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FAMILIES OF GALOIS REPRESENTATIONS
AND SELMER GROUPS

Joél BELLAICHE & Gagétan CHENEVIER

Abstract. — This book presents an in-depth study of the families of Galois repre-
sentations carried by the p-adic eigenvarieties attached to unitary groups. The study
encompasses some general algebraic aspects (properties of the space of representations
of a group in the neighbourhood of a point, reducibility loci, pseudocharacters), and
other aspects more specific to Galois groups of local or number fields. In particular,
we define and study certain deformation functors of crystalline representations of the
absolute Galois group of QQ,, namely trianguline deformations, which are naturally
associated to the families above. As an application, we show how the geometry of
these eigenvarieties at “classical” points is related to the dimension of certain Selmer
groups. This, combined with conjectures of Langlands and Arthur on the discrete
automorphic spectrum of unitary groups, allows us to prove, amongst other things,
new cases of the Bloch-Kato conjectures (in any dimension).

Résumé (Familles de représentations galoisiennes et groupes de Selmer). — Ce livre
présente une étude approfondie des familles de représentations galoisiennes portées
par les variétés de Hecke p-adiques des groupes unitaires. Cette étude comprend des
aspects algébriques généraux (propriétés de I’espace des représentations d’un groupe
au voisinage d’un point, lieux de réductibilité, pseudo-caractéres), et d’autres plus
spécifiques aux groupes de Galois des corps locaux ou des corps de nombres. Nous
définissons et étudions notamment certains foncteurs de déformations des représen-
tations cristallines du groupe de Galois absolu de Q, (déformations triangulines)
qui sont naturellement associés aux familles ci-dessus. En guise d’application, nous
montrons comment la géométrie de ces variétés de Hecke aux points « classiques » est
reliée & la dimension de certains groupes de Selmer. Ceci, conjugué aux conjectures
de Langlands et Arthur sur le spectre automorphe discret des groupes unitaires, nous
permet entre autres de démontrer de nouveaux cas des conjectures de Bloch-Kato
(en toute dimension).

© Astérisque 324, SMF 2009
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INTRODUCTION

This book () takes place in a now thirty years long trend of researches, initiated by
Ribet ([96]) aiming at constructing “arithmetically interesting” non trivial extensions
between global Galois representations (either on finite p*>-torsion modules, or on p-
adic vector spaces) or, as we shall say, non-zero elements of Selmer groups, by studying
congruences or variations of automorphic forms. As far as we know, despite of its great
successes (to name one: the proof of Iwasawa’s main conjecture for totally real fields by
Wiles [123]), this current of research has never established, in any case, the existence
of two linearly independent elements in a Selmer group—although well-established
conjectures predict that sometimes such elements should exist. (?) The final aim of
the book is, focusing on the characteristic zero case, to understand the conditions
under which, by this kind of method, existence of two or more independent elements
in a Selmer space could be proved.

To be somewhat more precise, let G be reductive group over a number field. We
assume, to fix ideas, that the existence of the p-adic rigid analytic eigenvariety £ of
G, as well as the existence and basic properties of the Galois representations attached
to algebraic automorphic forms of G are known (®). Thus £ carries a family of p-adic
Galois representations. Our main result takes the form of a numerical relation between
the dimension of the tangent space at suitable points € £ and the dimension of the

(1) During the elaboration and writing of this book, Joél Bellaiche was supported by the NSF grant
DMS-05-01023. Gaétan Chenevier would like to thank the C.N.R.S. for their support, as well as the
LH.E.S. for their hospitality during part of this work.

@ By a very different approach, let us mention here that the parity theorem of Nekovar [89] shows,
in the sign +1 case and for p-ordinary modular forms, that the rank of the Selmer group is at least 2
if nonzero (see also [90, Chap. 12] for a more general result concerning potentially ordinary Hilbert
modular forms).

(3) Besides GLg over a totally real field and its forms, the main examples in the short term of
such G would be suitable unitary groups and suitable forms of GSp,4. Concerning unitary groups in
m > 4 variables, it is one of the goals of the book project of the GRFA seminar [60] to construct
the expected Galois representations, which makes the assumption relevant. All our applications to
unitary eigenvarieties for such groups (hence to Selmer groups) will be conditional to their work.
However, thanks to Rogawski’s work and [78], everything concerning U(3) will be unconditional.
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2 INTRODUCTION

part of Selmer groups of components of adp, that are “seen by £”, where p, is the
Galois representation carried by £ at the point z.

Such a result can be used both ways: if the Selmer groups are known, and small,
it can be used to study the geometry of £ at z, for example (see [73], [9]) to prove
its smoothness. On the other direction, it can be used to get a lower bound on the
dimension of some interesting Selmer groups, lower bound that depends on the di-
mension of the tangent space of £ at z. An especially interesting case is the case of
unitary groups with n + 2 variables, and of some particular points z € £ attached
to non-tempered automorphic forms (). These forms were already used in [5] for a
unitary group with three variables, and later for GSp, in [112], and for U(3) again
in [8]. At those points, the Galois representation p, is a sum of an irreducible n-
dimensional representation (® p, the trivial character, and the cyclotomic character
X- The representations p we could obtain this way are, at least conjecturally, all irre-
ducible n-dimensional representations satisfying some selfduality condition, and such
that the order of vanishing of L(p, s) at the center of its functional equation is odd.
Our result then gives a lower bound on the dimension of the Selmer group of p. Let
us call Sel(p) this Selmer group (®). This lower bound implies, in any case, that Sel(p)
is non zero (which is predicted by the Bloch-Kato conjecture), and if £ is non smooth
at z, that the dimension of Sel(p) is at least 2.

This first result (the non-triviality of Sel(p), proved in chapter 8) extends to any
dimension n a previous work of the authors [8] in which they proved that Sel(p) # 0 in
the case n = 1, i.e. G = U(3), and the work of Skinner-Urban [112] in the case n = 2
and p ordinary. Moreover, the techniques developed in this paper shed also much light
on those works. For example, the arguments in [8] to produce a non trivial element
in Sel(p) involved some arbitrary choice of a germ of irreducible curve of £ at z, and
it was not clear in which way the resulting element depended on this choice. With
our new method, we do not have to make such a choice and we construct directly a
canonical subvector space of Sel(p). Let us mention here that while the second half
of this book was being written, other special cases of Bloch-Kato’s conjectures have
been announced by Skinner-Urban in [114].

In order to prove our second, main, result (the lower bound on dim(Sel(p)), see
chapter 9) we study the reducibility loci of the family of Galois representations on £.
An original feature of the present work is that we focus on points z € £ at which the
Galois deformation at p is as non trivial as possible (we call some of them anti-ordinary

(4) In general, their existence is predicted by Arthur’s conjectures and known in some cases.
(5) Say, of the absolute Galois group of a quadratic imaginary field.
(6) Precisely, this is the group usually denoted by H}(E, p).
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INTRODUCTION 3

points) (7). We discovered that at these points, the local Galois deformation is highly
irreducible, that is not only generically irreducible ), but even irreducible on every
proper artinian thickening on the point z inside £ (recall however that p, = 1®&x®p
is reducible). In other words, the reducibility locus of the family is schematically equal
to the point z. It should be pointed out here that the situation is quite orthogonal to
that for Iwasawa’s main conjecture (see [86], [123]), for which there is a big known
part in the reducibility locus at = (the Eisenstein part), and this locus cannot be
controlled a priori. In our case, this fact turns out to be one of the main ingredients
in order to get some geometric control on the size of the subspace we construct in
Sel(p), and it is maybe the main reason why our points x are quite susceptible to
produce independent elements in Sel(p).

The question of whether we should expect that this method constructs the full
Selmer group of p at x remains a very interesting mystery, whatever the answer may
be. Although it might not be easy to decide this even in explicit examples (say with
L(p,s) vanishing at order > 1 at its center), our geometric criterion reduces this
question to some computations of spaces of p-adic automorphic forms on explicit
definite unitary groups, which should be feasible. Last but not least, we hope that it
may be possible to relate the geometry of £ at = (which is built on spaces of p-adic
automorphic forms) to the L-function (or rather a p-adic L-function) of p, so that our
results could be used in order to prove the “lower bound of Selmer group” part of the
Bloch-Kato conjecture. However, this is beyond the scope of this book.

The four first chapters form a detailed study of p-adic families of Galois represen-
tations, especially near reducible points, and how their behavior is related to Selmer
groups. There are no references to automorphic forms in them, in contrast with the
following chapters 5 to 9 which are devoted to the applications to eigenvarieties. In
what follows, we very briefly describe the contents of each of the different chapters
by focusing on the way they fit in the general theme of the book. As they contain a
number of results of independent interest, we invite the reader to then consult their
respective introductions for more details.

When we deal with families of representations (p;)zex of a group G (or an al-
gebra) over a “geometric” space X, there are two natural notions to consider. The
most obvious one is the datum of a “big” representation of G on a locally free sheaf
of Ox-modules whose evaluation at each € X is p,. Another one, visibly weaker, is

(") A bit more precisely, among the (finite number of) points of z € £ having the same Galois
representation p;, we choose one which is refined in quite a special way.

(8) Note that although we do assume in the applications of this paper to Selmer groups the existence
of Galois representations attached to algebraic automorphic forms on U(m) with m > 4, we do not
assume that the expected ones are irreducible, but instead our arguments prove this irreducibility
for some of them.
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the datum of a “trace map” G — O(X) whose evaluation at each z € X is tr (p;);
these abstract traces are then called pseudocharacters (or pseudorepresentations). As
a typical example, the parameter space of isomorphism classes of semisimple represen-
tations of G usually only carries a universal family in the sense of traces. This is what
happens also for the family of Galois representations on the eigenvarieties. When all
the p, are irreducible, the two definitions turn out to be essentially the same, but the
links between them are much more subtle around a reducible p, and they are related
to the extensions between the irreducible constituents of p;, our object of interest.

Thus our first chapter is a general study of pseudocharacters T over a henselian lo-
cal ring A (having in view that the local rings of a rigid analytic space are henselian).
There is no mention of a Galois group in all this chapter, and those results can be
applied to any group or algebra. Most of our work is based on the assumption that
the residual pseudocharacter T (that is, the pseudocharacter one gets after tensoriz-
ing T by the residue field of A) is without multiplicity, so it may be reducible, which
is fundamental, but all its components appear only once. Under this hypothesis, we
prove a precise structure theorem for T, describe the groups of extensions between the
constituents of T we can construct from T, and define and characterize the reducibil-
ity loci of T' (intuitively the subscheme of Spec A where T has a given reducibility
structure). We also discuss conditions under which T is, or cannot be, the trace of a
true representation. This chapter provides the framework for many of our subsequent
results.

In the second chapter we study infinitesimal (that is, artinian) families of p-adic
local Galois representations, and their Fontaine theory, with the purpose of character-
izing abstractly those coming from eigenvarieties. A key role is played by the theory of
(¢, T)-modules over the Robba ring and Colmez’ notion of trianguline representation
[46]. We generalize some results of Colmez to any dimension and with artinian coeffi-
cients, giving in particular a fairly complete description of the trianguline deformation
space of a non critical trianguline representation (of any rank). For the applications
to eigenvarieties, we also give a criterion for an infinitesimal family to be trianguline
in terms of crystalline periods.

In the third chapter, we generalize a recent result of Kisin in [73] on the analytic
continuation of crystalline periods in a family of local Galois representations. This
result was proved there for the strong definition of families, namely for true represen-
tations of Gal(@p /Qp) on a locally free O-module, and we prove it more generally for
any torsion free coherent O-module. Our main technical tool is a method of descent by
blow-up of crystalline periods (which turns out to be rather general) and a reduction
to Kisin’s case by a flatification argument.

In the fourth chapter, we give our working definition of “p-adic families of refined
Galois representations”, motivated by the families carried by eigenvarieties, and we
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apply to them the results of chapters 2 and 3. In particular, we are able in favorable
cases to understand their reducibility loci in terms of the Hodge-Tate-Sen weight
maps, and to prove that they are infinitesimally trianguline.

In the fifth chapter we discuss our main motivating conjecture relating the dimen-
sion of Selmer groups of geometric semi-simple Galois representations to the order of
the zeros of their L-functions at integers. We are mainly interested in “one half” of
this conjecture, namely, giving a lower bound on the dimension of the Selmer groups,
as well as in a very special case of it that we call the sign conjecture. As was explained
in [5], an important feature of the method we use is that we need as an input some
results (supposedly simpler) about upper bounds of other Selmer groups. For the sign
conjecture, we only need the vanishing of Sel(x) (for a quadratic imaginary field)
which is elementary. However, we need more “upper bounds results” for our second
main theorem, and we cannot prove all of them in general. Thus we formulate as
hypotheses the results we shall need, which will appear as assumptions in the results
of chapter 9. Using results of Kisin and Kato, we are able to prove all that we need
in most cases when n = 2, and in all the cases for n = 1.

The sixth chapter contains all the results we need about the unitary groups, their
automorphic forms, and the Galois representations attached to them. In particular,
we formulate there the two hypotheses (AC(7)) and (Rep(m)) that we use in chapters
8 and 9. This chapter may be read in conjonction with the appendix of this book,
which is a detailled discussion of Langlands and Arthur’s conjectures.

In the seventh chapter, we introduce and study in details the eigenvarieties of def-
inite unitary groups and we prove the basic properties of the (sometimes conjectural)
family of Galois representations that they carry. We essentially rely on the thesis of
one of us [36] and actually go a bit further on several respects. Eigenvarieties furnish
a lot of interesting examples where all the concepts studied in this book occur, and
provides also an important tool for the applications to Selmer groups. The first half
of this chapter only concerns eigenvarieties and may be read independently, whereas
the second one depends on chapters 1 to 4.

Finally, in chapters 8 and 9 we prove our main results, and we refer to those chapters
for precise statements.

The first four chapters of this book appeared as a preprint on the ArXiV on Febru-
ary 2006. The book was made available in full, there, on January 2007. The few im-
portant additions made in the final revision completed in October 2008 are explicitely
mentionned in the core of the text.

We made considerable efforts all along the redaction of this book to develop con-
cepts and techniques adapted to study eigenvarieties. We hope that the reader will
enjoy playing with them as much as we did.
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CHAPTER 1

PSEUDOCHARACTERS, REPRESENTATIONS
AND EXTENSIONS

1.1. Introduction

This section is devoted to the local study (in the sense of the étale topology)
of pseudocharacters T' satisfying a residual multiplicity freeness hypothesis. Two of
our main objectives are to determine when those pseudocharacters come from a true
representation and to prove the optimal generalization of “Ribet’s lemma” for them.

Let us specify our main notations and hypotheses. Throughout this section, we will
work with a pseudocharacter T': R — A of dimension d, where A is a local henselian
commutative ring of residue field k where d! is invertible and R a (not necessarily
commutative) A-algebra (). To formulate our residual hypothesis, we assume () that
Tk : R®k — k is the sum of r pseudocharacters of the form tr p; where the
pi’s are absolutely irreducible representations of R ® k defined over k. Our residually
multiplicity free hypothesis is that the p;’s are two by two non isomorphic. In this
context, “Ribet’s lemma” amounts to determining how much we can deduce about the
existence of non-trivial extensions between the representations p; from the existence
and irreducibility properties of T. Before explaining our work and results in more
details, let us recall the history of those two interrelated themes: pseudocharacters
and the generalizations of “Ribet’s lemma”.

We begin with the original Ribet’s lemma ({96, Prop. 2.1]). Ribet’s hypotheses are
that d = r = 2, and that A is a complete discrete valuation ring. He works with a
representation p : R — Ms(A), but that is no real supplementary restriction since
every pseudocharacter over a complete strictly local ® discrete valuation ring is the

(1) See §1.2.1. for the definition of a pseudocharacter. In the applications, R will be the group algebra
A[G] where G a group, especially a Galois group. However, it is important to keep this degree of
generality as most of the statements concerning pseudocharacters are ring theoretic.

(2) Since we are not interested here in the field of coefficients of our representations and extensions,
we may replace k by a separable extension, so this assumption is actually not a restriction.

(3) A local ring is said to be strictly local if its residue field is separably closed.
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8 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS

trace of a true representation (). Ribet proves that if p® K (K being the fraction field
of A) is irreducible, then a non-trivial extension of p; by pa (resp. of pp by p1) arises
as a subquotient of p. This seminal result suggests numerous generalizations: we may
wish to weaken the hypotheses on the dimension d, the number of residual factors r,
the ring A, and for more general A, to work with general pseudocharacters instead
of representations. We may also wonder if we can obtain, under suitable hypotheses,
extensions between deformations p; and p; of p; and ps; over some suitable artinian
quotient of A, not only over k.

A big step forward is made in the papers by Mazur-Wiles and Wiles ([86], [123])
on Iwasawa’s main conjecture. As their work is the primary source of inspiration for
this section, let us explain it with some details (our exposition owes much to [58]; see
also [9, §2]). They still assume d = r = 2, but the ring A now is any finite flat reduced
local Ap-algebra A, where Ay is a complete discrete valuation ring. Though the notion
of pseudocharacter at that time was still to be defined, their formulation amounts to
considering a pseudocharacter (not necessarily coming from a representation) T :
R — A, where R is the group algebra of a global Galois group. The pseudocharacter
is supposed to be odd, which implies our multiplicity free hypothesis. They introduce
an ideal I of A, which turns out to be the smallest ideal of A such that T® A/I is the
sum of two characters p1, p2 : R — A/I deforming respectively p; and ps. Assuming
that I has cofinite length [, their result is the construction of a finite A/I-module of
length at least ! in Exth /1r(P1,p2). We note that it is not possible to determine
the precise structure of this module, so we do not know if their method constructs,
for example, | independent extensions over k of py by p; or, on the contrary, one
“big” extension of py by p; over the artinian ring A/I, that would generate a free
A/I-module in Ext}z/m(pl,pg).

The notion of pseudocharacter was introduced soon after by Wiles in dimension 2
([123]), and by Taylor in full generality ([117]), under the name of pseudorepresen-
tation. Besides their elementary properties, the main question that has been studied
until now is whether they arise as the trace of a true representation. Taylor showed
in 1990, relying on earlier results by Procesi, that the answer is always yes in the case
where A is an algebraically closed field of characteristic zero; this result was extended,
with a different method, to any algebraically closed field (of characteristic prime to d!)
by Rouquier. The question was settled affirmatively in 1996 for any local henselian
ring A, in the case where the residual pseudocharacter T is absolutely irreducible,
independently by Rouquier ([102]) and Nyssen ([91]).

We now return to the progresses on Ribet’s lemma.

(4) We leave the proof of this assertion to the interested reader (use the fact that the Brauer group
of any finite extension of K is trivial, e.g. by [110, XII §2, especially exercise 2]).
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Urban’s work ([119]) deals with the question of obtaining, using the notations of
the paragraph describing Mazur-Wiles modules, a free A/I-module of extensions of
p1 by p2. His hypotheses are as follows: the dimension d is arbitrary, but the number
r of residual factors is still 2. The ring A/l is an arbitrary artinian local ring, and
the pseudocharacter T is (over A/I) equal to tr p; + tr p2, but he also assumes that T
comes from a true representation p (at least over A/I), which moreover is modulo the
maximal ideal of A a non-trivial extension of g; by p2. Then he proves that p is indeed
a non trivial extension of p; by p2. Thus he obtains a more precise result than Mazur
and Wiles, but with the much stronger assumption that his pseudocharacter comes
from a representation that already gives the searched extension modulo the maximal
ideal. Our work (see §1.7) will actually show that the possibility of producing a free
A/I-module of extensions as he does depends fundamentally on that hypothesis, which
is very hard to check in practice excepted when A is a discrete valuation ring, or when
T allows to construct only one extension of p; by pa.

One of us studied ([6]) the case of an arbitrary number of residual factors r (and
an arbitrary d) but like Ribet with A a complete discrete valuation ring. The main
feature here is that the optimal result about extensions becomes more combinatorially
involved. Assuming that p is generically irreducible, we can say nothing about the
vanishing of an individual space of extensions Extpgy(pi, p;). What we can say is
that there are enough couples (4,5) in {1,...,7}? with non-zero Exthgy(pi, p;) for
the graph drawn by the oriented edges (7,j) to be connected. This result was soon
after extended to deal with extensions over A/I assuming the residual multiplicity one
hypothesis, in a joint work with P. Graftieaux in [12]. The combinatorial description
of extensions we will obtain here is reminiscent of the results of that work.

Let us conclude those historical remarks by noting that two basic questions are
not answered by all the results mentioned above: about Ribet’s lemma, is it possible
to find reasonable hypotheses so that two independent extensions of p; by ps over k
exist? About pseudocharacters (over a strictly local henselian ring A, say), for which
conceptual reasons might a pseudocharacter not be the trace of a true representation?

In this chapter, we will obtain the most general form of Ribet’s lemma (for any
A and T, and implying all the ones above) as well as a satisfactory answer to both
questions above, and others. Indeed we will derive a precise structure theorem for
residually multiplicity free pseudocharacters, and using this result we will be able to
understand precisely and to provide links (some expected, others rather surprising)
between the questions of when does a pseudocharacter come from a representation,
how many extensions it defines, and how its (ir)reducibility behaves with respect to
changing the ring A by a quotient.

We now explain our work, roughly following the order of the subparts of this section.
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10 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS

The first subpart § 1.2 deals with generalities on pseudocharacters. There A is not
local henselian but can be any commutative ring. Though this part is obviously influ-
enced by [102], we have tried to make it self-contained, partly for the convenience of
the reader, and partly because we needed, in any case, to improve and generalize most
of the arguments of Rouquier. We begin by recalling Rouquier’s definition of a pseu-
docharacter of dimension d. We then introduce the notion of Cayley-Hamilton pseu-
docharacter T': it means that every z in R is killed by its “characteristic polynomial”
whose coefficients are computed from the T'(z%), i = 1,...,d. This notion is weaker
than the notion of faithfulness that was used by Taylor and Rouquier, but it is stable
by many operations, and this fact allows us to give more general statements with often
simpler proofs. This notion is also closely related to the Cayley-Hamilton trace alge-
bras studied by Procesi (see [93]). Every A-algebra R with a pseudocharacter T' has
a bunch of quotients on which T factors and becomes Cayley-Hamilton, the smallest
of those being the unique faithful quotient R/Ker T'. We also prove results concerning
idempotents, and the radical of an algebra with a Cayley-Hamilton pseudocharacter,
that will be useful in our analysis of residually multiplicity free pseudocharacters.
Finally, we define and study the notion of Schur functors of a pseudocharacter.

In §1.3 and §1.4, we study the structure of the residually multiplicity free pseu-
docharacters over a local henselian ring A. We introduce the notion of generalized ma-
trix algebra, or briefly GMA, over A. Basically, a GMA over A is an A-algebra whose
elements are square matrices (say, of size d) but where we allow the non diagonal
entries to be elements of arbitrary A-modules instead of A - say the (i, j)-entries are
elements of the given A-module A; ;. Of course, to define the multiplications of such
matrices, we need to suppose given some morphisms A; ; ® 4 A r — A; i satisfying
suitable rules. The result motivating the introduction of GMA is our main structure
result (proved in §1.4), namely: if T : R — A is a residually multiplicity free pseu-
docharacter, then every Cayley-Hamilton quotient of R is a GMA. Conversely, we
prove that the trace function on any GMA is a Cayley-Hamilton pseudocharacter,
which is residually multiplicity free if we assume that A; ;A;; C m (the maximal
ideal of A) for every ¢ # j, which provides us with many non trivial examples of such
pseudocharacters. This result is a consequence of the main theorem of our study of
GMA'’s (§1.3) which states that any GMA over A can be embedded, compatibly with
the traces function, in an algebra My(B) for some explicit commutative A-algebra
B. Those two results take place in the long-studied topic of embedding an abstract
algebra in a matrix algebra. It should be compared to a result of Procesi ([93]) on
embeddings of trace algebras in matrix algebras: our results deal with less general al-
gebras R, but with more general A, since we avoid the characteristic zero hypothesis
that was fundamental in Procesi’s invariant theory methods.
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In §1.5, we get the dividends of our rather abstract work on the structure of
residually multiplicity free pseudocharacters. Firstly, for such a pseudocharacter, and
for every partition of {1,...,7} of cardinality k, we prove that there exists a greatest
subscheme of Spec A on which T is a sum of k& pseudocharacters, each of which being
residually the sum of tr p; for ¢ belonging to an element of the partition. We also show
that on that subscheme, this decomposition of T" as a sum of k such pseudocharacters
is unique, and that that subscheme of Spec (A) does not change if R is changed into
a quotient through which T factors. That subscheme is called the reducibility loci(®
attached to the given partition, and it will become one of our main object of study
in Section 4. Moreover, if S is any Cayley-Hamilton quotient of R, hence a GMA
defined by some A-modules A; ;’s, we give a very simple description of the ideals of
the reducibility loci in terms of the A; ;.

Secondly, we construct submodules (explicitly described in terms of the modules
A; ;) of the extensions modules Extr(p;, p;). This is our version of “Ribet’s lemma”,
as it provides a link between non-trivial extensions of p; by p; and the irreducibility
properties of T encoded in its reducibility loci, and we show that it is in any reasonable
sense optimal.

Nevertheless, and despite its simplicity, this result may not seem perfectly satisfac-
tory, as it involves the unknown modules A; ;’s. It may seem desirable to get a more
direct link between the module of extensions we can construct and the reducibility
ideals, solving out the modules A; ;. However, this is actually a very complicated task,
that has probably no nice answer in general, as it involves in the same times combina-
torial and ring-theoretical difficulties: for the combinatorial difficulties, and how they
can be solved (at a high price in terms of simplicity of statements) in a context that
is ring-theoretically trivial (namely A a discrete valuation ring), we refer the reader
to [12]; for the ring-theoretical difficulties in a context that is combinatorially trivial
we refer the reader to § 1.7. In this subpart, we make explicit in the simple case r = 2
the subtle relations our results implies between, for a given pseudocharacter T', the
modules of extensions that T' allows to construct, the existence of a representation
whose trace is T, the reducibility ideal of T" and the ring-theoretic properties of A. We
also give some criteria for our method to construct several independent extensions.
Finally, let us say that the final sections of this paper will show that our version of
Ribet’s lemma, as stated, can actually easily be used in practice.

In §1.6, we determine the local henselian rings A on which every residually multi-
plicity free pseudocharacter comes from a representation. The answer is surprisingly

(5) We stress that we could not define those loci without the assumption of residually multiplicity
one (see [10]).
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simple, if we restrict ourselves to noetherian A. Those A’s are exactly the unique
factorization domains. The proof relies on our structure result and its converse.

Finally, in § 1.8, we study pseudocharacters having a property of symmetry of order
two (for example, selfdual pseudocharacters). It is natural to expect to retrieve this
symmetry on the modules of extensions we have constructed, and this is what this
subsection elucidates. Qur main tool is a (tricky) lemma about lifting idempotents
“compatibly with an automorphism or an anti-automorphism of order two” which may
be of independent interest.

It is a pleasure to acknowledge the influence of all the persons mentioned in the
historical part of this introduction. Especially important to us have been the papers
and surveys of Procesi, as well as a few but illuminating discussions with him, either
at Rome, the ENS, or by email.

1.2. Some preliminaries on pseudocharacters

1.2.1. Definitions. — Let A be a commutative ring ®) and R an A-algebra (not
necessarily commutative). Let us recall the definition of an A-valued pseudocharacter
on R introduced by R. Taylor in {117, §1]. Let T : R — A be an A-linear map which
is central, that is such that T'(zy) = T'(yz) for all z, y € R. For each integer n > 1,
define a map S,(T): R® — A by

Sn(T)(2) = ) &(0)T° (),
o€B,

where T : R™ — A is defined as follows. Let z = (z1,...,z,) € R™. If 0 is a cycle,
say (j1,...,Jm), then set T?(z) = T'(xj, - - - x;,,), which is well defined. In general,
we let T7(z) = [[;=1 T?(x), where o = [];—; 0; is the decomposition in cycles of the
permutation o (including the cycles with 1 element). We set So(T") := 1.

The central function T is called a pseudocharacter on R if there exists an integer
n such that S,1(T) = 0, and such that n! is invertible in A. The smallest such n is
then called the dimension of T, and it satisfies T(1) = n (see Lemma 1.2.5 (2)) (7).

(8) In all the book, rings and algebras are associative and have a unit, and a ring homomorphism
preserves the unit.

(7) The definition of a pseudocharacter of dimension n used here looks slightly more restrictive than
the one introduced in [117] or [102], as we assume that n! is invertible. This assumption on n! is
first crucial to express the Cayley-Hamilton theorem from the trace, which is a basic link between
pseudocharacters and true representations, and also to avoid a strange behavior of the dimension of
pseudocharacters with base change. Note that Taylor’s theorem is only concerned by the case where
A is a field of characteristic 0, hence n! is invertible. Moreover, Lemma 2.13 of [102] is false when
n! is not invertible (and correct if it is), hence this hypothesis should be added in the hypothesis of
Lemma 4.1 and Theorem 5.1 there (see Remark 1.2.6) below.
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1.2. SOME PRELIMINARIES ON PSEUDOCHARACTERS 13

These notions apply in the special case where R = A[G] for some group (or monoid)
G. In this case, T is uniquely determined by the data of its restriction to G (central,
and satisfying S,,11(T) = 0 on G"*1).

If T: R — Ais an A-valued pseudocharacter on R of dimension d and if A’ is a
commutative A-algebra, then the induced linear map T® A’ : R® A’ — A’ is an
A’-valued pseudocharacter on R of dimension d.

1.2.2. Main example. — Let V := A% and p : R — End4(V) be a morphism
of A-algebras. For each n > 1, V®4™ carries an A-linear representation of &, and a
diagonal action of the underlying multiplicative monoid of R™. Ife = 3~ s €(0)o €
A[G,], then a computation (®) shows that for z € R™,

tr (ze[VOA™) = Sn(tr (p)) ().

Aseactsby 0on V®A™ if n > d, the central function T := tr (p) is a pseudocharacter of
dimension d (assuming that d! is invertible in A). Moreover, when p is an isomorphism,
an easy computation using standard matrices shows that 7" is the unique A-valued
pseudocharacter of dimension d of R = My(A). By faithfully flat descent, these results
also hold when End 4 (V') is replaced by any Azumaya algebra of rank d? over A, and
when tr is its reduced trace.

Let us now recall the main known converse results. If T': R — k is a pseudochar-
acter, where k is a separably closed field, then T is the trace of a unique semi-simple
representation p : R — Endg (V). This is [117, Thm. 1.2] in characteristic 0, who
relies on the work of Procesi in [92], and [102, Thm. 4.2] in general. When k is a
field, but not necessarily separably closed, then [102, Thm. 4.2] proves that if T is
absolutely irreducible, that is T'® k°°P is not the sum of two non trivial pseudochar-
acters, then T is the reduced trace of a surjective k-algebra morphism p: R — S for
some central simple algebra S over k (S and p are even unique up to isomorphism).
More generally, for any commutative ring A, if T : R — A is a pseudocharacter
such that T'® A/m is absolutely irreducible for all m € Specmax(A), then T is the
reduced trace of a surjective A-algebra homomorphism p : R — S, where S is an
Azumaya algebra over A ([102, Thm. 5.1], [91] when A is local henselian). When
A is strictly local henselian, any Azumaya algebra over A is isomorphic to a matrix
algebra M4(A), so the above theorem implies that over a stricly local henselian ring,
any pseudocharacter T': R — A such that T'® A/m is (absolutely) irreducible is the
trace of a true representation p : R — My(A).

(8) For instance, reducing to the case where R = End4(V) and using the polarization identity for
symmetric multi-linear forms, it suffices to check it when x = (y,y,...,y) (see also [92, §1.1], [102,

prop. 3.1]).
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One main goal of this section is to study the new case where A is local henselian
and TQ A/m is reducible (but satisfies a multiplicity one hypothesis (def. 1.4.1, §1.6)).

1.2.3. The Cayley-Hamilton identity and Cayley-Hamilton pseudocha-
racters. — Let T : R — A be a pseudocharacter of dimension d. For z € R,
let

Por(X):=X*+ Z( Se(T)(z,...,z) X4k e A[X].

In the example given in §1.2.2, Pz,T(X ) is the usual characteristic polynomial of z.
We will say that T is Cayley-Hamilton if it satisfies the Cayley-Hamilton identity,
that is if

forallz € R, Pyr(z)=0.

In this case, R is integral over A. The algebra R equipped with T is then a Cayley-
Hamilton algebra in the sense of C. Procesi [93, def. 2.6].

An important observation is that for a general pseudocharacter T' : R — A of
dimension d, the map R — R, z — P, (), is the evaluation at (z,...,z) of a
d-linear symmetric map CH(T) : R® — R, explicitly given by:

—1)d
CH(T) (@1, 20) = S ()18 (D) (i ¢ Dy Toiny

where I is a subset of {1,...,d} and o a bijection from {1,...,]I|} to I. A first
consequence of the polarization identity ([28, Alg., Chap. I, §8, prop. 2], applied to
the ring Symm&%(R)) is that T is Cayley-Hamilton if and only if CH(T) = 0. In
particular, if T is Cayley-Hamilton then for any A-algebra A’, T ® A’ is also Cayley-
Hamilton.

In the same way, we see that for z;,...,z441 € R, we have

(1) Sd+1(T)(:I)1, ey xd+1) = d'T(CH(T)((L‘l, o ,IEd).’L‘d+1),

hence a good way to think about the identity S;y1(7T") = 0 defining a pseudocharacter
is to see it as a polarized, A-valued, form of the Cayley-Hamilton identity.

1.2.4. Faithful pseudocharacters, the kernel of a pseudocharacter. — We
recall that the kernel of T is the two-sided ideal Ker T' of R defined by
KerT :={z € R, Vy € R,T(zy) = 0}.

T is said to be faithful when KerT = 0. If R — S is a surjective morphism of
A-algebras whose kernel is included in KerT, then T factors uniquely as a pseu-
docharacter Tg : S — A, which is still of dimension d, and which will be often
denoted by T'. In particular, T induces a faithful pseudocharacter on R/KerT.
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If T is faithful, then T is Cayley-Hamilton: indeed, for any x,...,z4+1 € R, we
have Sg41(T)(x1,.-.,Za+1) = 0 by definition of a pseudocharacter of dimension d,
hence T(CH(T)(z1,...,Z4)Zda+1) = O by formula (1) above and the fact that d! is
invertible in A; since this holds for all 4,1 € A, and T is faithful, we deduce that
CH(T)(z1,...,2z4) = 0.

More generally, let (T;)]_, be a family of pseudocharacters R — A such that d! is
invertible in A where d = dim Ty +---+dimT,.. Then T := ), T; is a pseudocharacter
of dimension d, and for all z € R,

r
Pm,T = H P:c,Ti
i=1

(we may assume that » = 2, in which case this follows from [102, Lemme 2.2]).
As a consequence, P, r(z) € (KerTi)(KerT)---(KerT,) C ();KerT;, hence T :
R/(N;KerT;) — A is Cayley-Hamilton. The following lemma is obvious from the
formula of P, r(X), but useful.

Lemma 1.2.1. — LetT : R — A be a Cayley-Hamilton pseudocharacter of dimension
d, then for each x € Ker T we have ¢ = 0. In particular Ker T is a nil ideal, and is
contained in the Jacobson radical of R.

Remark 1.2.2. — If A’ is an A-algebra and T is faithful, it is not true in general that
T ® A’ is still faithful. Although we will not need it in what follows, let us mention
that this is however the case when A’ is projective as an A-module (so e.g. when A
is a field), or when A’ is flat over A and either R is of finite type over A (see [102,
prop. 2.11]) or A is noetherian (mimic the proof loc. cit. and use that A% is flat over
A for any set X). This is also the case when A’ = S~'A is a fraction ring of A such
that A — S~!A is injective, as for such an S the natural map

S 'KerT — Ker (T ® S™'A)

is an isomorphism for any pseudocharacter T' : R — A. Indeed, the natural map
S~1KerT — S~1R is injective as S™!A is flat over A, and its image is obviously
included in Ker (T ® S~1A). Moreover, if z € Ker (T’ ® S~!A), then we may write
z =y/s with y € R and s € S. For any z € R, then T(yz) = 0 as its image in S~ A
is T(szz) = sT(zz) = 0, so y € Ker T and the surjectivity follows.

1.2.5. Cayley-Hamilton quotients

Definition 1.2.3. — Let T : R — A be a pseudocharacter of dimension d. Then a
quotient S of R by a two-sided ideal of R which is included in Ker T, and such that the
induced pseudocharacter T' : S — A is Cayley-Hamilton, is called a Cayley-Hamilton
quotient of (R, T).
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16 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS

Example 1.2.4. — (i) R/KerT is a Cayley-Hamilton quotient of (R,T).

(if) Let I be the two-sided ideal of R generated by the elements P, r(x) for allz € R.
Then Sy := R/I is a Cayley-Hamilton quotient of (R,T). Indeed, I C KerT
by formula (1) (which, applied to z; = -+ = z4 = z and z441 = v, gives,
using that its right hand side is zero by definition of a pseudocharacter, that
T(Pyr(z)y) =0 for all z,y € R, so that P, r(z) € KerT forallz € R) and T
is obviously Cayley-Hamilton on Sy.

(iii) Let B be a commutative A-algebra and p : R — My(B) be a representation
such that tr o p = T. Then p(R) is a Cayley-Hamilton quotient of T'. Indeed,
Ker p is obviously included in Ker T and tr is Cayley-Hamilton on p(R) by the
usual Cayley-Hamilton theorem.

The Cayley-Hamilton quotients of (R,T) form in a natural way a category: mor-
phisms are A-algebra morphisms which are compatible with the morphism from R.
Thus in that category any morphism S; — S, is surjective, and has kernel Ker Tg,
which is a nil ideal by Lemma 1.2.1. Note that Sp is the initial object and R/KerT
the final object of that category.

1.2.6. Two useful lemmas on pseudocharacters. — Let T : R — A be a
pseudocharacter of dimension d. Recall that an element e € R is said to be idempotent
if e2 = e. The subset eRe C R is then an A-algebra whose unit element is e.

Lemma 1.2.5. — Assume that Spec (A) is connected.

(1) For each idempotent e € R, T(e) is an integer less than or equal to d.

(2) We have T(1) = d. Moreover, if A’ is any A-algebra, the pseudocharacter T ® A’
has dimension d.

(3) If e € R is an idempotent, the restriction T, of T to the A-algebra eRe is a
pseudocharacter of dimension T'(e).

(4) If T is Cayley-Hamilton (resp. faithful), then so is T.

(5) Assume that T is Cayley-Hamilton. If ey, ..., e, is a family of (nonzero) orthog-
onal idempotents of R, then r < d. Moreover, if T(e) = 0 for some idempotent
e of R, thene=0.

Proof. — Let us prove (1). By definition of S441(T) and [102, cor. 3.2],

2) Seri(D)(ee,..., )= D e(0)T(e)”! = T(e)(T(e) ~ 1) (T(e) —d) =0

UGG.{+1

in A, where |o| is the number of cycles of . The discriminant of the split polynomial
X(X —1)---(X —d) € A[X] is d!, hence is invertible in A. As Spec (A) is connected,
we get that T'(e) = i for some i < d. This proves (1).
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To prove (2), apply (1) to e = 1. We see that T'(1) = ¢ is an integer less than or
equal to d. But following the proof of [102, Prop. 2.4], there is an € A—{0} such that
z(T(1) —d) = 0. Then z(i—d) = 0, and because i — d is invertible if non zero, we must
have i = d = T'(1). In particular, S4(T)(1,1,...,1) =TA)}(T(1)-1)...(T(1)—d+1) =
d! is invertible, hence S4(T' ® A’)(1,...,1) is non zero, which proves (2).

Let Te := Tjcge : eRe — A. For all n, we have S, (Te) = Sn(T)|(ere)n+1, S0 that T
is a pseudocharacter of dimension < d. As e is the unit of eRe, and T'(e)! is invertible
in A by (1), part (2) implies that dim T, = T'(e).

If z € eRe and y € R, then T(zy) = T(exey) = T(zeye) = Te(zeye), hence T,
is faithful if T is. Assume now that T is Cayley-Hamilton and fix € eRe. Let us
compute

eCH(T)(z,...,z,(1—€),...,(1 —¢€))

where = appears r := T'(e) times. As (1 — e) = e(1 — e) = 0, we see that the only
nonvanishing terms defining the sum above are the ones with (I, o) satisfying |I| < r
and o({1,...,|I]}) € {1,...,r}. For such a term, it follows from [102, Lemme 2.5]
that

Sd_|[|(T)({.’L'i,i ¢ I}) = ST_”'(T)(.’E, . ,:E)Sd_,-(T)(l —€y..., 1- e).
As we have seen in proving part (2) above, and by (3), S¢—r(T)(1 —e,...,1 —€) =
Si—r(T1—e)(1—e,...,1 —€) = (d —r)! is invertible. We proved that:

_ (d—r)!

2
eCH(T)(z,...,z,(1 —€),...,(1 —¢€)) pT CH(T.)(z,...,x)e,

hence T, is Cayley-Hamilton if T is.

Let us prove (5), we assume that T is Cayley-Hamilton. Let e be an idempotent
of R. If e satisfies T'(e) = 0, then we see that P, 7(X) = X%, hence e? = e = 0 by
the Cayley-Hamilton identity. Thus if e is nonzero then T'(e) is non zero, hence by
(1) is an integer between 1 and d, so is invertible in A. Assume now by contradiction

that ej,...,eq4; is a family of orthogonal nonzero idempotents of R. Then we get
that Sgyi(e1,...,ea+1) = T(e1) --T(eq+1), which has to be invertible and zero, a
contradiction. ‘ O
Remark 1.2.6. — Lemma 2.14 of [102] is obviously incorrect as stated, and must be

replaced by the part (5) of the above lemma (it is used in the proofs of Lemma 4.1
and Theorem 5.1 there).

We conclude by computing the Jacobson radical of R when T is Cayley-Hamilton.
In what follows, A is a local ring with maximal ideal m and residue field k := A/m.
We will denote by R the k-algebra R ®4 k = R/mR, and by T the pseudocharacter
T®k:R—k.
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18 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS

Lemma 1.2.7. — Assume that T is Cayley-Hamilton. Then the kernel of the canonical
surjection R — R/KerT is the Jacobson radical rad(R) of R.

Proof. — Let J denote the kernel above, it is a two-sided ideal of R. By [102, Lemma
4.1] (see precisely the sixth paragraph of the proof there), R/(Ker T) is a semisimple
k-algebra, hence rad(R) C J.

Let z € J; we will show that 1 + z € R*. We have T(zy) € m,Vy € R, hence
T(z%) € m for all i, so that by the Cayley-Hamilton identity 2¢ € m(A[z]). Let us
consider the commutative finite A-algebra B := Alz]. Then B is local as B/mB is,
and its maximal ideal is (m,z). As a consequence, 1 + z is invertible in B, hence in
R. As J is a two-sided ideal of R such that 1+ J C R*, we have J C rad(R). d

1.2.7. Tensor operations on pseudocharacters. — In this section we assume
that A is a Q-algebra. All the tensor products involved below are assumed to be over
A.

Let R be an A-algebra, T': R — A be a pseudocharacter of dimension d, and m
a positive integer. We define 7®™ : R®™ — A as the A-linear form that satisfies

3) Tx1Q® - Qxp) =T(x1)...T(Tm)-
Let us denote by R®™[G,,,] the twisted group algebra of G,, over R®™ satisfying
0 Z1Q QTm =To1) ®+* Ly(m) * 0.
We can then extend 7®™ to an A-linear map R®™[&,,] — A by setting
U1 ®  ®@Zy-0) =T (x1,...,Tm)

(see §1.2.1, note that this map coincides with 7®™ on the subalgebra R®™).
Proposition 1.2.8. — T®™ and U are both pseudocharacters of dimension d™.

Proof. — By [98], there is a commutative A-algebra B, with A C B, and a morphism
p: R — My(B) = Endg(B¢9) of A-algebras such that tr p(z) = T(z)1p for every
z € R. Let p®™ : R®™ — Endp((B%)®™) = Myn(B) be the mth tensor power of
p- The equality tr p®™(z) = T®™(z)1p follows from (3) for pure tensors z € R®™
and then by A-linearity for all z. We deduce tr p®™ = T as A C B. Thus T®™ is a
pseudocharacter, being the trace of a representation.

We can extend the morphism p®™ : R®™ — Endp((B%)®™) into a morphism
¢ : R®"[6,,] — Endp((B%)®™) by letting &,, act by permutations on the m
tensor components of (B¢)®™. It is an easy computation to check that the trace of p’
is U. So U is a pseudocharacter. O

ASTERISQUE 324
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Remark 1.2.9. — 1t should be true that more generally, if for it = 1,2, T; : R, — A
is a pseudocharacter of dimension d;, and if T : R; ® R; — A is the A-linear map
defined by

T(z1 ® z2) = Ty (z1)T2(z2),
then T is a pseudocharacter of dimension dyds. It is probably possible to deduce
directly the formula S4,4,+1(T) = 0 from the formulas Sg,+1(T;) =0, ¢ = 1,2, but we
have not written down a proof (9.

To conclude this paragraph, we give an application of the preceding proposition to
the construction of the Schur functors of a given pseudocharacter in the case when
R := A[G] with G a group or a monoid.

Let T : A[G] — A be a pseudocharacter and let m > 1 be an integer. There is a
natural A-algebra embedding

tm : A[G] — R®™[G,,] = A[G™ x G,

extending the diagonal map G — G™. Let e € Q[6,,] be any central idempotent.
As the image of ¢, commutes with G,,, the map

T¢: A[G] — A, z— U(tm(z)e),
is a pseudocharacter by Proposition 1.2.8.

Remark 1.2.10. — (i) In the special case when e = 2(3",ce. €(0)0), then we set
as usual A™(T) := T*. Note that T°(g) = 2.5 (T)(g,...,9) for g € G.

(ii) It follows easily from the definitions that when T' (resp. 71 and T3) is the trace
of a representation G — GL(V') (resp. of some representations V; and V),
then T (resp. T1T») is the trace of the representation of G on e(V®™) (resp.
on Vi ® V).

1.3. Generalized matrix algebras

Let di,...,d, be nonzero positive integers, and d := dy + - - - + d.

(9) Note also that the proof of the proposition above would break on the fact that if p; : R; —
M4(B;) are representations of trace T; given by [93], it does not follow from A C B; that the map
A — Bj ®4 Ba is injective, so that we cannot find a representation whose trace is T', but only a
representation whose trace coincides with T after reduction to the image of A in B1 ® 4 B2. However
this line of reasoning would imply that T is a pseudocharacter in two cases: if A is reduced, because
in that case, we can take By = By equal to the product of algebraic closures of residue fields of
all points of Spec (A), and p; : R; — Mg(B) be the “diagonal” representation deduced from Tj;
and if A is local henselian, T; residually multiplicity free (see § 1.4.1), since in this case we may use
Proposition 1.3.13 to produce representations p; : R — My(B;) of trace T; such that A is a direct
factor of B;, so that we know that A C B; ® 4 Bs.
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1.3.1. Definitions, notations and examples

Definition 1.3.1. — Let A be a commutative ring and R an A-algebra. We will say
that R is a generalized matriz algebra (GMA) of type (di,...,d,) if R is equipped
with:

(i) a family of orthogonal idempotents ey, ..., e, of sum 1,

(ii) for each %, an A-algebra isomorphism %; : e;Re; — My, (A),
such that the trace map T : R — A, defined by T'(z) := Y ;_; tr (¢i(eize;)), satisfies
T(zy) = T(yz) for all z,y € R. We will call £ = {e;,¢;,¢ = 1,...,r} the data of
idempotents of R.

Remark 1.3.2. — If R is a GMA as above, then R equipped with the map T'(e)1g is
a trace algebra in the sense of Procesi [93].

Notation 1.3.3. — If (R,£) is a GMA as above, we shall often use the following no-
tations. For 1 < i <r,1 < k,l < d;, there is a unique element Ef e e; Re; such that
¥;(EF') is the elementary matrix of My, (A) with unique nonzero coefficient at row k
and column [. These elements satisfy the usual relations

k,l k'l k,l
EMERNY = 6,6, 0B,

€ =Y 1<k<d, Ezk * and AEl.1 ! is free of rank one over A. Clearly, the data of the E;c o
satisfying these last three conditions is equivalent to condition (ii) in the definition of
R. For each i, we also set E; := Ez11

Example 1.3.4. — Let A be a commutative ring, and B be a commutative A-algebra.
Let A;;, 1 < i,j < r, be a family of A-submodules of B satisfying the following
properties:

(4) For all i, j, k, Ai,i = A, A,L'J'Aj,k C Ai,k

Then the following A-submodule R of M4(B)

Mg, (A11) Mg, a,(Ar2) .. My e, (A1)
%) Ma, a,(A21)  Mg,(A22) ... My, a4, (A2,)
Mdrydl (Aryl) Mdr,dz (AT,Z) v Mdr (Ar,r)

is an A-subalgebra. Let e; € My(B) be the matrix which is the identity in the i**
diagonal block (of size d;) and 0 elsewhere. As A;; = A, e; belongs to R, and in R
we have a decomposition in orthogonal idempotents

l=e14+ex+---+ep
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We also have canonical isomorphisms v; : e;Re; — Mg, (A). Hence R together with
{ei,¥i,i =1,...,7} is a GMA, and the trace T is the restriction of the trace of My(B).
Note that assuming d! invertible in A, §1.2.2 shows that T is a pseudocharacter of
dimension d over R, which is Cayley-Hamilton (see §1.2.3).

The GMA R is called the standard GMA of type (di,...,d,) associated to the
A-submodules A; ; of B.

1.3.2. Structure of a GMA. — Let R be a GMA of type (dy,...,d,). We will
attach to it a canonical family of A-modules A; ; C R, 1 <4,j < r, as follows. Set

.Aiyj = E,REJ
For each triple 1 < 4,7,k <, we have

Aij Ak C Ak
in R, hence the product in R induces a map

Pijk : Aij @ Ajk — Ak
Moreover, T induces an A-linear isomorphism
A — A.
By Morita equivalence, the map induced by the product 9 of R
6,;RE7; ® Ai’j ® EjRej — e,-Rej
is an isomorphism of e; Re; ® e; R°PPe;j-modules. In particular, with the help of v; and
1, we get a canonical identification
eiRe; = Mg, a,(Ai ),

as a module over e; Re; ®e; R°PPe; = My, (A)® Mgy, (A)°PP. Moreover, in terms of these
identifications, the natural map induced by the product in R, e; Re;®e; Re;, — e;Rey,
is the map Mdi,d,- (Ai,j) ® Md,-,dk (.Ajyk) — Mgy, 4, (Ai,k) induced by Pk

To summarize all of this, there is a canonical isomorphism of A-algebras

My, (A1) Maya,(Ar2) ... Mg, (Asr)
©) Re Mdz,dl'(-AZ,l) My, (:Az,z) .. Mdz,di(AZr) ’
M, 4, (Ar1) Ma,a,(Ar2) ... Mg (Ary)

where the right hand side is a notation for the algebra that is @, ; My, 4,(A: ;) as an

A-module, and whose product is defined by the usual matrix product formula, using
the ; ; x’s to multiply entries. Moreover, we have canonical isomorphisms A; ; — A.

(10) All the tensor products below are assumed to be over A.
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By an abuse of language, we will often write this precise isomorphism as an equality
A = A
Let us consider the following sets of conditions on the ¢; ; x’s:
(UNIT) For all 4, A;; = A and for all 4,5, @;;; : AQ A;j — A;j (resp. @;j; :
A;j ® A— A; ;) is the A-module structure of A; ;.
(ASSO) For all 4, 4, k, I, the two natural maps A; ; ® Aj x ® Ax; — A;,; coincide.
(COM) For all ¢, j and for all z € A; ;, y € A;;, we have ¢; ; ;(T®y) = ¢;,i; (y®x).

Lemma 1.3.5. — The ¢, ;’s above satisfy the conditions (UNIT), (ASSO) and
(COM). The o, ;:’s are all nondegenerate if and only if T : R R — A,
z ®y +— T(zy), is nondegenerate.

Proof. — First, (ASSO) follows from the associativity of the product in R. To check
(UNIT), we must show that for all 4,7, and for all z,y € R, then E;zE;yE; =
T(E;zE;)E;yE; and E;zE;yE; = T(E;yE;)E;zE;. As T(R) = A is in the center of
R, it suffices to check that for all 7, and for all z € R,

Ei.’l,‘Ei = T(Elez)E’l,’

but this is obvious. The property (COM) holds as T'(zy) = T(yzx) for all z,y € R,
Note that if z € R and i # j, T(e;xe;) = T(eje;x) = 0. Hence for x € e;Re;
and y € e; Rej we have T'(xy) = 0, except in the case j = ¢’ and = j'. As an A-
module, R ~ @; ; Mg, 4,(A; ;), and by the above remark, the pairing T: R® R — A
is the direct sum of the pairings T;; : e;Re; ® e;Re; — A, for all ordered pairs
(,4). Thus T is nondegenerate if and only if all the pairings T; ; are non degenerate.
But T; ; is isomorphic to the pairing Mg, 4, (Ai ;) ® Ma; 4,(Aj:) — A, induced by
Vi ¢ Aij; ® Aj; — A and the trace. By Morita’s equivalence, this pairing is
nondegenerate if and only if 1; ;; is, hence the last assertion of the lemma. O

Reciprocally, if we have a family of A-modules A;;, 1 < i,j < 7, equipped with
A-linear maps @; ;i : Aij ® Ajr — A satisfying (UNIT), (ASSO) and (COM),
then we leave as an exercise to the reader to check that R := @; ; My, 4;(A; ;) has a
unique structure of GM A of type (di,...,d,) such that for all ¢, j, E;RE; = A, ;.

1.3.3. Representations of a GMA. — If R is an A-algebra, we will call represen-
tation of R any morphism of A-algebras p: R — M, (B), where B is a commutative
A-algebra. If R is equipped with a central function 7' : R — A, we will say that p is
a trace representation if tr o p(xz) = T'(z)1p for any z € R.

Let (R,E) be a GMA of type (di,...,d,;). We will be interested by the trace
representations of R, and especially by those that are compatible with the structure
&, as follows:
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Definition 1.3.6. — Let B be a commutative A-algebra. A representation p : R —
M, (B) is said to be adapted to & if its restriction to the A-subalgebra ®]_,e;Re; is
the composite of the representation @]_;v; by the natural “diagonal” map My, (A) @
<@ My, (A) — My(B).

Obviously, an adapted representation is a trace representation. In the other direc-
tion we have:

Lemma 1.3.7. — Let B be a commutative A-algebra and p : R — Mgy(B) be a trace
representation. Then there is a commutative ring C containing B and a P € GL4(C)
such that PpP~! : R — My(C) is adapted to £. Moreover, if every finite type
projective B-module is free, then we can take C = B.

Proof. — Astrop=T, the p(Ezlc ’k)’s form an orthogonal family of d idempotents of
trace 1 of M4(B) whose sum is 1. As a consequence, in the B-module decomposition

B* = @i p(B;")(BY),

the modules p(Ez’c *)(B4)’s are projective, hence become free (necessarily of rank 1)
over a suitable ring C containing B (and of course we can take C = B if those
modules are already free). We now define a C-basis fi,..., fg of C? as follows. For
each 1 < i < r, choose first g; a C-basis of p(Eil’l)(C’d). Then for 1 < k < d;,

Fartootdi sk = P(E]) ()
is a C-basis of p(Ei’) (C?). By construction, in this new C-basis, p is adapted to £. [

Let us call G the natural covariant functor from commutative A-algebras to sets
such that for a commutative A-algebra B, G(B) is the set of representations (not
considered “up to isomorphism”) p : R — M (B) adapted to €.

Let B be a commutative algebra and p € G(B). By a slight abuse of language we
set E; := p(E;) € Mg(B). By definition, for each i, j, p(E;RE;) = E;p(R)E;, hence
it falls into the B-module of matrices whose coeflicients are 0 everywhere, except on
line dy + -+ +d;—1 + 1 and row dy + --- + d;j_1 + 1. We get this way an A-linear
map f;j : Ai; — B, whose image is an A-submodule of B which we denote by A; ;.
Hence

Proposition 1.3.8. — The subalgebra p(R) of My(B) is the standard GMA of type
(di,...,dr) associated to the A-submodules A;; of B (see example 1.3.4).

Moreover, the f; ;’s have the two following properties:

(i) fi is the structural map A — B,
(ii) the product - : B® B — B induces the @; j ’s, i.e.

Viajvk, fi,k O Pijk = f’i:j : ijk'
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This leads us to introduce the following new functor. If B is a commutative A-algebra,
let F(B) be the set of (fi;)i<ij<r, where f;; : A;; — B is an A-linear map,
satisfying conditions (i) and (ii) above. It is easy to check that F is a covariant
functor from commutative A-algebras to sets. In the discussion above, we attached to
each p € G(B) an element f, = (f; ;) € F(B).

Proposition 1.3.9. — p — f, induces an isomorphism of functors G — F. Both those
functors are representable by a commutative A-algebra B*™V.

Proof. — Let B be a commutative A-algebra and f := (f; ;) € F(B). Then f induces
coefficient-wise a natural map

ps: R =®ijMa, 4, (Aij) — @i My, a,(B) = Ma(B).

This map is by definition a morphism of A-algebras which is adapted to £. We get
this way a morphism F' — G which is obviously an inverse of p — f, constructed
above.

To prove the second assertion, it suffices to prove that F' is representable. If M
is an A-module, we will denote by Symm(M) := @®x>oSymm*(M) the symmetric
A-algebra of M. We set

B = Symm(@ A j).
i#]
Let J be the ideal of B generated by all the elements of the form b ® ¢ — (b ® ¢),
where b € A; j,c € Aj and ¢ = @; j, for all 4, j and k in {1,...,r}. It is obvious
that BV := B/I, equipped with the canonical element (f;; : A;; — B"),; €

)

F(B"), is the universal object we are looking for. [

1.3.4. An embedding problem. — It is a natural question to ask when a trace
algebra (R,T) has an injective trace representation of dimension d, that is, when it
can be embedded trace compatibly in a matrix algebra over a commutative ring. A
beautiful theorem of Procesi [93] gives a very satisfactory answer when A is a Q-
algebra: (R,T) has an injective trace representation of dimension d if and only if T
satisfies the d-th Cayley-Hamilton identity (see [93] and §1.2.3).

Assume that (R, &) is a GMA. Then we may ask two natural questions:

(1) Is there an injective d-dimensional trace representation of R?

(2) Is there an injective d-dimensional adapted representation of R?
Actually, it turns out that those questions are equivalent. Indeed, if p : R — My(B)
is an injective trace representation, then Lemma 1.3.7 gives an injective adapted
representation R — My(C) for some ring C O B. By elementary reasoning, question
(2) is equivalent to the following questions (3) or (4).

(3) Is the universal adapted representation p: R — My(B""") injective?
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(4) Are the universal maps f; ; : A;; — B""" injective?

For a GMA for which we know a priori that T is a Cayley-Hamilton pseudochar-
acter of dimension d (residually multiplicity free Cayley-Hamilton pseudocharacters
over local henselian rings are examples of such a situation - see § 1.4), Procesi’s result
gives a positive answer to question (1), hence to questions (2) to (4) as well, in the
case where A is a Q-algebra. We shall give below a positive answer in the general case
to those questions. As a consequence, by Proposition 1.3.8, any GMA is isomorphic
to some standard GMA of Example 1.3.4, and its trace is a Cayley-Hamilton pseu-
docharacter of dimension d. Note that it does not seem much easier to prove first this
last fact.

This result (the positive answer to questions (1) to (4)) will be used in its full
generality only in the proof of the Theorem 1.6.3 (and here only for r = 2), and also
to prove the converse of Theorem 1.4.4 (i) (see Example 1.4.2). In particular, it is
not needed for the Galois theoretic applications of the following sections. However,
we shall use several times this result in a special case (see §1.3.5 below) where there
is a much simpler proof, and where more precise results are available. Hence, for the
convenience of the reader, we first give the proof in this special case.

1.3.5. Solution of the embedding problem in the reduced and nondegener-
ate case. — Let I = {1,...,7} and assume that we are given a family of A-modules
A; j, t,j €I, and for each 4, j, k in I an A-linear map (11

Pi gk Aig ® Ajk — Ak,

which satisfy (UNIT), (ASSO) and (COM). We denote by F' again the functor from
commutative A-algebras to sets which is associated to this data, as defined in §1.3.3.

Lemma 1.3.10. — (i) Assume that the A; ;’s are free of rank 1 over A, and that the
@i,k are isomorphisms. Then there is a (fi ;) € F(A) such that the f; ;’s are
isomorphisms.

(ii) The relation ¢ ~ j if, and only if, A, ; is free of rank one and ¢;;; is an
isomorphism, is an equivalence relation on I. Moreover, if i ~ j ~ k, then ¢; j k
is an isomorphism.

Proof. — We first show (i). Let e; ; be an A-basis of A; ;. As ; ; x is an isomorphism,
there exists a unique \; jx € A* such that ¢; jr(ei; @ k) = Aijreik. Let us fix
some g € I. For all 4, j, set p; ; := Ay ;,,;. We claim that the A-linear isomorphisms
fij + Aij — A defined by f; j(e; ;) = pi; satisfy (f; ;) € F(A). It suffices to check
that for all ¢, 7, k, we have p; jp;x = Aij ki But this is the hypothesis (ASSO)
applied to i,4g,j and k.

(11) All the tensor products below are assumed to be over A.
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Let us show (ii). By (UNIT) we have ¢ ~ i, and by (COM) i ~ j implies j ~ i. If
i~ jand j ~ k we claim that ¢; ; ; and is an isomorphism. It will imply that A, j
and Ay ; is free of rank 1 over A, and that ¢; x ; is an isomorphism by (ASSO), hence
i ~ k. Using (UNIT) and (ASSO), we check easily (1?) the equality of linear maps

Pik,i © (Pigk ® Pk ji) = Vi Piii © Aij ® Ajk ® Ak j ® Aji — A.

As i~ j and j ~ k, it implies that ¢; ; x is injective. The surjectivity of ¢; ;i comes
from the fact that the natural map

Air @ Ak j @ Aj g — Aik

is an isomorphism (as j ~ k) whose image is contained in Im (¢; ; x) by (ASSO). O

Before stating the main proposition of this subsection, we need to recall some
definitions from commutative algebra. If A is a commutative ring, recall that the
total fraction ring of A is the fraction ring Frac(4) := S~!A where S C A is the
multiplicative subset of nonzerodivisors of A, that is f € S if and only if the map
g — gf, A — A, is injective. We check at once that the natural map A — S~ 'A
is injective and flat, and that each nonzerodivisor of S~!A is invertible. Of course,
S~1A is the fraction field of A if A is a domain.

Proposition 1.3.11. — Assume A is reduced. The following properties are equivalent:

(i) A has a finite number of minimal prime ideals,
(ii) A embeds into a finite product of fields,
(iii) S71A is a finite product of fields.

If they are satisfied, S™* A = [ p Ap where the product is over the finite set of minimal
prime ideals of A.

Proof. — It is clear that (i) and (ii) are each equivalent to the following assertion:
“there exist a finite number of prime ideals P, ..., P, of A such that P,N---NP,. =0".
In particular, (i) and (ii) are equivalent.

Note that Spec(S~'A) C Spec(A) is the subset of prime ideals that do not meet
S. For P any minimal prime ideal of A, and f € S, remark that the image of f in
Ap = Frac(A/P) is not a zero divisor of this latter ring by flatness of Ap over A, so
SN P = . In particular, A and S~! A have the same minimal prime ideals, and (iii)

(A2) 1f (x,y, 2,t) € (Aij x Aj X Ak,j X Aj;), using (ASSO), (ASSO) again, and (UNIT), we have
with the obvious notations: (zy)(2t) = z(y(zt)) = z((yz)t) = (yz)(«t). In general, to check this kind
of identities with values in some Ay, it suffices to do it in the GMA of type (1,1,...,1) defined by
the A; j, which might be a bit easier (e.g. in the proof of Proposition 1.3.13).
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implies (i). Moreover, if A has a finite number of minimal prime ideals, say P, ..., P,
then we have an injection
A— ] A,
i=1..r
)
(7 S=A\(PLU---UPR,).

Assume now that (i) holds, we will show (iii) as well as the last assertion of the
statement. As A and S~!A have the same minimal prime ideals, we may assume that
S~1A = A, i.e. that each nonzerodivisor of A is invertible. By (7), we get that for
each maximal ideal m of A, m C U;=1. ,P;. By [29, Chap. II, §1.1, Prop. 2], this
implies that each P; is maximal, hence
A= ] A-
i=l..r

and we are done. Od

An A-module M is said to be torsion free if the multiplication by each f € S on M
is injective, i.e. if the natural map M — S~'M is injective. An A-submodule M of
S~1A is said to be a fractional ideal of S~*A if fM C A for some f € A which is not
a zerodivisor. Assume that A is reduced and that S™'A = [], K is a finite product
of fields. Note that if A; = Im (A — Kj), then [], A; is a fractional ideal of K. As
a consequence, M C K is a fractional ideal if, and only if, for each s, Im (M — Kj)
is a fractional ideal of K,. We will often denote by K the total fraction ring S~!A.

Proposition 1.3.12. — Assume that A is reduced and that its total fraction ring K is
a finite product of fields. Assume moreover that the maps ¢; j,;: A; ; ® A;j; — A are
nondegenerate 13,

Then there exists (f; ;) € F(K) such that each f;; : Ai; — K 1is an injection
whose image is a fractional ideal of K. Moreover, if A = K 1is a field, the relation
i ~ j if, and only if, A; ; # 0 coincides with the one of Lemma 1.8.10.

Proof. — Write K = [][, K, as a finite product of fields. As A;; embeds into
Hom4 (A, ;, A) by assumption, it is torsion free over A, hence embeds into A; ; ® K.
As A — K is an injection into a fraction ring, we check easily that ¢; ; ; ® K is again
nondegenerate (%), hence so are the ¢; j; ® K,’s. By (ASSO) applied to i, 7,1, j, and
by (COM) and (UNIT), we have:

Vz,z' € A j,Vy € Ajiy  0iji(@ y)z = @i ji(z,y)z.

(13) That is, that the induced maps A; ; — Hom4(A;;, A) are injective.
(19) If A is any commutative ring with total fraction ring =1 A, and M any A-module (not necessarily
of finite type), then the natural map S~1Hom4 (M, A) — Homg-1 4(S™1 M, S~1A) is injective.
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hence A; ; ® K has K,-dimension < 1 and A; ; is isomorphic to a fractional ideal of
K. It remains only to construct the injections f; ; of the statement. By what we have
just seen, we can assume that A = K is a field, and in this case each A; ; is either 0
or one dimensional over K, and the ¢; ;;’s are nondegenerate, hence isomorphisms.
For i,j € I, say i ~ j if A;; # 0. As the ¢, ;; are isomorphisms, this relation
coincides with the one defined in Lemma 1.3.10 (ii). On each equivalence class of the
relation ~, we define some f; ;’s by Lemma 1.3.10 (i), and we set f; ; :=0ifi ¢ 5. O

1.3.6. Solution of the embedding problem in the general case. — Same
notations as in §1.3.5. We recall that B""" is the universal A-algebra representing F
(see Proposition 1.3.9).

Proposition 1.3.13. — The universal maps f;; : A; j — B"™ are A-split injections.

Proof. — We use the notations of the proof of Proposition 1.3.9. Recall that I =
{1,...,7} and set Q = {(¢,5),4,j € I,i # j}; if z = (¢,7) € Q we will write
i(z) := ¢ and j(z) := j'.

If v = (z1,...,2,) is a sequence of elements of  such that for all k € {1,...,s—1}
we have j(z) = i(zk+1), then we will say that v is a path from i(z1) to j(zs), and we
will set Ay 1= Aj(z,),j(z1) ® *** ® Ai(z,),j(zs)- If moreover i(z1) = j(x,), we will say
that «y is a cycle. In this case, rot(y) := (zs,1,...,%s—1) is again a cycle. Let ¢,j € I,
v a path from ¢ to j, and c1,...,cn a sequence of cycles (which can be empty). We
will call the sequence of paths I = (¢y, ..., ¢n,7y) an extended path from i to 5. If T is
such a sequence and (¢',j’) € Q, we denote by 'y j» the total number of times that
(i/,5') appears in the cx’s or in . It will be convenient to identify N with the set of
oriented graphs (1) with set of vertices I, by associating to T = (7i ;)(i,j)eq the graph
with 7, ; edges from ¢ to j. If " is an extended path from i to j, we shall say that
7(T') := (Ty ;) € N is the underlying graph of T.

Let deg : N® — Z! be the map such that, for 7 € N i € I, deg(r); is the number
of arrows in 7 arriving at ¢ minus the number of arrows departing from 3. If (7, j) € ,
let 7(i,7) be the graph with a unique arrow, which goes from ¢ to j. If ¢ € I, set
7(3,1) = 0. The following lemma is easily checked.

Lemma 1.3.14. — Leti,j € 1.

(i) IfT is an extended path from i to j, then deg(r(I')) = deg(7(,7))-
(ii) If T is a graph such that deg(7) = deg(7 (i, 7)), then T = 7(T') for some extended
path T from i to j. If moreover 1, j» # 0 and 7j ) # 0O for some ', 5, k' € I,

(15) In an oriented graph, we authorize multiple edges between two vertices i and j, with i # j, but
we do not authorize edges from a vertex to itself.
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then we can assume that the sequence ' has a path containing ((¢/,7), (7', k"))
as a subpath.

By (ASSO), for each path v from i to j, we have a canonical contraction map
0yt Ay — A; ;. If v is a cycle, ¢, goes from A, to A by (UNIT), and the assumption
(COM) implies that ¢rot(y) = @+ © rot, where rot : Ay — A, is the canonical
circular map. We claim now that the following property holds:

(SYM) For any cycle ¢ having some (¢, ') €  in common with some path ', the
map ¢, ®id : A ® A,y — A,/ is symmetric in that two Ay j:’s.

Indeed, by the rotation property we can assume that ¢ begins with (¢, j'), and by
(ASSO) and (UNIT) that v/ = (¢/,5'). By (ASSO) and (UNIT) again, we can assume
then that ¢ = ((¢,5'),(4',4)), in which case it is an easy consequences of (ASSO)
(applied with 1, j,,7), (UNIT) and (COM).

Fix 7,7 € I. Let T' = (cy,...,¢n,7) be an extended path from ¢ to j. We can
consider the following A-linear map ¢r : Ae, ® --- ® A., ® A, — A j,

<® wk) Ry +— (H Pey (xk)) ‘P'y(y)'
k=1 k=1

By the property (SYM), ¢r factors canonically through a map

Pr: Q) Symm™!(Ax) — Ay
(k,l)eq

It is clear that:

(i) for any permutation o € &, BleotyronCoimy®) = Plctrmnen,y)?

(ii) as the @, ’s are invariant under rotation, P(rot(cy),....cn,7) = Pletyscnry)”

Let v = (z1,...,%5s) be a path from i to j and ¢ = (y1,...,ys’) be a cycle. We will
say that v and c are linked at i’ € I if there exists zx € v and yx € ¢ with same
origin, that is such that ¢(zx) = i(yx’) = ¢’. Then can consider the path y U ¢ :=
(Z1y- ey The1sYk?s -~y Ys's YLy~ s Yk/—1, Tk, - - - y Ts ), Which still goes from 7 to j. Then
we see that P, . = P, ,, and it does not depend in particular on the i’ such that v
and c are linked at . As a consequence, going back to the notation of the paragraph
above, we have:

(iii) if v and ¢; (resp. 1 and cp) are linked, then B., . +) = P(cy,....cnq0cy) (TESP-
Plerezrnenrr) = ¢(01U02,03w~,6m7))'
Let now I' be another extended path from i to j. Then using several times the

“moves” (i), (ii) and (iii), we check at once that Pp = Pr.. Let 7 € N satisfies
deg(r) = deg(7(3,5)). By Lemma 1.3.14 (ii), we can choose an extended path I' from
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i to j with underlying graph 7, and define

@, = Pr, ® Symm™ ! (Ag,;) — A j,
(k,l)eqr

which does not depend on I' (whose associated graph is 7) by what we said above.

Let us finish the proof of the proposition. The A-algebras B and is naturally graded
by the additive monoid N®. We have B = @, cneB,, where B, = ®iz; Symm™7 (A; ;).
The map deg : G — Z! is additive, hence we get a Z!-graduation (1) on B. Obviously,
if n € Z!, then B,, = @reNﬂ,deg(T)=n B.. For this latter graduation, the ideal J C B
is homogeneous, hence BV is also graded by Z.

Fix now 4,j € I, and let n := deg(7(4,)). If deg(r) = n, we constructed above a
map @, : B — A; ;. By summing all of them we get an A-linear map:

@ By — .Ai,j.
We claim that @, (I,) = 0. Assuming that, @,, factors through a map
wn . (Buniv)n _ Ai,j-

Let fi; : Aij — (B"™"),, denote the canonical map. Then by construction, v, o
fij = @r(i,;) 1s the identity map. It concludes the proof.

Let us check the claim. Let b € Ay j, ¢ € Ajp and ¢ = @y jr p, for some
(i',3"), (4, k') € Q. By A-linearity, is suffices to show that @, vanishes on the elements
of the form z = f ® (b ® ¢ — ¢(b ® ¢)), where f is in B, for some graph 7 satisfying
deg(7+7(¢, k")) = n. By Lemma 1.3.14 (ii), we can find an extended path I from ¢ to
j with underlying graph 7+ 7(¢, j') + 7(j', k'), such that some path v’ of I" contains
((#,7"),(5', k")) as a subpath. Let IV be the extended path from i to j obtained from
I' by replacing v’ = (...,(¢,5),(’,k"),...) by (...,(#,k'),...). By construction,
Pr(f®c®b) =P (f ® p(b® c)), hence p(z) = 0. O

Remark 1.3.15. — When r = 2, a slight modification of the above proof shows that
the A-linear map A & @,,>; (Symm"(A; 2) ® Symm"(Az 1)) — B"™, induced by
fi1,2 and fa1, is an isomorphism. This describes BV completely in this case.

As we have noted in §1.3.4, we have:

Corollary 1.3.16. — If (R, &) is a GMA of type (d1,...,d,), and if d! is invertible in A
(where d = dy +- - -+d, ), then the trace T of R is a Cayley-Hamilton pseudocharacter
of dimension d.

(16) Actually, it is even graded by the subgroup of Z! whose elements (n;) satisfy Z ;i =0.
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1.4. Residually multiplicity-free pseudocharacters

1.4.1. Definition. — In all this section, A is a local henselian ring (see [94]), m
is the maximal ideal of A, and k := A/m. The henselian property will be crucial
in what follows because it implies strong results on lifting idempotents. Let R be an
A-algebra and let T : R — A be a pseudocharacter of dimension d. We recall that
this implies that d! is invertible in A. Let R := R®4kand T:=T®4k: R — k be
the reductions mod m of R and T

Definition 1.4.1. — We say that T is residually multiplicity free if there are represen-
tations p; : R — My, (k), i = 1,...,7, which are absolutely irreducible and pairwise
nonisomorphic, such that T = S7_, tr p;.

We set d; := dim p;, we have Y ;_, d; = d.

Example 1.4.2. — Let us give an important example. Let (R, E) be a GMA (§1.3.1),
then its trace T : R — A is a Cayley-Hamilton pseudocharacter by Corollary 1.3.16.
We use the notations of §1.3.2. Assume moreover that for all i # j, we have

T(.Ai,jAj,i) cm.

Now, for each ¢, let p; : R — My, (k), r — (¢i(e;re;) mod m). Then the p; are
surjective representations (!7) which are pairwise non isomorphic since pi(e;) # 0
while p;(e;) = 0 for j # 4, and T = S0_; tr p;, hence T is residually multiplicity free.
The main result of this section shows that this example is the general case.

1.4.2. Lifting idempotents. — Let A, R and T be as in §1.4.1, and assume
that T is residually multiplicity free. In particular, we have some representations
pi : R — My, (k) as in definition 1.4.1.

Lemma 1.4.3. — Suppose T Cayley-Hamilton. There are orthogonal idempotents
€1,...,€r in R such that

(1) Thye=1

(2) For each i, T(e;) = d;

(3) For all z € R, we have T(e;xze;) = tr p;(z) (mod m)

(4) If i # j, T(e;xejye;) € m for any z,y € R.

(5) There is an A-algebra isomorphism v; : e;Re; — My, (A) lifting (pi)|e; Re;

eiRe; — My, (k), and such that for all z € e;Re;, T(z) = tr (¥i(z)).

Moreover, if e}, ..., e, is another family of orthogonal idempotents of R satisfying (3),
then there exists x € 1 + rad(R) such that for all i, e} = ze;z™1.

(17) Note that the maps f; j : A;; — k, defined to be 0 if i # j, and A =5 k if ¢ = j, define an
element of F (k).
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Proof. — Let p : R — Mjy(k) be the product of the p;’s. We obviously have
Ker p C KerT. Because the p;’s are pairwise distinct, the image of p is [[i_; Ma, (k).
In particular, the image J of Ker T in this latter product is a two-sided ideal. But J
is a nil ideal by Lemma 1.2.1, so J = 0 and

Kerp = KerT.

We have the following diagram

(8) R/Ker T — L= ?

Nt

k

which commutes by assumption on 7', and whose first row is an isomorphism. Let us
call ¢;, for i = 1,...,r, the central idempotents of R/Ker T corresponding to the unit
of My, (k) in this decomposition.

By the Cayley-Hamilton identity, and following [29, chap. ITI, §4, exercice 5(b)] (*8),
there exists a family of orthogonal idempotents e; € R, i = 1,...,r, with e; lifting
the €;. The element 1 — Y 7_; e; is an idempotent which is in the Jacobson radical of
R by Lemma 1.2.7, hence it is 0, which proves (1). By Lemma 1.2.5(1) T'(e;) is an
integer less than or equal to d, and because T(e;) = T(¢;) = di, we have T'(e;) = d;,
which is (2).

The assertion (3) follows from the diagram (8). In order to prove (5) it suffices to
show that the image of e;xe;ye; is zero in R/Ker T. But this image is €;Te;ye; which
is zero by the diagram (8), and we are done.

Now consider the restriction T; of T' to the subalgebra e;Re; (with unit element
e;) of R. By Lemma 1.2.5(3-4), T; is a pseudocharacter of dimension d; = T'(e;),
faithful if T is. By (3), T; is moreover residually absolutely irreducible. If we had
assumed T faithful, we could have applied {102, Thm. 5.1 or cor. 5.2] to get (5). As
we assume only T' Cayley-Hamilton, we have to argue a bit more. By Lemma 1.2.5 (4),
T; is Cayley-Hamilton, hence we may assume that 7 = 1, and we have to prove that
R = M4(A). By Lemma 1.2.7 and [29, chap. III, §4, exercice 5(c)], we can lift the basic
matrices of R/Ker (py) = Mg, (k), i.e. find elements (E*¥!);<k <4 in R satisfying the
relations EF'EF Y = §) 1 E*Y. By Lemma 1.2.5 (1), for each k € {1,...,d}, T(E**)
is an integer in {1,...d}. As this integer is furthermore congruent to 1 modulo m
by definition of E®*, and as d! € A*, we have T(E**) = 1. By Lemma 1.2.5 (4),

(18) The statement is that if A is a henselian local ring, R an A-algebra which is integral over A,
and I a two-sided ideal of R, then any family of orthogonal idempotents of R/I lifts to R. Note that
is stated there with R a finite A-algebra, but the same proof holds in the integral case.
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Ty : EFFRE** — A is Cayley-Hamilton of dimension 1, hence T}, is an isomorphism
and EF*REk* = AEK* is free of rank 1 over A. Now, if £ € E¥*REb!, then

T = Ek’l(El’k.'E) — Ek’l(T(El’kl‘)El’l) — T(El,kx)Ek,l e AEk’l,

hence R = Y, ; AE®!. This concludes the proof of (5) (we even showed that
Rouquier’s Theorem 5.1 holds when faithful is replaced by Cayley-Hamilton).
To prove the last assertion, note first that the hypothesis on the e, means that

e’

. = €;, hence by the work above properties (1) to (5) also hold for the e]’s. As
e;Re; ~ Mg, (A) is a local ring, the Krull-Schmidt-Azumaya Theorem [49, Thm.
(6.12)] (see the remark there, [49, prop. 6.6] and [49, chap. 6, exercise 14]), there
exists an € R* such that for each i, ze;z~! = €]. Up to conjugation by an element

in 3;(e;Re;)*, we may assume that z € 1 +rad(R). O

1.4.3. The structure theorem. — Let A, R, T be as in §1.4.1.

Theorem 1.4.4. — (i) Let S be a Cayley-Hamilton quotient of (R, T).
Then there is a data € = {e;,¥;,1 < i < r} on S for which S is a GMA
and such that for each i, 1¥; ® k = (pi)|e,se,- Two such data on S are conjugate
under S*. Every such data defines A-submodules A;; of S that satisfy

.Ai,j.Aj,k - .A/L"k, T: -Az',i = A, T(.Ai,j.Aj,i) Ccm

and
Mg, (A11) My a,(Ar2) ... My e, (Ary)
s Mg, a,(A21) Mg, (A22) ... Mg, a.(As,)
M, 4, (Ar1) M, a,(Ar2) ... My (Arr)

(ii) Assume that A is reduced, and that its total fraction ring K is a finite product
of fields. Take S = R/KerT. Choose a data € on S as in (i). Then there exists
an adapted injective representation p : S — My(K) whose image has the form

Mg, (A11)  Maya,(A12) .. May e, (A1)
Mdz,d1 (A271) Md2 (AZ,Z) vee Md21dr(A217')
Mdnd1 (Ar,l) Mdrde (Ar,2) L Md‘r (Ar.r)

where the A; j are fractional ideals of K that satisfy
AiyjA]’,k C Ai,k, Ai,i = A, Ai,jAj,i Cm.
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Moreover the A; ;’s are isomorphic to the A; ;’s of part (i), in such a way that
the map A; ; ®4 Ajx — Ak given by the product in K and the map A; ; ®a
A — Ai i given by the product in R coincide.

(iii) Let P € Spec(A), L := Frac(A/P), and assume that T ® L is irreducible 1% . If
S is any Cayley-Hamilton quotient of (R,T), then S ® L is trace isomorphic to
Mgy(L). In particular, T ® L is faithful and absolutely irreducible.

Proof. — As S is Cayley-Hamilton, Lemma 1.4.3 gives us a data £ = {e;,9;,1 <i <
r} satisfying (i).

Assume now moreover that A is as in (ii), and set S := R/Ker T Since T is faithful
on S, Lemma 1.3.5 proves that the ¢; ;;’s are nondegenerate. Then Proposition 1.3.12
gives us a family of injections f;; : A;; — L, (fi;) € F(L) whose image are frac-
tional ideals. Set A;; := f; ;(A; ;). By Proposition 1.3.9, (f; ;) defines an adapted
representation p : S — My(L) that satisfies (ii).

Let us prove (iii). Note that A/P is still local henselian and that S ® A/P is a
Cayley-Hamilton quotient of (R® A/P,T ® A/P), hence we may assume that A is a
domain and that P = 0. By Remark 1.2.2, the natural map

(KerT)® L — Ker (T® L)

is an isomorphism as L is the fraction field of A. By this and by (i) applied to
T:S/KerT — A, weseethat S’ := (S®L)/(KerTQ®L) is a GMA of type (ds,...,d,)
over L whose trace T®L is faithful. As T®L is irreducible by assumption, Proposition
1.3.12 implies that S’ is trace isomorphic to My(L), as the equivalence relation there
may only have one class. Let us consider now the surjective map

$:S®L — (S®L)/(Ker T ® L) > My(L).

By Lemma 1.2.1, its kernel is in rad(S® L). By an argument already given in part (5)
of Lemma 1.4.3 (using the lifting of the E*!’s of My(L) to S ® L, and checking that
they span S ® L by Lemma 1.2.5 (1) and (4)), ¢ is an isomorphism, which concludes
the proof. O

Remark 1.4.5. — If A is reduced and noetherian, it satisfies the conditions of (ii),
hence the A; ;’s and R/KerT are finite type torsion free A-modules.

1.5. Reducibility loci and Ext-groups

1.5.1. Reducibility loci. — Let A be an henselian local ring, R an A-algebra and
T : R — A a residually multiplicity free pseudocharacter of dimension d. We shall
use the notations of §1.4.1.

(19) This means that T ® L is not the sum of two L-valued pseudocharacters on S ® L.
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Proposition 1.5.1. — Let P = (Py,...,Ps) be a partition of {1,...,r}. There exists
an ideal Ip of A such that for each ideal J of A, the following property holds if and
only if Ip C J:
(decp) There ezists pseudocharacters Ty, ..., Ts : R® A/J — A/J such that

() T®A/J=3i,T,

(ii) for eachl e {1,...,8}, Ti®k =3 ;cp, tTpi.
If this property holds, then the T}’s are uniquely determined and satisfy KerT; C
Ker(T® A/J).

Moreover, if S is a Cayley-Hamilton quotient of (R, T) then, using the notations
of Theorem 1.4.4, we have (for any choice of the data € on S)

Ip = > T(AijAjq)
1,j are not girijihe same P
Proof. — Let S be a Cayley-Hamilton quotient of (R,T). We can then choose a
GMA data & for S as in Theorem 1.4.4 (i), and consider the structural modules
.Ai,j - E,SEJ We set

Ip(T, 8,&) := > T(AijAjq)-

i,j are not in the same P;

By Theorem 1.4.4 (i), In(T, S,E) does not depend on the choice of the data £ used
to define it. We claim that it does not depend on S. Indeed, we check at once that
the image of £ under the surjective homomorphism % : § — R/KerT is a data
of idempotents for R/KerT (and even that 9 is an isomorphism on ®]_,e;Se;). As
T oy =T, we have that

T((Ai j)¥(Aji)) = T(AijA;),

which proves the claim. We can now set without ambiguity Ip := Ip(T). As a first
consequence of all of this, we see that if J C A is an ideal, then Ip(T' ® A/J) is the
image in A/J of Ip(T).

To prove the proposition we are reduced to showing the following statement:

T : R — A satisfies Ip = 0 if and only if we can write T =T, +---+ Ts as a sum
of pseudocharacters satisfying assumption (ii) in (decp).

Let us prove first the “only if” part of the statement above. Let S = R/KerT and
fix a GMA data £ as in Theorem 1.4.4 (i). Set

(9) fl = Z e; € S,

1€P;
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then 1 = f; + --- + f, is a decomposition in orthogonal idempotents. In this setting,
the condition I» = 0 means that for each [,

(10) T(fiS1 - f)Sf)=0.

As a consequence, the two-sided ideal f;S(1 — fi)Sf; of the ring f;Sf; is included in
the kernel of the pseudocharacter Ty, = T|sry, : fiRfi — A (see Lemma 1.2.5 (3)).
The map T; : R — A defined by Tj(z) := T(fizf;) is then the composite of the
A-algebra homomorphism

(11) S — fiSfi/(fiS(A = fi)Sfi), xw fixfi+ fiS(1 - fi)Sfi,

by T¥,, hence it is a pseudocharacter. As 1= fi+---+ fs, wehave T =Ty +--- + T,
and the T}’s satisfy (ii) of (decp) by Lemma 1.4.3 (3), hence we are done. In particular,
we have shown that Ip always satisfies (decp).

Let us prove now the “if” part of the statement. Let K = ["); Ker T}, by assumption
K Cc KerT. By §1.24, T : R/K — A is Cayley-Hamilton, hence we can choose
a data & for S := R/K and consider again the f; € S’s defined from the e;’s as in
formula (9) above. To check that Ip = 0, it suffices to check that I»(T,S,€) = 0 or,
which is the same, that T(f;SfirSfi) =0for l #U'. AsT =T, +-- -+ T, it suffices to
show that for all z € S, T;(frz) =0if l #U'. But if I # ', T;(fr) is in the maximal
ideal m by assumption (ii) of (decp) and Lemma 1.4.3 (3). By Lemma 1.2.5 (1), it
implies that T;(f;) = 0. By Lemma 1.2.5 (5), we get fi € Ker T}, what we wanted.

In particular, we proved that for all x € S, Ti(z) = T(fiz). As a consequence,
KerT; C KerT, K =KerT, S = R/KerT, and the T;’s are unique. Od

Definition 1.5.2. — We call Ip the reducibility ideal of T for the partition P. We call
the closed subscheme Spec (A/Ip) of Spec A the reducibility locus of T for the partition
P. When P is the total partition {{1},{2},...,{r}}, we call Ip the total reducibility
ideal and Spec (A/Ip) the total reducibility locus of T'.

Note that Ip C Ip: if P’ is a finer partition than P.

1.5.2. The representation p;. — We keep the assumptions of §1.5.1, and we
assume now that {i} € P. Then for each ideal J containing Ip, there is by Proposition
1.5.1 a unique pseudocharacter T; : R® A/J — A/J with T; @ k = trp; and T =
T;+T with T'®k = Y ;4 tr p;. If J C J', the pseudocharacter T; : RQ A/J' — J'
is just T; ® gy R/J’, hence it is not dangerous to forget the ideal J in the notation.
As p; is irreducible, we know that there is a (surjective, unique up to conjugation)
representation p; : R/JR — Mg, (A/J) of trace T; which reduces to p; modulo m.

Definition 1.5.3. — 1If {i} € P and J D Ip, we let p; : R/JR — My,(A/J) be the
surjective representation defined above.
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As usual, by a slight abuse of notation, we will denote also by p; the R-module
(A/J)% on which R acts via p;. It will be useful for the next section to collect here
the following facts which are easy consequences of the proof of Proposition 1.5.1:

Lemma 1.5.4. — Let S be a Cayley-Hamilton quotient of (R,T), € = (ei,¥;) an as-
sociated data of idempotents for S, and P a partition of {1,...,7} such that {i} € P
and J D Ip.

(ii) The canonical projection
ai;:S/JS — €;(S/JS)e; ~ My, (A]J), x+— exe;,
is an A/J-algebra homomorphism and satisfies T o a;; = T;. As a consequence,
pi factors through S/JS, a;; ~ p;, and p;(ex) = 0; kid.
(iii) Assume moreover that {j} € P for some j # i, then we have
ai j(zy) — (ai,:(x)ai;(v) + ai;(x)a; ;W) € D ei(S/J)ex(S/J)e;, Vz,y € R,
ki, j

where a; ; : S|JS — e;(S/JS)e;, x+— e;xe;, is the canonical projection.

Proof. — The idempotent f; corresponding to {i} is then e;. Note that e;(S/JS)(1—
€;)(S/JS)e; is a two-sided ideal of e;(S/JS)e; ~ Mgy, (A/J) whose trace is 0 by as-
sumption and formula (10), which implies that e;(S/JS)(1 — e;)(S/JS)e; = 0. Since
for j # i we have (1 — e;)e; = e;, we have

ei(S/JS)e;(S/JS)e; C e;(S/JS)(1 —e;)(S/JS)e; =0,

which shows (i). As a consequence, a;; coincides with the map in formula (11) (with
of course S replaced by S/JS), which proves (ii). The last assertion is immediate from
the fact that e;zye; — (e;z(e; + €;j)ye;) lies in

ei(S/JS)(1 — (es +€;))(S/IS)ej = Y €i(S/IS)ex(S/JS)e;. O
k#i,j
1.5.3. An explicit construction of extensions between the p;,’s. — First let

us recall that if R is an A-algebra and p; : R — My, (A), i = 1,2, are two A-algebra
representations (that we identify with the R-modules A% they define), an eztension
of p2 by p1 is an R-module V and an exact sequence of R-modules

0—pp—V —p—0.

Note that the exactness of this sequence implies that V is a free A-module of rank
di + dy. Such an extension defines an element in the module Ext}%(pz, p1), and two
extensions V and V'’ define the same element if and only if there exists an isomorphism
V — V'’ of R-modules that induces the identity on p; and p,. We will make constant
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use of the following simple remark: if R’ is another A-algebra with a surjective map
of A-algebras R* — R, then the natural map

Exty(p2, p1) — Exth (p2, p1)

is injective (of course, for the right hand side Ext! we view each p; as a representation
of R’ via the given map R’ — R). Indeed, an R-module extension of p, by p; which
is split as an extension of R’-modules is a fortiori split as an extension of R-modules
since R’ — R is surjective.

We keep the assumptions of §1.5.1, and we fix a Cayley-Hamilton quotient S of
(R,T). We fix a data € on S, using Theorem 1.4.4 (i), such that (S, &) is a GMA and
set

A= AigAr,
ki, j
We have by definition A; ; C A; ;.

Fixi# j € {1,...,r}. Let P be any partition of {1,...,7} such that the singletons
{i} and {j} belong to P, and J an ideal containing Ip. By Definition 1.5.3, for
k = 4,j, we have a representation py : R/JR — My, (A/J). By an extension of
pj by p; we mean a representation R/JR — End,4,;(V) together with an exact
sequence of R/JR-module 0 — p; — V — p; — 0. Hence V is in particular a
free A/J-module of rank d; + d2. Such an extension defines an element in the module

Extry 1r (05, 05)-
Theorem 1.5.5. — There exists a natural injective map of A/J-modules

tij - Homa(Ay j/Aj j, A/ J) = Extr) s (0, pi)-

1,57

Proof. — The map ¢, ; is constructed as follows. Pick an f € Hom(A; ;/A; ;, A/J).
We see it as a linear form f : A; ; — A/J, trivial on A; ;. It induces a linear appli-
cation, still denoted by f: My, 4,(A; ;) — Ma, q,(A/J). We consider the following
A-linear application R — S — Mg, 44, (A/J),

(12) N (ai,i(x) (mod J) f(aij(x)) >
0 aj;(z) (mod J)

We claim that the map (12) is an A/J-algebra homomorphism which is an extension
of p; by p;. By Lemma 1.5.4(ii), the upper and lower diagonal blocks are respectively
pi(z) and p;(z), so the only thing to check is that this map is multiplicative. Since a; ;
mod J = p; and a;; mod J = p; are A-algebra morphisms, we only have to check
that for all z,y € S

(13) flaij(zy)) = ais(@)fai;(¥) + aj,;(¥) f(ai;(y))-
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But by assumption, f is trivial on >4, ; Ma, 4, (Ai k) May 4, (Ak,;) C My, a,(Aj;),
hence on the right hand side 1.5.4 (iii). The vanishing of the left hand side is exactly
(13).

As a consequence, the map (12) defines an element ¢; ;(f) in Ext} /7R (Pjs Pi)-

It is clear by the Yoneda interpretation of the addition in Ext! that the map ti;(f)
is linear. Let us prove that ¢; ; is injective. Assume ¢; j(f) = 0. This means that the
extension is split. As it factors by construction through S/JS, it is certainly split when
restricted to any subalgebra of S/JS. Let us restrict it to the subalgebra e;S/JSe;
(without unit, but we can add A/J(e; + e;) if we like). The restricted extension is

S f(ai,j(w))>
0 0

and such an extension is split if and only if f = 0. O

The construction above is a generalization of the one of Mazur and Wiles, directly
giving the matrices of the searched extensions. We will give a second construction in
the next subsection, more in the spirit of Ribet’s one, which will realize the extensions
constructed before as subquotient of some explicit R-modules. Our second aim is to
characterize the image of ¢; ; and to verify that this image is the biggest possible
subset of the above Ext-group seen by S.

1.5.4. The projective modules M; and a characterization of the image of
ti,j- — We keep the assumptions and notations of §1.5.3. For each i, we define the
A-modules

M; :=SE; = ®;=1€jSEi.
Note that M; is a left ideal of S, hence an S-module. It is even a projective S-module
as S =M, ®S(1 - E;).

Theorem 1.5.6. — Let j € {1,...,7}, P a partition containing {j} and J an ideal
containing Ip, then
(0) there is a surjective map of S-modules M;/JM; — p; whose kernel has the
property that any of its simple S-subquotients is isomorphic to py for some
k # j. Moreover M; is the projective hull of p; (and of p;) in the category of
S-modules.
Let i # j € {1,...,r}, P a partition containing {i} and {j}, and J is an ideal
containing Ip. Then moreover:
(1) the image of the map t;; of Theorem 1.5.5 is ezactly ExtIS/JS(pj,pi) C
Extg, sr(05) )
(2) any S/JS-extension of p; by p; is a quotient of M;/JM;®p; by an S-submodule,
every simple S-subquotient of which is isomorphic to some py, for k # j.
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Proof. — First note that we may replace A by A/J and S by S/JS, that is we
may assume that J = 0 in A (which simplifies the notations). Indeed, (S/JS)E; ~~
M;Q4A/J = M;®sS/JS = M;/JM,. Hence assertions (1) and (2) are automatically
proved for A once they are proved for A/J. As for assertion (0), if we know the
corresponding assertion for A/J, namely“The S/JS-module M;/JM; is the projective
hull of p;”, then (0) follows, because the map of S-modules M; — M;/JM; — p;
is essential as JS C mS C rad(S), and because M is projective over S.

Assume that P contains {j} and that J D Ip. Let us consider the natural exact
(split) sequence of A-modules

(14) 0— Nj = EBi;ejeiSEj h— Mj e ejSEj — 0.

We claim that N; is an S-submodule of M}, and that M;/N; ~ p;. It suffices to show
that for k # j, e;SexN; C N;. But this follows from Lemma 1.5.4 (i), as e SexSe; = 0.
As a consequence, M;/N; ~ e;SE; is an S-module, which is isomorphic to p; by
Lemma 1.5.4 (ii).

Let us prove the first assertion in (0). Recall that by Lemma 1.2.7, we have

S/rad(S) ~ [ Endk(5:)
1=1

(see the formula (8) in the proof of Lemma 1.4.3). So if U is a simple S-subquotient
of Nj, then U =~ p;, for some k € {1,...,r}. But by construction, e;N; = 0, hence
e;U =0, and pj;(e;) =1 by Lemma 1.4.3, so k # j and we are done.

We prove now that M; — p; is a projective hull. We just have to show that
this surjection is essential. If Q C M; is a S-submodule which maps surjectively to
M;/N; = e;j(M;/Nj), then e;Q C e;SE; maps also surjectively to M;/N;, hence
e;Q = e;SE;. But then E; € Q, hence Q = M;, and we are done.

Now we suppose that P contains {i} and {j}. Let us apply Homg(—, p;) to the
exact sequence (14). As M; is a projective S-module, it takes the form:

0 — Homg(pj, p;) — Homg(M;, p;) — Homg(Nj;, p;) - Exts(pj,pi) — 0

We claim first that ¢ is an isomorphism. We have to show that any S-morphism
M; — p; vanishes on N;. But by Lemma 1.5.4 (ii), if ¥ # j we have exp; = 0. We
are done as N; = ) ;.. exN; by definition.

It is well known that if f € Homg(N;,p;), we have the following commutative
diagram defining 6(f):

(15) 0 N; M; Pj 0
I Jeen
. , M,;®pi ;
6(f) ’ 0 pi z—(0,x) Q Pi g
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where @ is the image of the S-linear map u : N; — M; ® p;, = — (z,0) — (0, f(z)).
This will prove (2) if we can show that each simple subquotient of ) is isomorphic
to some g with k # j. But as in the proof of (0), this follows from the fact that
e;Q = u(e;N;) =0. :

We claim now that we have a sequence of isomorphisms

HomS(Nj)pi) B Homeisei(eiSEj/(zk#,,-6iS€kSEj),Pi)
= Hom 4 (Ai,j/(Zk;éj,i Ai,kAk,j)a A)

The first one is induced by the restriction map, the fact that it is an isomorphism
is a simple matter of orthogonal idempotents, using that exp; = 0 if £ # ¢ and that
N; = ®rz;exSE;. The second one is induced by the Morita equivalence A = E;A —
eiSei = Mdi (A)

It is now easy, using the diagram (15) and the fact that (M; @ p;)/Q is naturally
isomorphic as A-module to e;SE; ®e;SE;, to check that in terms of the isomorphisms
above, the map J is exactly the map ¢; ; given by formula (12), which proves (1). Note
that the inclusion property between the two Ext® of the statement of assertion (1)
has already been discussed in the beginning of §1.5.3. O

Remark 1.5.7. — By the same method, we could give an expression for the higher
Ext-groups Extg, ;5(p;, pi) in terms of the A; ;’s. For example, when r = 2, the exact
sequence (14) implies that Extg/JS(pj,p@-) = Exti‘/J(Ai‘j ® A/J,A/J). However,
for the usual applications of pseudocharacters, this is less interesting because when
n > 2, the natural map

Ext§, ;5(pj, pi) — Extg, ;r(0j, i)

is not in general injective, and we usually only care about the extensions between the
pi’s in the category of representations of R, not of its auxiliary quotient S. (Compare
with the discussion in the beginning of §1.5.3.)

Remark 1.5.8 (Dependence on S). — All the constructions of § 1.5.3 and § 1.5.4 depend
on the choice of a Cayley-Hamilton quotient S of (R, T). If S; — S is a morphism
in the category of Cayley-Hamilton quotients (cf. 1.2.5), then it is surjective and
we have obviously Extg, /18, (Ps» Pi) C Extg, /15, (Pj, pi). Thus our methods construct
the biggest group of extensions when working with S = Sy, and the smallest when
S = R/KerT. We stress that even in the most favorable cases, the inclusion above
may be strict: an example will be given in Remark 1.6.5 below. However, we will not
be able to get much information about the Ext} /Js except when S = R/KerT. On
the other hand, as proved in Proposition 1.5.1, the reducibility ideals do not depend
on S.
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Remark 1.5.9. — Assume we are under the assumptions of Theorem 1.5.6. We claim
that for ¢ # j, the natural inclusion

(16) EXt.]é/JS(pJa pl) - EXté’(pJa Pz)

is an isomorphism. Indeed, it is injective since S — S/JS is surjective, and the image
of (16) is exactly the subspace of S-extensions of p; by p; in which the ideal JS C S
acts by 0. Let U be an S-extension of p; by p;, we have to show that JU = 0. But for
f € J, the multiplication by f induces an S-linear map

Pj — Pi,

which is necessarily 0 as Homg(p;, p;) = Homg, ;5(pj, pi) = 0 by Lemma 1.5.4 (i).

1.5.5. Complement: Topology. — We keep the hypotheses of §1.5.1. We assume
moreover that A is a Hausdorff topological ring such that the natural functor from the
category of topological Hausdorff finite type A-modules to the category of A-modules
has a section endowing A with its topology. We fix such a section, hence every finite
type A-module is provided with an Hausdorff A-module topology, and any A-linear
morphism between two of them is continuous with closed image. For example, this is
well known to be the case when A is a complete noetherian local rings, and it holds
also when A is the local ring of a rigid analytic space at a closed point (see [9, §2.4]).

Proposition 1.5.10. — Assume that R is a topological A-algebra and thatT : R — A
15 continuous.
(i) Let I be an ideal containing Ip where P is a partition containing {i}. Then the
representation p; : R/IR — Mgy, (A/I) is continuous.
(ii) Let I be an ideal containing Ip where P is a partition containing {i} and {j},
i # j. If A is reduced and S = R/Ker T, then the image of v; ; of Theorem 1.5.5
falls into the A-submodule of continuous extensions Ext}z,com(pi, pi)-

Proof. — By Lemma 1.5.4 (ii), we can find e € R such that for all z € R, T;(z) =
T(ex) (any lift of the element e; € S/JS loc. cit. works for e), which proves (i). Let
us show (ii). Fix f € Homa(A;;/A; ;, A/I). By the formula (12) defining ¢; ;(f), it
suffices to show that the natural maps m; ; : R — A; ;, £ — E;xE;, are continuous.
Note that this makes sense because by Theorem 1.3.2 (iii), the A; ;’s are finite type
A-modules. Let us choose a family of A-generators zi,...,z, of Aj;. AsT:S§ — A
is faithful by assumption, and by Lemma 1.3.5, the map

Mo .Ai,j — H Aa T = H(.’B) = (T(xl‘s))s’

s=1
is injective. By assumption on the topology of finite type A-modules, the map above is
an homeomorphism onto its image. It suffices then to prove that pom; ; is continuous,
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which we can check componentwise. But for each s, (uom; ;) is the map z — T'(ex fg),
where (e, f,g) € R® denotes any lift of (E;, E;,z,) € S3. This concludes the proof. O

1.6. Representations over A

We keep the notations and hypotheses of §1.4.1: A is local henselian and d! is
invertible in A. In this subsection we are mainly concerned with the following nat-
ural question which is a converse to Example §1.2.2: if T : R — A is a residually
multiplicity free pseudocharacter of dimension d, does T arise as the trace of a true
representation R — My(A)?

When T is residually absolutely irreducible, the theorem of Nyssen and Rouquier
([91], [102, corollaire 5.2]) we recalled in § 1.2.2 shows that the answer is yes. Although
for a given residually multiplicity free pseudocharacter, it may be difficult to determine
if it arises as the trace of a representation (see next subsection for interesting particular
cases), it turns out that there is a simple sufficient and (almost) necessary condition on
A for this to be true for every residually multiplicity free pseudocharacter of dimension
d on A.

Proposition 1.6.1. — Assume that A is a factorial domain (that is, @ UFD). Then any
residually multiplicity-free pseudocharacter T : R — A of dimension d is the trace
of a representation R — My(A).

Proof. — We use the notations of §1.4.1 for T. As A is a domain, its total fraction
ring is a field K. By the point (i) of Theorem 1.4.4, there is a data £ on R/Ker T
that makes it a GMA, and by the point (ii) of the same theorem, there is an adapted
(to &) representation p : R/Ker T — My(K) whose image is the standard GMA (see
example 1.3.4) attached to some fractional ideals A; ; of K, 4,5 € {1,...,r}.

Let v be an essential valuation of A. Recall that since A is a UFD, every essential
valuation is discrete, attached to an irreducible element of A. Let v; ; be the smallest
integer of the form v(z) for a nonzero z € A;;—this makes sense since A;; is a
fractional ideal. Because A;; = A, A; jA;; C A and A; ;A C Aix, we have

(17) 0ii=0, vij+v;; >0, vi;+vjr>vik

Moreover, all of the v; ; are zero except for a finite number of essential valuations.
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Because A is factorial, there exists for each ¢ an element z; € K* such that v(z;) =
v;,1 for every essential valuation v. Let P be the following diagonal matrix

.’l:lIddl

szddz

T rIdd,.

Let p' := P~1pP. Then p’ is adapted to £ and its image is the standard GMA attached
to the modules A] ; = z;z; ' A; ;.

Ifz € A; ;, and v is an essential valuation on A, we have v(z) > v(z;)—v(z;)+vi; =
vj1 — ¥;,1 + v;; which is nonnegative by (17). Hence x € A since A is factorial, and

A} ; C A. That is, p’ is a representation R — M (A) of trace T a

Remark 1.6.2. — Let A be a valuation ring, with field of fractions K, and valuation
v: K* — T, where I' is a totally ordered group. Assume v(K*) =T.

Then the proof above shows that the result of Proposition 1.6.1 holds also for this
ring A if the ordered group I' admits infima. Indeed, it suffices to define v; ; to be
the infimum of the v(z) with = € A;; nonzero, and to choose z; € K* such that
v(z;) = v1,4;, which is possible by the assumption v(K*) =T.

Consider for example a valuation ring A as above, with I' = R (such a valuation ring
exists by [29, chapitre VI, §3, n° 4, example 6]). Then the result of Proposition 1.6.1
holds for A, though A is not a UFD (A has no irreducible elements!). Note however
that A is not noetherian.

If on the contrary we do not assume that I' admits infima, the result fails as showed
for the ring Oc,, in [11, remark 1.14].

We are now interested in the converse of Proposition 1.6.1. Because of the remark
above, we shall assume that A is noetherian.

Theorem 1.6.3. — Assume d > 2 and A noetherian (in addition of being local
henselian). If each residually multiplicity free pseudocharacter of dimension d is the
trace of a representation R — My(A), then A is factorial.

Proof. — We claim first that the hypothesis implies the following purely module-
theoretical assertion on A:

For any A-modules B and C, and every morphism of A-modules ¢ : B C — m
such that
(18) #(b,c)b’ = ¢(V',c)b, for any b,b’ € B, c€ C,

there exist two morphisms f : B — A, and g : C — A such that ¢(b®c) = f(b)g(c)
foranybe B, ce C.
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Let us prove the claim. Let B, C be two A-modules with a morphism ¢ : BQC —
m satisfying the property above. Set A; 3 := B, A1 2 = C, A;; = 0 for i # j and
{i,i} #{1,2}, Aiy=Afori=1,...,d, $121:= ¢, ¢2,1,2(c®b) = $(b®c), and ¢;; ;,
¢i,5,; be the structural morphism. Then we check at once that these A; ;’s and ¢; ;x’s
satisfy the properties (COM), (UNIT), and (ASSO) (see §1.3.2), and thus defines a
GMA (R, £) whose they are the structural modules and morphisms. As $(BQC) C m,
we are in the case of Example 1.4.2, and the trace function T : R — A of (R,£) is
a residually multiplicity free pseudocharacter of dimension d.

The hypothesis of the theorem then implies that there is a trace representation
R — M4(A). Because A is local, every finite-type projective A-module is free and
by Lemma 1.3.7, there is an adapted (to £) representation p : R — My(A), that
is an element of G(A) where the functor G = G ¢ is the one defined in §1.3.3. By
Proposition 1.3.9, F(A) is not empty. If (f; ;) € F(A), then by definition (f,g) :=
(f1,2, f2,1) satisfies the claim, and we are done.

Using the assertion above, we will now prove in three steps that A is a factorial
domain.

First step. — A is a domain.

Choose an ¢ € A, z # 0, and let I be its annihilator. Set B = A/zA, C = I and
let $ : B® C — A be the morphism induced by the multiplication in A. Then
¢(B® C) =1 C m and the property (18) is obvious. Thus there exist f : B — A
and g : C — A such that ¢(b®c) = f(b)g(c) forany be B,c€ C. As zC =zl = 0,
we have zg(C) = 0 hence g(C) C I. As zA/zA = zB = 0 we also have f(B) C I.
Hence I = ¢(B®C) = f(B)g(C) C I2. Because A is local and noetherian, this implies
I =0. Hence A is a domain.

Second step. — If A is a domain, then A is normal.
Let K be the fraction field of A. Assume, by contradiction, that A is not normal, and
let B C K be a finite A-algebra containing A, but different from A. Let C = {z €
K, zB C A}. We have then:
i. by definition, C is a B-submodule of K (hence an A-module t00).
ii. C C A, because 1 € B. Hence C is an A-ideal.
iii. We have C C m. Indeed, C is an A-ideal by ii. As A is local, we only have to
see that C # A. But if 1 € C, B C C C A by i. and ii. , which is absurd.
iv. C is non zero: if (p;/q;) is a finite family of generators of B as an A-module,
with p;,q; € A, ¢; #0, then 0 # [[;¢: € C.
Now let ¢ : B®4 C — K be the map induced by the multiplication in K. By iii.
¢(B ® C) C m. Moreover, hypothesis (18) is obviously satisfied. Thus there exist two
morphisms f: B — A and g : C — A such that ¢(b® ¢) = f(b)g(c) for any b € B,
ceC.Since B4 K=K, f® K: K — K is the multiplication by some element
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z€ K*, andso is f. As C ®4 K = K by iv. , g has to be the multiplication by z~!.
We thus get

(19) tBC A, and 27'CcCA.

The first relation implies x € C, so 1 € 27 !C. As z71C is a B-module, B C z~!C
and by the second relation, B C A, which is absurd. (The reader may notice that this
step does not use the noetherian hypothesis).

Third step. — If A is a normal domain, then A is factorial.
We may assume that the Krull dimension of A is at least 2, because a normal noethe-
rian domain of dimension < 1 is a discrete valuation ring, hence factorial. Let C be
an invertible ideal of A, and set B=mC~! C K. Let ¢ : B®4 C — m be induced
by the multiplication in K. Then reasoning as in the second step above, we see that
there is an x € K* such that zmC~! C A and 27 1C C A4, as in (19).

Now, since A is normal and noetherian, it is completely integrally closed, and even
a Krull ring ([29, chapter VII, §1, n° 3, corollary]). Recall from [29, chapter VII, §1,
n® 2, Theorem 1] the ordered group D(A) of divisorial fractional ideals of A, and the
projection div from the set of all fractional ideals of A to D(A). Since z71C C A, we
have (using [29, chapter VII, §1, n° 2, formula (2)])

dive~! +divC = div (z!C) > 0,
that is divC > divz. From £mC~! c A we have
dive + divm +divC™! >0,

but since m has height greater than or equal to 2, divm = 0 by [29, chapter VII, §1,
n° 6, corollary (1)], and since A is completely integrally closed, div C~! = —div C by
[29, chapter VII, §1, n® 2, corollary]. Hence divz > div C. Thus divz = divC, and
if C is divisorial, then C = Az is principal. But a Krull ring where every divisorial
ideal is principal is factorial, cf. [29, chapter VII, §3, n° 1]. O

When a trace representation p : B — My(A) does exist, we may ask what its
kernel and image are. In some favorable cases, we can give a satisfactory answer:

Proposition 1.6.4. — Assume A 1is reduced with total fraction ring K a finite product
of fields Ks. Let T : R — A be a residually multiplicity free pseudocharacter and
assume T ® K, irreducible for each s. If p : R — M4(A) is a trace representation
then Kerp = Ker T and p(R) ® K = K[p(R)] = M4(K).

Proof. — We obviously have Kerp C KerT. Set S := p(R) C My(A), which is a
Cayley-Hamilton quotient of (R, T). To show that T': S — A is faithful, it suffices
to show the last statement. By the irreducibility assumption and Theorem 1.4.4 (iii),
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S ® K is (trace) isomorphic to My(K). As a consequence, the injective map p ® K :
S® K — My(K) is an isomorphism, which concludes the proof. a

Remark 1.6.5. — The proof above shows in particular that under the hypotheses of
the proposition, the only Cayley-Hamilton quotient of R that is torsion free as an A-
module is R/Ker T. We cannot omit the hypothesis “torsion free”. Here is a counter-
example: with the notations of the proof of Theorem 1.6.3, take A = Z,, and set
B =2y, C=Zy,®Z/pZ and let ¢ : B® C —> Zj, be defined by ¢(b® (c,c’)) = pbe.
As it is clear that ¢ satisfies (18), those data define a GMA R of type (1,1). Its trace
function T is a Cayley-Hamilton residually multiplicity free pseudocharacter. Hence
R is Cayley-Hamilton, we have R = Sy in the notation of §1.2.5, but R # R/Ker T
because Ker T' ~ Z/pZ. Moreover this example provides a case where Extévo /pSo (P15 P2)
has dimension 2 whereas Ext%R /Ker T)/p(R/Ker T)(P1, P2) has dimension 1.

1.7. An example: the case r =2

Let A be a reduced, noetherian, henselian local ring and T : R — A be a mul-
tiplicity free, d-dimensional, pseudocharacter. As before, K is the total fraction ring
of A, which is a finite product of fields K. In this subsection, we investigate the
consequences of our general results in the simplest case where T is the sum of only
two irreducible pseudocharacters tr p; and tr ps. Note that in this case, the only re-
ducibility locus is the total one, of ideal I'p with P = {{1},{2}}.

Let S be a given Cayley-Hamilton quotient of (R,T) We are first interested in
giving a lower bound on the dimension of Extg /ms(P1,p2), hence of Extp, /mR(P1,P2)-

Proposition 1.7.1. — Let n be the minimal number of generators of the ideal Ip. Then
(dimg Extg/pns(p1, p2)) (dimy Extg s (f2,p1)) > n

Proof. — By Remark 1.5.8, we may and do assume S = R/KerT. Let p
R/KerT — My(K) be as in Theorem 1.4.4 whose we use notations. If i # j,
let n; ; be the minimal number of generators of the finite A-module A; ;.

By Theorems 1.5.5 and 1.5.6(1), we have

dimy HOInA(Ai,]', k) = dimy Exté/ms(ﬁj, ﬁl)

But Homy4(A; ;,k) = Homg(A;;/mA,; ;,k) and by the theory of duality on vector
spaces, this space has the same dimension as A; j/mA,; ;; by Nakayama’s lemma, this
dimension is n; j. Thus n; ; = dimg Ext‘lg/ms(ﬁj,ﬁi).

On the other hand, since Ip = A; 242 1, we have nj 2m2 1 > n, and the proposition
follows. O
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This easy observation is one of the main theme of the book: to produce many
extensions of p; by p we shall not only construct a pseudocharacter over a local ring
A lifting tr p; + tr pg, but do it sufficiently non trivially so that the reducibility locus
of that pseudocharacter has a big codimension. The most favorable case occurs of
course when Ip is the maximal ideal m of A. In this case, the above result writes

(dimy, Extg,,, (1, p2)) (dimy Extg),, 5(P2, p1)) > dimg m/m? > dim A.

When moreover T is the trace of a true representation, we can say more:

Proposition 1.7.2. — Assume that each T ® K is irreducible, that Ip is the mazimal
ideal and that there is a trace representation R — My(A), then

max(dimy Exté/ms (P1, P2), dimy Extfg/ms (P2, p1)) > dimy m/m?

Proof. — Again we may and do assume that S = R/KerT. Moreover we also have
p(R) = R/KerT = S by Proposition 1.6.4. By Lemma 1.3.7, and Lemma 1.3.8 we
may assume that the image of p is a standard GMA attached to ideals A; 2, A3 of
A. Then A, and A, are ideals of A such that A; 3431 = Ip = m. Hence m C A2
and m C Ay, but we cannot have A; 5 = Ay ;1 = A, hence one of those ideals is m.
The proposition follows. O

Remark 1.7.3. — The inequality above does not hold when T has no representation
over A. Indeed, let k be any field and set A = k[[z, y, 2]]/(zy — 2%) which is a complete
noetherian normal local domain, but not factorial. Let K be its fraction field, and
Ay =yA+2zA, Ayy = A+ Ain K, Ay = A2 = A. Let R be the standard GMA
of type (1,1) associated to these A; ; C K. As A;2A3; = m, the trace T of R is
an A-valued residually multiplicity free pseudocharacter. Its reducibility locus Ip =
A12421 = (z,y,2) = m is the maximal ideal of A, and T'® K is obviously irreducible
but m/m? has dimension 3, whereas dimy, Ext},—z/mR(ﬁl, p2) = dimy, EXt}z/mR(ﬁg, p1) =
2.

We now give a result relating the Ext groups and the existence of a trace represen-
tation over A:

Proposition 1.7.4. — Assume that each T @ K, is irreducible. The two following as-
sertions are equivalent:

(i) There is a representation p : R — My(A) whose trace is T, and whose reduction
modulo m is a non split extension of p1 by pa,
(i) EXt%R/Ker T)/m(R/Ker T)(P1, P2) has k-dimension 1.
Moreover, if those properties hold, then the representation p in (i) is unique up to
isomorphism.
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Proof. — Let us prove first (i) = (ii). Fix p as in (i). By reasoning as in the proof of
the proposition above, we can assume that p(R) has the standard GMA attached to
some ideals Aj 2, A1 of A for image, and has Ker T for kernel. Hence

My (k) Mgy a,(Ar2) )

(pRk)(R®Kk) = ( My, 4,(A21) Mg, (k)

where A; ; is the image of the ideal A;; in A/m = k. The hypothesis tells us that
Zﬁ =0 and Ay # 0, hence A;2 C mand Ay; = A. But by Theorems 1.5.5 and
1.5.6(1),
EXt{ g /Ker T) /m(R/Ker ) (P1, P2) =~ Homy(Az1,k) = k,

which is (ii).

Let us prove (ii) = (i). Let p : R — M4(K) be a representation as in Theo-
rem 1.4.4, (ii), whose kernel is Ker T' and whose image is the standard GMA of type
(d1,d2) attached to fractional ideals A; 2, A21 of A. Since

k ~ Ext(g/Ker T)/m(R/Ker ) (P1, P2) ~ Homg (Az1, k),

we have Ay 1/mAs 1 ~ k hence by Nakayama’s lemma A1 = fA for some f € K.
By Theorem 1.4.4 (iii), A21K = K, hence f € K*. Then, if we change the basis of
A?, keeping the d; first vectors and multiplying the d last vectors by f, we get a
new representation p’ : R — GLg(A) whose image is the standard GMA attached
to A; ;, with A5 ; = Az 1/f = A, hence Aj , C m. It is then clear that the reduction
modulo m of that representation is a non split extension of p; by ps. We leave the
last assertion as an exercise to the reader. O

In the same spirit, we have

Proposition 1.7.5. — Assume that each T ® K is irreducible. The two following as-
sertions are equivalent:
(1) EXt(lR/KerT)/m(R/KerT) (ﬁl)p2) and EXt%R/KerT)/m(R/KerT),T(ﬁ%ﬁl) have k-
dimension 1.
(ii) The reducibility ideal Ip is principal, with a non-zero divisor generator.

Proof. — We will use the notations p and A; 3, Az ; of the part (ii) = (i) of the proof
of the above proposition.

Proof of (i) = (ii). Reasoning as in the proof of the proposition above, we see
that A; o = fA and Ay, = f'A with f, f’ € K*. Hence Ip = A; 2451 = ff'A with
ff' € K*N A. Hence the ideal Ip is generated by ff’ which is not a zero divisor.

Proof of (ii) = (i). By hypothesis, A; 2421 = fA with f not a zero divisor. Hence
there is a family of a; € A; 5, b; € Az such that ;" a;b; = f. Let z € Ay 5, then
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xzb; € fA so we can write ab; = fx; for a unique z; € A. Hence
f(lJ = Z(aib,-)x = Z ai(wbi) = Zaifl‘i.
i i i
Because f is not a zero divisor, z = Y a;z;. This shows that the a; generate A, ,
and the morphism A™ — A; 5, (z1,...,Z,) — Y a;z; has a section  — (z1,...,Zn).
Hence A, is projective of finite type, hence free, and since A; 2 C K, it is free of

rank one. The same argument holds of course for A 1, and we conclude by Theorems
1.56.5 and 1.5.6(1) applied to J = m and S = R/KerT. O

1.8. Pseudocharacters with a symmetry

1.8.1. The set-up. — In this section we return to the hypotheses of §1.4.1: A
is a local henselian ring where d! is invertible, T : R — A is a d-dimensional
pseudocharacter residually multiplicity free.

Moreover, in this section, we suppose given an automorphism of A-module 7 :
R — R, which is either a morphism or an anti-morphism of A-algebra and such that
72 = idg. We note that in both cases T o T is a pseudocharacter on R of dimension d,
and we assume

(20) Tor=T.

If B is any A-algebra, and p : R — M, (B) is any representation, then we shall
denote by pt the representation po 7 : R — M,(B) if 7 is a morphism of algebra,
and (poT) if 7 is an anti-morphism of algebra. Note that p' is a representation whose
trace is (trp)o7. If p: R — My(K) is a semisimple representation of trace T', where
K is a field, then the hypothesis (20) is equivalent to

(21) ptp
The hypothesis (20) also implies that T o 7 = T, hence p*~ ~ p. Thus there is a

permutation o of {1,...,r} of order two, such that for each i € {1,...,r}, we have
T; o T = T, (3, and equivalently, p; o T ~ p,(;). This implies d; = do ;).

Remark 1.8.1. — (i) We check at once that the ideal KerT C R is stable by 7,
hence 7 induces an automorphism, or an anti-automorphism, on R/Ker T which
we will still denote by 7.

(ii) In the same vein, we have for each z € R an equality of characteristic polyno-
mials
Py 1 = Pro),1)

hence 7 factors also through the maximal Cayley-Hamilton quotient of R (see
§1.2.5).
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1.8.2. Lifting idempotents. — In the following lemma, A is a local henselian ring
in which 2 is invertible.

Lemma 1.8.2. — Let S be an integral A-algebra, T an A-linear involution of S which is
either a morphism or an anti-morphism of algebra, and let I C rad(S) be a two-sided
ideal of S such that 7(I) = I.

Let (€;), i = 1,...,k, be a family of orthogonal idempotents in S/I, and assume
that the set {e;,i =1,...,k} C S/I is stable by 7. Then there is a family of orthogonal
idempotents (e;) in S, i =1,...,k, lifting (¢;) and such that {e;,i =1,...,k} is stable
by 7.

Proof. — We prove the lemma by induction on k. It is obvious for k£ = 0. Assume it
is true for any k' < k. We will consider two cases.

First case. — 7(€1) = €1. Let x be any lifting of ¢; in S. Set y = (z + 7(z))/2. Then
7(y) = y. Let S; be the A-subalgebra of S generated by y. It is a commutative, finite
A-algebra on which 7 = Id. Set I; := I N S;. Then S;/I; € S/I and S;/I; contains
the reduction of y which is €;. As A is henselian, there exists e; € S; an idempotent
lifting €;. Then 7(e1) = e3.

The A-subalgebra 20 S, := (1—e;)S(1—e;) is stable by 7, and if I := IN Sy, then
Sa/Iy C S/I contains the family €, . . ., € that is stable by 7. By induction hypothesis,
this family can be lifted as an orthogonal family of idempotents e, ..., ek, stable by
T, in S, and then e;,...,ex is an orthogonal family of idempotents lifting €y, ..., €
in S that is stable by 7. The lemma is proved in this case.

Second case. — T(€1) # €1. Then up to renumbering, we may assume that 7(e;) = €s.
We claim that

there are two orthogonal idempotents e; and e3 in S
lifting €1 and ey Tespectively, such that T(e1) = es.

This claim implies the lemma since we may apply the induction hypothesis to lift the
family e3,...,€e, in (1 — (eq + e2)S(1 — (e1 + e2)) by the same reasoning as above.
Moreover, in order to prove the claim, we may assume that €; + €9 = 1. Indeed, set
€ = €1 + €2. This is an idempotent of S/I stable by 7. By the first case above, there
is an idempotent e in S lifting € and such that 7(e) = e. Replacing S with eSe, and I
with I NeSe, we have now €; + €2 = 1, and we are done. To prove our claim, we have
to distinguish again two cases:

(20) Recall that if e € S is an idempotent and I a two-sided ideal of S, then ele = I N eSe and
rad(eSe) = erad(S)e.
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First subcase. — T is an automorphism of algebra. Let f € S be any idempotent
lifting €;. Set f' := f(1 — 7(f)). Then f'r(f') = f(1 — 7(f))7(f)(1 — f) = 0 and
T(f")f = 7(f)1 = f)f(1 — 7(f)) = 0. Hence the subalgebra S; of S generated by
f/ and 7(f’) is commutative and stable by 7. Moreover, the reduction of f’ modulo
I :=INS;ise1(1—7(e1)) = €1(1 — e2) = €1 and the reduction of 7(f') is 7(€1) = €.

Now, let g be an idempotent in S; lifting €;, and again let ¢’ = g(1 — 7(g)). The
same computation as above shows that ¢’r(¢’) = 7(¢')g’ = 0, but now, since S is
commutative, g’ is an idempotent. Set e; := g’, ez =: 7(¢’), and the claim is proved,
hence the lemma in this subcase (we could also have concluded by using the fact that
the lemma is easy if S is a finite commutative A-algebra).

Second subcase. — T is an anti-automorphism. Let f € S be any idempotent lifting
€1. Set  := fr(f). Then z.€ I and 7(x) = z. Let S; be the A-subalgebra of S
generated by z, I; := I'NS;. This is a finite commutative A-algebra stable by 7. Note
that I C rad(S1). Indeed, I; C rad(S), hence for all y € I, 1 + y is invertible in S,
hence in S; as it is integral over A. We conclude as I; is a two-sided ideal of S;. In
particular, z € rad(S;). Since A is henselian and 2 is invertible in A, there exists a
unique element u € 1+ rad(S;) such that u? = 1 — z. Such an element u is invertible
in S; and satisfies 7(u) = u. Set ¢ = u~! fu. Then g is an idempotent lifting €; and
from ut(u) = u? =1 — fr(f) we get

gr(9) =u ' f(L = fr(f)r(fHlu=t =0.

Finally, we set e; = g — 37(g)g and ez = 7(e1) = 7(g9) — 37(g)g- Then e; lifts &; and
we claim that ef = ¢; and ejes = eze; = 0. Indeed, this follows at once from the
following easy fact:

Let R be a ring in which 2 is invertible, and let e, f be two idempotents of R such
that ef = 0. If we set e’ = (1 — %)e and f' = f(1 - %), then ¢’ and f' are orthogonal
idempotents.

To check this fact, note that 2 = (1 — "2:)6(1 - %)e =(1- %)ee =¢ asef =0 and

e? = e. Similarly, f’2 = f’. Moreover, it is clear that ¢’ f’ = 0, and

e = f(1-¢ _i) _ <_ﬂ) _fo_ fetfe _
fe—f(l 2)(1 5 e=f|1 5 e= fe 5 =0,
which concludes the proof. |

Lemma 1.8.3. — Assume that T is Cayley-Hamilton. There are idempotents ey, ..., e,
in R and morphisms v : e;Re; — Mgy, (A) satisfying properties (1) to (5) of
Lemma 1.4.3 of prop 1.4.3 and moreover

(6) Forie{1,...,r}, 7(ei) = €x(s)-
Proof. — We call €;, i = 1,...,r the central idempotents of R/Ker T. Note that we
have 7(€;) = €,(;). Applying the preceding lemma to S = R and I := Ker (R —
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R/KerT) = radR (Lemma 1.2.7), there exists a family of orthogonal idempotents
ei1,...,er lifting €1,..., €, that is stable by 7. Hence 7(e;) = e, (i), which is (6), and
the other properties are proved exactly as in Lemma 1.4.3. O

1.8.3. Notations and choices. — From now we let S be a Cayley-Hamilton quo-
tient of R which is stable by 7. For example, by Remark 1.8.1 the faithful quotient
R/KerT has this property. As 0% = Id, we may cut the set I = {1,...,7} into three

parts
I=n][[n]]%

with ¢ € I if and only if o(z) = ¢, and with o(l;) = I>. If ¢ € I; and j = 0(3), we
definitely choose 5; := p;-, which is permitted since p; and p;- are isomorphic.

We now choose in a specific way a GMA datum on S taking into account the
symmetry 7. First, Lemma 1.8.3 provides us with a family of idempotents e; such
that

T(ei) = ea(i),‘v’i el
Moreover, by property (5) (actually Lemma 1.4.3 (5)) we also have isomorphisms
;@ e;Se; — My, (A) for ¢ € I. We are happy with the ¢; for ¢ € I, U I, but for
j € I, j = o(i) with ¢ € I; we forget about the 9; given by (5) by setting

(22) bi = Yoti) = Y3
Of course, we also have ¥; = ¢jl as 72 = id. From now on, we fix a choice of e;’s and
1;’s on S as above, and this choice makes S a GMA.

Let i € Iy. Note that the two morphisms t; and ;" : e;Se; — My, (A) have the
same trace and are residually irreducible. Hence by Serre and Carayol’s result ([33]),
that is also the uniqueness part of the Nyssen and Rouquier’s result, there exists a
matrix P; € GLg4, (A) such that v¢; = P,-z/;;LPi'l. Note that P; is determined up to the
multiplication by an element of A*. We fix the choice of such a matrix P; for each
i € Ip. For i € I [] I> we set P; :=Id. Note that obviously P; = P,(;. We have, for
anyt € I,

(23) Vo) = PP, s = Py P

Lemma 1.8.4. — If T is an automorphism (resp. an anti-automorphism) P? (resp.
PtP7') is a scalar matriz x;1dg, where z; € A* (resp. z; € {£1}).

Proof. — Assume that 1 is an anti-automorphism (we leave the other, simpler, case
to the reader). Using the two equalities of (23) we get

¥; = PPy (PP
hence P,'tPi_1 is a scalar matrix z;Id with z; € A* and we have z;!P, = P; hence

z2 = 1. The result follows since A is local and 2 is invertible in A. O
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1.8.4. Definition of the morphisms 7; ;. — Recall from § 1.3 that the idempotent
E; of S is defined as v 1(El,l) and that A;; is the A-module E;SE;. Set p; =
Vi I(R-) € e;Se;. This is an invertible element in the algebra e;Se; and we denote its
inverse in this algebra by p; 1

Applying (23) to 7(E;) we get easily

T(Ei) = pa(i)Ea(i)p;(li)
Assume first that 7 is an automorphism. We have
T(Aij) = T(E:) ST(E;) = Po(i) Eo )Py ) S Pot) Ba ()P -
Hence we may define a morphism of A-modules 7; ; : A; j; — A, (;),0(;) by setting
Tij = p;(li)T|Ai,jp‘7(j)'

Assume now that 7 is an anti-automorphism. We define similarly a morphism
Tij - Aij — Ao(j),0(i) Dy setting

-1
Ti,j = po-(]')TIA,;’jpo’(’i)‘

Lemma 1.8.5. — Assume T is an automorphism (resp. an anti-automorphism).
(i) For alli,j, the A-linear endomorphism T, (i) o(j) © Ti,j (T€8P- To(j),a(i) © Tij) of
A; ; is the multiplication by an element of A*.
(ii) For alli,j, 7;; is an isomorphism of A-modules.
(i) For all 3,5,k and x € A;j, y € Ajir we have 7; ()T k(y) = Tix(zy) in
As(iy,o(ky (resp- Tik(y)Ti () = Tik(zy) in As(k),o())-
(iv) We have 7i;(A; ;) = ALy () (Tesp- i (A7 ;) = ALy o))

Proof. — The assertion (i) is an easy computation using Lemma 1.8.4. The assertion
(ii) follows immediately from (i). The assertion (iii) is a straightforward computation
and (iv) follows from (iii), (ii) and the definition of the A; ; (see §1.5.3). O

1.8.5. Definition of the morphisms L, ;. — Let P be a partition of {1,...,r}
such that the singletons {i} and {j} belong to P. Let Ip» be the corresponding re-
ducibility ideal. Note that by Lemma 1.8.5, I» = I,(p) so that we may assume without
changing Ip that the singletons {o(¢)} and {o(j)} belong to P. Let J be an ideal of
A containing Ip.

Recall that we defined a representation p; : R/JR — My(A/J) in Def. 1.5.3. By
point (ii) of Lemma 1.5.4, p; is the reduction mod J of the composite of the morphism
1); with the surjection R — S — ¢;Se;. Hence we have

(24) Paiy = Pipi P

1
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Let ¢ be an extension in Ext} /7r(Pj, pi). We can see it as a morphism of algebra

Pec : R/JR - Mdi+dj (A/J)

( pi()  c(z) )
T - : ,
0 pjz)
where c(z) € Mg, 4,(A/J). Then setting Q; ; = diag(P;, P;) € Ma,+a,(A/J) we see
using (24) that if 7 is an automorphism,

Po (i) ((l)) C,(.'E)

w c(x) = P; c(t(z 71,
0 p,,(j)(m)>’ here c'(z) = P; c(7(z)) P;

(%5) Quipt(D)@r) = (

and that if 7 is an anti-automorphism,
1 -1 Po(i) (@) 0 1N pt -1
(26) Qi p; (2)Q;; = ) , where ¢'(z) = P; *c(r(x)) P .
d(x) P (@)
Hence Q; ; p;:LQi_’ 11 represents an element ¢’ in
Exty/ 1 (Po(s): Po(i)) (tesp. in Extr) 1r(po(iy: Po(s)) )
and we set
J—i,j (C) = C/,
thus defining a morphism
Lij: Extg,;r(05, 1) — Extg,1r(Po(), Poci))
(resp. Lij : Extg,sp(pj,pi) — Exth);r(Pogi), Pos)) )-

Note that all we have done also works when R is replaced by its 7-stable Cayley-
Hamilton quotient S, and that the morphisms L; ; thus defined on the Extg /Js’S are
simply the restriction of the morphisms L;; on Ext} /IR

1.8.6. The main result

Proposition 1.8.6. — If T is an automorphism, the following diagram is commutative
Li,j
Hom 4 (A ;/A; ;, A/J) : Extg ys(p;, 0:)
l(‘r,'_,jl)‘ Lli,j
Lo (i),0(5)
Hom 4 (Ao (i),0(5)/ Ay (i),0(j) A7) . Extg) 15(0o (i) Poli))
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If T is an anti-automorphism, the following diagram is commutative

Hom 4 (A;,;/A; ;, A/J) o Extg) 5(0j,pi)
[/(Ti_,jl)* le‘
Lo(j),0(i)
Hom (Ao ) o) /Ao (5,057 A/ ) Extg, 15(Po()s Po(s)

Proof. — This follows immediately from the definitions of the morphisms 7; ;
(see §1.8.4), L; ; (see §1.8.5, especially (25) and (26)) and ¢; ;’s (see §1.5.3). O

1.8.7. A special case. — We keep the assumptions of §1.8.1 and the notations
above, but we assume that

(i) the ring A is reduced, of total fraction ring a finite product of fields K =
I Ko,
(ii) the pseudocharacters T'® K are irreducible,
(iii) 7 is an anti-automorphism.
Let p: S := R/KerT — My(K) be a representation as in Theorem 1.4.4 (ii). By
assumption (ii) above and Theorem 1.4.4 (iii), p induces an isomorphism

(27) S®a4 K — My(K).
For s € {1,...,n}, denote by p, the composite S 2+ My(K) — My(K,).

Lemma 1.8.7. — For each s € {1,...,n} there exists a matrizc Qs € GL4(K) such
that

(28) pj- = QsPst_l,

and there is a well-determined sign e, = +1 such that *Q, = €,Q,. If d is odd then
€, = 1.

Proof. — The representations ps and p. are irreducible by hypothesis (ii) and have
the same trace hence are isomorphic. Moreover p, is absolutely irreducible by (27),
hence the existence of a @, such that pt = Q:psQ; !, and its uniqueness up to the
multiplication by an element on K. Using that (p)! = ps, we see that 'Q,Q;*!
centralizes p,, hence is a scalar matrix. Thus !Q, = €;Qs and ¢; = +1. The last
assertion holds because there is no antisymmetric invertible matrix in odd dimension.

O

We will now relate these signs €, to other signs, and prove that they are actually
equal in many cases. Recall that if k € {1,...,7} is such that o(k) = k, we fixed in
§1.8.3 a P, € GLg,(A) such that ¢, = Py P!, and we showed that *Py P! =
+1 € A* is a sign in Lemma 1.8.4. As explained there, Py is uniquely determined up
to an element of A*, so this sign is well defined, let us call it (k). By reducing those
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equalities mod m, e(k) is also “the sign” of the residual representation pj, =~ ﬁ,Jc' in the
obvious sense.

Lemma 1.8.8. — Assume that (k) = k for some k € {1,...,r}. Then for each s,
€s = €(k) is the sign of px.
Proof. — As T(ex) = ey(x) = ek, we have T(exSex) = erSex. Recall that by the
assumptions in § 1.8.3, we have
PlexSer = Yk : exRer, — Mg, (A)
with ¢ = Pk—1¢kPk. For each s € {1,...,n}, we also have
ex = py (ex) = Qsps(er)Qy ' = Qoer @y,

so Q, commutes with e, = %ex, and exQs and @, are both symmetric or antisym-
metric. Since ¥y, : ex(S ®a K)er, — M4(K) is an isomorphism, we get that for some
As € K},

exQs = /\SPk_ L
In particular, the three matrices exQs, Qs and Pj (which does not depend on s) are
simultaneously symmetric or antisymmetric, and we are done. O

Let us fix now ¢ # j two integers in {1,...,7} such that o(¢) = j. Under hypothesis
(iii), the morphism L; ; is an endomorphism of the A-module Extg 175(pjs pi) and is
canonically defined. We will study it using Proposition 1.8.6 and in terms of the signs
above. Recall that we also defined some A-linear isomorphism 7; ; of A; ; = As(j),0()-

Lemma 1.8.9. — The morphism 7;; : A;; — A;j is the multiplication by the ele-
ment (€1,...,€,) of K*.

Proof. — Let Q € GL4(K) be the matrix whose image in GL4(K5) is Qs for s =
1,...,n. The representation p identifies S with a standard GMA p(S) in M4(K) and
it follows from (28) that the anti-automorphism 7 on p(.S) is the restriction of the anti-
automorphism M — Q*MQ~!. Remember that p(F;) is the diagonal matrix whose
all entries are zero but the (di +- - - +d;—1 +1)*® which is one, and similarly for p(E;).
Remember also that p identifies A;; = E;SE; with A;; = p(E;)p(S)p(E;). Since
7(E;) = E; we have p(E;) = Q'p(E;)Q~! = Qp(E;)Q*. Thus the 2 by 2 submatrix
of @, keeping only the (d; + -+ + d;—1 + 1)** and (d; + -+ + d;j—1 + 1)*® lines and
row, is antidiagonal:

( P(E)Qp(E:)  p(E:)Qp(E;) ) _ ( 0 a ) € Ma(K)
p(E;)Qp(E:)  p(E;)Qp(E;) b 0

But by the lemma we have 'Q = (e1, . ..,€,)Q, hence

b= (e1,--,€n)a.
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Now 7;; : A;j; — Ai; is by definition the restriction of M — QMQ™! to A;; =
p(E:)Sp(E;). By the formula above, this map is the multiplication by ab™!, that is
by the element (e1,...,€,) of K*. a

Thus, by Proposition 1.8.6 and the lemmas above:

Proposition 1.8.10. — (i) If all the signs €5 are equal, then for each pair i # j with
j = o(i) the endomorphism

Ls : Bxtyy 505, pi) — Exty zs(ps pi)
is the multiplication by ¢, = £1.

(ii) If o has a fized point k, then all the €, are equal to the sign of px, =~ py.
(iii) If d is odd, all these signs are +1.

Remark 1.8.11. — Note that the hypothesis of the corollary holds obviously when A
is a domain. Note also that the fact that L; ; is the multiplication by +1 implies (and
in fact is equivalent to) that every extension p in Extg 15(Pj; pi) is isomorphic to pt
as a representation (not necessarily as an extension).
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CHAPTER 2

TRIANGULINE DEFORMATIONS OF REFINED
CRYSTALLINE REPRESENTATIONS

2.1. Introduction

The aim of this section is twofold. First, we study the d-dimensional trianguline

representations of

Gp = Gal(@p/(@p)
for any d > 1 and with artinian ring coefficients, extending some results of Colmez
in [46]. Then, we use them to define and study some deformation problems of the
d-dimensional crystalline representations of Gp.

These deformation problems are motivated by the theory of p-adic families of au-
tomorphic forms and the wish to understand the family of Galois representations
carried by eigenvarieties. They have been extensively studied in the special case of
ordinary deformations (e.g. Hida families), however the general case is more subtle.
When d = 2, it was first dealt with by Kisin in [73]. He proved that the local p-adic
Galois representation attached to any finite slope overconvergent modular eigenform f
admits a non trivial crystalline period on which the crystalline Frobenius acts through
ap if Up(f) = apf, and also that this period “varies analytically” on the eigencurve.
These facts lead him to define and study some deformation problem he called D"
in loc. cit. §8. In favorable cases, he was then able to show that the Galois defor-
mations coming from Coleman’s families give examples of such “h-deformations” (see
§10, 11 loc. cit). In this section, we define and study a deformation problem for the
d-dimensional case via the theory of (p,I')-modules. It turns out to be isomorphic to
Kisin’s one when d = 2 but in a non trivial way. We postpone to chapters 3 and 4 the
question of showing that higher rank eigenvarieties produce such deformations.

The approach we follow to define these problems is mainly suggested by Colmez’s
interpretation of the first result of Kisin recalled above in [46]. Precisely, Colmez
proves that for a 2-dimensional p-adic representation V' of Gp, a twist of V ad-
mits a non trivial crystalline period if, and only if, the (¢, I')-module of V over the
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Robba ring (1) is triangulable ([46, Prop. 5.3]). For instance, the (, I')-module of a 2-
dimensional crystalline representation is always trigonalisable (with non étale graded
pieces in general) even if the representation is irreducible (that is non ordinary), which
makes things interesting. This also led Colmez to define a trianguline representation
as a representation whose (¢,I')-module over R is a successive extension of rank 1
(¢, T')-modules. Although this has not yet been proved, it is believed (and suggested
by Kisin’s work) that the above triangulation should vary analytically on the eigen-
curve, so that the general “finite slope families” should look pretty much like ordinary
families from this point of view (2).

In what follows, we define and study in detail the trianguline deformation functors
of a given d-dimensional crystalline representation for any d, establishing an “in-
finitesimal version” of the above program, that is working with artinian Q,-algebras
as coefficients (instead of general QQ,-affinoids which would require extra work). This
case will be enough for the applications in the next sections and contains already
quite a number of subtleties, mainly related to the notion “non criticality”. We prove
also a number of results of independent interest on triangular (p,I')-modules, some
of them generalizing to the d-dimensional case some results of Colmez in [46]. Let us
describe now more precisely what we show.

In § 2.2, we collect the fundamental facts we shall use of the theory of (¢, I')-modules
over the Robba ring R. We deduce from Kedlaya’s theorem that an extension between
two étale (¢, I')-modules is itself étale (Lemma 2.2.5). A useful corollary is the fact
that it is the same to deform the (¢, I')-module over R of a representation or to deform
the representation itself (Proposition 2.3.13). We prove also in this part some useful
results on modules over the Robba ring with coefficients in an artinian Q,-algebra.

In §2.3, we study the triangular (¢,I')-modules over R4 := R ®q, A where A is
an artinian Qp-algebra. They are defined as (¢, I')-modules D, finite free over R4,
equipped with a strictly increasing filtration (a triangulation)

(Fili(D))i=o,....d, d:=r1kg,(D),

of (p,I')-submodules which are free and direct summand over R4 (®). When D has
rank 1 over R4, we show that it is isomorphic to a “basic” one R4(4) for some

(1) Recall that the category of (¢, ')-modules over the Robba ring R is strictly bigger than the
category of Qp-representations of G, which occurs as its full subcategory of étale objects.

(2) A related question is to describe the A-valued points, A being any Qp-affinoid algebra, of the
parameter space S of triangular (¢, I')-modules defined by Colmez in (46, §0.2]. The material of this
part would be e.g. enough to answer the case where A is an artinian (Qp-algebra, at least for “non
critical” triangulations. See also our results in chapter 4.

®) 1t is important here not to restrict to the étale D, even if in some important applications this
would be the case. Indeed, most of the proofs use an induction on d and the Fil;(D) C D will not
even be isocline in general.
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unique continuous character W — A* (Proposition 2.3.1) of the Weil group W of
Qp, hence the graded pieces of Fil;(D)/Fil;_;(D) have the form R(d;) in general.
The parameter (8;)i=1,..,a of D defined this way turns out to refine the datum of
the Sen polynomial of D (Proposition 2.3.3). A first important result of this part
is a weight criterion ensuring that such a (¢,I')-module is de Rham (Proposition
2.3.4); this criterion is a generalization to trianguline representations of Perrin-Riou’s
criterion “ordinary representations are semistable” ([1, Exposé IV, Théoréme]). In
the last paragraphs, we define and study the functor of triangular deformations of
a given triangular (¢,I')-module Dy over R: its A-points are simply the triangular
(¢, T')-modules deforming Dy and whose triangulation lifts the fixed triangulation of
Dy. In the same vein, a trianguline deformation of a trianguline representation Vj is a
triangular deformation of its (,I')-module ¥ Dy (it depends on the triangulation of
Dy we choose). The main result here is a complete description of these functors under
some explicit conditions on the parameter of the triangulation of Dy (Proposition
2.3.10).

In §2.4, we show that crystalline representations are trianguline and study the
different possible triangulations of the (p,I')-module of a given crystalline represen-
tation (® V. We show that they are in natural bijection with the refinements of V in
Mazur’s sense [85], that is the full p-stable filtrations of D¢ys(V'). More importantly,
we introduce a notion of non critical refinement in §2.4.3 by asking that the ¢-stable
filtration is in general position compared to the Hodge filtration on Deys(V). We
interpret this condition in terms of the associated triangulation of the (¢, I')-module
(Proposition 2.4.7), and compare it to other related definitions in the literature (Re-
mark 2.4.6). This notion turns out to be the central one in all the subsequent results.
The main ingredient for this part is Berger’s paper [13].

In §2.5, we apply all the previous parts to define and study the trianguline de-
formation functor of a refined crystalline representation. It should be understood as
follows: the choice a refinement of V' defines, by the previous results, a triangula-
tion of its (p,I')-module, and we can study the associated trianguline deformation
problem defined above. When the chosen refinement is non critical, we can explicitly
describe the trianguline deformation functor (Theorem 2.5.10), and also describe the
crystalline locus inside it. A striking result is that “a trianguline deformation of a
non critically refined crystalline representation is crystalline if and only if it is Hodge-
Tate” (Theorem 2.5.1). This fact may be viewed as an infinitesimal local version of

Coleman’s “small slope forms are classical” result; it will play an important role in the

(4) In this section, all the (¢, I')-modules are understood with coefficients in the Robba ring R.

(5) For simplicity, we restrict there to crystalline representations with distinct Hodge-Tate weights.
In fact, the results of this part could be extended to the representations becoming semi-stable over
an abelian extension of Qp, and even to all the de Rham representations in a weaker form.
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applications to Selmer groups of the subsequent chapters (see e.g. Corollary 4.4.5). In
the last paragraph, we give a criterion ensuring that a deformation satisfying some
conditions in Kisin’s style is in fact trianguline (Theorem 2.5.6). Combined with the
extensions of Kisin’s work studied in chapter 3, this result will be useful to prove that
the Galois deformations living on eigenvarieties are trianguline in many interesting
cases (©),

In a last §2.6, we discuss some applications of these results to global deformation
problems. Recall that a consequence of the Bloch-Kato conjecture for adjoint pure
motives (see Remark 5.2.4) is that a geometric, irreducible, p-adic Galois represen-
tation V (say crystalline above p) admits no non trivial crystalline deformation (7).
Admitting this, we obtain that the trianguline deformations of V for a non critical
refinement F (and with good reduction outside p say) have Krull-dimension at most
dim(V) (Corollary 2.6.1). This “explains” for example why the eigenvarieties of reduc-
tive rank d have dimension at most d, and in general it relates the dimension of the
tangent space of eigenvarieties of GL(n) at classical points (about which we know very
few) to an “explicit” Selmer group. As another good indication about the relevance of
the objects above, let us just say that when such a (V, F) appears as a classical point
z on a unitary eigenvariety X (say of “minimal level outside p”), standard conjectures
imply that

K

R~T - L[[Xy,. .., X4,

where R prorepresents the trianguline deformation functor of (V,F), T is the com-
pletion of X at x, and k is the morphism of the eigenvariety to the weight space.

The authors are grateful to Laurent Berger and Pierre Colmez for very helpful dis-
cussions during the preparation of this section. We started working on the infinitesimal
properties of the Galois representations on eigenvarieties in September 2003, and since
we have been faced with an increasing number of questions concerning non de Rham
p-adic representations which were fundamental regarding the arithmetic applications.
We warmly thank them for taking the time to think about our questions during this
whole period. As will be clear to the reader, Colmez’s paper [46] has been especially
influential to us. We also thank Denis Benois and an anonymous referee for their
remarks.

(8) However not in all cases; part of this result may be viewed as a trick allowing one to circumvent
the study of a theory of families of triangular (p, I')-modules alluded above.

(7) As Q-motives are countable, it is certainly expected that there is no non trivial 1-parameter
p-adic family of motives, but the infinitesimal assertion is stronger.
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2.2. Preliminaries of p-adic Hodge theory and (¢,T')-modules

2.2.1. Notations and conventions. — In all this section,

Gp = Gal(Q,/Qy),

is equipped with its Krull topology. Let A be a finite dimensional local commutative
Qp-algebra equipped with its unique Banach Qp-algebra topology, m its maximal
ideal, L := A/m.

By an A-representation of Gp, we shall always mean an A-linear, continuous, rep-
resentation of G, on a finite type A-module. We fix an algebraic closure @p of Qp,
equipped with its canonical valuation v, and norm |.|, extending the one of Q, (so
v(p) = 1 and |p| = 1/p), and we denote by C, its completion. We denote by Be,ys,
Bgr, Decrys(—), Dpr(—) etc. the usual rings and functors defined by Fontaine ([1,
Exposés II et IIT}).

We denote by Qp(1) the Q,-representation of G, on Q, defined by the cyclotomic
character

x:Gp — Z,.

If V is an A-representation of G, and m € Z, then we set V(m) :=V @ x™.

Our convention on the sign of the Hodge-Tate weights, and on the Sen polyno-
mial, is that Q,(1) has weight —1 and Sen polynomial T + 1. With this conven-
tion, the Hodge-Tate weights (without multiplicities) of a de Rham representation V
are the jumps of the Hodge filtration on Dpgr(V), that is the integers ¢ such that
Fil"*!(Dpr(V)) € Fil*(Dpr(V)), and also the roots of the Sen polynomial of V.

2.2.2. (p,I')-modules over the Robba ring R 4. — It will be convenient for us
to adopt the point of view of (p,I')-modules over the Robba ring, for which we refer
to [54], [45], [71], and [14].

Let R 4 be the Robba ring with coefficients in A, i.e. the ring of power series

f(2)=> an(z—1)", an€ A

neZ
converging on some annulus of C, of the form r(f) < |z — 1] < 1, equipped with its
natural A-algebra topology. If we set

R :=Rq,,

we have R4 = R ®q, A. Recall that R4 is equipped with commuting, A-linear,
continuous actions of ¢ and of the group

=12z,
defined by
o(f)(2) = f(z"), ¥(f)(2) = f(7).
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To get a picture of these actions, note that if z € C, satisfies |z — 1] < 1, we have
|z" — 1| = |z — 1| for n € Zj, whereas |2? — 1| = |z — 1|” when |z — 1| > p .

Definition 2.2.1. — A (p,I')-module over R4 is a finitely generated R s-module D
which is free over R and equipped with commuting, R 4-semilinear, continuous (&)
actions of ¢ and I, and such that Rp(D) = D.

Of course, the (p,I')-modules over R 4 form a category in the obvious way: if D;
and D, are two such (¢,I')-modules, we define a homomorphism D; — D; as a
R a-linear map commuting with the actions of ¢ and I'. We shall call (¢,I')/A this
category; it is obviously additive, and even A-linear, but it is not an abelian category.

2.2.3. Some algebraic properties of R 4. — In the first part of this section, we
assume that A = L is a field, and we will now recall some algebraic properties of
modules over R .

A first remark is that Ry is a domain. Moreover, although it is not noetherian,
a key property is that Ry, is an adequate Bezout domain (this is essentially due to
Lazard [79], see also [13, prop. 4.12] in these terms), hence the theory of finitely
presented Rp-modules is similar to the one for principal rings:

(B1) Finitely generated, torsion free, R-modules are free.

(B2) For any finite type Rp-submodule M C R}, there is a basis (e;) of R}, and
elements (f;)1<i<a € (Rr\{0})%, such that M = &L, fiRre;. The f; may be
chosen such that f; divides f;+1 in Ry for 1 < ¢ < d — 1, and are unique up to
units of Ry, if this is satisfied (they are called the elementary divisors of M in
RE).

Let M C R} be a Rp-submodule, the saturation of M in R} is
Mt = {m e RE, 3f € RL\{0}, fm € M} = (M ®%, Frac(Rr)) N R}

and we say that M is saturated if M*** = M, or which is the same if R7 /M is torsion
free (). By (B1) (resp. (B2)) such an M is saturated if, and only if, it is a direct
summand as Rp-module (resp. if its elementary divisors are units). Note also that by
property (B2), if M C R7 is finite type over Ry, then so is M2t

It turns out that in a (¢, I')-module situation, we can say much more. Let ¢ :=
log(z) € R be the usual “2im-element”. It satisfies p(t) = pt and y(t) = 4t for all
7 € Zy. Note that ¢ is not an irreducible element of R.

(8) It means that for any choice of a free basis e = (e;)i=1,....4 of D as R-module, the matrix map
v+ Me(y) € GL4(R), defined by ~v(e;) = Me(v)(es), is a continuous function on I'. If P € GL4(R),
then Mp ey () = ¥(P)Mc(y)P~1, hence it suffices to check it for a single basis.

(9 As FracRp = FracR ®q, L, an Rp-module is torsion free over R, if, and only if, it is torsion
free over R.
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Proposition 2.2.2. — Let D be a (¢,T')-module over Rr, and D’ a (p,T')-submodule.

(i) D’ = D'[1/t)n D.
(ii) If D' has rank 1 over Ry, then D' = t*D"*** k € N.

Proof. — Part (ii) is [46, rem. 4.5]. To prove part (i), it suffices to show that the
product of the elementary divisors of D’ is a power of t. But this follows from (ii)
applied to A7(D’) C A¥(D) with j = rkg, (D’). O

We end this section by establishing some basic but useful facts when working with
artinian rings; in what follows A is not supposed to be a field any more.

Lernma 2.2.3. — (i) Let E be a free A-module and E' C E a free submodule, then
E' is a direct summand of E.

(ii) Let E be a Ra-module (resp. Ra[l/t]-module) which is free of finite type as
R-module (resp. R[1/t]-module), and free as A-module. Then E is free of finite
type over R4 (resp. Rall/t]).

(iii) Let D be a finite free R 4-module. Assume that D contains a submodule D' free
of rank 1 such that D' /mD’ is saturated in D/mD as R-module. Then D' is a
direct summand as R 4-submodule of D.

Proof. — Let n > 1 denote the smallest integer such that m™ = 0. As m is nilpotent,
the following version of Nakayama’s lemma holds for all A-modules F: F' is zero (resp.
free) if, and only if, F/mF = 0 (resp. Tor} (F, A/m) = 0). For a proof, see [29][Chap.
11, §3, no.2, Prop. 4, and Cor. 2 Prop. 5].

To prove (i), consider the natural exact sequence

0 — Tori{'(E/E',A/m) — E'/mE' — E/mE.

We have to show that the Tor above is zero, i.e. that mENE’' = mE’. But this follows
from the fact that for a free A-module F,

mF = Fim™ '] := {f € F,m""!f = 0}.

Let us show (ii) now, set R’ = R[1/t] or R. As FE is free over A we have mE = E[m"™!]
hence mE is a saturated R’-submodule of E. As a consequence, E/mE is a torsion
free, finite type, R, = R/y/mR/;-module, so it is free over R’ by property (B1).
As E is free over A, Nakayama’s lemma shows that any R/,-lift (R’;)¢ — E of an
R/, -isomorphism (R})¢ -+ E/mE is itself an isomorphism.

Before we prove (iii), let us do the following remark.

Remark 2.2.4. — Let D be a (¢,I')-module free over R4 and D’ C D be a submodule
also free over R 4. Then part (i) shows that D’ is a direct summand of D as A-module.
In particular, for any ideal I C A, the natural map D'/ID' — D/ID is injective,
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and D'NID = ID'. Note that this remark gives sense to part (iii) of the proposition
(take I = m).

To prove (iii), let us argue by induction on the length of A to show that D’ is R-
saturated in D. We are done by assumption if A is a field. Let I C A be a proper ideal,
then D’'/ID' C D/ID satisfies the induction hypothesis by the Remark 2.2.4 above,
hence D’/ID' is a saturated R-submodule of D/ID. As ID is a direct summand as
‘R-module, it is saturated in D, hence we only have to show that D' N ID = ID’
is saturated in ID. We may and do choose an ideal I of length 1. But in this case,
ID' c ID is D'/mD’ C D/mD, which is saturated by assumption. We proved that
D’ is R saturated in D. As a consequence, D/D’ is R-torsion free, and free over A
by part (i), hence it is free over R 4 by part (ii). O

2.2.4. Etale and isocline p-modules. — Assume again that A = L is a field. Let
D be a p-module over Ry, i.e. a free of finite rank R -module with a Ry-semilinear
action of ¢ such that Rpp(D) = D. Recall that Kedlaya’s work (see [71, Theorem
6.10]) associates to D a sequence of rational numbers s; < --- < s4 (where d is
the rank of D) called the slopes of D. The p-module D is said isocline of slope s if
§1 =-+- =84 = s and étale if it is isocline of slope 0. A (¢,I")-module is étale (resp.
isocline) if its underlying ¢-module (forgetting the action of I') is. For more details
see [71], especially part 4 and 6, [72] or, for a concise review, [46], part 2.

Lemma 2.2.5. — Let 0 — Dy — D — D, — 0 be an exact sequence of -
modules free of finite rank over Ry. If Dy and Dy are isocline of the same slope s,
then D is also isocline of slope s.

Proof. — Up to a twist (after enlarging L if necessary) we may assume that s = 0,
that is D; and D, étale, and we have to prove that D is étale as well.

Assume that D is not étale, so it has by Kedlaya’s Theorem ([71, Thm 6.10]) a
saturated ¢-submodule N which is isocline of slope s < 0. Note n the rank of N and
consider the p-module A™D which contains as a saturated p-submodule the ¢-module
A™N, of slope ns < 0. By assumption, A" D is a successive extension of ¢-modules of
the form

Aa(Dl) Rr. Ab(Dz), a+b=n,
which are all étale (see [71, Prop. 5.13]). Since A™N has rank one, it is isomorphic to
a submodule of one of those étale p-modules A%*(D;) ®z, A®(D2). But by [72, Prop.

4.5.14], an étale p-module has no rank one p-submodule of slope < 0, a contradiction.
O
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2.2.5. Cohomology of (p,I')-modules. — As in the context of Fontaine’s (¢, I')-
modules (see e.g. Herr’s paper [64]), we define the cohomology groups H*(D) of a
(¢,T)-module D over R as the cohomology of the 3-terms complex of Q,-vector
spaces:

0—D*pDeD* D0,

where 7 is a topological generator (19 of T, do(z) = ((y—1)z, (¢ —1)z) and d; (z,y) =
(¢ — Dz — (v — 1)y. We refer to Colmez’s paper [46, §3.1] for a discussion of this
definition and for its basic properties. Let us simply say that by definition, H*(D)
vanishes for ¢ ¢ {0,1,2},

H°(D) := D"™="%=! = {z € D, p(z) = z,7(z) =  Vy € T},

and we have a long exact sequence of cohomology groups associated to any short exact
sequence of (¢, I')-modules. When D is a (¢,')-module over R 4, then the H*(D) are
A-modules in a natural way.

As usual, it turns out that H'(D) parameterizes the isomorphism classes of exten-
sions of R by D. To be a little more precise, if Dy and D; are two (¢, I')-modules over
R 4, by an extension of Dy by Dy in (p,I')/A we mean a complex of (¢, I')-modules
over R 4

0—Dy— D— Dy —0

which is exact (hence split) as R4-module. As usual, two such sequences are said
equivalent if there is a morphism between them which is the identity on D; and D,.
The set of equivalence classes of such extensions form an A-module in the usual way
(Baer), that we shall denote by

Ext(, r)/4(D1, D2).

One checks at once (see [46, §3.1]) that for any (¢,I')-module D over R4 there is a
natural A-linear isomorphism

HI(D) = EXt(%r)/A('R,A, D)

2.2.6. (¢,I')-modules and representations of G,. — Works of Fontaine,
Cherbonnier-Colmez, and Kedlaya, allow to define a ®-equivalence D,;; between the
category of Qp-representations of G, and étale (in the sense of §2.2.4) (¢,I')-modules
over R ({46, prop. 2.7]). By [13, §3.4], D;jg(V) can be defined in Fontaine’s style:

(19) When p = 2 there is no such generator, and the definition has to be modified as follows: let
A C T be the torsion subgroup and choose v € I' a topological generator of I'/A, then replace each
D in the complex above by its subspace D® C D of A-invariants.
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there exists a topological Qy-algebra B (denoted B'*& there) equipped with com-
muting actions of G, and ¢ such that BXe*X = R (with its induced actions of ¢ and
of T' via x~!), and we have

Dyig(V) == (V ®q, B)¥x.
Some properties of these constructions are summarized in the following proposition.

Proposition 2.2.6. — (i) The functor Dy, induces an ®-equivalence of categories
between A-representations of G, and étale (p,I")-modules over R4. We have
rkg, (V) = tkr (Dsg(V)).

(if) For an A-representation V' of Gp, Dyig(—) induces an isomorphism

Exti(c, ] cont (4 V) — Ext(y,r)/4(Ra, Drig(V)) = H' (Dyig(V)).
Proof. — Part (i) is [46, prop. 2.7], part (ii) follows from (i) and Proposition 2.2.5. [

Lemma 2.2.7. — An A-representation V of G, is free over A if, and only if, Dyig(V)
is free over R 4.

Proof. — Assume first that V is free over A. Let M be any finite length A-module
M, and fix a presentation A” — A™ — M — 0. As the functor D,;;(—) is exact
by Proposition 2.2.6 (i), and by left exactness of — ® 4 D;ig(V'), we deduce from this
presentation that we have a canonical A-linear (hence R 4-linear) isomorphism

Drig(v) ®a M - Drig(V ®a4 M).

From the special case M = A/m, we obtain that Dyg(V)/mD,ig(V') is generated by
d :=rk4 (V) elements as R 4-module, hence so is D;;g(V') by Nakayama’s lemma since
mMR 4 is nilpotent. In other words, there is a R 4-linear surjection ’RdA — Dy (V).
As

rkg Dyig(V) = dimg, (V) = d dimg, (4) = rkr(R%)

by Proposition 2.2.6 (i), any such surjection is an isomorphism by property (B1).
The proof is the same in the other direction using the natural inverse functor of
Drig. O

2.2.7. Berger’s theorem. — We will need to recover the usual Fontaine functors
from Dyig(V), which is achieved by Berger’s work [13] and [14] that we recall now.
Let us introduce, for r > 0 € Q, the Q,-subalgebra

R, = {f(2) € R, f converges on the annulus pr < |z — 1| < 1}

Note that R, is stable by I, and that ¢ induces a Qp-algebra homomorphism R, —
Rpr when r > p—;l which is finite of degree p. The following lemma is {14, Thm 1.3.3]:
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Lemma 2.2.8. — Let D be a (¢,T')-module over R. There exists a r(D) > P—z—_,—l such
that for each r > r(D), there exists a unique finite free, I'-stable, R,-submodule D, of
D such that R®w, D, =5 D and that Rpr Dy has a Rpr-basis in ¢(D,). In particular,
for r > r(D), 4

(i) for s >r, Dy = R,D, — R, ®x, D,

(ii) ¢ induces an isomorphism Ry, ®R,.o Dy — Dp — Rpr ®r,. Ds.

If n(r) is the smallest integer n such that p"~!(p — 1) > r, then for n > n(r) the
primitive p"-th roots of unity lie in the annulus p_% < |z —=1| < 1. For such a root ¢,
the evaluation map R, — Q,(() is surjective and its kernel is independent of ¢: it is
the ideal of R, generated by t, = (2" — 1)/(21’"_1 —1). Set

Kn=R:/(tn) = Qp( pw)-

As t € R, is a uniformizer at each primitive p™-th root of unity, the complete local
ring lim; R, /(t,)’ is naturally isomorphic to **) K, [[t]], and we obtain a natural map

(29) trn t Re — Kyp[[t]], n > n(r), r > r(D),

which is injective with t-adically dense image. As the action of I' on R, preserves
t,R,, we have a natural action of I on K, [[t]] for which ¢, is equivariant. ?) For
any (y,I")-module D over R, we can then form for » > r(D) and n > n(r) the space

D, ®r, Ki|[[t]],

the tensor product being over the map ¢y . It is a free K,[[t]]-module of rank rkz (D)
equipped with a natural semi-linear action of I'. By Lemma 2.2.8 (i), this space does
not depend on the choice of 7 such that n > n(r). Moreover, for a fixed r, the same
lemma part (ii) shows that ¢ induces a I'-equivariant, K, 1[[t]]-linear, isomorphism

(Dr ®r, Kn[[t]]) ®tpt Knt1([t]] — Dy ®r, Kn41[t]]-

(Note that the map ¢ : R, — Rp, induces the inclusion K,[[t]] — Kp+1[[t]] such
that ¢ — pt.)

We use this to define functors Dge,(D) and Dyr(D), as follows. Let K, =
Un>o0 Kn, it is equipped with a natural action of I' identified with Gal(K../Q,) via
the cyclotomic character x. For n > n(r) and r > r(D), we define a K,-vector space
with a semi-linear action of I" by setting

DSen(D) = (Dr AR, Kn) Rk, K.

(11) As K, is finite étale over Qp, it lifts canonically to a subfield of this local ring, that we still
denote by K.
(12) For the convenience of the reader, let us explicit this Qp-algebra action. First, I' acts on Kn,
through the natural surjection Zj — (Z/p"Z)* = Gal(Kn/Qp). Moreover, the action of I' on Ky |[t]]
is continuous for the t-adic topology, coincides with the one just defined on Kr, and satisfies v(t) = vt
for all v € Zj,.
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(Of course, the first tensor product is over the map R, — K, = R,/(t»).) By the
discussion above, this space does not depend on the choice of n,r. In the same fashion,
the Q,-vector spaces

Dar(D) = (Koo ®k,, Kn((t)) ®&, D,)T,

Fil'(Dar (D)) := (Koo ®k, t'Kn[[t] ®. Dr)" C Dar(D), Vi € Z,
are independent of n > n(r) and r > (D). As Ko ((t))T = Qp, Dar(D) so de-
fined is a finite dimensional QQp-vector-space whose dimension is less than or equal to
rkr (D), and (Fil*(D4r(D)))icz is a decreasing, exhausting, and saturated, filtration
on D4r(D). This filtration is called the Hodge filtration.
We end by the definition of D.ys(D). Let
Derys(D) := D[1/t]".

It has an action of Qp[¢] induced by the one on D[1/t]. It has also a natural filtration
defined as follows. Choose r > (D) and n > n(r), there is a natural inclusion

Dcrys (D) — DdR(D)

and we denote by (" (Fili(DcryS(D)))iez the filtration induced from the one on
Dyr (D). By the analysis above, this defines a unique filtration (Fili(DC,ys(D)))iez, in-
dependent of the above choices of n and r, and called the Hodge filtration of Derys(D).
We summarize some of Berger’s results ([13], [14], [45, prop. 5.6])) in the following
proposition.
Proposition 2.2.9. — Let V' be a Qp-representation of G, and

* € {crys,dR, Sen}.
Then Dy (Diig(V')) is canonically isomorphic to D,(V).
Definition 2.2.10. — We will say that a (not necessarily étale) (¢, I')-module D over

R is crystalline (resp. de Rham) if Derys(D) (resp. Dgr(D)) has rank rkg (D) over
Qp- The Sen polynomial of D is the one of the semi-linear I'-module Dge, (D).

Due to the lack of references we have to include the following lemma.

Lemma 2.2.11. — Let 0 — D' — D — D" — 0 be an ezact sequence of (¢,I')-
modules over R. If r > r(D),r(D"),r(D") is big enough, then D) = Im (D, — D")
and D, =D, ND'.

Proof. — Fix ro > r(D),r(D"),r(D"). By Lemma 2.2.8,
(30) X=|J X,, for X € {D,D',D"}.

r>79
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We can then find r; > 7o such that D, C D,, and Im(D,, — D") C Dy . As
D — D" is surjective, we can choose moreover some 79 > 71 such that Im(D,, —
D") contains a R, -basis of D; . The exact sequence of the statement induces then
for r > ro an exact sequence of R,.-modules

(31) 0— K,:=D.ND"— D, — D! — 0,

with K, D D.. As D! is free, this sequence splits, hence remains exact when base
changed to Rs, s > 7. Using Lemma 2.2.8 (i), this implies that R;K, = K, for
s > r > r9. Moreover, K, is finite type over R,. Indeed, D, is (free of) finite type
over R, and the sequence (31) splits. By formula (30), we can then choose r3 > 7o

such that K, C D;,, and we get that K, = R, K,, = D, for r > r3. O

2.3. Triangular (¢,I')-modules and trianguline representations over ar-
tinian Q,-algebras

In all this subsection, A is a finite dimensional commutative local Q,-algebra with
maximal ideal m and residue field L := A/m.

2.3.1. (¢,I')-modules of rank one over R4. — We begin by classifying all the
(¢, T')-modules which are free of rank 1 over R4. Let 6 : Q5 — A* be a continuous
character. In the spirit of Colmez [46, §0.1], we define the (¢, I")-module R 4(4) which
is R 4 as R 4-module but equipped with the R 4-semi-linear actions of ¢ and I" defined
by

¢(1) :=d(p), ¥(1) :=46(y),Vy €T.

Let W C G, be the Weil group of Q, and let 6 : wab =, Qjp be the isomorphism
of local class field theory normalized so that geometric Frobeniuses correspond to
uniformizers. We may associate to any § as above the continuous homomorphism
6060 :W — A*. Such a homomorphism extends continuously to Gy, if, and only if,
v(d(p) mod m) is zero, and in this case we see that

RA(8) = Dyig(6 0 6).

When 4 is the character defined by §(p) = 1 and djz; = id, then 6 0 = x|pyav.

Note that if I C A is an ideal, it is clear from the definition that R4(0) ®4 A/I —
R a/1(6 mod I). Moreover, if D is a (p,I')-module over R4, we will set D(§) :=
D ®r, Ra(é), and

D’ = {z € D, p(z) = §(p)z, v(x) = §(7)z ¥y € T} = HY(D(571)).

Proposition 2.3.1. — Any (¢,I')-module free of rank 1 over R 4 is isomorphic to R 4(9)
for a unique 8. Such a module is isocline of slope v(é(p) mod m).
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Proof. — By Lemma 2.2.5, a (¢,T')-module D of rank 1 over R4 is automatically
isocline of same slope as D/mD. As R (6 mod m) has slope v(6(p) mod m), and as
Ra(8)(8') = Ra(64’), we may assume that D is étale. But in this case, the result
follows from the equivalence of categories of Proposition 2.2.6 (i), Lemma 2.2.7, and
the fact that the continuous Galois characters G, — A* correspond exactly to the §
such that v(6(p) mod m) = 0. a

2.3.2. Definitions

Definition 2.3.2. — Let D be a (p,I')-module which is free of rank d over R4 and
equipped with a strictly increasing filtration (Fil;(D));=0...q :

Filo(D) := {0} G Fil;(D) G - € Fili(D) € -+~ G Fily_1(D) € Fily(D) := D,

of (¢,I')-submodules which are free and direct summand as R 4-modules. We call
such a D a triangular (p,I")-module over R4, and the filtration 7 := (Fil;(D)) a
triangulation of D over R4.

Following Colmez, we shall say that a (¢,I')-module which is free of rank d over
R 4 is triangulable if it can be equipped with a triangulation 7; we shall say that
an A-representation V' of G, which is free of rank d over A is trianguline if Dg(V)
(which is free of rank d over R4 by Lemma 2.2.7) is triangulable.

Let D be a triangular (p,I")-module. By Lemma 2.3.1, for each ¢ € {1,...,d}

is isomorphic to R 4(4;) for some unique §; : W — A*. It makes then sense to define
the parameter of the triangulation to be the continuous homomorphism

0:=(0;)i=1,...d * Q; — (A*)d-

2.3.3. Weights and Sen polynomial of a triangular (¢,I')-module. — As
the following proposition shows, the parameter of a triangular (¢,T')-module refines
the data of its Sen polynomial. It will be convenient to introduce, for a continuous
character ¢ : Q; — A*, its weight (13);

— (9 _ log(é(1 + p))
w(0) =~ (3—'7>~,=1 " log(l+p)

(13) Let A C A* be the subgroup of elements a such that aP” — 1 when n — oo; it is also the direct
product of its subgroups 14+m 4 and A'NL*. For any finite set F' C A, we can find a submultiplicative
norm |.| on A such that |a — 1| < 1 for all a € F. In particular, log(a) := En>1(—1)"+1(a - 1)"/n
converges absolutely in A for a € A! and we check easily that log : (A!,-) — (A, +) is a continuous
" _
a = 1

group homomorphism. Moreover, for any a € Al, — log(a) when n — oo. This shows the

second equality in the expression defining w(d), as 6(1 + p) € AL.
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Proposition 2.3.3. — Let D be a triangular (¢, I')-module over R4 and § the parameter
of a triangulation of D. Then the Sen polynomial of D is

H(T—w(5i))-
i=1

Proof. — Assume first that d = 1, i.e. that D = R4(d). We see that we may take
r(D) = (p — 1)/p and that D, = AR, for r > r(D). But then Dge, (D) has a Koo-
basis on which I' acts through d)r, and the result follows. The general case follows by
induction on d from the case d = 1 and Lemma 2.2.11. O

2.3.4. De Rham triangular (¢, I')-modules.— We now give a sufficient condition
on a triangular (¢,I')-module D over R4 to be de Rham (see Definition 2.2.10).
A necessary condition is that the R4(d;) are themselves de Rham, i.e. that each
s; := w(d;) is an integer (see the proof below).

Proposition 2.3.4. — Let D be a triangular (¢,T')-module of rank d over R4, and let
d be its parameter. Assume that s; := w(d;) € Z, and that s1 < s < -+ < 84; then D
is de Rham.

If, moreover, Dy := D/mD is crystalline and satisfies Hom(Dg, Do(x~ 1)) = 0
(resp. is semi-stable), then D is crystalline (resp. semi-stable).

Proof. — In this proof, Ko[[t]] will always mean J,,>; Kn[[t]]-
Assume first that d = 1 and D = R4(6). If s := w() € Z, then érx® is a finite
order character of I'. We see easily that
(Koo[[t]][1/t] ®g, dir)" = (K ®q, dir)",

and the latter A-module is free of rank 1 by Hilbert 90. This concludes the case d = 1.

Let us show now that D is de Rham by induction on d. Let v € I" be a topological
generator 4 and consider the cyclic subgroup I'y := (y) C I'. By Lemma 2.2.11 we
have for r large enough and i € Z an exact sequence

0 — Fil*(Dyg (Filg_1(D))) — Fil*(Dgr(D)) — Fil*(Ra(84)) —
H' (T, (Filg_1(D),) ® Koo[[t]]t}).

By the induction hypothesis applied to Filg_1(D), Fil** (D4gr(Filg—1(D))) has dimen-
sion (d — 1) dimg, (A) and Fil'(Dgr (Filg—1(D))) = 0 for i > s4_;. By the case d = 1
studied above, it suffices then to show that

HY(Ty,Fily_1(D), ®r, Kxo[[t]]t*¢) = 0.

(14) 1f p = 2, choose v such that v is a topological generator of I' modulo its torsion subgroup.
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But the I'p-module Filg_1 (D), ®r,. Kx[[t]]t*¢ is a successive extension of terms of
the form

% Koo [[t]] ®qQ, ;.
But the cohomology group H! (T, —) of each of these terms vanishes. Indeed, sq4 > s;
if i < d, and if X = K[[t]]t? with j > 0, we see at once that

H'(To,X)=X/(y-1)X =0.

This concludes the proof that D is de Rham.

Recall that Berger’s Theorem [14, théoréme A] associates canonically to any de
Rham (¢, T')-module D over R a filtered (¢, N, Gp)-module X (D). We see as in Lemma
2.2.7 that X (D) carries an action of A and is free as A-module if (and only if) D is
free over R 4. Moreover we have

X(Dy) = X(D)/mX (D), where Dg:= D/mD.

But if Dy is semi-stable, the action of the inertia group I, C G, on X(D)/mX (D) is
trivial, hence so is its action on the m*X'(D)/m‘*1x (D) = X(D)/mX (D) for i > 1.
As the action of I, on X (D) has finite image by definition, it is semisimple and the
I,-module X (D) is also trivial. If moreover

Hom(Do, Do(x ")) =0,
then we get by induction on ¢ > 1 that
N :X(D) — X(D(x™1))/m'X(D(x™ "))
is zero, hence N = 0 and so D is crystalline. O

Remark 2.3.5. — (i) The proposition above may be viewed as a generalization of
the fact that ordinary representations are semi-stable (Perrin-Riou’s Theorem
[1, Exposé IV]).

(ii) There exist triangulable étale (¢, I')-modules of rank 2 over R, which are Hodge-
Tate of integral weights 0 < k, but which are not de Rham (hence they have
no triangulation whose parameter § satisfies the assumption of the Proposi-
tion 2.3.4. Instead, we have s; = k and s = 0 with the notation of that propo-
sition). For example, this is the case of the (¢, I')-module of the restriction at p of
the Galois representation attached to any finite slope, overconvergent, modular
eigenform of integral weight k > 1 and Up-eigenvalue a, such that v(a,) > k—1.

(iii) It would be easy to show that a de Rham triangulable (¢, I')-module over R,
becomes semi-stable over a finite abelian extension of Q,, because it is true
in rank 1. Reciprocally, a (¢,I')-module which becomes semi-stable over a fi-
nite abelian extension of Q, is triangulable over R, where L contains all the
eigenvalues of ¢ (to see this, mimic the proof of Proposition 2.4.1).

ASTERISQUE 324



2.3. TRIANGULAR (¢,I')-MODULES 75

2.3.5. Deformations of triangular (p,I')-modules

Let D be a fixed (p,')-module free of rank d over R, and equipped with a triangu-
lation T = (Fil;(D));=o,...,¢ With parameter (4;). We denote by C the category of local
artinian Q,-algebras A equipped with a map A/m -~ L, and local homomorphisms
inducing the identity on L.

Let Xp : C — Set and Xp 7 : C — Set denote the following functors. For an
object A of C, Xp(A) is the set of isomorphism classes of couples (D4, n) where D4
is a (¢,T')-module free over R4 and 7 : Dy — D is a R 4-linear (yp,I')-morphism
inducing an isomorphism Dy ® 4 L — D; X p,7(A) is the set of isomorphism classes
of triples (D4, 7, (Fil;(D4))) where :

(i) (Da, (Fil;(D4))) is a triangular (p,I')-module of rank d over R4,
(ii) m: D4 — D is a R 4-linear (¢,I")-morphism inducing an isomorphism D ® 4
L = D such that n(Fil;(D4)) = Fil;(D).
There is a natural “forgetting the triangulation” morphism of functors Xp 7 —
X p that makes in favorable cases Xp 7 a subfunctor of Xp (as in [46], we denote by
= the identity character Q; — Qj).

Proposition 2.3.6. — Assume that for all i < j, 6i6]-_1 ¢ 2N, Then Xp 1 is a subfunc-
tor of Xp.

Proof. — We have to show that if A is an object of C, and (D4, 7) € Xp(A) is a
deformation of D, then D4 has at most one triangulation that satisfies (ii) above. That
is to say, we have to prove that if 7 = (Fil;(D4)) is a triangulation of D4 satisfying
(ii), then Fil;(D4) is uniquely determined as a submodule of D 4, Filo(D 4)/Fily (D4)
is uniquely determined as a submodule of D 4/Fil; (D), and so on. For this note that
Fil;(D)/Fil;_1(D) ~ R (d;), and that D/Fil;(D) is a successive extension of R (d;)
with ¢ > j, so that
Hom(R(d;), D/Fil;(D)) =0

by the hypothesis on the §; and Proposition 2.2.2 (ii). So we can apply the following
lemma, and we are done. O

Lemma 2.3.7. — Let (Da,m) € Xp(A), 6 : Q; — A* be a continuous character and
0 = 0 (mod m). Assume D has a saturated, rank 1, (¢,T")-submodule Dy ~ R (8)
such that (D/Dg)® = 0. Assume moreover that D contains a R-saturated (p,T)-
module D' isomorphic to Ra(6). Then & is the unique character of Q; having this
property, and D' the unique such submodule.

Proof. — We may assume by twisting that § = 1 (hence § = 1 also). Let ¢’ : Q, —
A* lifting 1, and assume that D4 has some R-saturated submodules D; — R4 and
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Dy = R (8"). By assumption, H(D/Dg) = 0, and D;/mD; = Dy for i = 1,2 (see
Remark 2.2.4). A dévissage and the left exactness of the functor H°(—) show that

H°(D4/D;) =0, i=1,2.
This implies that the inclusion H°(D;) — H°(D,) is an equality, hence
H°(D,) = H(D,) C D,.

As D; = RH®(D,), we have D; C Dy, and D; = D, since D; and D, are saturated
and have the same R-rank. We conclude that §' = 1 by Proposition 2.3.1. O

We will give below a criterion for the relative representability of Xp + — Xp,
but we need before to make some preliminary remarks. Let F/(—) be the functor on
(¢, T')-modules over Ry defined by

F(E)y={veE,In>1| Vyel,(y—1)"v=0, (¢ —1)"v = 0}.

This is a left-exact functor, and F(E) inherits a commuting continuous action of ¢
and I, hence of Q;, as well as a commuting action of A if E' does.

Lemma 2.3.8. — We have:

(i) For any (¢,T')-module E over Ry, F(E) # 0 < Hom(, (R, E) # 0.
(i) F(RL(8)=0ifé6¢ 2N, and F(RL) = L.
(iii) Let A € C and § : Qp — A* a continuous homomorphism such that 5 =1.
The natural inclusion A C R4(8) induces a Q;‘,—equivariant(w) isomorphism
A =5 F(R4(5)), as well as an isomorphism F(R(8)) ®q, R — Ra(é).

Proof. — Assertion (i) is an immediate consequence of the definition and of the fact
that ¢ and I' commute. Let us check assertion (ii). We may assume that § = 1 by (i)
and Prop. 2.2.2 (ii). Let v € T" be a nontorsion element. We claim that for f € R,
and n > 1
(y=1)"f=0=felL.

Assume first n = 1, then f(27) = f(z) so f is constant on each circle |z — 1| = r
with 7 > 7(f), hence constant because 7 is nontorsion and an analytic function on a
1-dimensional affinoid has only a finite number of zeros. Assume now n = 2, by the
previous case (v — 1)(f) is a constant C, which means that

f(2") = f(2)+C
on r(f) < |z — 1| < 1. Let us choose a p™-th root of unity ¢ in the annulus r(f) <

|¢ — 1] < 1 which is sufficiently close to the outer boundary so that the (finite) orbit
of ¢ under (7), namely {C'Yk,k € Z}, is non-trivial. Let M be the cardinality of this

(15) Note that A C R () has a natural A-linear action of (yp,TI'), hence of Qp, namely via the
character & by definition.
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orbit, we obtain by applying M times the previous equation that f(¢) = f({) + MC,
so C = (v — 1)(f) = 0 and f is constant by the case n = 1. Assume now n > 3. If
(y—1)"(f) = 0, then (y—1)"~2(f) is constant by the previous case, so (y—1)"1(f) =
0 and we conclude that f is constant by induction.

Let us check assertion (iii). It is clear that A C F(R4(d)). Moreover, as F(R.) = L
by (ii), the left-exactness of F' shows that the length of F'(R 4(6)) is less than or equal
to the length of A. In particular, the previous inclusion is an equality, and the last
assertion of the stament holds by definition of R 4(4). O

Proposition 2.3.9. — Assume that for all i < j, 15,-6;1 ¢ zN. Then X p,r — Xp is
relatively representable.

Proof. — By Prop. 2.3.6, we already know that Xp 7 is a subfunctor of Xp. By [84,
§23], we have to check three conditions (see also §19 of loc.cit.).
First condition: if A — A’ is a morphism in C and if (D4, 7) € Xp 7(A), then

(Da®a A, m®4 A,) € XD‘T(A,).

This is obviously satisfied as (Fil;(D4) ® 4 A’) is a triangulation of D4y ® 4 A’ lifting
D.

Second condition: (19 if A — A’ is an injective morphism in C, and if (Da, ) €
Xp(A), then

(DA ®a AI,’fr®A A,) € XD,T(A/) = (DA,ﬂ') € XD,T(A).

Arguing by induction on d = dimg, D, it is enough to show that D4 has a (p,T')-
submodule E which is free of rank 1 over R4, saturated, and such that the natural
map

n:E— D

surjects onto Fil; (D) (the fact that F is a direct summand as R 4-module will follow
then from Lemma 2.2.3). By twisting if necessary, we may assume that §; = 1.

By (ii) of Lemma 2.3.8, the left-exactness of F', and the assumption on the §;, we
have

(32) F(D) = F(Fil1(D)) = L.

Let Do = Dg ®4 A', T{ := Fil;(Dy/) and T} := T{ N D4. Lemma 2.3.8 (ii) again
and a dévissage show that F(Da/Ti) C F(D4:/T]) = 0, so the natural inclusions
(33) F(Ty) = F(D4) and F(Ty) = F(Das)

(16) This is actually called condition (3) in loc.cit.
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are isomorphisms. Moreover, the fact that (D) = L and another dévissage (!7) show
that for each ideal I of A, and each finite length A-module M, if | denotes the length
function (so that L has length 1) then

I(F(ID4)) <I(I) and I(F(D4®4 M)) < I(M).
The inequalities above combined with the exact sequences

0— F(D4) — F(Da) — F(Da®a A'/A),

0 — F(mDy) — F(Dy) — F(D),

show then that
(34)  UF(Da)) =I(A), and F(Da)®4 L L% F(D) = F(Fily(D)) = L.
In particular, there is an element v € F(D4) C Dy whose image is nonzero in
F(D) C Da/mD g4, thus this element v generates a free (!¥) A-submodule of F(Dy).
By (34) we get that F/(D4) = Av is free of rank 1 over A and the nonzero map there
is actually an isomorphism. Of course, the same assertion holds if we replace the A’s
init by A’, as A’ = F(T]) = F(Da/) by Lemma 2.3.8 (iii) and (33). As a consequence,
the natural map

(35) F(Ty)®4 A" — F(Ty)

is an isomophism, at it is so modulo the maximal ideal (9). Set
E :=RF(Ti) C Da.

We claim that F has the required properties to conclude. Recapitulating, we have a

sequence of maps

F(T\)®4Ra — F(T1) ®4 Rar — F(T}) @4 Rar — Tj.

As E is the image of the composition of all the maps above, we get that

F(T1)®4Ra — E

is free of rank 1 over R4. We already showed that n(FE) = Fil;(D), hence it only
remains to check that E is saturated in D4. But this holds as F is saturated in 77,
which is saturated in D’;, and we are done (2%).

(17) For more details about this dévissage, the reader can have a look at Lemma 3.2.9 of the next
section, in which it is studied in a more general situation.

(18) The claim here is that for A € C (or more generally for any commutative local ring A), any free
A-module M and any v € M, if the image of v in M/mM is nonzero, then Av ~ A. Indeed, if (e;)
is an A-basis of M, then v writes as a finite sum Ez Aiei. If v ¢ mM, then \; € A* = A\m (as A
is local) for some ¢, thus the map a — av, A — M, is injective.

(19) In particular, if we write T/ = R 4/(§), the isomorphism above and Lemma 2.3.8 (iii) show that
3(Qp) C A*.

(20)° Actually, using Lemma 7.8.7 we even see that E = T7.
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Third condition: ?Y) for A and A’ in C, if (Da,n) € Xp,7(A) and (Da/,7') €
Xp,7(A"), then for B = A x A’, the natural object

(D =Dp xXp Dgrymg =mopr, =n opry)

lies in Xp 7(B). But it is clear that the filtration (Fil;(D4) x p Fil;(D4/)) is a trian-
gulation of Dp lifting 7, and we are done. O

Let us consider the natural morphism

d
diag : XD,T h— HXgri(D)'
i=1
Recall that z is the identity character Q; — Qj; recall also that x = z|z| is the
cyclotomic character.

Proposition 2.3.10. — Assume that for all i < j, 6,15]-_1 & x z, then

(i) Xp,z is formally smooth,
(ii) for each A € Ob(C), diag(A) is surjective.

Proof. — Recall that (i) means that for A € C and I C A an ideal such that I = 0,
the natural map Xp 7(A) — Xp,7(A/I) is surjective.

Assume first that d = 1, so the assumption is empty. The maps diag(A) are bijective
(hence (ii) is satisfied), and by Proposition 2.3.1, Xp 7 is isomorphic the functor
Hom ot (W, —) which is easily seen to be formally smooth (and even pro-representable
by Spf(L[[X,Y]])), hence (i) is satisfied.

Let us show now (i) and (ii), we fix A € C and I C m an ideal of length 1. Let
U € Xp,7(A/I), and let V = (V;) € [[;(Xg,(p)(A)) be any lifting of ], gr;(U).
We are looking for an element U’ € Xp 7(A) with graduation V' and reducing to U
modulo I. We argue by induction on d. By the paragraph above, we already know
the result when d = 1. By the case d = 1 again, we may assume that gr (U) is the
trivial (¢, ')-module over R 4 /1 (note that the assumption on the §; is invariant under
twisting), and we have to find a U’ whose gr; (U’) is also trivial. Let 7’ denote the
triangulation (Fil;(D))i=o,...,a—1 of Filg_1(D). By induction, Xgy,_,(p),7 is formally
smooth and satisfies (ii), hence we can find an element U” € Xgy,_,(p),77(A4) lifting
Fily_1(U) and such that gr,(U") lifts V; for ¢ = 1,...,d — 1. It suffices then to show
that the natural map

HY(U") — H'(Filg_1(U))

(21) Precisely, this is what is left to check condition (2) in loc. cit. once (1) and (3) are known to
hold, because with the notations there Axc B C A X, B if L is the residue field of C. This reduction
is also explained in the proof of [73, Prop. 8.7).
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is surjective. But by the cohomology exact sequence, its cokernel injects into
H?(Fily—1(D(571))).

But this cohomology group is 0 by assumption and by Lemma 2.3.11. O

Lemma 2.3.11. — H2(R4(5)) =0 if (6 mod m) & xzN.

Proof. — By the cohomology exact sequence, we may assume that A = L. But then
H?%(Rr(8)) = H°(RL(x6~')) = 0 by [46, prop. 3.1]. The fact that for any (y,T)
module D over R, we have

(36) H®(D) = Homy,(H*(D*(x), L))
should hold by mimicking Herr’s original argument. We warn the reader that at the
moment, there is unfortunately no written reference for that result. (22) O
Remark 2.3.12. — Under the assumptions of Prop. 2.3.10, and if we assume moreover
that 6,»5;1 ¢ zN for i # j, then we can show that
. dd+1
aimy, Xp,r(zfel) = XX 4

where n = dimy, End(, ry/r,7(D) and End(, ry/r,7(D) is the subspace of elements
u € Hom, ry/r,7 such that u(Fil;(D)) C Fil;(D) for all i (we always have n < d,
and for instance n = 1 when D is irreducible). A proof of this result will be given
elsewhere.

2.3.6. Trianguline deformations of trianguline representations. — The no-
tions of the last paragraph have their counterpart in terms of trianguline represen-
tations. Let V be a trianguline representation over L, and suppose we are given a
triangulation 7 on D := D;g(V).
We define the functor
Xy :C —> Set
as follows: for A € Ob(C), Xy (A) is the set of equivalence classes of deformations of
V over A, that is, A-representations V4 of G, which are free over A and equipped
with an A[Gp]-morphism 7 : V4 — A inducing an isomorphism V4 ® 4 L — V. In
the same way, we define a functor

Xvr :C— Set

such that Xy 7(A) is the set of equivalence classes of trianguline deformations of
(V,T), that is couples (V4,m) € Xy (A) together with a triangulation Fil; of D,ig(Va)
which makes (Dyig(Va), Drig(), Fil;) an element of Xp 7(A).

The main fact here is that those functors are not new:

(22) Added in proofs: (36) is now a theorem of Liu [80].
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Proposition 2.3.13. — The functor Dz induces natural isomorphisms of functors
XV jad XD and XV,T ~ XD,'T-

Proof. — The second assertion follows immediately from the first one, since
XV,T(A) = Xv(A) XXp(A) XD,T(A) for any AinC.

To see that Dy, induces a bijection Xy (A) — Xp(A), we note that the injectivity
is obvious because of the full faithfulness of D;;g, and that the surjectivity follows from
the fact that if (D4, ) is an element of Xp(A), D4 is a successive extension of D as
a (¢, I')-module over R, hence it is étale by Lemma 2.2.5; so D 4 is Dyig(Va) for some
representation V4 over L which is free over A by Lemma 2.2.7. O

2.4. Refinements of crystalline representations

(See [85, §3], [36, §7.5], [8, §6].)

2.4.1. Definition. — Let V be a finite, d-dimensional, continuous, L-representation
of Gp. We assume that V' is crystalline and that the crystalline Frobenius ¢ acting on
Derys(V) has all its eigenvalues in L*.

By a refinement of V' (see [85, §3]) we mean the datum of a full ¢-stable L-filtration
F = (Fi)i=o,...,d of Derys(V):

Fo=0C F1 €+ C Fg= Derys(V).
We remark now that any refinement F determines two orderings:

(Refl) It determines an ordering (¢1,...,@q) of the eigenvalues of ¢, defined by the
formula
i
det(T — ¢15,) = [ [ (T - ¢)).
j=1
Obviously, if all these eigenvalues are distinct such an ordering conversely de-
termines F.

(Ref2) It determines also an ordering (si,...,sq) on the set of Hodge-Tate weights of
V, defined by the property that the jumps of the Hodge filtration of Dcrys(V)
induced on F; are (sy,...,s;) ?3).

More generally, the definition above still makes sense when D is any crystalline
(¢,T')-module over R, (see Definition 2.2.10), i.e. not necessarily étale, such that ¢
acting on Derys(D) = D[1/t]F has all its eigenvalues in L*. It will be convenient for
us to adopt this degree of generality.

(23) As F; C Fi+1, the weights of F; are also weights of F;;1, hence the definition of the s; makes
sense.
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2.4.2. Refinements and triangulations of (¢,T')-modules. — The theory of
refinements has a simple interpretation in terms of (p,I')-modules that we now ex-
plain. Let D be a crystalline (¢, I')-module as above and let F be a refinement of D.
We can construct from F a filtration (Fil;(D));=o,...,a of D by setting

Fil;(D) := (R[1/t]F;) N D,
which is a finite type saturated R-submodule of D by Lemma 2.2.2.

Proposition 2.4.1. — The map defined above (F;) — (Fil;(D)) induces a bijection
between the set of refinements of D and the set of triangulations of D, whose inverse
is F; := Fil;(D)[1/¢]F.

In the bijection above, for i = 1,...,d, the graded piece Fil;(D)/Fil;_1(D) is iso-
morphic to Rr(8;) where 6;(p) = @ip™* and &;;r = x~°¢, where the p; and s; are
defined by (Refl) and (Ref2).

Proof. — We have Frac(Rp)! = L, hence the natural (¢, T')-map

Di/M" @1 Ro[1/t] — D1/1]
is injective. But it is also surjective because D is assumed to be crystalline, hence it
is an isomorphism. We deduce from this that any (¢, I')-submodule D’ of D[1/t] over
RL[1/t] can be written uniquely as R.[1/t] ®, F = RL[1/t|F, where F = DT is a
L[g]-submodule of D[1/¢]'. This proves the first part of the proposition.

Let us prove the second part. By what we have just said, the eigenvalue of ¢ on
the rank one L-vector space, (Fil;(D)/Fil;_;(D)[1/t])T is ;. As a consequence, the
rank one (¢, ')-module Fil;(D)/Fil;_; (D), which has the form R (;) for some §; by
Proposition 2.3.1, satisfies

8i(p) = pip™ ", &ir = x 7"

for some t; € Z by Proposition 2.2.2 (ii). By Proposition 2.3.3, the t; are (with
multiplicities) the Hodge-Tate weights of V/, and it remains to show that t; = s;. We
need the following essential lemma.

Lemma 2.4.2. — Let D be a (p,T)-module over Ra, A € A*, and v € Derys(D)?=2.
Then v € Fil'(Derys(D)) if, and only if, v € t'D.

Proof. — For any r > 0 and any 4 € Z, Lazard’s theorem [79] shows that

(37) R (/0[] Kalllt' = 'R,

n>n(r)
Let D be a (¢,I')-module over R4 and fix some r > r(D) such that Derys(D) C
D,.[1/t]. By definition of the filtration on Deys(D) (§ 2.2.7), we have for any n > n(r)

(38) " (Fil (Derys(D))) = Derys(D) Nt'(Dr ®r, Ka[lt]]),
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both terms in the intersection above being viewed inside D, @z, K,[[t]][1/t]. Let
v € Derys(D) be such that ¢(v) = Av, A € A*; for each integer n, we have

v= )\in o™ (v).
Let e1,...,eq be an R, -basis of D, and write v = E?zl vje; for some v; € R.[1/t];
for i € Z, v € t'D, if, and only if, v; € t'R,, for all j. Relations (37) and (38) show
then that v € Fil'(Derys(D)) if, and only if, v € ¢*D. O

We now show that t; = t;(D, F) coincides with s; = s;(D, F) by induction on d.
Let v#0€ Fi. As

v € Fil** (Derys (D))\Fil** ! (Derys (D))

by assumption, Lemma 2.4.2 above shows that t~*1v € D\tD. By Proposition 2.2.2
(ii), this shows that RF1t~° is saturated in D, hence is Fil; (D), and s; = ;. Let us
consider now the (¢, I')-module

D' = D/Fily(D).

It is crystalline with Deyrys(D') = Derys(D)/F1, with Hodge-Tate weights (with
multiplicities) the ones of D deprived of s;, and has also a natural refinement
defined by F; = Fi+1/F1. The Hodge filtration on Dgys(D’) is the quotient filtra-
tion ((Fi¥(Derys(D)) + Fi/F1))jez- As a consequence, s;(D',F') = s;11(D,F)

if i« = 1,...,d — 1. But by construction, for ¢ = 1,...,d — 1 we have also
ti(D',F') = tit1(D, F). Hence t; = s; for all ¢ by the induction hypothesis. O
Remark 2.4.3. — In particular, Proposition 2.4.1 shows that crystalline representa-

tions are trianguline, and that the set of their triangulations is in natural bijection
with the set of their refinements.

Definition 2.4.4. — Let F be a refinement of D (resp. of V'). The parameter of (D, F)
(resp. (V, F)) is the parameter of the triangulation of D (resp. D;ig(V)) associated to
F, i. e. the continuous character

6= (6i)i=1,....a : Qp — (L*)4
defined by Proposition 2.4.1.
2.4.3. Non critical refinements. — Let (D,F) be a refined crystalline (¢, T)-

module as in §2.4. We assume that its Hodge-Tate weights are distinct, and denote
them by

ki< <kgq.
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Definition 2.4.5. — We say that F is non critical if F is in general position compared
to the Hodge filtration on De,ys (D)_, i.e. if for all 1 < i < d, we have a direct sum

Derys(D) = F; ® FilF T (Dgpys(D)).

Remark 2.4.6. — Assume that D = D, (V) for a crystalline V' in what follows.

(i) If d = 1, the unique refinement of V is always non critical. If d = 2, all refine-
ments of D are non-critical, excepted when V is a direct sum of two characters.
(if) Another natural definition of non criticality would be the condition

{ v(p1) < ka,

(39)
Vi€{2,...,d—1}, ’U((pl)+"'+'u((pi)<k1+-"+ki_1+ki+1.

We call a refinement satisfying this condition numerically non critical(?¥). The
weak admissibility of Deys(V') shows that a numerically non critical refinement
is non critical in our sense, but the converse is false. However, as the following
example shows, it may be very hard in practice to prove that a refinement is
non critical when it is not already numerically non critical.

Assume d = 2. The numerical non criticality condition (39) reduces to
v(p1) < ko; note that this is the hypothesis appearing in the weak form of
Coleman’s classicity of small slope Up-eigenforms result ([42]).

Assume (V, F) is the non ordinary refinement of the restriction at p of a p-adic
Galois representation V; attached to a classical, ordinary, modular eigenform f
of level prime to p. Then F satisfies v(p1) = ks, so0 it is not numerically non-
critical. On the other hand F is non critical if and only if V' is not split:

— When f is a non CM cuspform, it is expected that V' is not split but this

is an open problem.

— When f is an Eisenstein series of level 1, and for a well-chosen V; (globally
non semisimple and geometric), this problem and its relations with the
properties of the eigencurve have been studied by the authors in [9]. In
particular, it is equivalent to a standard conjecture on the nonvanishing
of certain values of the Kubota-Leopold p-adic zeta function. (25

In any case, note that from the existence of overconvergent companion forms
[30, Thm. 1.1.3], the numerically critical refinement F of V is non critical if
and only if the evil twin of f is not in the image of the Theta operator, which

(24) When d = 2 some authors call such a refinement of non-critical slopes. Mazur introduced in [85]
a variant of this condition, namely v(p;—1) < k; < v(p;i41) for i = 2,...,d — 1 which is equivalent
to ours for d < 3.

(25) This last statement is also a consequence of Iwasawa main conjecture. The main result of loc.cit.
is actually that the tame level 1 eigencurve is smooth at the critical Eisenstein points. The higher
level case, as well as the CM case, can also be studied by the method of the paper.
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is exactly the condition found by Coleman in his study of the boundary case of
his “classicity criterion”. We take this as an indication of the relevance of our
definition of non criticality.

(iii) If ¢ is semisimple (which is conjectured to occur in the geometric situations), we
see at once that V always admits a non critical refinement in our sense. However,
all the refinements of V' may be numerically critical. Examples occurs already
when d = 3. Indeed, (39) is equivalent in this case to v(yp1) < k2 < v(p3) (use
that v(e1) + v(p2) + v(ws) = k1 + k2 + k3). Thus any V with weights 0,1, 2,
semisimple ¢, v(yp;) = 1 for ¢ = 1,2,3, and with generic Hodge filtration, is
weakly admissible, hence gives such an example.

The following proposition is an immediate consequence of Proposition 2.4.1.

Proposition 2.4.7. — F is non critical if, and only if, the sequence of Hodge-Tate
weights (s;) associated to F by Proposition 2.4.1 is increasing, i.e. if s; = k; Vi.

It is easy to see that non criticality is preserved under crystalline twists and duality.
However, we have to be more careful with tensor operations, for even the notion of
refinement is not well behaved with respect to tensor products. We content ourselves
with the following trivial results, that we state for later use.

Lemma 2.4.8. — (i) Assume that (D,F) is a non-critically refined crystalline
(p,T')-module over Rr. Then the weight of A*'(F;) C Derys(A*(D)) is the
smallest Hodge-Tate weight of A*(D).

(ii) Let D1 and Dy be two (p,T')-modules over Ry with integral Hodge-Tate-Sen
weights, equipped with a one dimensional L-vector space W; C Derys(D;). If the
weight of W; is the smallest integral weight of D; for i = 1 and 2, then the
weight of W1 ® 1, Wy is the smallest integral weight of D1 ®r, Da.

2.5. Deformations of non critically refined crystalline representations

An essential feature of non critically refined crystalline representations is that they
admit a nicer deformation theory.

Let (V, F) be a refined crystalline representation. Let us call 7 the triangulation of
Dyig(V) corresponding to F as in Proposition 2.4.1. Recall from §2.3.6 the functors
Xy = Xp,(v) : C — Set (resp. Xyr = X Dy.ig(v),7) Parameterizing the defor-
mations of V' (resp. the trianguline deformations of (V,7)). We shall use also the
notation Xy, r for Xy, 7 and we call a trianguline deformation of (V,7T) a trianguline
deformation of (V,F).
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2.5.1. A local and infinitesimal version of Coleman’s classicity theorem

Theorem 2.5.1. — Let V be a crystalline L-representation of G, with distinct Hodge-
Tate weights and such that Homg, (V,V(-1)) = 0. Let F be a non critical refinement
of V and V4 a trianguline deformation of (V,F). Then V4 is Hodge-Tate if, and only
if, V4 is crystalline.

Proof. — Assume that V4 is Hodge-Tate, we have to show that Dy;z(V4) is crystalline
by Proposition 2.2.9. By assumption, Dyg(Va) € X Dyig(v),7 (A) for the triangulation
T of Dyig(V') induced by F, which has strictly increasing weights s; as F is non critical
and by Proposition 2.4.7. As V4 is Hodge-Tate, Dy;z(Va4) satisfies by Proposition 2.3.3
the hypothesis of Proposition 2.3.4, hence the conclusion. O

This result has interesting global consequences, some of which will be explained
in §2.6 below. It is most useful when combined with the main result of the following
paragraph, which gives a sufficient condition, d la Kisin, for a deformation to be
trianguline.

2.5.2. A criterion for a deformation of a non critically refined crystalline
representation to be trianguline. — Let D be a (p, I')-module free over R 4, we
first give below a criterion to produce a (¢,T')-submodule of rank 1 over R 4. This
part may be seen as an analogue of [46, prop. 5.3].

Lemma 2.5.2. — Let D be a (p,I')-module free over Ra, 6 : Q — A* be a continu-
ous character, and § := 6 mod m.

(i) Let M C D? be a free A-module of rank 1. Then R a[1/t|M is a (p,T)-submodule
of D[1/t] which is free of rank 1 over Ra[l/t], and a direct summand.
(ii) Same assumption as in (i), but assume moreover that

Im (M —> (D/mD)°) ¢ t(D/mD).

Then RaM is a (¢,I')-submodule of D which is free of rank 1 over R4 and a
direct summand.

(iii) Assume that k € Z is the smallest integral root of the Sen polynomial of D/mD
and let A\ € A*. Let M C Dc,ys(D)""=’\ be free of rank 1 over A such that

Fil**Y(M/mM) = 0.

Then Rt™*M is a (p,T)-submodule of D which is free of rank 1 over R4 and
a direct summand.

Proof. — The natural map

'R®QPM=RA®AM——>RAMCD
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is injective by a standard argument as (Frac(R))' = Q,. As a consequence, R 4 M
is free of rank 1 over R4. In particular, R4[1/t]M is free of rank 1 over R4[1/t],
hence a R4[1/t]M direct summand of D[1/t] as R-module by Proposition 2.2.2, and
we conclude (i) by Lemma 2.2.3 (i) and (ii). To prove (ii), it suffices by Lemma 2.2.3
(iii) to show that Im (R4M — D/mD), which is R 4/m(M/mM) by Remark 2.2.4,
is R-saturated in D/mD. But this is the assumption.

For part (iii), write M = Awv, ¢(v) = lv. Lemma 2.4.2 shows that v € t*D and
that ¥ ¢ t**1D/mD. Part (ii) above applied to M’ := t~*M concludes the proof. [

Remark 2.5.3. — When A = L is a field, a (¢,I')-module D over R4 is triangulable
over R 4 if and only if D[1/t] is triangulable over R 4[1/t] (with the obvious definition).
However, this is no longer true for a general A.

An immediate consequence of Lemma 2.5.2 (iii) is the following proposition, which
could also be proved without the help of (¢,I")-modules (see §2.3.5 for the definition
of C).

Proposition 2.5.4 (The “constant weight lemma”). — Let V be any L-representation of
Gp and A € L*. Assume that DcryS(V)""z’\ has L-dimension 1 and that its induced
Hodge filtration admits the smallest integral Hodge-Tate weight k of V' as jump. Let
A € Ob(C), N € A* a lift of A\, and V4 a deformation of V such that Dcrys(VA)“’zx
is free of rank 1 over A.

Then the Hodge filtration on Dcrys(VA)“’=)‘, has k as unique jump. In other words,
k is a constant Hodge-Tate weight of V4.

We are now able to give a criterion on a deformation V4 of a refined crystalline rep-
resentation (V, F) ensuring that it is a trianguline deformation. We need the following
definition.

Definition 2.5.5. — We say that the refinement F of V is regular if the ordering
(¢1,---,paq) of the eigenvalues of ¢ it defines has the property

(REG) for all 1 < i < d, @142 - p; is a simple eigenvalue of A%(yp).
In particular, the ¢; are distinct, and F is the unique refinement such that A*(F;) =
(A" (Derys(V))) =1+,
The next theorem is the bridge between this chapter and chapter 3.

Theorem 2.5.6. — Assume that F = {¢1,...,@4} is a non critical, reqular, refinement
of a crystalline L-representation V of dimension d. Let V4 be a deformation of V,
and assume that we are given continuous homomorphisms § = (8;)i=1,....d Q; — A*
such that for all i,

(1) Derys(A*(Va) (1 -~5,-)l‘1,1)¢=51(p)-"5*‘(p) is free of rank 1 over A.
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—t;

(ii) d;jr mod m = x~% for some t; € Z, and p; = (8;(p) mod m)p*.

Then V4 is a trianguline deformation of (V, F) whose parameter is (5,'1;""_"")1-:1,,__,(,,.
Proof. — Note that the assumptions and conclusions do not change if we replace each
6; by ;™ for m; € Z. Thus we can assume that t; = 0 for all ¢, i.e. d;r = 1 mod m.

Fix1<i<dandset W; :=A*(V)®4 A(J; - - 5i)|_r‘l‘ By assumption (ii), W;/mW;
is crystalline with smallest Hodge-Tate weight w; := k1 + - - - + k;. Moreover, by the
regularity property of F, A*(F;) = Derys(W;/mW;)#=%1%i. As F is non critical,
AY(F;) NFilY ! (Derys(Wi/mW;)) = 0. Lemma 2.5.2 (iii) shows that

t TR L Derys(Wi)#=1 (P60 D (W;)
is free of rank one over R4 and direct summand. As a consequence, if we set D :=
Diig(Va), then A*(D) = Dyjg(W;(8y - - - 8;)jr) contains a (¢, I')-submodule L; which is
free of rank 1 and direct summand as R 4-module, and such that
(40) L; = Ra(by---0;x™ ™).

Set Dy = 0. We claim that for i = 1,...,d, there exists a (¢, I')-submodule D; C D
over R4 which is free of rank i and direct summand as R g-module, and such that:

(a) D’i—l C D’i’

(b) AY(D;) = L;.

This would conclude the proof. Indeed, for each ¢ we necessarily have D;/mD; =
Fil;(D.ig(V)) by (b), (40), and the regularity of F, so (D;) is an A-triangulation of D
lifting (Fil;(Drig(V'))). Moreover, (a) and (b) imply that for i =2,...,d

L; = AY(D;) = A Y(Di—1) ®r, (Di/Di—1) = Li—1 ®r, (Di/D;_1),
and (40) forces then the parameter of the triangulation (D;) to be (§;z~%+).

We now prove the claim by induction on i. Of course, we set D; := L; C D.
Let 7 € {2,...,d} and assume that D;, D, ... have been constructed up to D;_;.
Consider the natural exact sequence of (¢, I')-modules over R 4:

(41) 0 — A"H(Di—1) ®r, (D/Di-1) — AY(D) — Qi — 0,
where Q); is defined as the cokernel of the first map. By Lemma 2.5.7 below applied
to B=Ra, M =D, P= D;_; and r = ¢ — 1, there exists a R 4-direct summand
D; := P’ C D containing D;_; and such that L; = A*(D;) if, and only if,
L; C A" Y(Di_1) ®r, (D/Dj1)

inside A*(D). If it is so, note that D; is necessarily (¢,I")-stable. Indeed, inside the
(¢,T')-module A*(D) we have

Li=L;_1®r, Di/Di_1 C Li ®r, D/D;_:
and L;, L;_; are (¢,I')-stable by definition, as well as D;_; by induction on .
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Therefore we only need to show that the image of L; in Q); is zero. Note that the
natural map A*(D) — Q; is (p,T')-equivariant. By a dévissage, it is enough to show
that any (¢, T')-homomorphism

Li®a A/m=Rr(p1 - pix™™) = Q; ®a A/m

vanishes, or better that @12 - ¢; is not an eigenvalue of ¢ on Drys(Q; ®4 A/m).
But by definition (41) these eigenvalues have the form ¢}, ¢;, - - - ¢;, for some integers
j1 < j2 <---<j;in {1,...,d} such that (j1,...,5i-1) # (1,2,...,4— 1), and we are
done by (REG). O

In the following lemma, it is understood that all tensor and exterior products are
taken over the ring B.

Lemma 2.5.7. — Let B be a commutative Ting, M a free B-module of finite type,
P C M a B-submodule which is a direct summand and free of rank r, and let
L C A™Y (M) be a B-submodule which is a direct summand and free of rank 1.
The following conditions are equivalent:
(i) LcA™(P)®@M/P,
(ii) there ezists a B-submodule P' C M containing P, which is a direct summand
in M and free of rank r + 1, such that L = A"T(P’).

If they are satisfied, the submodule P’ satisfying (ii) is unique.

Proof. — Choose a B-submodule Q C M such that P & Q = M. We have a natural
decomposition
A M) = @ A(P)eN(Q).
ij=r+1

Assume that (i) holds, that is, L C A™(P)®Q. As L is a direct summand in A"*!(M),
it is also a direct summand in A"(P)® Q. As L and A"(P) are free of rank 1, we may
write L = A"(P) ® Be for some e € @ such that Be is a direct summand in Q.
This shows (ii) where P’ = P @ Be. Conversely, it is obvious that (ii) = (i). As
P =P®(P'NQ)and (P’NQ)=A"(P)"'® L, P’ is uniquely determined by L. O

2.5.3. Properties of the deformation functor Xy r. — In fact, we can in many
cases describe quite simply Xy, r when F is non critical. The following results will
not be needed in the remaining sections, but are interesting in their own. Recall that
by definition we have a natural transformation

XV,].‘ — Xy

Proposition 2.5.8. — Assume that the eigenvalues of ¢ on Deyrys(V) are distinct. Then
Xv,F is a subfunctor of Xy and Xv r — Xv is relatively representable. Moreover,
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if F is non critical, the subfunctor Xv c.ys C Xv of crystalline deformations factors
through Xv r.

Proof. — As the eigenvalues of cp are distinct, the characters §; of the parameter ¢
of Dyig(V) associated to F satisfy 6;6; L g 2% for i # j (see Prop. 2.4.1). The first
sentence thus follows from Prop. 2.3.6, Prop. 2.3.9 using Prop. 2.3.13.

Assume that F is non critical and let V4 be a crystalline deformation of V. We
have to show that D4 := Diig(V4) admits a (necessarily unique) triangulation lifting
the one associated to F. As the ¢; are distinct, the characteristic polynomial of ¢
on Derys(D4) writes uniquely as [[,(T — A;) € A[T] with A; = ¢, mod m. As Vy is
Hodge-Tate with smallest Hodge-Tate weight k;, and as F is non critical, Lemma
2.5.2 (iv) shows that

Rt 1 Depys(Dg)P=M

is a submodule of D4 which is a direct summand as R s-module. We construct this
way by induction the required triangulation of D 4. O

Remark 2.5.9. — In the last part of the statement of Prop.2.5.8, it is necessary to
assume that F is non-critical. Indeed, let V' = Q,(1 — k) ® Q, with k > 1 an integer
and let F = (p*~1,1) be its critical refinement. Consider the filtered p-module

N = Ae; @ Aes, A= Qp[s]’

whose Hodge-Tate weights are 0 and k — 1, with Fil*"!(N) = Ae;, and with the
following A-linear y-action: @(e3) = ez and ¢(v) = Av where v = e; + ez and
A = p*~1(1 + €) € A*. Then N is weakly admissible, hence it is the Dgys of a
crystalline deformation V4 of V, but this deformation does not belong to Xy, r(A):
the Hodge filtration induced on Av C N admits the two jumps 0 and k¥ — 1. This
example also shows that the assumption of non-criticality of F is necessary in the
statement of Theorem 2.5.6.

The main theorem concerning non critical refinements is then the following, which
may be viewed as a d-dimensional generalization of some computations of Kisin in
(73, §7] (giving a different proof of his results when d = 2). Recall that (V,F) is a
refined crystalline L-representation of dimension d.

Theorem 2.5.10. — Assume that F is non critical, that <p,~<pj_1 ¢ {1,p71} ifi <j, and
that Homg,(V,V(-1)) = 0. Then Xv,r is formally smooth of dimension d(dT'H) +n,
where n = dimg (Endg, (V')). Moreover, the parameter map induces an ezact sequence
of L-vector spaces:

0 — Xv,erys(L[e]) — Xv,#(L[e]) — Hom(Z3, L%) — 0.
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Proof. — Let (4;) be the parameter of (V, F). If i # j, then 6,6;1 ¢ xZ since ; # ;.
Moreover if i < j, then k; < k; and &;6;' & xz" as ¢; # p~'y; by assumption.
Except for the dimension assertion, the result follows from Propositions 2.3.10, 2.4.7,
2.3.4 and 2.5.8. It only remains to show that

(12) dimy (Xvepe(Lle])) = X420

One way to prove this equality is to reduce to a linear algebra problem via the equiva-
lence of category between crystalline representations and filtered p-modules proved by
Colmez and Fontaine. We give another proof based on results of Bloch and Kato [23]
(actually, there would be a third one, based on Remark 2.3.12 and Prop. 2.5.8).

If U is any crystalline L-representation, we denote by H}(Gp,U) C H'(Gp,U) the
subset parameterizing extensions of 1 by U which are crystalline (following Bloch-Kato
[23]). By a classical result of Fontaine, the category of crystalline representations of
G, is stable by subquotients, so H}(G,,7 U) is actually an L-subvector space. For the
same reason, we have a natural isomorphism

Xv,erys(Lle]) — H}(Gp,End(V)).

As a consequence of their exponential map, Bloch and Kato show ([23, Cor. 3.8.4])
that for any U:

(43)  dimp(H}(Gp,U)) = dimy(H*(Gp,U)) + dimy (Dpr(U)/Fil’(Dpr(U))),
which shows (42) for U = End (V). O

2.6. Some remarks on global applications

We now derive some consequences of these results in a global situation.

Let V be a finite dimensional L-vector space equipped with a geometric continuous
representation of Gal(Q/Q) and assume that V, := lc, is crystalline, with distinct
Hodge-Tate weights and distinct Frobenius eigenvalues. Let Xy : C — Ens (resp. Xy, )
denote the deformation functor of the representation V' (resp. of the Gp-representation
Vp), as in § 2.3.6.

Let us choose a refinement F of V,,, and consider the trianguline deformation func-
tor Xy, 7 of (V;,F), it is a subfunctor of Xy, by Prop. 2.5.8. Let Xy, denote the
subfunctor of Xy consisting of the deformations whose restriction at p is in Xy,
(that is, F-trianguline), and whose restriction at an inertia group at each | # p is
constant (this is the usual condition f, for instance these deformations are unrami-
fied at [ if V' is, see § 7.6 for a more complete discussion). By Prop. 2.3.9, Xy r is
prorepresentable by a complete local noetherian L-algebra when V has no nontrival
L-endomorphism. Theorems 2.5.1 and 2.5.10 imply:
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Corollary 2.6.1. — If F is non critical, then there is a natural exact sequence
0 — H}(Q,ad(V)) — Xv,#(L[e]) — Hom(Z}, L).

In particular, if H}(Q, ad(V)) = 0 (which is conjectured to be the case if V is abso-
lutely irreducible), then dimp(Xv »(L[e])) < dimp (V).

In this setting, the question of the determination of dimy,(Xv,z(L[e])) seems to be
quite subtle, even conjecturally. Among many other things, it is linked to the local
dimension of the eigenvarieties of GL4, which are still quite mysterious (see the work
of Ash-Stevens [4] and of M. Emerton [53]).

However, there are similar questions for which the theory of p-adic families of
automorphic forms suggests a nice answer (26). As an example, let us consider now an
analogous case where V' is an irreducible, d-dimensional, geometric L-representation of
Gal(E/E), E/Q a quadratic imaginary field, satisfying V®* ~ V(d — 1). Assume that
p = vv’ splits in E, fix an identification G, — Gal(E,/E,), and assume that V,, :=
(Vig,,F) is crystalline and provided with a refinement F, with distinct Hodge-Tate
weights. Let Xv,  denote the subfunctor of the full deformation functor of V' consisting
of deformations whose restriction at v is in Xy, r, satisfying V4®* = Va(d — 1) and
the f condition outside p.

Conjecture. — Assume that F is non critical, then Xy, r is prorepresented by
Spf(L[[X1,...,X4]])

and « is an isomorphism.

In the subsequent paragraph § 7.6, we will give more details about the proofs of
the facts alluded here and we will explain how we can deduce this conjecture in many
cases assuming the conjectured vanishing of H}(E, ad(V')), and using freely the results
predicted by Langlands philosophy on the correspondence between automorphic forms
for suitable unitary groups G (in d variables) attached to the quadratic extension E/Q.
As we will explain, we can even get an “R = T statement for Spf(R) = Xz and T the
completion of a well chosen eigenvariety of G at the point corresponding to (V,F).

To sum up, the eigenvariety of G at irreducible, classical, non-critical points should
be smooth, and neatly related to deformation theory. By contrast, a much more com-
plicated (but interesting) situation is expected at reducible, critical points, and this
is the main object of subsequent sections of this book.

(26) We consider here a simplified setting, an appropriate condition on the Mumford-Tate group of
V should suffice in general.
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CHAPTER 3

GENERALIZATION OF A RESULT OF KISIN
ON CRYSTALLINE PERIODS

3.1. Introduction

In this section, we solve, generalizing earlier results of Kisin, some questions of
“Fontaine’s theory in families” concerning the continuation of crystalline periods.

Let X be a reduced rigid analytic space over (@, and M a family of p-adic repre-
sentations of G, = Gal(@p /Qp) over X, that is, in this section, a coherent torsion-free
sheaf of Ox-modules with a continuous action of the group G,. Note that we do not
assume that M is locally free. () For each point z € X of residue field k(z) the k(z)-
vector space M is then a continuous representation of Gy, to which we can apply
the p-adic Hodge theory of Tate and Sen and all its generalizations by Fontaine. The
questions concerning “Hodge-Tate theory in families” were completely solved by Sen:
in particular he shows in our context that there exist d analytic functions k1, ..., kq
on X, where d is the generic rank of M, such that x1(z),..., kq(z) are the Hodge-
Tate-Sen weights of M, for a Zariski-dense open set of X. We shall assume in this
introduction, to simplify the discussion, that k; = 0. We shall also assume that in our
family the other weight functions ks, ..., k4 move widely (in a technical sense we do
not want to make precise here, but see 3.3.2 below), as it happens for families sup-
ported by eigenvarieties. In particular, the families we work with are quite different
from the families with constant weights studied by Berger and Colmez.

Suppose we know that M, is crystalline with positive Hodge-Tate weights for a
Zariski dense subset Z of points of X and that for all z € Z it has a crystalline period,
that is, an eigenvector of the crystalline Frobenius ¢ with eigenvalue F'(z), F being a
fixed rigid analytic function on X. In other words, assume that Deyys(M,)¢=F() is
non zero for z € Z. Can we deduce from this that

(1) Indeed, we will apply the results of this section to modules associated to pseudocharacters in the
neighborhood of a reducible point, and it is one of the main results of Section 1 that they do not in
general come from representations over free modules.
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(1) for each z in X, M_, has a crystalline period, which is moreover an eigenvector
for ¢ with eigenvalue F(z)?

Or, more generally, that

(2) for each € X, and Spec A a thickening of z, (i.e. A an artinian quotient of the
rigid analytic local ring O of z at X) M has a non-torsion crystalline period
over A which is an eigenvector for ¢ with eigenvalue the image F' of F in A ? In
other words, is it true that Derys(M ® A)‘P=F has a free A-submodule of rank
one?

Kisin was the first to deal with those questions and most of his works in [73] is
an attempt to answer them in the case where M is a free Ox-module. Under this
freeness assumption (plus some mild technical hypothesis on Z that we will not state
nor mention further in this introduction), he proves question (1) and also many cases
of question (2), although these results are scattered along his paper and sometimes
not explicitly stated. If we collect them all, we get that Kisin proved that question
(2) has a positive answer (when M is free) for those x that satisfy two conditions:

(a) The representation M is indecomposable,
(b) Derys(M:, )#=F(®) has dimension 1.

Condition (b) is probably necessary. But condition (a) is not, and appears because
of the use by Kisin of some universal deformation arguments. In § 3.3, using mostly
arguments of Kisin, but simplifying and reordering them, we prove that when M is a
locally free module, question (2) has a positive answer for all z satisfying the condition
(b) above. We hope that our redaction may clarify the beautiful and important results
of Kisin.

But our main concern here is to generalize those results to the case of an arbitrary
torsion-free coherent sheaf M. We are able to prove that question (2) (hence also
question (1)) still has a positive answer in this case, provided that x satisfies hypothesis
(b) above. This is done in § 3.4.

Let us now explain the idea of the proof: basically we do a reduction to the case
where M is locally free. To do this we use a rigid analytic version of a “flatification”
result of Gruson-Raynaud which gives us a blow-up X’ of X such that the strict
transform M’ of M on X’ is locally free. Hence we know the (positive) answers to
questions (1) and (2) for M’ and the problem is to “descend” them to M. This is the
aim of §3.2.3.

For this the difficulty is twofold. The first difficulty is that if z’ is a point of X’
above z (let us say to fix ideas with the same residue field, since a field extension here
would not harm) then H;, is not isomorphic to M, but to a quotient of it. Since the
functor Derys(—)¥=F is only left-exact, the positive answer to question (1) for 2’ does
not imply directly the positive answer for z—and of course, neither for question (2).
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The second difficulty arises only when dealing with question (2): it is not possible in
general to lift the thickening Spec (A) of z in X to a thickening of z’ in X', whatever
z' above z we may choose (2). So the direct strategy of descending a positive answer
to question (2) from a Spec (A) in X’ to Spec (A4) in X can not work. To circumvent
the second difficulty, we use a lemma of Chevalley to construct a suitable thickening
Spec (A’) of Spec (A) in X', and then some rather involved arguments of lengths to
deal with the first one as well as the difference between Spec (A’) and Spec (A4). As
Chevalley’s lemma, requires to work at the level of complete noetherian ring, and as we
have to use rigid analytic local rings when dealing with interpolation arguments, we
need also at some step of the proof to compare various diagrams with their completion.
For all these reasons, the total argument in § 3.2.3 is rather long.

Finally let us say that the idea of using a blow-up was already present in Kisin’s
argument in the free case (®), and is still present in the locally free case in § 3.3. This is
why our descent result of § 3.2.3 is used twice, once in § 3.3 and once in § 3.4. However,
were it to be used only in the locally free case, the descent method could be much
simpler 4,

3.2. A formal result on descent by blow-up

3.2.1. Notations. — Let X be a reduced, separated, rigid analytic space over Q,,
Ox (or simply O) its structural sheaf, and let M be a coherent O-module on X.
For z a point of X, we shall note O, the rigid analytic local ring of X at x, m, its
maximal ideal, and k(z) = O/m, its residue field. Moreover, we denote by M, the
rigid analytic germ of M at z, that is M; = M(U) ®ow) O, where U is any open
affinoid containing z, and by M, := M, ®o_ k(x) the fiber of M at z.

Let G be a topological group and assume that M is equipped with a continuous
O-linear action of G. This means that for each open affinoid U C X, we have a
continuous morphism G — Aut o(y)(M(U)), whose formation is compatible with
the restriction to any open affinoid V C U. For z a point of X, M, (resp. M) is
then a continuous O,[G]-module (resp. k(z)[G]-module) in a natural way.

(2) The reader may convince himself of this assertion by looking at the case where X =
Spec L[[T2,T3]] is the cusp and X’ = Spec (L[[T]]) the blow up of X at its maximal ideal (that
is, its normalization). The principal ideal T?L[[T'2,T3]] has not the form L[[T2,T3]] N T"L[[T]] for
n > 0, hence A = L[[T?,T3]]/(T?) is a counter-example.

(3) There Kisin does not use the blow-up to make M free, since it already is, but instead to make an
ideal of crystalline periods locally principal. He does not prove a direct descent result as ours, using
instead a comparison of universal deformation rings.

(4) The first difficulty above vanishes, since in that case the strict transform of M is simply its
pull-back, and the second may be dealt with much more easily.
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Remark 3.2.1. — (On torsion free modules) In this section and the subsequent ones,
we will sometimes have to work with torsion free modules. Recall that a module M
over a reduced ring A is said to be torsion free if the natural map M — M ®4 K is
injective where K = Frac(A) is the total fraction ring of A (see §1.3.5).

If X is a reduced affinoid and M a coherent Ox-module, then M(X) is torsion
free over O(X) if, and only if, M, is torsion free over O, for all z € X. Indeed, this
follows at once from the faithful flatness of the maps O(X), — O, and the following
lemma.

Lemma 3.2.2. — Let A be a reduced noetherian ring and M an A-module of finite
type. The following properties are equivalent:
(i) M is torsion free over A,
(ii) M is a submodule of a K-module,
(iii) M is a submodule of a finite free A-module,
(iv) M, is torsion free over A, for all x € Specmax(A),
(v) there is a faithfully flat A-algebra B such that M ® 4 B is a B-submodule of a
finite free B-module.

Proof. — 1t is clear that (i), (ii) and (iii) are equivalent (for (ii) = (iii) note that any
K-module embeds into a free K-module as K is a finite product of fields). The equiv-
alence between (i) and (iv) follows now from the injection M — [],cspecmaxa Mz»
and the fact that Frac(A;) is a factor ring of K: namely the product of the fraction
fields of the irreducible component of Spec(A) containing z.

Note that condition (iii) is equivalent to ask that the natural map M —
Hom 4 (Hom 4 (M, A), A) is injective. But this can be checked after any faithfully flat
extension B of A as the formation of the Hom’s commute with any flat base change
when the source is finitely presented, thus (i) & (v). O

3.2.2. The left-exact functor D. — Fix a point z € X and let FL(O,) denote the
category of finite lenght O -modules. Any such O,-module is a finite dimensional Q-
vector-space, hence a topological Q,-vector-space in a canonical way. Let FLg(O;) be
the category of finite length O, -modules equipped with a continuous O,-linear action
of G and fix
D :FLs(0O,) — FL(O,)

an O,-linear left-exact functor. If M is an object of FL(O;,), we shall denote by I(M)
its length as an O,-module. If an object M € FLg(O,) is annihilated by the maximal
ideal of O, then so is D(M), and I(M) = dimy,)(D(M)).

Here are some interesting examples:

(i) Let G:=Gp = Gal(@p /Qp) and let B be any topological Q,-algebra equipped

with a continuous action of Gp. Assume that B is G,-regular in the sense of
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Fontaine [1, Exposé III, §1.4]. For @ any Oz-module of finite length equipped
with a continuous Gp-action (hence a finite dimensional Q,-representation of
Gp), we let

D(Q) := (Q ®q, B)®.
The functor D satisfies our assumptions by loc. cit.
(ii) Fix F € O}. For any Q as above, then

D(Q) = D}ys(Q)*~F = {v € (Q ®q, Bdys)®", ¢(v) = Fu},

where Bj,‘rys is the subring of By defined by Fontaine in [1, Exposé II, §2.3],
satisfies again our assumptions.

In the sequel, we will be mainly interested in the case (ii) above.

3.2.3. Statement of the result. — Assume that M, is torsion free over O, (recall
that O, is reduced). Let m : X’ — X be a proper and birational morphism of rigid
spaces with X’ reduced. Here birational morphism means that 7 is a morphism such
that for some coherent sheaf of ideals H C Oy,

o U := X—V(H) is Zariski dense in X (where V (H) is the closed subspace defined

by H),
e 7 induces an isomorphism 7~} (U) — U,
e and 7~} (U) C X’ is Zariski dense in X'.

As an important example, we may take for m the blow-up ® of H. Let M’ be the
strict transform of M by this morphism (see below).

Proposition 3.2.3. — Assume that for all 2’ € m=1(z) and for every ideal I' of Oy of
cofinite length, we have
(DM, @ Opr JT)) = 1(Oy /T').
Assume moreover that
dimy() (D(My)) < 1
Then we also have, for every ideal I of cofinite length of O,:
DMz ® Og/1)) = IO /).

Remark 3.2.4. — (i) More precisely, we shall show that Proposition 3.2.3 holds
when we replace the assumption on /Vis by the following slightly more gen-
eral one: for any k(z)[G]-quotient U of M, dimy(5)(D(U)) < 1 (see the proof
of Lemma 3.2.9, which is the only place where the assumption is used).

(5) We refer to [95, §5.1] for the basics on blow-ups and to [48, §2.3, §4.1] for the notion of relative
Spec and blow-ups in the context of rigid geometry.
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(if) As will be clear, the analogue of Proposition 3.2.3 in the context of schemes
instead of rigid analytic spaces would hold by the same proof.

This whole subsection is devoted to the proof of the proposition. Let us fix a
coherent sheaf of ideals H C Ox such that U := X — V(H) is Zariski dense in X,
that 7 is an isomorphism over U, and that 7—}(U) C X’ is Zariski dense in X’. The
strict transform M’ of a coherent O x-module M is defined as follows: it is a coherent
Ox:-module which is locally the quotient of the coherent sheaf 7* M by its submodule
of sections whose support is in the fiber of = over V(H) C X. In other words, if H’
is a coherent sheaf of ideals of Ox/ defining the closed subset 7~1(V(H)) C X', then
M’ is the quotient of m* M by its H'*-torsion. Note that it depends on the choice of
H in general. This description makes clear that the action of G on the Ox-module
M defines an Ox:-linear continuous action of G on M’, and that the natural map
™M — M' is G-equivariant. A useful fact about the notion of strict transform
is that the subsheaf of H'*-torsion of 7*M is precisely the kernel of the natural
morphism ® 7*M — j,(7*Mz-1(v)), where j is the open immersion of 7 ~1(U)
into X’. As a simple application, if M is torsion free then M’ is torsion free as well
and does not depend on the choice of H as above.

Since M, is torsion free over O, it can be embedded in a free of finite rank
O,-module, so we can choose an injection

i: My — OF.

Fix ' € #~1(z); i induces a morphism i’ : M;®0, O —> OF,. We check easily using
the aforementionned useful fact that the kernel of ¢’ is the submodule of M, ®p, Oy
whose elements are killed by a power of H_, so the image of ¢’ is M/,. We thus have
a commutative diagram of O,-modules (and even of O,-modules for the half right of
the diagram)

or .

(6) We are grateful to Brian Conrad for pointing this to us. Here is the general statement: if S is a
rigid space, I C Og a coherent sheaf of ideals, j : U := S—V(I) < S the inclusion of the complement
of V(I) and F a coherent Og-module, then the I°°-torsion of F is the kernel of the natural map
F — j«Fjy. Indeed, we may assume that S is affinoid. Set F' = F(S) and take m € F such that
ms =0 € F® O for all s € U; we want to show that m is killed by a power of I(S). The faithfull
flatness of O(S)s — O, shows that the closed points of the support of m lie in V(I(S)), and we
conclude as O(S) is a Jacobson ring.
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We call O, (resp. 621) the completion of the local ring O, (resp of O,) for the m-
adic (resp. my/-adic) topology, and M, =M, R0, 0, (resp. Mw, =M, Qo,, 611)
the completion of M, (resp. of My,).

As O, — O is a local morphism, it is continuous for the m -adic topology at
the source and the m,/-adic topology at the goal. This is also true for any morphism
form a finite type O, -module to a finite type O,-module. Hence such a morphism
can be extended in a unique continuous way to their completion. We get this way
morphisms O — Oz/ and

M:v — M, ®o, Oy = (M:c Ro, Oz’) ®Ozr 61’ = M\z ®61 6:::’

the last equality being obtained by applying twice the transitivity of the tensor prod-
uct. We thus have a commutative diagram

— —~

(45) My —= M85 Ou — I,
or or,.

The injectivity of the vertical maps comes from the injectivity of the analogue maps
in (44) and the flatness of (/9\1. over O, and of Z’);/ over O,s. The surjectivity of the
upright horizontal map comes directly from the surjectivity of the analogue map
from (44).
To simplify notations, we shall note A the local ring O, k its residue field and M
the A-module M,. We set
7= [ o

z’enm—1(x)
and we will see it with the product topology. We call M the completion of M, that is
also M ® 4 A. By definition, it is M,. We set

M\, = H .A//t\;/ .

' en—1(x)
Note that M" is an A’-module.
Lemma 3.2.5. — For each open (hence cofinite length) ideal J of A',

(DM TM)) = 1(A)T).

Proof — Since J' is open, A /J J' is a finite product of finite length rings of the form
0, /J For each such 1, J’ is open in O,/ so the ideal Ji = J’ N Oy of Oy satisfies

Oy I = zi ./ Ji. By the hypothesis of the proposition we are proving, we thus have
l(D(]T/I\;,‘ / Z’]\?;J) = l((/’)\m; / :IZ). The lemma then results from the additivity of the
functor D and of 1. O
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Lemma 3.2.6. — ([73, Lemma 10.7)) () The morphism A — A’ is injective.

By (45), we have a commutative diagram

(46) ’KJ\/}—@;D i

N

A\n C A\/n

The injectivity of the vertical maps is obvious from (45) and the injectivity of the
horizontal lower map is Lemma 3.2.6. The injectivity of the upper horizontal map
follows.

The following lemma is an application of Chevalley’s Theorem (cf. [83 ex 8.6])
which we recall: let A be a complete noetherian local ring, M a finite type A—module
T a cofinite length ideal of A and M, a decreasing, exhaustlve (that is Np M, = (0))
sequence of submodules of M. Then for n big enough, M c IM.

Now we go back to the proof of Proposition 3.2.3. Let I be a cofinite length ideal
of A, and note I C A its completion. We recall also that M C M by diagram (46).

Lemma 3.2.7. — There exist a cofinite length ideal JcT of A and an open ideal J
of A’ such that

() J=JnA,

1) (J'M'NnM)cCIM.

Proof. — We let J/, := ([eren-1(z) M) C A'. By Krull’s theorem, N, J, = 0 and
An(J. M) = 0.

We set J,, := =J] J! N A, the intersection belng in 4. Slmllarly, we set M, (:I\,'IM\ N
M the intersection being in M’. M Then ﬂnJ =0 and N, M,, =0.

By Chevalley’s theorem, applied twice, once to the finite module M over the local
complete noetherian ring X and once to A as a module over itself, we know that for
n big enough, M C IM and J cl.

We fix such an n. We set J := J It is clear that J is of cofinite length smce it
contains m?. We thus have by construction JcI,J= J,’lﬂA and (JT’LM ! )ﬂM c IM.

However, j,’l is not open. If F is a finite subset of 7~ 1(z), we let f}; be the ideal
[Terer My X [laren-1(2)-F Oy of A'. Tt is clear that J!, = NpJ}, and that the J}, are
open ideals of A’. Because A/.J and M / M,, are artinian, there is a finite F such that
f}; NA=Jand f}M’ nM= Mn. We set J/ equal to this :I\'n and we are done. [

(7) As stated there, the lemma assumes that 7 is a blow-up, but the proof only uses that 7 is proper
and birational.

ASTERISQUE 324



3.2. A FORMAL RESULT ON DESCENT BY BLOW-UP 101

By (i) of this lemma, the morphism of A[G]-modules M — M’ induces a morphism
of (A/ J }{G]-modules
f:M/TM — M /TM.
Indeed, the image of JM c M in M is included in JM’ which is included in J'M".
We shall denote by K, C and @ the kernel, cokernel and image of f, respectively.
Thus we have two exact sequences of (A/J)[G]-modules:

(47) 0—K— M/JM—Q—0

(48) O—»Q—»ﬁ'/ﬁﬁ’—»c——ﬂo

Note that the five modules involved here are all of finite length as A\/ J-modules.
Lemma 3.2.8. — As an K[G]-module, C is a quotient of (]/\4\/.71/\4\) ®;f(2’/f’)/(2/f)

Proof. — This is formal. Indeed, we have a commutative diagram, where the vertical
arrows are surjective:

8

M Mo, A M

I |

M/IM —>Me; AT M| J M
\f/

This diagram makes clear that h is surjective, since s is. Hence the cokernel C of

f is a quotient of the cokernel of
g: M/TM — Me; A')J = (M/TM)®; AT
aE(\i tllis\ cokernil ie/;\, by iigEt—exactness of the tensor product by M / JM , the module
(M/IM)®4(A'/J)/(A]T). ]
We now prove an abstract lemma concerning the left-exact functor D and length

of modules.

Lemma 3.2.9. — Let V be an A-module of finite length with a continuous action of
G, such that
I(D((V®K)»*®)<1.

Let N be an A-module of finite length® and 7 : V @4 N — Q a surjective A[G]-
linear map.

(i) U(D(Q)) < UN).

(8) We view it as a G-module for the trivial action.
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(ii) Assume that equality holds in (i), and that there is a surjective map of A-modules
N — N’ such that the natural induced surjection V@as N — V ®4 N’ factors
through . Then L(D(V @ 4 N')) = I(N').

(iii) Let J be a cofinite length ideal of A. If I(D(V/JV)) = I(A/J), then for each
ideal J' > J, (D(V/J'V)) = I(A]J").

Proof. — First remark that the hypothesis I(D((V ® k)*) < 1 implies, by left exact-
ness of D, that I{(D(U)) < 1 for any k[G]-module U which is a subquotient of V ® k.
Indeed, U is a k(z)[G]-submodule of (V ® k)%, so

UDU)) < UDU%)) <UD((V ® k)*)) < 1.

Let us prove (i). There is a filtration No C --- C N; C --+ C Nyvy = N of N such
that N;/N;_1 ~ k. We denote by VN, the image of V ®4 N; into V ®4 N and by
Q; the image of VN, in Q. It is clear that VN;/V N;_; is a quotient of V ® k, and
that Q;/Q;—1 is a quotient of V.N;/V N;_1, hence we have I(D(Q;/Qi—1)) < 1 by the
remark beginning the proof. By left exactness of D, this proves (i). Note also that if
I(D(Q)) = I(N), all the inequalities above have to be equalities, so that {(D(Q;)) = ¢
for each 3.

Let us prove (ii). In the proof of (i) above, we can certainly choose the N; such that
one of them, say Ny, is the kernel of the surjection N — N’. Then k = [(N') —I(N).
We have an exact sequence 0 — VN, — V® N — V ® N’ — 0, hence (using
the hypothesis) an exact sequence

0—Qy—Q—>VRN —0.

Because D is left exact, we have [(D(V®N')) > I(D(Q)) —1(D(Qx)). But by hypoth-
esis, we have [(D(Q)) = I(N), which implies by the remark at the end of the proof of
(i) that I(D(Qk)) = k. Hence

I(D(V @ N')) > I(N) — k = I(N) — (I(N) — [(N")) = [(N").

The other equality follows from (i), hence I(D(V ® N')) = [(N’).
The assertion (iii) is a special case of (ii): apply (ii) to N=A/J,Q =V ®4 N =
V/JV,n=1Idand N' = A/J'. O

Going back to the proof of the Proposition 3.2.3 we get the following lemma.

Lemma 3.2.10. — We have
(i) UD(C)) < UA/T) - UALT),
(i) UD(Q)) = UA/T),

A~ ~ o~

(iii) ((D(M/IM)) = I(A/]).
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Proof. — Lemma 3.2.8 tells us that C is a quotient of the module
(M/TM) @z (A/7)/(4/9).

We now apply the point (i) of Lemma 3.2.9 to V = IT/I\/fJ\/J\ and N = (4'/J")/(A)J).
We note that V ® 2~ k, that is M® 2 k = M ®4 k, satisfies the hypothesis of Lemma
3.2.9 by hypothesis. So [(D(C)) < I(D(N)), hence (i).

To prove (ii) note that by the exact sequence (48),

(D@) = UDMM'/TH)~UD(O))
> (D(M'/TM")) = WA /T +1(A]T), by ().
Since l(D(J/\l\’/f’]\?’)) =1(A"/J) by the Lemma 3.2.5 we get
(D(Q)) > I(A/]).

To get the other inequality, recall that @ is by construction a quotient of M / JM =
J/\J\® A/J, so by point (i) of Lemma 3.2.9 we have [(D(Q)) < l(A/J)

Let us prove (iii). Assertion (ii) of Lemma 327 tells that M / M — M /I M
factors through the canonical surjectlon M / M — Q We apply point (ii) of
Lemma 3.2.9 to Q, with V' = M/JM, N = A/J, N' = A/I. This is possible because
I(D(Q)) = I(N) by (ii) above, and that gives us I{(D(V ® N’)) = I(N'), which is
(iii). |

Now recall that since I is of cofinite length, A/I ~ A/T and M/IM ~ M /m .
Hence by (iii) of Lemma 3.2.10 above,

I(D(M/IM)) = I(A/I).

The proof of Proposition 3.2.3 is complete.

3.3. Direct generalization of a result of Kisin

3.3.1. Notations and definitions. — We keep the general notations of para-
graph 3.2.1. We fix p a prime number and set

Gy = Gal(Q,/Q,).

Recall that a subset Z C X is said to be Zariski-dense if the only analytic subset
of X containing Z is X,eq itself. We shall need below some arguments involving the
notion of irreducible component of a rigid analytic space, for which we refer to [47].

We will say that a subset Z C X accumulates at x € X, or that = is an accumulation
point of Z, if there is a basis of affinoid neighborhoods U of = such that UNZ is Zariski-
dense in U. We say moreover that a subset Z C X is an accumulation subset if for
any z € Z then Z accumulates at z.
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We shall use the notation X (Q,) as a shortcut for the union of the X (K) for all
K cC @p finite over Q. By a slight abuse of language, we shall sometimes say that a
subset Z C X (@p) is Zariski-dense, or accumulates at some point. By this we shall
always mean that the subset |Z| C X consisting of the underlying closed points of Z
has this property.

3.3.2. Hypotheses. — We assume that we are given a couple of functions (F, k) €
O(X)* x O(X), and a Zariski-dense subset Z C X satisfying the following conditions.

(CRYS) For z € Z, M, is a crystalline representation of G, whose smallest Hodge-Tate
weight is k(z) € Z, and that satisfies DC,YS(H,)<P=P”(’)F (=) £ 0.
(HT) For any non-negative integer C, if Z¢ denotes the subset of z € Z such that the
Hodge-Tate weights of M, other than x(z) are bigger that x(z) + C, then Z¢
accumulates at any point of Z.

Remark 3.3.1. — The assumption (HT) together with the Zariski-density of Z in X
imply that Z accumulates at each z € Z. This stronger density condition on Z,
introduced in [37] under the terminology “Z is very Zariski-dense in X”, turns out to
be rather well-behaved and allows to avoid some pathological Zariski-dense subsets. ()

For some technical reasons, we shall also need to know that:
(*) There exists a continuous character Z, — O(X )* whose derivative at 1 is the

map ~ and whose evaluation at any point z € Z is the elevation to the x(z)-th
power.

Condition (*) allows us to define by composition with the cyclotomic character x
a continuous character

¥:Gp = 2y — O(X)"

whose evaluation of at any point z € Z is then the x(z)-th power of the cyclotomic
character (whence crystalline).

Definition 3.3.2. — We shall often denote by k : G, — O(X)* the character 9
defined above, and if N is any sheaf of O[Gp]-modules on X, we will also denote by
N (k) the O-module N whose Gp-action is twisted by the character 1.

(9) As an exercise, the reader can check that there are Zariski-dense subsets of A2 whose intersection
with any affinoid subdomain V C A2 is not Zariski-dense in V. However, if Z is a very Zariski dense
subset of a rigid space X, then for any irreducible component T of X there is an open affinoid of T'
in which Z is Zariski-dense.
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3.3.3. The finite slope subspace Xf;. — The arguments in this part will follow
closely Kisin’s paper [73, §5]. Under the extra assumption that M is a free Ox-
module, Kisin defines in [73, Prop. 5.4] a canonical Zariski closed subspace

st CX,

that he calls “the finite slope subspace”, which is attached to the Ox-module M(k)
and the function F' € O(X)*. The properties of X, are rather technical and we shall
not repeat them here (see [73, Prop. 5.4]).

Under the weaker assumption that M is locally free, we claim that there exists a
unique Zariski closed subspace Y C X such that for any admissible open U C X on
which M is free we have Y N U = Uy;, where Uy, is the finite slope subspace of U
attached as above to (M(k)|u, Fjy). As X is admissibly covered by such admissible
open subspaces, Y is unique if it exists. For the same reason, Y exists if and only if
for any pair of admissible open U,V C X on which M is free, we have

Ups NV = (UNV)s,

Replacing V by U NV, we may assume that V C U, and then this equality follows
from the last assertion of [73, Prop. 5.4] applied to the (flat) open immersion V — U.
This shows the existence of Y. When M is free then Y = X, by definition, hence it
is harmless to set X, := Y in the general case as well. Our first aim will be to show
that X, = X.

Theorem 3.3.3. — Assume M is locally free.
(i) For allz € X, then D} (M. (x()))?=F®) is non zero. Moreover, X;, = X.

crys
——S8

(i) Let z € X and assume that D (M, (k(2)))¥=F@ has k(z)-dimension 1.

Then for all ideal I of cofinite length of Oy, D, (Mz/IM)(K))?=F is free
of rank 1 over Oy/1.

Remark 3.3.4. — Part (i) of this theorem is a combination of results of Kisin in [73].
Moreover, he proved loc. cit. some cases of part (ii), essentially the cases where M, is
an indecomposable k(z)[Gp]-module (although it is not stated explicitly, this is done
during the proof of Proposition 10.6 of [73], page 444 and 445). The proof we give
here simplifies a bit some arguments of [73, section 8] and avoids all use of universal
deformation rings, using some length arguments and our lemma of descent by blow-up
instead. It also paves the way for the proof of Theorem 3.4.1 below.

Proof. — By replacing M by M(k), we may assume that x = 0. Let
TQ(T) € O(X)[T]

be the Sen polynomial of M (see [108]), whose roots at z € X are the generalized
Hodge-Tate weights of M,. Let W C X denote the subset consisting of the points
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z € X such that the Sen polynomial of M, has 0 as unique root in the integers N
(and which is a simple root).

Lemma 3.3.5. — For each admissible open U of X, W NU 1is Zariski-dense in U.

Proof. — For each k > 0, and U C X admissible open, let Uy denotes the (reduced)
zero locus of Q(k) in U, so
WnU=U-J U
k>0
Let T be a closed analytic subset of U such that U = T'U |Jg>q Ux. Let T be any
irreducible component of U. If T ¢ T, then T C Uy, for some k—by [73, Lemma 5.7].
Let T” be an irreducible component of X such that T N U D T, then T C X,
which is not possible by (HT) applied to C = k + 1. Hence T' = U, which proves the
lemma. O

To prove that Xy, = X it suffices to show (as Kisin does to prove his Theorem
6.3) that

Lemma 3.3.6. — The set {x € W, DZ,  (M;)?=F(®) +£ 0} is Zariski-dense in X.

crys

Indeed, by Tate’s computation of the cohomology of C,(¢) for ¢ € Z, the natural
map
AA AA G
Dfr(Mz) — (M, ®q, Cp)""
is an isomorphism between k(x)-vector-spaces of dimension 1 when z € W. In partic-
ular, if z is in the subset of Lemma 3.3.6, the natural injection

Dg-rys(ﬂm)w:F(z) —_— DIJSR(—Mx)
is an isomorphism, hence z € Xy;.

Proof. — Let us fix first some z € Z and choose an open affinoid U C X containing
z which is small enough so that M is free over U, U is F-small ([73, (5.2)]), and such
that Z is Zariski-dense in U (it exists by (HT)). Assumption (HT) implies then that
Zec NU is Zariski-dense in U for any C.

We now apply [73, Prop. 5.14] and its corollary [73, Cor 5.15] to R := O(U), M :=
My, I:=ZNU, R; := k(i) and It := Zy sup,, |F|+1- Note that we just checked condi-
tion (3) there (that is, Ij is Zariski-dense in U) and that condition (2) follows from our
assumption (ii). Moreover, condition (1) follows from (CRYS) and the weak admis-

sibility of Derys(My), & € I, applied to the filtered ¢-submodule DF (M,)*=F (@),

crys

As a consequence, [73, cor. 5.15] tells that for all z € U, D;ys(ﬂz)“’:F (=) £ 0. We
conclude the proof by Lemma 3.3.5. O

Applying now [73, cor. 5.16], we first get the point (i) of our Theorem 3.3.3.
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Remark 3.3.7. — (i) We note the extreme indirectness of this method of proof
(which is entirely Kisin’s): to prove that D (M)?=F (=) £ 0 for every z € X,
knowing that this is true for the points of Z, we use the closed set Xy,, which
by definition contains the points satisfying this properties provided that they
are in the set W - in particular, not in Z!

(ii) The proof of Lemma 3.3.6 shows that if X is an affinoid space, F-small, on
which M is free, then in the proof of point (i) of Theorem 3.3.3 condition (HT)
may be replaced by the weaker condition

(HT) : for every non negative C, Z¢ is Zariski-dense in X.

We now prove point (i) of our Theorem 3.3.3. Let us fix some z € X (but not
necessarily in Z) and choose an F-small open affinoid neighborhood U of z such
that M is free over U. As U C X = Xjy,, by the corollary loc. cit. we get that
D}, (M(U))¥=F is generically free of rank 1 over O(U). More precisely, if H C O(U)
denotes the smallest ideal such that (10)

D3y (M(U))*=F € H(M(U)8q, BLys),
then U — V(H) is Zariski-dense in U. Let
m:U — U,
be the blow-up of the ideal H and M’ the pullback of M on U’.

Lemma 3.3.8. — Let £’ € U’ and let V C U’ be a sufficiently small open affinoid
containing z’.
(i) The ideal of O(V) generated by all the coefficients (see the footnote 10) of
D (M (V))P=F c M'(V)®q, By, is O(V) itself.
(ii) If I' is a cofinite length ideal of Oy then Df (ML, /T' M., )?=F is free of rank
1 over Oy /1.

Proof. — By the universal property of blow-ups, for V sufficiently small HO(V) is
a principal ideal generated by a non zero divisor fy of O(V). As a consequence,
the ideal of the statement is O(V) itself, as it contains HO(V)/fy. Indeed, it is
clear that if D, (M'(V))?=F contains fv for some non zero divisor f € O(V) and

v € M'(V)®q, Bf,s, it contains v. This proves (i).

cry:

(10) The Banach O(U)-module M(U )@@F Biys is ON-able, H is the ideal of O(U) generated by all
the coefficients in a given O N-basis of all the elements of D;';ys(M(U ))?=F. It does not depend on
the choice of the ON-basis as the ideals of O(U) are all closed.
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It follows that the natural map DZ (M., /I'ML)*=F — D& (M,)¢=F is

crys crys
non-zero. Moreover D;';ys(ﬂ;,)“’:F = D&, s(M2)?=F Q@y() k(z'), hence it has k(z')-

. crys
dimension 1 by assumption on M, and part (i) of Theorem 3.3.3. So the first as-
sertion of the following lemma (applied to D = Df (=)*=F, A = Oy, J = T,

crys

V =M., /I'M,,) implies the result. O

Lemma 3.3.9. — Let J be a cofinite length ideal of A, V a continuous (A/J)[Gp)-
module that is free of finite rank over A/J and such that D(V ® 4 k) has k-dimension
1. Assume moreover that one of the following two conditions holds:

(i) D(V) — D(V ®4 k) is non-zero,

(ii) UD(V)) =1(A/J).
Then D(V) is free of rank one over A/J.

Proof. — Under assertion (i), the lemma is exactly [73, Lemma 8.6]. Under assertion
(ii), it can be proved using similar ideas: we prove that D(V ® 4 A/J’) is free of rank
one over A/J’ for any ideal J' containing J, by induction on the length of A/J’.
There is nothing to prove for J' = m. Assume the result known for ideals of colength
< k, and let J’ be an ideal containing J of colength k. Let J” be an ideal such that
J' C J” C m, the first inclusion being proper and of colength one. We have (since
V®aAJJ is free over A/J') an exact sequence:

0— D(V®Rsk)®k J"/J — D(V@sA/J) — DV @4 AlJ").

By (iii) of Lemma 3.2.9, {(D(V ®4 A/J’)) = I(A/J’) and similarly for J”. Hence
the last morphism of the exact sequence above is surjective. So we have D(V ®4
AT VYRAA/J'=D(VRsA/J"), hence D(V@®sA/J)®ak=D(VQR4A/T")Qak.
By induction, the latter has k-dimension 1. Hence by Nakayama’s lemma, the A/J'-
module D(V ®4 A/J') is generated by a single element and since its length is {(A/J’),
it is free of rank one over A/J’. a

We can now use our “descent result” (Proposition 3.2.3) for the blow-up 7 : U" —
U. Assertion (ii) of Lemma 3.3.8 shows that for every ' € 7~!(z), and every cofinite
length ideal I’ of O,

1 (D (M ®o,, 00 [I')?=F) = 1O /T').
Thus by Proposition 3.2.3, we have for every cofinite length ideal I of O,
1 (Dfys(Mz ®0, 0o /1)*=F) = 1(OL/1).
To conclude that D},

ays(Mz ®0, Oz/1 )#=F is free of rank one over O,/I we simply
invoke Lemma 3.3.9 (ii) with I = J,V = M, /JM,. The proof of Theorem 3.3.3 is
now complete. O
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3.4. A generalization of Kisin’s result for non-flat modules

In this subsection we keep the assumptions of §3.3.2, but we do not assume that
M is locally free, but only that M is torsion-free.

Theorem 3.4.1. — Let x € X and assume that ') D;’;ys(ﬂis(n(w)))‘p:”z) has k(z)-
dimension 1. Then for all ideal I of cofinite length of O,

1 (Ddye(Ma/IM:(8)*=F) = U(O/1).

We will rely on the following flatification result whose scheme theoretic analogue
is an elementary case of a result of Gruson-Raynaud ({95, Thm. 5.2.2]). Recall that
X is reduced and separated.

Lemma 3.4.2. — There exists a proper and birational morphism w : X' — X (with
X' reduced) such that the strict transform of M by 7 is a locally free coherent sheaf
of modules M’ on X'. More precisely, we may choose m to be the blow-up of the
normalization X of X along a nowhere dense closed subspace.

Proof. — Let f : X — X be the normalization of X (see [47, §2.1]), then X is
reduced, f is finite (hence proper), and f is birational by [47, Thm. 2.1.2]. More-
over, the strict transform M’ of M by f is torsion free as M is, hence by replacing
(X, M) by (X, M') we may assume that X is normal. We may also assume that X
is connected.

We claim that there is an integer » > 0 such that for each open affinoid U C X,
M(U) is generically free of rank r over O(U). If U is connected (hence irreducible), let
us denote by ry this generic rank. There is an injective O(U)-linear map M((U) —
O(U)™ which is an isomorphism after inverting some f # 0 € O(U). In particular,
for each z in a Zariski-open subset of U, we have M, — OTU. As a consequence, for
each open affinoid U’ C U, the O -module M, is free of rank 7y on a Zariski open
and dense subset of U’, thus ry» = ry if U’ is connected. A connectedness argument
shows then that ry is independent of U C X, and the claim follows. In particular, for
all z € X the torsion free O -module M, has also generic rank r.

Let us recall now some facts about the Fitting ideals (see [77, XIX,§2], [95, §5.4]).
For each open affinoid U C X it makes sense to consider the r-th Fitting ideal
F.(M(U)) of the finite O(U)-module M(U). Its formation commutes with any affinoid
open immersion so those {F,.(M(U))} glue to a coherent sheaf of ideals F.(M) C Ox.
A point z € X lies in V(F,(M)) if and only if dimy ;) (M) > r and X — V(F.(M))
is the biggest admissible open subset of X on which M can be locally generated (on
stalks) by r elements. By what we saw in the paragraph above, X — V(F.(M)) is

(11) In fact, the result holds more generally under the assumption of Remark 3.2.4, but we state it
as such for short.
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actually Zariski dense in X. Moreover, if z € X — V(F.(M)) then M, is free of rank
r over O;. Indeed, it can be generated by r elements and we saw that

M, C M, ®¢, Frac(O,) — Frac(0,)"

for each z € X, and we are done.

Let 7 : X’ — X be the blow-up of F,.(M), we will eventually prove that 7 has all
the required properties. Note that X’ is reduced as X is and that 7 is birational as
X — V(F.(M)) is Zariski dense in X. As a general fact, the coherent sheaf of ideals
F.(M)Ox: coincides with the r-th sheaf of Fitting ideals F,.(7*M) of n*M, and it
is an invertible sheaf by construction. Let Q@ C 7*M be the coherent subsheaf of
F,.(M)Ox:-torsion of m* M. We claim that (7*M)/Q is locally free of rank r. This
can be checked on the global sections on an open affinoid U C X’. But if A is a
reduced noetherian ring and M a finite type A-module such that M is generically free
of rang r and whose 7-th Fitting ideal F,.(M) is invertible, then M/Ann s (F,.(M)) is
locally free of rank r by [95, Lemma 5.4.3]. This proves the claim if we take A = O(U)
and M = n*(M)(U).

By definition, the strict transform M’ of M is the quotient of 7*M by its
(Fr(M)Ox/)>®-torsion. The natural surjective morphism 7*M — M’ factors then
through (7*M)/Q, which is locally free of rank r by what we just proved, so
(m*M)/Q — M’ is locally free of rank r, and we are done. O

Proof. — (of Theorem 3.4.1) Let us choose a 7 as in Lemma 3.4.2, as well as a coherent
sheaf of ideals H C Ox attached to m as in § 3.2.3. As X — V(H) is Zariski dense
in X, and as Z accumulates at Z by assumption (HT), Z N (X — V(H)) is Zariski-
dense in X. Moreover (CRYS), (HT) and (*) are still satisfied when we replace Z by
Z N (X — V(H)) in their statement, so we may assume that ZNV(H) = @.

Let us denote by Z’ the set of 2/ € X’ such that wn(2') € Z. Since X' —
" Y(V(H)) = X — V(H) is Zariski-dense in X', Z’ is Zariski dense in X'. Note
that for 2/ € Z’, we have M, = M, if z = n(z'). Define k' and F’ on X’ as ko
and F o wr. Then it is obvious that X', Z’, M, F' k' satisfy the hypothesis (CRYS),
(HT) and (*). Because M’ is locally free we may apply to it Theorem 3.3.3 at any
z’ € X'. This implies Theorem 3.4.1 by our descent Proposition 3.2.3. O

Remark 3.4.3. — (i) In the applications of Theorem 3.4.1 to Section 4, we will use
some coherent sheaves M on an affinoid X which are in fact direct sums of
coherent torsion-free O-modules of generic ranks < 1, for which Lemma 3.4.2 is
obvious.

(ii) As Brian Conrad pointed out to us, there is an alternative proof of the first
assertion of Lemma 3.4.2 using rigid analytic Quot spaces (see [48, Thm. 4.1.3]).
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CHAPTER 4

RIGID ANALYTIC FAMILIES
OF REFINED p-ADIC REPRESENTATIONS

4.1. Introduction

In this section, we define and study the notion of p-adic families of refined Galois
representations. As explained in the general introduction, the general framework is
the data of a continuous d-dimensional pseudocharacter

T:G— O0(X),

where X is a reduced, separated, rigid analytic space. Here G is a topological group
equipped with a continuous map G, = Gal(@p /Qp) — G, and we shall be mainly
interested in the properties of the restriction of T' to G. The presence of the group
G is an extra structure that will only play a role when discussing the reducibility
properties of T', and we invite the reader to assume that G = G, at a first reading.
We assume that for all z in a Zariski-dense subset Z C X, the semisimple contin-
uous representation g, of G whose trace is the evaluation T, of T at z (see §1.2.2),
has the following properties after restriction to G (see §4.2.3):
(i) p. is crystalline,
(ii) its Hodge-Tate weights are distinct, and if we order them by k1(z) < - -+ < Kq(2),
then the maps z — k,(2) extend to analytic functions on X and each difference
Kn+1 — Kn, varies a lot on Z.
(iil) its crystalline eigenvalues ¢1(z2),...,pq(2) are distinct, and their normalized
versions z — Fy(2) := ¢n(2)p~*~(*) extend to analytic functions on X.

These hypotheses may seem a little bit complicated, but this is because we want
them to encode all the aspects of the families of Galois representations arising on
eigenvarieties. We refer to §4.2.3 for a detailed discussion of each assumption. Let
us just mention two things here. First, although families with “constant Hodge-Tate
weights” have been studied by several people, the study of the kind of families above
has been comparatively quite poor, except for works of Sen and Kisin. A reason may
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be that the very fact that the weights are moving implies that the generic member of
such a family is not even a Hodge-Tate representation, and in particular lives outside
the De Rham world. Second, each g, is equipped by assumption (iii) with a natural
ordering of its crystalline Frobenius eigenvalues, that is with a refinement F, of p,
(hence the name of the families).

Our aim is the following: we want to give a schematic upper bound of the reducibil-
ity loci at the points z € Z and to prove that the infinitesimal deformations of the
p. inside their reducibility loci (that we defined in Section 1) are trianguline, and
in favorables cases even Hodge-Tate or crystalline. Let us describe now precisely our
results.

Assume first that z € Z is such that 5, is irreducible ) and that F, is a non
critical regular refinement of p,. Then on each thickening A of z in X, we show that
T ® A is the trace of a unique trianguline deformation of (p,, F,) to the artinian ring
A (Theorem 4.4.1).

When p, is reducible, the situation turns out to be much more complicated, but still
rather nice in some favorable cases (?). Assume that p, = @;i_,p; is multiplicity-free.
The relevant combinatorical information contained in the data of that decomposition
of g, and the refinement F, is summarized in a permutation o € G4 that we construct
in §4.4.3. Assume again that F, is regular, but not that F, is non critical. Instead, we
assume only that the refinement F, ; induced by F, on each of its sub-representation
pi is a non critical refinement, and that each F, ; is a “subinterval” of F, (see §4.4.4).
Our main result concerns then the total reducibility locus, say Red,, of T' at the point
z. We show that each difference of weights

Knp — Ka(n)

is constant on this reducibility locus Red,. We stress here that this result is schematic,
it means that the closed subscheme Red, lies in the schematic fiber of each map
Kn—FKq(n) at z. Moreover, on each thickening A of z lying in the reducibility locus Red.,
we show that T® A can be written uniquely as the sum of traces of true representations
pi over A, each p; being a trianguline deformation of (p;, F,;) (Theorem 4.4.4). We
end the section by giving another proof of the assertion above on the weights on the
reducibility locus under some slightly different kind of assumptions (Theorem 4.4.6).

As an example of application of the results above, let us assume that o acts transi-
tively on {1,...,d} (in which case we say that F, is an anti-ordinary refinement), so
each difference of weights k,, — k,, is constant on Red,. If some k,, is moreover con-
stant (what we can assume up to a twist), we get that all the weights «; are constant

(1) This irreducibility assumption applies for 5, viewed as a representation of G, which is weaker
than being irreducible as a representation of Gyp.
(2) In the applications to Selmer groups, we will “luckily” be in that case.

ASTERISQUE 324



4.1. INTRODUCTION 113

on the total reducibility locus at z, hence are distinct integers. In particular the defor-
mations p; above of p; are Hodge-Tate representations, and our work on trianguline
deformations shows then that they are even crystalline (under some mild conditions
on the p;, see Corollary 4.4.5). This fact will be very important in the applications to
eigenvarieties and global Selmer groups of the last section, as it will allow us to prove
that the scheme Red, coincides with the reduced point z there.

We end this introduction by discussing some aspects of the proofs and other results.
We fix z € Z as above, let A := O, and we consider the composed pseudocharacter

T:G—OX)— A

again denoted by T'. It is residually multiplicity free and A is henselian, hence T fulfills
the assumptions of our work in Section 1. Some important role is played by some
specific A[G]-modules called M; (introduced §1.5.4) whose quite subtle properties
turn out to be enough to handle the difficulties coming from the fact that 7" may not
be the trace of a representation over A. We extend those modules, with the action
of G, to torsion free coherent O-modules in an affinoid neighborhood U of z in X
(§4.3.3) to which we apply the results of Section 3.

However, this only gives us a part of the information, namely the one concerning
the first eigenvalue ¢; of the refinement. Indeed, this eigenvalue is the only one that
varies analytically (if x; is normalized to zero say) and therefore the only one to
which we can apply the results of Section 3. To deal with the other eigenvalues as
well, we will work not only with the family 7', but with all its exterior powers A*T.
Some inconvenience of using these exterior products however appears in the fact that
our definition of a refined family is not stable under exterior powers (see §4.2.4, and
the last paragraph of this introduction). This leads us to introducing the notion of
p-adic family of weakly refined Galois representations, which is a modification of the
one given above where we only care about k; and F; (see Definition §4.2.7). Any
exterior power of a refined family is then a weakly refined family. Let us note here
that an important tool to get the trianguline assertion at the end is Theorem 2.5.6 of
Section 2.

In fact, our results mentioned above have analogues in the context of weakly refined
families (in which case they hold for every z € X), that we prove in Theorems 4.3.2 and
4.3.4. Another interesting result here is the proof (Theorem 4.3.6) that there exists
a non-torsion crystalline period attached to the eigenvalue ¢; in the infinitesimal
extensions between the p; constructed in Section 1 (that is, in the image of ¢; ;).

In the last subsection of this chapter (§4.5), we give much weaker results concerning
any reducibility locus, not only the total reducibility locus.

Though the trick of using exterior powers is not at all unfamiliar in the context of
Fontaine’s theory, we have the feeling that it is not the best thing to do here, and that
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the use of exterior products is responsible for some technical hypotheses that appear
later in this section (e.g. assumptions (REG) and (MF') in §4.4.1). But we have not
found a way to avoid it. Actually, by using only arguments similar to the ones in [73],
it seems quite hard to argue inductively (as we would like to) by “dividing modulo
the families of eigenvectors for ¢;”. Among other things, a difficulty is that although
the points in Z belong to Kisin’s X, they do for quite indirect reasons (see e.g. [73,
Remark 5.5 (4)]), which makes many arguments there—and here also—quite delicate.
As a possible solution, our work in this section and in Section 2 confirms Colmez’s
idea that the construction of Xy, in [73] should be reworked from the point of view of
(¢, T')-modules over the Robba ring ®) and suggests that X, should directly contain
the points of Z which are non critically refined. As this would have led us quite away
from our initial aim, we did not follow this approach. We hope however that the
present work sheds lights on aspects of this interesting problem.

4.2. Families of refined and weakly refined p-adic representations

4.2.1. Notations. — As in sections 2 and 3, we set G, = Gal(Q,/Q,). Moreover we
suppose given a topological group G together with a continuous morphism G, — G.

Example 4.2.1. — The main interesting examples ) are

(a) G = Gp and the morphism is the identity.

(b) G = Gk,s = Gal(Kg/K) where K is a number field, S a set of places of K, and
Kg C K the maximal extension which is unramified outside S; the morphism
sending G, to a decomposition group of K at some prime ‘B of K such that

Kyp = Q.

If p is a representation of G, it induces a representation of G, that we shall denote by
pPic,- We will replace p|g, by p without further comments when the context prevents
any ambiguity, for example in assertions such as “p is Hodge-Tate”, or “p is crystalline”.

(3) E.g. for any « in a refined family X, g, should be trianguline.

(4) Actually, our result in the case (a) would implies our result in the case (b), were there not
the technical, presumably unnecessary, irreducibility hypothesis (MF) in §4.4.1 below, that we can
sometimes verify in case (b) and not in case (a).
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4.2.2. Rigid analytic families of p-adic representations

Definition 4.2.2. — A (rigid analytic) family of p-adic representations is the data of a
reduced and separated rigid analytic space X/Q, and a continuous (5) pseudocharacter
T:G— OX).

The dimension of the family is the dimension of T'; it will usually be denoted by d
in the sequel. For each point z € X, we call evaluation of T' at x and note

T, : G — k(x),

the composition of T' with the evaluation map: O(X) — k(z) at the residue field k(x)
of z. Then T} is a continuous k(z)-valued pseudocharacter. By a theorem of Taylor,
it is the trace of a (unique up to isomorphism) continuous semisimple representation

pz:G— GLd(M)’

which is actually defined over a finite extension of k(z).

In other words, a family of p-adic representations parameterized by the rigid space
X is a collection of representations {p,,z € X} for which we assume that the trace
maps T(g) : = — tr (pz(g)) are analytic functions on X for each g € G, and such that
g — T(g) is continuous. Examples are given by the continuous representations of G
on locally free O-modules on X, but our definition is more general as we showed in
Section 1.6. In particular, the families of p-adic Galois representations parameterized
by Eigenvarieties turn out to be families in this “weak” sense only in general.

4.2.3. Refined and weakly refined families of p-adic representations
Definition 4.2.3. — A (rigid analytic) family of refined p-adic representations (or
shortly, a refined family) of dimension d is a family of p-adic representations (X, T")
of dimension d together with the following data

(a) d analytic functions k1,...,&q € O(X),

(b) d analytic functions Fi, ..., Fy € O(X),

(c) a Zariski dense subset Z of X;

subject the following requirements.
(i) For every z € X, the Hodge-Tate-Sen weights of p, are, with multiplicity,
K/l(x)v (RS K'd(x)'
(if) If z € Z, p, is crystalline (hence its weights k1(2),..., kq(z) are integers).
(iii) If z € Z, then k;1(2) < k(2) < - -+ < ky4(2).

(5) We recall that for each admissible open U C X (not necessarily affinoid, e.g U = X), O(U)
is equipped with the coarsest locally convex topology (see [105]) such that the restriction maps
O(U) — O(V), V C U an open affinoid (equipped with is Banach algebra topology), are continuous.
This topology is the Banach-algebra topology when U is affinoid.
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(iv) For z € Z, the eigenvalues of the crystalline Frobenius acting on Dc,ys(p.) are
distinct and are (p* (2)Fi(z),...,p"(2)Fy(z)).
(v) For C a non-negative integer, let Zc be the set of z € Z such that

kn+1(2) — Kn(2) > C(kn(z) — kp-1(2)) forall n = 2,...,d -1,

and k2(z) — k1(2) > C. Then for all C, Z¢ accumulates at any point of Z. In
other words, for all z € Z and C > 0, there is a basis of affinoid neighborhoods
U of z such that U N Z is Zariski-dense in U (see §3.3.1).

(*) For each n, there exists a continuous character Z; — O(X)* whose derivative
at 1 is the map k,, and whose evaluation at any point z € Z is the elevation to
the k,(z)-th power.

The data (a) to (c) are called a refinement of the family (X, T).

Definition 4.2.4. — Fix a refined family as above and let z € Z. The (distinct) eigen-
values of ¢ on Derys(p,) are naturally ordered by setting

on(z) 1= pn"(Z)Fn(z)y n€{l,...,d},

which defines a refinement F, of the representation p, in the sense of §2.4.

Example 4.2.5. — The main examples of refined families arise from eigenvarieties (6).
A refined family is said to be ordinaryif |F,(z)| = 1foreachz € X andn € {1,...,d}.
Many ordinary families (in the context of example 4.2.1 (b)) have been constructed
by Hida. In this case we could show that Tjg, is a sum of 1-dimensional families. Non
ordinary refined families of dimension 2 have been first constructed by Coleman in
[43] (see also [44], [85]), and in this case T|g, is in general irreducible. Examples of
non ordinary families of any dimension d > 2 have been constructed by one of us in
[36].

Let us do some remarks about Definition 4.2.3.

Remark 4.2.6. — (i) (Weights) If (X, T) is a family of p-adic representations, and
Z a Zariski-dense subset of X that satisfies condition (ii) of the definition of
a refined family, Sen’s theory implies that, after replacing X by a finite cover,
there exist functions 1, ..., k, satisfying the condition (i) (and obviously (ii))
of the definition of a refined family; but it does not imply that, even after a
suitable reordering, the k,’s satisfy condition (iii).
Condition (v) imposes that the Hodge-Tate weights k, (and their successive
differences) vary a lot on Z. Condition (*) appears for the same reason as in
§3.3.2.

() In particular, their construction if mostly global at the moment.
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(ii) (Frobenius eigenvalues) Assumption (iv) means that the eigenvalues of the crys-
talline Frobenius ¢ acting on Derys(p,) do not vary analytically on Z, but rather
that they do when appropriately normalized. Note that when d > 1, even if some
eigenvalue varies analytically, i.e. if some &, is constant, then the others do not
by assumption (v). Moreover, because of the fixed ordering on the &, by as-
sumption (iii), ({kn}, {Fs(n)}, Z) is not a refinement of the family (X,T) when
oc#1e B,

(i) (Generic non criticality) Let Zyym C Z be the subset consisting of points z € Z
such that F, is numerically non critical in the sense of Remark 2.4.6 formula
(39). Then Zy,uy, is Zariski-dense in X (use (v) and the fact that around each
point of X, each |F,| is bounded). In particular, the F, are “generically” non
critical in the sense of §2.4.3.

(iv) (Subfamilies) If (X, T) is a refined family, and if T is the sum of two pseudochar-
acters Ty and T5, then under mild conditions (X, T;) and (X, T») are also refined
families. See Prop. 4.5.3 below.

It will also be useful to introduce the notion of weakly refined families (resp. of weak
refinement of a family).

Definition 4.2.7. — A weak refinement of a family (X,T) of dimension d is the data
of

(a) analytic functions k, € O(X) forn=1,...,d,
(b) an analytic function F € O(X),
(c) a Zariski dense subset Z C X.

subject to the following requirements

(i), (ii) as in Definition 4.2.3.
(iii) If z € Z, then k4 (2) is the smallest Hodge-Tate weight of g,.

(iv) For C a non-negative integer, let Z¢ = {z € Z, Vn € {2,...,d}, rn(z) >
k1(z) + C}. Then Z¢c accumulates at any point of Z for all C.

(v) For z € Z, p1(z) := p* (z) F1(z) is a multiplicity-one eigenvalue of the crystalline
Frobenius acting on Deyys(p2).

(*) There exists a continuous character Z; — O(X)* whose derivative at 1 is the
map k1 and whose evaluation at any point z € Z is the elevation to the x;(z)-th
power. As in Def. 3.3.2, we denote also by k1 : G, — O(X)* the associated
continuous character.

Of course, if (X,T,{kn},{Fn},Z) is a refined family, then (X, T, {k.}, F1,Z) is a
weakly refined family.
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Remark 4.2.8. — The conditions (i) to (v) and () are invariant by any permutation
in the order of the weights ko, ...,kq (not x1). Two weak refinements differing only
by such a permutation should be regarded as equivalent.

4.2.4. Exterior powers of a refined family are weakly refined. — Let (X, T)
be a family of p-adic representations of dimension d. For k < d, then (X,A*T) is a
family of p-adic representations of dimension (Z) (see §1.2.7), and we have (A*T), =
tr (A¥p,) for any = € X.

Assume that (X, T, {kn},{Fn}, Z) is refined. The Hodge-Tate-Sen weights of A*T

are then the
Ky = Z Kj
jel
where I runs among the subsets of cardinality k of {1,...,d}. Moreover, the A*p,
are crystalline for 2 € Z. However, there is no natural refinement on (X,A*T) in
general (7)., We set

Fi= [ F sli=rp0=r+ - +5k,
je{1,....,k}
and kb, ..., n’(d any numbering of the x; for I running among subsets of {1,...,d}
k
of cardinality k which are different from {1,...,k}. The following lemma is clear.

Lemma 4.2.9. — The data (n'l,...,n'(d),F, Z) is a weak refinement of the fam-
k
ily (X, A*T).

4.3. Existence of crystalline periods for weakly refined families

4.3.1. Hypotheses. — In this subsection, (X,T,k1,...,Kq, F,Z) is a family of
dimension d of weakly refined p-adic representations.

Fix x € X. As in Section 3 we shall denote by A the rigid analytic local ring O,,
by m its maximal ideal, and by k = A/m = k(z) its residue field. We still denote
by T the composite pseudocharacter G — O(X) — A. Our aim in this section is
to prove that the infinitesimal pseudocharacters T : G — A/I, I C A an ideal of
cofinite length, have some crystalline periods in a sense we explain below. For this, we
will have to make the following three hypotheses on x, that will stay in force during
all §4.3.

(") For one thing, there is no natural order on the set of subsets I of {1,...,d} of cardinality k that
makes the application I — k1(z) increasing for all z € Z. Compare with Remark 4.2.6(i).
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(ACC) The set Z accumulates at z (®.
(MF) T is residually multiplicity free (9.
(REG) D (pz(k1(x)))¥=F® has k(z)-dimension 1.

crys

Recall from Definition 1.4.1 that (MF) means that
Pz = ®i—1Pi

where the p; are absolutely irreducible, defined over k(z), and two by two nonisomor-
phic 19, In particular, this holds of course when p, is irreducible and defined over
k(z). As in §1.4.1 we shall note d; = dimy p;, so that Y ;_; d; = d. Note that A is
a henselian ring ([16, §2.1]) and a Q-algebra. In particular, d! is invertible in A, and
T : A[G] — A satisfies the hypothesis of §1.4.1.

Note moreover that hypothesis (REG) (for “regularity”) is, as (MF), a kind of
multiplicity free hypothesis. Indeed, Theorem 3.4.1 implies easily (see below) that for
any z satisfying (ACC), D, (pz(k1(2)))?=F® has k(z)-dimension at least 1.

crys

Remark 4.3.1. — The assumptions above define a j € {1,...,r} as follows. By prop-
erty (REG), F(z) is a multiplicity one eigenvalue of ¢ on

Diiye(Pe(k1(2))) = Dy (p1(51(2))) & - -+ & Dfy (pr(Kn (2)))-

Hence this is an eigenvalue of ¢ on one (and only one) of the D (p:(k1(z))) say
DZs(p;(k1(x))), which defines a unique j € {1,...,r}.

4.3.2. The main results. — We will use below some notations and concepts intro-
duced in Section 1. Let K be the total fraction ring of A and let p : A[G] — My(K)
be a representation whose trace is 7' and whose kernel is Ker T'. It exists by Theorem
1.4.4 (ii) and Remark 1.4.5 as A is reduced and noetherian. Fix a GMA structure on
S := A[G]/Ker T given by the theorem cited above, j as defined in Remark 4.3.1, and
let M; C K ¢ the “column” S-submodule defined in §1.5.4. It is of finite type over A
by construction and Remark 1.4.5.

(8) This hypothesis is probably unnecessary but to remove it would require quite a big amount of
supplementary work, such as a global generalization of what was done in Section 1 (that is on X
instead of A). Note that any z € Z satisfies (ACC). Moreover, in the applications to eigenvarieties,
(ACC) will be satisfied for all the z’s corresponding to p-adic finite slope eigenforms whose weights
are in Zp, which is more than sufficient for our needs.

(9) This hypothesis is imposed to us by our reliance on chapter 1. However, though we did not write
down the details, we are certain that all the results in this subsection hold, with essentially the same
proofs, with the weaker assumption than only the representation denoted by p; below appears with
multiplicity one in T' ® k.

(10) The results of this section will apply also in the case where the p; are not defined over k(z).
Indeed, it suffices to apply them to the natural weakly refined family on X XQp L, L any finite
extension of Qp over which the p; are defined.

SOCIETE MATHEMATIQUE DE FRANCE 2009



120 CHAPTER 4. RIGID ANALYTIC FAMILIES OF REFINED p-ADIC REPRESENTATIONS

Let moreover P be a partition of {1,...,7}. Recall that if P contains {j}, then
for every ideal I containing the reducibility ideal I (see §1.5.1), there is a unique
continuous representation

pPj - G — GLdj(A/I),

whose reduction mod m is p; and such that T® A/I = tr p; +T’, where T" : G — A/I
is a pseudocharacter of dimension d — d; (see Definition 1.5.3, Proposition 1.5.10).

Theorem 4.3.2. — Assume that P contains {j} and let I be a cofinite length ideal of A

containing Ip. Then D (p;j(k1))?=F and D}, (M;/IM;(k1))?=F are free of rank
one over A/I.

Proof. — We will prove the theorem assuming the following crucial lemma, whose
proof is postponed to the next subsection.

Lemma 4.3.3. — Let I be a cofinite length ideal of A, then

(i) the Sen operator of Dsen(M;/IM;) is annihilated by [[4—1(T — kn),
(i) 1 (Dihya(M;/IM; (k1))*=F) = I(A/D).

crys
By Theorem 1.5.6(0), there is an exact sequence of (A/I)[G]-modules

where K has a Jordan-Holder sequence, all subquotients of which are isomorphic to g;
for some i # j. If X is a finite length A-module equipped with a continuous A-linear
action of G, we set D(X) := D;yS(X(nl))¢=F. As D(p;) = 0 for i # j by (REG), we
have D(K) = 0, hence applying the left exact functor D to the above sequence, we
get an injection

D(M;/IM;) — D(p;)-

Thus by Lemma 4.3.3 (ii) we have I(D(p;)) > I(A/I). Applying Lemma 3.2.9(i) to
the A/I-representation p; gives {(D(p;)) = I(A/I), hence an isomorphism

D(M;/IM;) ~ D(p;),

and case (2) of Lemma 3.3.9 gives that D(p;) is free of rank 1 over A/J. Hence the
result. O

Theorem 4.3.4. — Assume that p, has distinct Hodge-Tate-Sen weights and that the
weight k of D&y.(p;(k1(x)))?=F (#) is the smallest integral Hodge-Tate weight of
pi(k1(z)). Then for the unique | such that ki(z) — ki(z) = k, we have that k; is a
weight of p; and

(k1 = k1) = (ki(z) — k1 (2)) € Ip if {j} € P.
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Proof. — Let I D Ip be a cofinite length ideal of A. By Theorem 4.3.2,

Dt-:tys (pj ("gl ))‘P=F

is free of rank one over A/I. Moreover, k is the smallest integral Hodge-Tate weight
of pj(k1(z)). Thus we can apply Proposition 2.5.4 to V' := p;(k1) which shows that
V has a constant weight k, i.e. that (V ®q, Cp)*» contains a free A/I-submodule of
rank 1 on which the Sen operator acts as the multiplication by k. By Lemma 4.3.3(i),
this implies that

d
H(k" (kn — k1)) =0 in A/I

n=1
The difference of any two distinct terms of the product above is invertible in (the
local ring) A/I as k,(z) # kp/(z) if n # n’. Hence one, and only one, of the factor
k — (kn — K1), n =1,...,d, of the above product is zero, and reducing mod m gives
that this factor is the one with n = [. In particular, x; is a Hodge-Tate-Sen weight of
p; and
k=r —k1=rk(z)—ri(z) in A/I

We conclude the proof as Ip is the intersection of the I of cofinite length containing
it, by Krull’s theorem. O

Remark 4.3.5. — (i) The conclusion of the theorem can be rephrased as: k; — k1 is
constant on the reducibility locus corresponding to P, if P contains {j}.

(ii) The hypothesis that k is the smallest weight is satisfied in many cases. For one
thing, it is obviously satisfied when k is the only integral Hodge-Tate weight of
p;(k1(x)), which is the generic situation. More interestingly, it is also satisfied
for crystalline g, whenever v(F'(z)) is smaller than the second (in the increasing
order) Hodge-Tate weight of p;(x1) since, by weak admissibility, k¥ < v(F(z)).
This is always true when p; has dimension < 2, since by admissibility, the second
(that is, the greatest) weight is greater than or equal to the valuation of any
eigenvalue of the Frobenius.

(iii) The assumption that p, has distinct Hodge-Tate weights implies that g, has no
multiple factors, hence (MF) if these factors are defined over k(z).

Now let ¢ # j be an integer in {1,...,r}. Recall that if P contains {:} and {j},
and if I contains Ip, then there is a map ¢; ; whose image is Extg /78,cont (Pj» Pi) (see
Theorem 1.5.3 , Theorem 1.5.6(1) and Proposition 1.5.10).

Theorem 4.3.6. — Assume that P contains {i} and {j} and let I be a cofinite length
ideal of A containing Ip. Let p. : G — GLg,1a;(A/I) be an extension of p; by p;

which belongs to the image of v; ;. Then D (pc(k))?=F is free of rank one over A/I.
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Proof. — The proof is exactly the same as the proof of Theorem 4.3.2 except that we
start using point (2) of Theorem 1.5.6 instead of point (0). O

4.3.3. Analytic extension of some A[G]-modules, and proof of Lemma 4.3.3

We keep the assumptions and notations of §4.3.2. Let M C K¢ by any S-submodule
which is of finite type over A.

Lemma 4.3.7. — There is an open affinoid subset U of X containing x in which Z is
Zariski-dense and a torsion-free coherent sheaf M on U with a continuous action of
G such that M(U) ®owy A ~ M as A[G]-modules and topological A-modules.

If moreover K.M = K¢, we may choose U and M such that M(U) ®ow)
Frac(O(U)) is free of rank d over Frac(O(U)), and carries a semisimple representa-
tion of G with trace T ®ox) O(U).

Proof. — By (ACC), we may choose a basis of open affinoid neighbourhoods (V;);er
of x € X such that Z is Zariski-dense in V; for each i. We may view I as a directed
set if we set j > ¢ if V; C V;, and then indlimO(V;) = A.

By construction we have tr (p(G)) C (’)l(X ). As each O(V;) is reduced and noethe-
rian, a standard argument implies that the O(V;)-module

O(Vi)[G]/Ker (T ®o(x) O(Vi))

is of finite type (see e.g. [8, Lemma 7.1 (i)]). As a consequence, its quotient
O(V;)[p(G)] € M4(K) is also of finite type over O(V;).

As M is of finite type over A, we can find an element 0 € I and a finite type
O(Vy)-submodule My of M such that AMy = M. We define now Ny as the smallest
O(Vp)-submodule of M containing My and stable by G. It is finite type over O(Vp) as
we just showed that O(Vp)[p(G)] C My4(K) is. Moreover, the map G — Autev,) (No)
(resp. G — Aut4(M)) is continuous by [8, Lemma 7.1 (v)] (resp. by its proof).

For ¢ > 0, we set N; = O(V;)No C M. The following abstract lemma implies that
for i big enough, the morphism N; ®o(v,) A — M is an isomorphism. We fix such
an i, set U = V; and define M as the coherent sheaf on V; whose global sections are
N;. It is torsion free over O(V;) as N; C M C K ¢ which concludes the proof of the
first assertion.

Assume moreover that K.M = K% and let N; C K¢ the module constructed above,
so K.N; = K%. The kernel of the natural map

N; ®o(v,) Frac(O(Vi)) — N; ®@ow,) K = K*

is exactly supported by the minimal primes of the irreducible components of O(V;)
that do not contain z, and at the other minimal primes N; is free of rank d with
trace T, and it is semisimple because so is its scalar extension to K by construction
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and Lemma 4.3.9 (i) below. Let U’ C V; be the Zariski open subset of V; whose
complement is the (finite) union of irreducible components of V; not containing z.
Choose j > i such that V; C U’, then U := V; and M(U) := N; ®o(v;) O(V;) have
all the required properties. O

Lemma 4.3.8. — Let (A;)icr be a directed family of commutative rings and let A be
the inductive limit of (A;). Assume A is noetherian. Let M be a finite type A-module
and Ny a finite-type Ag-submodule of M such that ANy = M. For i > 0, set N; :=
A;NgC M.

Then for i big enough, the natural morphism N; @4, A — M is an isomorphism.

Proof. — Define K; by the following exact sequence:
0— K, — N;®3, A— M — 0.
For 7 < j, we have a commutative diagram

0—>~Ki——>Ni®AiA-——>M—>O .

b

OéKjéNj®AjA-——>M___>O

The horizontal lines are exact sequences, the right vertical arrow is the identity and
the middle one is surjective by the associativity of the tensor product. Hence the left
vertical arrow K; — Kj is surjective. Because K is a finite type A-module, and A
is noetherian, there is an ¢ such that for each j > i, K; — Kj is an isomorphism.
Let z € K;. We may write £ = Y, ng ® ar with ny € N; and ax € A, and
Y kmkax = 0 in M. Take j > i such that all the a)’s are in A;. Then the image of z
in N; ®4; Ais 0, and z is 0 in K;. But then z = 0 in K, which proves that K; =0
and the lemma. O

Lemma 4.3.9. — (i) SQ®a K is a semisimple K -algebra.
(ii) There ezists a finite type S-module N C K¢ such that (N @ M;)K = K% and
that (N ®4 k)*® is isomorphic to a sum of copies of p; with i # j.

Proof. — Recall from §4.3.2 that S = A[G]/KerT. Since K D A is a fraction ring
of A, we have Ker (T'®4 K) = K.KerT in K[G]. As a consequence, the natural map
S®a K — K[G]/Ker (T ®4 K) is an isomorphism, and Lemma 1.2.7 proves (i).
Let us show (ii). By (i) we can chose a K.S-module N’ C K% such that K.M;®N’ =
K4, As § is finite type over A by Remark 1.4.5, we can find a S-submodule N C N’
such that NV is finite type over A and K.N = N’. We claim that N has the required
property. By construction we only have to prove the assertion about (N ®4 k).
Arguing as in the proof of Theorem 1.5.6 (0), it suffices to show that e; N = 0, where e
is as before the idempotent in the fixed GMA structure of S. But e;(K?) = e;(K.M;)
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by definition of M; and Theorem 1.4.4 (ii). So e;(K.N) = 0 = e;N, and we are
done. a

We are now ready to prove Lemma 4.3.3.

Proof. — (of Lemma 4.3.3). Let us show (ii) first. We set M = N & M, where N is
given by Lemma 4.3.9.
By Proposition 1.5.6(0) and Lemma 4.3.9 (ii),

(49) (M ® k)* ~ ®{_yn;p; where n; > 1 for all 4, and n; = 1.

But by (REG) DZ,(pi(k1(z))?=F® has dimension §; ;. In particular,

crys

(50) dimg(DZ (M ® k) (k(x))*®)*=F®) = 1.

crys

Moreover, D& (M/IM (k1)) = D},s(M;/IM;(k1)) & D

crys crys crys

(N/IN(k1)), and
(51) D&yo(N/IN(k1)*=F =0

by a dévissage and the same argument as above.

We claim now that the equality follows directly from Theorem 3.4.1 applied to the
module M over U associated to M given by Lemma 4.3.7 (applied in the case K.M =
K49). By formula (51), we just have to verify that M satisfies the hypotheses (CRYS),
(HT) and (*) of §3.3.2, and we already checked that D, (M ® k)(k(z))*)¢=F®)
has length one in (50).

By assumption (iv) of weakly refined families, Zc N U accumulates at every point
of ZNU. As M(U) is torsion free of generic rank d and with trace T, and by the
generic flatness theorem, there is a proper Zariski closed subspace F' of U such that for
yeU-F, 7\4—25 = py- Recall that the Frac(O(U))[G]-module M ®¢ v Frac(O(U))
is semisimple. So enlarging F' is necessary, we have that for y € U — F, M, = ./\—AZS,
hence M, = p,. We replace Z by (ZNU) - (FNZNU),so by (ACC) Z is a Zariski
dense subset of U and still has the property that Zc accumulates at any point of Z.
Property (CRYS) follows then from (ii) and (v) of the definition of a weak refinement,
and property (HT) from (iii) and (iv). This concludes the proof.

Let us show (i) now. If E is a Q,-Banach space, we set 1Y) E¢ = E®q,C,.
Recall that Sen’s theory [108] attaches in particular to any continuous morphism
T : G, — B*, B any Banach Q,-algebra, an element ¢ € B¢, whose formation
commutes with any continuous Banach algebra homomorphism B — B’. When 7 is

(11) All the Qp-Banach spaces of this proof to which we apply the functor —c, are discretely normed.
We use freely the fact that any continuous closed injection E — F' between such spaces induces an
exact sequence 0 — Ec, — F¢, — (F/E)c, — 0 by [109, 1.2], and also that any submodule
of a finite type module over an affinoid algebra is closed.
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a finite dimensional Q,-representation of Gp, this element is the usual Sen operator.
Applying this to the Banach algebra

B:= Endo(U) (M(U))

we get such an element ¢.
We claim that ¢ is killed by the polynomial

d
P:=[[(T - &n).

n=1
Indeed, arguing as in the proof of (ii) above me may assume that for all z € Z we
have M, ~ p, and B/m,B ~ Endg,) (ﬂz) As a consequence, using the evaluation
homomorphism B — B/m.B and assumption (i) in Definition 4.2.7, we get that
P(p) € m.Bc,. But O(U)c, is reduced by [47, Lemma 3.2.1(1)], so Bc, is a (finite
type) torsion free O(U)c,-module. Since Z is Zariski-dense in U, hence in U(C,),
and since affinoid algebras are Jacobson rings, we obtain that P(¢) = 0 in Bc,. We
conclude the proof as the operator of the statement of Lemma 4.3.3(i) is the image of
¢ under Be, — Enda,;(M;/IMj)c, . O

We now present a variant (12) of Lemma 4.3.3. Suppose we keep hypotheses (ACC)
and (REG) from §4.3.1 but release hypothesis (MF). Instead we assume that
(FM) There exists a free A-module M of rank d with an A-linear action of G whose

trace is T', and such that M ® 4 K is a semisimple K [G]-module.

For example, (FM) holds if T is absolutely irreducible (by Rouquier-Nyssen’s theo-
rem), or, under (MF), if A is a UFD (by Proposition 1.6.1).

Under those hypotheses, we claim that Lemma 4.3.3, and even a little bit more,
holds with M; replaced by the module M. More precisely, we have

Lemma 4.3.10. — Let I be a cofinite length ideal of A, then

(i) the Sen operator of Dsen(M/IM) is annihilated by [[2_, (T — kn),
(ii) 1 (Ddys(M/IM(51))*=F) = I(A/T),

(iii) Dyo(M/IM (k1))?=F is free of rank one over A/I.

Proof. — First, note that the natural A-algebra homomorphism p : A[G] —
End (M) factors through S := A[G]/Ker (T). Indeed, M ®4 K is a semisimple
K|[G]-module, so p(K[G]) C Endg (M ®4 K) is a semisimple artinian ring, of which
K.p(Ker (T)) is a nilpotent 2-sided ideal by Lemma 1.2.1, hence vanishes. As a
consequence, p|g is continuous, as T is.

(12) Added in 2008.
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We claim that the proof of Lemma 4.3.3 holds with M; replaced everywhere by
M, it is actually only easier. Indeed, the reader may observe that there are only two
points where the specific nature of M; is used, besides being an S-module of finite
type over A.

The first one is in the proof of Lemma 4.3.9(ii). But that assertion holds trivially
for M with N := 0, since M has rank d so K.M = K¢. The second one is for the proof
of formula (51) (note that (50) is irrelevant here, and in any case obviously satisfied
as N = 0). But since M is free, M ®4 k is a d-dimensional representation of trace
T = T,, hence its semi-simplification is exactly p,, so that formula (51) is nothing
more than assumption (REG) at z. Hence the proof of Lemma 4.3.3 holds for M,
giving (i) %) and (ii). Then (iii) follows from (ii) and Lemma 3.3.9(ii). O

4.4. Refined families at regular crystalline points

4.4.1. Hypotheses. — In this subsection, (X, T, k1,...,Kq, F1,...,Fq,Z) is a fam-
ily of dimension d of refined p-adic representations. We fix z € Z (and not only in X).
As in §4.3.1 we write A = O, and still denote by T the composite pseudocharacter
G — O(X) — A. We assume moreover that T is residually multiplicity free, and
we use the same notation as before:

Pz = ®j—1pi, di =dimp;.
Recall from Definition 4.2.4 that p, is equipped with a refinement

]:z = ((pl(z)7 .o 7‘Pd(z))

satisfying ¢, (2) = pr A, (2). As Derys(p2) = ®i—1 Derys(pi) this refinement induces
for each ¢ a refinement of p; that we will denote by F, ;. We will make the following
hypotheses on z.

(REG) The refinement F, is regular (see Example 2.5.5): for all n € {1,...,d},
p(ttrn(2) By (2) ... F,(2) is an eigenvalue of ¢ on Derys(A™p,) of multiplic-
ity one.

(NCR) For every i € {1,...,r}, F,, is a non-critical refinement (cf. §2.4.3) of p;.

Note that the hypothesis (NCR) does not mean at all that the refinement of p, is

noncritical: if for example d = r, that is the p; are characters, any refinement of g,
satisfies (NCR).

(13) Actually, Dgen(M/IM) is free over A/I and its Sen polynomial coincides with Hi=1(T — Kn)
(note that for our M, we may choose in Lemma 4.3.7 an M which is free over U).
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4.4.2. The residually irreducible case (r = 1). — We keep the hypotheses
above (1%, We first deal with the simplest case for which p, is irreducible and defined
over k(z). In this case (REG) and (NCR) mean that F, is a regular non critical
refinement of p,.

Recall that in this residually irreducible case, there exists a unique continuous
representation p : G — GL4(A) whose trace is T by the theorem of Rouquier and
Nyssen (the continuity follows from Proposition 1.5.10 (i)). We define a continuous
character § : Q) — (A*)? by setting:

5(p) = (Fl,.. .,Fd), 6|Z; = (I‘él_l,...,ligl).

Recall that each k, may be viewed as a character Z;, — A* in the same way as in
Definition 3.3.2, using property (*) of Definition 4.2.3.

Theorem 4.4.1. — For any ideal I C A of cofinite length, p ® A/I is a trianguline
deformation of (p,, F.) whose parameter is § @ A/I.

Proof. — Fix I as in the statement and V := p® A/I. By Theorem 2.5.6, it suffices
to show that for each 1 < k < d, Derys(A*¥V (51 - - - k))?=F1Fr is free of rank 1 over
A/I. Indeed, by definition of the characters x; and of the ¢; loc. cit. , we have t; = k;
for each .

Fix 1 < k < d and consider the family (X, A*T). As seen in §4.2.4, this family is
naturally weakly refined, with same set Z,

F=]] Fa

n=1

and first weight
k
k=3 k.
n=1

We check that this family satisfies the hypotheses of Lemma 4.3.10. Namely, (ACC)
comes from the fact that z is in Z, (REG) from (REG), and (FM) is clear with
M := AFp except maybe the fact that M ® 4 K is a semisimple K [G]-module. But
this follows from the irreducibility of p® 4 K and a well-known result of Chevalley: over
a field of characteristic zero, a tensor product of two finite dimensional semisimple
representations is again semisimple. Thus, we can apply (iii) of Lemma 4.3.10, and
we are done. O

(14) In 2006, Theorem 4.4.1 was proved with the additional hypothesis (MF’)—see §4.4.4 below.
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4.4.3. A permutation. — In order to study the reducible cases we need to define
a permutation o of {1,...,d} that mixes up the combinatorial data of the refinement
of p, and of its decomposition g, = p1 ® -+ D pr.

The refinement F, together with the induced refinements F,; of the p;’s define
a partition Ry []...][ R- of {1,...,d}: R; is the set of n such that p*(*)F,(2) is a
p-eigenvalue on Dcrys(p;). In the same way, we define a partition Wi [[...[[ W, of
{1,...,d}: W; is the set of integers n such that k,(z2) is a Hodge-Tate weight of p;.
This is a partition as the x,(z) are two-by-two distinct.

Definition 4.4.2. — We define o as the unique bijection that sends R; onto W; and
that is increasing on each R;.

Note that o does not depend on the chosed ordering on the g;.

Example 4.4.3. — (Refined deformations of ordinary representations) Assume that
r = d, so p, is a sum of characters pj,...,pq. Since there is an obvious bijection
between this set of characters and the set of eigenvalues of ¢ on De;ys(5.), the refine-
ment determines an ordering of those characters. We may assume up to renumbering
that this order is py,...,p4. By definition of the permutation above, the weights of
p1,---,Pq are respectively Kq(1)(2),...,Ko(d)(2). Note that in this case, o determines
the refinement. We refer to this situation by saying that the representation p, is
ordinary.

Assume that p, is ordinary. We say that the point z (and the refinement F,) is
ordinary if moreover o = Id, that is if the valuation of the eigenvalues in the refinement
are increasing. For example, the families constructed by Hida (see Example 4.2.5) are
ordinary in this strong sense: each z € Z is ordinary.

When, on the contrary, o is transitive on {1,...,d} we call the corresponding
refinement, and the point z, anti-ordinary. For d = 3, examples of families with such
z have been constructed and studied in [8]. Intermediary cases are also interesting.
For example, Urban and Skinner consider in [112] a refined family of dimension d = 4
with a point z € Z where p, is ordinary and o is a transposition. They call such a
point semi-ordinary.

In general, let us just say that we expect that any ordinary representation and any
permutation o should occur as a member of a refined family in the above way.

4.4.4. The total reducibility locus. — Keep the assumptions and notations of
§4.4.3 and §4.4.1. In particulat we keep assumption (REG) and (NCR). In addition,
we shall need
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(MF’) For every family of integers (a;)i=1,...,, with 1 < a; < d;, the representation
Pa;) = ®i=1 A% p; is absolutely irreducible. Moreover, if (a;) and (a;) are two
distinct sequences as above with Y i_; a; = Y 7_; a;, then p(a,) % P(a’)-

The assumptions (REG), (NCR), and (MF') remain in force during all § 4.4.4. Al-
though it does not seem possible to weaken significantly the hypotheses (REG), (NCR)
in order to prove Theorem 4.4.6 below, hypothesis (MF’) is probably unnecessary. It
is equivalent to the assertion that for all k¥ € {1,...,d}, A*T is a residually mul-
tiplicity free pseudocharacter with residual irreducible component the traces of the
representations p(q,) with Y ;_; a; = k.

We will use again some notations and concepts introduced in Section 1, applied to
the residually multiplicity free pseudocharacter T : A[G] — A. Let P be the finest
partition {{1},...,{r}} of {1,...,r}, so Ip is the total reducibility ideal of T'. Recall
that for every ideal I C A containing Ip (see §1.5.1), there is for each i a unique
continuous representation

pPi G— GLdi(A/I)
whose reduction mod m is p; and such that T® A/I = Y ;_, tr p; (see Definition 1.5.3,
Proposition 1.5.10).

Let 1 < i < r and write R; = {j1,...,J4;} with s — j, increasing. We define a

continuous character §; : Q — (A*)4 by setting:

6’i(p) = (F‘jlpnjl (z)_na(jl)(:‘); ey F]'d-pnjdi (z)_na(ji)(Z)L

(-1 -1
511|Z; - (K'U(J'l)’ e H”(jd,-)).
We will need to consider the following further assumption on the partition R;
defined in §4.4.3:

(INT) Each R; is a subinterval of {1,...,d}.

Theorem 4.4.4. — Assume (INT) and let Ip C I C A be any cofinite length ideal.
Then for each i, p; is a trianguline deformation of (p;, F, ) whose parameter is §;.
Moreover, for each n € {1,...,d}, we have

Ko(n) = Kn = Kg(n)(2) — kn(2) in A/Ip.

Proof. — We argue as in the proof of Theorem 4.4.1 taking into account the extra
difficulties coming from the reducible situation. By (INT), we have for each 7 that
R, ={z;+1,z;+2,...,z; + d;} for some z; € {1,...,r}. Up to renumbering the p;,
we may assume that 1 = 0 and that z; =d; +--- +d;—1 if i > 1.

We fix I as in the statement. We will prove below that each p; is a trianguline
deformation of (p;, F, ;) whose parameter &, coincides with &; on p, but satisfies

-1

/ _ -1 ki (2)—Kg(i, (2 Kj .(z)“"a(' A)(z)
JiIZ;‘, — (K;jl X i1 (2) a(]l)( )""’K]dix d; Jd; ).
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As the Sen polynomial of p; is
d;

[T - ko))

s=1
by Lemma 4.3.3 and by definition of o (use the fact that the k,(z) are distinct),
Proposition 2.3.3 will then conclude the second part of the statement (argue as in the
proof of Theorem 4.3.4 to go from I to Ip).

Let us prove now the result mentioned above. Fix j € {1,...,7} and if j > 1
assume by induction that for each ¢ < j, p; is a trianguline deformation of (p;, F ;)
whose parameter is ¢; defined above. Note that F, ; is regular by (INT) and (REG)
(see the proof below for more details about this point), and non critical by (NCR).
So by Proposition 2.5.6, it suffices to prove that for h =1,...,d;,

(52) Dcrys((Ahpj)(msz +- 4 nzj+h))<p=sz+1~~ij+h is free of rank 1 over A/I,

what we do now.

For k = z; + h any number in R, let a;(k) = |[R; N {1,...,k}| for i € {1,...,r}.
In other words, we have a;(k) = d; (resp. a;(k) = 0) for all ¢ € {1,...,j — 1} (resp.
for i > j), and a;(k) = h. We want to apply Theorem 4.3.2 to the weakly refined
families A*T', k € R;, as in the proof of Theorem 4.4.1. We set again F = Hﬁ:l F,
and kK = Y }_; Kn. As already explained in the proof of Theorem 4.4.1, the family
AFT satisfies the assumption of §4.3.1.

We note first that the (unique by (REG)) irreducible subrepresentation of A¥p,
that has the p-eigenvalue p*(*) F(2) in its Deyys is P(ai(k)) With the notations of (MF").
This representation is exactly A"(p;) twisted by each det(p;) with i < j (twisted by
nothing if j = 1). With the obvious definition for the p(,,) when (a;) is any sequence
as in (MF’), we have a decomposition

AMNT AT =) tr(pay),
(ai)
hence I contains the total reducibility ideal of A*T (AFT is multiplicity free by (MF’)).
Theorem 4.3.2 implies then that
(53) Dcrys(p(ai(k)) (F‘;)yp:F
is free of rank one over A/I.
By induction, we know that p; is a trianguline deformation of (p;, ;) whose

parameter is §; for each 7 < j. In particular, for any such i,

det(pi)(nmi+1 +-+ nwi"l'di)
is a crystalline character of G, whose Frobenius eigenvalue is Fy, 1 -« Fy,1q;,. As

p(ai(k))(n) = Ah(pj)(’{‘mﬁ-l +eet K’Ij+h) ®det(pi)(nzi+1 +- K'zi"'dz‘)’
i<j
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we get from formula (53) that
Dcrys((Ath)("sz+1 4ot nzj+h))<P=ij+1»..ij+h

is free of rank 1 over A/I for h = 1,...,d;, which is the assertion (52) that we had
to prove. O

Note that the theorem implies that k,, — k,, is constant on the total reducibility
locus whenever n and m are in the same o-orbit.

Corollary 4.4.5. — Assume (INT) and that the permutation o is transitive.

(i) Every difference of weights kn, — Kk, is constant on the total reducibility locus.
(ii) Assume moreover that one weight K, € A/l is constant, and that for some i
we have Homg, (i, pi(—1)) = 0. Then p; is crystalline.

Proof. — The assertion (i) follows immediately from the second assertion of Theorem
4.44.

As a consequence, if k., is constant for some m, every k,, is constant on the total re-
ducibility locus. By Theorem 4.4.4 and Proposition 2.3.3, this means that each p;, seen
as a representation p; : G — GLy,(A/I), Ip C I C A, is Hodge-Tate. On the other
hand, each p; is a trianguline deformation of the non critically refined representation
(Pj, F,;) again by Theorem 4.4.4, hence p; is crystalline by Proposition 2.5.1. (]

It turns out that the “non-trianguline” part of Theorem 4.4.4, namely that the
Kn — Ko(n) are constant on the total reducibility locus, can be also proved even if we
do not assume (INT), but instead the different kind of assumption:

(HT’) For each k € {1,...,d}, A¥p, has distinct Hodge-Tate weights.
Theorem 4.4.6. — Assume (HT’) (or (INT)). Then for alln=1,...,d,

(Ko(n) = £n) = (Ka(n)(2) — Kn(2)) € Ip

In other words, Kq(n) — kn s constant on the total reducibility locus.

Of course, part (i) of Corollary 4.4.5 also holds assuming (HT’) instead of (INT).

Proof. — 1t is obviously sufficient to prove that for all k¥ in {1,...,7}, we have
k
(54) Z (K'a(") — Kn — (’ia(n)(z) - Kfn(z))) € Ip.
n=1

We consider the family (X, A*T). As seen in §4.2.4, this family is naturally weakly
refined, with same set Z,

(55) F=

n

F,,

k
=1
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and first weight

k
(56) K= Z Koy

As already explained in the proof of Theorem 4.4.1 this family satisfies all the hy-
potheses of §4.3.1, and we want to apply to it Theorem 4.3.4.

For this, we note first that the (unique by (REG)) irreducible subrepresentation of
A¥p, that has the p-eigenvalue p*(*) F(2) in its Deyys is the one denoted P(a;) above,
with a; being, for i = 1,...,r, the numbers of n < k such that p*~(*)F,(z) is an
eigenvalue of D¢;ys(p;). In other words, a; is the number of n € {1,...,k} such that
n € R;, that is a; = |R; N {1,...,k}|.

It follows from (NCR) and Lemma 2.4.8 that Derys(p(a,)(k(2)))?=F(*) has weight
k'(z) — K(z), where k'(2) is the smallest weight of p(,,). Hence «/(2) is the sum, for

n=1,...,k of the sum of the a,, smallest weights of g,,. In other words,
k
(57) K’,(Z) = Z Kfa(n)(z)'
n=1

We now are in position to apply Theorem 4.3.4, which tells us that
K —k—(K'(z)—K(2) el

where I is the total reducibility ideal for the pseudocharacter A*T. But it follows
immediately from the definition of reducibility ideals and from hypothesis (MF’) that
I C Ip, the total irreducibility ideal of T'. So

K =k — (K (2) = 5(2)) € Ip,

which, using (56) and (57) is the formula (54) we wanted to prove. d

4.5. Results on other reducibility loci

It would be nice, and certainly useful, to have a result analogous to Theorem 4.4.6
for arbitrary reducibility ideals Ip, not only the total reducibility ideal. This result
should probably be that certain differences of weights k; — «;, for suitable couples
(¢,7) combinatorically defined in terms of the permutation o and the partition P,
should be constant of the reducibility locus attached to P.

But when we try to apply the methods used above, we get into trouble because
there does not exist in general a module My for I a subset of {1,...,r}, analogous
to the module M; for j € {1,...,r}, in the sense that for J a cofinite-length ideal of
A, the isotypic component of the p;, j € I in M;/JM; is free over A/J. This lack
of freeness prevents to apply the "constant weight lemma” to this module, and more
generally any of our main results of section 2. This may be a strong motivation to
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extend the results of section 2 to the non-free case, but this does not seem to be easy,
and we postpone this question to subsequent works (of us or others).

However, we can still get an interesting although much coarser result on arbitrary
reducibility loci by the method of our Theorem 9.1 in [8]. We shall give a sufficient
condition for the other (non-trivial) reducibility ideals at a point z to be torsion free.
This is equivalent to saying that the pseudocharacter T is generically irreducible over
every irreducible component of X through z.

As our result is coarse, we do not need for it our hypotheses of §4.4.1, so we release
(NCR), and (MF'), and we only assume below that z is a point of Z that satisfies
(REG). In that context the definitions of the subsets W; and R; (for i = 1,...,7) of
{1,...,d} in § 4.4.3 still make sense. For every P C {1,...,r} we define the subset
Wp :=[licp Wi and Rp := [[;cp Ri.

Theorem 4.5.1. — Let P = {P,Q} be a non-trivial partition of {1,...,r}. Assume
that Wp # Rp. Then Ip is a non-zero torsion-free ideal of A.

Remark 4.5.2. — In particular, if the permutation o of §4.4.3 is transitive, then the
hypothesis of this theorem holds for all P since o(Rp) = Wp. In this case, the conclu-
sion may be rephrased as: T is generically irreducible on each irreducible component
of X through z.

When p, is ordinary, the hypothesis of the theorem, for all P, is equivalent to the
transitivity of o. In general, the transitivity is a stronger assumption.

Proof. — Let K = [] K, be the total fraction ring of A. We have to prove that
IpK = K, that is that for all s, IpK; = K,. Replacing X by its normalization X , A
by its integral closure in K, the F; and k; by their composition with X —X , and
Z by its inverse image in X , we may assume that A is a domain, that X is normal
irreductible, and what we have to prove is now that Ip # 0.

Assume by contradiction that I» = 0. Then there are two A-valued pseudocharac-
ters Tp and T such that

T=Tp+Ty, and T.®k=) trp;.
icx

Reducing X, we may assume that X is an affinoid neighbourghood of z (note that
z € Z), that Tp and Tg take values in O(X), that for ¢ # j the k; — ; are invertible
on X (since so they are at z), and that Tp is the generic trace of a representation of G
on a finite type torsion free O(X)-module ), say M(X). By the maximum principle,
the v(F,),n=1,...,d are bounded on X. Hence Prop. 4.5.3 below implies that there

(15) As Tp is residually multiplicity free, the existence of such a module follows for example from
Lemma 4.3.7.
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isaset I C {1,...,d} and Z; C Z such that Tp is refined by the «,, the F,, forn € I
and Zl.
We now claim that the eigenvalues of the crystalline Frobenius on
(PP): = ®icpP
are the p*»(*)F,,(2) for n € I (in other words, we claim that we could assume that
z € Z1). Indeed, by Kisin’s theorem applied to the torsion free quotient of A*M(X)
(apply Theorem 3.3.3 to a flatification of the latter module as in the proof of Theorem

3.4.1),1 < k < |I| = dimTp and to the maximal ideal of A, we get denoting by I
the first k£ elements in I,

Dcrys(Ak(ﬁP)z)WZH"Uk @@ 4,

The claim follows from this and (REG).
By definition, we thus have Rp = I. Similarly, since the weights of g, are the k,(2),
n € I, we have Wp = I. But this implies that Wp = Rp, a contradiction. O

Proposition 4.5.3. — Let (X,T) be a refined family as above. We assume that X is
connected, that the k; — k; € O(X)* for all i # j, and that the v(F,), n=1,...,d
are bounded on X. If T = Ty + Ty where T;, i = 1,2 are pseudocharacters G — O(X),
then there is a subset I of {1,...,d} and a subset Zy of Z such that (X,T}) is refined
by(lﬁ) ((kn)ner, (Fn)ner, Z1)-

Remark 4.5.4. — As we saw in the proof of Theorem 4.5.1 we can actually enlarge Z;
to contain all the points of Z that satisfy (REG).

Proof. — We denote by (p1), (resp. (p2)z) the semi-simple representation of trace
the evaluation of T} (resp. T2) at z, so that we obviously have
(58) Pz = (P1)z ® (P2)a-

We first prove that there is an I C {1,...,d}, with |I| = dimTj, such that for
all z € X, the Hodge-Tate-Sen weights of (p1), are the k,(z), n € I. For this we
will only use property (i) of Definition 4.2.3 of a refined family. Since X is connected,
and the weights everywhere distinct, it is obviously sufficient to prove it when X is
replaced by any connected open subset U of an admissible covering of X. So we may
assume that X is an affinoid. Since O(X) is noetherian, and by replacing X by a finite
surjective covering if necessary, we may assume that there exists (see [8, Lemme 7.1])
a finite type torsion-free module M; (resp. M) on O(X) with a continuous Galois
action whose trace (defined after tensorizing by the fraction field of O(X)) is Ty (resp.
T»). Replacing X by a blow-up X’ as in Lemma 3.4.2, we may also assume that M,
M are locally free, and by localizing again, that X is a connected affinoid and that

(16) The implicit ordering on I here is the natural induced by {1,...,d}.
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M;(X), M2(X) are free modules. The Sen polynomial of the module M; & M, is
HZ=1(T — Kn). Since it is split and X is connected, it is easy to see that the Sen
polynomial of M; has the form [[,.c;(T — k») for some subset I of {1,...,d}. This
proves the first assertion.

Now choose an integer C greater than Zf_l supy v(Fy) and also greater than
d? + 1. Let z € Z¢. By (58), there is a subset J of {1,...d}, with |J| = dim T}, such
that the Frobenius eigenvalues of p(z) are p*(®) F,(z), n € J. By admissibility of
Dcrys((ﬁl)z)’ we have

Y ra(2) =Y (0(Fa(2)) + a(2)),
nel neJ
that is

k1(z) = k5(2) = ) v(Fa(2)),
neJ
where K, (Z) = ¢4 £n (). That implies

d
|k1(2) = ka(2)] < Y lo(Fa(2))] < C,

so by Lemma 4.5.5 below we have J = I. Thus it is clear that ((kn)ner, (Fn)ner, Z¢)
is a refinement of (X, T}). a

The following lemma is a formal consequence of property (v) of refined families.
Lemma 4.5.5. — Assume that C > d* + 1. If I and J are two distinct non empty
subsets of {1,...,d} with the same cardinality, then for all z € Z¢ we have

|kr(z) — ky(2)| > C.
Proof. — Let n+ 1 be the greatest integer that is in I or J but not both. We assume

that n+ 1 € I. In n = 1, then x1(2) — K5(2) = k2(2) — k1(2) and the lemma is clear
by definition of Z¢. So assume that n > 2. We have

k1(2) = £5(2) = Kng1(2) + Y @ra(2)
=1
with ¢ € {—1,0,1} and Y ;. ¢ = —1. By adding terms of the form r;(2) — x;(2), we
may write Y ;—; €ki(2) as —k,(2) plus a sum of at most (n + 1)2 < d? terms of the
form +(k;(2) — ki—1(2)), 2 < 1 < n. Those terms are, in absolute value, no greater
than |k, (2) — kn—1(2)| by definition of Z¢. Thus
|k1(2) = £3(2)| 2 [Knt1(2) = £ (2)] = &|Kn(2) = Kn—1(2)]-
By the definition of Z¢, and the fact that C > d? + 1, we thus have

lk1(2) — ky(2)] > (A2 + 1 — d?)|kn(2) = Kn_1(2)| > C. a
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CHAPTER 5

SELMER GROUPS AND
A CONJECTURE OF BLOCH-KATO

We recall in this section the Galois cohomological version of the standard con-
jectures on the order of vanishing of arithmetic L-functions at integers. The main
references are [23] and [55].

5.1. A conjecture of Bloch-Kato

5.1.1. Geometric representations. — Let E be a number field, p a prime and F
a finite extension of Q. Let

be a continuous representation of the absolute Galois group Gg of F, which is geo-
metric in the sense of Fontaine and Mazur (see [55]), that is:

e p is unramified outside a finite number of places of F,
® pigg, is De Rham for each place v dividing p.

It is known that the natural Galois representation on the étale cohomology groups
H.,(Xg, Zp) ®z, F(d),

where X is proper smooth over E and d € Z, is geometric. The Fontaine-Mazur conjec-
ture is the statement that every irreducible geometric continuous G g-representation
p is a subrepresentation of such a representation on an étale cohomology group.

5.1.2. Selmer groups. — We now define the Selmer group H}(E, p) of a geometric
representation p. This is the F-subvector space of the continuous Galois cohomology
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group ) H'(GE, p) that parameterizes the isomorphism classes of continuous exten-
sions

(59) 0—p—U—F —0,

where F' denotes the trivial F|[G g]-module, satisfying for each finite place v of E:

i) dim U =1 + dim p’* if v does not divide p,
ii) dim Derys(Ujg,) = 1+ dim Derys(pje, ) if v divides p.

For example, such an U is unramified (resp. crystalline) at a place v whenever
p is. Moreover, at places v dividing p, condition ii) implies dim Dgr(Ujg,) = 1 +
dim Dgr(p|c,) so U is De Rham since p is. In particular, U is geometric. As a conse-
quence (see e.g. [104, Prop. B.2.7]), H}(E, p) is a finite dimensional F-vector space.

Similarly, if v is a place of E and p a continuous representation of Gg,, we define
the local Selmer group H}(E,, p) as the subspace of H'(E,, p) that parameterizes the
extensions of 1 by p that satisfy condition i) if v is prime to p, or condition ii) if v
divides p.

Remark 5.1.1. — i) The formation of H}(E, p) commutes with any finite extension
of the field F of coefficients of p.

ii) The functors V +— VI and V + Dgys(V) (on the category of continuous
F[GEg,]-modules) being left exact, both conditions i) and ii) may be viewed as
the requirement that they transform the short exact sequence (59) of F[Gg]-
modules into a short exact sequence of vector spaces.

iii) By Grothendieck’s l-adic monodromy theorem, condition i) is automatic if
(U™)** does not contain the cyclotomic character.

Example 5.1.2. — i) Assume that p = Q,(1) is the cyclotomic character. Kummer
theory (or Hilbert 90) shows that there is a canonical isomorphism

E*®2Q, — H'(E,Qy(1)).

Under this identification, it is well known that ® O3,®2Q, — H}(E,Qy(1)).
If we relax the hypothesis f at a finite set S of places of F, we get S-units
instead of units of E.

ii) Assume that A is an abelian variety over E and take p = T,(A) ® Q,. Then
it known that the f condition at a place v cuts out precisely the elements of

(1) For the basic properties of continuous cohomology in this context, see e.g. [104, App. B].
(2) First show the local analogue with E replaced by any E,, and conclude using the finiteness of
the class number of E.
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the H'(Gg,T,(A)) coming locally at v from an E,-rational point of A (when v
divides p, see [23]). The Kummer sequence becomes then:

0 — A(F) ®zQp — H}(E, Tp(A)) — Sha,(A) ® Q, — 0,

where Sha,(A) is the dual of the Tate-Shafarevich group of A. Assuming the
finiteness of the Tate-Shafarevich group, H} (E,Tp(A)) appears to be a purely
Galois theoretic description for A(E) ®z Q,.

5.1.3. The general conjecture. — Let p be as in §5.1 and fix embeddings Q —
Q, and Q — C.

It is expected that the Artin L-function L(p, s) attached to p and these embeddings
converges on a right half plane and admits a meromorphic (even entire when p is not
a Tate twist of the trivial character) continuation to the whole of C. This is known for
example when p corresponds to a cuspidal automorphic representation of GL,(Ag).
The general conjecture is then the following.

Conjecture 5.1.3. — ords—oL(p, s) = dimp H}(E, p*(1)) — dimp(p*(1))C=.

Note that this is a conjectural equality between two terms, the one on the left being
only conjecturally defined in general! There are more precise conjectures predicting
the leading coefficient of L(p, s) at 0, but we shall not deal with them in this book. In
view of Examples 5.1.2, the above conjecture generalizes the Dirichlet units theorem
(together with his theorem on the finiteness of the class number) and (assuming the
finiteness of the Tate-Shafarevich group) the Birch and Swinnerton-Dyer conjecture.

When p is a cyclotomic twist of a representation with finite image, the conjecture is
a theorem of Soulé [115]. Moreover, in the case n = 1 and F totally real or imaginary
quadratic, the conjecture follows from Iwasawa’s main conjecture for those fields,
proved by Wiles and Rubin respectively. Aside from some sporadic results concerning
the sign conjecture (see below), only a few cases are known when n =2 and E = Q,
and then the terms in the equality are 0 or 1 (Wiles, Rubin, Gross-Zagier, Kato).
Needless to say, each of those particular cases is a very deep theorem.

Remark 5.1.4. — Assume that p is pure of motivic weight w. Apart from the case
where w = —1, the conjectural left hand side of the equality in Conjecture 5.1.3 can
be defined explicitly without any mention of L-function.

i) (w < —2) Indeed, if w < —2, then 0 > 1 + w/2 should be in the domain of
convergence of the Euler product defining L(p,s) by Weil’s conjectures, thus
ords=oL(p, s) should be 0 (and so should be H}(E, p)). If w = —2then 0 is
on the boundary of the domain of convergence, and a conjecture predicts that
in this case ord,—oL(p, s) should be —dim(p*(1))® (this is known when p is
automorphic, cf. [68]).
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ii) (w > 0) Recall that we expect a functional equation
(60) A(p,s) = (p, s)A(p"(1), —5)

where A(p, s) is the completed L-function, a product of L(p, s) by a finite number
of some simple explicit I'-factors (see [116] for the recipe). Since p*(1) has weight
—w — 2, and by i) above, the term ord;_oL(p, s) is determined when w > 0 by
the order of the poles of the I'-factors.

However, although we can predict the integer of Conjecture 5.1.3 when w # —1,
it is still completely conjectural that dimp H}(E, p) is actually this number. When
w = —1, e.g. as in the Birch and Swinnerton-Dyer conjecture, the situation is even
much worse (and more interesting) as the integer in question is completely mysterious.

5.1.4. The sign conjecture. — Among the cases where the motivic weight of p
is —1, of special interest are the ones where (®) A(p) = A(p*(1)), that is where the
equation (60) takes the form:

(61) A(pv S) = 5(/7, S)A(p, _3)7
In this case, 0 is the “center” of the functional equation of p, and we have
€(p,0) = £1.

This number is called the sign of the functional equation of p (or shortly the sign
of p). As the I'factors do not vanish on the real axis, Conjecture 5.1.3 leads to an
important special case, that we will call the sign conjecture:

Conjecture 5.1.5. — Assume p satisfies (61). If €(p,0) = —1, then
HY(B, p*(1)) £0.

Remark 5.1.6. — (i) The sign conjecture for E = Q implies the sign conjecture for
any E. For if p is a geometric irreducible representation of Gg whose functional
equation satisfies (61) with sign —1, 7 = Indgg p is a semi-simple representation
of Gg with same sign, isomorphic Selmer group, and satisfies 7 ~ 7*(1) by
Lemma 5.1.7. It follows that 7 is a direct sum of a subrepresentation 7o @ 75 (1)
(whose sign is 1) and of irreducible subrepresentations 71, ..., 7; such that 7; ~
7¥(1) for ¢ = 1,...,l. Since the product of the signs of the factors of a direct
sum is the sign of that direct sum, if p has sign —1 there must be an i such that
7; has sign —1. Thus the sign conjecture for Q asserts the existence of a non
zero element in H}(Q,7;), hence in H}(Q,7) = H(E, p).

(3) Of course, this happens for instance when (60) holds and when p (or some Galois conjugate) is
isomorphic to p*(1), see Lemma 5.1.7 below.
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(ii) Even if the analytic continuation at 0 of L(p, s) is not known, it is possible to
give a non conjectural meaning to the sign €(p,0) (which is a product of local
terms), hence to the sign conjecture (see [57, §3]).

As an exercise, let us determine when equation (61) holds. We need a notation:
for 0 € Aut(E), we denote by p° the representation (well defined up to isomorphism)
g+ p(rgr™1) where 7 € Gy is an element inducing o on E.

Lemma 5.1.7. — We assume (60). Then equation (61) holds if there erists a o €
Aut(E) such that p*(1) ~ p°. When E is Galois (resp. E = Q) and p is irreducible
(resp. semisimple), the converse holds.

Proof. — In view of equation (60), equation (61) holds if and only if p and p*(1) have
equal A-functions. As any o € Aut (F) induces a norm-preserving bijection on primes
ideal of E, it is clear that A(p,s) = A(p?,s) and the first assertion follows.

For the converse, it is enough to show that when E is Galois, if two irreducible,
continuous and almost everywhere unramified, representations p and p’ of Gg have
the same L-function, there exists a o € Gal(£/Q) such that p ~ p’. When E = Q
and p and p’ are more generally semisimple, that is true because they have equal
characteristic polynomials of Frobenii for almost all p, hence p ~ p’ by Cebotarev’s
theorem. Now for E any number field, if p and p’ are semi-simple representations of
GEg having the same L-functions then this still holds for Indggp and Indg§ o’ which
hence are isomorphic. Taking the restrictions to Gg, we find that if E is Galois, we
have

EBoEGal(E/Q)pU ~ @oeGal(E/Q)P-

Hence, if p is irreducible, then it is isomorphic to a p°. O

5.2. The quadratic imaginary case

5.2.1. Assumptions and notations. — Throughout this paper, we will assume
that E is an imaginary quadratic field, and we shall denote by o a complex con-
jugation in Gal(E/Q), and by c its image in Gal(E/Q), so that 02 = ¢> = 1. For
U any representation of Gg, we set U?(g) = U(cgo) and we denote by UL of the
representation
Ut = (U°)*.

We shall fix a continuous geometric n-dimensional representation p of Gg over F', and
we shall assume that

(62) ppt(1).
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Hence p should satisfy Equation (61) by Lemma 5.1.7. Note that in this case
H} (B, p*(1)) ~ H}(E, p°) ~ H}(E, p).

Our main objectives are, assuming some widely believed (and that might well be
proved soon) conjectures in the theory of automorphic forms:

(1) to prove the sign conjecture for such p;
(2) to give a lower bound of the Selmer groups H}(E, p) depending on the geometry
of an explicit unitary eigenvariety, at an explicit point.

5.2.2. An important example. — Aside from the case n = 1, which is already of
interest, an important class of examples is provided by base change to E of classical
modular forms.

Let k£ be an even integer, N an integer prime to p, and f a normalized cuspidal
newform for I'o(N). If F denotes the completion at a place dividing p of the field of
coefficients of f, we shall denote by ps the representation Gog — GL2(F') attached
to f and normalized in such a way that p}(1) ~ py and that det(py) is the cyclotomic
character. (This uses that k is even: ps is the twist of the usual normalization by
Qp(k/2).) In particular, ps has weight —1. We note ps g the restriction of ps to Gg.
Obviously pys g satisfies (62). For suitable choices of E, the Selmer group of ps g
turns out not to be bigger than the Selmer group of py, as the following well known
proposition shows.

Proposition 5.2.1. — Let f be as above, and S any finite set of primes. There is an
imaginary quadratic field E, split at every prime of S, such that ps g is irreducible
and

H}(Q, ps) = H{(E, py,p).

Proof. — Indeed, we have H}(E, Pf.E) H}(Q, pr)® H}(Q, pf ® xg) where xg is
the non trivial quadratic character of Gg with kernel Gg. By the main result of [66],
generalizing [121], there is an infinite number of quadratic imaginary fields E that
split at every prime of S and such that L(py ® xg,0) # 0. For such an E, [70, Thm
14.2 (2)] proves that H} (Q,ps ® xg) = 0, hence the proposition. a

5.2.3. Upper bounds on auxiliary Selmer groups. — In [5] as well as in sub-
sequent works using an automorphic method to produce elements in Selmer groups
([112], [8], this book), an important input is a result giving an upper bound (for
instance, 0) on the dimension of auxiliary Selmer groups.

The most elementary case of such a result is the next proposition, which is of
crucial importance in both proofs of chapter 8 and 9. It would become false if E were
replaced by a CM field of degree greater than or equal to 2, and it is actually the only
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point in the proof of the sign conjecture where the fact that E is quadratic is really
used.

Proposition 5.2.2. — We have H}(E,Qy(1)) = 0.

Proof. — By Example 5.1.2(1), H}(E, Qp(1)) is isomorphic to OF ®z Q,, which is 0
as Oy, is finite. d

This vanishing result turns out to be the only one necessary to the proof of the
sign conjecture. However, we shall need quite a number of other vanishing results to
get our second main result. The easiest ones are dealt with the following proposition.

Proposition 5.2.3. — i) H{(E,Qp) =0,
ii) H{(E,Qp(—1)) = 0. Moreover, for e = %1, the subspace of HY(E,Qu(-1)) pa-
rameterizing extensions U of Qu(1) by Qp such that UL (1) ~ €U (as extensions)
has dimension < 1.

Proof. — Let U be a Gp-representation which is an extension of Q, by Q,. Recall
that U is crystalline (resp. Hodge-Tate) if and only if it is unramified. Indeed, the only
non trivial fact is to show that “U is Hodge-Tate” implies “U is unramified”, but this
follows for instance from the following general result of Sen [107, §3.2, Corollary|: in
any Hodge-Tate representation of G, with all of its Hodge-Tate weights equal to 0, the
inertia acts through a finite quotient. So H}(E, Qp) = Hom(Gal(E""/E),Qp) where
E*" is the maximal unramified everywhere algebraic extension of E. By class-field
theory we thus have
HY(E, Q) = Cl(Or) ®2.Q, =0,

which proves (i). It is well known that part (ii) follows from results of Soulé and from
the invariance of Bloch-Kato conjecture under duality. For sake of completeness, we
give an argument below.

First, note that if F//Q, is a finite extension, Bloch-Kato’s theorem shows that
H}(F, Qp(—1)) = 0 (see e.g. formula (43) in the proof of Thm. 2.5.10). By Soulé’s
theorem [115, Thm. 1]

H2(Os(1/],Qp(2)) = 0.
The version of Poitou-Tate exact sequence given in [55, prop. 2.2.1] shows then that
H}(E ,Qp(—1)) = 0 when applied to the Galois module Q,(2). So we get an injection

H'Y(E,Qy(~1)) — P H'(E., Qp(-1)),
ulp
which is compatible with the operation U — U? on the domain and the exchange of

v and ¥ on the range when p = v splits in E. We conclude as H'(E,, Q,(—1)) has
dimension 1 by Tate’s theorem. O
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The two other vanishing results we will need are somehow deeper. Since they are
expected to be proved by completely different methods (e.g. using Euler systems)
than those used in this paper, it would be artificial to limit ourselves to the case
where those results have actually been proved, hence we take them as assumptions as
follows.

Hypothesis BK1(p). — H}(E,p(—1)) = 0.

Hypothesis BK2(p). — Every deformation p of p over Fle] (the ring of dual num-
bers) that satisfies p-(1) ~ p and whose corresponding cohomology class lies in (4
H}(E,adp) is trivial.

Remark 5.2.4. — Note that both hypotheses should follow from Conjecture 5.1.3 for
any p that is pure of weight —2 (for BK2(p)) or —3 (for BK1(p)), and they are precisely
in case i) of Remark 5.1.4. Fortunately, those assumptions have already been proved
in interesting cases.

This conjectural vanishing of H } (E, adp) is actually fundamental for understanding
eigenvarieties. Intuitively, it can be understood as follows. Let

R:Gg — GL,(L{t))

be a continuous morphism, where L(t) is the Tate algebra over L, and assume that
for each t € Z,, the evaluation R, of R at t is a geometric irreducible representation.
Then the Fontaine-Mazur conjectures implies that R is conjecturally constant (up to
isomorphism). Indeed, each R; is conjecturally cut out from an E-motive. But there
is only a countable number of such motives, hence of tr (R;), so tr (R) is constant.
The assertion H} (E,adp) = 0 is actually a slightly stronger variant of that fact, in
which we replace the Tate algebra L(t) by L[t]/t.

Proposition 5.2.5. — BK1(p) holds in the following two cases:

i) n =1 and 0 is not a Hodge-Tate weight of p.
i) n =2 and p is of the form ps g (using notations of § 5.2.2) for some eigenform
f of weight k > 4.

Proof. — By the theory of CM forms, case i) follows from case ii), which in turn is a
result of Kato [70, Thm. 14.2 (1)]. |

Proposition 5.2.6. — BK2(p) holds if n = 1 or if n = 2 and p is of the form ps g
whenever f is not CM and satisfies one of the following conditions:

(i) At every prime | dividing N, f is either supercuspidal or Steinberg.

(4) Or, in an equivalent way, such that for each finite place w, f\E,, is geometric (automatic condition
if w is prime to p) with constant monodromy operator acting on Dpst(f|£,, )-
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(ii) The semi-simplified reduction ps of py is absolutely reducible, and is (over an
algebraic closure) the sum of two characters that are distinct over Go(¢, o) -

(ili) For any quadratic extension L/Q with L C Q({p3), (Pf)|c, is absolutely irre-
ducible.

Proof. — Let x : Gg — F* be any geometric character. Every deformation of x to
Fe] whose associated class lies in H}(E, ad(x)) is trivial by Prop. 5.2.3 i), as ady is
the trivial character. In particular, BK2(p) holds for n = 1.

Assume now that p = py g as in the statement. Let

ﬁ : GE — GLz(F[E])

be a lift of p such that 5 ~ p*(1), and whose associated class in H!(E,adp) belongs
to H}(E, adp). By the previous case, the character det(p) is constant, hence equals
det(ps,r) = Qp(1). As for any 2-dimensional representation over any ring, we have
p =~ p* @ det p, thus we get

p ().
Together with the hypothesis p ~ (1), we get p ~ 5°. That is, there is an A €
GL2(F[e]) such that for all g € Gg,

Ap(9)A™! = p(oga™).
Since 02 = Id, A? centralizes p(Gg). As psg is absolutely irreducible we have
A[p(GE)] = My (F[e]), so A2 = X for some A € F[e]*. If A denotes the reduction
of A modulo ¢, we have for all g € Gg
Ap(g9)A™" = ps(a)p(g)ps(a™),

thus A=1ps(0) centralizes p(Gg). Thus we have A = pps(o) for some p € F*. In
particular A = A2 = u? (mod €). Let fi be the square root of X in F[e]* lifting . For
g € Gg, set pr(og) = i~ *Ap(g) and ps(g9) = p(g): this defines a deformation

ﬁf : GQ — GLz(F[&])
of py whose restriction to Gg is p.

Since (pf)|g = P is geometric, so is . But such a deformation of py is trivial by
[74, Theorem, page 2] in the cases (ii) and (iii), and by [122, theorem 5.5] in case (i),
hence so is its restriction p. O

We shall actually use assumption BK1(p) to bound the subspace

Hj (E,p(-1)) C H'(E,p(-1))

parameterizing extensions that satisfy condition i) of § 5.1.2 but not necessarily con-
dition ii).
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Proposition 5.2.7. — Assume that p = vv’ splits in E, that p,p~2 are not eigenvalues
of the crystalline Frobenius on Derys(piag,), and that 0 and —1 are not Hodge-Tate
weights of pig, - Then

dimpg H},(E, p(=1)) < n+dimp H}(E, p(-1)).
In particular, if BK1(p) holds we have dimp H},(E, p(=1)) < n.
Proof. — We have by definition an exact sequence
0— H}(E’ p(—l)) - H}’(E7 p(_l)) - Hsl(Eva p(_l)IGEU)XHsl(Ev'vp(_l)lGEv, )’
where H;(E,,—) := H'(Ey,—)/H}(Ey,—). Since p= ~ p(1), the last term of the
exact sequence above is isomorphic to

H;(E,, W) ® H,(E,, W*(-1)),

where we have set W = p(—1)|g, - In order to conclude, it is enough to show that
the dimension of this latter sum is < n. ‘

For any de Rham p-adic representation U of Gal(@p /Qp), Bloch-Kato’s computa-
tion [23, Cor. 3.8.4] (see also the proof of Theorem 2.5.10), together with Tate’s Euler
chararacteristic formula for dimg(H'(Q,,U)), imply that
dimp(H2(Qp, U)) = dimp(U)+dimp (H®(Qp, U*(1)))—dimp(Dpr(U) /Fil®(Dpr (V))).
The proposition would then follow from the two following facts:

dimp (Dpr(W)/Fil’(Dpr(W))) + dimp (Dpr(W*(~1))/Fil’(Dpr(W*(-1)))) = n,
H®(Qp, W*(1)) = H%(Qp, W(2)) = 0.

The sum in the first formula is the number of Hodge-Tate weights of W (with multi-

plicities) which are either < 0 or > 1. As neither 0 nor 1 is a Hodge-Tate weight of W

by assumption, the equality holds. The second equality also holds, by the assumption
on the eigenvalues of the crystalline Frobenius. O
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CHAPTER 6

AUTOMORPHIC FORMS
ON DEFINITE UNITARY GROUPS:
RESULTS AND CONJECTURES

6.1. Introduction

This chapter recalls or proves all the results we shall need from the theory of
representations of reductive groups and of automorphic forms.

As explained in the general introduction, the main steps of our method regarding
the proof of our two main theorems are, very roughly, as follows: starting with an n-
dimension Galois representation p such that e(p,0) = —1, we construct a very special,
non tempered, automorphic representation 7™ for a unitary groups in m = n + 2
variables. We deform it p-adically, in other words, we put it in an eigenvariety of the
unitary group. We associate to this deformation of automorphic forms a deformation
of Galois representations, or rather, a Galois pseudocharacter on the eigenvariety
of the unitary group. This Galois pseudocharacter gives us the desired non trivial
elements in the Selmer group of p.

Unfortunately, some results needed to make work two of those steps in their nat-
ural generality have not yet been published or even written down: the first step, the
existence of the “very special” automorphic representation 7™, has been announced,
but a written proof is only available in small dimension, namely m < 3; the third step
relies on the existence and the basic properties of the Galois representations attached
to (some) automorphic representations of unitary groups. Here again the desired re-
sults are only known for m < 3. Fortunately, this result is also in the process of being
proved: it is one of the main goals of an ambitious project gathering many experts
and participants of the GRFA seminar of the “Institut de mathématiques de Jussieu”
in Paris, under the direction of Michael Harris. Their work should result in a four-
volumes book ([60]) in the next few years that is expected to contain a construction of
the Galois representations attached to automorphic forms on unitary groups in many
cases, and in particular in the cases we need. An important input in this project is
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the recent proof by Laumon and Ngo of the so-called fundamental lemma for unitary
groups.

In this chapter we formulate the two needed results as conjectures (namely con-
jecture REP(m) on Galois representations attached to automorphic forms on unitary
groups with m variables, and conjecture AC(7) on the existence of the automorphic
representation 7" constructed from the automorphic counterpart 7 of p), and we shall
assume those conjectures in the proof of our main theorems in chapters 8 and 9. In
view of the situation explained above, it would have been pointless to limit ourselves
to the case where the needed results are already written down.

The main reason for which we are able to write down some still unwriten results
and rely confidently of them is not that we are told they will be proved very soon, but
because they are part of a much larger and very well corroborated set of conjectures
called “the Langlands program” (and its extension by Arthur).

We believe it will be of interest to explain in greater detail how our conjectures
(and much more) appear as consequences of the Langlands program, and in particular
how the existence of our very special non tempered automorphic forms is enlightened
as a special case of the beautiful “multiplicity formulas” of Arthur. This is the aim
of the appendix to this book, that recalls the part of the Langlands and Arthur’s
program that we need, and where we show how our conjectures follow from theirs. This
appendix may be read independently, as an introduction to Langlands and Arthur’s
parameterizations and multiplicity formulas. Although logically independent of it, the
rest of the chapter will make frequent references to this appendix for the sake of the
reader’s intuition.

Although we may expect that results much more general than the modest conjec-
tures we state to be true, and even to be proved soon, we made a great deal of effort,
in this chapter and throughout this book, to keep our conjectural input to the theory
of automorphic forms at the lowest possible level. One reason for doing this is obvious:
the weaker the assumptions we have to assume, the stronger is our result, and the
sooner it will become an unconjectural theorem. Another more serious reason is that
part of our work (especially chapter 7) is also expected to be used in the book [60] for
the construction or the proof of some properties of the Galois representations in some
“limit” cases which one can not handle with a direct comparison of trace formulae.
So the logical scheme would be as follows: in [60] should be proved “directly” for a
quite “generic” set of automorphic representations the existence and properties of the
associated Galois representations, which should be enough to check our conjecture
Rep(m). In turn, our work on eigenvarieties should complete the picture by providing
existence and properties of the Galois representations attached to the remaining (co-
homological) automorphic forms. For example, our conjecture Rep(m) only requires
the Galois representations for automorphic forms of regular weights. To give another
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example, our method (hence our conjecture Rep(m)) makes no irreducibility hypoth-
esis on the Galois representations, () but instead may be used to prove many cases of
irreducibility (see e.g. Theorem 7.7.1).

Let us now explain more specifically the content of the chapter.

The subsection §6.2 deals with some general facts about unitary groups, with
an emphasis on the definite ones and their automorphic representations. We define
explicitly the unitary groups U(m) we will work with. We need a group that is quasi-
split at every finite place (otherwise, the representation 7" can not be automorphic, as
explained in the appendix - see Remark A.12.4), but that is also compact at infinity -
so that we can apply the theory of eigenvarieties of [36]. (2) This leads to the restriction
that m # 2 mod 4.

The subsections §6.3 to §6.7 are local preliminaries. The short subsection §6.3
recalls the local Langlands correspondence for GL,,, as characterized by Henniart
and proved by Harris and Taylor. It will be used very frequently. The subsection § 6.4
develops the theory of refinements (sometimes called p-stabilizations) of unramified
representations of GL,, (Q,) which a representation theoretic counterpart of the theory
of refinements of crystalline Galois representations that we explained in chapter 2.
We invite the reader to look at the introduction §6.4 of that subsection for a more
precise discussion on this concept. The subsection § 6.7 recalls two descriptions of the
continuous irreducible representations of the compact group U(m)(R) and compares
them.

Next come two other subsections of local preliminaries. They are both devoted to
the crucial question of monodromy. ) By “monodromy” of an admissible irreducible
representation m; of U,,(Q;) we mean the conjectural notion encoded in the nilpotent
element that appears as part of the conjectural morphism of the Weil-Deligne group
of Q; to £U(m) attached to m;. Concretely, what we need is threefold. We need to
give a non-conjectural meaning to expressions such as “m; has no more monodromy

(D) Let us say that this is anyway a subtle point, as only the stable tempered automorphic represen-
tations should have irreducible associated Galois representations, and this property is very hard to
detect in practice. This actually introduces an extra difficulty in the applications to the construction
of nontrivial elements in the Selmer groups that we will explain how to circumvent. This feature was
already present in [8], but was absent of the earliest stages of the method, like in [5] or later in [112].
(2) Note that we may not use in this context the construction of p-adic families announced recently
by Urban, since the “virtual multiplicity” of our #™ might be zero.

() Let us say that monodromy is bound to play a crucial role in our final arguments. Indeed, it
follows from the Arthur multiplicity formula that under the hypothesis £(p,0) = 1 (not —1) there
should exist an automorphic representation n/™ for U(m), isomorphic to 7™ at every place except
one, say | with ! inert in the splitting quadratic field E of U(m), and such that 7' has the same
L-parameter as ' on Wy, but a greater monodromy. If it was possible to apply our method to 7'",
it would eventually lead to a construction of a non-trivial element in the Selmer group of p, element
which should not exist when L(p,0) # 0 according to the conjecture of Bloch-Kato. This shows that
a precise control of monodromy has to play a role in our argument.
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that 7}” or “m; has no monodromy at all”. We need tools to be able to show in chapter
7 that some full irreducible components of the eigenvarieties of U(m) containing =™
“have no more monodromy at every place [ than #}* has”. Finally, we need to be able
to translate this “control on monodromy of m;” into a control on the action of the
inertia subgroup at [ on the Galois representations attached to w. The latter is a part
of our conjecture Rep(m). The objective of §6.5 and §6.6 is to meet the two first
needs.

In §6.5, we deal with the monodromy of representations of U(m)(Q;) for [ split in
E, that is for GL,,(Q;). In this case the meaning of the monodromy is non conjectural,
thanks to the local Langlands correspondence, that associates to a representation
a conjugacy class of nilpotent matrices N(m;) € GL,,(C); we can simply say that
has more monodromy than = if the closure of the conjugacy class of N(m;) contains
N(m}). To be able to control the variation of the monodromy in a family of such 7y,
we use then the existence of some particular K-types. As we shall see, this will fullfill
our second need since a general property of the eigenvarieties we will study is that the
locus of points whose associated U(m)(Q;)-representation contains a given K-type
is a union of irreducible components (this actually holds for every ). Of course, the
simplest example of such a K-type is the trivial representation of GL,,(Z;), which
cuts out precisely the unramified constituent of the unramified principal series (that
is, the non monodromic ones). For a general monodromy type, we use suitable K-
types that have been constructed by Schneider and Zink (see §6.5). Note that the
types constructed by Bushnell and Kutzko are a priori of no use for our purposes
because they “do not see monodromy”. However, let us stress that the construction of
Schneider and Zink actually relies on those types.

In §6.6, we deal with representations of U(m)(Q;) for ! inert or ramified in E. The
group U(m)(Q;) is a quasi-split group, but it is not split, and the situation in this
case is much less favorable. First we do not know the local Langlands correspondence
for those groups, neither we know the base change to GL,,/E (from a conjectural
point of view, see the final appendix). Hence there is no obvious way to define “having
less monodromy than” or “having no monodromy at all” for a representation m of
U(m)(Qy). Even worse, we were not able to come up with a plausible characterization,
in terms of group theory, of those irreducible admissible representations of U(m)(Q;)
that conjecturally have no monodromy ). Second, there is no theory of types & la
Bushnell-Kutzko for U(m)(Q;), m > 3, not to speak of a theory a la Schneider-
Zink. The first solution we imagined to solve those problems was to avoid them:

(4) To convince the reader that this question is not easy, let us say that for m = 3, there is a
supercuspidal representation of U(3)(Q;), discovered by Rogawski and called m*, whose base change
has a non trivial monodromy. See § A.10 in the final appendix.
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that is, to assume all our automorphic representations to be unramified (®) at inert or
ramified /. An unramified representation should certainly be “non-monodromic”, and
unramifiedness is easy to control in deformation as explained in the GL,,-case above.
But the problem is: for odd m, there is no representation of U(m) of the form =™
that is unramified at ramified primes. ) So this assumption is much too restrictive.
Instead, we introduce a special class of principal series representations of U(m)(Q;)
that certainly should have no monodromy, and which will enable us to deal with a
large number of p also when m is odd. We call those representations Non Monodromic
(Strongly Regular) Principal Series. We show in § 6.6 that to be a non monodromic
principal series is a constructible property in a family.

After these local preliminaries, we turn to global questions. In subsection §6.8,
we state our assumption Rep(m) on existence and simple properties of the Galois
representations attached to (some) automorphic forms of U(m). In subsection §6.9
we construct place by place a representation 7" of U(m)(Ag) starting from a cuspidal
automorphic representation 7 of GL,, (Ag) satisfying some properties (recall that m =
n + 2). We then state as a conjecture AC(7) (even if as we said earlier this has been
announced) that this 7™, under the assumption that e(m,1/2) = —1, is automorphic.

6.2. Definite unitary groups over Q

6.2.1. Unitary groups. — Let k be a field, F/k an étale k-algebra of degree 2 with
non trivial k-automorphism c, and A a simple central E-algebra of rank m? equipped
with a k-algebra anti-involution z — z* of the second kind, i.e. coinciding with ¢ on
E. We can attach to this datum (A, %) a linear algebraic k-group G whose points on
a k-algebra A are given by

G(A) = {z € (A ®; A)*,za* = 1}.

The base change G Xy, E is then isomorphic to the E-group A* of invertible elements
of E, hence G is a twisted k-form of GL,,. Actually, as is well known, every twisted
k-form of GL,, is isomorphic to such a group.

Example 6.2.1. — They are two different cases.

(5) Recall that the notion of unramified representation makes sense for any quasi-split group: it
means having a non-zero fixed vector by a “very special” maximal compact subgroup, in the sense of
Labesse.

(6) More precisely, for odd m any discrete automorphic representation @ of U(m) whose A-packet
lies in the image of the endoscopic transfert L' (U(n) x U(2)) — LU(m) has the property that its
base change mg to GLy /E is ramified at each prime of E ramified above Q (see the appendix § A.9).
The reason is that for odd m the aforementionned L-morphism contains in its definition a Hecke
character p of E such that ut = u but which does not descend to U(1). Such a Hecke character is
automatically ramified at the primes of E ramified over Q (see §6.9.2).
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i) If E 5 k x k, then A =5 A; x Ay and * : A; — AP is an isomorphism.
In this case, the choice of i € {1,2} induces a k-group isomorphism G — A}.
In particular if A —» M,,(E), then the choice of i determines a k-isomorphism
G =5 GL,, which is canonical up to inner automorphisms.

ii) If E is a field, then we say that G (and G(k)) is a unitary group attached to
E/k. When moreover A = M,,(E), then * is necessarily the adjunction with
respect to a non degenerate c-Hermitian form f on E™, hence G is the usual
unitary group attached to this form. If f is the standard anti-diagonal form

f(zei,ye;) = c()ydjm—it1,

then G is quasi-split, and will be referred in the sequel as the m-variables quasi-
split unitary group attached to E/k.

6.2.2. The definite unitary group U(m). — Suppose from now that k = Q, E
is a quadratic imaginary field, and assume that A = M,,(E) and * is attached to
some form f on E™ as in ii) above. Then G is a unitary group over Q. For each place
v of Q, the local component G xXg Q, is then the Q,-group attached to the datum
(A ®g Qy, *), hence by Example 6.2.1:

i) If p = zz' is a finite prime split in E, then « : E — Q, induces an isomorphism
G(Qp) = GLn(Qy),
ii) if p is inert or ramified, then G(Q,) is a unitary group attached to E,/Q,,
iii) each embedding E — C gives an isomorphism between G(R) and the usual real
unitary group U(p, q), where (p, q) is the signature of f on E™ ®@gR, p+q =m.

We say that G is definite if G(R) is compact, or which is the same if pg = 0. We
will be interested in definite unitary groups G with some prescribed local properties.
Their existence can be deduced from the Hasse’s principle for unitary groups over
number fields for which we refer to [40, §2] but for subsequent computations, it may
be useful to give them explicitly.

Let N : E — Q, z > zc(x) be the norm map, m > 1 an integer.

Definition 6.2.2. — U(m) is the m-variables unitary group attached to the positive
definite c-hermitian form g on E™ defined by

a((z1,- -, 2m)) = Y _ N(z).
i=1
Proposition 6.2.3. — (i) U(m) is a definite unitary group.

(ii) If I does not split in E, and m # 2 mod 4, then U(m)(Q;) is the quasi-split
m-variables unitary group attached to E;/Q.
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If m # 2 mod 4, the group U(m) is the unique m-variables unitary group attached
to E/Q that is quasi-split at every finite place and compact at infinity. If m = 2 mod 4,
there is no group with those properties.

Proof. — (i) is obvious and (ii) is an immediate consequence of Lemma 6.2.4 below,
since disc(q) = 1 (see [51, chap. VI] for the basics on hermitian forms and unitary
groups). The other assertions (that we shall not use) follow from Hasse’s principle
([40, §2]). a

In the following lemma, we write disc(q) € Q /N(E}) for the discriminant of a
non degenerate c-hermitian form g and denote by go the hyperbolic form go(z,y) =
%”—c—(ﬂ on E?. Note that disc(qo) = —1.

Lemma 6.2.4. — Let q be a non degenerate c-hermitian form on E™.

(a) If m is odd, then q is equivalent to

m—1

i qo(22i-1, 22i) + (—l)mT_ldisc(q)N(zm).

1=1

For \ € Qy, disc(A\g) = Mdisc(q), therefore there is a unique non-degenerate
c-hermitian form up to a scalar.
(b) If m is even, then q is equivalent to
mT—Z
Z q0(Z2i—1; z2i) + N(Zm_1) + (—1)%_ldisc(q)N(zm).
i=1

The indez of q is m/2 if and only if (—=1)™/2disc(q) € N(E}).

Proof. — Recall that a quadratic form on Q] with s > 5 always has a zero (see e.g.
(111, Chap. IV Thm. 6]). We may view E® as a QQ;-vector space of rank 2m and ¢
as a quadratic form on that space, so ¢ has a zero when m > 3. As a consequence, ¢
contains a hyperbolic plane and we may assume m = 2 by induction (or m = 1, but
this case is obvious). Applying the previous remark to the form g((21, 22)) — N(23) on
E?, we get that g(v) = 1 for some v € EJ*, which concludes the proof. O

6.2.3. Automorphic forms and representations. — Let G be a definite unitary
group. We denote by A the Q-algebra of Q-adéles and A — Ay the projection to the
finite adeéles. We have the following two important finiteness results:
i) As G(R) is compact, G(Q) is a discrete subgroup of G(Ay), hence for each
compact open subgroup K C G(Ay), the arithmetic group K N G(Q) is finite.
ii) By Borel’s general result on the finiteness of the class number ([25]), for any K
as above G(Q)\G(Ay)/K is finite.
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The space of automorphic forms of G is the representation of G(A) by right transla-
tions on the space A(G) of complex functions on X := G(Q)\G(A) which are smooth
and G(R)-finite. The space X is compact by i) and ii). It admits a G(A)-invariant
finite Radon measure, so that A(G) is a pre-unitary representation.

Lemma 6.2.5. — The representation A(G) is admissible and is the direct sum of ir-
reducible representations of G(A):
(63) A(G) = @ m(m)m,

where 7 describes all the (isomorphism classes of ) irreducible admissible representa-
tions of G(A), and m(n) is the (always finite) multiplicity of ™ in the above space.

It will be convenient to denote by Irr(R) the set (of isomorphism classes) of irre-
ducible complex continuous (hence finite dimensional) representations of G(R). For
W e Irr(R), we define A(G,W) to be the G(Af)-representation by right transla-
tions on the space of smooth vector valued functions f : G(Af) — W™ such that

f(79) = Yo f(g) for all g € G(Ay) and v € G(Q).

Proof. — As G(R) is compact the action of G(R) on A(G) is completely reducible,
hence as G(A) = G(R) x G(Ay) representation we have:

AG) = P WeMAG) ew)®,
welrr(R)
But we check at once that the restriction map f — flixga,) induces a G(Ay)-
equivariant isomorphism

(A(G) @ W*)C®) =, A(G,W).

As a consequence, ii) shows that A(G) is admissible, which together with the pre-
unitariness of A(G, W) proves the lemma. d

Definition 6.2.6. — An irreducible representation 7 of G(A) is said to be automorphic
if m(m) #0.

Let W € Irr(R) and let us restrict it to G(Q) < G(R). As is well known (see §6.7),
W comes from an algebraic representation of G, hence the choice of an embedding
Q — C equips W with a Q-structure W(Q) which is G(Q)-stable. As a conse-
quence, the obviously defined space A(G, W (Q)) provides a G(A s)-stable Q-structure
on A(G,W).

Corollary 6.2.7. — If m = o ® T5 is an automorphic representation of G, then 7y is
defined over a number field.
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6.3. The local Langlands correspondence for GL,,

Let m > 1 be any integer and p a prime. Let F/Q, be a finite extension, W its
Weil group, Ir C Wr the inertia group, and |.| the absolute value of F' such that the
norm of a uniformizer is the reciprocal of the number of elements of the residue field.
We normalize the reciprocity isomorphism of local class-field theory

rec : F* — W2P
so that uniformizers correspond to geometric Frobenius elements. By an m-
dimensional Weil-Deligne representation (r, N) of F' we mean the data of a continuous
homomorphism
r: Wgp — GL,(C)
such that r(Wg) consists of semi-simple elements, and of a nilpotent matrix
N € M, (C),

satisfying 7(w)Nr(w™!) = |rec™ ! (w)|N for all w € Wg.

Recall from [62, Thm. A] that the Langlands correspondence is known for the
group GL,,(F'), and we shall use it with the normalization given loc. cit. This param-
eterization is a bijection

™ L(m) = (r(m), N(m))
between the set Irr(GL,,(F')) of isomorphism classes of irreducible smooth complex
representations m of GL,,(F') and the set of isomorphism classes of m-dimensional
Weil-Deligne representations of F'. It satisfies various properties. For example:

— When m = 1, GL(F) = F*, we have N(x) = 0 and r(x) = x orec™! for any
smooth character x : F* — C*. In general, the L-parameter of the central
character of = is det(L(w)), and for any smooth character x : F* — C*,
L(m ® x odet) = L(m) ® L(x).

—  is superscuspidal (resp. ess. square integrable) if, and only if, L(r) is irreducible
(resp. indecomposable).

— If m; is an ess. square integrable representation of GL,,, (F), and Y, m; = m,
then @;L(;) is the L-parameter of the Langlands quotient (); 7; (when it makes
sense).

6.4. Refinements of unramified representations of GL,,

In this subsection, we explain some aspects of the representation theoretic coun-
terpart (") of the theory of refinements developed in Section 2. The simplest example

(") Actually, the theory developed in this part is comparatively much simpler than the Galois theoretic
one of Section 2, as we are reduced here to see refinements as some orderings of some Frobenius
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of this notion is the well known fact that any classical modular eigenform of level
1 (weight k, say) generates a two-dimensional vector space of p-old forms of level
T'o(p). These old forms all have the same Tj-eigenvalues for ! # p, and the Atkin-
Lehner U, operator preserves this two-dimensional space with characteristic polyno-
mial X% —t, X +pF~1.

From a representation theoretic point of view, this last computation is a purely
local statement, namely the computation of the characteristic polynomial of Up, a
specific element of the Hecke-Iwahori algebra, on the space of Iwahori invariants of a
given irreducible unramified smooth representation of GL2(Qp). In what follows, we
explain how this theory generalizes to GL,,(Q);), focusing essentially on the unramified
case. In [36, §4.8] and [8, §6], we explained how to deduce them from the Bernstein
presentation of the Hecke-Iwahori algebra. Here we use an alternative approach based
on the Borel isomorphism and the geometrical lemma.

6.4.1. The Atkin-Lehner rings. — Let F' be a finite extension of Q, with uni-
formizer w and ring of integer Or. We denote by G the group GL,,(F), B its upper
Borel subgroup, N the unipotent radical of B, and T the diagonal torus of G. Let
K := GL,(Or), T° = KN T, and let I be the Iwahori subgroup of G consisting of
elements of K which are upper triangular modulo w.

The Hecke-Iwahori algebra is the Z[%]—algebra CA(I\G/I, Z[%]) of bi-I-invariant and
compactly supported functions on G with values in Z[%], for the convolution product
normalized such that I has mass 1. If g € G, we denote by [IgI] the characteristic
function of Igl. We introduce now two important subrings of C.(I\G/I, Z[%]), that
we call the Atkin-Lehner rings following Lazarus. Let U C T be the subgroup of
diagonal elements whose entries are integral powers of w, U~ C U the submonoid
whose elements have the form

diag(w“‘,w“z, N ,w“’"), a; €Z, a;> a1 Vi

We define A, C C.(I\G/I,Z) as the subring generated by the [Iul], u € U. Recall
that for each u € U™, [Iul] is invertible in C.(I\G/1I, Z[%]) by [67, §3], hence it makes
sense to define also

1
Ap C Cc(I\G/I,Z[E])
as the ring generated by the elements [Iul], u € U, and their inverses.

Proposition 6.4.1. — (i) The subset M := IU~I C G is a submonoid, and the map
M — U, iui’ — u, is a well defined homomorphism.

eigenvalues in the complex world. The relation could certainly be pushed much further, in the style
of the work of M. Emerton for GL2(Qp) [52].
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(i) The map U~ — AZ, u > [Iul], extends uniquely to ring isomorphisms
ZIU~] = A, and Z[U] — A,.

We warn the reader that when m > 1, the above homomorphism does not in general
send u € U to [Iul], but rather on [Ial].[IbI]~! for any a, b € U~ such that u = ab™1.

Proof. — By [35, Lemma 4.1.5], M := [[,cy- Tul C G is a disjoint union, Yu,u’ €
U~, Iulvw'I = Iuv'I, hence M is a submonoid of G, and also [Iul].[Iu'I] = [Tuv'I],
which proves (i) and the first part of (ii). The proposition follows then from the easy
fact that U~ — U is the symmetrisation of the monoid U~. O

Example 6.4.2. — As a consequence of Prop. 6.4.1, we will systematically view A,-
modules as U-modules. For example, let m be a smooth representation of G, say with
complex coefficients. The vector space m! of Iwahori invariant vectors inherits a C-
linear action of C.(I\G/I, Z[;—,]), hence of A, hence is a U-module in a natural way.
It turns out that this U-module structure on 7/
7 via the following result of Borel-Casselman.

is related to the Jacquet-module of

If V is a representation of G, we denote by Vxy the Jacquet-module of V' with
respect to N (see e.g. §6.6.1), that is the space of coinvariants of N, with its natural
action of T'.

Proposition 6.4.3. — For any smooth complex representation = of G, the natural map
0
7'(I SN (FN)T ®6El,
is a C[U]-linear isomorphism.

Proof — As the [Iul] are invertible in the Hecke-Iwahori algebra, we have n! =

[Iul].w! for each uw € U~. The result follows then from Prop. 4.1.4 and Lemma 4.1.1
of [35], and from the fact that [[ullv = 65" (u)Pr(u(v)) for each u € U~ and v €
by Lemma 1.5.1 of loc. cit. (]

6.4.2. Computation of some Jacquet modules. — In order to use the previ-
ous result, we recall now the computation of the Jacquet module of some induced
representations, following [19]. Fix P D B a parabolic subgroup of G, L its Levi
component containing T'. Let x : L — C* be a smooth character, viewed also as a
character on P which is trivial on the unipotent radical of P. Denote by Ind$(x) the
unitary smooth parabolic induction of x, that is the space of complex valued smooth
functions f on G such that

f(pg) = x(p)5p(9)*/*f(g), Vp€E P, g €G,

viewed as a G representation by right translations. Here dp is the module character
of P.
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Let [[i—; It = {1,...,m} be the ordered partition associated to P. If m; = |I;|,
then L = [];_; GLy,, (F). The subgroup W = &,, of permutations of {1,...,m} is a
subgroup of G in the usual way (w = (8; w(;)))- Let W(P) C W be subset of elements
w € W such that w(k) < w(l) whenever k£ < | and both k and [ belong to the same
I;. The group W acts on the characters of T by the formula ¥¥ () = ¥(w™tw).
Moreover, x may be viewed as a character of T by restriction T C P.

Proposition 6.4.4. — The semi-simplification of the C[T]-module (Ind$x)y is

@ Xw61B/2‘

weW (P)
Proof. — This is a special case of the general geometrical lemma [19, Lemma 2.12]
(see also [125, Theorem 1.2]). O
6.4.3. Unramified representations. — An irreducible smooth representation of

G is said to be unramified if it has a non zero vector invariant by K. The classification
of unramified representations is well known and due to Satake.

Let x : T — C* be a smooth character. It will be convenient for us to write x as
a product of smooth characters x; : F* — C* such that

X(@1,- -y @m)) = [ ] xal@i)-

=1

Assume that x(7T°) = 1 and consider the induced representation Indg(x). As is
easily seen, the space of its K-invariant vectors is one-dimensional hence this induced
representation has a unique unramified sub-quotient m (). It turns out that:

— w(x) = w(x') if, and only if, x = x* for some w € &,, (see §6.4.2 for this
notation).
— each unramified representation is isomorphic to some 7 (x).

The Langlands parameter of m(x) is easy to describe. The isomorphism class of
Weil-Deligne representations L(w(x)) = (r, N) associated to m(x) satisfies N = 0,
r(Ir) = 1 (hence the name unramified). It is uniquely determined by the conjugacy
class of the image of a geometric Frobenius element of Wg, namely the class of

diag(x1(@),- .., xm(®@)) € GL,(C).

Of course, this diagonal element is unique only up to permutation. We will frequently
refer to this class as the semi-simple conjugacy class associated to m(x).
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6.4.4. Refinements. — We fix 7 an irreducible unramified representation of G.

Definition 6.4.5. — A refinement of 7 is an ordering of the eigenvalues of the semi-
simple conjugacy class above associated to 7. In an equivalent way, a refinement of 7
is a character x : U ~ T/T° — C* such that m ~ 7(x), the bijection being

x — (x1(@), ..., xm(®@)).

Let us chose some refinement x of 7, so that m ~ m(x) is an irreducible subquotient
of Ind$ (x). By Propositions 6.4.3 and 6.4.4, we get that as a U-module
(64) (r)** < (Ind§x)"* = Bues, x5
As a corollary, we have the following Proposition-Definition.

1. or equivalently if

Definition 6.4.6. — 1If a character xégl/ .U — C* occurs in 7
X(S]lg/ % occurs in wﬁo, then x is a refinement of m. We say that a refinement of 7 is
accessible if it occurs this way. Equivalently, x is an accessible refinement of = if, and

only if, m occurs as a subrepresentation of Ind$(x).

The equivalence in the definition above follows from Frobenius reciprocity. Note
moreover that for a character of the abelian group U, it is the same to appear as
a subrepresentation of m! or as a subquotient, since 7 is finite dimensional. Any 7
always has at least one accessible refinement.

Remark 6.4.7. — Let 7 be an irreducible representation of G which is not necessarily
unramified, but such that 7! # 0. Although we shall not use it in this book, note that
it still makes sense to define a refinement of m as an unramified character x : T —
C* such that 7 occurs as a subquotient of Indg (x). The above notion of accessible
refinement also applies verbatim to this extended context.

For most of the representations m, all the refinements are accessible. Indeed, by
[19][Theorem 4.2] and formula (64) we have the following positive result. Set

q:=|Ofr/w|.

Proposition 6.4.8. — Assume that (x;/x;)(w) # q for alli # j. Then n(x) = Ind$(x)
and all the refinements of w(x) are accessible.

Example 6.4.9. — i) If 7 ~ m(x) is tempered, then x is known to be unitary hence

Proposition 6.4.8 applies. More generally, if 7 is generic Proposition 6.4.8 applies.

ii) On the opposite, if 7 is the trivial representation then it has a unique accessible
refinement, namely 61_31/ It corresponds then to the ordering
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iii) Actually, by [19][Rem. 4.2.2], (x) ~ Ind§(x) if and only if the assumption of
Prop. 6.4.8 is satisfied.

6.4.5. Accessible refinements of almost tempered unramified representa-
tions. — In the applications, we will need to study the accessible refinements of
some 7 which are not tempered, which leads us to introduce the following class of
unramified representations.
Let 7 be an unramified irreducible representation of G, and X the set of eigenval-

ues (with multiplicities) of the semi-simple conjugacy class attached to =, | X| = m.
Assume that X has a partition X = [[;_; X; such that:

(AT1) for each i, X; has the form {z,z/q,...,z/q™ "'} with m; = | X,

(AT2) the real number | [, x, z|*/™ does not depend on i.

Proposition 6.4.10. — The accessible refinements of m are the orderings (z1,...,Tm)
on X such that there exists a bijection 7 : {1,...,m} — X with the following property:
whenever (k) and 7(l) are in the same X; and xx = qz;, then k < 1.

Proof. — Let us choose a refinement (x4, ...,z ) of 7 satisfying the condition of the
statement and such that {z1,...,Zm, } = X1, {Zm,+1,--+»Tm,+m, } = X2 and so on.
It exists by (AT1). Let x : T — C* be the corresponding character, 7 is then the
unramified subquotient of Indg x and we are going to identify it.

Consider the standard parabolic P of G with Levi subgroup

L = GLp, (F) X GLyn,(F) X + -+ X GLy, (F).

One checks immediately that the character X‘S}s/ (6 p)’_Bl/ % of T extends uniquely to
a character ¢ : L — C*. Explicitly, ¥(g1,...,9-) = []; ¥:(g:), where 1; is the
unramified character of GL,,, (F') obtained by composing the determinant GL,,, (F') —
F* with the character of F'* trivial on O} and sending w to the element
_mict

Yyii=zq 2,
where z is the element of X; appearing in (AT1). As a consequence, we have an
inclusion of G-representations:

Ind$€y c Ind$x.

Up to a twist, we may assume that the real number occurring in property (AT2) is
1. In terms of the y;, it means that |y;| = 1 for all 4, i.e. that ¢ is unitary. A theorem
of Bernstein [18] shows then that Ind$4 is irreducible. As it contains obviously the
K-invariant vectors of Indg X, we conclude that

™o Ind,G;¢.
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Now that we have written m as a full induced representation, the proposition is an
immediate consequence of Propositions 6.4.3 and 6.4.4. O

Definition 6.4.11. — Let us say that 7 is almost tempered if X admits a partition {X;}
satisfying (AT1) and (AT2), or equivalently if up to a twist = is the full parabolic
induction of a unitary character.

The equivalence of the two definitions above is a consequence of the proof of Propo-
sition 6.4.10.

Example 6.4.12. — i) If 7 is tempered, it is almost tempered (and the X;’s are
singletons). If w is one dimensional, it is also almost tempered, for the trivial
partition of X in one subset.

ii) Assume that 7 is the local component of a discrete automorphic representation
of a unitary group (resp. of GL,,). A consequence of Arthur’s conjectures (resp.
of Ramanujan conjecture and Moeglin-Waldspurger’s theorem [87]) is that 7
should be almost tempered. This is actually the main reason why we introduced
this definition.

iii) We will need the following explicit example. Assume that 7 is such that X

1/2 —1/2 with multiplicity 1, and all of whose other elements

and q
have norm 1. Then the accessible refinements of 7 are exactly the orderings of

X of the form

contains q

(...,ql/z,...,q_l/z,...),

1/2

that is the ones such that ¢'/2 precedes ¢~!/2 in the ordering.

6.5. K-types and monodromy for GL,,

We keep the notations of the preceding subsections.

6.5.1. An “ordering” relation on Irr(GL,,(F)). — Recall that the relation = ~p,,
n’ if and only if 7(7) |7, =~ r(7')|1, on Irr(GL, (F)) is called the “inertial equivalence”
relation. We define an order relation <, on each equivalence class for ~, as follows.

Definition 6.5.1. — Let 7, n' € Irr(GLy, (F)), we will write 7 <, 7’ if 7 ~7, 7/, and
if N(r) is in the Zariski closure (®) of the set of matrices PN (7')P~! in M,,(C) where
P runs among the matrices in GL,(C) such that Pr(x’);, P~! = r(n),1,.

Remark 6.5.2. — i) In an inertial equivalence class, the minimal elements for <,
are precisely the m with N(w) = 0, and each of them is actually a smallest
element.

(8 Or in the closure for the complex topology, which amounts to the same here.
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ii) Assume m > 1 and let 1 and St be the trivial and the Steinberg representation
respectively. We have r(1)(Ir) = r(St)(Ir) = 1, N(1) = 0 and N(St) has
nilpotent index m, hence 1 <y, St. As is well known, the # <;. 1 are exactly
the unramified representations. Moreover, the m <y, St (i.e. m ~y, 1) can also
be abstractly characterized by the property that m! # 0, where I is a Iwahori
subgroup, or which is the same by the property that

Hompg (7, 7) # 0,

with 7 = Ind¥1; and K = GL,,,(OF).

iii) Take m = 2 in the example above, the representation 7 is then the direct
sum of the trivial 1y and the Steinberg Sty representation of the finite group
H := GL3(F,). Of course, 7 <y, 1if and only if Hom(1g,7) # 0. As an exercise,
the reader can check that the relation Homg (Stg, 7) # 0 cuts exactly the 7 in
the trivial inertial class which are not 1-dimensional.

6.5.2. Types. — Using works of Bernstein, Zelevinski, Bushnell-Kutzko and
Schneider-Zink, it turns out that Remarks 6.5.2 ii), iii) are the simplest case of a
general phenomenon. We are grateful to J.-F. Dat for drawing our attention to the
reference [106].

Proposition 6.5.3. — Let m € Irr(GL,,(F)). There exists an irreducible complex rep-
resentation T of GLy,(OF) such that
i) mMGL,.(0F) contains T with multiplicity 1,
and for any 7' € Irr(GL, (F)),
il) Homgy,,(0p)(T,7") #0= 7' <. 7,
iii) if n’ is tempered and 7’ <, m, then Homgy, (0, (7, 7") # 0.

Proof. — Up to the dictionary of local Langlands correspondence, this is exactly
[106, Prop. 6.2]. For the convenience of the reader, we explain below the relevant
translation.

Fix 7 as in the statement, and let Q be the (unique) Bernstein component of
Irr(GL,, (F)) containing 7. This component is uniquely determined by the cuspidal
support of 7. By the properties of the local Langlands correspondence, which is built
from its restriction to the supercuspidal representations and Zelevinski’s classification,
this support is in turn uniquely determined by 7(7),: for a 7’ € Irr(GL, (F)), we
have 7’ € Q if and only if 7’ is in the same inertial class as 7.

The additional datum of the matrix N(m) determines then the way Zelevinski
realizes m as a Langlands quotient, that is the “partition” P(w) such that m lies in
Qp(x) in the notations of [106, §2]. Such a “partition” is by definition a family of
Young diagrams (see below) indexed by the cuspidal support of 7, the size of a diagram
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being the multiplicity of the associated supercuspidal. By Gerstenhaber’s theorem (see
Prop. 7.8.1) and by definition of the ordering on partitions loc. cit. §3 (which is the
opposite of the dominance ordering recalled in Appendix 7.8.1), we have for a 7’ € Q:

' < & P(r') = P(n).

They define then loc. cit. §6 an explicit representation called op(r)(A) of a maximal
compact subgroup of GL,,(F), here X is Bushnell-Kutzko’s type of the Bernstein
component Q. Up to conjugation we may assume that this maximal compact subgroup
is GLm(OF), and we set 7 := o'p(r)(A). The proposition is then [106, Prop. 6.2]. O

6.6. A class of non-monodromic representations for a quasi-split group

In this subsection, we let | be a prime number, and G the group of rational points
of a connected reductive quasi-split group over a field F' which is a finite extension
of Q;. We denote by S a maximal split torus in G, T the centralizer of S, which is a
maximal torus in G, and B = TN a Borel containing T (where N is the unipotent
radical of B). We denote by W the Weyl group of S: W = N(S)/C(S) = N(S)/T;
this groups acts on 7" by conjugation.

We denote by F’ a finite Galois extension of F' on which G splits. We denote with
the same letter with a prime the set of points over F’ of the algebraic group defining
one of the subgroups of G defined above: hence G’, its Borel B’ = T'N’, where T’
is a maximal torus of G’ (which is split). We denote by W’ the Weyl group of T":
W' = N(T')/T’'. We have a natural inclusion W C W'.

6.6.1. Review of normalized induction and the Jacquet functor over a base
ring. — Let A be a commutative QQ-algebra that contains a square root of I. We
denote by dp the modulus character of B which takes values in IZ and we choose once
and for all a square root 6113/2 :G — A* of p.

We recall some terminology concerning an A[G]-module M: the module M is
smooth if every v € M is fixed by some compact open subgroup U of G and it is
A-admissible if for every small enough compact open subgroup U, MU is a finite type
A-module.

If V is a smooth A[T]-module, we denote by Ind§ (V') the normalized induction of
V from B to G, that is the A-module of all locally constant functions f : G — V
such that f(bg) = bdg(b)'/2f(g) for all b € B, g € G. The representation Ind§ (V) is
smooth and its formation commutes with every base change A — A'.

If M is an A[G]-module, we denote by My the Jacquet module of M relatively to N,
that is the N-coinvariant quotient M /M (N), where M(N) = {v € M, fNO m(n)v dn =
0 for some compact subgroup Ny C N}, seen as a representation of T'= B/N.
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Proposition 6.6.1. — (a) If M is smooth, then so is My.

(b) The functor M — My from the category of smooth A[G]-modules to the category
of smooth A[T|-modules is ezact, and commutes with —® 4 M’ for any A-module
M.

(c¢) If M is flat (resp. if A is reduced and M is torsion free) as an A-module, then
so is My.

(d) If M is A-admissible and of finite type as an A[G]-module, then My is of finite
type as an A-module.

Proof. — (a) is clear. The exactness in (b) is proved exactly as in the classical case
(e.g. [35, Proposition 3.2.3]) once noted than Ny is a pro-l-group, hence of pro-order
invertible in A. (See also [120, page 96])

For M' an A-module and M an A[G]-module, we see M ® 4 M’ as an A[G]-module
for the trivial action of G on M’. The natural map

(65) Mny@aM — (M®a M)y

is an isomorphism. Indeed, using a free presentation of M’ over A, the exactness of
V — Vx and the left exactness of tensor products, we are reduced to the case where
M’ is free over A, which is obvious, hence (b) is proved.

The “torsion free” part of (c) is obvious from the exactness in (b). Assume that
M is flat over A and let X — Y be an injective morphism of A-modules. Then
M®a4X — M®4Y is an injection of A[G]-module. Hence (M @4 X))y — (M®4Y)N
by (b), which is My ®4 X < My ®4 Y by (65). Thus My is flat.

Let us prove (d) (a proof is sketched in [120, page 96]). Since M is of finite type
over A[G], we deduce easily from the compactness of B\G (see e.g the first paragraph
of the proof of [85, Thm 3.3.1]), that My is finitely generated as an A[T]-module.
Since My is smooth and T is abelian, there is a compact open subgroup T of T such
that M£° = Mpy. Up to replacing T by a smaller group, we see by [35, Prop. 1.4.4
and Thm 3.3.3] that there is a compact open subgroup Uy with Iwahori factorization
Up = N, To My of G such that the natural map M Vo M£° is surjective. Since MUo
is of finite type over A by A-admissibility of M, then so is M2 = My. |

We recall the following easy reciprocity formula:

Lemma 6.6.2. — If M is a smooth A[G]-module and V a smooth A[T]|-module, we
have a canonical isomorphism

Hom g1¢) (M, Ind§(V)) = Hom 4i7y(Mn, V ® 85 %).

6.6.2. Non Monodromic Strongly Regular Principal Series. — In this para-
graph, we keep the preceding notations but we also assume that A = k is a field. We
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recall that a smooth character x : T' — k* is regular when there is no w # 1 in W such
that x* = x. We also recall the following elementary result (cf. [97, Proposition 1]):

Lemma 6.6.3. — Assume x : T — k* is a smooth regular character. Then:

(a) The representation Ind$(x) has a unique irreducible subrepresentation S(x).

(b) The Jacquet module S(x)n contains x5}3/ % as a T-subrepresentation.

(c) Any smooth G-representation M such that My contains X‘S)lg/ 2 as a T-
subrepresentation has a subguotient isomorphic to S(x).

Proof. — By the geometric lemma, the Jacquet module Indg(x)N is semi-simple
as a T-representation and is the direct sum of the distinct characters x"’ég % for
w € W. Since the Jacquet functor is exact, and as Ind$(x) is of finite length (use
Prop. 6.6.1 (d) and [17, Rem. 3.12]), one and only one of the Jacquet modules of its
irreducible subquotients contains XJ;/ 2. Let us call this irreducible subquotient S(x),
which makes (b) tautologic.

On the other hand, by Lemma 6.6.2, the Jacquet module of any subrepresentation
of Indg(x) contains x5}13/ 2. It has an irreducible subrepresentation, hence S(x) is the
unique irreducible subrepresentation of Ind$(x), which is (a). Finally if M is as in
(c), we have by Lemma 6.6.2 a non-zero morphism M — Ind$(x). Its image admits
S(x) as a subrepresentation by (a), and (c) follows. O

Recall that the base change of a smooth character x of T is the character x' of T”
defined as x’ := x o Nm, where Nm : T/ — T is the Galois norm.

Definition 6.6.4. — A smooth character x of T is said strongly regular if its base change
x' is regular as a character of T".

Since W C W', a strongly regular character  is also regular.

We now recall some notations of [97], [98]. Let A be the root system of G’ with
respect to T’. Let X*(T"”) be the group of rational characters on 7" and V = X*(T') ®z
R. If a € A, its associated coroot @ is a linear form on V. The chambers of V are
the connected components of V —| J,ca Ker &. The Borel subgroup B’ determines the
choice of a “positive” chamber Ct.

Let X.(T') be the group of 1-parameter subgroups of T”. There is a canonical
pairing X*(T") x X,.(T") — Z. Hence each coroot @ determines canonically a 1-
parameter subgroup t* : F'* — T".

If x’ is a smooth character T' — k* we define the set ¥(x’) as the set of the coroots
a such that x’ ot*(a) = |a| € k* for every a € F'*. When k = C, Rodier’s theory [97]
shows that if x’ is regular, the set £(x’) determines the reducibility of Indg:(x’ ) (in
particular, this representation has length 221,
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Definition 6.6.5. — An irreducible representation of G is said to be a non monodromic

principal series if it is isomorphic to a representation S(x) where

(a)
(b)

X is strongly regular.
For every @ € ('), we have a(C*) < 0.

A more appropriate terminology may have been non monodromic strongly regular
principal series, but we shall use the one above for short.

Remark 6.6.6. — (1) For a split group G’ and a regular character x’ of T”, the local

(2)

Langlands correspondence has been defined by Rodier ([98]) for the subquotients
of Indg:(x’ ), in a way that is compatible to the usual (that is, Henniart-Harris-
Taylor’s) local correspondence in the case of GL,, (F'). The representation L(7) =
(r(m), N(m)) of the Weil-Deligne group of F’ corresponding to any of those
subquotients 7 has the same r(7) namely the composition

wxl . WF’ SN LTI N LGI

where the first map is the L-parameter of x’ for the torus 7’. The action of the
monodromy N depends on the chosen subquotient. Hypothesis (b) is equivalent
to saying, by [98, 5.2], that S(x’) has no monodromy, that is, that N(S(x')) = 0.
In other words, the L-parameter for S(x’) is just the map 1, .

In the case G’ = GL,(F"), hypothesis (b) simply says that if 7" is the diagonal
torus and B’ the upper diagonal Borel, and X' = (X1, --,X5), then x; = xj| - |
implies ¢ > j.

There should exists a base change map, sending L-packets of G to L-packets to
G', and corresponding to the obvious restriction map on the L-parameters. If
x is strongly regular, it is natural to expect that the base change to G’ of the
L-packet of G containing the representation S(x) contains the representation
S().

In the few cases where the base change has been defined, this is actually
true: when G = GL,(F) and F'/F is cyclic, this follows immediately from the
compatibility of local base change with the local Langlands correspondence and
from remark (1) above. In the more interesting case where G = U(3) is the
(unique) unitary group over F' that splits over the quadratic extension F’/F,
and G’ = GL3(F"), this is satisfied for the base change map defined by Rogawski
in [99].

Hence the conjectural L-parameter for S(x) should be the composition v, :
Wr — T — LQ@. In particular, it should be non monodromic (that is,
N(S(x)) = 0 with the notation of §6.3.)

Rodier’s theory does not seem to have been extended to any quasi-split group,
even to unitary groups. Therefore we have not felt comfortable in assuming that
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for any regular x satisfying the analog of condition (b) but for the root system
of G (which might be not reduced), S(x) should have a non monodromic L-
parameter. This is however the case for the rank one group U(3) by results of
Keys and Rogawski (see [99, 12.2]).

6.6.3. The locus of non monodromic principal series is constructible. —
In this paragraph, we keep the notations of §6.6.1, and we assume moreover that A is
a noetherian ring. We suppose given an A-admissible smooth A[G]-module which is
of finite type over A[G]. For every z € X := Spec(A), we denote by k(z) = A;/zA,
the residue field of A;, and we set M, := M ®4 A, and M, := M ®4 k(z).

Let us denote by X the subset of z € X such that the k(z)[G]-module M, has an
irreducible subquotient which is a non monodromic principal series .

Proposition 6.6.7. — (i) Xy is a constructible subset of X. In particular, there is a
subset U C Xo which is dense and open in X.
(ii) Assume that A is reduced and that M is torsion free over A. Then Xg is a
(possibly empty) union of irreducible components of X.

Proof. — By Proposition 6.6.1, the A[T]-module E := My is of finite type over A.
We view E as an A[T’]-module via the map A[T'] — A[T] induced by the norm Nm.
Let B be the image of the A-algebra A[T'] in End4(E). It is a finite A-algebra, let
Y = Spec(B) and g : Y — X the structural map.

A point y € Y with residue field k(y) defines an A-algebra morphism B — k(y) =
B,/yBy, hence a character x, : T" — k(y)*. Let us consider the subset Yo C Y’
of points y € Y such that the character x; is regular and satisfies condition (b) of
Definition 6.6.5. By definition, we have

Yo= () (U D(t” —t)) n N U D) - lfl)) :

weW'\{1} \teT’ {achA|a(c)>0} \fEF’

where D(b) for b € B is the open subset of Y = Spec B defined by the condition b # 0.
Hence Yj is an open subset of Y as both intersections are finite.

We claim that X, = g(Yp). First, by Lemma 6.6.3(c) and 6.6.1(b), observe that
Xo is also the subset of points z of X such that F ®4 k(z) contains a character
T — k(x)* satisfying (a) and (b) of Def. 6.6.5, i.e. such that the support of the
B-module E ® 4 k(z) meets Yy. In particular, it is clear that Xy C g(Yp).

Let z € X. As Z: is henselian and g is finite,

E: =B ®4a Z: - H é;a
{y| 9(y)==}
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hence we can write accordingly E; =FEQ® AZ: = ®,E(y) as a direct sum of BQ4 Z:-
modules. Moreover, by flatness of A — A, B, identifies with its image in EndAA(Ex)
hence E(y) # 0 for all y € g~1(z). In particular, if z = g(y) with u € Y;, then

E®4 k(z) = E;/2E; > E(y) ® k(z)

and the latter B-module is non zero by Nakayama’s lemma, hence has support {y}.
This proves that g(Yp) C Xo, hence the equality g(Yp) = Xo.

In particular, by Chevalley’s theorem (see e.g. [63, exercise 11.3.19]) X, is con-
structible as Y; is open and g is of finite type, which proves the first part of (i).
The second part of (i) is a standard consequence of being constructible (see e.g. [63,
exercise 11.3.18(b)]).

Let us prove (ii). As Yp is an open subset, its closure is a finite number (possibly
zero) of irreducible components of Y. As g(Yp) = Xo and g is finite, we only have to
check that each irreducible component of Y maps surjectively to an irreducible com-
ponent of X. Note that E is torsion free over A by assumption and Proposition 6.6.1,
hence so are End4(E) and B C End4(F). We conclude then by Lemma 6.6.8. a

The following lemma is a variant of [36, Lemma 2.6.10].

Lemma 6.6.8. — Assume that A is a reduced notherian ring and that B is a finite,
torsion free, A-algebra. Then each irreducible component of Spec(B) maps surjectively
to an irreducible component of Spec(A).

Proof. — We check at once that a finite type A-module M is torsion free if, and only
if, it has an A-embedding M — A" for some n. In particular, if M is torsion free over
A, then for all z € Spec(A) the A,-module M, is torsion free.

As the finite map g : Spec(B) — Spec(A) is closed, it suffices to show that the
image of the generic point = of an irreducible component of Spec(B) is the generic
point of an irreducible component of Spec(A). By localizing A at g(z), we may assume
that A is local and that g(z) is a closed point. As g~!(z) is a discrete closed subspace
of Spec(B), z is also a closed point, hence it is open as it is minimal as well, and B,
is a direct factor of B. Thus we may assume that B = B, is artinian. As B C A™ and
A is reduced, it implies easily that A is itself artinian, which concludes the proof. [

Remark 6.6.9. — (A variant) Assume that we have a finite number of quasisplit
groups G;, possibly over local fields of different characteristics, each one being
equipped with a datum (G;, B;, T;, G}, B, T}) as in the beginning of §6.6. Then we
may form G = []; Gi, as well as B, T, G’, B’ and T’, and all the propositions and
lemmas of this §6.6 apply verbatim to this case, as all the arguments are group
theoretic. For example, in this context, a non monodromic principal series of G is a
tensor product of non monodromic principal series 7; of G;.
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6.7. Representations of the compact real unitary group

Recall that the continuous, irreducible, complex representations of the compact
group U(m)(R) are all finite dimensional. There are two ways to describe them: ei-
ther by their highest weight or by their Langlands parameters. We give here both
descriptions, as well as the relation between them.

If £ :== (k1,...,km) € Z™ satisfies ky > k3 > -+ > ky,, we denote by Wy the
rational (over Q), irreducible, algebraic representation of GL,, whose highest weight
relative to the upper triangular Borel is the character (9)

m
0k : (21, .-, 2m) — Hzfl
i=1

For any field F' of characteristic 0, we get also a natural irreducible algebraic repre-
sentation W (F) := W ®q F of GL,,(F), and it turns out that they all have this
form, for a unique k.

Let us fix an embedding F — C, which allows us to see U(m)(R) as a subgroup
of GL,,(C) well defined up to conjugation (see §6.2.1). So for k as above, we can
view W (C) as a continuous representation of U(m)(R). As is well known, the set
of all Wi(C) is a system of representants of all equivalence classes of irreducible
continuous representations of U(m)(R). We will say that Wy has regular weight if
ki > ks> > kp,.

On the other hand, the L-parameters of the irreducible representations of U(m)(R),
are determined by their restrictions to the Weil group of W = C* of C, which are,
up to conjugation, all the morphisms ¢ : C* — GL,,(C) of the form

¢(2) = diag((2/2)*, ..., (2/2)*")

where a1,...,am € Z + mTH and a; > -+ > Gp,. For the proof, see [15, Prop. 4.3.2].
The relation between the two descriptions is given by
m+1

ai=ki+T—i, i=1...m.

6.8. The Galois representations attached to an automorphic representation
of U(m)

6.8.1. Settings and notations. — In this section, m > 1 is an integer such that
m # 2 (mod 4). Let us fix a prime number p that is split in E, algebraic closures Q
of Q and Q,, of Q,, and embeddings ¢, : Q — Q,, tec : Q = C. As G(R) is compact,
for any automorphic representation 7 then 7, is algebraic and the finite part 7y is

(9) This means that the action of the diagonal torus of GLy, on the unique Q-line stable by the upper
Borel is given by the character above.
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defined over Q by Lemma, 6.2.7, so that we may view it over @p using ¢t} . Let us
fix such a .

If | = % is a prime that splits in E, then we will denote by 7, the representation
of GL,,(Q;) deduced from m; and the identification G(Q;) —; GL,,(Q;) defined by
z as in §6.2.2.

We recalled in §6.3 the Langlands-Harris-Taylor parameterization of complex ir-
reducible smooth representations. This parameterization holds actually if we replace
C everywhere there by any algebraically closed field of characteristic 0, e.g. @p. As
a consequence, to each m, as above viewed with @p coefficents via ,t5}, is attached
a unique Q,-valued Weil-Deligne representation (r(r,), N(m;)). We recall also that
from Grothendieck’s l-adic monodromy theorem (see e.g. the Appendix 7.8.3), for
any local field F' over Q; with [ # p, there is a bijection between the isomorphism
classes of continuous representations Wr — GL,, (@p), and the isomorphism classes
of m-dimensional @p-valued Weil-Deligne representations of F. We shall use these
bijections freely in the sequel.

We let v denote the (split) place of E above p induced by ¢, : E — @p, and by v
the complex place of E induced by ¢ : £ — C.

Let ! be a prime that does not split in E. If F is unramified at !, then G(Q;)
is an unramified unitary group hence it makes sense to talk about its unramified
representations: they are the irreducible smooth representations having a nonzero
vector invariant under a maximal hyperspecial subgroup. For example, for the obvious
model of U(m) over Z then G(Z,;) is maximal hyperspecial. When [ is ramified, we will
also say that m; is unramified if it has a nonzero vector invariant under a very special
maximal compact subgroup. Following Labesse’s terminology [76, §3.6], we say that
a special maximal compact subgroup is very special if all of its constant g/, defined
by Macdonald in [81][§3.1] are > 1. These compact subgroups and their spherical
functions have been studied in [81] and [34]. It seems to be known to experts that
any reductive group over a local field admits very special maximal compact subgroups
(for instance, this is claimed in [34, p.390-391] or in {76, §3.6]), but we warn the reader
that there seems to be no written proof of this fact in the litterature.

6.8.2. Statement of the assumption Rep(m). — We now formulate a conjecture
about the existence and the basic properties of the Galois representation attached to
an automorphic representation of U(m). We expect and hope that this conjecture (and
much more) will be proved in the forthcoming book [60] on unitary groups written
under the direction of Michael Harris in Paris.

To make this hope likely, we have made a special effort throughout this book to
keep the properties of those Galois representations we need under control, and in the
next conjecture to formulate the weakest statement that we need.
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Conjecture 6.8.1 (Rep(m)). — Let m be an automorphic representation of U(m) such
that wo, has regular weight. There exists a continuous, semisimple, Galois represen-
tation:

pr : Gg — GLn(Q,),
such that the following properties are satisfied:
(PO) if | = zz’ # p is split and m; is unramified, then p is unramified above | and
the characteristic polynomial of a geometric Frobenius at x is given by the Langlands
conjugacy class of 7| det |l:éln‘
(P1) Ifl # p is a prime and if m; is unramified, then p, is unramified at each prime
above 1.
(P2) If | = zx’ # p is a prime that splits in E, then the nilpotent monodromy op-
erator of the Weil-Deligne representation attached to Pr|Wg, SN the closure of the
conjugacy class of N(m;|det |1_Tm) n Mm(@p).
(P3) Ifl # p is a prime, = a place of E above l, and 7, is a non monodromic principal
series (see Definition 6.6.5) then the Weil-Deligne representation attached to Pr|Wg,
has a trivial monodromy.
(P4) The p-adic representation pr g, is De Rham, and its Hodge Tate weights are
the integers

m—1 m—1

—al—l-—é———,...,—am—}——?—

where ay,...,a,, are such that the restriction to C* of the L-parameter of my, is
z — diag((z/2)™, ..., (2/Z)*) (see § 6.7).
(P5) If mp is unramifed, then PriGy, U crystalline and the characteristic polynomial

of its crystalline Frobenius is the same as the one of L} L(m,|det |=).

Remark 6.8.2. — (i) By the Cebotarev density theorem, and since the primes of E
which split above Q have density 1, the property (FPy) alone determines p, up
to isomorphism. Moreover, it implies that p, is conjugate selfdual in the sense
that:

pr = pr(m —1).
(if) The properties (P0), (P1) and (P4) imply that p, is geometric.

(iii) The Langlands program and Arthur’s conjectures predict that there should exist
local and global base change from U(m) to GL,,, that a 7 with regular weight as
in the conjecture should be tempered, and that for such a tempered 7 the global
base change mg should be compatible at every place with the local base change
(see A.7 below). Moreover it also predicts the existence of a Galois representation
pr of G, and the Weil-Deligne representation attached to the restriction at Wg,_
for every place z (prime to p) of E should be isomorphic to L((7g| det |'1_2—m)z)
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(iv)

(vi)

(vii)

(viii)
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The properties (P0) to (P3) are very special cases of those predictions. This
is clear for (P0), (P1), (P2); as for (P3), if [ # p is a prime such that 7; is a non
monodromic principal series and z a place of E above S, then the L-parameter
of the base change (7g), should be non-monodromic (see Remark 6.6.6).

Moreover, properties (P4) and (P5) are also part of the standard expectations
for the Langlands correspondence at places dividing p.

The property (P3) for split primes ! is a special case of (P2). This should be
clear from the preceding remark.

In the following chapter, the property (P2) will allow us to work with represen-
tations p, that have arbitrary ramification at split primes. However, because of
the weak form of (P3), we shall have to assume that the ramification, if any, is
of a very special kind at non-split places, namely is a non monodromic principal
series . _

When m < 3, the properties (P0) and (P1) and (P3) to (P5) are known by
the work of Blasius and Rogawski (cf. [20] and [21] and also [8, §3.3] for some
details). Property (P2) is not completely known but anyway is not necessary,
since (P3) is known, and all the 7 to which we shall need to apply Rep(m) are
non monodromic principal series at every places if m < 3. Thus, in the sequel,
we will allow ourselves to say that Rep(m) is known for m < 3.

Properties (P1) to (P5), except maybe (P3), are also known for any m when 7
admits a base change to a representation satisfying the assumptions of Harris-
Taylor ([62], [118]) and which is compatible with the local base change at the
split places. This includes e.g. the case of a 7 that is supercuspidal at two split
places ([61, §3]). Unfortunately, the representations to which we shall apply
Rep(m) will never be of this type.

Moreover, let us consider the slighty different setting where U(m) is replaced

by a definite unitary group G such that G(Qp) ~ GL(Qp), and that for some
split ! # p, G(Q;) is isomorphic to the group of invertible elements of a central
division algebra over Q;. In this case, the existence of p, satisfying (P0), (P1),
(P2), (P4) and (P5) is known by [62] and [61, Thm. 3.1.3].
We of course expect that in the forthcoming book [60] by Harris et al., the
representation p, (or some well chosen base change of it) will be cut off in the
étale cohomology of some explicit local system of the Shimura variety of some
inner form of U(m), since m, has regular weights. Hence (P0), (P1), (P4) and
(P5) should follow directly from the construction and a few standard arguments
(see e.g. [8, Prop. 3.3] for (P4) and (P5) and [8, Prop. 3.2] for (P1) at ramified
primes).

The properties (P2) and (P3) are special cases, concerning monodromy, of
the compatibility of the construction of the Galois representation to the local
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Langlands correspondence that might be harder to prove. However, they only
ask for an “upper bond” on the monodromy of the Galois representation, which
is the “easy direction”, and this should follow from an accessible (maybe already
known) study of the local geometry of the special fiber of the relevant Shimura
varieties.

At any rate, (P3) would follow easily if the base change (local and global,
with compatibility) was known, by an argument completely similar to [8, Prop.
3.2]).

(ix) Note that the Langlands and Arthur’s conjectures also predict some irreducibil-
ity results on the representation pg (for example, if 7 is not endoscopic). Those
results might be much harder to prove. However, a feature of our method, al-
ready present in [8], is that we have absolutely no need of them. Instead, we
shall be able to prove, as a by-product of our work, that in many cases p, is
irreducible, or not too reducible. See Theorem 7.7.1.

(x) (added in 2008). Since the first version of this manuscript was made available
(December 2006), important progresses have been made toward a proof of the
conjecture Rep(m) by S. Morel [88], S.W. Shin, and all the authors of the book
[60] (of which many chapters have been made avalailable).

6.9. Construction and automorphy of a non-tempered representation of

U(m)

In this subsection we fix an integer n > 1 that is not divisible by 4, and we set
m = n + 2, so that m #Z 2 (mod 4) as above. For a representation m of GL,(E,),
v a non split place of E (resp. of GL,(Ag)), we note 71 the representation g —
m*(c(g)), where 7* is the contragredient of m and ¢ denotes the map on GL,(E,)
(resp. GL,(Ag)) induced by the non trivial element ¢ € Gal(E/Q).

6.9.1. The starting point. — We start with a cuspidal tempered (1®) automorphic
representation 7 of GL,(Ag). We make the following assumptions on 7:

(i) We have 7t ~ 7.

(ii) The L-parameter of 7o, has the form

z — diag((z/2)™,...,(2/2)*")

where the a;’s are distinct, =  (mod 1), and are different from +1/2.

(iii) If ! is a nonsplit prime, then either

(10) This temperedness should be a consequence of the cuspidality, according to the generalized
Ramanujan’s conjecture.
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(iiia) m; is unramified and its central character x satisfies 1V x(w;) = (=1), or

(iiib) the representation m; is a non monodromic principal series representation
S(n), where n = (11, . ..,my,) is a regular character of the standard maximal
torus of GLy,(E;), and there is no (resp. exactly one) 7 € {1,...,n} ifnis
even (resp. if n is odd) such that n; = n;.

The aim of this section is to describe, place by place, a representation of U(m),
called 7™ (the n stands for “non-tempered”, as 7™ turns out to be non tempered at
every finite place) depending on 7, and to state a conjecture AC(r) that «™ is auto-
morphic if (and actually only if) (7, 0) = —1. The representation 7™ is an endoscopic
transfer of 7, and the conjecture we state is a particular case of the far reaching
multiplicity formula of Arthur, as will be explained in Appendix A.

Remark 6.9.1. — (i) When n is even, properties (i) and (ii) are conjecturally suffi-
cient conditions for m to be the base change of a discrete automorphic represen-
tation of the quasisplit unitary group U(n)* attached to E/Q. When n is odd,
on the contrary, a representation satisfying (ii) is not a base change from U(n)*,
but (i) and (ii) should rather ensure that 7 ® p is a base change from U(n)* for
any Hecke character p as in Lemma 6.9.2(iii) (see Example 6.9.3 below).

(ii) Property (iii) is not really needed for the conjecture we are going to state,
but it simplifies the exposition, allowing in particular to give a non conjectural
description of 7™ at non split places.

To be more precise, and conjecturally speaking, condition (iii) on m; is the
condition needed for 7' to be either unramified or a non monodromic principal
series at . Without this condition, there should still exist a 7> with suitable
properties, but it could be square integrable or even supercuspidal, and it is not
possible in the present state of knowledge on the representation theory of local
unitary groups to construct the needed representation.

Moreover, the hypothesis that 7} is unramified or a non monodromic princi-
pal series is what we will need in the following sections to be able to deal with
the monodromy at the nonsplit I. So it is not a big loss to assume it from now.

6.9.2. Hecke characters. — If yu is a Hecke character of E, that is a continuous
morphism

u: Ay /E* — C*,

(11) Here w; is a uniformiser of E;. When [ is inert, x(w;) = x(I) and the condition on x is
automatically satisfied, see Rem. 6.9.4. The reason for the appearence here of this condition on
x basically comes from the fact that it is not equivalent for a character of U(1)(Q;) to be unramified
(i.e. trivial), and to have an unramified base change. However, the two notions coincide when [ is
inert.
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recall that pt is the Hecke character = +— pu(c(z))~!. We say that a Hecke character
u descends to U(1) if p = ¢(x/c(x)), for some continuous character ¢ of

UQ1)(Ag) = {z € A%, zc(z) = 1}.

Obviously a character x that descends to U(1) satisfies u* = p. If a character satisfies
ut = u, we have pioo(2) = (2/c(2))® for all z € (E ® R)" and some weight a which is
either an integer or a half integer.

Lemma 6.9.2. — (i) The subgroup of Hecke characters of E that descend to U(1)
is of indezx 2 in the group of all Hecke characters of E that satisfy u’ = p.
(ii) For a Hecke character p such that ut = p the following are equivalent:
— the character p does not descend to U(1),
— the weight a of p is not an integer,
— the restriction of p to Ag is the order 2 character wg g corresponding via
class field theory to the extension E/Q.
In particular, a character that satisfies the above conditions is ramified at every
ramified places of E/Q, since so is wg/q-
(ili) There exists a Hecke character u of E, satisfying pt = p with weight 1/2 and
which is ramified only at ramified places of E/Q.

Proof. — Both (i) and (ii) result from the following observations:
— a Hecke character descends to U(1) if and only if it is trivial on Ag/Q*,
— a Hecke character u satisfies u* = p if and only if it is trivial on the norm group
N(Ap/E"),
— by class field theory, N(A}/E*) = Ker wg/q is an open subgroup of index 2 in
AR/Q".

For (iii), let S be the set of rational primes that ramify in E. For each | € S,
choose any finite order character u; : Ofgq, — C* extending wg/q,;- We fix also
an isomorphism E ® R — C for convenience, and set poo(2) = (2/2)'/2 for z € C.
Assume first that the cyclic group U = (u) of units in Of reduces to {+1}. Then
we can define y on C* x (/9\}‘,; to be oo [[; 1. As p coincides with wg/@ on R* x i*,
w(U) = {1}. As E*N(C*x 6*E) = U, p extends uniquely to an E*-invariant continuous
character of the open subgroup G := E*(C* x (”)\E) of A%. Note that G is open of
finite index in A% by the finiteness of the class number of E, hence we can extend
i to a continuous character of A} /E*. Note that G contains Ag and that p extends
wg/q by construction, hence ut = u, which concludes the proof.

When |U| > 2, then E = Q(%) or Q(j), and S = {l} contains only one prime. In this
case, note that U N Z; = {£1} hence we may first extend wg/q,; to UZ; by choosing
wi(u) := v~ and then extend it anyhow to a finite order character of O%sq,- Again,
if we define p as before, we have u(U) = {1} and the same proof works. O
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Example 6.9.3. — The central character of w is a Hecke character y that satisfies
pt = p by condition (i) of §6.9.1, with weight a = 37, a;, which is an integer if and
only if n is even by (ii) of §6.9.1. Hence u descends to U(1) if and only if n is even,
which is also the conjectural condition for 7 to descend to U(n).

Remark 6.9.4. — Assume that [ is inert in E and, in the notations of §6.9.1, that
m; is unramified. We claim that the central character x of m; automatically satisfies
x(1) = (=1)™. Indeed, x is trivial on O} as m; is unramified, and it satisfies x* = ¥.
By Lemma 6.9.2 and the example above, Xigr =1 if, and only if, n is even, hence the
claim.

Notation 6.9.5. — We choose a Hecke character pu of F as follows: y is a character as
in Lemma 6.9.2(iii) if n is odd, and g =1 if n is even.

We are now going to construct, place by place, a representation n" of U(m) =
U(n + 2) whose conjectural base change to GL,,(F) has L-parameter

Lmua||2pe |/

6.9.3. Construction of 7, for [ split in E. — We denote by P the upper
parabolic subgroup of GL,,(Q;) of type (n, 2), whose Levi subgroup is M = GL, (Q;) x
GL2(Q;). For z a place of E above [, we set

my = IndgL"‘(Q’)(wz (g o det) ® (g o det)).
Here Ind is the normalized induction. Since 7, is unitary, 77 is irreducible (see [18]).

Remark 6.9.6. — Let P’ be the upper parabolic of type (n,1,1). Since 7, is tempered
by hypothesis, Langlands’ classification theorem shows that

Ind 3™ (@) (r, (g 0 det) ® |20, ® |72 1),

has a unique irreducible quotient (that is, the Langlands quotient). As we have a nat-
ural GL,, (Qp)-equivariant surjection from the representation above to the irreducible
representation w7, this Langlands quotient is actually w7. Thus, the L-parameter of
Ty i8 L(ﬂ'z)l"z @ | |1/2/‘z o | Iﬁl/zﬂz-

Let us write | = zZ. By (i) of §6.9.1, mz(uz o det) is dual to 7, (uz o det), so 72 is
dual to 2. The place z defines, up to conjugation, an identification

iz : U(m)(Q;) = GLn(Q))

and so does the place Z, in such a way that izoiJ! is conjugate to g — *g~!. Hence we
see that i}n7 ~ iX72, using the well known result of Zelevinski that the representation
g+ 7(tg™1) is the contragredient of T for any irreducible admissible representation 7

of GLm (Ql ) .
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We thus may set 7' := i;77 and 7] does not depend on the choice of the place z
above [.

6.9.4. Construction of 7}, for [ inert or ramified in E. — We denote also by
I the place of E above [. In this case G := U(m)(Q;) is a quasi-split unitary group,
and we shall use notations compatible to those of §6.6. We may assume that G is the
unitary group defined by the following hermitian form on Ej™:
f(zes, ye;) = c(2)ydjm—i+1,
so that the group of diagonal matrices in G,
T = {diag(ai,- - .,am), @i € Ef,am—i+1 =c(a;) ', i=1,...,m},

is the centralizer of a maximal split torus in U(m)(Q;). Let B be a the upper triangular
Borel. The group G’ := U(m)(E;) is naturally identified with GL,(E;) and T” is the
standard diagonal torus. Its Weyl group W’ is canonically identified with &,,,5. The
action of the non trivial element ¢ of Gal(E;/Q;) on T" is

c(diag(z1, . ., zm)) = ding(c(wm) .., (1)),
and T is the subgroup of invariants of ¢ in T”. There is a norm map Nm : 77 — T,
€= (T1,...,%m) — zc(z) = (Z16(Tm) ", 226(Tm_1) ", .o, Tme(z1) 7h).

By hypothesis (iii) of §6.9.1, and point (iii) of the remark therein, m; is a subquo-
tient of the normalized induction of a character (71,...,7n,) of the standard torus of
GL,, with " = No(i) for all i and some o € G,. As m is tempered, each 7; is a
unitary character.

We are going to define a character x' = (x1,..-,Xm = Xn+2) of T”. Up to reorder-
ing, the x%,i=1,...,m =n+ 2 are the n;u;, i = 1,...,n and | [¥1/2y;. The order is
as follows:

— First we define x; = ||~ 2, X% = | 2.

— Next, consider the set I C {1,...,n} of i such that n; % n;-. Clearly |I| is even,

say 2r, and we may define x5,...,x.,; and XJ,_,,. .., X/,_; in such a way that

Xm—j+1 = x’j‘ for j € {2,m —1}. Finally, in case (iiib) we have |I| = nif n = 2r
is even (in which case we are done with the definition of x') and |I| = n —1
if n = 2r + 1 is odd. In this case we have only left to define the “midpoint”
character x;.; for which we take (we have no other choice) n;u;, where 7; ~ ;-
(this holds for a unique j).

— In case (iiia), the characters n; for i ¢ I satisfy 7; = n;", but since they are
unramified, this implies 7;(c0;) = +1 (here w; is a uniformizer of E;). By the
assumption on the central character of m;, the set {¢ & I, n;(w;) = +1} always
has an even number of elements, say 2. For r +1 < i < r + 7/, we set then
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Xi = Xm—it1 = +m (with the obvious abuse of language), so for the remaining
ones we have x; = — ;.

Lemma 6.9.7. — The character X' descends to T i.e. there is a smooth character x
of T such that x' = x o Nm. Moreover, x satisfies properties (a) and (b) of Defini-
tion 6.6.5 in case (iib). In case (itia), x is unramified if m is even or if | is inert in
E.

Proof. — By construction, in both cases, we have x’;',‘l_i 41 = x; for all i. When
m = 2q is even, we define x(diag(ai,...,a2,)) = x1(a1) ... xg(a,s) and it is clear that
x o Nm = x/.

When m = 2q + 1, we remark that the middle character x;,; of E actually
descends to a character xq4+1 of U(1)(Q;). Indeed

g
1
Xosr [ [ xix's = det(x')
i=2
is the central character of mu;. Since the central character of my has an integral weight
(namely S77", a; +n/2), it descends to U(1) by Lemma 6.9.2, and so does the central
character of m;u;, hence also x; 41

Let 9 be a smooth character of U(1)(Q;) such that x;,(z) = ¥(z/c(z)) for all
z € Ej. We define x(diag(a1,...,a2¢+1)) = x1(a1) ... xg(aq)¥(ag+1) and again it is
obvious to see that x o Nm = /.

The other assertion is clear in case (iiib) as the n; are unitary, as well as in case
(iiia) when m is even. In the remaining case, the x| are unramified for i # ¢ + 1 by
choice of y (i.e. Lemma 6.9.2 (iii)), so we only have to check that ¢ is trivial. But
Xg+1 is trivial since it is unramified and satisfies x;1(l) = pi(I)ng+1(l) = +1, hence
the result follows from Hilbert 90. O

We now define 7' as the unramified subquotient of Ind$x in case (iiia) and as the
unique subrepresentation S(x) of Ind$x in case (iiib) (see Def. 6.6.5).

Remark 6.9.8. — The L-parameter of the conjectural base change of 7" to GLn, (E;)
should be, by Remark 6.6.6 in case (iiib) and by (76, §3.6] in case (iiia), the L-
parameter attached to the character x’ of 7, which is by construction

Lim)m® | M2 me |17,

as in the split case.
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6.9.5. Construction of 75 . — Consider the morphism C* — GL,,(C) (recall
that m =n + 2)

z > peo(2)diag((2/2)™, ..., (2/2)%, (2/2)/?, (z/2)"/?)

diag((2/2)*,...,(2/2)%, (2/2)}/2,(2/2)"1/?) if n is even
diag((z/2)2+1/2,...,(2/2)*tY/2 (2/%),1) if n is odd

Since the a; are half-integers, and different from +1/2, we see by §6.7 that this
morphism is always the restriction to C* of the L-parameter of a unique irreducible
representation 75, of U(m). Here the s stands for square integrable. The notation w3
would be misleading since 75, is, like any irreducible representation of a compact
group, finite dimensional, square integrable, hence tempered.

6.9.6. Assumption AC()

Conjecture 6.9.9. — Assume that (n,1/2) = —1. Then the irreducible admissible rep-
resentation

=7 ® ®'7rl"
1
is automorphic.

The proof of this conjecture has recently been announced by Harris in the intro-
duction of his preprint [59] (maybe under some local assumptions). Since a written
proof is not yet available, we prefer to be conservative and state it as a conjecture
rather than as a theorem.

Remark 6.9.10. — (i) The case m = 3 (that is n = 1) of this conjecture has been
proved by Rogawski ([101]), using the Theta correspondence. In the case m =
4, the needed local computations have been published recently by Konno and
Konno ([75]).

(ii) This conjecture is a very special case of the multiplicity formula of Arthur. Its
derivation from that formula is explained in detail in the appendix. From that
we shall see that the e(m,1/2) = —1 should also be a necessary condition for the
automorphy of 7.

(iii) Although the construction of 7™ depends on the choice of the Hecke character
u (for odd n: see Notation 6.9.5), it is clear that the conjecture is independent
of this choice. Indeed, if u is changed into another character u;, then u; = u¢’
where ¢’ is a Hecke character of A}, that descends to a character ¢ of U(1). By
construction the representation n}* defined using p; is simply 7™ (¢ o det) and it
follows that the automorphy of 7" is equivalent to the automorphy of 77.

Note also that the hypothesis in the conjecture is about (7, 1/2), not about
e(m(p o det), 1/2).
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CHAPTER 7

EIGENVARIETIES OF DEFINITE UNITARY GROUPS

7.1. Introduction

In this section, we introduce and study in detail the eigenvarieties of definite uni-
tary groups and we prove the basic properties of the (sometimes conjectural) family
of Galois representations that they carry. These eigenvarieties give a lot of interest-
ing examples where all the concepts studied in this book occur, and provide also an
important tool for the applications to Selmer groups in the next chapters. As a first
application, we define some purely Galois theoretic global deformation rings and dis-
cuss