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HOMOGENEOUS COMMUTING VECTOR FIELDS ON C2 

by 

Alcides Lins Neto 

Abstract. — In the main result of this paper we give a method to construct all pairs 
of homogeneous commuting vector fields on C2 of the same degree d > 2 (Theorem 
1). As an application, we classify, up to linear transformations of C2, all pairs of 
commuting homogeneous vector fields on C2, when d = 2 and d = 3 (corollaries 1 
and 2). We obtain also necessary conditions in the cases of quasi-homogeneous vector 
fields and when the degrees are different (theorem 2). 

Résumé (Champs de vecteurs homogènes commutants dans C2). — Dans le résultat principal 
de ce papier on donne une méthode de construction de tous les paires de champs de 
vecteurs homogènes de même degré d > 2 qui commutent (théorème 1). Comme 
application, on classifîe les paires de champs de vecteurs homogènes commutantes 
dans C2 de degrés d = 2 et d = 3 (corollaires 1 et 2). Nous obtenons aussi des 
conditions nécessaires dans les cas quasi-homogènes et quand les degrés sont différents 
(théorème 2). 

1. Introduction 

A. Guillot in his thesis and in [3], gave a non-trivial example of a pair of commuting 
homogeneous vector fields of degree two on C3. The example is non-trivial in the sense 
that it cannot to be reduced to two vector fields in separated variables, like in the 
pair X := P(x,y)dx + Q(x,y)dy and Y := R(z)dz. This suggested me the problem 
of classification of pairs of polynomial commuting vector fields on Cn. This problem, 
in this generality, seems very difficult, even for n = 2. Even the restricted problem 
of classification of pairs of commuting vector fields, homogeneous of degree d, seems 
very dificult for n > 3 and d > 2 (see problem 3). However, for n = 2 and d > 2 it is 
possible to give a complete classification, as we will see in this paper. 
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182 A. LINS NETO 

Let X and Y be two homogeneous commuting vector fields on C2, where dg(X) = k 
and dg(Y) = £, and R = x dx + y dy be the radial vector field. 

Definition LI. — We will say that X and Y are colinear ifXAY = 0. In this case, we 
will use the notation X//Y. When dg{X) = dg(Y), we will consider the 1-parameter 
family (̂ A)AGP1 given by Z\ = X + X.Y if A G C and Zoo = Y. It will be called the 
pencil generated by X and Y. The pencil will be called trivial, ifY — X.X for some 
A G C. Otherwise, z| will be called non-trivial. 

Prom now on, we will set: 

(1) 
XAY = fdx Ady 
R A X = g dx A dy 
R A Y = h dx A dy 

Since dg(X) = k and dg(Y) = £, the polynomials / , g and h are homogeneous 
and dg{f) = k +1 , dg(g) = k + 1, dg(h) = £ + 1. Moreover, / ^ 0 iff X and y are 
non-colinear. 

Our main result concerns the case where k = £ > 2. In this case, if g, h ^ 0, we will 
consider the meromorphic function <j> = g/h as a holomorphic function (/>: P1 —• P1: 

(j)[x : y] = g(x,y) 
h(x,y) 

Theorem 1. — Let (Z\)\ be a non-trivial pencil of homogeneous commuting vector 
fields of degree d > 2 on C2. Let X and Y be two generators of the pencil and f, g, h 
and 4> be as before. If the pencil is colinear then X = a.R and Y = (3.R, where a and 
/3 are homogeneous polynomials of degree d — 1. // the pencil is non-colinear then: 

(a) f, g, h # 0. 
(b) fjg (resp. f/h) is a non-constant meromorphic first integral of X (resp. Y). 
(c) Let s be the (topological) degree of </>: P1 —> P1. Then 1 < s < d — 1. 
(d) The decompositions of f, g and h into irreducible linear factors are of the form: 

(2) 
/ = 115=1 / р 2 /с J -f" 771 j 

J 
0 = П5=1/;'.Щ=1А GI 
> = Щ=1/?.Щ=1/ц 

where s + Y^j=i kj = d+1 and Y^j=i mj1 = 2s — 2. Moreover, we can choose 
the generators X and Y in such a way that gi,...,gs, hi,..., hs are two by two 
relatively primes. 

(e) Considering the direction (fj = 0) C C2 as a point pj G P1, then 

(3) rrij = mult(0,pJ) - 1 , j = 1, . . . , r , 

where mult(0,p) denotes the ramification index of (j) atpeP1. 
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HOMOGENEOUS COMMUTING VECTOR FIELDS ON C2 183 

(f) The generators X and Y can be choosen as: 

(4) 
X = 0-EJ=i (kj + mj)j-(fjxdy - fjydx) - £J=1 j:(9ixdy - giydx)] 

Y = M£j= i (*i + mj)j-(fjxdy - fjydx) - YlUi rShixdv ~ ftnA)l 

Conversely, given a non-constant map (j>: P1 —> P1 of degree s > 1 and a divisor 
D on P1 0/ t/ie /orra 

(5) I? = (2k(P) + mult(0,p) - l).[p] , 
PGP1 

w/iere k(p) > mm(l,mult(0,p) —1) and J2P K(p) < +00, there exists an unique pencil 
(Z\)\ of homogeneous commuting vector fields of degree d = ^2p k(p) + 5 — 1 with 
generators X and Y given by (4), and the fys, gi>s and hi's given in the following 
way: let {pi = [ai : 61],... ,pr = [ar : br]} = {p G P1 | 2k(p) + mult((^,p) - 1 > 0} . 
Set kj = k{pj), rrij = mult(0,pj) — 1 and fj(x,y) = aj y — bjX. Set <j>[x : y] = 
Gi(x,y)/Hi(x,y), where G\ and H\ are homogeneous polynomials of degree s. Then 
the gi>s and hi>s are the linear factors of G\ and Hi, respectively. 

Definition 1.2. — Let X,Y,g = nj=1 f*j.II|=1 gi and h = IIJ=1 fjj.IIf=1 hi be as in 
theorem 1. We call (fj=0),j = l,...,r, the fixed directions of the pencil. 

Given A G C, the polynomial g\ = g + X.h plays the same role for the vector field 
Z\ = X + X.Y than g and h for X and Y. Its decomposition into irreducible factors 
is of the form 

ffA= 115=1/*Ml?=lffi,A • 

Definition 1.3. — The directions given by (<̂ ,A — 0) are called the movable directions 
of the pencil. 

In particular, the number s of movable directions coincides with the degree of the 
map <j> = g/h: P1 -* P1. 

As an application of Theorem 1, we obtain the classification of the pencils of 
homogeneous commuting vector fields of degrees two and three. 

Corollary 1. — Let (Z\)\ be a pencil of commuting homogeneous of degree two vector 
fields on C2. Then, after a linear change of variables on C2, the generators X and Y 
of the pencil can be written as: 

(a) X = g.R and Y = h.R, where g and h are homogeneous polynomials of degree 
one and R = x.dx + y.dy. 

(b) X = x2dx and Y = y2dy. In this case, the pencil has two fixed directions. 
(c) X = y2dx and Y = 2xydx+y2dy. In this case, the pencil has one fixed direction. 

Corollary 2. — Let (Z\)\ be a pencil of commuting homogeneous of degree three vector 
fields on C2. Then, after a linear change of variables on C2, the generators X and Y 
of the pencil can be written as: 
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184 A. LINS NETO 

(a) X = g.R and Y = h.R, where g and h are homogeneous polynomials of degree 
two and R = x.dx + y.dy. 

(b) X = y3dx and Y — 3xy2dx + y3dy. In this case, the pencil has one movable and 
one fixed direction. 

(c) X = x2ydx and Y = xy2dx — y3dy. In this case, the pencil has one movable and 
two fixed directions. 

(d) X = (2x2y + x3)dx - x2ydy and Y = -xy2dx + (2xy2 + y3)dy. In this case, the 
pencil has one movable and three fixed directions. 

(e) X = x3dx and Y — y3dy. In this case, the pencil has two movable and two fixed 
directions. 

Some of the preliminary results that we will use in the proof of Theorem 1 are also 
valid for quasi-homogeneous vector fields. 

Definition 1.4. — Let S be a linear diagonalizable vector field on Cn such that all 
eigenvalues of S are relatively primes natural numbers. We say that a holomorphic 
vector field X ^ 0 is quasi-homogeneous with respect to S if[S,X] = mX, m G C. 

It is not difficult to prove that, in this case, we have the following: 
(I) m G N U {0}. 

(II) X is a polynomial vector field. 
Our next result concerns two commuting vector fields which are quasi-homogeneous 

with respect to the same linear vector field S. Let X and Y be two commuting 
vector fields on C2, quasi-homogeneous with respect to the same vector field S with 
eigenvalues p,q G N (relatively pri[mes), where [S,X] = mX and [S,Y] = nY. Since 
S is diagonalizable, after a linear change of variables, we can assume that S = pxdx + 
qydy. Set X A Y = f dx A dy, S \f\ X = gdx A dy and S A Y = hdx A dy. We will 
always assume that X, Y ^ 0 

Remark 1.1. — We would like to observe that f, g and h are quasi-homogeneous with 
respect to S, that is, we have S(f) = (m + n + tr(S))f, S(g) = (m + tr(S))g and 
S(h) = (n+tr(S))h, where tr(S) =t p+q. It is known that in this case, any irreducible 
factor of f, g or h, is the equatioii of an orbit of S, that is, x, y or a polynomial of 
the form yp — cxq, where c ^ 0 . 

Theorem 2. — In the above situation, suppose that /, h ^ 0 and n ^ 0. Then: 
(a) g ^ 0 and f/g is a non-constant meromorphic first integral of X. 
(b) Suppose that m,n ^ 0. Then f, g and h satisfy the two equivalent relations 

below: 

(6) run f2dxAdy = fdgAdh + gdhAdf + hdfA dg 
. , , .df dh dg mn f, » 
(7) (m - n)-— + n—~ - m— = ——-(qydx -pxdy) 

f h 9 gh 

ASTÉRISQUE 323 



HOMOGENEOUS COMMUTING VECTOR FIELDS ON C2 185 

(c) Suppose that m,n ^ 0. Then any irreducible factor of f divides g and h. Con­
versely, if p = gcd(g, h) then any irreducible factor of the p divides f. Moreover, 
the decompositions of f, g and h into irreducible factors, are of the form 

(8) 
/ = n$=1 / / ' 
3 = n$=1/;''.n?=1s? 

[h = wj=1f;\ni=1h^ 

where r > 0, mj,rij > 0, £j > nij + rij — 1, for all j , and any two polynomials 
in the set {/i,..., /r, # i , . . . , gs, h±,..., ht} are relatively primes. 

(d) Suppose that f,g and h are as in (8). Then vector fields X and Y can be written 
as 

(9) 
x = ^9-[Erj=i (£J ~ mj)j:(fjxdy - fjydx) - J28i=i aij:(gixdy - giydx)] 

Y = £ M £ J = I ( * J ~ nj)fS^xdy - fjydx) - Y%=i bi^(hiXdy - hiydx)] 

As an application, we have the following result: 

Corollary 3. — Let X and Y be germs of holomorphic commuting vector fields at 
0 G C2. Let 

X = 
oo 

j=d 

Xj 

be the Taylor series of X at 0 G C2; where Xj is homogeneous of degree j > d. 
Assume that d>2 and that the vector field Xd has no meromorphic first integral and 
that 0 is an isolated singularity of Xd. Then Y = X.X, where A G C. 

We would like to recall a well-known criterion for a homogeneous vector field of 
degree d on C2, say Xd, to have a meromorphic first integral (see [1]). Since the 
radial vector field R = x dx + y dy has the meromorphic first integral y/x, we can 
assume that R A Xd = gdx A dy ^ 0. Let u = ixd(dx A dy), where i denotes the 
interior product. Then the form uj\ = ujjg is closed. In this case, if g = nj==1 g-3 is 
the decomposition of g into linear irreducible factors, then we have 

w1 = 
r 

3 = 1 
A, 

d9j 

9j 
+ d(h/g^-1---^-1) , 

where Xj G C, for all 1 < j < r and h is homogeneous of degree d + 1 — r = 
dg(Xd) + 1 — r = dg(g/gi • • • gr). In this case, Xd has a meromorphic first integral if, 
and only if, either Ai = • • • = Ar = 0, or Xj / 0 for some j G {1 , . . . , r}, h = 0 and 
[Ai : • • • : Ar] = [mi : • • • : rar], where mi , . . . , mr G Z. In particular, we obtain that 
the set of homogeneous vector fields of degree d > 1 with a meromorphic first integral 
is a countable union of Zariski closed sets. 

Let us state some natural problems related to the above results. 

Problem 1. — Classify the pencils of commuting homogeneous vector fields of degree 
d > 2 on Cn, n > 3. 
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Problem 1 seems dificult even in dimension three. 

Problem 2. — Let X2 be the set of germs at 0 G C2 of holomorphic vector fields. Given 
X G X2, X ^ 0, to determine the set 

C(X) = {Y I [X,Y] = 0} . 

Under which conditions is C(X) of finite dimension? 

Problem 3. — Classify all pairs of commuting polynomial vector fields on C2. 

Observe that problem 3 has the following relation with the so called Jacobian 
conjecture: let / and g be two polynomials on C2 such that fx.gy — fy>gx = 1- Then 
their hamiltonians X = fy dx — fx dy and Y = gy dx — gxdy commute. By this reason, 
problem 3 seems very difficult. 

2. Preliminary results 

In this section we prove some general results that will be used in the next sections. 
Let 5, X and Y be holomorphic vector fields defined in some domain U of C2. Assume 
that: 

(I) [5, X] = m.X, [5, Y] = n.Y and [X, Y] = 0, where m, n G C. 
(II) X AY = f.dxAdy, SAX = g.dx A dy and SAY = h.dx A dy, where f,g, h £ 0. 

We consider also the holomorphic 1-forms u — ix(dx A dy) and 77 = iy(dx A dy), 
where i denotes the interior product. 

Lemma 2.1. — In the above situation we have: 
(a) The meromorphic functions f/g and f/h are first integrals of X and Y, re­

spectively. Moreover, f/g (resp. f/h) is constant if, and only if,n = 0 (resp. 
m = 0). 

(b) J / n ^ O (resp. m ^ 0) then 

(10) ÜJ = 9 
n 

dg^ 

9 

di 
f 

(resp. rj = h 
m 

dh 
~h 

df 
f 

). 

(c) The polynomials f, g and h satisfy the relation: 

(11) mn f2 dx A dy = f dg A dh + gdh Adf + hdf Adg . 

Proof. — Let us prove (a). Assume that n ^ 0. First of all, note that 

LX(S A X) = [X, S] A X + S A [X, X] = -m.X A X = 0 

and simillarly Lx(X A Y) = 0, where L denotes the Lie derivative. Since X AY 
(f/g).SAY, we get 

0 = LX(X A Y) = Lx((f/g).S A X) 

= X(f/g).S A X + (f/g).Lx(S A X) = X(f/g).S A X => 

X(f/g) = 0 . 
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Therefore, f/g is a first integral of X. It remains to prove that f/g is a constant if, 
and only if n = 0. Since LS(X A Y) = (m + n) X A Y and L5(S A X) = m S A X, we 
get 

(m + n ) X A F - L 5 ( ( / / ^ ) . 5 A X ) 
= S{f/g).S AX + (f/g).Ls(S AX) 
= (S(f/g) + m.(f/g))SAX 

which implies that S(f/g) = n.(f /g). Hence, if f/g is a constant then n = 0. 
Conversely, if n = 0 then S (f/g) = 0 and / /# is a first integral of S and X 

simultaniously. If f/g was not constant then the vector fields X and S would be 
colinear in the non-empty open subset of U defined by d(f/g) ^ 0. This would imply 
that S A X = 0, and so g = 0, a contradiction. Therefore, f/g is a constant. 

Now, let a; = %x(dx A dy) and suppose that n # 0. Since f/g is a non-constant 
first integral of X, we get co A d(f/g) = 0, which implies that 

to — k 
dg 
9 -

df 
f 

where k is meromorphic on U. On the other hand, we have 

9 = -is(ix(dx A dy)) = -is(w) 

= k S(f) 
f -

S(g) 
9 

= k 
S(f/9) 

f/9 = n.k =>> k = g/n . 

This proves (10). 
Let us prove (c). Note first that uAr] = f.dxAdy. We leave the proof of this fact to 

the reader. If n = 0 (or m = 0) then (11) follows from f/g = c ^ 0 (or f/h = c ^ 0 ) , 
where c is a constant. We leave the proof to the reader in this case. On the other 
hand, if m, n ^ 0 then 

f.dx Ady = uj A r] 

= 9_ 
n 

df[ 
9 -

df 
f Л h 

m 
dh 
h 

df 
f -

g.h 
m.n 

dhAdf 
h.f -

df Adg 
f.g + 

dg Л dh 
g.h 

which implies (11). • 

In the next result we prove a kind of converse of (11). 

Lemma 2.2. — Let f, g and h be holomorphic functions on a domain U C C2. Sup­
pose that fjg and f/h are non-constant meromorphic functions on U. Define mero­
morphic vector fields X andY by ix(dxAdy) = 9[^f~ ^f] andiy{dxAdy) = h[^ — ̂ j-]. 
Suppose that 

f dg Adh-\- gdh Ad/ + hdf A dg = X f2 dx A dy , 
where X ̂  0. Then [X, Y] = 0. 
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188 A. LINS NETO 

Proof. — The idea is to prove that d(f/g) A d(f/h) ^ 0 and [X,Y](f/g) = 
[X,Y](f/h) — 0. This will imply that f/g and f/h are two independent meromor­
phic first integrals of [X, Y], and so [X, Y] = 0. • 

Proo/ ofd(f/g) A d(//ft) ^ 0. — Note that 

d(f/g)Ad(f/h) = f 
g2h2 

[fdgAdh + hdfAdg + gdhAdf] = X. 
f3 

g2h2 dx A dy ^ 0 

d(f / g) A d(f / h) # 0. 

Proof of [X, Y] = 0. — We have 

[X,Y}(f/g) = X(Y(f/g)) - Y(X(f/g)) = X(Y(f/g)) , 

because X(f/g) = 0. On the other hand, a straightforward computation shows that 

(12) Y(f/g)dx A dy = d(f/g)Ar1, 

where rj = iy(dx A dy). Since rj = h dh 
h -

df 
t = - h2 

f d(f/h), we get from (12) that 

d(f/g)Arj = -
h2 

f 
d(f/g) A d(f / h) = -

A/2 

92 
dxAdy Y(f/g) = -X(f/g)2 

X{Y(f/g)) = 0. In a similar way, we get [X, Y](f/h) = 0. 

3. Proofs 

Proof of Theorem 2. — Assume that n ^ 0, / , h ^ 0 and g = 0. Since £ has an 
isolated singularity at 0 G C2 and S A X = g.dx A dy = 0, we get X = r/j.S, where 
ip ^ 0 is a polynomial. It follows that 

0 = [Y,X] = [Y^.S] = Y(TP).S -^.[S,Y] = Y(i/>).S-n.il>.Y => y ( ^ ) ^ 0 

and S A Y = 0, which implies h = 0, a contradiction. Hence, g ^ 0. It follows from 
lemma 2.1 that / / # is a non-constant meromorphic first integral of X. This proves 
(a) of theorem 2. 

Lemma 2.1 implies also that / , g and h satisfy relation (6). Let us prove that (6) 
is equivalent to (7). We will use the following fact: let ¡1 be a 2-form in C2 such that 
£s(aO — A./i, where A G C. Then 

(13) d(is(n)) = Lsfa) = A./x 

Set /i — f dg A dh + g dh A df + hdf A dg and \i\ — mn f2 dx A dy. We have seen 
in remark 1.1 that S(f) = (m + n + tr(S)).f, S(g) = (m + tr(S)).g and S(h) = (n + 
tr(S)).h. As the reader can check, this implies that Ls{jj) = A./i and Ls(^i) = A./ii, 
where A = 2m + 2n + Str(S) ^ 0. 

On the other hand, we have 

is(Vi) = mn f2(pxdy - qy dx) 

is(y) = —n fgdh + m fh dg + (n — m) gh df 
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HOMOGENEOUS COMMUTING VECTOR FIELDS ON C2 189 

as the reader can check. If we assume (6), we have /¿1 = fi, so that is(/J>) — isini) 
and 

mn f2 (px dy — qy dx) = —n fgdh + m fh dg + (n — m) gh df => (7) . 

If we assume (7), then we have 

(7) is(/xi-/i) = 0 ^ A(/i1-/i) = d(is(/i1-/i)) = 0 = • (6). 

This proves (b) of theorem 2. 
Let us prove (c). We will use (7) in the form 

(14) (m — n) g.h df + n f.g dh — m f.h dg = mn f2 (qy dx — px dy) . 

It follows from (14) that, if k is an irreducible factor of both polynomials g and h, 
then k divides /2, and so it divides / . 

Let us prove that any factor of / is a factor of both polynomials g and h. Here we 
use that f/g is a first integral of X. This implies that 

(15) f.X(g) = g.X(f) . 

Recall that any irreducible factor of / or g is the equation of an orbit of S (remark 
1.1). Let / = nj=1 j-3 (r,£j > 0), be the decomposition of / into irreducible factors 
and set F = Uj fj. It follows from (15) that 
(i6) 

F.X(g) = F 
X{f) 

f 
g = g.k ,where k = F 

X(f) 
f = 

r 

.7=1 
tj'fl ' ' ' fj-l'X(fj)- fj+l "' fr • 

On the other hand, (16) implies that for any j = 1,... ,r, fj divides g or X(fj). If 
fj divides g, we are done. If fj divides X(fj) then (fj = 0) is invariant for X. Since 
(fj = 0) is also invariant for 5, it is a common orbit of X and S. This implies that 
fj divides SAX, and so it divides g. Similarly, any irreducible factor of / divides h. 

Now, we can assume that the decompositions of / , g and h into irreducible factors 
are as in (8): 

7 = nj=1/;' 
g = Wj=1fp.Ui=1gr 

^h = Wj=1f"\Ul=1h^ 

where £j, rrij ,rij > 0 and any two polynomials in the set 

ih,-. , fr, 9ii - - -19s, hi,..., ht} 

are relatively primes. Let us prove that £j > rrij + rij — 1. As the reader can check, it 
follows from (14) that ^ + ^ + ^ - 1 divides /2. This implies that rrij+nj+lj-1 < 2£j, 
and we are done. 

It remains to prove (d). Let u = %x(dx A dy). We have seen in lemma 2.1 that 

U = g 
n 

dg 

9 

df 
f = 

g 
n 

s 

i=l 
ai 

dgi 

9i 
-

r 

3 = 1 
(lj — mj) dfj 

fj 
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As the reader can check, this implies that X is like in (9). Similarly, Y is also as 
in (9). • 

Proof of Corollary 3. — Let X = ^2^Ld Xj and Y ^ 0 be germs of holomorphic 
vector fields at 0 G C2 such that [X,Y] = 0. Assume that d > 2 and Xd has an 
isolated singularity at 0 G C2 and no meromorphic first integral. Set Y = J2i^=r Yj, 
where Yj is homogeneous of degree j , r > 0, and Yr ^ 0. We have [R,Xd] = rnXd, 
[R,Yr] = nYr, where m = d — 1 ̂  0 and n = r — 1. Note also that [Xd,Yr] = 0. 

Claim 3.1. — We have r = d and Yd = X.Xd, where A ^ 0. 

Proof. — As before, set XdAYr = f.dxAdy, RAXd = g.dxAdy and RAYr = h.dxAdy. 
Observe that g ^ 0. Indeed, if g = 0 then R A Xd = 0. Since 0 is an isolated 
singularity of R, it follows from De Rham's division theorem (cf. [4]) that Xd = 4>.R, 
where 0 is a homogeneous polynomial of degree d — 1 > 0. But, this implies that 
sing(Xd) D (0 = 0), and so 0 is not an isolated singularity of Xd-

Suppose by contradiction that r ^ d. Let us prove that in this case we have 
/, h ^ 0. Suppose by contradiction that / = 0. This implies that Xd A Yr = 0. Since 
Xd has an isolated singularity at 0 G C2, it follows from De Rham's division theorem 
that Yr = 4>.Xd, where 0 is a homogeneous polynomial of degree r — d > 0. Therefore, 

0=[Xd,Yr] = [Xd,(t>.Xd}=Xd((i>).Xd => Xd((f>) = 0 

that (j) is a non-constant first integral of Xd, a contradiction. Hence, / ^ 0. Suppose 
by contradiction that h = 0. This implies that R A Yr = 0, so that Yr = <fi.R, where 
(j) 7̂  0 is a homogeneous polynomial of degree k = r — 1. From this we get 

0 = [Xd, Yr] = [Xd, <t>.R] = Xd{(t>).R + (j>\Xd, R] = Xd((j>).R - (d - l).</>.Xd => 

Xd(cj)).R=(d-l).(j).Xd . 
If (j) 7̂  0 is a constant then d = 1, a contradiction. If <j> is not a constant then 
Xd((j)) 0, for otherwise 0 would be a non-constant first integral of Xd. In this case, 
we get R A Xd = 0, and so g = 0, a contradiction. Hence, f,g,h ^ 0. Now, we can 
apply (a) of lemma 2.1. 

If r 7̂  1 then n = r — 1 0 and / /# is a non-constant meromorphic first integral 
of Xd, a contradiction. If r = 1 then n = 0 and (a) of lemma 2.1 implies that / = eg, 
where c G C. Therefore, 

0=(f-cg)dx A dy = XdA(Y1 + c.R) => Y1 = -c.R^0, 

by the division theorem and the fact that d = dg(Xd) > 1. But, this implies that 
0 = [Xd, Yi] = c(d — l).Xd # 0, a contradiction. Hence, r = d. 

Now, r = d implies that n = m = d — 1 > 0 and / = 0, for otherwise, f/g would 
be a non-constant meromorphic first integral of Xd. It follows that Xd A Yd = 0, and 
so Yd = X.Xd, where A ^ 0 is a constant. This proves the claim. • 
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Let us finish the proof of corollary 3. Let Z — Y — X.X. Then [X, Z] = 0. If Z ф 0, 
then we could write Z = Y^f=r Zj, where r > d, Zj is homogeneous of degree j and 
Zr ф 0. But, this contradicts claim 3.1 and proves the corollary. • 

Proof of Theorem 1. — Let (ZA)AGP1 be a non-trivial pencil of homogeneous of de­
gree d > 2 commuting vector fields on C2. Fix two generators of the pencil, X and 
У, and set as before X A Y = f.dx А ду, R A X = g.dx A dy and R A Y = h.dx A dy. 

Suppose first that the pencil is colinear, that is, / = 0. In this case, we can write 
X = a.Z, where a is the greatest common divisor of the components of X and Z 
has an isolated singularity at 0 € C2. Since Y A X = 0, we get Y A Z = 0, and so 
Y = (3.Z, where /3 is a homogeneous polynomial with dg(f3) = dg(a), by De Rham's 
division theorem. Now, 

O=[X,Y] = [a.Z,p.Z\ = (aZ(P) - 0 Z(a)).Z Z(0/a) = O. 
Since the pencil is non-trivial, f3/a is non-constant. On the other hand, we can write 
f(x,y) = Ф(у/%), where (j)(i) = f , because a and /3 are homogeneous of the same 
degree. Therefore, 

0 = г(ф(у/х)) = ф'(у/х).Z(у/х) Z(y/x) = 0, 
because ф' ф 0. This implies that yZ(x) = xZ(y). If we set Z = Адх + Bdy, 
then we get у A = xB, and so A — X.x and В = X.y, where Л is a homogeneous 
polynomial. Since 0 is an isolated singularity of Z, it follows that Л is a constant. 
Hence, X = a\.R and Y = (3\.R, where QL\ = X.a and j3i = X./3 are homogeneous 
polynomials of degree d — 1. This proves the first part of theorem 1. 

Suppose now that the pencil is non-colinear. In this case, we have / ф 0. Let 
us prove that g,h ф 0. If g = 0, for instance, then X = фМ, where ф ф 0 is a 
homogeneous polynomial of degree m = n = d — 1 > 0, by the division theorem. 
Therefore, 

0 = [Y, фЯ] = У(ф)Я - т.фУ . 
Since т.фУ ф 0, the above relation implies that Y and R are colinear. Hence, X//У, 
a contradiction. This proves (a) of theorem 1. 

Since m = n Ф 0, it follows from (a) of theorem 2 that f/g and f/h are non-
constant meromorphic first integrals of X and Y, respectively, which proves (b) of 
theorem 1. Recall that / , g and h are homogeneous polynomials, where dg(f) — 2d, 
dg(g) = dg(h) = d+l. 

It follows from (c) of theorem 2 that we can write the decomposition of / , g 
and h into irreducible linear factors as / = П^=1 f-3, g = П£=1 f™3 .П"=1 g?* and 
h — Щ=1 / ^ - П ^ ! Н\\ where г > 0, mj,rij > 0, £j > rrij + rij - 1 and any two 
polynomials of the set {/i,..., /r, #i,...,ga, h1 . . . ,hb are relatively primes. Set 
kj = min(mj,rij). 

Claim 3.2. — TTie generators of the pencil can be choosen in such a way that: 
(a) rrij = rij = kj for all j = 1,. . . , r. 
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(b) a = b and at = bi = 1 for all i = 1, . . . , a. 

Proof — Set X\ = X + X.Y and RAX\ = g\.dx A dy,where g\ = g + X.h. It follows 
from Bertini's theorem that for a generic set of A G C the decomposition of g\ into 
linear irreducible factors is of the form: 

(17) gx = Urj=1f^.Ut=1giX , 

where s + J]j kj = d+1 and any two polynomials in the set {/i,..., /r,gi\ , . . . ,gs\} 
are relatively primes. Now, it is sufficient to take Ai ^ A2 G C such that g\1 and g\2 
are as in (17). Set Xi = X\±, Y\ — X\2, g = g\x and h = g\2. Then X\ and Y\ are 
generators of the pencil with the properties required in claim 3.2. • 

Prom now on, we will suppose that the generators X and Y of the pencil satisfy 
claim 3.2. Let us prove that the decomposition of / into irreducible linear factors is 
of the form 

(18) / = nj=1 /?*i+m* , where m,- > 0. 

Since m = n = d — 1 > 0 , relation (14) implies that 

gdh — hdg = m f(y dx — x dy) , m ^ 0. 

Set g = ip.Gi and h = ip.Hi, where ip = IIJ=1 f-3. As the reader can check, we have 

gdh — hdg = ip2.(Gi dH\ — H\ dG\) = m f(y dx — xdy) ==> ip2 \ f . 

Hence, the decomposition of / is like in (18) and we get 

Gi dHx - Hx dG1 = m Urj=1 fp (ydx-x dy) . 

Now, consider the map 0 : P1 —> P1 given by 

(j)[x : y) = g{x,y) 
h(x,y) 

Gi(x,y) 
Hi(x,y) 

Since Gi and Hi are relatively primes, the degree of 0 is s = dg(Gi) = dg(Hi). 
Let {pi,... ,pt} C P1 be the critical set of (j) and <j)(pj) = Cj G P1. If c300 set 
Kj = Gi — Cj.Hi, and if Cj = 00 set Kj = Hi. Suppose that pj is a critical point 
with mult(0,pj) = £j > 2. This implies that we can write Kj = ty-3 .A, where ^ is a 
linear polynomial, A a homogeneous polynomial and tpj does not divide A. We claim 
that t/^ | H /2mi. Indeed, if Cj ^ 00, we get 

(19) Kj dHx - # i dKj = Gi dHx - Hx dGi = m II[=1 fimi (ydx-x dy) . 

Since Vlj 1 divides Kj difi — i/i dKj, relation (19) implies the claim. If c, = <x> then 
Vij 1 divides Gi dH\ — Hi dGi and we get also the claim. Therefore, ipj = \j.fi(j), 
Xj G C*, for some i(j) G {1, . . . ,r} and £j — 1 < m^y In particular, we get t < r. 
By reordering the fi>s, if necessary, we can suppose without lost of generality that 
¿0') = j5 j = 1,.. . ,t Set £j-, = 1 for t < j < r. With these conventions, we have 
m-- - (L - 1) > 0 for all j = 1, . . . , r. 
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Let us prove that m,j = £j — 1 for all j = 1,. . . , r. Recall that s + ^ fcj = d + 1. 
Since / = H /2fc<+™« and dg(f) = 2 d, we get 

5 ^ mi = d5(n4 /J"') = 2 d - 2 5 3 fcj = 2 d - 2 (d + 1 - a) = 2 a - 2 . 
i i 

On the other hand, it follows from Riemann-Hurwitz formula (cf. [2]) and mi — (£i — 
1) > 0 that 

m 
^ ( ¿ ¿ - 1 ) = 2s-2 = ^ mi =^ 0 < ^ [ m f - ( ^ - l ) ] = 0 => ra* = £%-l , Vz . 

i i i—\ 
This proves (d) and (e) of theorem 1. Note that (f) follows from (d) of theorem 2. 

Let us prove that 1 < s < d — 1 and 1 < r < d. First of all note that 
r 

kj>l 2r < ^{2kj + m3) = 2d => 1 < r < d . 
3 = 1 

Moreover, 
r 

s^d + l - ^ kj =Ф* kj s <d + l - r <d => 0 < s <d . 
3 = 1 

Suppose by contradiction that 5 = 0. This implies that the map </> is constant, and 
so g = A./i, where A € C*. It follows that 

RA(X-X.Y) = 0 => X -X.Y = il).R , 
where ip is homogeneous of degree d—1. Therefore, the first part of theorem implies 
that X and Y are colinear with the radial vector field, a contradiction. Hence, s > 1. 
It remains to prove that 5 < d—1. Suppose by contradiction that s = d. In this 
case, we get g = fi.gi • • • gd, h = f\.h\ • -hd and / = f\d. It follows that the map 
0 = (di' * * 3d)/(hi • - - hd) has degree d > 2 and just one ramification point, (fi = 0), 
with multiplicity 2d—l. However, this is not possible, because this would imply that 

mult(<£, (fi = 0)) = 2d - 1 > d . 

It remains to prove that in the converse construction the vector fields X and Y 
defined by (9) in theorem 1 commute. But, this is a consequence of lemma 2.2 and the 
fact that / , g and h satisfy (b) of Theorem 2. This finishes the proof of Theorem 1. • 

Proof of Corollary 1. — Let X\ and Y\ be generators of a pencil of commuting of 
degree two homogeneous vector fields on C2. As before, define / i , g\ and h\ by 
X\ A Yi = fi dx A dy, R A X\ = g\ dx A dy and R A Y\ = hi dx A dy, respectively. If 
gi = hi = 0 then X\ and Y\ are multiple of the radial vector field, and so we are in 
case (a) of corollary 1. If not, then fi,gi,hi ^ 0, by (a) of theorem 1. Moreover, the 
rational map </> = g\/h\ has degree s = 1, by (c) of theorem 1. Therefore, the pencil 
has one movable direction and one or two fixed directions, because gi has degree 
d + l = 3. 
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Suppose that it has two fixed directions. In this case, we can suppose that they 
are (x = 0) and (y = 0). This implies that gi = x.y.g2, hi = x.y.h^ and fi = x2.y2, 
where g2 and \i2 correspond to the movable direction. Since gi and /¿2 are relatively 
primes, there exist (a, 6), (c,d) such that a#2 + bh2 = x and c#2 + d/i2 = 2/. If we 
set g := x2.y = x.y(ag2 + &/12) and ft := x.y2 = x.y(cg2 + dft2), then we can apply 
lemma 2.2 to / = x2.?/2, g and ft. We get the first integrals //</ = (x2 .y2) / (x2 .y) = y, 
f/h = (x2.y2)/{x.y2) = x, the forms u := g ̂ f - / f / g = x2 dy, r] := ft d(f/h /f/h= y2 dx, and 
the vector fields X = x2 dx, Y = y2 dy. So, we are in case (b) of corollary 1. 

Suppose that it has one fixed direction. We can suppose that it is (y = 0). In 
this case, we have gi = y2.g2, hi = y2.h2 and / = y4. Consider linear combinations 
ag2 + b /¿2 = x and cg2 + d/12 = y. So, we have just to apply lemma 2.2 to the 
polynomials / = yA, g = x.y2 and h = ys. By doing this, we obtain case (c) of 
corollary 1, as the reader can check. • 

Proof of Corollary 2. — Let / , g and h be as in theorem 1. If g = h = 0 then we are 
in case (a) of corollary 2. If not, then f,g,h ^ 0 and <f) = g/h has degree 5, where 
*€ {1,2}. 

Let us consider the case where 5 = 2. Let <j>: P1 —> P1 be a map of degree two. 
It follows from Riemann-Hurwitz formula that J^p(mult((/>,p) — 1) = 25 — 2 = 2, 
and so the map must have two ramification points, both of multiplicity two. After 
composing the map in both sides with Moebius transformations, we can suppose that 
(j)[x : y] = y2/x2. This implies that (x — 0) and (y = 0) are fixed directions of the 
pencil, so that x.y divides g and h. Since dg(g) = dg(h) = 4 and s = 2, we get 
g = x.y.g\.g2 and h = x.y.h\.h2, and so k\ = k2 = 1 in (2) of theorem 1. Since 
dg(f) = 6 and mult(0, (x = 0)) = mult(0, (y = 0)) = 2, we must have mi = m<i — 1 
and / = x3.y3. In this case, we have 

cj> = g 
h = 

(g/x.y) 
(h/x.y) = 

y2 
x2 

g = x.y3 and h = x3.y . 

So, when we apply lemma 2.2, we get f/g = x2, f/h = y2, u = 2y3 dx and r] = 2x3 dy. 
Hence, we can set X = x3 dx and Y = y3 dy. In this case we get case (e) of corollary 
2. 

Suppose now that 5 = 1. In this case, we have just one movable direction and the 
map (j) has no ramification points, which implies that rrij = 0 for all j = 1, . . . , r. This 
implies that / = n^=1 f- 3. Since dg(f) = 6, we have three possibilities: (1). r = 1 
and /ci = 3. (2). r = 2, kx = 1 and k2 = 2. (3). r = 3 and kx = k2 = k3 = 1. 

CASE (1). In this case, we have just one fixed direction f\. After a linear change of 
variables in C2, we can suppose that it is / i = y. This implies that / = y6, g = y3 .g\ 
and h = y3.h\. Since #i and h\ are relatively primes, there exist a,6,c,d G C such 
that a.d — b.c ^ 0 and a.#i + b.hi = x and c.gi + d.h\ = Therefore, we can apply 
the construction of lemma 2.2 to / = y6, g = y4 and h = x.y3. This gives the first 
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integrals f /g — y2 and f/h = y3/x. Moreover, 

u = ix(dxAdy) = 2y4f dy = 2y3dy => X = 2y3 dx 

T] = iY(dxAdy) = x.y3(3^- dx/x) = 3xy2dy - y3 dx => Y = 3xy2dx + y3 dy. 

Therefore, we get case (b) of corollary 2. 
CASE (2). In this case, we have two fixed directions, that we can suppose to be /1 = x 
and /2 = y. Since k\ = 1 and k2 = 2, we get g — x.y2.gi, h = x.y2.hi and / = x2.y4. 
After taking linear combinations, we can suppose that g = x2.y2 and h = x.y3. This 
gives the first integrals y2 and x.y and so UJ = 2 x2 y dy and rj = xy2 dy + y3 dx and 
we are in case (c). 

CASE (3). In this case, we have three fixed directions. After a linear change of 
variables we can suppose that they are /1 = x, /2 = y and /3 = x + y. This gives 
g = xy(x + y).gi, h = xy(x + y).h\ and / = x2y2 (x -f y)2. After taking linear 
combinations of g\ and h\, we can suppose that g = x2y(x + y) and h = xy2 (x + y). 
Therefore we get the first integrals are //g = y (x + y), f/h = x(x + y) and 

w = a:2y(rr + î / )[^ + dx+dy}= x2 y dx + (2x2y + x3)dy 

= » ' X = (2xy2 + a:3)^-a:22/9y 

77 = *2/2 (s + 2/)[f + ^ ] = (2x2/2 + 2/3)da; + x2/2d2/ 

Y = -xy2dx + {2xy2 + y3)dy. 

Therefore, we are in case (d) of corollary 2. • 
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