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HOMOGENEOUS COMMUTING VECTOR FIELDS ON C?

by

Alcides Lins Neto

Abstract. — In the main result of this paper we give a method to construct all pairs
of homogeneous commuting vector fields on C2 of the same degree d > 2 (Theorem
1). As an application, we classify, up to linear transformations of C2, all pairs of
commuting homogeneous vector fields on C2, when d = 2 and d = 3 (corollaries 1
and 2). We obtain also necessary conditions in the cases of quasi-homogeneous vector
fields and when the degrees are different (theorem 2).

Résumé (Champs de vecteurs homogénes commutants dans C2). — Dans le résultat principal
de ce papier on donne une méthode de construction de tous les paires de champs de
vecteurs homogenes de méme degré d > 2 qui commutent (théoréme 1). Comme
application, on classifie les paires de champs de vecteurs homogeénes commutantes
dans C? de degrés d = 2 et d = 3 (corollaires 1 et 2). Nous obtenons aussi des
conditions nécessaires dans les cas quasi-homogenes et quand les degrés sont différents
(théoréme 2).

1. Introduction

A. Guillot in his thesis and in [3], gave a non-trivial example of a pair of commuting
homogeneous vector fields of degree two on C3. The example is non-trivial in the sense
that it cannot to be reduced to two vector fields in separated variables, like in the
pair X := P(z,y)0; + Q(z,y)0y and Y := R(2)0,. This suggested me the problem
of classification of pairs of polynomial commuting vector fields on C". This problem,
in this generality, seems very difficult, even for n = 2. Even the restricted problem
of classification of pairs of commuting vector fields, homogeneous of degree d, seems
very dificult for n > 3 and d > 2 (see problem 3). However, for n =2 and d > 2 it is
possible to give a complete classification, as we will see in this paper.
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182 ) A. LINS NETO

Let X and Y be two homogeneous commuting vector fields on C2, where dg(X) = k
and dg(Y) = ¢, and R = 20, + y d, be the radial vector field.

Definition 1.1. — We will say that X andY are colinear if X AY = 0. In this case, we
will use the notation X//Y. When dg(X) = dg(Y'), we will consider the 1-parameter
family (Zx)repr given by Zy = X +AY if \ € C and Z, =Y. It will be called the
pencil generated by X and Y. The pencil will be called trivial, if Y = A.X for some
A € C. Otherwise, zi will be called non-trivial.

From now on, we will set:

XAY =f8, A0,
1) RAX =gd, A,
RAY =ho, A,

Since dg(X) = k and dg(Y) = ¢, the polynomials f, g and h are homogeneous
and dg(f) = k+ ¢, dg(g) = k+ 1, dg(h) = £+ 1. Moreover, f # 0 iff X and Y are
non-colinear.

Our main result concerns the case where k = £ > 2. In this case, if g, h # 0, we will
consider the meromorphic function ¢ = g/h as a holomorphic function ¢: P! — P1:

9(z,y)
oz :y] = .
h(z,y)
Theorem 1. — Let (Z))» be a non-trivial pencil of homogeneous commuting vector

fields of degree d > 2 on C2. Let X and Y be two generators of the pencil and f, g, h
and ¢ be as before. If the pencil is colinear then X = a.R and Y = 8.R, where o and
B are homogeneous polynomials of degree d — 1. If the pencil is non-colinear then:

(a) f,9,h#0.

(b) f/g (resp. f/h) is a non-constant meromorphic first integral of X (resp. Y).
(c) Let s be the (topological) degree of ¢: P — Pl. Then1<s<d-1.

(d) The decompositions of f, g and h into irreducible linear factors are of the form:

r 2k ]
f — Hj:l fj 5 +m;
k.
2) g=T0_, {7 0, g;
k,
h =10, f; T2, hs

where s + 37y kj =d+1 and Y ;_; m; = 2s — 2. Moreover, we can choose
the generators X and Y in such a way that g1,...,9s,h1,...,hs are two by two
relatively primes.

(e) Considering the direction (f; = 0) C C? as a point p; € P, then

(3) m; =mult(,p;) —1, j=1,...,r,

where mult(¢,p) denotes the ramification indez of ¢ at p € P1.
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HOMOGENEOUS COMMUTING VECTOR FIELDS ON C? 183

(f) The generators X and Y can be choosen as:

(4) {X =9 5=1 (ki + mj)}lg(fjway = fiy0:) — ¥im1 i(gixay — 9iy0z)]
Y = h-[Z;=1 (k; + mj)f%(fjway = fiy0s) — ZE:I h%(hizay = hiy0z)]

Conversely, given a non-constant map ¢: P1 — Pl of degree s > 1 and a divisor
D on P! of the form '

(5) D= )" (2k(p) + mult(¢,p) —1).[p] ,
peP?

where k(p) > min(1, mult(¢,p)—1) and }, k(p) < +o0, there exists an unique pencil
(Zx)r of homogeneous commuting vector fields of degree d = 3, k(p) + s — 1 with
generators X and Y given by (4), and the fj:s, girs and hys given in the following
way: let {py = [a1 : b1),...,pr = [ar : b;]} = {p € P! | 2k(p) + mult(¢,p) — 1 > 0} .
Set kj = k(pj), mj = mult(¢,p;) — 1 and fj(z,y) = ajy — bjzx. Set ¢[z : y] =
Gi(z,y)/H1(z,y), where G1 and Hy are homogeneous polynomials of degree s. Then
the g;'s and hy s are the linear factors of G1 and Hi, respectively.

Definition1.2. — Let X, Y, g = I, f7.TI3_, g; and h = ITj_, f;” TI_; h; be as in
theorem 1. We call (f; =0), j =1,...,r, the fized directions of the pencil.

Given A € C, the polynomial gy = g + A.h plays the same role for the vector field
Zy =X+ AY than g and h for X and Y. Its decomposition into irreducible factors
is of the form

ki
gr = H;=1 fj TI2 Gix -

Definition 1.3. — The directions given by (g;,» = 0) are called the movable directions
of the pencil.

In particular, the number s of movable directions coincides with the degree of the
map ¢ = g/h: P! — P1L.

As an application of Theorem 1, we obtain the classification of the pencils of
homogeneous commuting vector fields of degrees two and three.

Corollary 1. — Let (Z))x be a pencil of commuting homogeneous of degree two vector
fields on C2. Then, after a linear change of variables on C2, the generators X and Y
of the pencil can be written as:

(a) X =g.R and Y = h.R, where g and h are homogeneous polynomials of degree
one and R = x.0; + y.0y.

(b) X =2%0, and Y = y29,. In this case, the pencil has two fized directions.

(¢) X =920, andY = 2xyd,+y*9,. In this case, the pencil has one fized direction.

Corollary 2. — Let (Z))» be a pencil of commuting homogeneous of degree three vector
fields on C2. Then, after a linear change of variables on C2, the generators X andY
of the pencil can be written as:
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184 , A. LINS NETO

(a) X =g.R and Y = h.R, where g and h are homogeneous polynomials of degree
two and R = 2.0, + y.0y.

(b) X =420, and Y = 3zy%0, +y38,. In this case, the pencil has one movable and
one fized direction.

(¢) X =2%yd, andY = zy?d, — y>8,. In this case, the pencil has one movable and
two fized directions.

(d) X = (22%y +2°)0, — 2%y8y and Y = —zy20, + (2zy* +y*)8,. In this case, the
pencil has one movable and three fixed directions.

(e) X =230, and Y = y39,. In this case, the pencil has two movable and two fized
directions.

Some of the preliminary results that we will use in the proof of Theorem 1 are also
valid for quasi-homogeneous vector fields.

Definition 1.4. — Let S be a linear diagonalizable vector field on C™ such that all
eigenvalues of S are relatively primes natural numbers. We say that a holomorphic
vector field X # 0 is quasi-homogeneous with respect to S if [S,X]=m X, m € C.

It is not difficult to prove that, in this case, we have the following:

(I) m e Nu {0}.
(IT) X is a polynomial vector field.

Our next result concerns two commuting vector fields which are quasi-homogeneous
with respect to the same linear vector field S. Let X and Y be two commuting
vector fields on C2, quasi-homogeneous with respect to the same vector field § with
eigenvalues p, ¢ € N (relatively pritnes), where [S,X] =m X and [S,Y] =nY. Since
S is diagonalizable, after a linear change of variables, we can assume that S = pxd, +
qy0y. Set X ANY = fO, N0y, SANX = g0, N0y and SAY = hd, A 9,. We will
always assume that X, Y #0 |

|

Remark 1.1. — We would like to observe that f, g and h are quasi-homogeneous with
respect to S, that is, we have S(i) = (m+n+tr(S))f, S(g) = (m+tr(S))g and
S(h) = (n+tr(S))h, where tr(S) = p+q. It is known that in this case, any irreducible
factor of f, g or h, is the equation of an orbit of S, that is, x, y or a polynomial of
the form y? — cx?, where c #0 .

Theorem 2. — In the above sz’tuatTon, suppose that f,h Z 0 and n # 0. Then:

(a) g Z0 and f/g is a non-constant meromorphic first integral of X.
(b) Suppose that m,n # 0. Thrn f, g and h satisfy the two equivalent relations

below:
(6) mn f2dz A dy =Azfdg/\dh+gdh/\df+hdf/\dg
dj d d
(7) (m—n)—;—+n—4~—m—g=m—nf(qydx—pxdy)

h g gh
|
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HOMOGENEOUS COMMUTING VECTOR FIELDS ON C? 185

(c) Suppose that m,n # 0. Then any irreducible factor of f divides g and h. Con-
versely, if p = ged(g, h) then any irreducible factor of the p divides f. Moreover,
the decompositions of f, g and h into irreducible factors, are of the form

'
f = H:;":l f]]
(®) g=10_ f .05, gf"
b=, I,
where r > 0, mj,n; >0, £; > mj +n; — 1, for all j, and any two polynomials
in the set {f1,..-, fryG1,---+9s,h1,..., At} are relatively primes.
(d) Suppose that f, g and h are as in (8). Then vector fields X andY can be written
as

) {X = 591721 (& = m;) 7 (£i20y = fiy02) — Xiz1 @iy (9iaOy — GiyOs)]
Y = Sh(Y5o1(8 — 1) F (fioBy — fiyBe) — Tizy big; (hizdy — hiyOs)]

As an application, we have the following result:

Corollary 3. — Let X and Y be germs of holomorphic commuting vector fields at
0€C? Let
X=) X,
j=d

be the Taylor series of X at 0 € C?, where X; is homogeneous of degree j > d.
Assume that d > 2 and that the vector field Xq has no meromorphic first integral and
that 0 is an isolated singularity of X4. Then Y = A\.X, where A € C.

We would like to recall a well-known criterion for a homogeneous vector field of
degree d on C2?, say X,, to have a meromorphic first integral (see [1]). Since the
radial vector field R = z 8, + y 8, has the meromorphic first integral y/z, we can
assume that RA Xg = g0, A0y # 0. Let w = ix,(dr A dy), where i denotes the
interior product. Then the form w; = w/g is closed. In this case, if g = %, g;.cj is
the decomposition of g into linear irreducible factors, then we have

T
o= N g g,
=1 i
where A; € C, for all 1 < j < r and h is homogeneous of degree d + 1 — r =
dg(X4) +1—r=4dg(g/g91- - gr)- In this case, X4 has a meromorphic first integral if,
and only if, either Ay = --- = A\, =0, or A\j # 0 for some j € {1,...,r}, h =0 and
Ao A =[my:---: my], where mq,...,m, € Z. In particular, we obtain that
the set of homogeneous vector fields of degree d > 1 with a meromorphic first integral
is a countable union of Zariski closed sets.
Let us state some natural problems related to the above results.

Problem 1. — Classify the pencils of commuting homogeneous vector fields of degree
d>2o0onC" n>3.
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186 A. LINS NETO

Problem 1 seems dificult even in dimension three.

Problem 2. — Let X, be the set of germs at 0 € C? of holomorphic vector fields. Given
X e Xy, X #£0, to determine the set

CX)={Y|[X,Y]=0}.
Under which conditions is C(X) of finite dimension?

Problem 3. — Classify all pairs of commuting polynomial vector fields on C2.

Observe that problem 3 has the following relation with the so called Jacobian
conjecture: let f and g be two polynomials on C? such that f,.g, — fy-9z = 1. Then
their hamiltonians X = f, 8, — f; 0y and Y = g, 0, — 9,0, commute. By this reason,
problem 3 seems very difficult.

2. Preliminary results

In this section we prove some general results that will be used in the next sections.
Let S, X and Y be holomorphic vector fields defined in some domain U of C2. Assume
that:

M [S,X]=m.X, [S,Y] =n.Y and [X,Y] = 0, where m,n € C.
(II) XAY = f.0, N0y, SANX = 9.0, N0y and SAY = h.0; A Oy, where f,g,h # 0.

We consider also the holomorphic 1-forms w = ix(dz A dy) and 1 = iy (dz A dy),
where i denotes the interior product.

Lemma 2.1. — In the above situation we have:

(a) The meromorphic functions f/g and f/h are first integrals of X and Y, re-
spectively. Moreover, f/g (resp. f/h) is constant if, and only if, n = 0 (resp.

m=0).
(b) If n # 0 (resp. m # 0) then
_9 d_g_ﬁ] _ﬁ[@_ﬁ]
(10) w_n[g 7 (resp.n—m nT T ) .
(¢) The polynomials f, g and h satisfy the relation:
(11) mn f2dx ANdy = fdg ANdh+ gdh Adf + hdf Ndg .

Proof. — Let us prove (a). Assume that n # 0. First of all, note that
Lx(SAX)=[X,SINX+SA[X,X]=—-mXANX=0

and simillarly Lx (X AY) = 0, where L denotes the Lie derivative. Since X AY =
(f/9).SAY, we get

0=Lx(XAY)=Lx((f/9)-SAX)
=X(f/9)SANX+(f/9)Lx(SAX)=X(f/9)SANX =
= X(f/9)=0.
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HOMOGENEOUS COMMUTING VECTOR FIELDS ON C? 187

Therefore, f/g is a first integral of X. It remains to prove that f/g is a constant if,
and only if n = 0. Since Ls(X AY)=(m+n) X AY and Ls(SAX)=mSAX, we
get

(m+n)XAY =Ls((f/9)-SNX)
=5(f/9)-SNX+(f/9)-Ls(SAX)
=(S(f/9) +m.(f/9))SAX

which implies that S(f/g) = n.(f/g). Hence, if f/g is a constant then n = 0.
Conversely, if n = 0 then S(f/g) = 0 and f/g is a first integral of S and X
simultaniously. If f/g was not constant then the vector fields X and S would be
colinear in the non-empty open subset of U defined by d(f/g) # 0. This would imply
that S A X =0, and so g = 0, a contradiction. Therefore, f/g is a constant.
Now, let w = ix(dz A dy) and suppose that n # 0. Since f/g is a non-constant
first integral of X, we get w A d(f/g) = 0, which implies that

where k is meromorphic on U. On the other hand, we have

g = —is(ix(dz A dy)) = —is(w)

_k (8086, sule)

f g

———=nk = k=g/n.

flg

This proves (10).

Let us prove (c). Note first that wAn = f.dr Ady. We leave the proof of this fact to
the reader. If n = 0 (or m = 0) then (11) follows from f/g =c# 0 (or f/h =c # 0),
where c is a constant. We leave the proof to the reader in this case. On the other
hand, if m,n # 0 then

fdzANdy=wAn
_9g {d_g_ ﬁ} /\ﬁ [%_ ﬁ] _gh [dh/\df 4 df/\dg+ dg/\dh]
nlg f mlh f h.f f.g g.h ’

which implies (11). |

m.n

In the next result we prove a kind of converse of (11).

Lemma 2.2. — Let f, g and h be holomorphic functions on a domain U C C2. Sup-
pose that f/g and f/h are non-constant meromorphic functions on U. Define mero-
morphic vector fields X andY by ix(dzAdy) = g[d?g— ‘;—f] and iy (dzAdy) = h[% - %]
Suppose that

fdgAdh+gdh Adf + hdf Adg =\ f2dz Ady,

where A # 0. Then [X,Y] =0.
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188 A. LINS NETO

Proof. — The idea is to prove that d(f/g) A d(f/h) # 0 and [X,Y](f/g) =
[X,Y](f/h) = 0. This will imply that f/g and f/h are two independent meromor-

phic first integrals of [X, Y], and so [X,Y] = 0. O
Proof of d(f/g) Ad(f/h) # 0. — Note that

3
d(f/g) Nd(f/h) = gzj;ﬂ[fdg/\dh+hdf/\dg+gdh/\df] =\ fh drANdy #0 =

= d(f/g) Nd(f/h) # 0. O
Proof of [X,Y] = 0. — We have

(X, Y](f/9) = X(Y(f/9)) - Y(X(f/9)) = X(Y(f/9)) ,
because X (f/g) = 0. On the other hand, a straightforward computation shows that

(12) Y(f/g)dw/\dy=d(f/g)/\n,
where n = iy (dz A dy). Since n = h[dh df] (f/h) we get from (12) that
2
asfrn=-"dsjnasim = -2 dendy = v(si0 =AUl =
= X(Y(f/g9)) =0. In a similar way, we get [X,Y](f/h) = 0. O
3. Proofs

Proof of Theorem 2. — Assume that n # 0, f,h # 0 and g = 0. Since S has an
isolated singularity at 0 € C* and SA X = g.0, A 9, = 0, we get X = 1.5, where
1 # 0 is a polynomial. It follows that

0=[¥,X] = [Y,.5] = Y(§).S — $.[S, Y] = Y().§ —npY —> Y () £0
and S AY = 0, which implies h = 0, a contradiction. Hence, g # 0. It follows from
lemma 2.1 that f/g is a non-constant meromorphic first integral of X. This proves
(a) of theorem 2.

Lemma 2.1 implies also that f, g and h satisfy relation (6). Let us prove that (6)

is equivalent to (7). We will use the following fact: let u be a 2-form in C2 such that
Lgs(u) = A.pu, where A € C. Then

(13) d(is(p)) = Ls(p) = A.p

Set u = fdg Adh+ gdh Adf + hdf Adg and p, = mn f?dz A dy. We have seen
in remark 1.1 that S(f) = (m +n+tr(S)).f, S(g) = (m +tr(S)).g and S(h) = (n +
tr(S)).h. As the reader can check, this implies that Lg(p) = A\.p and Lg(p1) = A.pa,
where A = 2m + 2n + 3tr(S) # 0.

On the other hand, we have

is(ur) = mn f2(px dy — qy dz)
is(u) = —n fgdh +m fhdg + (n — m) ghdf
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HOMOGENEOUS COMMUTING VECTOR FIELDS ON C? 189

as the reader can check. If we assume (6), we have u; = p, so that ig(p) = is(p1)
and

mnfz(p:cdy—qydx)=—nfgdh+mfhdg+(n—m)ghdf = (7).

If we assume (7), then we have

(M) = is—w) =0 & A —p) = dlis(m —p) =0 = (6).

This proves (b) of theorem 2.
Let us prove (c). We will use (7) in the form

(14) (m —n)g.hdf +nf.gdh —m f.hdg=mn f(qydz —pzdy) .

It follows from (14) that, if k is an irreducible factor of both polynomials g and h,
then k divides f?, and so it divides f.

Let us prove that any factor of f is a factor of both polynomials g and h. Here we
use that f/g is a first integral of X. This implies that

(15) fX(g9)=9.X(f).

Recall that any irreducible factor of f or g is the equation of an orbit of S (remark
1.1). Let f =1I7_, f;j (r,£; > 0), be the decomposition of f into irreducible factors
and set F =11, f;. It follows from (15) that

(16)

FX(g)=F @

g = g.k ,where k = F@ = Z bifi fim1. X(f) . figr-- fr -
j=1

On the other hand, (16) implies that for any j = 1,...,r, f; divides g or X(f;). If
f; divides g, we are done. If f; divides X(f;) then (f; = 0) is invariant for X. Since
(f; = 0) is also invariant for S, it is a common orbit of X and S. This implies that
fj divides S A X, and so it divides g. Similarly, any irreducible factor of f divides h.
Now, we can assume that the decompositions of f, g and h into irreducible factors
are as in (8):
e .
f= 1_I;=1 f jJ
g= H;:l me’J 'H'?=1 g;fli
h=TI5_, f;7.If_, Y

where £;, m;,n; > 0 and any two polynomials in the set

{fl,...,fr,gl,...,gs,hl,...,ht}

are relatively primes. Let us prove that £; > m; 4+ n; — 1. As the reader can check, it
follows from (14) that £ *"*% ™" divides f2. This implies that m;+n;+6—1 < 2¢;,
and we are done.

It remains to prove (d). Let w = ix(dz A dy). We have seen in lemma 2.1 that

_9[dg _df) _g |5, 40 N~ oy
_E[_~7]_n[§=—:a’ E(EJ m;) f;
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190 A. LINS NETO

As the reader can check, this implies that X is like in (9). Similarly, Y is also as
in (9). o

Proof of Corollary 8. — Let X = Z?‘;d X; and Y # 0 be germs of holomorphic
vector fields at 0 € C? such that [X,Y] = 0. Assume that d > 2 and X, has an
isolated singularity at 0 € C? and no meromorphic first integral. Set Y = S Y,
where Y; is homogeneous of degree j, r > 0, and Y, # 0. We have [R, X4] = m Xg,
[R,Y;] =nY,, where m =d — 1% 0 and n =r — 1. Note also that [X4,Y;] = 0.

Claim 3.1. — We have r = d and Yy = X\. Xy, where X # 0.

Proof. — As before, set X4AY, = f.0, A0y, RAXq = g.0; A0y and RAY, = h.0; \D,.
Observe that g # 0. Indeed, if g = 0 then R A X4y = 0. Since 0 is an isolated
singularity of R, it follows from De Rham’s division theorem (cf. [4]) that X; = ¢.R,
where ¢ is a homogeneous polynomial of degree d — 1 > 0. But, this implies that
sing(X4) O (¢ = 0), and so 0 is not an isolated singularity of Xg.

Suppose by contradiction that r # d. Let us prove that in this case we have
f,h # 0. Suppose by contradiction that f = 0. This implies that X4 A Y, = 0. Since
X4 has an isolated singularity at 0 € C2, it follows from De Rham’s division theorem
that Y, = ¢.X,, where ¢ is a homogeneous polynomial of degree r —d > 0. Therefore,

0=[Xa,Y;] = [X4,0.-Xa] = Xa(9) Xa = Xu(¢p)=0 =

that ¢ is a non-constant first integral of Xy, a contradiction. Hence, f # 0. Suppose
by contradiction that h = 0. This implies that R A Y, = 0, so that Y, = ¢.R, where
¢ # 0 is a homogeneous polynomial of degree k = r — 1. From this we get

0 =[Xq4,Yr] = [X4,¢.R] = X4(¢).R+ ¢.[X4, R] = X4(¢).R— (d—1).0. X4 =
Xa(d).R = (d—1).6.Xs.

If $ # 0 is a constant then d = 1, a contradiction. If ¢ is not a constant then
Xa4(¢) # 0, for otherwise ¢ would be a non-constant first integral of Xy. In this case,
we get RA Xg =0, and so g = 0, a contradiction. Hence, f,g,h # 0. Now, we can
apply (a) of lemma 2.1.

Ifr#1thenn=7r—1%0and f/g is a non-constant meromorphic first integral
of X4, a contradiction. If r = 1 then n = 0 and (a) of lemma 2.1 implies that f = c.g,
where ¢ € C. Therefore,

0=(f—-c9)0, N0y =XgAN(Y14+cR) = Yi=-cR#0,

by the division theorem and the fact that d = dg(X4) > 1. But, this implies that
0=[Xg4,Y1] =c(d —1).X4 # 0, a contradiction. Hence, r = d.

Now, r = d implies that n = m =d —1 > 0 and f = 0, for otherwise, f/g would
be a non-constant meromorphic first integral of X4. It follows that X4 A Yy = 0, and
so Yy = A\.Xg4, where A # 0 is a constant. This proves the claim. O
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Let us finish the proof of corollary 3. Let Z =Y —A.X. Then [X,Z] =0. If Z # 0,
then we could write Z = Zj‘;r Z;, where r > d, Z; is homogeneous of degree j and
Z, # 0. But, this contradicts claim 3.1 and proves the corollary. O

Proof of Theorem 1. — Let (Z))xcp: be a non-trivial pencil of homogeneous of de-
gree d > 2 commuting vector fields on C2. Fix two generators of the pencil, X and
Y, and set as before X AY = f.0, N0y, RAX =g.0; NGy and RAY = h.0y A Oy.

Suppose first that the pencil is colinear, that is, f = 0. In this case, we can write
X = «a.Z, where a is the greatest common divisor of the components of X and Z
has an isolated singularity at 0 € C2. Since Y AX = 0, we get Y A Z = 0, and so
Y = 3.Z, where (8 is a homogeneous polynomial with dg(8) = dg(a), by De Rham’s
division theorem. Now,

0=[X,Y] = [a.2,8.2] = (« Z(B) — BZ(a)).Z = Z(B)a)=0.

Since the pencil is non-trivial, 8/« is non-constant. On the other hand, we can write
g%% = ¢(y/z), where ¢(t) = g 83, because o and [ are homogeneous of the same
degree. Therefore,

0=Z(¢(y/z)) = ¢'(y/2).2(y/z) = Z(y/z)=0,
because ¢’ # 0. This implies that y Z(x) = v Z(y). If we set Z = A0, + B0,
then we get yA = z B, and so A = A.x and B = A.y, where X is a homogeneous
polynomial. Since 0 is an isolated singularity of Z, it follows that A is a constant.
Hence, X = a;.R and Y = 3;.R, where a; = A.a and B; = A. are homogeneous
polynomials of degree d — 1. This proves the first part of theorem 1.

Suppose now that the pencil is non-colinear. In this case, we have f # 0. Let
us prove that g,h # 0. If g = 0, for instance, then X = ¢.R, where ¢ # 0 is a
homogeneous polynomial of degree m = n = d — 1 > 0, by the division theorem.
Therefore,

0=[Y,¢.R|=Y(¢).R—m.0.Y .
Since m.4.Y # 0, the above relation implies that Y and R are colinear. Hence, X//Y,
a contradiction. This proves (a) of theorem 1.

Since m = n # 0, it follows from (a) of theorem 2 that f/g and f/h are non-
constant meromorphic first integrals of X and Y, respectively, which proves (b) of
theorem 1. Recall that f, g and h are homogeneous polynomials, where dg(f) = 2d,
dg(g) = dg(h) =d + 1.

It follows from (c) of theorem 2 that we can write the decomposition of f, g
and h into irreducible linear factors as f = II7_, ;j, g =15, f;n 7119, gi* and
h = I5_, f9 %, by, where r > 0, m;,n; > 0, £; > m; + n; — 1 and any two
polynomials of the set {fi,..., fr,91,---,9a,P1,...,hp} are relatively primes. Set
k; = min(m;,n;).

Claim 3.2. — The generators of the pencil can be choosen in such a way that:
(a) mj=n;=k; forallj=1,...,r.
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(b)) a=banda;=b;=1 foralli=1,...,a.

Proof. — Set Xy = X +A.Y and RA X = g.0; A Oy,where g) = g+ A.h. It follows
from Bertini’s theorem that for a generic set of A € C the decomposition of g, into
linear irreducible factors is of the form:

17) g =0, £V I, gix

where s+, k; = d+1 and any two polynomials in the set {f1,..., fr,g1x,---,gsa}
are relatively primes. Now, it is sufficient to take A; # A2 € C such that g, and gy,
are as in (17). Set X; = X»,, Y1 = X»,, 9 = g», and h = g),. Then X; and Y; are
generators of the pencil with the properties required in claim 3.2. O

From now on, we will suppose that the generators X and Y of the pencil satisfy
claim 3.2. Let us prove that the decomposition of f into irreducible linear factors is
of the form

(18) f=1j f;kj+mj , where m; > 0.
Since m =n =d — 1 > 0, relation (14) implies that
gdh —hdg=m f(yde —zdy) , m #0.
Set g =1.G1 and h = ¢.Hy, where ¢ =1I7_, f]l-v". As the reader can check, we have
gdh —hdg = ¢2.(G1dH, — H; dG,) = m f(ydz —xdy) = 4°|f.
Hence, the decomposition of f is like in (18) and we get
Gi1dH, — HydG; = m1lj_, f;n"(yda: —zdy) .
Now, consider the map ¢: P! — P! given by

¢[$ . y] — g(x,y) — Gl(wvy) .

h(x,y) Hl(xvy)

Since G; and H; are relatively primes, the degree of ¢ is s = dg(G:1) = dg(Hi).
Let {p1,...,p:} C P! be the critical set of ¢ and @(p;) = ¢; € P. If ¢; # oo set
K; = Gy — ¢j.Hy, and if ¢; = oo set K; = H;. Suppose that p; is a critical point
with mult(¢, p;) = ¢; > 2. This implies that we can write K; = wfj.A, where 9, is a
linear polynomial, A a homogeneous polynomial and ; does not divide A. We claim
that 1[);’_1 |II; f;™*. Indeed, if ¢; # oo, we get

(19) Kj dH1 — H1 dKJ = G1 dHl - H1 dG1 = mII::l f:"’(yda; - l‘dy) .

Since 1/)51 ~! divides K jdHy — Hy dKj, relation (19) implies the claim. If ¢; = oo then
zpf"_l divides G1 dH; — H; dG; and we get also the claim. Therefore, ¢; = A;.fi(;),
A;j € C*, for some i(j) € {1,...,7} and £; — 1 < my(;). In particular, we get ¢t < r.
By reordering the f;/s, if necessary, we can suppose without lost of generality that
i(j) =4,7=1,...,t. Set £; =1 fort < j < r. With these conventions, we have
m; —({;—1)>0forall j=1,...,7.
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Let us prove that m; = ¢; —1for all j =1,...,r. Recall that s+ >, ks = d + 1.
Since f = II; f2**™ and dg(f) = 2d, we get

> mi=dg(IL ) =2d—2) ki=2d-2(d+1-s)=25-2.

On the other hand, it follows from Riemann-Hurwitz formula (cf. [2]) and m; — (¢; —
1) > 0 that

Y (i-1)=25-2=3 m; = 0<) [mi—(Li—1)]=0 = m;=4-1, Vi.
i i i=1
This proves (d) and (e) of theorem 1. Note that (f) follows from (d) of theorem 2.
Let us prove that 1 < s <d—1 and 1 <r < d. First of all note that

.
kj>1 = 2r<> (2kj+m;)=2d = 1<r<d.
7j=1

Moreover,

T
s=d+1-Y ki = s<d+1-r<d = 0<s<d.
j=1
Suppose by contradiction that s = 0. This implies that the map ¢ is constant, and
80 g = A.h, where A € C*. It follows that

RA(X-AY)=0 = X-AY=9¢.R,

where 1 is homogeneous of degree d — 1. Therefore, the first part of theorem implies
that X and Y are colinear with the radial vector field, a contradiction. Hence, s > 1.
It remains to prove that s < d — 1. Suppose by contradiction that s = d. In this
case, we get g = f1.91-++9a, h = fi.h1+---hqg and f = f2¢. It follows that the map
¢ =1(g1---94)/(h1---hg) has degree d > 2 and just one ramification point, (f; = 0),
with multiplicity 2d — 1. However, this is not possible, because this would imply that

mult(¢, (fy =0)) =2d—1>d .

It remains to prove that in the converse construction the vector fields X and Y
defined by (9) in theorem 1 commute. But, this is a consequence of lemma 2.2 and the
fact that f, g and h satisfy (b) of Theorem 2. This finishes the proof of Theorem 1. [J

Proof of Corollary 1. — Let X; and Y; be generators of a pencil of commuting of
degree two homogeneous vector fields on C2. As before, define f;, g; and h; by
X1ANY1 = f10, NOy, RANX1 = g10; N0y and RAY, = hy O, A Oy, respectively. If
g1 = h; =0 then X; and Y; are multiple of the radial vector field, and so we are in
case (a) of corollary 1. If not, then fi, g1, h1 # 0, by (a) of theorem 1. Moreover, the
rational map ¢ = g1 /h; has degree s = 1, by (c) of theorem 1. Therefore, the pencil
has one movable direction and one or two fixed directions, because g; has degree
d+1=3.
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Suppose that it has two fixed directions. In this case, we can suppose that they
are (z = 0) and (y = 0). This implies that g; = z.y.g2, h1 = z.y.hy and f; = z2.9?,
where go and hy correspond to the movable direction. Since g and ho are relatively
primes, there exist (a,b), (¢, d) such that ags + bhy = z and cgs + dhy = y. If we
set g := 22y = z.y(age + bhy) and h := z.y?> = z.y(c gz + d hy), then we can apply
lemma 2.2 to f = z%.y2, g and h. We get the first integrals f/g = (22.y%)/(2%.y) = v,
f/h = (z2.4?)/(2.y?) = x, the forms w := g iff/igg—) =z2dy,n:=h % = y?dz, and
the vector fields X = z29,, Y = y%9,. So, we are in case (b) of corollary 1.

Suppose that it has one fixed direction. We can suppose that it is (y = 0). In
this case, we have g; = y%.go, hy = y%.hy and f = y*. Consider linear combinations
ags +bhe = x and cgs + dhy = y. So, we have just to apply lemma 2.2 to the
polynomials f = y*, g = z.y? and h = y®. By doing this, we obtain case (c) of
corollary 1, as the reader can check. O

Proof of Corollary 2. — Let f, g and h be as in theorem 1. If g = h = 0 then we are
in case (a) of corollary 2. If not, then f,g,h # 0 and ¢ = g/h has degree s, where
s €{1,2}.
Let us consider the case where s = 2. Let ¢: P! — P! be a map of degree two.
It follows from Riemann-Hurwitz formula that }° (mult(¢,p) — 1) = 25 -2 = 2,
and so the map must have two ramification points, both of multiplicity two. After
composing the map in both sides with Moébius transformations, we can suppose that
@[z : y] = y?/x?. This implies that (z = 0) and (y = 0) are fixed directions of the
pencil, so that z.y divides g and h. Since dg(g9) = dg(h) = 4 and s = 2, we get
g = z.y.91.92 and h = z.y.hy.ha, and so k; = ko = 1 in (2) of theorem 1. Since
dg(f) = 6 and mult(¢, (z = 0)) = mult(¢, (y = 0)) = 2, we must have m; =mg =1
and f = x3.93. In this case, we have
2
6=9 (9/zy) _y

3 3
h  (h/zy) =z g=wy an Y

So, when we apply lemma 2.2, we get f/g = z2, f/h = y?, w = 2y® dx and n = 223 dy.
Hence, we can set X = 2% 0, and Y = 33 ,. In this case we get case (e) of corollary
2.

Suppose now that s = 1. In this case, we have just one movable direction and the
map ¢ has no ramification points, which implies that m; = 0 for all j = 1,...,r. This
implies that f = II7_; sz % Since dg(f) = 6, we have three possibilities: (1). r =1
and k; =3. (2). r=2,ky=1and ky=2. (3). r=3and ky = ks =ks = 1.

CASE (1). In this case, we have just one fixed direction f;. After a linear change of
variables in C?, we can suppose that it is f; = y. This implies that f = y%, g = 3.9
and h = y3.hy. Since g; and h; are relatively primes, there exist a,b,c,d € C such
that a.d — b.c # 0 and a.g; + b.h; = x and c.g; + d.h; = y. Therefore, we can apply
the construction of lemma 2.2 to f = 3%, g = y* and h = z.y®. This gives the first
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integrals f/g = y* and f/h = y®/z. Moreover,

{w:ix(dz/\dy)=2y4iy3=2y3dy = X =240,

n =iy (dz Ady) = z.y3 (3-’1y2 — ) =3zy?dy —y3dr = Y =3xy%0, +1°9,.

Therefore, we get case (b) of corollary 2.

CASE (2). In this case, we have two fixed directions, that we can suppose to be f; =z
and fo =y. Since k; = 1 and ky = 2, we get g = x.3%.g1, h = .y%.h; and f = 2%.y%.
After taking linear combinations, we can suppose that g = z2.y% and h = z.y3. This
gives the first integrals y2 and z.y and so w = 222 ydy and n = zy? dy + y3 dz and

we are in case (c).

CAsSE (3). In this case, we have three fixed directions. After a linear change of
variables we can suppose that they are fi = z, fo = y and fs = x 4+ y. This gives
g=zy(r+79).91, h = zy(z +y).h1 and f = 22y?(z + y)2. After taking linear
combinations of g; and h;, we can suppose that g = z?y (z +y) and h = 292 (z + y).
Therefore we get the first integrals are f/g = y(z +vy), f/h =z (z + y) and
w=a?y(e+y) [E+ T = 2Pyde + 207y + %) dy
= X=_2zy*+2%08,—2%y9,
n=zy?(@+y) %+ T = 2zy? +1°) do+ oy’ dy
= Y =-2y20,+2zy*+y%) 0,

Therefore, we are in case (d) of corollary 2. O
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