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THE q-ANALOGUE OF THE 
WILD FUNDAMENTAL GROUP (II) 

by 

Jean-Pierre Ramis & Jacques Sauloy 

Abstract. — In a previous paper, we defined g-analogues of alien derivations and 
stated their basic properties. In this paper, we prove the density theorem and the 
freeness theorem announced there. 
Résumé (Le -̂analogue du groupe fondamental sauvage (II)). — Dans un article précédent 
nous avons défini les g-analogues des dérivations étrangères et leurs propriétés de 
base. Dans cet article nous démontrons le théorème de densité et d'indépendance que 
nous y avions annoncé. 

1. Introduction 
1.1. The problem. — In this paper we shall continue the study of the local mero-
morphic classification of -̂difference modules. In [10] we gave such a classification in 
Birkhoff style, using normal forms and index theorems; this classification is complete 
in the "integral slope case". (One could extend it to the general case using some results 
of[3].) 

In [6] we introduced a new approach of the classification, using a "fundamental 
group" and its finite dimensional representations, in the style of the Riemann-Hilbert 
correspondence for linear differential equations. At some abstract level, such a clas
sification is well known: the fundamental group is the tannakian Galois group of the 
tannakian category of local meromorphic g-modules. But we wanted more informa
tion: our essential aim was to get a smaller fundamental group which is Zariski dense 
in the tannakian Galois group and to describe it explicitly, in the spirit of what was 
done by the first author for the differential case [5]. 
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302 J.-P. RAMIS & J. SAULOY 

In [6] we built a family of elements of the Lie algebra of the tannakian group, the 
q-alien derivations, we achieved our program for the one-level case and we announced 
the main results in the general case. The aim of the present paper is to give some 
proofs omitted in [6] for the multi-level case. We will finally give a more precise 
algebraic formulation of our results in [7], which will end the series. 

1.2. Contents of the paper. — General notations and conventions are explained 
in the next paragraph 1.3. In section 2, we recall basic properties of the category s[0^ 
of linear analytic ^-difference equations with integral slopes, and the structure and 
action of its Galois group G^K In section 3, we recall the unipotent structure of the 
Stokes subgroup &t of G^\ and the construction (taken from [6]) of elements of the 
Lie algebra si of 6t, the so-called q-alien derivations. Our q-analogue of the wild 
fundamental group" is the Lie subalgebra they generate. We then prove in 3.2 and 
3.3 our main results: density and a freeness property of the #-alien derivations. In 
section 4, we summarize what remains to be solved, and will be the contents of [7]. 

The paper is written so as to be read widely independently of [6] - granted the 
reader is willing to take on faith some key points. The principle of the proofs is 
almost purely tannakian, but we have stated explicitly the underlying methods and 
prerequisites. Moreover, they are described in a concrete, computational form (with a 
systematic use of matrices). Since neither ^-difference equations, nor even tannakian 
methods are so popular, this may help the reader to get familiarized with either 
domain. Note that, since we heavily rely on transcendental tools, the methods here 
are, to a large extent, independent of those of M. van der Put and his coauthors. 

1.3. General notations. — The notations are the same as in [6]. Here are the 
most useful ones. 

We let q G C be a complex number with modulus \q\ > 1. We write aq the q-
dilatation operator, so that, for any map / on an adequate domain in C, one has: 
o~qf(z) = f(qz). Thus, aq defines a ring automorphism in each of the following rings: 
C{z} (convergent power series), C[[z]] (formal power series), 0(C*) (holomorphic 
functions over C*), 0(C*,O) (germs at 0 of elements of 0(C*)). Likewise, aq defines 
a field automorphism in each of their fields of fractions: C({z}) (convergent Laurent 
series), C((z)) (formal Laurent series over), M(C*) (meromorphic functions over C*), 
M(C\ 0) (germs at 0 of elements of A4(C*)) 

The (jg-invariants elements of M(C*) can be considered as meromorphic functions 
on the quotient Riemann surface Eq = C*/qz. Through the mapping x ^ z = e2l7rx, 
the latter is identified to the complex torus C/(Z + Zr), where q = e2l7rr. Accordingly, 
we shall identify the fields A^C*)^ and M(Eq). We shall write a i—• a the canonical 
projection map TT : C* —* E9 and [c;q] = 7r_1 (c) = cqz (a discrete logarithmic 
^-spiral). 

Last, we shall have use for the function 9 G (9(C*), a Jacobi Theta function such 
that o~q6 = z0 and 9 has simple zeroes along [—1;<?]. One then puts 9c(z) = 9(z/c), 
so that 9C G (9(C*) satisfies o~q9c = (z/c)9c and 9C has simple zeroes along [—c\q\. 
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THE g-ANALOGUE OF THE WILD FUNDAMENTAL GROUP (II) 303 

2. Linear analytic g-difference equations 

A linear analytic (resp. formal) g-difference equation (implicitly: at 0 G C) is an 
equation: 

(1) aqX = AX, 

where A G GLn(C({z})) (resp. A G GLn(C((z)))). There is an intrinsic description 
as a "g-difference module MA, which runs as follows. We consider the operator $A 
on C({z})n which maps a column vector X to A~1aqX. This can be abstracted 
as a finite dimensional C({2;})-vector space V endowed with a so-called "cr9-linear 
automorphism" 3>. A g-difference module is such a pair M = (V,3>). Here, we have 
MA = (C({z})n,*A). 

We shall here stick to the matrix model and, for all practical purposes, the reader 
may identify the equation (1), the matrix A and the ^-difference module MA with 
each other. For instance, we call solution of A, or of (1), or of MA in some extension 
K of C({z}), on which aq operates, a column vector X G Kn such that aqX = AX. 
The underlying space of A G GLn(C({z})) is C({z})n. 

2.1. Description of the tannakian structure. — We now proceed to describe 
the tannakian category of analytic q-difference equations £(°\ There is a similar 
description for the corresponding formal category £(°\ The objects of £(°) are linear 
analytic ^-difference equations (1). A morphism from A G GLn(C({z})) to B G 
GLp(C({z})) is a matrix F G Mp,n(C({z})) such that: 

(2) (aqF)A = BF. 

This just means that F sends any solution X of A to a solution FX of B. One can 
check that £ ^ is an abelian category. Indeed, it is the category of finite length left 
modules over the euclidean non-commutative ring 2 \ K of ^-difference operators over 
K = C{{z}). 

The abelian category £ ^ is endowed with a tensor structure. The tensor product 
A\ <g) A2 of two objects (resp. the tensor product F\ 0 F2 of two morphisms) is just 
the Kronecker product of the matrices; of course, we must define a consistent way of 
identifying Cn<g)CP with Cnv, or C({z})n ®C({z})p with C({z})np (see, for instance 
[11]). 

The unit object 1 (which is neutral for the tensor product) is the matrix (1) G 
GLi(C({z})) = C({z})*, with underlying space C({z}). The object 1 of course 
corresponds to the "trivial" equation ^ ax = x. One easily checks that the space 
Hom(l, A) of morphisms from 1 to A is exactly the space of solutions ofAinC({z}), 
or, equivalently, the space of fixed points of $A in C({z})n. We shall write T(A) or 
T(MA) that space, as it is similar to a space of global sections (and, indeed, can be 
realised as such, see [14]). 

(i) In differential Galois theory, the matrix A of a system is in Mn(C({z})) (rather than in GLn), 
the trivial equation is x' = 0, etc. The theory of -̂difference equations rather has a multiplicative 
character 
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304 J.-P. RAMIS & J. SAULOY 

The characterization (2) of morphisms can itself be seen as a ^-difference equation 
aqF = BFA-1. This means that there is an "internal Horn" object, which can be 
described in the following way. Consider the linear operator F »-» BFA~X on the 
vector space MPjn(C({z})). Through identification of Mp,n(C({z})) with C({z})np, 
this operator is described by a matrix in GLnp(C({z})), which yields the desired 
equation. We shall write Horn (A B) the corresponding object. Thus, one gets: 

(3) r(Hom(Afl)) ~ Hom(l,Hom(AB)) ~ Hom(j4,B). 

Actually, this is a special case of the following canonical isomorphism:: 

(4) Hom(A, Hom(B, C)) ~ Hom(A <8> fl, C). 

The reader will check that the object Horn (A 1) has the following description. The 
underlying space is Mijn(C({z})), which we identify with C({z})n. The correspond
ing matrix for the linear operator F »-* FA~X is the contragredient matrix Ay — tA~1. 
We call the object Ay the dual of the object A. From this, we get yet another con
struction of the internal Horn: 

(5) H o m ( i , B ) - i v 0 B . 

We summarize these properties by saying that £ ^ is a tannakian category. This 
is halfway to showing that it is (isomorphic to) the category of representations of a 
proalgebraic group, our hoped for Galois group. To get further, one needs a fiber 
functor on £(°\ This was defined and, to some extent, studied in full generality in 
[13], [12] and [6]. However, for our strongest results, we need to restrict to the case 
of integral slopes. 

2.2. Equations with integral slopes. — In [13], one defined the Newton polygon 
of a g-difference module (analytic or formal). This consists in slopes (2) \i\ < • • • < µk 
(rational numbers) together with ranks (or multipicities) r i , . . . , r/~ (positive integers). 
We shall say that a module is pure isoclinic if it has only one slope and that it is 
pure (3) if it is a direct sum of pure isoclinic modules. We call fuchsian a pure isoclinic 
module with slope 0. The Galois theory of fuchsian modules was studied in [11]. Pure 
modules are irregular objects without wild monodromy, as follows from [10], [12] and 
[6]. 

The tannakian subcategory of £ ^ made up of pure modules is called £p°\ Modules 
with integral slopes also form tannakian subcategories, which we write £ ^ and £ ^ . 
From now on, we restrict to the case of integral slopes. Our category of interest is 
therefore £ a n d we shall now start its description. 

(2) Note that here, as in [6], we have changed the definitions of slopes. Those used here are the 
opposites of those used in [13], [8] and [12]. 
(3) Here again, starting with [6], we changed our terminology: we now call pure isoclinic (resp. pure) 
what was previously called pure (resp. tamely irregular). The latter are called split modules in [3]. 
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Any equation in s[0^ can be written in the following standard form: 

(6) A = 

z^Ai 

Uij ... 
0 

0 
0 . . . 0 . . . z^Ak 

where the slopes fii < • • • < fik are integers, r» € N*, -A* G GLri(C) (i = 1, . . . , fc) 
(those /ii and r* make up the Newton polygon of A) and: 

Vi, j s.t. 1 < i < j < k , t/ij 6 Matr.,ri(C({z})). 

We actually can, and will, require the blocks Uij to have all their coefficients in 
C[z, z~x\. Then any morphism F : ̂ 4 —• B between two matrices in standard form is 
easily seen to be meromorphic at 0 (by definition) and holomorphic all over C*; this 
is because the equation aqF = BFA~l allows one to propagate the regularity near 0 
to increasing neighborhoods. 

We moreover say that A is in polynomial standard form if each block Uij with 
1 < i < j < k has coefficients in J2 &zd. It was proved in [10] that any object in 

lii<d<fjLj 
£ ^ is analytically equivalent to one written in polynomial standard form (in essence, 
this is due to Birkhoff and Guenther). Last, we say that A is in normalized standard 
form is if all the eigenvalues of all the blocks Ai are in the fundamental annulus 
{ 2 G C * | l < | z | < | # | } . Any standard form can be normalized through shearing 
transformations. Note that polynomial standard form is stable under tensor product, 
while normalized standard form is not. 

The standard form (6) above expresses the existence of a filtration by the slopes 
([13]). The functoriality of the filtration moreover entails that a morphism F : A —> B 
is also upper triangular (by blocks) in the following sense: if the slopes of B G 
GLp(C({z})) are ui < ••• < v\, with ranks S\ < ••• < sj, then the morphism 
F G Mp?n(C({z})) from A to B has only non null blocks Fitj G M8jiri(C({z})), 
1 < i < k, 1 < j < I for Uj < µi 

To the matrix A and module M = MA is associated the graded module grM = 
MQ = MA0 with block diagonal matrix: 

(7) A0 = 

(z^Ax \ 
0 

0 

0 

0 . . . 0 . . . z^Ak/ 

The graded module Mo is the direct sum Pi © • • • © Pjt, where each module Pt is pure 
of rank ti and slope fa and corresponds to the matrix z^Ai. The functor M grM 
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also acts on morphisms. To F, it associates FQ which has the same diagonal blocks 
as F, that is, (Fo)ij = Fij if \ii = Vj. But all the (Fo)ij such that \ii ^ Vj are null. 

By formalisation, i.e. base change C({z}) —• C((z)), the slope filtration splits 
and the functor gr becomes isomorphic to the identity functor. In matrix terms, 
this translates as follows. There is a unique isomorphism F : AQ —> A with formal 
components Fij G MR.IRJ(C((z))) (for 1 < i,j < k) and the following shape: 

(8) F = 

iri 
F 

0 

. . . 0 

0 . . . 0 . . . Irk 

To express that a matrix has such a shape and coefficients in some domain K, we shall 
write F G <5A0 (K)- Thus, <&A0 is a unipotent algebraic subgroup of the linear group 
and it can be realised above any field K: in the above case, one has F G G(3A0(C((Z))). 
For further use, we also give a notation for the corresponding Lie algebra £u0. An 
element / G QA0 (K) has the shape: 

(9) 

0ri 

kj 
0 

. . . 0 
0 . . . 0 . . . orfc 

where 0r is the null r x r matrix and where each foj G Mr.jrj(K). 
We shall denote FA the unique F mentioned above. Its blocks can be characterised 

as the unique formal solutions to the following recursive equations: 

(10) VI < i < j < k , o-qFijz^Aj - z^AiFij = Ui,iFhJ + ui,j-
i<Kj 

There are usually no analytic solutions (that is, with coefficients in C({z})) for equa
tions (10). (The existence of analytic solutions is equivalent to MA being pure.) There 
are, however, meromorphic solutions, to be considered as resummations of the formal 
solution FA (section 3.1). 

The graded counterpart FQ of F = FA satisfies simpler equations. Prom the above 
description, we know that (Fo)ij = 0 for any i, j such that /ii ^ / / j , that is, if i ^ j ; 
if i = j : 

aq(Fo)i^iAi = z^Ai(F0)i,i. 

This implies that (Tq(Fo)i1iAi = Ai(Fo)iyil and it then follows from [11] that the 
coefficients of FQ are Laurent polynomials (elements of C[z, 2-1]); if moreover A is in 
normalized standard form, then these coefficients are in C. 
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2.3. Description of the fiber functor. — In Tannaka theory, the Galois group 
is defined as the group of tensor automorphisms of a fiber functor. We now describe 
a fiber functor on £[0\ There is actually a whole family of these, indexed by C*, 
and one can therefore define a Galois groupoid ([6]). Here, we shall first choose an 
arbitrary basepoint a G C*. As a consequence, some constructions of 3.1 will be valid 
for most equations, but not all. This means that, to study a particular equation, one 
has to choose a basepoint compatible with it, which will be seen to be a generically 
true condition. 

The fiber functor d>i°̂  goes from s[0^ to the category of finite dimensional C-vector 
spaces. On the side of objects, to each matrix A £ GLn(C({z})) and module MA, 
it associates the space u^\A) = Cn. On the side of morphisms, to F : A —• B G 
GLp(C({z})), it associates Fo(a) : Cn —• Cp. (The dimensions are right and it follows 
from the last remark in 2.2 that F0(a) is well defined). 

Apart from functoriality, the properties of u)i°̂  which make it a fiber functor are 
the following: it is exact, faithful and 0-compatible. The latter means that, for any 
A, B, the natural map tA,B ' U>£\A) 0 &£\B) —> LJ^\A 0 B) is an isomorphism. 

We now define the Galois group of S[0) (at base point a) as G(0) = Aut®^). It 
would be more rigorous to write explicitly the index a indicating the basepoint, but 
this would make the notation heavier without true necessity. An element of the group 
Aut® (cu^) is, by definition, a natural transformation g : A -W g(A) G GL (ti^\A)^J = 
GLn(C), subject to the following conditions: 

1. Functoriality: for any morphism F : A —» B, one has g(B)oFo(a) = Fo(a)og(A). 
Thus, the following diagram is commutative: 

w0 (0) [A) Foia) 
Va 

[0) (B) 

9{A) 9{B) 

Uà 
(0) 'A) F0(a) 

Va 
,(0) 

(B) 

2. Tensor compatibility: for any objects A, B, up to the natural identifications, 
one has an equality g(A 0 B) = g(A) 0 g(B). Thus, the following diagram is 
commutative: 

u,{°\A)®№(B) -TA, B ̂ U №(A ® B) 

g(A)®g(B)^ |p(A®J5) 

№(A)®w<?\ (B) tA,B u,P(A®B) 

In [11] was completely described the Galois group G^ of the subcategory £ ^ of 
£(°) made up of fuchsian equations. From [13], one could (trivially) deduce the Galois 
group Gp0^ of the category £p°J of pure objects with integral slopes. Here, we will 
describe the Galois group G^ of s[°\ The extension of these results to the case of 
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308 J.-P. RAMIS & J. SAULOY 

non integral slopes should not involve new ideas on the analytic side, but will have to 
take in account the results of van der Put and Reversât in [3]. 

2.4. Galois group and Galois action 
Theorem 2.1. — The structure of the Galois group G^ is as follows: 

G (o) 
7i = 6 t x G (0) 

'PI ("tota/ Galois group with integral slopes). 
G io) 

P,I = T l 
-(0) x G t(0) 

f (pure Galois group with integral slopes), 

T (0) 
1 = C* (theta torus with integral slopes), 

G r(0) 
f = G{ (o) 

t,s 
xG f(0) 

f,v (fuchsian Galois group), 
G^\ = C (unipotent component of the fuchsian Galois group), 

G^?l = H.omgr(C*/qz, C*) (semisimple component of the fuchsian Galois group). 

The structure and action of the prounipotent Stokes group &t are the subject 
matter of [6] and of section 3 of the present paper. We shall presently explain the 
structure and action of the pure group Gp0\. This means that we should associate to 
any object A a representation of Gp0^ in the space LJ^(A)', thus, for any g G Gp0^ and 
any matrix A € GLn(C({z})), we should realize g(A) G GLn(C). 

We start from the standard form (6). For each of the block matrices Ai, we write: 

Ai — Ai^sAi^u 

its multiplicative Dunford decomposition: AiyS is semisimple, AiiU is unipotent and 
they commute. 

1. Let g = 7 G G(^s = Komgr(C*/qz, C*). The latter is here identified with the 
group of morphisms from the abstract group C* to itself that send q to 1. We 
let 7 act on each Ai:S through its eigenvalues: if Ai,s = Pdiag(ci,... ,cr)P~l, 
then j(AiiS) = Pdiag(7(ci),... ,7(cr))P_1 (it does not depend on the choice of 
a particular diagonalisation). Then: 

9(A) 

y(Ai,e) 
О 

О 
о 

О ... О ... 7(¿*,.). 
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2. Let g — A G G^\ = C. Since the Ai,u are unipotent matrices, the A*u are well 
denned and we put: 

9(A) = 

Aп1,и 
о 

о 
о 

О ... О ... А^и 

3. Let g = t G (o) = C*. This theta torus is the analogue here of the exponential 
torus of the classical differential Galois theory. Then: 

9(A) = 

t^Iri 
0 

0 
0 

0 ... 0 .. . t»kIrk 

Note that all these depend on A0 only. This is because the category £p°J of pure 

modules with integral slopes is equivalent to the category of representations of GP0^, so 
that giving a representation of the latter group is the same as giving an object in the 
former category. We leave as an exercise for the reader the reconstruction of AQ from 
the representation described above. For further use, we shall now prove two lemmas 
about the action of GP°\ on LU^^A). These lemmas actually express the "duality" of 

G o) and E ,(0) 

Lemma 2.2. — Let A be in normalized standard form (6). Let X G Lua°\A) be covari-
ant under the action of G^, that is, for all g G G^X, the vectors X and g(A)X are 
colinear. Then there exists i G {1 , . . . , k} and a G Sp(Ai) such that: AQX = az^X. 

Proof — First note that the block decomposition of AQ (or, equivalently, the action 
of the theta torus) entails a splitting of vector spaces: 

u>a0){A) = Cn = Cri 0 • • • © Crfc, 

each A{ acting upon the corresponding CTi. We can accordingly write X = 
(Xi,... ,Xk) (in row form, instead of column form, for economy of space). Co-
variance under the action of T(0) say that (t^Xi,... ,t^kXk) and (Xi,... ,Xk) are 
colinear for all t G C*, which implies that at most one component Xi is non trivial. 
Then, covariance under the action of G^U says that Xi is fixed by A^u (since the 

latter is unipotent). Last, covariance under G^\ implies that Xi is an eigenvector of 
AiiS. Indeed, this comes from the fact that, if a ^ a' are eigenvalues of A^ then, by 
the normalization condition, aqz O a'qz = 0; it is then easy to see that there exists 
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7 G Hom^r(C*/gz, C*) such that 7(a) ^ 7(0/)» so that ^ cannot have nontrivial 
components in both eigenspaces of A{. The conclusion follows. • 

Lemma 2.3. — Let A be in normalized standard form (6). Let X G CJ£\A) be invari
ant under the action of Gp0^, that is, for all g G Gp0^, the vectors X and g(A)X are 
equal. Then AQX = X. 

Proof. — The proof is similar, with two adaptations. First, equality of (t^Xi,..., t^kXk) 
and (Xi,...Xk) entails that at most one component Xi is non trivial and the cor
responding slope is fa = 0; second, invariance under G^p8 implies that at most 
one component of Xi (in the eigenspace decomposition) is non trivial, that the 
corresponding a G Sp(^) is in the kernel of all elements of Hompr(C*/gz, C*), so it 
is in qz, so equal to 1 by the normalisation condition. • 

Again because of the duality of Gp0^ and £p°l, the conclusions of these two lemmas 
have useful interpretations. The conclusion of lemma 2.2 says that the column matrix 
X G Mn?i(C) is a morphism from the rank one object (az^) G GLi(C({z})) into Ao. 
The conclusion of lemma 2.3 says that the column matrix X G Mn?i(C) is a morphism 
from the unit object 1 = (1) G GL\(C({z})) into Ao, i.e. a section X G T(A0). 

3. The wild fundamental group 

3.1. The action of the Stokes group. — An element 5 G ©t is characterized by 
the following properties: 

1. To each A in standard form (6), it associates a matrix s(A) G 0Ao(^)5 recall 
that <&a0 was described as the algebraic group of matrices of shape as in equation 
(8). 

2. If A = Ao, that is, if A is pure, then s(A) = In. 
3. Functoriality and tensor compatibility are defined as in section 2.3. 
Since (5t is a prounipotent proalgebraic group, it is convenient to study it through 

its Lie algebra si. (The underlying formalism is expounded in the appendix of [2].) 
An element D G st is also a natural transformation of LJ^ . It associates to each 
object A an endomorphism D(A) G C(u>^(A)) = Mn(C), subject to the following 
conditions: 

1. For each A in standard form (6), the matrix D(A) G Mn(C) is in Qa0(C); recall 
that qa0 was described as the Lie algebra of matrices of shape as in equation 
(9). 

2. If A = A0, that is, if A is pure, then D(A) = 0n. 
3. Functoriality is defined as in section 2.3. 
4. Tensor compatibility is that of "Lie-like elements" (as in [15], §6): for any 

A G GLN(C({z})) and B G GLp(C({z})), one should have, up to natural 
identifications: D(A ® B) = D(A) ® Ip + In <g> D(B). Thus, D behaves like a 
derivation. 
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In [6], we have produced many elements of &t and of st. However, for a given 
basepoint a G C*, these do not operate on the whole of s[0^ but on a tannakian 
subcategory of it. Therefore, the way of using them is the following: given an equation 
A of interest, proposition 4.2 of loc. cit. yields an explicit criterion to select adequate 
basepoints (these are generically adequate). Then all the constructions that follow 
make sense in the tannakian subcategory of £ ^ generated by A . This means that each 
time we shall evaluate a meromorphic function at a, this will be possible. Henceforth, 
we shall not anymore discuss this matter. We assume that the basepoint has been 
chosen so that all the objects we deal with are compatible with it. 

In [12] and [6], we defined an explicit finite subset MAo of Eg and proved: 

Theorem 3.1. — Let c G Eq \ XU0. Then, there is a unique F : A0 —> A such that 
F G <&A0(M(C*)), with poles only on [—c; q] = —cqz and such that, for 1 < i < j < k, 
the poles of Fij have multiplicity < fij — 

We write this meromorphic isomorphism SCFA and see it as some kind of summa
tion of FA in the direction c G Eq. Therefore, changing direction of summation, we 
may define, for every c, d G E9 \ E^0: 

S-crdFA = {S-cFAylS-dFA, 

some kind of "ambiguity of summation", that is, a Stokes operator. It is plainly a 
meromorphic automorphism of AQ. We also proved in loc. cit: 

Proposition 3.2. — // moreover a ^ c,d, then A ~> S--^FA{O) is an element of St. 

In particular, S--^FA(O) G &t(A). (Recall that we implicitly restrict ourselves to a 
subcategory of S[°^ where everything is defined.) 

For the following corollary, we fix an arbitrary direction of summation CQ G Eg, 
again to be considered as a choice of basepoint (and inessential). 

Corollary 3.3. — Putting LSC,A(A) = log(5CB~,CP.A(a)) £ st (A) yields a family of ele
ments of elements ofst(A). Moreover, A >̂ LSC,A(A) is an element of st. (We omit 
Co in the notation.) 

The above family is a meromorphic map from Eg to a vector space, hence one can 
take residues. Define the g-alien derivations by the formula: 

AM) = Res-d=-LS-dJA). 

(We do not mention the arbitrary basepoints Co, a in the notation.) Of course, for 
c £ IU0, we have AC(A) = 0. Another result we need from [6] is: 

Theorem 3.4. — One has AC (A) G st(A). More precisely, A ^> AC( A) is an element 
of st. 
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Since (St is a normal subgroup of G\', it admits a conjugation action by Gp {. 
This can be transferred to the Lie algebra st. Because of the action by the theta torus 
T 

l 
i(0) = C*, we thus have a spectral decomposition: 

st = st 5. 
6>i 

and each alien derivation admits a canonical decomposition: 

A2 = A (0) 
c Ô>1 

where A^(A) G sts(A) has only non null blocks for /JLJ - jjti = 5. Each t G T(0) acts 
on st6 by multiplication by t6, and carries ^S)(A) to ^A^}(^). 

Remarks 
1. The theta torus actually operates on each u>i°̂ (.A) = uja°\Ao) and, being semi-

simple, splits it into the direct sum of its eigenspaces: one for each slope //, with 
rank r{fj). The corresponding increasing filtration comes from the filtration by 
the slopes: 

wi0)(i4)>M = wW(^>/1). 

The elements of the group 0^O(C) are the automorphisms of ua0\A) which 
respect that filtration and are trivial (i.e. the identity) on the associated graded 
space. The elements of the algebra 0^O(C) are the endomorphisms of wCJ£\ (A) 
which respect that filtration and are trivial (i.e. null) on the associated graded 
space. 

2. Prom this, we deduce a spectral decomposition: 

&A0 = 9A0 Ô 

S>1 

from which the decomposition of st follows. 
3. Putting QA0~S = S &A06 defines a filtration of the Lie algebra QA0 by ideals. 

6'>6 

Putting <£>A0~ = In + %A0-5 = exp&Ao then defines a filtration of <&A0 by 
normal subgroups. 

4. Similarly, we can decompose each (i, j) block of A^(A) (where JJLJ — fii = 5) 
into subblocks indexed by pairs (a,/?) G Sp(A*) x Sp(Aj). Each 7 £ G ^ then 

multiplies the corresponding subblock of Ac (A) by 7(a) 
7(0) 

- • This may be deduced 

as above from the action of Gjs on ua (AQ) and a corresponding splitting of 
each of the QA05-
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3.2. The density theorem 
3.2.1. Plain density theorem. — The wild monodromy group actually is the Lie sub-
algebra of st generated by the q-alien derivations Ac. The justification of the name 
is that its definition has a transcendental character and the following result. 

Theorem 3.5 (Density theorem). — (i) The subgroup of &t associated with the wild 
monodromy group (as defined above), together with the pure group G^\, generate 
a Zariski-dense subgroup of the whole Galois group G(0). (ii) The Ac together with 
all their conjugates under the action of G ^ generate a Zariski-dense Lie subalgebra 
of st. 

Proof. — Actually, (i) is but a rephrasing of (ii) and we shall prove the latter. We 
shall use Chevalley's criterion in the following form: 
For a subset H c G ^ to generate a Zariski-dense subgroup of G^\ it is sufficient 
that, for each object A and each line D C u)a°^ (A) which is invariant under the action 
of all elements of H, then D is actually invariant under the action of G ^ . Our way 
of using it is similar to that in [11] (2.2.3.3 and 3.1.2.3). 

We take H = G^\ U exp ({Ac | c G C*}). If we choose a generator X of the line 

D, the assumption is that X is covariant under G^\(A) = G^^Ao) on the one hand, 
under all the Ac (A) on the other hand. Since the latter are nilpotent, this means that 
all Ac(A)X = 0. Then, must prove that for all D G st, one has D(A)X = 0. 

Using lemma 2.2, along with its proof and notations, we may write (in row form) 
X = (0,. . . , Xi,..., 0), where the components have sizes r\,..., rk and where AiXi = 
cXi for some c G Sp(Ai), so that AoX = cz^X. 

Now, we note that components of slopes > fii are neither involved in the as
sumptions nor in the conclusion, so that one may as well assume from start that 
i = k. Indeed, write n' = r\ + • • • + U the size of the components correspond
ing to slopes < ^ (equivalently, the rank of the submodule M< C M = MA of 
slopes < fii in the slope filtration), A! the corresponding submatrix of A (so that 
M' = MA>) and X' = (0,...,Xi) the corresponding subvector of X. The matrix 

ø = 
In' 
0 

G Mnjn/(C) is a morphism $ : A' —> A (it is the inclusion M' C M) and 

$X' = X. For all g G G^\ one has (by functoriality) g(A)$ = Qg(A') (here, one has 
<I>(a) = $>). The reader will check that A' and X' satisfy the same assumption as A 
and X, and that it is enough to prove the conclusions for them. 

So we assume from now on that X = (0,... ,Xfc), that AkXk = cXk for some 
c G Sp(Afc), so that AQX = cz^kX. Then X : (cz^) —> AQ is an analytic morphism, 
and therefore G = FAX : (cz^k) —> A is a formal morphism. We shall prove below 
(lemma 3.6) that it is actually an analytic morphism. Therefore, taking D G st and 
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using functoriality, we get the commutative diagram: 

C Go(a) £,W{A) 

D(C2"fc)| [D(A) 

C Go(a) W(0){A) 

The matrix Go is the graded part of the column matrix FAX, that is, in row notation, 
X itself. Since D G si and since the source object (czfJ,k) is pure, one has D(cz^k) = 0. 
Hence we get D(A)X = 0 as wanted. • 

Lemma 3.6. — The matrix FAX is analytic and the summations SCFA do not de
pend on the direction c G ~Eq, and they are all equal to FAX (that is, its "classical 
summation", as a convergent power series). 

Proof. — First fix a direction c G Eg and write F = SCFA> Likewise, write G = FA 
for short. The components Fij and Gij satisfy equations (10). We are interested in 
the Fi^Xk and the Gi,kXk for 1 < i < k (for i = k, both equal Xk). 

We shall put: Y{ = FijkXkj Z{ = Gi,kXk and V{ = U^kXk. Then, for 1 < i < k, 
multiplying (10) by Xk on the right and taking in account the equalities aqXk = Xk 
and AkXk = cXk, one gets: 

cz^(aqYi)-z^AiYi= ^ U^Yj+Vi and cz*k(<TqZi)-zil*AiZi= Yl UiJZJ+Vi-
i<j<k i<j<k 

On the other hand, we shall have to use the assumptions: Ac(A)X = 0. Since 
X = (0, . . . , Xfc), this means that, for each i < k, one has (Ac(A))i,kXk = 0. Writing 
for short Fd = S^PA(a), F0 = S^FA{a) and L = LS~da{A) = log(5_ jFA{a)) (see the 
notations of section 3.1), we shall see in lemma 3.7 below that, for i < k: 

Li,k = (Fd)i,k - {F0)iik + Yf ^i,j,k((Fd)j,k - (Fo)j,k), 
i<j<k 

where the Mijjk are some arbitrary matrices (their values are inessential here). 
We use a downward induction on i. For i = k — 1: 

CZ»k(*qYk-1)-z'»'-1Ak-1Yk-1 = ^ - 1 and C ^ ^ ^ - l ) - ^ - 1 ^ - ! ^ - ! = VK-L 

Thus, Zk-i is the formal solution and Yk-i the solution summed in direction c of 
the equation czfJ,k(aqY) — z^k~x Ak-{Y = Vk-i. On the other hand, from the for
mula above, one has: Lk-i,k = (Fd)k-iik - (F0)k-i,k. Taking residue at d = c and 
multiplying at right by the constant vector Xky one gets: 

(Ac(A))k-hkXk = Res1=-LSk-hkXk = Res1=-(Fd)k-hkXk = Res -d=-Yk-1. 

This means that the residues of resummed solutions of the equation just mentioned are 
all 0. According to the results of section 4.2 of [6], this implies that Y^-i is analytic 
near 0 (it has no poles other than 0), that it does not depend on the direction of 
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summation d, and that it is equal to Zk-\. This completes the first step of the 
induction. 

Now take i < k — 1 and assume that the property has been proved for all j > i. 
Consider the equation of which Yj is solution. Its right hand member ^ UijYj + V% 

i<j<k 
is analytic, by the induction hypothesis (analyticity part). The residue at d = c of Y$ 
is equal to, Res^=-(Fd)ijkXk, thus to: 

Res-d=-cLSi,kXk = (Ac(A))i,kXk = 0. 

This is because all other terms in the formula taken from lemma 3.7 have at right 
a factor ((Fd)j,k — (Fo)j^k)Xk = Yj — Yj, since Yj does not depend on the direction 
of summation. Thus we have again a solution Y{ with all residues null, so that it is 
analytic and independent of the direction of summation by loc. cit.. • 

Lemma 3.7. — With the notations of section 3.1, one has, for i < k: 

log(S--dFA(a))itk 

= (S^FU(a))4,fc - (S^FA(a))i>k + £ Mitj,k((S^FA(a))J!k - (S^FA(a))jtk), 
i<j<k 

where the Mijjk are some arbitrary matrices. 

Proof. — We write A = SjFA(a), B = SC^FA(CL) and C = A - B, which is strictly 
upper triangular by blocks. Then: 

log(J5-1i4) = log(/n + B-1C) = 
p > 1 

(-1) p. 

p 
(B-1 C) p. 

from which the equality of blocks: 

(logi (B-1 'A))i k = Cilk + 

i<j<k 
Mij,kCjik 

follows easily. • 

3.2.2. Functorial density theorem. — In section 3.3, we shall describe how the Zariski 
generators Ac of st (theorem 3.5) are related. For that, we shall first give a more 
functorial version of the density theorem. 

Since £p°l and S[0^ are respectively isomorphic to the category of (finite dimen
sional complex) representations of G(0) and G(0) = &t xi G^\, and since finite di
mensional representations of the prounipotent proalgebraic group &t are equivalent 
to finite dimensional representations of the pronilpotent proalgebraic Lie algebra st, 
the tannakian category £ admits an alternative "mixed" description, which runs as 
follows: 

1. Objects are pairs A = (A0, (D(A))r)est), where AQ is some object of S^l, e.g. 
a matrix in pure standard form (7), and where each D(A) £ £U0(C). 
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2. Morphisms from A = (A0j (D(A))Dest) to B = (B0, (D(B))Desi) are morphisms 
F0 : A0 —> Bq in E(0) such that, for each D G st, one has D(B)F0(a) = 
Fq(cl)D(A). (Recall that an arbitrary basepoint a G C* has been chosen once 
for all.) 

3. The tensor product of A = (A0, (D(A))Desi) and B = (B0, (D(B))DESI) is the 
object C = (Co, (D(C))Dest), with the previous rule CO = A0 ® B0 from £P°L, 

and with the "Lie-like element" rule D(A®B) = D(A)®IP+In ® D(B). The unit 
is 1 = ((1), (0)DGst). The dual of A is Av = (A%, (-<£>(,4))D€st). The space of 
sections of A is T(A) = Hom(l, A) = {X0 G T(A0) \VD est, D(A)X0 = 0}. 
(Recall that T(A0) = {X0 G C({z})n | <rgX0 = A0X0}.) 

4. There is a a fiber functor a>i°̂  (A) = u>i°̂ (Ao). 
def 

To be complete, such a description should take in account the adjoint action of G ^ 
on st, which is, for all A, the restriction of the action of Gp0^ on g^0(C). For instance, 
from the action of the theta torus, one draws the graduation st = 0 st6, whence 

<5>1 
decompositions D(A) = ^ DS(A), where each D6(A) G (U06(C). We shall take in 

<5>1 
account the adjoint action of G ^ later. 

We would like to consider the A(b) (A) as encoding a Lie algebra representation 
from the free Lie algebra L generated by the family of symbols (A^)s>iice'Eqi and so 
describe £[0̂  as the category of representations of L x Gp0^ in a way similar to that 
above. This would require some other tools (see the conclusion of the paper). As a 
substitute, we define a new tannakian category £' as follows: 

1. Objects are pairs: 

A=(A0, (Ac(0) {A))s > 1rce v eq), 

where A0 is in pure standard form (7), and where each &^(A) € QA0 5 (C). 

2. Morphisms from A to B = (B0,(Ats\B))s>i,c€Eq) are morphisms Fq : 

A0 —• -Bo in £ ^ such that, for each S > l,c G Eg, one has A^(5)F0(a) = 

F0(a)Af (A). ' 
3. The tensor product of A and £? is the object C = (Co, ( A i ^ i ? ) ) ^ ^ ^ ) * with 

G0 = A0 ® £0 and A ^ (A ® B) = A ^ A ) ® Jp + 7n ® Ai6)(jB). The unit and 
dual are described as before. The space of sections of A is T(A) = Hom(l, A) = 
{X0 G r(i40) I VJ > l,c G E, , A^(A)X0 = 0}. 

4. There is a a fiber functor LU^\A) = u>i°̂ (Ao). 
def 

For the time being, we do not take in account the action of G ^ . 

We now consider the functor A J7(A) = (^Ao,(A^\A))s>iiceBq) from E(0) to 
£'. It is plainly an exact faithful ®-functor. 
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Theorem 3.8 (Functorial density theorem). — The functor T is fully faithful. 

Proof. — To prove that Hom(A,B) —• Hom(Jr(A),J7(B)) is onto, we draw on the 
identifications Hom(A, B) = r(Av®B) and Rom(T(A), F(B)) = T{T{Ay ® F{B)). 
Since J7 is a 0-functor, the latter is identified with T(Jr(Av (g> B)), so that we are left 
check that, for any A, the map r(^4) —> T(Jr(A)) is onto. 

That map sends a vector X G C({z})n such that aqX = AX to its graded part 
XQ G C({z})n. The vector Xo has the same null slope component as X and is zero 
elsewhere. It satisfies aqX0 = A0X0 and Vi > l,c € E? , A(0) (A) X0 = 0. If 
we start from such a vector Xo, lemma 2.3 tells us that it comes indeed from some 
X G r(;4). • 

3.3. A freeness theorem. — We now shall describe the (essential) image of the 
functor F, or, what amounts to the same, which families (A^\A))s>i,ceEq can be 
realized for a given AQ in £p0J. To understand what is going on, we start with the 
first level, which is easier. 

3.3.1. The first level. — In theorem 3.1, we obtained the Fij blocks of SCPA as 
solutions of the following equations: 

{aqFi9J)z^A5 - z^AiFij = ^ UitlFu + Uitj. 
i<Kj 

We consider the first non trivial level in the computation of S^PA, that is: So = 
min(/ij — fii). For a block Fij of level fij — µ1 = So, there is no Fij ^ 0 for i < I < j , 
i<j 
so that the second hand member in the equation above is Uij, which is analytic near 
0. In that case, there is a solution Fij with poles on [—c; q] and multiplicity < So for 
any c G E9 which satisfies the non-resonancy condition: 

Va G Sp(Ai) , V/? G Sp(Aj) , ac^ ^ /3cV (mod qz). 

G • 
We recall briefly, from [6], how this was computed. One puts Fij = —j^-, (the 
function 9C has been defined in section 1.3). We thus look for Gij holomorphic on 
C* and satisfying: 

^((TqGi^Aj - Aidj = z-«Uitj06c° = vn*n-
NGZ 

Writing the Laurent series Gij = ^2gn^n, we are left to solve, for each nGZ: 

cSoqngnAj - Aign = vn G Matri,r. (C). 

If Sp(cs°qnAj)DSp(Ai) = 0, which is is just the non-resonancy condition above, then, 
for each n, this admits a unique solution. 

Using the notations given at the end of 3.1, we see that, for any d 0 E^0, one 
has S^FA(a) G (5A0~6O(C). Provisionally call / J its component at level S. A small 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



318 J.-P. RAMIS & J. SAULOY 

computation shows that LS^a(A) is in QA0-6°(C) and that its component at level 8Q 

is /Jo _ /!_. Thus, A(0) \A) = Res1=-Jl°. 
From the previous computation, we now conclude that, for fij ~~ H>i — the (i, j) 

block of AC(0) (A) is trivial for non-resonant directions, i.e. if Sp(cs°qnAj) fl Sp(A^) = 
0. This is the necessary conditions we were looking for. It is not hard to see (and it 
will come as a particular case of the following sections) that these are indeed the only 
conditions on the first level. 

3.3.2. Structure of the q-alien derivations at an arbitrary level. — We are led to 
introduce some more notations. We first refine the spectral decomposition of LJ^ (A) 
under the action of the theta torus by taking in account the action of G^s, the semi-
simple component of the fuchsian group. From the equivalence: 

a = ¡3 (mod qz) <=• V7 € G<?> , 7(«) = 7(0) , 

we see that the action of G^8 splits each eigenspace under C* corresponding to the 

slope fa mto a sum indexed by the a G Sp(A^). Precisely, if V = LJ£\A), then one 
may write: 

V = V(µ) 

where /i runs through the set of slopes of A, and, for each //: 

V(µ) V(µ, a) 

where a runs through Sp(^) if M — µi in our usual notations. 
To be able to carry this splitting to matrices, we fix an arbitrary linear order on Eq 

and assume the order on indices is compatible with that arbitrary order. The corre
sponding adjoint action of G^\ on QA0 (A) then allows one to define the eigenspaces: 
&Ao^6'C\C) = {M G £U0(C) I M is trivial out of the (/i*,a, jij, P) components such 
that ac^1 = /3cflj (mod qz)}. This can be non-trivial only if c G E^O, where: 

E^O = {c G Eg | 3i < j such that fij ~ µi — ^ and a 
B 

= cs}. 

By definition, EAO = U SA0- THEN: 
d > 1 

0AO S(C) = 

cGY,1 A0 

9A0 (<5'C)(C). 

Example. From the previous paragraph, it follows that on the first non trivial level, 
AC(0) (A) G £U05'C(C). The difficulty is to properly generalize this fact to upper levels. 
Remark. The equality ac^ = pcP* is equivalent to: V7 G G^s , 7(acMi) = 
7(/3cMj). Thus, QA0S,C{C) can be characterized as the common fixed space of all 
the (7(c)-1,7,0) G GJ^, where 7 runs through G^s. 

Now let A , A' be matrices in standard form with the same graded part AQ. From 
[12] and [6], we have the following generalisation of theorem 3.1: for each c G E9\EA0, 
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there exists a unique meromorphic morphism F : A —• A' in <5A0(M(C*)), with poles 
on [—c; q] and with multiplicities prescribed as in the theorem. We write it SJFA^A' • 
One then has: 

S^FA^A' = S-^FA' (S-JFA) . 

Assume now that A = A' (mod &A0-S(C({Z}))), that is, A and A! have the same 
over-diagonals at levels < S. The components Fij of S-^FA,A' for 0 < fij — Hi < S are 
solutions of the equations: 

(aqFi,j)z^Aj - z^AiFij = 0. 

Therefore, they are null (с/, loc. cit). This implies: 

SdFA,A,€0A^s(M(C*)). 

Prom the equality: S-^FA' = S-^FA,A' S-JFA, we deduce: 

SdFA = SdFA/ (modflA0^(A4(C*))). 

Proposition 3.9. — Let fA A, ^ be the component at level S of S-^FA,A'{O)' Then: 

A^(A') = A^(A) + Res-d=-cfAAI-d. 

Proof. — To alleviate notations, we omit the evaluation at a and the direction d in 
the notations; to indicate summation along the arbitrary fixed direction Co, we just 
add the index 0. Thus, we respectively write: 

FA for SdFA(a) and FA,o for S^FA(a) 
FA' for S^FA'(a) and FA>,o for S^FA>(a) 

FA,A* for S2FA,A'{O) and FA,A>,O for S-^FA,A' (a) 

JA,A' for fA,A',d and /a.A'.O for /а,А',со"-
From the previous remark: 

FA> = FA,A<Fa = (In + fA,A<)FA (mod flA0^(C)), 

so that: 

fAM>*A' = *А,0*Хо + fA,A> - /А,А',0 (mod 0AO-*(C)). 

The conclusion then comes by taking logarithms, applying the following lemma and 
then taking residues. • 

Lemma 3.10. — Let M E <5A0(C) and N £ gAo-s(C). Then: 

log(M + N) = (logM) + N (mod ЯЛ0"*(С)). 
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Proof. — Write M = In + M'. Then: 

log(M + N) = 
m>l 

(_l)m-l 

m 
(M' + N)m (mod 0AO^(C)) 

= 
m>l 

(_l)m-l 

m 
M'm + N (mod g ^ C ) ) . 

Corollary 3.11. — Under the assumptions of the proposition, we have: 

A (0) 
c 

(A') - À (*) 
C 

(A) € 9A0 ( M ( c ) . 

We are going to prove that these are, in some sense, the only conditions on the 
g-alien derivations at a given level S. 

3.3.3. Interpolating categories. — There are two equivalent ways of defining S^J from 

S[0^: the first is by restriction to a subclass of objects, the pure ones; the second is 
by formalisation, i.e. extension of the base field C({z}) —• C((z)). The former 
way amounts to shrinking the Galois group G(0) to its quotient G^. The latter way 
amounts to extending the class of morphisms (indeed, there are no really new objects), 
and therefore to shrinking the Galois group G^ to its subgroup G^\. 

The existence of a natural filtration on the Stokes group &t suggests that it should 
be possible to interpolate between E(0) and s[0^. We shall presently do so by extending 
the class of morphisms; the interpretation by restriction to subobjects is a bit more 
complicated. 

We first define intermediate fields between C({z}) and C((z)), for all levels 6 G N : 

C((z))(5) = {J2fnzn € C((z)) I 3R > 0 : /„ = 0{Rnqn2'2&)} . 

Thus C((z))(+oo) = 
def 

C({z}) C C((z))W c C(W)(5-1) C C((*))(0) = 
def 

C((*))(4)-

The following is standard ([4], [16],[12]): 

Lemma 3.12. — If v — fi = 5 > 1, then, the following equation: 

(aqF)(zvB) - (z»A)F = U, A G GLr(C) , B G GLS(C) , U G Ma^,S(C({z})) 

has a unique solution F G Matr,s(C((z))^). If moreover F G Ma£R)S(C((z))^ )̂ for 
some 8' > 6, then F G Matr,s(C({z})). 

Write C((z))>S = M 
S'>5 

C((z))^S K Then we call C5 the category with the same ob

jects as £{ ' (seen in matrix form) and with morphisms satisfying the same conditions, 
but with F G GLn(C((z))>S). (Actually, since we deal only with integral slopes, we 
could as well take C((z)){6+1) instead of C({z))>S.) 

(4) This C((z))^ is the field of fraction of the algebra of g-Gevrey series of level 5, which was 
introduced in [1] and denoted C[[z]]q)<s with s = 1/8 (the g-Gevrey order) in [4]. 
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It is then clear that the C5 are tannakian categories, and that embeddings are natu
ral exact faithful 0-functors C6 —> C6'1. Moreover, C° = E^l, because equations with 
integral slopes can be solved in C((z))^ by the lemma, so that FA is an isomorphism 
from A0 to A in C°. In the opposite direction, we have C°° = s[°\ Actually, if A 
has slopes /xi < • • • < /x ,̂ then it is entirely determined by its image in Cs for any 
6 > Hk ~ Mi-

From the composite functor C6 —> C° = S^J, we draw that objects in Cs have a 
well defined Newton polygon, that there is on Cs a "graded module" functor, and that 
LJ^ defines a fiber functor on Cs. 

3.3.3.1. An alternative description ofC6.— We also see that, if two objects A and B 
in S[0^ have isomorphic images in C5, then they have isomorphic images in C° = £p°l 
and they can be written in standard form (6) with the same block diagonal AQ. Of 
course, we may moreover assume AQ to be in normalized standard form and A, B to 
be in polynomial standard form (section 2.2). 

Proposition 3.13. — Let A and B in s[0^ be in normalized polynomial standard form 
with the same block diagonal A$. Then they have isomorphic images in Cs if and 
only if there exists F0 G GLn(C) such that B = FQAFQ1 (mod QA0 > 5(C({Z}))). 

Proof. — Here, of course, we have put QA0>S = ^2 QA0S' (which is the same as 
S'>6 

g^0-5+1 since we deal with integral slopes) and the condition just means that B and 
FQAFQ1 have the same over-diagonals up to level 5. 

The diagonal part Fo of any formal morphism F from A to B is an automorphism 
of AQ, thus constant (because of normalisation). Up to composing F with F0_1 and 
replacing A by Fo^4F0-1, we may assume that FQ = 7n, so that F = FA,B- The 
condition then means that FA,B has its coefficients in C((z))^S\ From the lemma, 
we draw, by induction on the level, that all over-diagonals up to level S are analytic, 
therefore 0 because of results in [10]. • 

Corollary 3.14. — One can define Cs in the following alternative way: 

1. Objects of Cs are matrices in s[0^ modulo the equivalence relation A = B 
(mod gAo>s(C({z}))). 

2. Morphisms from (the class of) A to (the class of) B are matrices F G 
Matp^n(C({z})) such that (aqF)A and BF differ only in levels > S. 

Corollary 3.15. — The Galois group ofC5 is 6t(S) x G(0) for some unipotent subgroup 

&t(5) of &t. For i < 5, the A(i) are well defined on C5 and belong to the Lie algebra 
st(S) of6t(S). 

3.3.4. A freeness theorem. — We now describe precisely the essential image of the 
functor J7, that is, given AQ in £^1, the exact conditions on (A^\A))s>i^eEq that 
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allow the reconstruction of A. The reconstruction will be done inductively, using q-
alien derivations of levels up to 5 to reconstruct the over-diagonals of A up to level 5, 
that is (after the previous paragraph) an object in C6. 

In the same spirit as the definition of isoformal analytic classes in [10], we consider 
classes of objects A in C5 above an object B of C5-1 under the equivalence induced by 
gauge transform F = IN (mod QA0-S)- Using polynomial standard normal form and 
the results of loc. cit, we see that these classes make up a vector space of dimension: 

irr5(A0) = ^2 rirj(N ~ Vi) = $ ^2 TiVr 
lLj—in=8 Hj—/j,i=8 

Moreover, to see if two objects A, A'are in the same class, one computes FA,A' € 
^A06{C((z)))] if its over-diagonal at level 5 has null g-Borel invariants, then we have 
the same class. 

Theorem 3.16 (Freeness theorem). — Let B be an object of Cs~x. Then, there is an 
affine space Vc(B) of direction %A0^C\C5) such that: 
(i) The A(0) \(A) for A an object of C6 above B belong to Vc{B). 
(ii) The mapping which sends an object A of C8 above B to the family of all A^(A) 
induces a one-to-one correspondance between classes of such objects (as defined above) 
and\{Vc{B). 

Proof. — (i) It follows from paragraph 3.3.2 that all A^(A) (where A is fixed and 
c varies) belong to a unique affine space of direction QA0^S,C\C). Call it Vc(B). It is 
easily seen that the product space ]J Vc(B) has dimension irr6(Ao). 
(ii) The map from the set of polynomial representatives of a class, as described above, 
onto the above affine space, is affine. Up to the choice of an arbitrary basepoint, it is 
equivalent, after the results of [7] (section 3.2), to the parametrisation of the isoformal 
class by g-Borel transform, which is one-to-one after [10]. • 

Corollary 3.17. — The following algorithm allows one to reconstruct A in s[0^ from 
A0 and the A(-5)(A): 

1. Reconstruct the first over-diagonal using the q-derivations of lowest level (this 
is the linear situation and it rests on [6]. 

2. Having reconstructed the over-diagonals up to level 5 — 1 (using q-alien deriva
tions up to level 5 — 1), call A' the matrix with these over-diagonals and 0 above; 
then compute the A(B) \(A'). 

3. Use the relation A{-5) (AF)-A{-6) (A) e £U0(<W(C) to find the level 5 over-diagonal 
of FA,A', then the level 6 over-diagonal of A. 

In [7], we shall give a representation-theoretic formulation of the theorem, and a 
description of the nonlinear part of A^(A) (that part which depends on the lower 
level q-deri vat ions) in terms of convolution. 
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4. Conclusion 

Write H = C* x Honv (C*/gz, C*) and v = (t, 7 ) G iJ. We saw how the group H 
acts upon the diagonal of A0: for 1 < i < k and a G Sp(^, positions corresponding 
to slope Hi and the eigenspace of AiyS for a are multiplied by ¿^7(0:) . Now let i < j 
be indices of slopes Hi < µj and ot G Sp(Ai5 /3 G Sp(^lj) be corresponding exponents. 
The adjoint action of v on the (//i, a,/¿7,/3) block is the multiplication by: 

tµ1 - µj 
7(a) 
7(0) 

(t-S(c)) <5 

for each "resonant" c, i.e. c G Eg such that = a 
/3 

(mod qz). For any Galois 

derivation D G st, we now put: 

^'C\D) = u(D) - (r^Cc))5D e st, 

where v(D) comes from the adjoint action of H on si. From the remark on page 318 
and from paragraph 3.3.2, one draws that, for two objects A, A' of Cs above the same 
object B ofC5-\ $P)(A^))(A)$P)(Ai<5))(A,) = 0. In other words, $l6^ (A(-S))(A) 
depends only on the lower levels 5' < 6 of A. Moreover it is trivial on the first level. 
Actually, with methods similar to those used here, one can prove that ^ ( A ^ ) ^ ) 
is in the Lie algebra generated by the q-alien derivations at lower levels. So it is 
natural to conjecture that $^'C\A^) belong to the free Lie algebra generated by the 

A on 
d (6' < d, d e E0), and even that there is a universal explicit formula. This would 

allow us to define a semi-direct product by a free Lie algebra, and to definitely "free 
the g-alien derivations. 

All the problems comes from the fact that points come from two distinct origins: 
elements of the dual of H on the one hand, packs of points of E9 on the other hand, 
and from the interplay of the corresponding games of localisation. Comparing with the 
differential case, where one localizes geometrically on the circle of directions S1, then 
one takes a Log, here, we take a Log, then we localise on Eq; whence an embroilment 
with plenty of Campbell-Haussdorff formulas between the two approaches (5). 

We shall also give in [7] various applications, to the abelianisation of the tannakian 
7Ti and to the inverse problem for the local Galois group. For the latter problem, we 
shall state a list of necessary conditions; we don't know for the time being if they are 
sufficient. 

Last, we built our alien ^-derivations by tannakian methods. One can ask what 
happens for solutions. There, one meets the usual difficulty about constants, since 
one wishes operators defined over C and acting upon solutions (while constants are 
here elliptic functions). That problem maybe has no solution; however, one could 
perhaps, in analogy with the differential case, "unpoint" the g-alien derivations and 

(5) Actually, we think that, in the end, we'll have a simpler description with a denumerable family 
of q-alien derivations, freed by the mere action of the theta torus. 
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build operators acting upon adequate spaces of formal power series. This seems related 
to a "g-convolution" mechanism presently studied by Changgui Zhang. 

References 
[1] J.-P. BÉZIVIN - "Sur les équations fonctionnelles aux q-différences", Aequationes Math. 

43 (1992), p. 159-176. 
[2] P. DELIGNE & A. B. GoNCHAROV - "Groupes fondamentaux motiviques de Tate 

mixte", Ann. Sci. École Norm. Sup. (4) 38 (2005), p. 1-56. 
[3] VAN DER PUT M. & R. M. - "Galois theory of q-difference equations", Ann. Fac. Sci. 

de Toulouse 26 (2007), p. 1-54. 
[4] J.-P. RAMIS - "About the growth of entire functions solutions of linear algebraic q-

difference equations", Ann. Fac. Sci. Toulouse Math. (6) 1 (1992), p. 53-94. 
[5] , "About the inverse problem in differential Galois theory: the differential Ab-

hyankar conjecture", in The Stokes phenomenon and Hubert's 16th problem (Groningen, 
1995), World Sci. Publ., River Edge, NJ, 1996, p. 261-278. 

[6] J.-P. RAMIS & J. SAULOY - "The q-analogue of the wild fundamental group. I", in 
Algebraic, analytic and geometric aspects of complex differential equations and their 
deformations. Painlevé hierarchies, RIMS Kôkyûroku Bessatsu, B2, Res. Inst. Math. 
Sci. (RIMS), Kyoto, 2007, p. 167-193. 

[7] , "The q-analogue of the wild fundamental group. III", in preparation. 
[8] J.-P. RAMIS, J. SAULOY & C. ZHANG - "La variété des classes analytiques d'équations 

aux q-différences dans une classe formelle", C. R. Math. Acad. Sci. Paris 338 (2004), 
p. 277-280. 

[9] , "Développement asymptotique et sommabilité des solutions des équations 
linéaires aux q-différences", C. R. Math. Acad. Sci. Paris 342 (2006), p. 515-518. 

[10] , "Local analytic classification of irregular q-difference equations", in preparation. 
[11] J. SAULOY - "Galois theory of Fuchsian q-difference equations", Ann. Sci. Ecole Norm. 

Sup. (4) 36 (2003), p. 925-968 (2004). 
[12] , "Algebraic construction of the Stokes sheaf for irregular linear q-difference 

equations", Astérisque 296 (2004), p. 227-251. 
[13] , "La filtration canonique par les pentes d'un module aux q-différences et le 

gradué associé", Ann. Inst. Fourier (Grenoble) 54 (2004), p. 181-210. 
[14] , "Équations aux q-différences et fibrés vectoriels holomorphes sur la courbe 

elliptique C*/qZ", ce volume. 
[15] C. T. SIMPSON - "Higgs bundles and local systems", Publ. Math. I.H.É.S. 75 (1992), 

p. 5-95. 
[16] C. ZHANG - "Une sommation discrète pour des équations aux q-différences linéaires et 

à coefficients analytiques: théorie générale et exemples", in Differential equations and 
the Stokes phenomenon, World Sci. Publ., River Edge, NJ, 2002, p. 309-329. 

J.-P. RAMIS, Institut de France (Académie des Sciences) 
J. SAULOY, Laboratoire Emile Picard, CNRS UMR 5580, U.F.R. M.I.G., 118, route de Narbonne, 

31062 Toulouse Cedex 4 

ASTÉRISQUE 323 


