimate: 

(1+1*11 \—u—\u\ [Ll)NF\ CC(2-n)C f2-qu)2q{v+^ 

|a| + |0|+n 
\a\,\ß\,n<N 

2-(|a| + l)(l-2e; )q-n(l-2e)q-q(,c-l) m(2~qK + 2~p№*~m' 

C2-N(l-2e)q cai-ptK (2-qu)2q{v+rì 
m+m'=N 

2~ <?(«— l)m 2~qk _|_ 2~PRN 

using the above estimate along with (B.3.11) and (B.3.21). 
The conclusion comes from (B.3.12). This ends the proof of the proposition. 

B.4. The symbol of Littlewood-Paley operators on the Heisenberg group 

In this section we shall prove Proposition 4.18 stated in Chapter 4.1, giving the 
symbol of the Littlewood-Paley truncation operators. The proof relies on the argu­
ments of the previous section, proving Proposition 1.16. 

Recall that as defined in Definition 4.3, 

cv vf)(K ^ ( / ) ( A ) Ä * 2~2pDx) ^ ( / ) ( A ) J*xR*(2-2p4\X\ £ + £ 2 ) ) Ja-

If X is a smooth cut-off function compactly supported on R and such that \(X) = 1 
for |A| < 4 and * ( A ) = 0 for |A| > 5, then 

0"( P/)(A) : P(f)(\)JtR* (2-2p4|A|( * + £2))x(2-2pA)A 

It will be important in the following to notice that for fixed we are only concerned 
with bounded frequencies A. 
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We now apply Proposition 1.16 and write 

R*(2-'H\\\ (i+t)i op№ (#„(A, £,»/)) 

with 

(B.4.1 (i+t)i(i+t)i 
1 

2TT , rR x R 
(cost) e* :(e2+^2)tgr-rr) R*(2-2p+2| \\r)dr dr 

For A ^ O , a change of variable shows that *P(A,Ç, 77) = 0(2_2p|A|, 2"2p|A|(£2 + r?2)) 
as stated in Proposition 4.18. 

Let us prove now that $p G SMd (0). Actually due to the comment above, it is enough 
to prove that the function (A, £,77) i-> $P(A, £, r/)x(2_2pA) is a symbol in 5Md(0). It is 
moreover enough to prove it for p = 0. 

We first observe that by Proposition 1.16, $0 A, sgn(A} sd 
sd 

_JL_ 
sd 

0 ( |AU2 + 

v2 is well defined for A ^ 0 and is a symbol in 5(1, a) for any A. Besides, Remark 4.19 
gives that $0 h&s the required regularity close to A = 0, and as noted above one can 
also restrict our attention to a compact set in A. All those observations imply that to 
prove that the function 3>o(A,£,77) belongs to the symbol class 5 ^ ( 0 ) , it is enough 
due to Proposition 1.20 to prove the following estimate: for any compact set K of R* , 
(B.4.2) 

N 3Ct n 0, Vp G R , VA xc ( i + p2)t(AdA; (i+t)i (A,p) (i+t)ivc 

We point out that by Proposition 1.16, we already now that this estimate is true 
for A fixed in R*. Moreover since A belongs to a compact set, it is enough to consider 
the Xd\ derivatives and to prove that {\d\)(j){\, p) may be bounded independently 
of A. 

In fact we shall prove that Xd\(j)(X,p) has the same integral form as </>, which 
by a direct induction will allow to conclude the proof of the proposition. So let us 
compute Xd\(f)(X, p). We have 

Xd\MX,p) 1 
2ATT 

(cosTrde^tgr-rr) i 

A 
(ptgr - rr) 1, R*(4r)drdr, 

so integrating by parts we get 

\d\<t>(\,p) 
1 

2ATT 
(cost, -d^jriptgr-rr) dr sd 

tgr 

T 
(i+t)i(i+t)i R*(4r) dr dr. 

which gives finally 

\d\</>(\,p) 
1 

2ATT 
(cosr)-dei^T-rT 4 

p tgr — rr 

r 
(iT) '(4r) dr dr. 

One then notices that 

pex (ptgr) A 
i 

;i + (tgr)2 (i+t)ixc (i+txc)i 

ASTÉRISQUE 342 



B.4. THE SYMBOL OF LITTLEWOOD-PALEY OPERATORS 121 

which allows to transform the integral into 

AdA</>(A, p) 
2 

Att 
(cosrrde^tgT-rr) (Ä*)'(4r) drdr 

2 
Ì7T 

(cosr)~d tgr 
r(l + (tgr)2) 

e~irTdr (i+t)i (iT)'(4r) drdr. 

The first integral on the right-hand side is exactly of the same form as 0, so to conclude 
we need to prove that the second integral can also be written in a similar way. Let 
us perform an integration by parts in the r variable. This produces the following 
identity: 

(cost)"* 
tgr 

r(l + (tgr)2) 
-e-irrdT (i+t)i dr dr 

e-irr+\ptgr ir — dT [COST) tgr 
r(l + (tgr)2 

(Ä*);(4r) drdr 

which again is of a similar form that can be dealt with as in the proof of Proposi­
tion 1.16. 

The proof of Proposition 4.18 is complete. • 
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