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THE GALOISIAN ENVELOPE OF A GERM OF FOLIATION: 
THE QUASI-HOMOGENEOUS CASE 

by 

Emmanuel Paul 

À José-Manuel, pour ses 60 ans 

Abstract. — We give geometric and algorithmic criterions in order to have a proper 
Galois envelope for a germ of quasi-homogeneous foliation in an ambient space of 
dimension two. We recall this notion recently introduced by B. Malgrange, and 
describe the Galois envelope of a group of germs of analytic diffeomorphisms. The 
geometric criterions are obtained from transverse analytic invariants, whereas the 
algorithmic ones make use of formal normal forms. 

Résumé (L'enveloppe galoisienne d'un germe de feuilletage : le cas quasi-homogène) 
Nous donnons des critères géométriques et algorithmiques pour qu'un feuilletage 

quasi-homogène en dimension deux possède une enveloppe galoisienne propre. Nous 
rappelons cette notion récemment introduite par B. Malgrange et nous décrivons 
l'enveloppe galoisienne d'un groupe de germes de difféomorphismes analytiques. Les 
critères géométriques sont obtenus à partir d'invariants analytiques transverses, tan
dis que les critères algorithmiques utilisent les formes normales. 

Introduction 

There are several notions of integrability for a system of differential equations. 
Most of them are related to the existence of a sufficient number of first integrals for 
the solutions of the system. These definitions differ each other on the additional prop
erties required for this family of invariants functions. We can separate them into two 
types: 
— conditions between the first integrals: one may ask commutativity conditions for 
the Poisson bracket, or relax such a condition; 
— conditions on the nature of these functions: rational, meromorphic or multivalued 
functions in some "reasonable" class of transcendency. 
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270 E. PAUL 

The main methods for proving non integrability (analytical methods, Ziglin method 
or Morales-Ramis method) are based on the linearization of the system around a par
ticular solution. Therefore they only deliver sufficient criterions on non integrability, 
using for the last mentioned method linear differential Galois theory. 

In order to investigate the second type of condition, and -in the future- to get 
necessary and sufficient conditions for integrability, we have to consider the system 
in the whole, which suggests to consider a non linear differential Galois theory. The 
first attempts in this direction was done by J. Drach and E. Vessiot. More recently, 
B. Malgrange introduced in [12] (see also the introductive version [13]) a "Galois 
envelope" for any dynamical system, namely the smallest D-groupoid which contains 
the solutions of the system. Roughly speaking, a D-groupoid is a system of partial 
differential equations whose local solutions satisfy groupoid conditions outside an 
analytic codimension one set. They are not strict Lie groupoid, in order to deal with 
singular systems. As a matter of introduction to this notion, we shall describe in the 
first section the Galois envelope of a group of germs of analytic diffeomorphisms at 
the origin of C. 

Each D-groupoid admits a D-algebra obtained by the linearization of its equations 
along the identity solutions. The local solutions of this linear differential system are 
stable under the Lie bracket outside of a codimension one analytic set. The Galois 
envelope of a singular analytic foliation T is the smallest D-groupoid Gal (J7) whose 
D-algebra contains the germs of tangent vector fields to T. It is a proper one if it 
doesn't coincide with the whole groupoid Aut(^*) obtained by writing the equations 
of invariance of the foliation under a local diffeomorphism. In this case -which is not 
the general case-, its solutions satisfy an additional differential relation, and we shall 
say that the foliation is Galois reducible. 

For a local codimension one singular foliation defined by a holomorphic one-form 
cj, this reducibility property is equivalent to the existence of a Godbillon-Vey sequence 
of finite length for LJ (at most three): there exists a finite sequence of meromorphic 
one forms CJQ, UJ\, and LO2 such that o;o is an equation of the foliation and 

duio = woA^i, du)\ = UJQ A 002, du)2 = w\ A 002• 

This fact was described in a manuscript of B. Malgrange [14], and then has been 
extensively proved by G. Casale in [5] with some different arguments. In particular, 
the transverse rank of Gal̂ 7 (i.e. the order of its transverse local expression) is also 
the minimal lenght of a Godbillon-Vey sequence for T. Finally, G. Casale proved in [2] 
that this Godbillon-Vey condition is also equivalent to the existence of first integrals 
for the foliation with a particular type of transcendency which belongs to a Darboux 
or Liouville or Riccati type differential extension, according to the transverse rank of 
the Galois envelope. These different points of view on the Galois reducibility admit 
a generalization for higher codimension foliations: see [6] for the Painleve 1 foliation. 

In the present paper we shall only deal with codimension one foliations in ambi
ent spaces of dimension two. Therefore, we expect the existence of at most one first 
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integral, and we only have to discuss the second type of integrability condition: the 
existence of such a first integral in a given class of transcendency. The previous dis
cussion allows us to reformulate the integrability problem as following: give necessary 
and sufficient criterions for the Galois reducibility of a germ of codimension one fo
liation. We present an answer to this problem in the following context: T is defined 
by a vector field X = Xh + • • • where the "initial" hamiltonian vector field 

Xh = 
dhd_ _ dhd_ 
ду дх дх dy 

is quasi-homogeneous with to respect to R = Pix-^ +Piy^ (pi, P2 positive integers): 
R(h) = Sh, S = degR(h). The dots means terms of higher quasihomogeneous degree. 
We furthermore require that h has an isolated singularity (with Milnor number ¡1) 
and that X still keep invariant the analytic set h = 0. Therefore, X is a logarithmic 
vector field for the polar set h = 0, and we have: 

X = aXh + bR, ae 02, b G 02, a(0) = 1 

with degn{bR) > degR(Xh). The restriction to this class of foliation is motivated by 
the two following reasons: 
— the desingularization of these foliations by blowing up's is "simple": it is similar to 
the one of the quasi-homogeneous function h: the exceptional divisor is only a chain 
of projective lines and all the pull-back of the irreducible components of h -excepted 
the axis if they appear in h- meet the same "principal" projective line C. 
— in this class of foliations, we have at our disposal formal normal forms which give 
us complete formal invariants: see [21]. 

This will allow us to give two different types of criterions for the Galois reducibility 
of T : a geometric one which is related to the holonomy of the principal component 
C of the desingularized foliation, and an algorithmic one which directly holds on the 
normalized formal equation of the foliation. For the first one, let us denote Hol(^") the 
holonomy group of the principal component C for the desingularized foliation. This 
is an analytic invariant of T (in fact, this "transverse invariant" is also a complete 
invariant in this quasi-homogeneous context: see [8]). We prove in theorem (2.4) the 
following result : 

Theorem 1. The Galois groupoid of the germ of quasi-homogeneous foliation T 
is a proper one if and only if the Galois envelope ofHo^J7) is a proper one. 

This theorem reduces the initial problem to the determination of the Galois enve
lope of a subgroup G of Diff (C,0), which is described in the first section (theorem 1.8). 
The main argument in the proof of this theorem is an extension of the equation which 
define the Galois envelope of Hol(.F) to the whole exceptional divisor. This is possi
ble, since the elements of the holonomy group of C are solutions of this equation and 
therefore keep it invariant. This proof suggests that even in non quasi-homogeneous 
cases, these criterions for the Galois reducibility will only depend on the transverse 
structure of the foliation. 
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272 E. PAUL 

Theorem 1 is not an explicit criterion since in general, we can't compute the in
variant Hol^) . In order to get an algorithmic criterion, we recall in section 3 the 
formal normal forms for this class of foliations. Notice that in general these models 
are divergent models. The radial component of these normal forms make appear a 
collection £(.F) of [i formal one-variable vector fields, and it turns out that this collec
tion (up to a commun conjugacy) is a complete invariant for the formal class of T. It 
must be surprising to try to charaterize the Galois reducibility of T using only formal 
invariants. Nevertheless, we can perform it according to the two following facts: 
— if a foliation is Galois reducible, then its formal normal form is a convergent one; 
— if the foliation J7 is a "non exceptional" one (see [7]), then there exists a convergent 
conjugacy between T and its model. 
Clearly, for exceptional foliations, we need an additional condition on the analytic 
class of J7, which is not yet an algorithmic one. The central result of this work is the 
following theorem which summarize theorem 3.5, corollary 3.7 and theorem 3.8: 

Theorem 2. If the quasi-homogeneous foliation T is a non exceptional one, the 
Galois envelope of T is proper if and only if the explicit invariant C{T) generates a 
finite dimensional Lie algebra. In this case, this one is always of dimension one, and 
the foliation is at most Liouvillian. 

If the quasi-homogeneous foliation T is an exceptional one, the Galois envelope 
of T is proper if and only if the explicit invariant C(F) is a finite dimensional Lie 
algebra, and the analytic invariants of T are of "unitary" or "binary" type. In this 
case, the foliation will be a Liouvillian one (for unitary invariants), or of Riccati type, 
(for binary invariants). 

We shall recall in the first section the definition of unitary or binary invariants 
which is a terminology introduced by J. Ecalle. The first part of the theorem is an 
extension of a result of F. Loray and R. Meziani for nilpotent singularities [11], while 
the second one is an extension of a theorem of G. Casale for reduced singularities 
[5]. Notice that in the local context, the Galois reducible foliations which are not 
Liouvillian are very rare. 

Clearly, the relationship between the algorithmic invariant C{F) and the geometric 
one Hol(,F) has a transcendental nature since the first one is directly obtained from 
the differential equation whereas the second one is related to the solutions of this 
equation. Nevertheless, for Galois reducible foliations we can describe this relation
ship: it reduces to the exponential map of the one-variable vector fields of C(T). In 
order to check this fact it is more convenient to consider an equivalent data to Hol(.F): 
the relative holonomy of T with respect to its initial part defined by Xh (see section 
4). 

Finally, we conclude this paper with a list of open questions related to the present 
results. 
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1. The Galois envelope of a subgroup of Diff(C,0) 

Let A be a disc around 0 in C. We first recall the list of all the D-groupoids on 
A (see [14] and [3]). We denote (#, 2/, 2/i, 2/2> • • • * Vk) the coordinates for the space of 
A:-jets of maps from A to itself. 

Theorem 1.1. — The differential ideal of a D-groupoid on A is generated by a mero-
morphic equation of one of the five types: 

1. D-groupoids of order zero: they are generated by an equation of the form: h{x) — 
h(y) = 0 where h is a holomorphic function on A. We denote them: Go(h). 

2. D-groupoids of order one: they are generated by an equation of the form: 
r](y)(yi)n — rj(x) = 0 where n is an integer, and r\ a meromorphic function on 
A. We denote them Gi(rj). 

3. D-groupoids of order two: they are generated by an equation of the form: 
fJ'(y)yi + ^ ~ f*(x) — 0 where fj, is meromorphic on A. We denote them G^O/). 

4. D-groupoids of order three: they are generated by an equation of the form: 
v(y)yi2 + 2 y3 

y1 - 3 V2 
y1 

2 - v(x) = 0 where v is meromorphic on A. We de-
note them Gs(iy). 

5. The D-groupoid of infinite order GQQ defined by the trivial equation 0 = 0, whose 
solutions are the whole sheaf Aut(A). 

The Galois envelope of a subgroup G of Diff (C,0) is the smallest D-groupoid in the 
previous list which admits all the elements g of G as solutions. Clearly, the existence 
of a proper Galois envelope of finite order k, only depends on the analytic class of 
G. The Galois envelope for a monogeneous subgroup generated by g is the Galois 
envelope of g itself, since all the iterates of g will also satisfy the same equation, by 
composition or inversion stability. The Galois envelope Gal(g) of g is given by the 
two following results, see B. Malgrange [14], and G. Casale ([3]). Let a = g'(0). If a 
is an irrational number, then g is formally linearizable. We have: 

Proposition 1.2. — A formally linearizable diffeomorphism has a proper Galois enve
lope if and only if it is an analytically linearizable diffeomorphism. In this case, its 
Galois envelope is a rank one D-groupoid. 

If a is a rational number, g is a resonant diffeomorphism, and there exists an integer 
q such that gq is tangent to the identity. The following lemma 

Lemma 1.3 ([3]). — For all non vanishing integer q, Gal(#) = Gal(<79). 

reduces the study to the case a = 1. Any diffeomorphism tangent to the identity to an 
order k is conjugated via a formal series to a normal form g^ which is the exponential 
of the vector field xk + 1 d/dx Following the description of J. Martinet and J.P. Ramis, 
we obtain a complete analytic invariant Inv(#) of g by the following construction 
(see [15]). Using 2k sectorial normalizations, one can prove that the space of the 
orbits of g is obtained by gluing 2k bipunctured Riemann spheres (5^,0, oo) with 
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local diffeomorphisms $ : (5^-1,0) —> (Si,0) and (p™ : (S^oc) —> (£¿+1,00). The 
collection Inv(#) of these gluing maps up to global automorphisms on each (St, 0, oo) 
is a complete analytic invariant of g. This invariant Inv(g) is unitary if there exists a 
positive integer p such that the gluing maps cp® are of the form z i-> z/(l + a$;zp)1/p 
and yoo г¿ i-» u at infinity (1/ = 1/z). It is a binary one when the gluing maps are 
alternatively of the form z z/(l + a ^ ) 1 ^ in 0 and u i—• u/(l -f bivP)1^ at infinity. 
We have: 

Theorem 1.4 (see [3]). — £e£ g 6e an element ofDiff(C,0) tangent to the identity. The 
Galois envelope Gal(g) is proper of rank two (resp. three) if and only if its analytic 
invariant Inv(g) is a unitary one (resp. a binary one). 

Remark 1.5. — The proof of this theorem make use of the following result (see [3]): 
Let 9g be the formal vector field such that g = exp 6g (there is existence and unicity of 
such vector field, and its multiplicity at 0 is greater or equal to 2). The diffeomorphism 
g is a solution of a D-groupoid if and only the vector field 0g is a formal solution of 
its D-Lie algebra. 

We now discuss the Galois envelope of a subgroup G of Diff(C,0) generated by 
gi,m"9fjL' Let O (resp. 0) be the Lie algebra of one variable holomorphic (resp. 
formal) vector fields which vanish at the origin: 6 = (akZk + • • • )d/dz. Recall that 
(see for example [9]): 

Lemma 1.6. — A subalgebra Q of 0 (resp. Q) is a finite dimensional one if and only 
if Q is at most of dimension two. Furthermore, such a Lie algebra is always a solvable 
one, and if the multiplicity k of each element of Q is greater or equal to two, then its 
dimension is at most one. 

Notice that such a result, and thus the following proposition, cannot be generalized 
in a global situation, in which there exist three dimensional Lie algebras of one variable 
vector fields which are not solvable ones. 

Proposition 1.7. — If the subgroup G ofDiff(C,0) has a proper Galois envelope, then 
G is a solvable group. 

Proof — Let G\ be the subgroup of G whose elements are tangent to the identity 
map. If G\ is trivial, then G is abelian since the first derivative group [G, G] of G is 
contained in Gi, and we are done. Therefore, we suppose that G\ is non trivial. For 
each element g of Gi, let 6g be the element of 0 such that g = exp0g. Prom remark 
1.5, the Lie algebra C(G\) generated by these vector fields is included in the solutions 
of the D-Lie algebra of the Galois envelope of G, and is a finite dimensional one. 
Therefore, from the previous lemma, its dimension is one, and there exist a vector 
field 6 and constants cg such that for all g in Gi, g = expcg6. This proves that G\ is 
an abelian group. Since [G, G] is contained in Gi, the group G is a solvable one. • 
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The converse of Proposition (1.7) is false: all the monogeneous subgroups are 
abelian, but from (1.4), outside of the unitary or binary cases, they don't have a 
proper Galois envelope. The Galois reducibility is not only an algebraic property of 
the group G. 

We shall recall the formal classification of the solvable subgroups of Diff(C,0) (see 
[21] or [7]). We denote G\ the subgroup of G of its elements tangent to the identity 
map. We have: 

— the group G is formally linearizable if and only if G\ is the trivial group; 

— every solvable non linearizable group G is formally conjugated to a group GN 
of the following type: 

Gist = дхл = Aexpí 
zk+1 d 

1 + azk dz ' 
Л e Л, teT 

where A is a multiplicative subgroup of C* and T is an additive subgroup of C. 
Furthermore, GN is abelian if and only if A is a group of A;-roots of 1. If GAT is not an 
abelian group, the residue a vanishes, and the elements of GN are obtained by lifting 
homographies fixing 0 with the ramification z i—• zk. 

— Following the terminology of D. Cerveau and R. Moussu [7], G is an exceptional 
subgroup of Diff (C,0) if Gi is monogeneous. In particular, they are solvable groups. 
These authors prove that, among the non linearizable groups, the non exceptional 
groups are exactly the rigid ones: the formal classification coincides with the analytic 
one. One should say that an exceptional group is a unitary or binary one when Gi is 
generated by a unitary or binary element. 

Theorem 1.8. — The only subgroups of Diff (C,0) which have a proper Galois envelope 
are: 

(1) the analytically linearizable groups; 
(2) the non exceptional solvable groups; 
(3) the exceptional unitary groups; 
(4) the exceptional binary groups. 
Furthermore, the rank of their D-envelope is at most one in case (1), at most two 

in cases (2) and (3), and at most three in case (4). 

We call Liouvillian group every subgroup of Diff (C,0) whose Galois envelope is at 
most of rank two, and Riccatitian group every subgroup of Diff(C,0) whose Galois 
envelope is at most of rank three. In the present local situation, the Riccatitian non 
Liouvillian groups are very rare: their class is restricted to the (non empty!) set 
defined by (4) \ (3). 
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Proof. — We first check that these groups have a proper Galois envelope: 
(1) Since the existence of a proper Galois envelope of finite order k only depends 

on the analytic class of G, it suffices to consider a group of linear diffeomorphisms. 
They keep invariant the differential form dx/x and therefore satisfy the differential 
equation xy\ — y = 0 which is, according to the notations of (1.1), the equation of 
the D-groupoid G\(l/x). Remark that this is only an upper bound of Gal(G): for 
example, if G is a group of periodic rotations, they keep invariant an holomorphic 
function h and Gal(G) = GQ{K). 

(2) The formal model GAT of a solvable group is Liouvillian. Indeed, the differ
ential form U — (1 + axk)/xk+1dx is invariant by each element f\j of GN up to a 
multiplicative constant c\j. Therefore, each element of GN satisfies 

a(y)yi = c\ita(x), 
where a is the coefficient of u. Derivating these equations, each element of G is a 
solution of the same equation 

a(x)a(y)y2 + af(y)a(x)yl - a'{x)a{y)yl = 0 
where o! is the derivative of a with respect to x. This is the equation of the rank two 
D-groupoid G2(a'/a). The same previous remark holds: this is only an upper bound 
of the Galois envelope of GN- if GJV is abelian, its elements all satisfy the rank one 
equation a(y)yi — a(x) = 0 of G\(a). Now, if G is a non exceptional group, by rigidity, 
it is analytically conjugated to GJV, and still have a proper Galoisian envelope of rank 
at most two. 

(3) and (4): Let G be an exceptional group and let g\ be a generator of the 
monogeneous group Gi, which is supposed to be unitary or binary. From (1.4), G\ 
has a proper envelope of rank two or three with equation E = 0. If G is not equal 
to Gi, we know from proposition 2 of [7] that G is generated by g\ and a second 
resonant element g2. If gi is tangent to the identity at order k1 the normal form of G 
described by [7] shows that g%k belongs to G\ and therefore g%k = g[ for some integer 
I. With lemma (1.3), we conclude that g2 also belongs to the Galois envelope of Gi, 
and finally, Gal(G) = Gal(Gi). 

On the converse, we now suppose that G has a proper Galois envelope. If G\ is a 
trivial group, then G is formally linearizable and from proposition (1.2) we conclude 
that G is of type (1). If G\ is non trivial, we know from (1.7) that G is a solvable 
group. Either it is a non exceptional one, and G is of type (2), or it is an exceptional 
one: Gi is generated by an element gx. Since the Galois envelope of this one is non 
trivial, we know from theorem (1.4) that g\ and thus G is of type (3) or (4). • 

2. A geometric criterion for Galois reducibility 

We first recall general facts on the Galois reducibility for singular holomorphic foli
ations. Let T be a singular holomorphic foliation of codimension on a n-dimensional 
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holomorphic manifold of M. Following the definition of B. Malgrange [12], the Galois 
groupoid of T is its D-envelope, i.e. the smallest D-groupoid Gal(.F) wich is "admissi
ble" for the foliation: its D-Lie algebra contains the tangent vector fields. The Galois 
groupoid of T is always contained in the D-groupoid Aut(^") of the germs of diffeo-
morphisms which keep invariant the foliation. We shall say that T is Galois reducible 
if its Galois envelope is proper: Gal^) ^ Aut(^*). This property only depends on 
the analytic class of the foliation, and is invariant by blowing up or blowing down 
transformations. 

If U is an open set in M on which the foliation is trivializable by tangent-transverse 
coordinates (s, t) s = (s\, • • • sn-fc), t = (¿1, • • • tk), the local ideal of Gal^) can be 
generated by equations (see [5]): 

(i) 
dtj 
dzi = 0, Ei t, T,...... 

Q\a\ji 
dt<* 

where E\ are the equations of a D-groupoid on the A;-dimensional polydisc t(U). The 
rank of this local transverse groupoid doesn't depend on the local chart [5]: this is 
the transverse rank of Gal(̂ -*). 

We now suppose that T is a codimension one foliation on a polydisc A in (Cn,0), 
defined by a one-form u which satisfies the Frobenius condition. We may suppose that 
the singular locus is at least a codimension two analytic set. From (1.1), the transverse 
rank of T can only get the values 0, 1, 2, 3 or 00, the finite values corresponding to the 
proper cases. A Godbillon-Vey sequence for a; is a sequence of meromorphic one-forms 
cjn such that 

duo = u) A u)\, duo 1 = u) A 0J2, * • • 

diJi = и Л u)i+\ 4-
i 

j = 1 

г 
3 LOj Л üJi—j+i 

A Godbillon-Vey sequence of lenght I > 1 is a Godbillon-Vey sequence such that 
&i = 0, i > I. A Godbillon-Vey sequence of lenght 1, is a Godbillon-Vey sequence of 
lenght 2, such that u)\ = p~1df/f for an integer p : f1/p is an integrating factor of u. 
The existence of a Godbillon-Vey sequence of lenght I only depends on the foliation 
defined by u. We have (see [14] and [5]): 

Theorem 2.1. — The foliation T has a Godbillon-Vey sequence of lenght I with I < 3 
if and only if the transverse rank of its Galois groupoid is at most I. 

Furthermore, G. Casale has proved in [2] that the existence of a proper Galois 
envelope for T is also equivalent to the existence of a transcendental first integral 
which belongs to a particular type of extension, namely a meromorphic, Darboux, 
Liouvillian or Riccatician type, according to the values / = 0,1,2 or 3 of the transverse 
rank of Gal^) . Therefore, in each case, one should call the foliation with the same 
terminology. 
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If L is a leaf of T, and if Hol(L) is the image of its holonomy representation, then 
all its elements are solutions of the local ideal of Gal^) . Indeed, for any loop 7 
which represents an element of 7Ti(L,ra), we can cover 7 by trivializing open sets 
Ui,'"Up such that the transverse coordinate on Ui is an analytic extension of the 
previous one. With this choice, the change of local coordinates are tangent to the 
foliation and therefore are solutions of Gal^) . By the stability under composition, 
the change of coordinates between Up and U\ is a solution of Gal(.F). In particular, 
its transverse component -which is the holonomy representation of 7- is a solution of 
the local expression of Gal(^). From this remark, and since the existence of a proper 
Galois envelope is an invariant property under birational maps, we obtain 

Proposition 2.2. — If T has a proper Galois envelope, then any holonomy group of T 
or of any foliation T obtained from T by blowing up's has a proper Galois envelope 
whose rank is at most the transverse rank o /Gal^) . 

We shall prove that for the present class of quasi-homogeneous germs of foliations, 
we have a converse of this statement. In order to do this, we consider the desingular-
ization process of T\ see [22] or [17]. For a quasi-homogeneous foliation which is a 
perturbation of the foliation defined by h = 0, extending an argument of [7], one can 
prove that the desingularization process is the same as the one of dft, namely: the 
exceptional divisor is a chain of projective lines which are invariant for the desingu-
larized foliation; all the strict pull back of each component of h = 0 different from the 
axis are transverse to the same projective line C: we call it the principal one. One 
can check that C is also the space of the values for the meromorphic first integral 
xP2/yPl of the quasi-radial vector field R. The singularities on C are the different 
values corresponding to each branch of X, and 0, 00, which are the intersections with 
other components. If x or y occurs in the decomposition of h, their pullback by the 
composition of blowing up's is a line transverse to the end components of the chain. 
All the reduced singularities are resonant saddles (not necessarily linearizable), since 
their linear part is obtained by the local expression of the desingularization of dh/h. 
The projective holonomy of T is the holonomy of the principal component C of the 
desingularized foliation T. We denote Hol(.F) the image of this representation: this 
is a subgroup of Diff(C, 0) defined up to a conjugacy (the choice of a transverse on 
which we realize the holonomy group). The following result is announced in [8], and 
proved for cuspidal singularities in [18]: 

Theorem 2.3. — Two quasi-homogeneous germs of foliations T\ and T2 are analyti
cally equivalent if and only z/Hol^i) is conjugated to Hol (F2). 

The easier following result can be proved independently: 

Theorem 2.4. — The Galois envelope of the germ of quasi-homogeneous foliation T 
is a proper one if and only if the Galois envelope of Hol(F) is a proper one. 
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Proof. — If the Galois envelope of T is a proper one, the same holds for Hol(.F) from 
proposition (2.2). We now suppose that Hol(,F) has a Galois envelope of finite rank 
given by an equation E = 0 of type (0), (1), (2) or (3) in the list given by (1.1). Let 
(so,to) be a local system of tangent-transverse coordinates on an open set Uo around 
a regular point m in the principal component of J7, and let T be the transversal 
so — so(m). As above, we can extend E = 0 to a local equation EQ of a D-groupoid 
on i7o whose transverse expression is E = 0 and is admissible for the foliation setting: 

дТ 
ds = 0, E t,T,---

gkT 
dtk = 0. 

We can extend this D-groupoid along a path 7 by covering this path with open sets 
Ua, a = 0, • • • n with local systems (sa,ta): the first equation is preserved by a foliated 
change of coordinates, and the second one Ea = 0 is extended on Up by ^pEa where 
tp = Capita). If 7 is a loop, this analytic extension coincides at the end of 7 with the 
initial groupoid: indeed, the composition of the transition maps ipap is the holonomy 
map of 7 and we know that this one is a solution of the Galois envelope, and therefore 
keep invariant Ea = 0. By this way, we get an extension of the D-groupoid E0 = 0 
to the smooth part of the principal component C. Now, we can extend this groupoid 
to a neibourhood of each reduced singularity on C, from a result of Guy Casale: see 
proposition (5.2) in [5]. Let C be an adjacent component to C and p a regular point 
near from C fl C. One can choose local generators of the groupoid in p which are 
still written under the previous adapted form. Furthermore, the local holonomy of 
C around C D C is a solution of this groupoid. From the previous description of 
the exceptional divisor, C gets at most two singularities, and the fundamental group 
of the complement of its singularities is generated by one element. Therefore we can 
extend the groupoid along C and inductively to the whole divisor. • 

Such a type of argument can be used to prove that if Hol(J-i) is conjugated to 
Hol(^2), then this conjugacy gives a local conjucagy around m for the desingularized 
corresponding foliations, whose transverse expression can be extended to the whole 
divisor. The main difficulty in theorem (2.3) is to prove that for quasihomogeneous 
foliations there is no tangent obstruction to construct a global conjugacy along the 
divisor. Here, the existence of a proper Galois envelope -or of a Godbillon-Vey se
quence: see [21] for the Liouvillian case- only involves transverse obstructions, and 
thus are easier to obtain. 

We want to test the Galois reducibility by making use of formal normal forms for 
the germs of quasi-homogeneous foliations Tx defined by the vector fields: 

3. An algorithmic criterion for Galois reducibility 

X = aXh + bR, ae(D2,be 02, a(0) = 1, deg(bR) > deg(Xh). 
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In the general situation, both normal forms and conjugacies are formal objects. This 
will only give a criterion of formal Galois reducibility. We can consider two definitions 
for the formal Galois reducibility of an analytic foliation: 

(i) There exists an analytic foliation T' which is formally conjugated to T and 
Galois reducible; 

(ii) The foliation T admits a formal finite Godbillon-Vey sequence. 
Clearly the first one implies the second one, by taking with the formal conjugacy 

the pull back of the Godbillon-Vey sequence of T' given by (2.1). We first choose 
the second definition here, since we deal with formal models. But finally, it turns out 
that, for our class of foliations, both definitions coincide (see remark (3.6) below): 
when this criterion of formal Galois reducibility holds, we shall obtain convergent 
final normal forms. Therefore, if we are in a non exceptional (or "rigid") case, the 
conjugacy will also converge, and we shall obtain an algorithmic criterion for analytic 
Galois reducibility. 

We first recall the construction of these normal forms and introduce the related 
complete formal invariant, obtained in [21]. They generalize the normal forms of the 
cuspidal case (h = y2 — x3) described in [23] and [10]. We split it into two steps: 

First step: prenormalization. It is based on the following general lemma. Let M be 
a submodule of the On-module of formal vector fields at the origin of Cn, endowed with 
a graduation, and stable under the Lie bracket (in the present case, M is the module 
of logarithmic vector fields, endowed with the quasi-homogeneous degree induced by 
R). Let X = XQ H— • be a perturbation of the initial quasi-homogeneous vector field 
XQ of degree So by higher order terms. 

Lemma 3.1. — [21] Let B be the image of the operator [Xo, •] in M, and W a com
plement space of A = B + OnXo in M. There exist a vector field Y in W, a formal 
diffeomorphism <1> and a formal unity u such that <I>*X = u(X$ + Y). 

Notice that if we want to classify the vector fields instead of the foliations (i.e. if we 
don't work up to a unity) the same statement holds with a complement of B instead 
of A. This lemma reduces the first step to an appropriate choice of a submodule 
W isomorphic to the quotient space M/A. Denote by T the ring of first integrals 
of the initial vector field X$. The rich cases for normal forms occur when T doesn't 
reduce to the constants. In our case, J = C[[ft]]. Clearly, the quotient M/A is a 
J-module, and one should naturally require the same property in our choice for W. 
In our present situation (XQ = X^ with a quasi-homogeneous function h which has 
an isolated singularity), we can compute the quotient M/A (see [21] for details): this 
a free Z-module generated by the fx classes of vector fields a^i?, where ai, • • • aM is a 
monomial basis of the C-vector space O2I J{h), and J(h) is the jacobian ideal of h. 
This allows us to choose W = Xh ®k=i ^ak ^> anc* ̂ rom ^emma (3.1), we have 
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Theorem 3.2. — Let X = aXh + bR be a perturbation of Xh. There exist an element 
(di, • - - d^) of C[[ft]]M, a formal diffeomorphism $ which conjugates the foliation Tx 
to the foliation defined by the vector field 

Y = Xh + 
µ 

fc=l 
dk(h)akR. 

Furthermore, we can require that this conjucagy is "fibered" with respect to R, i.e. is 
formally the exponential of a vector field proportional to R. Such a conjugacy keeps 
invariant each trajectory of R. 

Second step: final reduction. In the previous step, for a fixed complement space, 
there is no unicity of the prenormal form Y. One can prove that the set of prenormal 
forms for Tx is the orbit of one of them under the action of a final reduction group 
of transformations of the following type: <I> = exp b • R, with a formal coefficient b in 
1: b = b(h). Such transformations satisfy the relation ho$ = (pohfora, one variable 
formal diffeomorphism ip. In order to study the action of this final reduction group 
on the prenormal forms, it is convenient to introduce a modified expression of them. 
We shall make use of the two following remarks: 

i- Setting a = h~6°/s, he have [aXh,R] = 0. The introduction of this multivalued 
coefficient will allow us to work with an abelian basis of logarithmic vector fields. 

ii- Setting ri = dee:(aai) 
Ô we have R{aaih Ti) = 0. This will allow us to work with 

coefficients which are constants for R. 
Multiplying Y with a, and grouping coefficients in order to transform coefficients 

ai in constants fa for R we obtain the following "adapted" prenormal forms: 

(2) Xa + 
µ 

i=i 
fiSi(h)R 

with Xa = ocXh, fi = aaih~ri and Si = di(h)hVi. By these two tricks, any element $ 
of the final reduction group keep invariant Xa and the coefficients fi. Therefore we 
have 

$*(Xa + 
µ 

i=i 
fiSiR) = Xa + 

µ 

i=i 
fi$*(Si(h)R). 

The action of $ over Si(h)R is given by 

$*(5i(h)R) = diOip(h) (p(h))ri+1 R 
ip'{h) h 

where (p is defined by h o $ = (p o h. This is the lifted action by h of the action of (p 
on the one-variable vector fields 

9i(z) = di(z)zri+1 d 
dz 

Since ri = pi/5 for a positive integer pi, we can uniformize these vector fields setting 
t = z1/6 in 

0i(t) = 6-1di(t*)tp*+1 d 
dt 
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We may choose (p -and therefore O- in such a way that one of the vector fields Qi is 
normalized under its usual normal form 

s-1 
t^1 d 

1 + \t* dt 
with qi = Ski+pi 

where ki is the multiplicity of each series d{. Going back to the non adapted prenormal 
forms, we obtain the following final normal forms: 

Theorem 3.3. — Let Y = Xh + ]Cfc=i dk{h)dkR be a prenormal form of X and i an 
indice arbitrary chosen among 1, •••//. There exists a diffeomorphism in the final 
reduction group which conjugate Y to a normal form Y^ in which the coefficient of 
indice i is a rational function of h of the following type: 

d?{h) = 
hm 

1 + A/im+n 
where X is a complex number, and m, n are positive integers. 

In fact, the previous argument gives rise to the following explicit formal invariant: 

Proposition 3.4. — The family of the ¡1 formal vector fields 6i{t) up to a common 
conjugacy is a complete formal invariant for the foliation defined by X. We denote it 
L(F). 

Notice that as soon as ¡1 is greater than two, we can't normalize simultaneously 
all the coefficients d$ under a rational form. The final normal form is still a formal 
object. A result of M. Canalis and R. Schafke in the cuspidal situation (h = y2 — x3) 
suggests that these final normal forms are defined by fc-summable series in t: see [1]. 
Nevertheless, the generalization of this fact, and the computation of the order k is still 
an opened question. Furthermore, even if they are of the same nature (conjugacy class 
of ¡1 one variable objects) the relationship between this algorithmic invariant C(T) 
and the geometric one Hol^) is not clear (it is of transcendental nature), excepted 
in the Galois réductible situations, in which we shall be able to specify it in the next 
section. 

We now give a criterion of formal Galois reducibility, for the class of quasi-
homogeneous foliations described in the introduction. 

Theorem 3.5. — The following propositions are equivalent: 

(1) The foliation T is formally Galois reducible; 
(2) The Lie algebra generated by the elements of C(!F) is a finite dimensional one; 
(3) The Lie algebra generated by the elements of C{!F) is one dimensional; 
(4) F is a formally Liouvillian foliation. 

Proof. — The equivalence between propositions (2) and (3) comes from Lemma (1.6), 
since one can check that the multiplicity of each vector field Qi is greater than one: 
this is a consequence of deg(bR) > deg(X/l). 
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We now prove the implication (3) => (4). Let 0 and Ck be a vector field and fi 
constants such that Ok = CkO. The adapted normal form obtained in (2) is here of the 
following type: 

Xa + ( 
µ 

i=l 
Cifi)S{h)R. 

The final reduction step normalize 9 -and therefore here all the Oi- under its usual 
rational normal form. We obtain a convergent normal form XN in the formal class of 
Tx> In order to prove that the foliation TN defined by XN is Galois reducible of order 
two, by theorem (2.1) we have to prove that there exist two logarithmic one-forms 
UJN and u)\ such that LJN define the foliation TN and u\ is a closed form such that 
dujN = U>N t\u)\. We consider the logarithmic one forms (for details on this dual point 
of view, see [21]): 

ujh = S-1 
dh 
h 

dx A dy 
h 

(O-1 XH,.) , WR = 
p2ydx-p1xdy 

h = 
dx A dy 

h 
(., R) 

Since dx A dy/htf^Xh, R) = S^R(h) /h = 1, {JOR^UH} is a dual basis of {Xh,R} for 
the pairing (u,X) = u(X). Therefore, for any function / , we have df — R(f)uh + 
Xh(f)ujR, and the one-form aujh — bujR define the same foliation as X = aXh + 
bR. Notice that UJR is not a closed form, but dividing it with a = h~So/f5, we have 
d(a~1UR) = 0: this is similar to the trick (i-). The foliation TN is defined by 

(¿N = Uh — 
µ 

2=1 
aidi(h)ujR = Uh~ 

µ 

¿=1 
fiSi(h) WR 

a 
= Vh~ fcS(h) 

MR 

a 

where fc = J2i=icifi only depends on c = (ci,---cM). Since R(f) = 0, we have 
d(<jjN/6(h)) = 0, and the logarithmic derivative coi of 6(h) is a closed form which 
satisfies the Godbillon-Vey relation. 

We now prove the main implication (4) (3). We shall give another proof of it in 
the next section. If T is formally Liouvillian then FN have a (formal) Godbillon-Vey 
sequence of lenght two given by UJN, ^I? and it suffices to prove that C(TN) is one 
dimensional. We can check that uj\ also keep invariant X : h = 0, with simple poles 
along X (for this last point, which is only formally true, see [20]). Therefore, u\ is 
a closed logarithmic form and there exist two formal coefficients A and // such that 
u)\ — Xcuh+HUR. We may suppose that u\ = XoWh, where Ao in the residue of uj\ along 
h = 0 , even if it means replacing h with /10$ and replacing the logarithmic basis 
with its pull back by 3>: indeed, uj\ — X^uoh is a closed logarithmic form with vanishing 
residue and therefore, there exists a formal coefficient g such that u\ — X^OOH = Xodg. 
Setting u = expg we obtain: uj\ = Xod(uh)/(uh). Since h is a quasihomogeneous 
function there exists a change of variable $ such that h o $ = uh. Conjugating the 
Godbillon-Vey relation by $ we normalize u\ under the previous form, and $*UJN is 
still normalized relatively to the new logarithmic basis. 
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Using the relations df = R{f)ujh + Xh(f)ujR and d(ujR/a) = 0, we obtain 

duN = d(ujh -
µ 

2=1 
fiSi(h) WR 

a 
•) = -

µ 

2=1 
fiR(Si(h))ujh A WR 

a 
Therefore, the Godbillon-Vey relation duj^f = UN A u>i is equivalent to 

Ac 
µ 

2=1 
fifiiih) = ~ 

µ 

2=1 
fiSfi(h)oh. 

where 8' is the derivative of this one-variable function. The decomposition of any ele
ment b under a sum Yli=i fi$i(ti) or equivalently under a sum X)f=i a<idi(h) is unique. 
Indeed, the space of prenormal forms W is isomorphic to the J-module coker(X/l), 
and this one is a free module over the basis given by the classes of a i , - - - ^ (see 
[21]). Therefore the Godbillon-Vey equation is equivalent to the /i linear differential 
equations 

5h8[(h) = \o5i(h), i = 1 • • • fi. 
Since the functions Si(h) are solutions of the same one-dimensional first order linear 
differential equation, we have Si(h) = CiS(h) for all i in {1, • • • //}. 

Finally, we have to prove the non trivial implication of (1) (4), i.e.: any for
mally Galois reducible foliation is a formally Liouvillian one. This is essentially a 
consequence of (1.7). Indeed, if T has a proper Galois envelope, we know that the 
same holds for Hol^) . From theorem (1.8), Hol^) is a solvable group. According 
to [20], this allows us to construct a formal Godbillon-Vey sequence of lenght two for 
the foliation. We summarize this construction: from Theorem (1.7) of [20], a solvable 
subgroup of Diff(C,0) admits a formal symmetry i.e. a formal one variable vector 
field which is invariant up to a multiplicative constant by each element of the group. 
Evaluating UJ on this symmetry, we obtain a local integrating factor whose logarithmic 
derivative w\ satisfies the Godbillon-Vey relation. We can extend u)\ on the regular 
part of the principal component the exceptional divisor, since it is invariant by the 
holonomy of this component. Then, we extend it along the whole exceptional divisor 
with similar arguments as in the proof of (2.4). • 

Remark 3.6. — If the foliation T is formally Galois reducible, then its final normal 
form is a convergent one. Indeed, if the Lie algebra generated by the elements of C(F) 
is one dimensional, then the action of the final reduction group will simultaneously 
normalize each coefficient di(h) under a rational form. Therefore the final normal 
form of T has a convergent expression. 

Following and extending the definition of D. Cerveau and R. Moussu in [7], a 
quasi-homogeneous foliation T is a non exceptional foliation if and only if its invariant 
Hol^) is a non exceptional group. Two non exceptional holomorphic foliations which 
are formally conjugated are analytically equivalents: indeed, by [21], we know that 
we can construct a conjugacy which is fibered with respect to i?, and which is only a 
transversally formal one. Therefore, the restriction of such a transformation to any 
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fiber of R will define a conjugacy between the holonomy groups. Since they are non 
exceptional this conjugacy is a convergent one. 
Corollary 3.7. — We suppose that the foliation T is a non exceptional one. The 
following propositions are equivalent: 

(1) The foliation T is Galois reducible; 
(2) The Lie algebra generated by the elements of C(T) is a finite dimensional one; 
(3) The Lie algebra generated by the elements of C(T) is one dimensional; 
(4) T is a Liouvillian foliation. 

Proof. — The first implication (1) => (2) (or (3)) comes from the corresponding 
implication in Theorem (3.5). Since (4) (1) is trivial, we only have to prove 
(3) (4). Let T be a holomorphic foliation such that C(F) is one dimensional. 
Following the previous remark (3.6), its final normal form is a convergent one and 
defines a holomorphic foliation T^, which is Liouvillian. Since T is a non exceptional 
foliation, the conjucacy between T and TN is a convergent one and T is also a 
Liouvillian foliation. • 

Notice that for non exceptional germs of foliations, there doesn't exist Riccatitian 
foliations which are not Liouvillian. Clearly, for an exceptional foliation, we need 
an additional criterion on the analytic class itself inside the formal one (they are all 
formally Liouvillian). This one is given by theorem (2.4), and by the classification of 
the groups of diffeomorphisms with proper envelope (1.8), and therefore is not yet an 
algorithmic one: 

Theorem 3.8. — An exceptional foliation T has a proper Galois envelope if and only 
if the group HolfT) is an exceptional unitary or binary one. 

4. Relationship between geometric and algorithmic invariants 
for Galois reducible foliations 

We introduced in section 2 the notion of projective holonomy, namely the holonomy 
of the principal component C in the desingularization of the foliation. For explicit 
computations, the following notion of "relative holonomy" is more efficient. Let m be 
a regular point of the desingularized foliation on C and T the pull back of the fiber of 
R corresponding to this value m. Any element of 7Ti(C, m) can be lifted into a path 
from a point in T in a leaf of the initial foliation Th defined by dh = 0. We consider 
the normal subgroup 7r[ (C, m) of 7Ti (C, m) corresponding to the elements which can 
be lifted in loops in the initial foliation: this is the kernel of the representation of 
the projective holonomy of Th> The relative representation of holonomy of T is 
the restriction of the projective holonomy to ^ ( C , m). We denote by H o l ^ , ^ ) 
its image. This is a subgroup of the group Diffi(C, 0) of germs of diffeomorphisms 
tangent to the identity. We have: 
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(i) The Galois envelope of Hol^ , Th) is identical to the one of Hol^); 
(ii) The class of conjugacy of Hol^ , Th) is still an analytic complete invariant for T. 
These two facts only hold for foliations T which are a perturbation of Th- Indeed, 

in this case any element of Hol(̂ *) is a resonant one, and the statement (i-) is a 
consequence of proposition (1.3). The second one can be deduced from theorem 
(2.3) by proving that the relative holonomy groups are conjugated if and only if the 
projective holonomy groups are conjugated. We don't give the details since we shall 
not make use of this result. 

The main interest of this holonomy is a more efficient presentation of -K'X (C, ra) 
interpreting its elements as horizontal classes of evanescent cycles. Let us develop 
this point of view. We first remark that the quasi-radial vector field R is a basic 
vector field for the initial foliation Th,'- from R(h) = Sh, we deduce that its flow 
exp[r]i2 sends the fiber FZQ : h = zo on the fiber Fz with the formula z = zoerS. 
This implies that the flow of the vector field S_1R commutes via h with the flow 
zd/dz on the disc image of h. In particular, one can lift the circle with base point 
mo: exp[<j]zd/dz • mo, a 6 [0,2i7r]. For a = 2iit, we obtain a diffeomorphism 

p = exp[2z7r](5 1R 

which keep invariant each fiber of h. This is the geometric monodromy of Th- The 
diffeomorphism p is periodic with period S. The orbit of a point p on Fz under the 
action of p is a set of S points, intersection of Fz with the trajectory Tp of R through 
p. The meromorphic first integral of R defines a projection TTR onto C. From the 
previous description, for any loop 7 in Fz the S elements of its orbit via p have the 
same projection by TTR onto a loop which represents an element of 7r[(C, ra). Finally, 
the elements of 7ri(C,ra) can be identified to the classes of evanescent loops in a 
fiber Fz modulo the action of p, or also to the horizontal family of evanescent loops, 
obtained by the action of the flow of jR on 7 (the previous description is only the 
intersection of this family with Fz). 

Let 7i,--'7/x be a basis of the free group iri(Fz,p), and let r ^ - T ^ be their 
projection in 7r[ (C, ra) or their class modulo p. We want to compute their image ftr< 
in Hol(.F, Th) when T has a proper Galois envelope. In the non exceptional case, the 
probleme reduces to the computation of Hol(TN,fh) where TN may be defined by 
the following one-form written under its adapted form 

UN = Uh — 
µ 

г=1 
cifi 6(h) UR 

a 

Notice that the ¡1 one-forms r)i = /¿^7- are horizontal, i.e. invariant under the action 
of R. Indeed, we have 

LR(T)Ì) = (iRd + <йд) fi WR 
o; 

= 0 
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since R(fi) = 0 and d(^) = 0. Let rjc = Y^=i ^Vi- The choice of c = (ci, • • • cM) 
completely determines the class of Tj$ . Since rjc is a horizontal form, its integration 
T{ = fy rjc only depends on the horizontal classe IV 

The vector field 6(h)R is a vertical vector field, i.e. a vector field tangent to the 
foliation defined by R, and its restriction on each fiber doesn't depend on this fiber. 
If we introduce local coordinates around a point p outside X defined by s = f rjc and 
t = h1/6 this vector field is a one variable holomorphic vector field 8 in t. In the final 
final form, we have: 0 = t«+1 d 

1+At« dt 
Theorem 4.1. — The generators of Hol(J7N, Th) are given by 

hTi(p) = exp[Ti}0 -p 

where the Ti's are the periods of rjc on the horizontal cycles Ti. 

We can remark that this holonomy is an abelian group. This is coherent, since for 
any solvable group G of germs of diffeomorphisms, the subgroup of its elements which 
are tangent to the identity is always an abelian one (see [7] or [20]). 

Proof. — The foliation J7^ is also defined by the vector field 

aXh + 
µ 

i=l 
C-ifi 8(h)R 

or by otXh 
fc 

-h 8(h)R with fc = J2i=i cifi- The key point here is that the vector field 
<*Xh 
fc commutes with S(h)R. Indeed, № , R\ = 0, fc is a first integral for it and 6(h) 

a first integral for Xh- Therefore we have: 

exp[<r] aXh 
fc + 6(h)R -p = exp[cr]6(h)R o exp[a] 

aXh 
fc . p. 

If a runs over a segment [0, T] in C, the first member is a path with origin p into the 
leaf of TN through p. Likewise, the term exp[cr] axb -p describes a path of origin p into 
a leaf of the initial foliation Th and exp[a]6(h)R- q is a path into a fiber of the vertical 
foliation defined by R. Therefore, the first member defines a lift in J7^ of a path in 
the initial foliation by the projection defined by R. If this path is closed for a = T, 
exp[T]6(h)R - p is its relative holonomy. Since rjc(£Yh') = 1? in the (multivalued) 
coordinate s = J rjc such a flow is a translation, and for the periods Ti of r/c, the 
segments [0,2*] are covering of a basis 7*. This proves the theorem. • 

This allows us to characterize the exceptional foliations (i.e. those which have a 
monogeneous relative holonomy group) on their normal form: 

Corollary 4.2. — J7^ is an exceptional foliation if and only if the quotients of the 
periods Ti are rational numbers. 

Finally, we can deduce from theorem (4.1) the following realization theorem: 
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Theorem 4.3. — We fix the quasi-homogeneous curve X : h = 0 with Milnor number 
/j,. Given a non exceptional abelian sub-group H o/Diffi(C, 0) generated by h\, • • • h^, 
there exists a germ of quasi-homogeneous foliation whose relative holonomy group 
YLo\{T,Fh) isH. 

Proof. — In order to construct the class of T we have to choose aXh+(Y^i=i (kfi)S(h)R. 
Since if is a non exceptional abelian subgroup of Diffi(C, 0), there exists an analytic 
vector field 6 and a constants Ti such that hi = expT^0 (see [20]). The vector field 
6 induces a unique vector field S(h)R whose expression on each fiber of R is 8. We 
only have to choose the constants Q which will induce the given relative holonmy. 
The relationship between the constants Ti and the Q'S is given by 

T = 
Гг 

Ve = 
µ 

3 = 1 
сз 

T3 
It follows that one should have the matricial equality T = M • C where T is the 
column of the TVs, C is the column of the Q'S and M = (mij) with mij = fT rjj. 
The coefficients of this matrix are constants since rjj and Ti are horizontal. Since the 
loops 7i generate a basis of the homology of the Milnor fiber and the rjj a basis of its 
cohomology, it is a well known fact that this matrix is an inversible one. Therefore, 
we may compute C from T. • 

Remark. If we admit that the relative holonomy group is a complete invariant 
of the foliation, the previous result gives us another proof of the main implication 
(4) =̂  (3) in (3.7). Indeed, if J7 is a Liouvillian foliation, its relative holonomy 
group is a non exceptional abelian subgroup H of Diffi(C, 0). We can realize it by 
another foliation given by a normalized vector field XN, whose algoritmic invariant 
£{FN) is one dimensional. Since the two foliations are analytically equivalent, we 
have C(FN) — ^(^) up to a conjugacy, and C{T) is also one-dimensional. 

5. Open problems 

In the present class of quasi-homogeneous foliations, there remain the following 
questions: 

— Find the relation between the algorithmic invariant C(F) and the geometric one 
(relative holonomy) outside the Galois reducible case. In the general case, this 
transcendental relation will not reduce to the exponential of one variable vector 
field. Probably, we shall have to consider Campbell-Hausdorff type formulae; 

— Prove the fc-summability for the final normal forms and find the geometric mean
ing of this order k. 

One can try to extend such a study to any germ of foliation in C2: 
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— In the non dicritical case (i.e. when the exceptional divisor is an invariant set of 
the foliation), outside the quasi-homogeneous context, we have no normal forms. 
We would like to construct them, having in mind the present motivations: a good 
representative of an holomorphic foliation may allow us to compute its Galois 
envelope, and its geometric invariants. Of course, we agree divergent models in 
order to get the previous conditions, and we expect their summability. 

— In the generic dicritical case (i.e. when the foliation is desingularized after one 
blowing up such that the projective line is not an invariant set), we have formal 
normal forms: see [19]. Can we make use of these models to compute their 
Galois envelope? 

We can also consider the following developments: 

— (suggested by B. Malgrange) study the Galois envelope for any local codimension 
one foliations: can we reduce it to the previous dimension two cases? 

— study the Galois envelope of vector fields in (C2, 0). This means that we first 
have to classify vector fields not only up to a unity, and to construct formal 
normal forms with respect to this classification. 

— develop a similar study for an algebraic foliation on the projective plane near 
an algebraic invariant set. 
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