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Juin 2009 

GAUGE THEORY A N D LANGLANDS DUALITY 

by Edward FRENKEL 

INTRODUCTION 

In the late 1960s Robert Langlands launched what has become known as the 
Langlands Program with the ambitious goal of relating deep questions in Number 
Theory to Harmonic Analysis [39]. In particular, Langlands conjectured that Galois 
representations and motives can be described in terms of the more tangible data of 
automorphic representations. A striking application of this general principle is the 
celebrated Shimura-Taniyama-Weil conjecture (which implies Fermat's Last Theorem), 
proved by A. Wiles and others, which says that information about Galois represen­
tations associated to elliptic curves over Q is encoded in the Fourier expansion of 
certain modular forms on the upper-half plane. 

One of the most fascinating and mysterious aspects of the Langlands Program is 
the appearance of the Langlands dual group. Given a reductive algebraic group G, one 
constructs its Langlands dual LG by applying an involution to its root data. Under the 
Langlands correspondence, automorphic representations of the group G correspond 
to Galois representations with values in LG. 

Surprisingly, the Langlands dual group also appears in Quantum Physics in what 
looks like an entirely different context; namely, the electro-magnetic duality. Looking 
at the Maxwell equations describing the classical electromagnet ism, one quickly no­
tices that they are invariant under the exchange of the electric and magnetic fields. It 
is natural to ask whether this duality exists at the quantum level. In quantum theory 
there is an important parameter, the electric charge e. Physicists have speculated that 
there is an electro-magnetic duality in the quantum theory under which e <—> 1/e. 

(*) Supported by DARPA through the grant HR0011-09-1-0015 and by Fondation Sciences Mathé­
matiques de Paris. 
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Under this duality the electrically charged particle should be exchanged with a mag­
netically charged particle, called magnetic monopole, first theorized by P. Dirac (so 
far, it has not been discovered experimentally). 

In modern terms, Maxwell theory is an example of 4D gauge theory (or Yang-Mills 
theory) which is defined, classically, on the space of connections on various G c-bundles 
on a four-manifold M, where Gc is a compact Lie group. ^ Electromagnet ism 
corresponds to the simplest, abelian, compact Lie group U(l). It is natural to ask 
whether there is a non-abelian analogue of the electro-magnetic duality for gauge 
theories with non-abelian gauge groups. 

The answer was proposed in the late 1970s, by Montonen and Olive [46], following 
Goddard, Nuyts and Olive [25] (see also [12, 50]). A gauge theory has a coupling 
constant g, which plays the role of the electric charge e. The conjectural non-abelian 
electro-magnetic duality, which has later become known as S-duality, has the form 

(0.1) (Gc, 9) (LGc,l/g). 

In other words, the duality states that the gauge theory with gauge group Gc (more 
precisely, its "N = 4 supersymmetric" version) and coupling constant g should be 
equivalent to the gauge theory with the Langlands dual gauge group LGC and coupling 
constant 1/g (note that if Gc = U(l), then LGC is also U(l)). If true, this duality 
would have tremendous consequences for quantum gauge theory, because it would 
relate a theory at small values of the coupling constant (weak coupling) to a theory 
with large values of the coupling constant (strong coupling). Quantum gauge theory 
is usually defined as a power series expansion in g, which can only converge for small 
values of g. It is a very hard problem to show that these series make sense beyond 
perturbation theory. 5-duality indicates that the theory does exist non-perturbatively 
and gives us a tool for understanding it at strong coupling. That is why it has become 
a holy grail of modern Quantum Field Theory. 

Looking at (0.1), we see that the Langlands dual group shows up again. Could 
it be that the Langlands duality in Mathematics is somehow related to 5-duality in 
Physics? 

This question has remained a mystery until about five years ago. In March of 2004, 
DARPA sponsored a meeting of a small group of physicists and mathematicians at 
the Institute for Advanced Study in Princeton (which I co-organized) to tackle this 
question. At the end of this meeting Edward Witten gave a broad outline of a relation 
between the two topics. This was explained in more detail in his subsequent joint 
work [34] with Anton Kapustin. This paper, and the work that followed it, opened 

We will use the notation G for a complex Lie group and Gc for its compact form. Note that 
physicists usually denote by G a compact Lie group and by Gc its complexification. 
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new bridges between areas of great interest for both physicists and mathematicians, 
leading to new ideas, insights and directions of research. 

The goal of these notes is to describe briefly some elements of the emerging picture. 
In Sections 1 and 2, we will discuss the Langlands Program and its three flavors, 
putting it in the context of André Weil's "big picture". This will eventually lead 
us to a formulation of the geometric Langlands correspondence as an equivalence of 
certain categories of sheaves in Section 3. In Section 4 we will turn to the S-duality 
in topological twisted N = 4 super-Yang-Mills theory. Its dimensional reduction 
gives rise to the Mirror Symmetry of two-dimensional sigma models associated to the 
Hitchin moduli spaces of Higgs bundles. In Section 5 we will describe a connection 
between the geometric Langlands correspondence and this Mirror Symmetry, following 
[34], as well as its ramified analogue [26]. In Section 6 we will discuss subsequent 
work and open questions. 

Acknowledgments. — I thank Sergei Gukov, Vincent Lafforgue, Robert Langlands, 
and Edward Witten for inspiring discussions. I also thank S. Gukov and V. Lafforgue 
for their comments on a draft of this paper. 

I am grateful to DARPA (and especially Benjamin Mann) for generous support 
which has been instrumental not only for my research, but for the development of 
this whole area. I also thank Fondation Sciences Mathématiques de Paris for its 
support during my stay in Paris. 

1. LANGLANDS PROGRAM 

In 1940 André Weil was put in jail for his refusal to serve in the army. There, 
he wrote a letter to his sister Simone Weil (a noted philosopher) in response to her 
question as to what really interested him in his work [36]. This is a remarkable 
document, in which Weil tries to explain, in fairly elementary terms (presumably, 
accessible even to a philosopher), the "big picture" of mathematics, the way he saw 
it. I think this sets a great example to follow for all of us. 

Weil writes about the role of analogy in mathematics, and he illustrates it by the 
analogy that interested him the most: between Number Theory and Geometry. 

On one side we look at the field Q of rational numbers and its algebraic closure 
Q, obtained by adjoining all roots of all polynomial equations in one variable with 
rational coefficients (like x2 + 1 = 0). The group of field automorphisms of Q is 
the Galois group Gal(Q/Q). We are interested in the structure of this group and its 
finite-dimensional representations. We may also take a more general number field— 
that is, a finite extension F of Q (such as Q(i))—and study its Galois group and its 
representations. 
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On the other side we have Riemann surfaces: smooth compact orientable surfaces 
equipped with a complex structure, and various geometric objects associated to them: 
vector bundles, their endomorphisms, connections, etc. 

At first glance, the two subjects are far apart. However, it turns out that there 
are many analogies between them. The key point is that there is another class of 
objects which are in-between the two. A Riemann surface may be viewed as the set 
of points of a projective algebraic curve over C. In other words, Riemann surfaces 
may be described by algebraic equations, such as the equation 

(l.i) y2 = x3 + ax + 6, 

where a, b G C. The set of complex solutions of this equation (for generic a, b for 
which the polynomial on the right hand side has no multiple roots), compactified by 
a point at infinity, is a Riemann surface of genus 1. However, we may look at the 
equation (1.1) not only over C, but also over other fields—for instance, over finite 
fields. 

Recall that there is a unique, up to an isomorphism, finite field ¥ q of q elements for 
all q of the form pn, where p is a prime. In particular, ¥p = It/pL ~ { 0 , 1 , . . . ,p — 1}, 
with the usual arithmetic modulo p. Let a, b be elements of ¥ q . Then the equation 
(1.1) defines a curve over Fq. These objects are clearly analogous to algebraic curves 
over C (that is, Riemann surfaces). But there is also a deep analogy with number 
fields! 

Indeed, let X be a curve over ¥ q (such as an elliptic curve defined by (1.1)) and F 
the field of rational functions on X. This function field is very similar to a number 
field. For instance, if X is the projective line over ¥ q , then F consists of all fractions 
P(t)/Q(t), where P and Q are two relatively prime polynomials in one variable with 
coefficients in ¥ q . The ring ¥q[t] of polynomials in one variable over ¥ q is similar to 
the ring of integers and so the fractions P(t)/Q(t) are similar to the fractions p/q, 
where p, q G Z. 

Thus, we find a bridge, or a "turntable"—as Weil calls it—between Number Theory 

and Geometry, and that is the theory of algebraic curves over finite fields. 

In other words, we can talk about three parallel tracks 

Number Theory Curves over ¥q Riemann Surfaces 

Weil's idea is to exploit it in the following way: take a statement in one of the 
three columns and translate it into statements in the other columns [36]: "my work 
consists in deciphering a trilingual text; of each of the three columns I have only 
disparate fragments; I have some ideas about each of the three languages: but I know 
as well there are great differences in meaning from one column to another, for which 
nothing has prepared me in advance. In the several years I have worked at it, I have 
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found little pieces of the dictionary." Weil went on to find one of the most spectacular 
applications of this "Rosetta stone": what we now call the Weil conjectures describing 
analogues of the Riemann Hypothesis in Number Theory in the context of algebraic 
curves over finite fields. 

It is instructive to look at the Langlands Program through the prism of Weil's 

big picture. Langlands' original formulation [39] concerned the two columns on the 

left. Part of the Langlands Program may be framed as the question of describing 

n-dimensional representations of the Galois group Gal(F/F) , where F is either a 

number field (Q or its finite extension) or the function field of a curve over Fq. ^ 

Langlands proposed that such representations may be described in terms of automor­

phic representations of the group GLU(AF), where Ap is the ring of adeles of F. I will 

not attempt to explain this here referring the reader to the surveys [13, 15, 23]. 

However, it is important for us to emphasize how the Langlands dual group ap­

pears in this story. Let us replace GLn(Ap) by G(Ap), where G is a general re­

ductive algebraic group (such as orthogonal or symplectic, or E%). In the case when 

G = GLn its automorphic representations are related to the n-dimensional represen­

tations of Gal(F/F) , that is, homomorphisms Gal(F/F) —> GLn. The general Lang­

lands conjectures predict that automorphic representations of G{Ap) are related, in 

a similar way, to homomorphisms Gal(F/F) —> LG, where LG is the Langlands dual 

group to G. (3) 

It is easiest to define LG in the case when G, defined over a field k, is split over 

that is, contains a maximal split torus T (which is the product of copies of the multi­

plicative group GL\ over k). We associate to T two lattices: the weight lattice X*(T) 

of homomorphisms T —> GL\ and the coweight lattice X*(T) of homomorphisms 

GLi -> T. They contain the sets of roots A c X*(T) and coroots Av c X*(T) of 

G, respectively. The quadruple (X* (T), X* (T), A, Av) is called the root data for G 

over k. The root data determines the split group G up to an isomorphism. 

Let us now exchange the lattices of weights and coweights and the sets of simple 

roots and coroots. Then we obtain the root data 

(X.(T),X*(T),AV,A) 

of another reductive algebraic group over C (or Q£), which is denoted by LG. (4) Here 

are some examples: 

(2) Langlands' more general "functoriality principle" is beyond the scope of the present article. 
(3) More precisely, LG should be defined over Q^, where £ is relatively prime to q, and we should 
consider homomorphisms Gal(F/F) —• LG(Q£) which are continuous with respect to natural topology 
(see, e.g., Section 2.2 of [15]). 
(4) In Langlands' definition [39], LG also includes the Galois group of a finite extension of F. This 
is needed for non-split groups, but since we focus here on the split case, this is not necessary. 
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G LG 

GLN GLN 

PGLN PGLN 

Sp2n 50271+1 

Spin2n so2n/z2 

Eg Es 

In the function field case we expect to have a correspondence between homomor-

phisms^5) G&\(F/F) —> LG and automorphic representations of G(Ajp), where Ap is 

the ring of adeles of F, 

AF = 

xex 

'FX 

FX ~ ¥qx((tx)) being the completion of the field of functions at a closed point x of X, 

and the prime means that we take the restricted product, in the sense that for all 

but finitely many x the element of FX belongs to its ring of integers 0X ~ FX[[£X]]. 

We have a natural diagonal inclusion F C Ap an hence G(F) C G(Ap). Roughly 

speaking, an irreducible representation of G(Ap) is called automorphic if it occurs in 

the decomposition of L2(G(F)\G(AF)) (with respect to the right action of G(Ap)). 

For G = GLN, in the function field case, the Langlands correspondence is a bijection 

between equivalence classes of irreducible n-dimensional (^-adic) representations of 

Gal(F/F) (more precisely, the Weil group) and cuspidal automorphic representations 

of GLn(AF). It has been proved by V. Drinfeld [8, 9, 10, 11] for n = 2 and by 

L. Lafforgue [37] for n > 2. A lot of progress has also been made recently in proving 

the Langlands correspondence for GLN in the number field case. 

For other groups the correspondence is expected to be much more subtle; for 

instance, it is not one-to-one. Homomorphisms from the Weil group of F to LG (and 

more general parameters introduced by J. Arthur, see Section 6.2) should parametrize 

certain collections of automorphic representations called "L-packets." This has only 

been proved in a few cases so far. 

2. GEOMETRIC LANGLANDS CORRESPONDENCE 

The above discussion corresponds to the middle column in the Weil big picture. 

What should be its analogue in the right column—that is, for complex curves? 

In order to explain this, we need a geometric reformulation of the Langlands cor­

respondence which would make sense for curves defined both over a finite field and 

(5) More precisely, the Galois group should be replaced by its subgroup called the Weil group. 
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over C. Thus, we need to find geometric analogues of the notions of Galois represen­
tations and automorphic representations. 

The former is fairly easy. Let X be a curve over a field k and F — k{X) the field 
of rational functions on X. If Y —> X is a covering of X, then the field k(Y) of 
rational functions on Y is an extension of the field F = k(X) of rational functions 
on X, and the Galois group Gal(k(Y) / k(X)) may be viewed as the group of "deck 
transformations" of the cover. If our cover is unramified, then this group is a quotient 
of the (arithmetic) fundamental group of X. For a cover ramified at points a?i, . . . , x n , 
it is a quotient of the (arithmetic) fundamental group of X\{xi,... ,xn}. Prom now 
on (with the exception of Section 5.4) we will focus on the unramified case. This means 
that we replace Gal(F/F) by its maximal unramified quotient, which is nothing but 
the (arithmetic) fundamental group of X. Its geometric analogue, when X is defined 
over C, is 7Ti(X). 

Thus, the geometric counterpart of a (unramified) homomorphism Gsl(F/F) —> LG 
is a homomorphism 7Ti(X) —• LG. 

From now on, let X be a smooth projective connected algebraic curve defined 
over C. Let G be a complex reductive algebraic group and LG its Langlands dual 
group. Then homomorphisms ni(X) —> LG may be described in differential geometric 
terms as bundles with a flat connection (the monodromy of the flat connection gives 
rise to a homomorphism TT\{X) —> LG). Let E be a smooth principal LG-bundle on X. 

A flat connection on E has two components. The (0,1) component, with respect to the 
complex structure on X, defines holomorphic structure on E, and the (1,0) component 
defines a holomorphic connection V. Thus, an LG-bundle with a flat connection on 
X is the same as a pair (2?, V), where E is a holomorphic (equivalently, algebraic) 
^G-bundle on X and V is a holomorphic (equivalently, algebraic) connection on E. 

Thus, for complex curves the objects on one side of the Langlands correspondence 
are equivalence classes of flat (holomorphic or algebraic) LG-bundles (E, V). 

What about the other side? Here the answer is not quite as obvious. I will sketch 
it briefly referring the reader to Section 3 of [15] for more details. 

Recall that automorphic representations of G(Ap) (where F is a function field of 
a curve X defined over ¥ q ) are realized in functions on the quotient G(F)\G(AF). 

An unramified automorphic representation (which corresponds to an unramified 
homomorphism Gel(F/F) —> LG) gives rise to a function on the double quotient 
G(F)\G(AF)/G(9F), where QF = Uxex @x- A key observation (which is due 
to Weil) is that this double quotient is precisely the set of isomorphism classes of 
principal G-bundles on our curve X. ^ This statement is also true if the curve X is 

( 6) Prom now on we will only consider algebraic bundles. 
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defined over C. Thus, geometric analogues of unramified automorphic representations 
should be some geometric objects which "live" on a moduli space of G-bundles. 

Unfortunately, for a non-abelian group G there is no algebraic variety whose set 
of C-points is the set of isomorphism classes of G-bundles on X (for G = GL\ we 
can take the Picard variety). However, there is an algebraic moduli stack denoted 
by Buncr- It is not an algebraic variety, but it looks locally like the quotient of an 
algebraic variety by the action of an algebraic group (these actions are not free, and 
therefore the quotient is no longer an algebraic variety). It turns out that this is good 
enough for our purposes. 

So which geometric objects on Bun^ will replace unramified automorphic 
representations? Here we need to recall that the function on the double quo­
tient G(F)\G(AF)/G(0F) attached to an unramified automorphic representation 
has a special property: it is an eigenfunction of the so-called Hecke operators. Those 
are cousins of the classical Hecke operators one studies in the theory of modular 
forms (which is in the left column of Weil's big picture). The geometric objects we 
are looking for will be certain sheaves on Bun<3 satisfying an analogue of the Hecke 
property. We will call them Hecke eigensheaves. 

More precisely, these sheaves are ^-modules on Bun^r. Recall (see, e.g., [24, 35]) 
that a ©-module on a smooth algebraic variety Z is a sheaf of modules over the 
sheaf ©^ of differential operators on Z. An example of a ©-module is the sheaf of 
sections of a flat vector bundle on Z. The sheaf of functions on Z acts on sections 
by multiplication, so it is an 0^-module. But the flat connection also allows us to 
act on sections by vector fields on Z. This gives rise to an action of the sheaf ©z, 
because it is generated by vector fields and functions. Thus, we obtain the structure 
of a ©-module. 

In our case, Bun^ is not a variety, but an algebraic stack, but the (derived) category 
of ©-modules on it has been defined in [3]. On this category act the so-called Hecke 

functors. These are labeled by pairs (x, V), where x E l and V is a finite-dimensional 
representation of the dual group L G, and are defined using certain modifications of 
G-bundles. 

Instead of giving a general definition (which may be found in [3] or [15]) we will 
consider two examples. First, consider the abelian case when G = GL\ (thus, we 
have G(C) = C x ) . In this case Bun^r may be replaced by the Picard variety Pic 
which parametrizes line bundles on X. Given a point x G X, consider the map 
hx : Pic —> Pic sending a line bundle £ to £(x) (the line bundle whose sections are 
sections of £ which are allowed to have a pole of order 1 at x). By definition, the 
Hecke functor H\,x corresponding to x and 1 G Z (which we identify with the set of 
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one-dimensional representations of LG = GL\), is given by the formula 

H1,x(F) = h*x(F) 

Next, consider the case of G = GLn and V = V^1 ? the denning n-dimensional 
representation of LG = GLn. In this case Bun^L N is the moduli stack Bun n of rank n 
bundles on X. There is an obvious analogue of the map hx, sending a rank n bundle 
M to M(x). But then the degree of the bundle jumps by n. It is possible to increase it 
by 1, but we need to choose a line £ in the fiber of M at x. We then define a new rank 
n bundle M' by saying that its sections are the sections of M having a pole of order 
1 at x, but the polar part has to belong to £. Then degM' = degM + 1. However, 
we now have a Pn-1 worth of modifications of M corresponding to different choices 
of the line £. The Hecke functor Hya x is obtained by "integrating" over all of them. 

More precisely, let $£ecke&x,x be the moduli stack of pairs (M,M') as above. It 
defines a correspondence over Bun n x Bun n : 

(2.1) 

Bun n 

dfg 
$~{/ ecke^.^ ̂ x 

K 

Bun n 

By definition, 

(2.2) H1,x(F) = h*x(F)H1,x(F) = h*x(F) 

For irreducible representations of LG with general dominant integral highest 
weights A there is an analogous correspondence in which the role of the projective space 
P n _ 1 is played by the Schubert variety in the affine Grassmannian of G corresponding 
to A (see [3, 45], and [15] for a brief outline). 

Allowing the point x to vary, we obtain a correspondence between Bun^ and 
X x Bun<3 and Hecke functors acting from the category of ©-modules on Bun^ to the 
(derived) category of ©-modules on X x Bun^, which we denote by Hy, V G Rep LG. 

Now let & = (E, V) be a flat ^G-bundle on X. A ©-module 57 on Bun^r is called 
a Hecke eigensheaf with respect to S (or with "eigenvalue" 6) if we have a collection 
of isomorphisms 

(2.3) Hv(&)czVs®Sr, 

compatible with the tensor product structures. Here 

Vg = SxV 

is the flat vector bundle on X associated to 6 and V, viewed as a 0-module. Thus, 
in particular, we have a collection of isomorphisms 

HVtX(?)~V®&, xex. 
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When we vary the point x, the "eigenvalues", which are all isomorphic to the vector 
space underlying V, combine into the flat vector bundle V& on X. 

The geometric Langlands conjecture may be stated as follows: for any flat 
LG-bundle & there exists a non-zero 2)-module Ug on Bun^ with eigenvalue &. 

Moreover, if & is irreducible, this 0-module is supposed to be irreducible (when 
restricted to each connected component of Bun^) and unique up to an isomorphism (it 
should also be holonomic and have regular singularities). But if & is not irreducible, we 
might have a non-trivial (derived) category of Hecke eigensheaves, and the situation 
becomes more subtle. 

Thus, at least for irreducible <?, we expect the following picture: 

(2.4) 
flat 

LG-bundles on X 

Hecke eigensheaves 

on Bun<3 

& Fe 

The geometric Langlands correspondence has been constructed in many cases. For 
G = GLn the Hecke eigensheaves corresponding to irreducible & have been con­
structed in [17, 22], building on the work of P. Deligne for n = 1 (explained in [40] 
and [15]), V. Drinfeld [9] for n = 2, and G. Laumon [40] (this construction works for 
curves defined both over ¥q or C). 

For all simple algebraic groups G the Hecke eigensheaves have been constructed 
in a different way (for curves over C) by A. Beilinson and V. Drinfeld [3] in the 
case when & has an additional structure of an oper (this means that 8 belongs to a 
certain half-dimensional locus in Loci^). It is interesting that this construction is also 
closely related to quantum field theory, but in a seemingly different way. Namely, it 
uses methods of 2D Conformal Field Theory and representation theory of affine Kac-
Moody algebras of critical level. For more on this, see Part III of [15]. 

3. CATEGORICAL VERSION 

Looking at the correspondence (2.4), we notice that there is an essential asymme­
try between the two sides. On the left we have flat LG-bundles, which are points of 
a moduli stack LOCLQ of flat LG-bundles (or local systems) on X. But on the right 
we have Hecke eigensheaves, which are objects of a category; namely, the category of 
©-modules on Bun<3. Beilinson and Drinfeld have suggested a natural way to formu­
late it in a more symmetrical way. 
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The idea is to replace a point S G LOCLQ by an object of another category; 
namely, the skyscraper sheaf Og at & viewed as an object of the category of coherent 
Q-modules on Locz^. A much stronger, categorical, version of the geometric Lang­
lands correspondence is then a conjectural equivalence of derived categories (7) 

(3.1) 
derived category of 

©-modules on LOCLÇ 

derived category of 

0-modules on Bun<3 

This equivalence should send the skyscraper sheaf on LOCLQ supported at 6 to 
the Hecke eigensheaf £7*£. If this were true, it would mean that Hecke eigensheaves 
provide a good "basis" in the category of ©-modules on Bun<3, so we would obtain a 
kind of spectral decomposition of the derived category of ©-modules on Bun^, like in 
the Fourier transform. (Recall that under the Fourier transform on the real line the 
delta-functions Sx, analogues of go to the exponential functions eltx, analogues of 
F g.) 

This equivalence has been proved by G. Laumon [41] and M. Rothstein [51] in the 
abelian case, when G = GL\ (or a more general torus). They showed that in this case 
this is nothing but a version of the Fourier-Mukai transform. Thus, the categorical 
Langlands correspondence may be viewed as a kind of non-abelian Fourier-Mukai 
transform (see [15], Section 4.4). 

Unfortunately, a precise formulation of such a correspondence, even as a conjecture, 
is not so clear because of various subtleties involved. One difficulty is the structure 
of Locz^. Unlike the case of LG = GL\, when all flat bundles have the same groups 
of automorphisms (namely, GL{) and LOCGLI is smooth, for a general group LG the 
groups of automorphisms are different for different flat bundles, and so Loci^ is a 
complicated stack. For example, if LG is a simple Lie group of adjoint type, then a 
generic flat LG-bundle has no automorphisms, while the group of automorphisms of 
the trivial flat bundle is isomorphic to LG. In addition, unlike Bun<3, the stack LOCLQ 

has singularities. All of this has to be reflected on the other side of the correspondence, 
in ways that have not yet been fully understood. 

Nevertheless, the diagram (3.1) gives us a valuable guiding principle to the geo­
metric Langlands correspondence. In particular, it gives us a natural explanation as 
to why the skyscraper sheaves on LOCLQ should correspond to Hecke eigensheaves. 

The point is that on the category of 0-modules on LOCLQ we also have a collection 
of functors Wy, parametrized by the same data as the Hecke functors Hy. Following 

(7) It is expected (see [19], Sect. 10) that there is in fact a Z2-gerbe of such equivalences. This 
gerbe is trivial, but not canonically trivialized. One gets a particular trivialization of this gerbe, and 
hence a particular equivalence, for each choice of the square root of the canonical line bundle Kx 
on X. 
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physics terminology, we will call them Wilson functors. These functors act from the 
category of 0-modules on \JOCLG to the category of sheaves on X x LOCL^, which are 
0-modules along X and ©-modules along LOCLG. 

TO define them, observe that we have a tautological LG-bundle V on X x LOCLQ, 

whose restriction to X x <S, where 6 = (E,V), is E. Moreover, V gives us a partial 
connection on U along X. For a representation V of LG, let Vgr be the associated 
vector bundle on X x LOCLg, with a connection along X. 

Let p : X x LOCLQ —> LOCLg be the projection onto the second factor. By definition, 

(3.2) H1,x(F) = h*x(F)H1,x(F) = h*x(F) 

(note that by construction V& carries a connection along X and so the right hand 
side really is a 2)-module along X). 

Now, the conjectural equivalence (3.1) should be compatible with the Wilson/Hecke 
functors in the sense that 

(3.3) C(Wv(£71)-JTv(C(^)), V G Rep LG, 

where C denotes this equivalence (from left to right). 

In particular, observe that the skyscraper sheaf Q& at & G LOCLQ is obviously an 
eigensheaf of the Wilson functors: 

WV(9S) = VSM9S. 

Indeed, tensoring a skyscraper sheaf with a vector bundle is the same as tensoring it 
with the fiber of this vector bundle at the point of support of this skyscraper sheaf. 
Therefore (3.3) implies that £7'$ = C(Qg) must satisfy the Hecke property (2.3). In 
other words, should be a Hecke eigensheaf on Bun^ with eigenvalue &. Thus, we 
obtain a natural explanation of the Hecke property of £7^: it follows from the com­
patibility of the categorical Langlands correspondence (3.1) with the Wilson/Hecke 
functors. 

Let us summarize: the conjectural equivalence (3.1) gives us a natural and conve­
nient framework for the geometric Langlands correspondence. It is this equivalence 
that Kapustin and Witt en have related to the 5-duality of 4D super-Yang-Mills. 

4. ENTER PHYSICS 

We will now add a fourth column to Weil's big picture, which we will call "Quantum 
Physics": 

Number Theory Curves over ¥q Riemann Surfaces Quantum Physics 
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In the context of the Langlands Program, the last column means ^-duality and 
Mirror Symmetry of certain 4D and 2D quantum field theories, which we will now 
briefly describe following [34]. 

We start with the pure 4D Yang-Mills (or gauge) theory on a Riemannian four-
manifold M4. Let Gc be a compact connected simple Lie group. The classical (Eu­
clidean) action is a functional on the space of connections on arbitrary principal 
Gc-bundles £P on M4 given by the formula 

fd11= 1 
4g2 M 4 

Tr FA A *FA -+ 
iO 

8TT2 JMA 
Tr FA A FA-

Here FA is the curvature of the connection A (a g-valued two-form on M4), * is 
the Hodge star operator, and Tr is the invariant bilinear form on the Lie algebra g 
normalized in such a way that the second term is equal to i6k, where k could be an 
arbitrary integer, if Gc is simply-connected. The second term is equal to iO times 
the second Chern class c<i(JP) of the bundle !P and hence is topological. Correlation 
functions are given by path integrals of the form / e_/ over the space of connections 
modulo gauge transformations. Hence they may be written as Fourier series in elB (or 
its root if Gc is not simply-connected) such that the coefficient in front of el0n is the 
sum of contributions from bundles with C 2 ( ^ ) = — n. 

It is customary to combine the two parameters, g and 0, into one complex coupling 
constant 

r = 
0 

2TT 

47TZ 

92 
Next, we consider N = 4 supersymmetric extension of this model. This means that 

we add fermionic and bosonic fields in such a way that the action of the Lorentz group 
(we will work in Euclidean signature, where this group becomes SO(4)) is extended 
to an action of an appropriate supergroup (see [34] or the books [6] for a background 
on supersymmetric quantum field theory). 

The 5-duality of this theory is the statement that the theory with gauge group Gc 
and complex coupling constant r is equivalent to the theory with the Langlands dual 
gauge group LGC and coupling constant Lr = — l/nflr: 

( 4 . 1 ) (GC,T) (LGc,-l/ngr), 

where ng is the lacing number of the Lie algebra 9 (equal to 1 for simply-laced Lie 
algebras, 2 for Bn, Cn and F4, and 3 for G2). This is an extension of the duality (0.1) 
of [46] discussed in the introduction to non-zero values of 6 (with g normalized in a 
slightly different way). In addition, for simply-laced Gc the path integral is a Fourier 
series in eld, so 6 may be shifted by an integer multiple of 2n without changing the 
path integral. Thus, we also have the equivalence 

(GC,T) ( G C , T + 1 ) . 
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For general non-simply connected groups we have instead a symmetry T H T + nZ, 
where n is a certain integer. Thus, we obtain an action of a subgroup of SX2.(Z) on 
the super-Yang-Mills theories with gauge groups Gc and LGC. ^ As we discussed 
in the Introduction, this is a striking statement because it relates a theory at strong 
coupling to a theory at weak coupling. 

We want to focus next on a "topological sector" of this theory. This means that we 
pick an element Q in the Lie superalgebra s of the super-Lorentz group (the supergroup 
extension of 50(4)) such that Q2 = 0, and such that the stress tensor (which is a 
field responsible for variation of the metric on M4) is equal to the commutator of 
Q and another field. Let us restrict ourselves to those objects (fields, boundary 
conditions, etc.) in the theory which commute with this Q. This is a particular (and 
relatively small) sector of the full quantum field theory, in which all quantities (such 
as correlation functions) are topological, that is, metric-independent. This sector is 
what is usually referred to as Topological Field Theory (TFT). 

There is a problem, however. For this Q G $ to be well-defined on an arbitrary 
manifold M4, it has to be invariant under the action of the Lorentz group SO (A)— 
more precisely, its double cover Spin (4). Unfortunately, there are no such elements 
in our Lie superalgebra $. In order to obtain such an element, one uses a trick, 
called twisting (see, e.g., [59]). Our theory has an additional group of automorphisms 
commuting with the action of Spin(4), called .R-symmetry; namely, the group Spin(6). 
We can use it to modify the action of Spin(4) on the fields of the theory and on the 
Lie superalgebra s as follows: define a new action of Spin(A) equal to the old action 
together with the action coming from a homomorphism Spin(A) —> Spin(6) and the 
action of Spin(6) by i^-symmetry. One might then be able to find a differential Q G s 
invariant under this new action of Spin (4). 

There are essentially three different choices for doing this, as explained in [55]. The 
first two are similar to the twists used in Witten's construction of a topological field 
theory that yields Donaldson invariants of four-manifolds (which is a topological twist 
of an N = 2 supersymmetric Yang-Mills theory) [56]. It is the third twist, studied 
in detail in [34], that is relevant to the geometric Langlands. For this twist there are 
actually two linearly independent (and anti-commuting with each other) operators, 
Qi and Q r , which square to 0. We can therefore use any linear combination 

Q = uQi + vQr 

as the differential defining the topological field theory (for each of them the stress 
tensor will be a Q-commutator, so we will indeed obtain a topological field theory). 

( 8) In general, it is a proper subgroup of 5 L 2 ( Z ) for two reasons: first, we have the coefficient n f l in 
formula (4.1) for non-simply laced Gc, and second, the dual of a simply-connected Lie group is not 
simply-connected in general, in which case the transformation r —* r + 1 is not a symmetry. 
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We obtain the same theory if we rescale both u and v by the same number. Hence 
we obtain a family of topological field theories parametrized by P 1 . 

Let t = v/u be a, coordinate on this P 1 . We will refer to it as the "twisting 
parameter." The 5-duality (4.1) should be accompanied by the change of the twisting 
parameter according to the rule 

(4.2) 11—• 
r 

M t. 

How can we test .S-duality of these topological theories? Vafa and Witten have 
earlier tested the .S-duality of a different (Donaldson type) topological twisting of 
N = 4 super-Yang-Mills by showing that the partition functions of these theories 
(depending on r) are modular forms [55]. This proves the invariance of the partition 
functions under the action of a subgroup of SL2CZ) on r . What turns out to be 
relevant to the geometric Langlands Program is the study of boundary conditions in 
these topological field theories. 

Kapustin and Witten assume that the four-manifold M4 has the form 

M 4 = S x I , 

where X is a closed Riemann surface (this will be the algebraic curve of the geometric 
Langlands) and E is a Riemann surface with a boundary (which we may simply take to 
be a half-plane). They study the limit of the topological gauge theory on this manifold 
when X becomes very small (this is called "compactification of the theory on X"). 
In this limit the theory is described by an effective two-dimensional topological field 
theory on E. In earlier works [4, 28] the latter theory was identified with the (twisted) 
topological sigma model on E with the target manifold MH(G), the Hitchin moduli 
space of Higgs G-bundles on X. Moreover, the .S-duality of the supersymmetric gauge 
theories on E x X (for particular values of r and t) becomes Mirror Symmetry between 
the topological sigma models with the targets MH(G) and MH(LG). 

Next, we look at the boundary conditions in the gauge theories, which give rise 
to branes in these sigma models. .S-duality yields an equivalence of the categories of 
branes for MH(G) and MH(LG) (also known, after M. Kontsevich, as Homological 
Mirror Symmetry). Kapustin and Witten have related this equivalence to the categor­
ical geometric Langlands correspondence (3.1). Thus, they establish a link between 
5-duality and geometric Langlands duality. We describe this in more detail in the 
next section. 
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5. MIRROR SYMMETRY OF HITCHIN MODULI SPACES 

In [30] N. Hitchin introduced a remarkable hyper-Kâhler manifold MH{G) for each 
smooth projective complex algebraic curve X and reductive Lie group G. It is easiest 
to describe it in its complex structure J, in which it is the moduli space of semi-stable 
Higgs bundles on X. Recall that a Higgs G-bundle on X is a pair (E, 0), where E is 
a (algebraic) G-bundle on X and 0 is a Higgs field on it, that is, 

(l>eH\x,$E®Kx), 

where $E = E x 0 is the adjoint vector bundle. 
G 

In the complex structure J, however, MH{G) is described as the moduli space of 
semi-stable flat bundles, that is, pairs (E, V), where E is again (algebraic) G-bundle 
on X and V is (algebraic) connection on E. To distinguish between it as a complex 
algebraic variety from the moduli space of Higgs bundles we will denote it by J/(G). 
The two are isomorphic as real manifolds (this is the statement of non-abelian Hodge 
theory [5, 30, 52]), but not as complex (or algebraic) manifolds. 

There are two types of twisted supersymmetric two-dimensional sigma models with 
Kahler target manifolds: A-model and £?-model (see [57]). The former depends on 
the symplectic structure on the target manifold and the latter depends on the complex 
structure. 

Kapustin and Witten start with two topological twisted super-Yang-Mills theories 
on £ x X. One has gauge group G c , twisting parameter t = 1, and 0 = 0. The 
other, 5-dual theory, has gauge group L G C , the twisting parameter Lt = i, and L0 = 0 
(neither of these topological theories depends on g [34]). (9) They show that after 
compactification on X the first theory becomes the A-model with the target manifold 
MH(G) and the symplectic structure UK, which is the Kahler form for the complex 
structure K on MH{G). This symplectic structure has a nice geometric description. 
Note that the Higgs field </> is an element of H° (X, QE® KX )» which is isomorphic to 
the cotangent space to E, viewed as a point of Bun^, the moduli stack of G-bundles 
on X. Thus, MH(G) is almost the cotangent bundle to Bun^; "almost" because 
we impose the semi-stability condition on the Higgs bundle. The symplectic form 
UJK comes from the standard symplectic form on the cotangent bundle (which is the 
imaginary part of the holomorphic symplectic form). 

The second gauge theory becomes, after compactification on X, the J5-model with 
the target manifold ?/(LG); that is, MH(LG) with respect to the complex structure J . 

( 9) As explained in [33, 34], for some other values of parameters one obtains the so-called quantum 
geometric Langlands correspondence (see [15], Section 6.3). 
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After dimensional reduction from 4D to 2D, the S-duality of super-Yang-Mills 
theories becomes Mirror Symmetry between the A-mode\ with the target manifold 
MH(G) (and symplectic structure U)K) and the P-model with the target manifold 
y{LG) (and complex structure J). 

REMARK. — As explained in [34], there is also Mirror Symmetry between A- and 
B-models with respect to other symplectic and complex structures. For instance, there 
is Mirror Symmetry, studied in [1, 7, 32], between the B-models on MH(G) and 
MH(LG) with respect to the complex structures I on both of them. In what follows we 
will not discuss these additional dualities. 

5.1. Dual Hitchin fi brat ions 

In order to understand better this Mirror Symmetry, we recall the construction 
of the Hitchin map. For any Higgs bundle (E, </>) and an invariant polynomial P of 
degree d on the Lie algebra g, we can evaluate P on 0 and obtain a well-defined section 
P{(j)) of K®d- The algebra (Fun(g))G of invariant polynomial functions on g is a graded 
free polynomial algebra with £ = rank(g) generators of degrees d$, i = 1 , . . . where 
the di are the exponents of g plus 1. Let us choose a set of generators P*,i = 1, . . . ,£ 
Then we construct the Hitchin map [30, 31] 

p:MH(G)-+B 
l 

i=i 

H°(X,K®di), 

(E,</>)~(P1(Q) ..9Pi{4>)] 

This is slightly non-canonical, because there is no canonical choice of generators Pi 
in general. More canonically, we have a map to 

B : = H°(X,(g//G)Kx), (9//G)Kx := K* x g//G, 

where K£ denotes the Cx-bundle associated to Kx, and g//G := Spec((Fun(g))G) is 
the graded vector space on which the Pi are coordinate functions (the Cx-action on 
it comes from the grading). 

By Chevalley's theorem, g//G = \}//W := Spec((Fun(f)))M/'), where f) is a Cartan 
subalgebra. By definition, LJ) = [)*. Hence Lg//LG = Lf)//W = l)*//W. Choosing a 
non-degenerate invariant bilinear form «o on g, we identify J) and [)*, and hence B 
and LB. Any other invariant bilinear form is proportional to «o- Hence replacing 
KQ by another non-zero bilinear form would correspond to a Cx-action on the base. 
But this action can be lifted to a Cx-action on the total space MH(G) (rescaling the 
Higgs field <f>). Hence the ambiguity in the choice of «o is not essential; it may be 
absorbed into an automorphism of one of the two Hitchin moduli spaces. 
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As the result, we obtain two fibrations over the same base B: 

(5.1) MH(LG) MH(G) 

B 

For generic b G B (the connected components of) the fibers LF& and of these 
Hitchin fibrations are smooth tori, which are in fact isomorphic to abelian varieties 
in the complex structure I. For instance, for G = SLN, F& is the generalized Prym 
variety of the spectral curve associated to b, which is a smooth degree n cover of X if 
b is generic. 

Moreover, the tori LF& and F& (again, for generic b) are dual to each other. This 
can be expressed in the following way which will be convenient for our purposes: 
there is a bijection between points of LF& and flat unitary line bundles on F5. (10) 
The duality of tori is the simplest (abelian) example of Mirror Symmetry, also known 
as T-duality. Thus, we expect that the Mirror Symmetry of the Hitchin moduli spaces 
MH(LG) and MH(G) is realized via fiberwise T-duality (for generic fibers of the dual 
Hitchin fibrations). This is an example of a general proposal of Strominger, Yau and 
Zaslow [54] that Mirror Symmetry of two Calabi-Yau manifolds X and Y should be 
realized as T-duality of generic fibers in special Lagrangian fibrations of X and Y 
(what happens for the singular fibers is a priori far less clear; but see Section 6.1). It 
is in this sense that "/S-duality reduces to T-duality" [28]. 

We are interested in the study of the J5-model with the target MH(LG), with 
respect to the complex structure J (that is, the moduli space y{LG) of flat bundles), 
and the A-model with the target MH{G), with respect to the symplectic structure 
LJK- These two topological field theories are expected to be equivalent to each other. 
Therefore anything we can say about one of them should have a counterpart in the 
other. For instance, their cohomologies may be interpreted as the spaces of vacua 
in these field theories, and hence they should be isomorphic. This has indeed been 
verified by Hausel and Thaddeus [29] in the case when G = SLN,LG = PGLN (since 
the Hitchin moduli spaces are non-compact, special care has to be taken to properly 
define these cohomologies, see [29]). 

To make contact with the geometric Langlands correspondence, Kapustin and 
Witten studv in [341 the cateaories of branes in these two topological field theories. 

(10) This bijection depends on the choice of base points in the fibers. Using the Hitchin section, 
one obtains such base points, but for this one may have to choose a square root of the canonical line 
bundle Kx> This is closely related to the Z2-gerbe ambiguity in the equivalence (3.1) discussed in 
the footnote on page 379. 
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5.2. Categories of branes 

Branes in two-dimensional sigma models are certain generalizations of boundary 
conditions. When writing path integral for maps $ : £ —> M, where £ has a boundary, 
we need to specify boundary conditions for $ on d£. We may also "couple" the 
sigma model to another quantum field theory on c?£ (that is, modify the action by a 
boundary term) which may be interpreted as a decoration of the boundary condition. 
In topological field theory these conditions should preserve the supersymmetry, which 
leads to natural restrictions. 

A typical example of a boundary condition is specifying that $(#£) belongs to a 
submanifold M' C M. In the jB-model the target manifold M is a complex manifold, 
and in order to preserve the supersymmetry M' has to be a complex submanifold. In 
the A-model, M is a symplectic manifold and M' should be Lagrangian. Coupling 
to field theories on <9£ allows us to introduce into the picture a holomorphic vector 
bundle on M' in the case of B-model, and a flat unitary vector bundle on M' in the 
case of A-model. 

More generally, the category of branes in the J5-model with a complex target man­
ifold M (called P-branes) is the (derived) category of coherent sheaves on M, some­
thing that is fairly well understood mathematically. The category of branes in the 
A-model with a symplectic target manifold M (called A-branes) is less understood. It 
is believed to contain what mathematicians call the Fukaya category, typical objects 
of which are pairs (L, V), where L C M is a Lagrangian submanifold and V is a flat 
unitary vector bundle on L. However (and this turns out to be crucial for applications 
to the geometric Langlands), it also contains more general objects, such as coisotropic 
submanifolds of M equipped with vector bundles with unitary connection. 

Under the Mirror Symmetry between the sigma models with the target manifolds 
y(LG) and MH(G) we therefore expect to have the following equivalence of (de­
rived) categories of branes (often referred to, after Kontsevich, as Homological Mirror 
Symmetry): 

(5.2) 5-branes on 2/(LG) A-branes on MH (G) 

It is this equivalence that Kapustin and Witten have related to the categorical 
Langlands correspondence (3.1). The category on the left in (5.2) is the (derived) 
category of coherent sheaves on 2/(LG), which is the moduli space of semi-stable flat 
LG-bundles on X. It is closely related to the (derived) category of coherent sheaves (or, 
equivalently, ©-modules) on Locz,G, which appears on the left of (3.1). The difference 
is that, first of all, LOCLG is the moduli stack of flat LG-bundles on X, whereas J/( LG) 
is the moduli space of semi-stable ones. Second, from the physics perspective it is more 
natural to consider coherent sheaves on 2/(LG) with respect to its complex analytic 
rather than algebraic structure, whereas in (3.1) we consider algebraic ©-modules on 
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LocLG- These differences aside, these two categories are very similar to each other. 
They certainly share many objects, such as skyscraper sheaves supported at points 
corresponding to stable flat LG-bundles which we will discuss momentarily. 

5.3. Triangle of equivalences 

The categories on the right in (3.1) and (5.2) appear at first glance to be quite 
different. But Kapustin and Witten have suggested that they should be equivalent to 
each other as well. Thus, we obtain the following triangle of derived categories: 

(5.3) 

B-branes on y{LG) 

A-branes on MH (G) 

©-modules on Bun^ 

The upper arrow represents Homological Mirror Symmetry (5.2) whereas the lower 
arrow represents the categorical Langlands correspondence (3.1). 

According to [34], Section 11, the vertical arrow is another equivalence that has 
nothing to do with either Mirror Symmetry or geometric Langlands. It should be a 
general statement linking the (derived) category of ©-modules on a variety M and the 
(derived) category of A-branes on its cotangent bundle T*M (recall that MH(G) is 
almost equal to T* Bun^). Kapustin and Witten have proposed the following functor 
from the category of yl-branes on T*M with respect to the symplectic structure ImO 
(where ft is the holomorphic symplectic form on T*M) to the category of ©-modules 
on M: 

(5.4) Sh-+Hom(îScc, S), 

where iS c c is a "canonical coisotropic brane" on T*M. This is T*M itself (viewed 
as a coisotropic submanifold) equipped with a line bundle with connection satisfying 
special properties. They argued on physical grounds that the right hand side of 
(5.4) may be "sheafified" along M, and moreover that the corresponding sheaf of rings 
Hom(S c c , S c c ) is nothing but the sheaf of differential operators on MH{G). ( n ) Hence 
the (sheafified) right hand side of (5.4) should be a ©-module. While this argument 
has not yet been made mathematically rigorous, it allows one to describe important 

( n ) More precisely, it is the sheaf of differential operators acting on a square root of the canonical 
line bundle on Bun<3, but we will ignore this subtlety here. 
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characteristics of the ©-module associated to an A-brane, such as its reducibility, the 
open subset of M where it is represented by a local system, the rank of this local 
system, and even its monodromy (see Section 4 of [19]). 

An alternative (and mathematically rigorous) approach to establishing an equiva­
lence between the categories of A-branes and ©-modules has also been proposed by 
D. Nadler and E. Zaslow [47, 48]. 

Though a lot of work still needs to be done to distill this connection and reconcile 
different approaches, this is clearly a very important and beautiful idea on its own 
right. 

Thus, according to Kapustin and Witten, the (categorical) geometric Langlands 
correspondence (3.1) may be obtained in two steps. The first step is the Homological 
Mirror Symmetry (5.2) of the Hitchin moduli spaces for two dual groups, and the 
second step is the above link between the A-branes and ©-modules. 

There is actually more structure in the triangle (5.3). On each of these three 
categories we have an action of certain functors, and all equivalences between them 
are supposed to commute with these functors. We have already described the functors 
on two of these categories in Section 3: these are the Wilson and Hecke functors. The 
functors acting on the categories of A-branes, were introduced in [34] as the two-
dimensional shadows of the 't Hooft loop operators in 4D super-Yang-Mills theory. 
Like the Hecke functors, they are defined using modifications of G-bundles, but only 
those modifications which preserve the Higgs field. The 5-duality of super-Yang-Mills 
theories is supposed to exchange the 't Hooft operators and the Wilson operators 
(whose two-dimensional shadows are the functors described in Section 3), and this is 
the reason why we expect the equivalence (5.2) to commute with the action of these 
functors. 

As explained above, the central objects in the geometric Langlands correspondence 
are Hecke eigensheaves attached to flat LG-bundles. Recall that the Hecke eigensheaf 
& g is the ©-module attached to the skyscraper sheaf &g supported at a point & of 
LOCL g under the conjectural equivalence (3.1). These ©-modules have very compli­
cated structure. What can we learn about them from the point of view of Mirror 
Symmetry? 

Let us assume first that & has no automorphisms other than those coming from 
the center of L G. Then it is a smooth point of ^/( LG). These skyscraper sheaves 
9$ are the simplest examples of 5-branes on ^/(LG) (called 0-branes). What is the 
corresponding A-brane on MH{G)1 

The answer is surprisingly simple. Let b G B be the projection of 8 to the base of 
the Hitchin fibration. For & satisfying the above conditions the Hitchin fiber LFb is 
a smooth torus (it is actually an abelian variety in the complex structure / , but now 
we look at it from the point of view of complex structure J , so it is just a smooth 
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torus). It is identified (possibly, up to a choice of the square root of the canonical line 
bundle Kx, see the footnote on page 386) with the moduli space of flat unitary line 
bundles on the dual Hitchin fiber F&, which happens to be a Lagrangian submanifold 
of MH(G). The Mirror Symmetry sends the P-brane to the A-brane which is 
the pair (F&, V<s), the Lagrangian submanifold F5 of MH(G), together with the flat 
unitary line bundle on it corresponding to &: 

H1,x(F) = h*x(F) 

Since Qg is obviously an eigenbrane of the Wilson functors (as we discussed in 
Section 3), the A-brane (Fb,V<$) should be an eigenbrane of the 't Hooft functors. 
This may in fact be made into a precise mathematical conjecture, and Kapustin and 
Witt en have verified it explicitly in some cases. 

Thus, the A-branes associated to the simplest P-branes turn out to be very nice and 
simple. This is in sharp contrast with the structure of the corresponding 0-modules, 
which is notoriously complicated in the non-abelian case. Therefore the formalism 
of A-branes developed in [34] has clear advantages. It replaces 0-modules with 
A-branes that are much easier to "observe experimentally" and to analyze explicitly. 
One can hope to use this new language in order to gain insights into the structure 
of the geometric Langlands correspondence. It has already been used in [19] for 
understanding what happens in the endoscopic case as explained in the next section. 

5.4. Ramification 

Up to now we have considered the unramified case of the geometric Langlands 
correspondence, in which the objects on the Galois side of the correspondence are 
holomorphic LG-bundles on our curve X with a holomorphic connection. These flat 
bundles give rise to homomorphisms 7Ti(X) —• LG. In the classical Langlands cor­
respondence one looks at more general homomorphisms 7 T i ( X \ { x i , . . . , xn}) —> LG. 
Thus, we look at holomorphic LG-bundles on X with meromorphic connections which 
have poles at finitely many points of X. The connections with poles of order one 
(regular singularities) correspond to tame ramification in the classical Langlands Pro­
gram. Those with poles of orders higher than one (irregular singularities) correspond 
to wild ramification. 

Mathematically, the ramified geometric Langlands correspondence has been studied 
in [16] and follow-up papers (see [14] for an exposition), using the affine Kac-Moody 
algebras of critical level and generalizing the Beilinson-Drinfeld approach [3] to allow 
ramification. 

S. Gukov and E. Witten [26] have explained how to include tame ramification in 
the S-duality picture. Physicists have a general way of including into a quantum field 
theory on a manifold M objects supported on submanifolds of M. An example of this 
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is the surface operators in 4D super-Yang-Mills theory, supported on two-dimensional 
submanifolds of the four-manifold M4. If we include such an operator, we obtain a 
certain modification of the theory. Let us again take M4 = E x X and take this 
submanifold to be of the form E x x,x G X. Gukov and Witten show that for a 
particular class of surface operators the dimensional reduction of the resulting theory 
is the sigma model on E with a different target manifold MH{G, X), the moduli space 
of semi-stable Higgs bundles with regular singularity at x G X. It is again hyper-
Kahler, and in the complex structure J it has a different incarnation as the moduli 
space of semi-stable bundles with a connection having regular singularity (see [53]). 

The moduli space MH(G,X) has parameters (a,/?,7), which lie in the (com­
pact) Cartan subalgebra of g (see [53]). For generic parameters, this moduli space 
parametrizes semi-stable triples (E,(f>,£), where E is a (holomorphic) G-bundle, 
0 is a Higgs field which has a pole at x of order one whose residue belongs to the 
regular semi-simple conjugacy class of |(/3 + ¿7), and £ is a flag in the fiber of 
E at x which is preserved by this residue (the remaining parameter a determines 
the flag). Various degenerations of parameters give rise to similar moduli spaces in 
which the residues of the Higgs fields could take arbitrary values. The moduli spaces 
MH{G,X) and MH(LG,X) (with matching parameters) are equipped with a pair of 
mirror dual Hitchin fibrations, and the Mirror Symmetry between them is again 
realized as fiberwise T-duality (for generic fibers which are again smooth dual tori). 

The 5-duality of the super-Yang-Mills theories, associated to the dual groups G c 

and L G C , with surface operators gives rise to an equivalence of categories of A - and 
5-branes on MH(G,X) and MH(LG,X). The mirror dual for a generic 0-brane on 
MH(LG,X) is the A-brane consisting of a Hitchin fiber and a flat unitary line bundle 
on it, as in the unramified case. 

The analysis of [26] leads to many of the same conclusions as those obtained in [16] 
by using representations of affine Kac-Moody algebras and two-dimensional conformal 
field theory. 

Gukov and Witten also considered [27] more general surface operators associated 
to coadjoint orbits in g and Lg. The 5-duality between these surface operators leads to 
some non-trivial and unexpected relations between these orbits. Gukov and Witten 
present many interesting examples of this in [27] drawing connections with earlier 
work done by mathematicians. 

In [58], Witten has generalized the analysis of [26, 27] to the case of wild ramifi­
cation. 
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6. MORE GENERAL BRANES 

In the previous section we discussed applications of Mirror Symmetry of the dual 
Hitchin fibrations to the geometric Langlands correspondence. We saw that the 
A-branes associated to the P-branes supported at the generic flat LG-bundles have 
very simple description: these are the Hitchin fibers equipped with flat unitary line 
bundles. But what about the .B-branes supported at more general flat LG-bundles? 
Can we describe explicitly the A-branes dual to them? 

This question goes to the heart of the subtle interplay between physics and math­
ematics of Langlands duality. Trying to answer this question, we will see the limita­
tions of the above analysis and a way for its generalization incorporating more general 
branes. This will lead us to surprising physical interpretation of deep mathematical 
concepts such as endoscopy and Arthur's SL2. 

The generic flat LG-bundles, for which Mirror Symmetry works so nicely, are the 
ones that have no automorphisms (apart from those coming from the center of LG). 
They correspond to smooth points of 2/(LG) such that the corresponding Hitchin fiber 
is also smooth. We should consider next the singularities of 2/(LG). The simplest of 
those are the orbifold singularities. We will discuss them, and their connection to en­
doscopy, in the next subsection, following [19]. We will then talk about more general 
singularities corresponding to flat LG-bundles with continuous groups of automor­
phisms, and what we can learn about the corresponding categories from physics. 

6.1. Geometric Endoscopy 

We start with the mildest possible singularities in 2/(LG); namely, the orbifold 
singular points. The corresponding flat LG-bundles are those having finite groups of 
automorphisms (modulo the center). In the classical Langlands correspondence the 
analogous Galois representations are called endoscopic. They, and the corresponding 
automorphic representations, play an important role in the stabilization of the trace 
formula. 

The simplest example, analyzed in [19] and dubbed "geometric endoscopy", arises 
when LG = PGL2, which contains O2 = Z2 x Cx as a subgroup. Suppose that a 
flat PGL2-bundle E on our curve X is reduced to this subgroup. Then generically 
it will have the group of automorphisms Z2 = {1 , -1} C Cx, which is the center 
of O2 (note that the center of PGL2 itself is trivial). Therefore the corresponding 
points of y(LG) are Z2-orbifold points. This means that the category of P-branes 
supported at such a point is equivalent to the category Rep(Z2) of representations 

A S T É R I S Q U E 332 



(1010) GAUGE THEORY AND LANGLANDS DUALITY 393 

of Z2. (12̂  Thus, it has two irreducible objects. Therefore we expect that the dual 
category of A-branes should also have two irreducible objects. In fact, it was shown 
in [19] that the dual Hitchin fiber has two irreducible components in this case, and 
the sought-after A-branes are fractional branes supported on these two components. 

This was analyzed very explicitly in [19] in the case when X is an elliptic curve. 
Here we allow a single point of tame ramification (along the lines of Section 5.4)—this 
turns out to be better for our purposes than the unramified case. The corresponding 
Hitchin moduli spaces are two-dimensional. They fiber over the same one-dimensional 
vector space, and the fibers over all but three points in the base are smooth elliptic 
curves. The three pairs of dual singular fibers look as follows: 

Singular Hitchin fiber in 
the A-model, G = SL2. 

Singular Hitchin fiber in 
the B-model, LG = 5 0 3 . 

The fiber on the J3-model side is a projective line with a double point, corresponding 
to a flat PGL2-bundle that is reduced to the subgroup 02. It is a Z2-orbifold point of 
the moduli space. The dual fiber on the A-model side is the union of two projective 
lines connected at two points. These two singular points of the fiber are actually 
smooth points of the ambient moduli space. 

There are two irreducible 5-branes supported at each of the Z2-orbifold points, 
corresponding to two irreducible representations of Z2. Let us denote them by 25+ 
and 2L. The corresponding fiber of the Hitchin fibration for SL2 is the union of two 
components F\ and F2, and accordingly in the dual A-model there are two irreducible 
A-branes, U\ and U2 supported on these components (each component is a copy of P1, 
and therefore the only flat unitary line bundle on it is the trivial one). These A-branes 
are dual to the B-branes 25+ and . Unlike and , they are indistinguishable. 
An apparent contradiction is explained by the fact that in the equivalence (5.2) of 

(12) The corresponding derived category has a more complicated structure, but we will not discuss 
it here. 
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the categories of A-branes and P-branes there is a twist by a Z2-gerbe which is not 
canonically trivialized (see Section 9 of [19] and the footnotes on pages 379 and 386). 
In order to set up an equivalence, we need to pick a trivialization of this gerbe, and 
this breaks the symmetry between H\ and $2. We also have a similar picture when 
X has higher genus (see [19]). 

What happens when we act on 25+ or 2L by the Wilson operator Wxix G X, 
corresponding to the three-dimensional adjoint representation of LG = PGL<p. Since 
25+ and 25 _ both have skyscraper support at the same point & of ?/(LG), Wx acts on 
either of them by tensor product with the three-dimensional vector space £x, the fiber 
of & at x (in the adjoint representation). However, we should be more precise to keep 
track of the Z2-action. Recall that the structure group of our flat PGL2-bundle & is 
reduced to the subgroup O2 = Z2 x Cx. Denote by U the defining two-dimensional 
representation of 02. Then det U is the one-dimensional sign representation induced 
by the homomorphism 02 —> Z2. The adjoint representation of PGL2 decomposes 
into the direct sum 

(det 17 (8)/) 0(17® 5) 

as a representation of O2 x Z2, where Z2 is the centralizer of O2 in PGL2 (the center 
of O2), S is the sign representation of Z2, and I is the trivial representation of Z2. 
Therefore we have the following decomposition of the corresponding flat vector bundle: 

(6.1) (det E^® 7 ) 0 (Us® S), 

and there is a decomposition U&\x<& det Ug\x, where the non-trivial element of Z2 
acts as —1 on the first summand and as +1 on the second summand. So we have 

(6.2) Wx-<8± = (<8T ® U6\x) 0 (#± ® det Ug\x). 

Thus, individual branes 25+ and 25_ are not eigenbranes of the Wilson operators; 
only their sum 2?+ 0 25_ (corresponding to the regular representation of Z2) is. 

The mirror dual statement, shown in [19], is that we have a similar formula for the 
action of the corresponding't Hooft operators on the S-branes Si and $2. Again, 
only their sum (or union), which gives the entire Hitchin fiber, is an eigenbrane of the 
't Hoof operators. 

Since an eigenbrane £2 decomposes into two irreducible branes H\ and $2, the 
corresponding Hecke eigensheaf £F on BunQ should also decompose as a direct sum of 
two 0-modules, £7"i and £7̂2? corresponding to Si and $2, respectively. Furthermore, 
these two ©-modules should then separately satisfy an analogue of formula (6.2), 
which is a natural modification of the standard Hecke property. We called it in 
[19] the fractional Hecke property, and the ©-modules £7i and ^2 fractional Hecke 
eigensheaves. We have also generalized this notion to other groups in [19]. 
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Thus, the Mirror Symmetry picture leads us to predict the existence of fractional 

Hecke eigensheaves for endoscopic flat LG-bundles. ( 1 3) This has non-trivial conse­

quences even for curves over F G , some of which have been verified in [19]. In addition, 

we obtain a relation between the group 7ro(P6) of components of the generalized Prym 

variety Pb, which is an open dense part of the singular Hitchin fiber Fi, arising in the 

A-model, and the group of automorphisms of the endoscopic flat LG-bundles which 

are the singular points in the dual Hitchin fiber LFb of the .B-model (this relation 

was independently observed by B.C. Ngo). Roughly speaking, elements of ito{Pb) 

label the components of F^, and hence fractional A-branes. The 5-branes dual to 

them correspond to characters of the group of automorphisms of an endoscopic flat 
LG-bundle, viewed as a point in LF\). Hence 7ro(P6) should be dual (as an abelian 

group) to this group of automorphisms. 

The upshot of all this is that by analyzing the categories of A-branes supported 

on the singular Hitchin fibers, we learn many things about the geometric Langlands 

correspondence (and even the Langlands correspondence for curves over finite fields) 

which would have been very difficult to see directly using the conventional formalism 

of ©-modules. This is a good illustration of the power of this new method. 

There is a link between our analysis and the classical theory of endoscopy, due 

to the fact that the geometry we use is similar to that exploited by B.C. Ngo in his 

recent proof of the fundamental lemma [49]. Ngo has discovered a striking connection 

between the orbital integrals appearing on the geometric side of the trace formula 

and the (^-adic) cohomology of the Hitchin fibers in the moduli space MH(G), but 

for curves over ¥q; more specifically, its decomposition under the action of the group 

uo (Pb). 14 

However, there are important differences. First of all, we work over C, whereas Ngo 

works over ¥ q . In the latter setting there is no obvious analogue of the Homological 

Mirror Symmetry between MH{G) and MH{LG). Second, and more importantly, the 

objects we assign to the connected components of the singular Hitchin fiber Fi—the 

A-branes—are objects of automorphic nature; we hope to relate them to Hecke eigen­

sheaves and ultimately to the automorphic functions in the classical theory. Thus, 

these objects should live on the spectral side of the trace formula. On the other hand, 

in Ngo's work Hitchin fibers appear on the geometric side of the trace formula (more 

precisely, its Lie algebra version), through orbital integrals. 

This raises the following question: could there be a more direct link between 

individual Hitchin fibers in the moduli space MH{G) over ¥ q and automorphic 

( 1 3 ) In the case of SL2 (as well as GSP4) the existence of these 0-modules follows from the work of 
Lysenko [42, 43, 44], but for other groups this is still a conjecture. 
( 1 4 ) More precisely, Ngo considers a generalization of MH{G) parametrizing meromorphic Higgs fields 
with a sufficiently large divisor of poles. 
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representations: In other words, could it be that the passage from A-branes to Hecke 
eigensheaves discussed above has an analogue in the classical theory as a passage 
from orbital integrals to Hecke eigenfunctions? If so, then the Mirror Symmetry 
picture would give us valuable insights into the Langlands correspondence. 

6.2. ^-duality of more general boundary conditions 

More general flat LG-bundles have continuous groups of automorphisms. For in­
stance, generic flat bundles reduced to a Cart an subalgebra LH have the group of 
automorphisms LH. Or consider the trivial flat LG-bundle, whose group of automor­
phisms is LG itself. What are the A-branes corresponding to these flat LG-bundles? 

The picture of two dual Hitchin fibrations discussed above is too naive to answer 
this question. The reason is that even if the flat bundles with continuous groups of 
automorphisms are semi-stable (which is not necessarily the case), they correspond to 
points of y(LG) with singularity so severe that the category of 5-branes corresponding 
to it cannot be described solely in terms of the moduli space 2/(LG). In fact, the 
definition of the sigma model itself is problematic for singular target manifolds. 

As an illustration, consider the quotient C n / C x . The origin has the group of auto­
morphisms C x . What is the category of B-branes associated to this point? Because 
it is a singular point, there is no obvious answer (unlike the case of smooth points or 
orbifold points, discussed above). However, we can resolve the singularity by blow­
ing it up. On general ground one can argue that this resolution will not change the 
category of 5-branes. The category of 5-branes after the resolution of singulari­
ties is the category of coherent sheaves on P n _ 1 . So the singular point in C n / C x 

has "swallowed" an entire projective space! Likewise, singular points in 2/(LG) also 
have complicated "inner structure" which needs to be uncovered to do justice to the 
corresponding categories of 5-branes. 

In order to understand better what is going on we should go back to the four-
dimensional gauge theory and look more closely at the 5-duality of boundary condi­
tions there. From the physics perspective, this is the "master duality" and everything 
should follow from it. The Mirror Symmetry of the Hitchin fibrations is but the first 
approximation to the ^-duality when we compactify the theory to two dimensions. 

It is instructive to recall how one obtains the Hitchin moduli spaces in the first 
place: Each of the 5-dual gauge theories has a differential Q such that Q2 = 0, and we 
study the corresponding topological field theories. In the topological theory the path 
integral localizes on the moduli space of solutions to the "BPS equations", which read 
Q . \J/ = 0, for all fermionic fields ^ of our theory (since Q is fermionic and we want 
the equations on the bosonic degrees of freedom). After that we make dimensional 
reduction of these equations. This means that we assume that our four-manifold 
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has the form E x X and the fields on E vary "slowly" along E. The corresponding 
equations have been written in [34]: 

(6.3) FA-<i>A<j> = 0, 

d>A<l> — d>A * <t> = 0, 

where d,A is the exterior derivative corresponding to the connection A, and * is the 
Hodge star operator. These are precisely the Hitchin equations [30] describing the 
moduli spaces MH(G) or MH(LG) (depending on which side of S-duality we are 
on). For example, points of MH(LG) in the complex structure J are semi-stable 
flat LG-bundles on X. The flat connection on this bundle is given by the formula 
V = A + i(f) (the flatness of V is a corollary of (6.3)). This is how the (5-twisted) 
sigma model on E with values in MH(LG) appears in this story. One obtains the 
(A-twisted) sigma model with target MH(G) in the complex structure I in a similar 
way. 

However, as Kapustin and Witten explain in [34], this derivation breaks down when 
we encounter singularities of the Hitchin moduli spaces. Thus, the sigma models with 
the targets MH(LG) and MH(G) are only approximations to the true physical theory. 
To understand what happens at the singularities we have to go back to the four-
dimensional theory and analyze it more carefully (for more on this, see [61]). 

There is also another problem: in the above derivation we have not taken into 
account all the fields of the super-Yang-Mills theory. In fact, there are additional 
scalar fields, denoted by a and a in [34], which we have ignored so far. The field 
a is a section of the adjoint bundle on I , and a is its complex conjugate. On 
the 5-model side, which we have so far approximated by the sigma model with the 
target MH(LG), we obtain from the BPS equations that a is annihilated by the flat 
connection V = A + i</), that is, V-cr = 0. In other words, a belongs to the Lie algebra 
of infinitesimal automorphisms of the flat bundle (J5, V). 

Up to now we have considered generic flat LG-bundles which have no non-trivial 
infinitesimal automorphisms. For such flat bundles we therefore have a = 0, and so 
we could safely ignore it. But for flat bundles with continuous automorphisms this 
field starts playing an important role. 

The upshot of this discussion is that when we consider most general flat bundles 
there are new degrees of freedom that have to be taken into account. In order to 
find a physical interpretation of the geometric Langlands correspondence for such 
flat bundles we need to consider the ^-duality of boundary conditions in the four-
dimensional gauge theory with these degrees of freedom included. 

A detailed study of 5-duality of these boundary conditions has been undertaken 
by Gaiotto and Witten [20, 21]. We will only mention two important aspects of this 
work. 
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First of all, Gaiotto and Witten show that in the non-abelian gauge theory the 
S'-dual of the Neumann boundary condition is not the usual Dirichlet boundary con­
dition as one might naively hope, but a more complicated boundary condition in 
which the field a has a pole at the boundary. This boundary condition corresponds 
to a solution of the Nahm equations, which is in turn determined by an embedding 
of the Lie algebra $l2 into Lg (see [59]). 

This is parallel to the appearance of Arthur's SL2 in the classical Langlands corre­
spondence. Arthur has conjectured that the true parameters for (L-packets of) uni­
tary automorphic representations of G(A) are not homomorphisms Gal(F/F) —• L G, 
but rather Gal(F/F) x SL2 —> LG. The homomorphisms whose restriction to the 
SL2 factor is trivial should correspond to the so-called tempered representations. (In 
the case of GLn all cuspidal unitary representations are tempered, and that is why 
Arthur's SL2 does not appear in the theorem of Drinfeld and Lafforgue quoted in 
Section 1.) An example of non-tempered unitary representation is the trivial repre­
sentation of G(A). According to [2], the corresponding parameter is the homomor-
phism Gal(F/F) x SL2 —» L G, which is trivial on the first factor and is the principal 
embedding of the SL2 factor. 

In the geometric Langlands correspondence, Arthur's SL2 may be observed in the 
following way. The analogue of the trivial representation is the constant sheaf C on 
Bunc- It is a Hecke eigensheaf, but the "eigenvalues" are complexes of vector spaces 
with cohomological grading coming from the Cartan subalgebra of the principal SL2 

in L G. For example, consider the case of G = GLn and let us apply the Hecke 
operators H&lX defined by formula (2.2) to the constant sheaf. It follows from the 
definition that 

H1,x(F) = h*x(F)H1,x(F) = h*x(F) 

Thus, the eigenvalue is a graded n-dimensional vector space with one-dimensional 
pieces in cohomological degrees 0 ,2 ,4 , . . . , 2(n — 1). In the standard normalization of 
the Hecke operator the cohomological grading is shifted to — (n — 1), — (n — 3 ) , . . . , 
(n — 1)—as in the grading on the n-dimensional representation of GLn coming from 
the principal SL2. 

The A-brane corresponding to the constant sheaf on Bun^ is the Lagrangian sub-
manifold of MH(G) defined by the equation 0 = 0 (this is the zero section of the 
cotangent bundle to the moduli space of semi-stable G-bundles inside MH(G)). This 
A-brane corresponds to a Neumann boundary condition in the 4D gauge theory with 
gauge group G c . According to Gaiotto and Witten, the dual boundary condition (in 
the theory with gauge group L G C ) is a generalization of the Dirichlet boundary con­
dition, in which the field a has a pole at the boundary solving the Nahm equations 

A S T É R I S Q U E 332 



(1010) GAUGE THEORY AND LANGLANDS DUALITY 399 

corresponding to the principal 5 L 2 embedding into LG. Thus, we obtain a beauti­
ful interpretation of Arthur's SL2 from the point of view of 5-duality of boundary 
conditions in gauge theory. For more on this, see [18, 59]. 

Another important feature discovered in [20, 21] is that the 5-duals of the general 
Dirichlet boundary conditions involve coupling the 4D super-Yang-Mills to 3D super-
conformal QFTs at the boundary. This means that there are some additional degrees 
of freedom that we have to include to describe the geometric Langlands correspon­
dence. 

What we learn from all this is that the true moduli spaces arising in the 5-duality 
picture are not the Hitchin moduli spaces MH(G) and MH(LG), but some enhanced 
versions MH(G) and MH{LG) thereof, including, in addition to the Higgs bundle 
(£",(/)), an element a in the Lie algebra of its infinitesimal automorphisms as well as 
other data. (This will be discussed in more detail in the forthcoming paper [18].) 
Physically, the field a has non-zero "ghost number" 2. Mathematically, this means 
that these additional degrees of freedom have cohomological grading 2, and so MH(G) 
and MH{LG) are actually differential graded (DG) stacks. Similar DG stacks have 
been recently studied in the context of the categorical Langlands correspondence by 
V. Lafforgue [38]. 

Thus, 5-duality of super-Yang-Mills theory offers new insights into the Langlands 
correspondence and surprising new connections to geometry. Ultimately, we have 
to tackle the biggest question of all: what is the underlying reason for the Lang­
lands duality? On the physics side the corresponding question is: why 5-duality? In 
fact, physicists have the following elegant explanation (see [60]): there is a myste­
rious six-dimensional quantum field theory which gives rise to the four-dimensional 
super-Yang-Mills upon compactification on an elliptic curve. Roughly speaking (the 
argument should be modified slightly for non-simply laced groups), this elliptic curve 
is E = C/(Z + Zr), where r is the coupling constant of this Yang-Mills theory. Since 
the action of 5L 2 (Z) on r does not change the elliptic curve E, we obtain that there 
are equivalences between the super-Yang-Mills theories whose coupling constants are 
related by the action of 5L 2 (Z) . This should explain the 5-duality, which corresponds 
to the transformation T H — 1/T, and hence the geometric Langlands correspondence. 
But that is a topic for a future Séminaire Bourbaki. 
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