Astérisque

From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut - Pages préliminaires

Astérisque, tome 327 (2009), p. I-XIII

<http://www.numdam.org/item?id=AST_2009_327_R1_0>

© Société mathématique de France, 2009, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

327

ASTÉRISQUE

2009

FROM PROBABILITY TO GEOMETRY (I) VOLUME IN HONOR OF THE 60th BIRTHDAY OF JEAN-MICHEL BISMUT

Xianzhe DAI, Rémi LÉANDRE, Xiaonan MA and Weiping ZHANG, editors

Publié avec le concours du CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Editors : Xianzhe Dai Department of Mathematics, University of California at Santa Barbara, CA 93106, USA dai@math.ucsb.edu

Rémi Léandre Institut de Mathématiques de Bourgogne, Université de Bourgogne, B.P. 47870, 21078 Dijon Cedex, France remi.leandre@u-bourgogne.fr

Xiaonan Ma Université Paris Diderot - Paris 7, UFR de Mathématiques, Case 7012, Site Chevaleret, 75205 Paris Cedex 13, France ma@math.jussieu.fr

Weiping Zhang Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, P.R. China weiping@nankai.edu.cn

Classification mathématique par sujet (2000). — 60-XX, 58-XX, 14-XX, 19-XX, 32-XX, 35-XX, 53-XX.

Remerciements. — Nous tenons à remercier l'Institut de Mathématiques de Jussieu (Paris) et l'Institut de Mathématiques de Bourgogne (Dijon) pour leur soutien financier.

Mots-clefs. — Probabilité, géométrie différentielle, géométrie d'Arakelov, processus stochastique, analyse stochastique, analyse sur les vaiétés, théorème de l'indice d'Atiyah-Singer, théorème de Riemann-Roch opérateurs elliptiques, opérateurs de Dirac, cohomologie équivariante, *K*-théorie, torsion analytique, invariant êta.

FROM PROBABILITY TO GEOMETRY (I) VOLUME IN HONOR OF THE 60th BIRTHDAY OF JEAN-MICHEL BISMUT

Xianzhe Dai, Rémi Léandre, Xiaonan Ma and Weiping Zhang, editors

Abstract. — These two volumes contain original research articles submitted by colleagues and friends to celebrate the 60^{th} birthday of Jean-Michel Bismut.

These articles cover a wide range of subjects in probability theory, in global analysis and in arithmetic geometry, to which Jean-Michel Bismut has made fundamental contributions.

Résumé (De Probabilité à Géométrie, volume en l'honneur du 60^e anniversaire de Jean-Michel Bismut)

Ces deux volumes regroupent des articles originaux soumis par des collègues et amis à l'occasion des 60 ans de Jean-Michel Bismut.

Ces articles portent sur la théorie des probabilités, sur l'analyse sur les variétés et sur la géométrie arithmétique, domaines où Jean-Michel Bismut a fait des contributions fondamentales.

TABLE OF CONTENTS

Preface by Paul MalliavinPreface by Sir Michael AtiyahA letter from a friendCurriculum vitæ of Jean-Michel Bismut	xv xvii xix xxi
The mathematical work of Jean-Michel Bismut: a brief summary 1. From probability theory	xxv xxvi xxvi xxvii xxviii xxviii xxix xxix
Shigeki Aida — Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space: I. Unbounded one particle Hamiltonians	1
1. Introduction 2. Preliminaries 3. Results References	1 2 8 15
Sergio Albeverio & Sonia Mazzucchi — Infinite dimensional oscillatory integrals with polynomial phase function and the trace formula for the heat semigroup	17
1. Introduction 2. Infinite dimensional oscillatory integrals 3. The asymptotic expansion 4. A degenerate case Appendix. Abstract Wiener spaces References	17 19 27 30 41 43

Richard F. Bass & Edwin Perkins — A new technique for proving
uniqueness for martingale problems
1. Introduction
2. Some estimates
3. Proof of Theorem 1.1
References
Martin Grothaus, Ludwig Streit & Anna Vogel — Feynman integrals as Hida distributions: the case of non-perturbative potentials
1. Introduction
2. White Noise Analysis
3. Hida distributions as candidates for Feynman Integrands
4. Solution to time-dependent Schrödinger equation
5. General construction of the Feynman integrand
6. Examples
6.1. The Feynman integrand for polynomial potentials
6.2. Non-perturbative accessible potentials
References
Differential Equation with Jumps 1. Introduction and main results 2. Malliavin calculus for canonical SDE 3. SDE's for derivatives of stochastic flow 4. Alternative criterion for the smooth density
5. Relation with Lie algebra
6. Appendix. An analogue of Norris' estimate
References
James R. Norris — Two-parameter stochastic calculus and Malliavin's integration-by-parts formula on Wiener space 1. Introduction 2. Integration-by-parts formula
3. Review of two-parameter stochastic calculus
4. A regularity result for two-parameter stochastic differential equations
5. Derivation of the formula
References
Ichiro Shigekawa — Witten Laplacian on a lattice spin system
1. Introduction
2. Witten Laplacian in finite dimension

3.	Witten Laplacian acting on differential forms		
4.	. Witten Laplacian in one-dimension 1		
5.	Positivity of the lowest eigenvalue for the Witten Laplacian		
R	eferences		
A	nton Alekseev, Henrique Bursztyn & Eckhard Meinrenken —		
	Pure Spinors on Lie groups		
	Introduction		
1.	Linear Dirac geometry		
	1.1. Clifford algebras		
	1.2. Pure spinors		
	1.3. The bilinear pairing of spinors		
	1.4. Contravariant spinors		
	1.5. Action of the orthogonal group		
	1.6. Morphisms		
	1.7. Dirac spaces		
	1.8. Lagrangian splittings		
2.	Pure spinors on manifolds		
	2.1. Dirac structures		
	2.2. Dirac morphisms		
	2.3. Bivector fields		
	2.4. Dirac cohomology		
	2.5. Classical dynamical Yang-Baxter equation		
3.	Dirac structures on Lie groups		
	3.1. The isomorphism $\mathbb{T}G \cong G \times (\mathfrak{g} \oplus \overline{\mathfrak{g}})$		
	3.2. η -twisted Dirac structures on G		
	3.3. The Cartan-Dirac structure		
	3.4. Group multiplication		
	3.5. Exponential map		
	3.6. The Gauss-Dirac structure		
4.	Pure spinors on Lie groups		
	4.1. $\operatorname{Cl}(\mathfrak{g})$ as a spinor module over $\operatorname{Cl}(\mathfrak{g} \oplus \overline{\mathfrak{g}})$		
	4.2. The isomorphism $\wedge T^*G \cong G \times Cl(\mathfrak{g})$		
	4.3. Group multiplication		
	4.4. Exponential map		
	4.5. The Gauss-Dirac spinor		
5.	q-Hamiltonian G-manifolds		
	5.1. Dirac morphisms and group-valued moment maps		
	5.2. Volume forms		
	5.3. The volume form in terms of the Gauss-Dirac spinor		
	5.4. q-Hamiltonian q-Poisson g-manifolds		
	5.5. \mathfrak{k}^* -valued moment maps		
6	K^* -valued moment maps		
υ.	I valada moment maps		

6.1. Review of K^* -valued moment maps	3
6.2. <i>P</i> -valued moment maps 19	4
6.3. Equivalence between K^* -valued and P -valued moment maps 19	5
6.4. Equivalence between P -valued and \mathfrak{k}^* -valued moment maps	6
References	6
Moulay-Tahar Benameur & Paolo Piazza — Index, eta and rho	
invariants on foliated bundles	
Introduction and main results	
1. Group actions	
1.1. The discrete groupoid ${\mathscr{G}}$	
1.2. C^* -algebras associated to the discrete groupoid \mathcal{G}	9
1.3. von Neumann algebras associated to the discrete groupoid ${\mathscr{G}}$ 20	9
1.4. Traces	1
2. Foliated spaces	3
2.1. Foliated spaces	3
2.2. The monodromy groupoid and the C^* -algebra of the foliation 21	5
2.3. von Neumann Algebras of foliations	6
2.4. Traces	8
2.5. Compatibility with Morita isomorphisms	1
3. Hilbert modules and Dirac operators	6
3.1. Connes-Skandalis Hilbert module	6
3.2. Γ-equivariant pseudodifferential operators	1
3.3. Functional calculus for Dirac operators	5
4. Index theory	2
4.1. The numeric index	2
4.2. The index class in the maximal C^* -algebra	4
4.3. The signature operator for odd foliations	6
5. Foliated rho invariants	6
5.1. Foliated eta and rho invariants	7
5.2. Eta invariants and determinants of paths	0
6. Stability properties of ρ^{ν} for the signature operator	
6.1. Leafwise homotopies	
6.2. $\rho^{\nu}(V, \mathcal{F})$ is metric independent	8
7. Loops, determinants and Bott periodicity	1
8. On the homotopy invariance of rho on foliated bundles	3
8.1. The Baum-Connes map for the discrete groupoid $T \rtimes \Gamma$	4
8.2. Homotopy invariance of $\rho^{\nu}(V, \mathcal{F})$ for special homotopy equivalences 26	6
9. Proof of the homotopy invariance for special	
homotopy equivalences: details	8
9.1. Consequences of surjectivity I: equality of determinants	8
9.2. Consequences of surjectivity II: the large time path	9
9.3. The determinants of the large time path	1

9.4. Consequences of injectivity: the small time path	
9.5. The determinants of the small time path	
References	
Alain Berthomieu — Direct image for some secondary K-theories	
1. Introduction	
2. Various K-theories	
2.1. Preliminaries	
2.1.1. Connections and vector bundle morphisms	
2.1.2. Chern-Simons transgression forms	
2.2. Definitions of the considered K-groups	
2.2.1. Topological K-theory	
2.2.2. K^{0} -theory of the category of flat bundles	
2.2.3. Relative K-theory	
2.2.4. "Free multiplicative" or "non hermitian smooth" K-theory	
2.3. Chern-Simons class on relative K-theory	
2.4. Relations between the preceding K-groups	
2.5. Symmetries associated to hermitian metrics	
2.6. Borel-Kamber-Tondeur class on \widehat{K}_{ch}	
3. Direct images for K-groups	
3.1. The case of topological K-theory	
3.1.1. Preliminary: construction of family index bundles	
3.1.2. Definition of the direct image morphism for K_{top}^0 and K_{top}^1	
3.2. The case of the K^0 -theory of flat bundles	
3.3. The case of relative K-theory	
3.3.1. The notion of "link"	
3.3.2. Definition of the direct image for $K_{\rm rel}^0$	
3.4. The case of multiplicative, or smooth, K^0 -theory	
3.4.1. Transgression of the family index theorem	
3.4.2. Direct image for multiplicative/smooth K^0 -theory	
3.5. Hermitian symmetry and functoriality results	
3.5.1. Direct images and symmetries	
3.5.2. Double fibrations	
4. Proof of Theorems 25 and 27	
4.1. Proof of Theorem 25	
4.1.1. Links and exact sequences of vector bundles	
4.1.2. Link with "positive kernel" family index bundles	
4.1.3. Deformation of ψ , h^{ξ} and ∇_{ξ}	
4.1.4. General construction (and proof of Theorem 25)	
4.2. Proof of Theorem 27	
4.2.1. Reduction of the problem	
4.2.2. Sheaf theoretic direct images and short exact sequences	

	4.2.3. "Adiabatic" limit of harmonic forms
	4.2.4. End of proof of Proposition 43
5.	η -forms
	5.1. \mathbb{Z}_2 -graded theory
	5.1.1. \mathbb{Z}_2 -graded bundles and superconnections
	5.1.2. Special adjunction
	5.2. Adaptation of Bismut's superconnection
	5.2.1. Definition of Bismut and Lott's Levi-Civita superconnection
	5.2.2. Properties and asymptotics of the Chern character of C_t
	5.2.3. Calculating C_t for the product with the real line
	5.2.4. $t \longrightarrow 0$ asymptotics of the infinitesimal transgression form
	5.2.5. Adapting C_t to some suitable triple
	5.2.6. $t \longrightarrow +\infty$ asymptotics of the infinitesimal transgression form .
	5.3. Proof of the first part of Theorem 28
	5.3.1. Chern-Simons transgression and links
	5.3.2. Definition of the η -form and check of its properties
	5.3.3. Invariance properties of η
	5.4. Anomaly formulae and their consequences
	5.4.1. Anomaly formulae
	5.4.2. End of proof of Theorem 28
	5.4.3. Proof of Theorem 29
	5.4.4. Proof of Theorem 31
	5.4.5. Influence of the vertical metric and the horizontal distribution .
6.	Fiberwise Hodge symmetry
	6.1. Symmetries induced on family index bundles
	6.1.1. The fiberwise Hodge * operator
	6.1.2. Symmetry induced by $*_Z$ on fiberwise twisted Euler operators .
	6.1.3. Odd dimensional fibre case
	6.1.4. Symmetry on canonical links
	6.1.5. Symmetry on connections on the infinite rank bundle ${\mathscr E}$
	6.2. Proof of results about K_{flat}^0 and K_{rel}^0
	6.2.1. End of proof of Theorem 32
	6.2.2. Results on π_{\leftarrow}
	6.3. End of proof of Theorem 33
7.	Double fibrations
	7.1. Topological K-theory
	7.1.1. Fiberwise exterior differentials:
	7.1.2. Fiberwise Euler operators
	7.1.3. Introducing some intermediate suitable triple
	7.1.4. Estimates on the operator A_4^{θ}
	7.1.5. Spectral convergence of Euler operators
	7.1.6. Construction of the canonical link (proof of Theorem 61)
	7.2. Flat and relative K-theory
	··

7.2.1. Leray spectral sequence	
7.2.2. Compatibility of topological and sheaf theor	
7.2.3. Proof of Theorem 34	
7.3. Multiplicative and smooth K -theory	
7.3.1. Calculation of $\pi_{2!}^{Eu} \circ \pi_{1!}^{Eu} - (\pi_2 \circ \pi_1)_{!}^{Eu} \dots$	
7.3.2. Proof of Theorem 35	
References	
Jean-Benoît Bost & Klaus Künnemann —	
bundles and extension groups on arithm	
The arithmetic Atiyah extension	
0. Introduction	
1. Atiyah extensions in algebraic and analytic geometry	• • • • • • • • • • • • • • • • • • • •
1.1. Definition and basic properties	
1.2. Cotangent complex and Atiyah class	
1.3. \mathcal{C}^{∞} -connections compatible with the holomorphi	ic structure
2. The arithmetic Atiyah class of a vector bundle with o	connection
2.1. Definition and basic properties	
2.2. The first Chern class in arithmetic Hodge cohom	ology
3. Hermitian line bundles with vanishing arithmetic Ati	yah class
3.1. Transcendence and line bundles with connections	on abelian varieties
3.1.3. Line bundles with connections on abelian va	rieties
3.1.4. The complex case	
3.1.5. An application of the Theorem of Schneider	-Lang
3.1.8. Reality I	
3.1.10. Reality II	
3.1.12. Conclusion of the proof of Theorem 3.1.1 $$.	
3.2. Hermitian line bundles with vanishing arithme	-
smooth projective varieties over number fields .	
3.3. Finiteness results on the kernel of \hat{c}_1^H	
4. A geometric analogue	
4.1. Line bundles with vanishing relative Atiyah class	
varieties	
4.1.1. Notation	
4.2. Variants and complements	
4.3. Hodge cohomology and first Chern class	
4.3.1. Hodge cohomology groups	
4.3.2. The first Chern class in Hodge cohomology	
4.4. An application of the Hodge Index Theorem	
4.4.1. The Hodge Index Theorem in Hodge cohom	
4.4.3. An application to projective varieties fibered	
4.5. The equivalence of VA1 and VA2	
4.6. The Picard variety of a variety over a function fi	eld

4.7. The equivalence of VA2 and VA3	412
Appendix A. Arithmetic extensions and Čech cohomology	414
Appendix B. The universal vector extension of a Picard variety	416
References	422

This volume is dedicated to Jean-Michel Bismut.

The editors : Xianzhe Dai, Rémi Léandre, Xiaonan Ma and Weiping Zhang.

PREFACE BY PAUL MALLIAVIN

Jean-Michel Bismut has had a carrier with an incredibly wide scope. At the beginning of the seventies, after a strong scientific curriculum at École Polytechnique, he received from the French state a life appointment as an engineer in charge of supervising the strategic French national stockpile of crude oil.

To fulfill the forecasting duties of his position, he started econometrical studies which led him to Statistics and subsequently to Probability. He discovered in the mid seventies an object which is now called the *backward stochastic differential equations;* this concept was so innovative that referees of probability Journals to which he submitted the corresponding paper rejected it "as obviously wrong". Finally he succeeded by publishing several papers on the subject. Fifteen years after this publication, Pardoux, starting from Bismut's paper, built a full theory which stands now as a major tool of Mathematical Finance, on which superhedging theory in a risky market is based.

In 1980 Jean-Michel Bismut published a six hundred pages Lecture Notes on Random Mechanics which marks the turn of his carrier to Pure Mathematics. In 1984 Bismut published a two hundred pages book "Large Deviations and the Malliavin Calculus" in which he merges Differential Calculus on the Wiener space with extremal problems associated to computing probability of rare events. Fifty pages of this book are devoted to the Stochastic Calculus of Variations of Brownian motion on a Riemannian manifold; he enriched the classical orthonormal frame bundle approach to this problem by introducing *infinitesimal rotations of the Wiener space*. This innovative idea remained unnoticed for around five years until Daniel Stroock and Bruce Driver showed its full potential. In many papers dealing with infinite dimensional stochastic analysis, it appears as the Bismut formula. The same year, Bismut proved the Atiyah-Singer index formula by an intrinsic computation of the small time expansion of the heat kernel through stochastic analysis.

In the beginning of the eighties, I had the pleasure to see Jean-Michel Bismut every week at my seminar at École Normale. Then Bismut moved towards *Global Analysis* and our common mathematical discussions became, unfortunately for me, less frequent. The extraordinary drive who brought Bismut from Petroleum Industry to Probability, has, once more, taken him towards new mathematical horizons.

Paul Malliavin, June 2008

PREFACE BY SIR MICHAEL ATIYAH

Many years ago I first heard the name of Jean-Michel Bismut from my colleagues in the probability world. He was an up and coming young man in the field. My first personal encounter with him was at the colloquium held in Paris in 1983 in honour of Laurent Schwartz. In my lecture I described Witten's approach to the index theorem via a fixed-point argument in the loop-space. This was not rigorous mathematics but it was a beautiful idea. Bismut later told me that this was what converted him from a probabilist into a differential geometer.

Moreover much of Bismut's subsequent work consisted of providing rigorous proofs for the heuristic physical ideas coming from Witten and other theoretical physicists. It turned out to be an extremely fruitful field and a logical follow-on to Bismut's earlier work in probability.

As index theory developed, focus shifted from global topological formulae to more precise local differential-geometric ones. By integration these reproduced the topological formulae but they contained more information. This was the area in which Bismut specialized and his work embodied many subtle geometric and analytic ideas.

Perhaps the most striking application of the more precise local formulae was to Arakelov theory, also called arithmetic geometry. This involves algebraic geometry defined over number fields in which the infinite prime has to be treated by complex analysis. As yet the theory is in its infancy but its potential as a link from number theory via geometry and analysis to theoretical physics holds out enormous promise. If this aim is eventually achieved, Bismut's many contributions will be seen as essential links in the chain.

Although Bismut has moved beyond classical probability theory, his background in that field certainly fits well with the probabilistic ideas embodied in quantum theory and the Feynman integral. He has shown the broader outlook, ignoring disciplinary boundaries, which is characteristic of great mathematics.

Michael Atiyah February, 2008

A LETTER FROM A FRIEND⁽¹⁾

Dear Jean-Michel,

I'm very sorry that I can't be present to help celebrate your birthday. But it helps a lot that we have been able to spend the last few months together. We have had many good times.

You are one of the world's deepest and most original mathematicians, with a unique perspective and unique abilities. In your chosen field, you are simply orders of magnitude beyond everyone else. In my view, you are a true and worthy successor to Atiyah and Singer.

The work that we did together was one of the great mathematical experiences of my life. In some ways it was also one of the most humbling—particularly at those times when I would be sitting with a blank look on my face and you would be writing away, while at the same time, singing gaily to yourself, just loud enough so that I could hear it. Really, that was too much!

But the truth is that the close friendship that we have shared—especially all the heated discussions—is by far more important to me than the math that we did. You are a wonderful friend.

So enjoy your party and remember that you are still a young man—well maybe not so young—anyhow, at least you can say that you are younger than I am.

Jeff Cheeger

⁽¹⁾ Dai, Ma and Zhang organized a conference "Geometry and Analysis on Manifolds" at the Chern Institute of Mathematics from April 8 until April 14, 2007, in honour of Jean-Michel Bismut. We reproduce here a letter of Jeff Cheeger, which was read by Jean-Pierre Bourguignon during the conference.

CURRICULUM VITÆ OF JEAN-MICHEL BISMUT

Jean-Michel Bismut, born on 26th February 1948 in Lisbon (Portugal). French. Married, 3 children.

Education

1967-1970	Graduate from École polytechnique	
1973 Docteur d'État in Mathematics, Université Paris VI, with a tled "Analyse convexe et probabilités".		

Career

1970-1976	"Ingénieur du Corps des Mines"		
1975-1987	Maître de Conférences at École polytechnique		
1976-1980	Associate professor at Department of Mathematics, Université Paris-Sud		
	(Orsay)		
1981-	Professor at Department of Mathematics, Université Paris-Sud (Orsay)		
1984	Member of I.A.S. (Princeton)		
1986	Invited lecture in the Geometry section, International Congress of Math-		
	ematicians (ICM) in Berkeley		
1987-1988	Visitor at I.H.É.S		
1994	Member of I.A.S. (Princeton)		
1989-2008	Editor of Inventiones Mathematicae		
1996-2008	Managing Editor of Inventiones Mathematicae (with Gerd Faltings)		
1998	Plenary speaker, International Congress of Mathematicians (ICM) in		
	Berlin		
1990-1998	Member of the scientific committee of the Isaac Newton Institute for		
	Mathematical Sciences at Cambridge (UK)		
1992-2002	Senior member of Institut Universitaire de France		
1998-2002	Member of the Executive Committee, International Mathematical Union		
	(IMU)		

2000-2006	Chairman of Fachbeirat of the Max-Planck Institut für Mathematik of
	Bonn
2002-2006	Vice-President of the International Mathematical Union (IMU)

Honors and Prizes

Montyon Prize of Académie des Sciences (1984) Ampère Prize of Académie des Sciences (1990) Corresponding member of Académie des Sciences (1990) Member of Académie des Sciences (1991) Member of Académia Europaea (1998) Member of Deutsche Akademie Leopoldina (2004)

The Ph.D. students of Jean-Michel Bismut

June 1984	Patrick Cattiaux	Université Paris-Sud
	Dissertation title :	Diffusions avec une condition frontière:
		hypoellipticité du semi-groupe associé
		conditionnement et filtrage
October 1984	Rémi Léandre	Université de Franche-Comté
	Dissertation title:	Extension du théorème de Hörmander à
		divers processus de sauts
May 1985	Carl Graham	Université Paris VI
		(Co-advised with Michel Métivier)
	Dissertation title :	Systèmes de particules en interaction dans
		un domaine à paroi collante et problèmes
		de martingales avec réflexion
April 1993	Weiping Zhang	Université Paris-Sud
	Dissertation title :	Invariant êta et torsion analytique
May 1993	Kai Köhler	Université Paris-Sud
	Dissertation title :	Torsion analytique complexe
July 1993	Alain Berthomieu	Université Paris-Sud
	Dissertation title :	Métrique de Quillen et suite spectrale de
		Leray

April 1998	Xiaonan Ma	Université Paris-Sud
	Dissertation title :	Formes de torsion analytique et familles
		de submersions
October 2003	Dimitri Zvonkine	Université Paris-Sud
	Dissertation title :	Enumeration of Ramified Coverings of
		Riemann Surfaces