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POLAR PENCIL OF CURVES AND FOLIATIONS 

by 

Nuria Corral 

Abstract. — The polar pencil AF of a singular foliation T is the pencil of curves 
formed by the polar curves of T. We study the relationship between the behaviour 
of AF under blowing-up and the invariants associated to T. The main result here 
describes a resolution of singularities of Â r in terms of the equireduction invariants 
of F for a Zariski-general foliation T. 
Résumé (Pinceau polaire de courbes et feuilletages). — Le pinceau polaire Ajr d'un feuille­
tage singulier T est le pinceau de courbes composé par les courbes polaires de T. Nous 
allons étudier la relation entre le comportement de Kjr par éclatement et les inva­
riants associés à T. Le résultat principal ici donne une description d'une résolution 
de singularités de Ajr en termes des invariants d'équiréduction de T lorsque T est un 
feuilletage général de Zariski. 

1. Introduction 
Let A, B be two germs of holomorphic functions at (C2,0) with no common com­

ponent and consider the pencil of curves A = {aA + bB = 0 : a, b G C}. Classically, 
these pencils of curves have been studied in relation to the reduction of singularities of 
A = 0 and B = 0 (see for instance [14, 4, 8]). Here we propose a different approach: 
we consider A as the polar pencil Kjr associated to a singular foliation T defined by 
the 1-form UJ = A{x,y)dx + B(x,y)dy. Our objective is to describe properties of Ajr 
in terms of the invariants associated to T. 

Let Qu be the Gauss map associated to T which is given by 

gu: (C2,0)\{0} — PJ. 
Or, y) i—• [-B(x, y) : A(x, y)\. 
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A curve r[a:6] of Kjr is the closure in (C2,0) of the fiber G'1^ : b]) for [a : b] G P£. 
There is a maximal non-empty Zariski open set of £2 C PC such that all the curves 
T[a:b] w^h [a b] € Q, are equisingular: they are the generic curves of A jr. 

Let <J '. X —> (C2,0) be a finite sequence of punctual blow-ups. We say that a is an 
elimination of indéterminations of Gu (or a resolution of singularities of A^) iff the 
map Qw = Gw ° 0 ' X —> \s well-defined. Such a gives an embedded reduction of 
singularities of the union r u T of two different generic fibers, then a is a resolution 
of singularities of A^ (see [14]). 

An irreducible component D of cr_1(0) is called dicritical if the restriction GJ\D : 
D —> P^ is not constant. The degree of a dicritical component D is the degree of the 
map GJ\D D —• Pj.; this number coincides with the number of intersection points 
between D and the strict transform crT of T by cr, for any generic fiber I\ 

The curves of the polar pencil A jr can also be seen as the séparatrices of a singular 
foliation: the polar foliation TV defined by d(A/B) = 0. The minimal resolution 
a A : X —• (C2,0) of A^ gives a partial reduction [12] of 7V in the sense that the 
minimal reduction of singularities ir-p : X —• (C2,0) of TV factorizes as 7r<p = a A o r, 
where r : X —> X is a finite sequence of punctual blow-ups which are non-dicritical 
for TV-

Let C C (C2,0) be a plane curve. We shall work in the space of foliations Gc 
of non-dicritical generalized curves over C (see [2]). It is known that the minimal 
reduction of singularities TTC : MQ —• (C2,0) of C gives a reduction of singularities of 
any T G Gc- But in general nc does not give a desingularization of a generic fiber T 
of A jr. This occurs essentially in the case that C has a kind equisingularity type and 
F is Zariski-general (in the sense of the exponents of the logarithmic model) as we 
have shown in [6, 7]. 

Take T G Gc and let CTA,C • MA,C -* (C2,0) be the minimal reduction of singular­
ities of A = Ajr that factorizes through nc- The main result of this paper provides 
a precise description of <JA,C for kind singularities and Zariski-general foliations. Let 
us state it. 

Let G(C) be the dual graph of C oriented by the first divisor E\. For each divisor 
E, let m(E) be the multiplicity of any ^-"curvette" and v(E) be the coincidence of 
two E-curvettes. Denote by bE the number of edges and arrows which leave from E. 
Thus E is a bifurcation divisor if bs > 2 and a terminal divisor if bs = 0. A dead arc 
joins a bifurcation divisor with a terminal divisor, with no other bifurcations. We say 
that the equisingularity type e(C) of C is kind if m(Eb) = 2m(Et), for each dead arc 
of G(C) starting at E^ and ending at Et. 

The main result here can be stated as 

Theorem 1. — Let C C (C2,0) be a plane curve with kind equisingularity type. Con­
sider a Zariski-general foliation T G G*c and take any generic curve V of A jr. Then 
O~A,C ^ obtained from nc by blowing-up C*E times in a free way at each point n^THE 

ASTÉRISQUE 323 



POLAR PENCIL OF CURVES AND FOLIATIONS 163 

with 

(1) aE = 
m(E)(v(E) — 1), if E is a bifurcation divisor; 
m(E)(v(E) — 1) — 1, if E is the terminal divisor of a dead arc, 

for each irreducible component E o/7r¿1(0). Moreover, the first divisor E\ is dicritical 
for hp if and only ifoEx > 1, and the degree of E\ as a dicritical component of Ajr is 
equal to 6^ — 1. The degree of the other dicritical components of Ajr is equal to one. 

Observe that, under the hypothesis of theorem above, the points of the set 7r£T fl 
7r¿1(0) belong either to a bifurcation divisor or to the terminal divisor of a dead 
arc ([6]). Moreover, the points of 7rjr fl 7r^1(0) are non-singular points of n^J7 and 
-KQT cuts transversally 7r¿1(0). Consequently a^c = nc ° &i where o\ is obtained 
by blowing-up free infinitely near points of 7r£T, i.e., the centers of the blow-ups to 
obtain o\ are not corners of the corresponding exceptional divisor. Hence a^c is 
obtained from nc by "blowing-up in a free way" as it is stated in the theorem above. 

The paper is organized as follows. Section 2 is devoted to introduce notations 
relative to the dual graph and the equisingularity data of a plane curve. In section 3 
we remind some results concerning the generic fiber of the polar pencil and we also 
prove some technical lemmas. Section 4 deals with the base points of the pencil Ajr. 
In section 5 we state some results describing the dicritical components of a resolution 
of Ajr. The proof of the main result is given in section 6. We finish the paper with a 
list of examples showing different behaviours in the non Zariski-general cases. 

2. Notations 

In this section we introduce some notations concerning the dual graph and the 
equisingularity data of a plane curve C = U£=1Ci C (C2,0) that will be used from now 
on. For each irreducible component Ci of C, denote by ri1 = mo(C») the multiplicity of 
Ci at the origin. Let yl(x) = Ylj>ni &%jx^n% be a Puiseux series of d, for i — 1, . . . , r. 
The characteristic exponents {¡3$,(3\, ...,/?*.} of Ci are given by 

05 = ™o(Ci) = nl 
(31 = min{j : a)^0 and j £ 0 mod (gcd($,. . . , fl^))} 

for q = 1, . . . , <7i, where gi is the first integer such that gcd(/?Q, ...,/?*.) = 1. An equiv­
alent data to the characteristic exponents of Ci are the Puiseux pairs {{m\,nlk)}g^=1 
of Ci defined by 

gcd(ra*fe,0 = 1 and ft* 
ni 

mik 

n\'"nk 
for * = ! , . . . , # . 

In particular, we have that nl = n\- • • nlg. and (3lk = Tri^n^^ • • • nlg. for k = 1,. . . , gi. 
Let us denote by nc : Mc (C2,0) the minimal reduction of singularities of 

C. We recall briefly the construction of the dual graph G(C) = G(-KC) of C. Each 
irreducible component E of 7r^1(0) is represented by a vertex in G(C). Two vertices 
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are joined by an edge if their associated divisors intersect. An irreducible component 
of C is represented by an arrow attached to the only divisor that it meets. The dual 
graph weighted with the self-intersection of each divisor E C Mc determines the 
equisingularity type e(C) of the curve C. 

It is also possible to construct in a similar way the dual graph of a resolution of 
singularities of a pencil or a dicritical foliation by marking the dicritical components. 
If a is any finite sequence of blow-ups, we denote by G(a,A) the graph constructed 
from the transform of a pencil A by a. 

Denote by E\ the irreducible component of 7r^1(0) obtained after blowing-up the 
origin. The dual graph G(C) is oriented by the first divisor E\. The geodesic of a 
divisor E is the path which joins E\ with E and the geodesic of a curve C¿ is the 
geodesic of the divisor that meets the strict transform TT^CÍ of C¿. Thus, there is 
a partial order in the set of vertices of G(C) given by E < E* if, and only if, the 
geodesic of E' goes through E. Given a divisor E of G(C), we denote by IE the set 
of indices i G {1 , . . . , r} such that E belongs to the geodesic of C¿. 

A curvette 7 of a divisor E is a non-singular curve transversal to E at a non-
singular point of 7T^1(0). The projection 7 = ncij) is a germ of plane curve in (C2,0) 
and 7 is called an f?-curvette. We denote by m(E) the multiplicity at the origin 
of any .E-curvette and by v(E) the coincidence C (7# ,7¿ ) of two E'-curvettes 7£?,7¿ 
which cut E in different points; observe that v(E) < v(Ef) if E < Ef. Recall that the 
coincidence C(7,8) between two irreducible curves 7 and 5 is defined as 

C(7, S) = SUP { ordx{y1{x) - »*(X))} 
l<i<m0(7) 
!<3<rn.Q(S) 

where {y7(x)}I^°i7^ {Vj (x)}¿^í^ are tne Puiseux series of 7 and <5 respectively. 
Denote by bs the number of edges and arrows which leave from a divisor E in 

G(C). We say that E is a bifurcation divisor if bs > 2 and a terminal divisor if 
&E = 0. A dead arc is a path which joins a bifurcation divisor with a terminal one, 
without passing through other bifurcation divisors. We denote by B(C) the set of 
bifurcation vertices of G(C). 

Let E be an irreducible component of the exceptional divisor 7r¿1(0). The reduction 
TTE ' ME —> (C2,0) of nc to E is the morphism satisfying that 

— there is a factorization TTC = K'E 0 where -K'E and -RE are composition of 
punctual blow-ups; 

— the divisor E is the strict transform by -K'E of an irreducible component Ered of 
7r¿1(0) and Ered C ME is the only component of 7r¿1(0) with self-intersection 
equal to —1. 

The morphism TTE is obtained from TTC by blowing-down successively the divisors 
different from E with self-intersection is equal to —1. Given any curvette 7^ of E, 
the curve ^(JE) is also a curvette of Ere¿ C M^. Let {/3<f BE1 , . . . ,Pf(E)} ^E TNE 
characteristic exponents of 7^ = TTC^E)- It is clear that m(E) = TUOÍ^E) = fio- If 
E is a bifurcation divisor of G(C), there are two possibilities for the value v(E): 
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1. either 7TE is the minimal reduction of singularities of 7 # and then v(E) = 
Pf(E)/Po- We say that E is a Puiseux divisor for nc-

2. or ITE is obtained by blowing-up q > 1 times after the minimal reduction of 
singularities of 7E and in this situation v(E) — {P^E) + Q)/PO- We say that E 
is a contact divisor for 7rc. 

Observe that ra(l£) = m(Ered) and v(E) = v(Ered). Moreover, a bifurcation divisor 
E can belong to a dead arc only if it is a Puiseux divisor. 

Consider a bifurcation divisor E of G(C) and let {(raf, nf), (raf, n f ) , . . . , 
(mg(E)i ng(E)}} De tne Puiseux pairs of an 2£-curvette 7^, we denote 

riß — 
ng(E), if E is a Puiseux divisor; 
1, otherwise, 

and nE = m(E)/riE- Observe that, if E is a bifurcation divisor which belongs to a 
dead arc with terminal divisor F, then m(F) = nE. We define kE to be 

kE = 
(̂JE1) — 1, if E is a Puiseux divisor; 

g(E), if 2£ is a contact divisor. 

Thus, we have that nE = n E 
1 

n E 
To finish this section, we recall a lemma which gives the relationship between the 

intersection multiplicity (7,^)0 and the coincidence C(7,8) (see Zariski [15], prop. 6.1 
or Merle [11], prop. 2.4): 

Lemma 2. — Let 7 and 5 be two germs of irreducible plane curves of (C2,0). If 
{/?p, Pi,...,(3g} are the characteristic exponents 0 / 7 and a is a rational number such 
that Pq < a < /3q+i (f3g+i = 00), then the following statements are equivalent: 

1. C(j,6) = a 
m0(7) 

2. 
(7,*)o 
m0(S) = 

Bq 

П\ ' "Па-I 
+ Oí- Pq 

Ux'-Uq 
where {(m ,̂ ^)}f=1 are the Puiseux pairs of 7 (no = 1) and {/3Q, /3\,...,/3q} is a 
minimal system of generators of the semigroup S(j) of 7. 

Recall that the semigroup 5 ( 7 ) of 7 is defined as 

S(j) = {(7,5)o : 7 is not an irreducible component of 6}. 

There is a minimal system of generators {/?o,/?i,... ,J3g} of 5 ( 7 ) whose elements are 
defined by 

(2) #) = A) = m0(7), B1 = B1, h = nz_iA_i + A - A - i , for / = 2 , . . . , s , 
where {/?o, A, • • •, PG} are the characteristic exponents of 7 (see [1] or [16]). It is clear 
that 5 ( 7 ) is determined by the equisingularity type of 7 and reciprocally. 
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3. Generic curves of the pencil 

This section is devoted to describe some properties of a generic curve of the polar 
pencil AJF of a singular foliation T. The reader may refer to [5, 7] for a more detailed 
description. 

Consider a plane curve C = U^=1Ci C (C2,0). Let / = /1 • • •/r be a reduced 
equation of C and nc : MQ —• (C2,0) be the minimal reduction of singularities of 
C. Denote by Gc the space of generalized curve foliations [2] having C as curve of 
séparatrices. Let G£ be the sub-space of Gc defined as follows: a foliation T is in G£ 
iff the logarithmic model C\ of T avoids a finite set of resonances Re(c) C (Z>0)r. 
More precisely, each foliation T G Gc has a unique logarithmic model C\ given by 
h'"frEri=i Xidfi/ fi = 0 with A = Y(F) = (Ai,...,Ar) G P^T1 (see [5]). The 
logarithmic foliation C\ has the same reduction of singularities as T and the same 
Camacho-Sad indices [3] at the final points of the reduction. Thus, a foliation T 
belongs to GJ; iff Y^i=\ ki^i ^ 0 for each k = (fci,..., kr) G RE(C) where Re(c) C 
(Z>o)r is a finite set which depends only on the equisingularity type e(C) of C (see 
[5, 7] for a detailed construction of it). 

Remark 3. — Note that a foliation T avoids the resonances of the set Re(c) if and 
only if there is no corner in the reduction of singularities of p*F with Camacho-Sad 
equal to —1, where p : (C2,0) —» (C2,0) is any ramification transversal to C such that 
p~lC has only non-singular irreducible components (see [5]). 

Consider a generic fiber V of the pencil A^. A first result describing some properties 
of the equisingularity type e(T) of T in terms of the equisingularity type e(C) of C is 
the following one: 

Theorem 4 (of decomposition [10,11, 9, 5]). — Consider a foliation T G G^ and a 
generic curve T of A^. There is a decomposition T — ^E^B{C)^E such that: 

(i) m0(TE) = 
1lEnE{bE — 1)> tf E does not belong to a dead arc; 

IkEnEibE — 1) — BLEI otherwise. 
(ii) For each irreducible component 7 of TE we have that 

• C(Ci,7) = v(E) if E belongs to the geodesic of Ci; 
• C(Cj,7) = C(Cj,Ci) if E belongs to the geodesic of Ci but not to the one 

ofCj. 

It is clear that the result above does not determine e(T). However, there is a Zariski-
open set Uc C P^-1 such that e(r) is completely determined by e(C) if A(,7r) G 
Uc> The set Uc depends on the analytic type of C and it is a non-empty set if, 
and only if, the curve C has a kind equisingularity type. We say that a curve C 
has kind equisingularity type if ra(i2fc) = 2m(Et) for each dead arc of G{C) with 
bifurcation divisor E^ and terminal divisor Et. Using the notations introduced in 
section 2, the curve C has a kind equisingularity type if and only if nEb = 2 for each 
bifurcation divisor E\> of G(C) which belongs to a dead arc since m(Eb) = nEbm(Et). 
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In particular, this implies that each dead arc in G(G) has only two vertices: the 
bifurcation divisor and the terminal divisor. 

A foliation T is called Zariski-general when Y(F) £ Uc and in this case e(r) is 
described as follows: 

Theorem 5. — [6, 7] Let C be a curve with kind equisingularity type and consider a 
Zariski-general foliation T G G£. IfF is a generic curve of the pencil Ajr, then nc 
gives a reduction of singularities ofTuC. Moreover, the branches of T intersect an 
irreducible component E of the exceptional divisor 7r̂ 1(0) as follows: 

— If E is a bifurcation divisor of G(C), the number of branches of T cutting E 
equals to bE — 2 if E belongs to a dead arc and to bE — 1 otherwise. 

— If E is a terminal divisor of a dead arc of G(C), there is exactly one branch of 
T through E. 

— Otherwise, no branches ofY intersect E. 

In particular, the characteristic exponents of the branches of V can be completely 
determined in terms of the equisingularity data of C. Denote by {¡3$, . . . , /?*.} the 
characteristic exponents of an irreducible component Ci of C. Given a bifurcation 
divisor E of G(G), let IE be the set of indices i G IE such that v(E) = PkE+\l Ph\ 
note that if i G IE \ 1% then there exists j G IE such that v(E) = C{C{, Cj). Hence, 
if E is a contact divisor IE = 0. Moreover, if C has a kind equisingularity type and 
E is a bifurcation divisor belonging to a dear arc of G(G), then the corresponding 
Puiseux pair (mkE+1,nkE+1) satisfies n\Ejti — 2 for each i G IE — IE. 

Lemma 6. — [7] Consider a curve C with kind equisingularity type and a Zariski 
general foliation T G GQ. Let T be a generic curve of Ajr with decomposition T = 
UEGB(C)Fe. Then, for each E G B(C), we have that 

(i) If E is a contact divisor, the curve YE has bE — 1 irreducible components. Each 
branch 7 ofTE with characteristic exponents {v^, V\, ..., u? } given by 

V0 = m0(7) = nE, v¡ = nEß\/ßl0, I = 1,2,..., kE, 

for any i G IE. 
(ii) If E is a Puiseux divisor which belongs to a dead arc, the curve TE has one 

irreducible component 70 with characteristic exponents {^Q0, ̂ 7°? • • • > uk°E} 9iven 
by 

"о = тоо(7о) = пЕ, v1a = nEß\/ßl, l = \,2,...,kE, 
and bE — 2 irreducible components such that each branch ( C \ 70 has 
characteristic exponents {VQ, V{, ..., vkE,vkE+1} given by 

= mo(7) = nEnE, vl = nEnEpl/(3l0, Z = 1,2,..., fctf + 1, 

for any i G IE. 
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(hi) If E is a Puiseux divisor which does not belong to a dead arc, then TE has bE — l 
irreducible components. Each irreducible component 7 of TE with characteristic 
exponents {i/J, v\,..., 1/^, vyKE t1} given by 

V0 = m0(7) = nEnE? v1// = nEnE(3\ /B0 l = 1,2,...,kE + 1, 

for any i G IE. 

The last part of the section is devoted to prove some technical lemmas which 
will be useful in the sequel. The first one is a general result concerning intersection 
multiplicities of polar curves: 

Lemma 7. — Consider a foliation T G Gc and let T, Tf be any two generic curves of 
Ajr. For any irreducible component 7 ofT, we have that 

(3) (r,,7)o + m0(7) = (C,7)o-

Proof — Consider a 1-form LJ = A(x,y)dx + B(x,y)dy which defines T and assume 
that T = r[a:ft], T; = T[a/:5/]. Take an irreducible component 7 of T[a:b] and let 
<j)1(t) = {x1{t)^y1{t)) be a parametrization of 7. Since T is a generalized curve 
foliation, then 

(C,7)o = o r d t ( ^ ) + 1 
(see [13], lemma 3.7). The intersection multiplicity (r^/.^, 7)0 is given by 

(IV:6'],7)o = ordt{a/A(07(t)) + b'B(cj)^t))}. 

Moreover, since 7 is an irreducible component of T[a,b] then aA{(j)1{t)) + 65(</>7(t)) = 
0. Assume that a ^ 0, a similar argument holds if b ̂  0. In this case, we have that 
either OTdt(A(4>1{i))) = ordt(i?(</>7(£))) when b ^ 0 or A(</>^(i)) = 0 otherwise. In 
both situations, the following equalities to compute ordt(0*u;) hold: 

ordT(07u;) = ordt{A(07(t)) x7(t) + B(07(t)) y7(t)} 

= ordt {-^B(07(t))i7(t) + S(07(t))y7(t)} 

= ordt(S(07(t))) 4- ordt(-to7(£) + ay7(t)) 
= ordt(a'A(^7(t)) + b'B^t))) + (7, -6x + ay = 0)0 - 1 
= (r[a/:6/],7)o + (7^[o:6])o - 1, 

where £[a:b] is the line given by — bx + «2/ = 0. In particular, this implies that the 
formula (3) holds for all [a : b] such that t[aib\ is not tangent to T[a:b] which is the case 
when T[a:b] is a generic curve of Ajr. • 

Let us introduce some notations in order to simplify the proofs of the following 
lemmas. Given a bifurcation divisor E of G(C), we denote 

4 = 

bE if E is a contact divisor; 

1, if E is a Puiseux divisor which does not belong to a dead arc; 

0, otherwise, 
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and 

dE = 
0, if E is a contact divisor; 
ЬЕ — 1, otherwise. 

Hence, if T is a generic curve of AF with decomposition Y = UEeB(C)^ > then 
m0(TE) = nE{dE + d2EnE - 1). 

Lemma 8. — Consider a foliation T G G£. and a generic curve T — ^EeB{C)^E °f 
Ajr. Then, for each bifurcation divisor E of G(C), we have that 

(4) ™o( (J Ci) ~ m°( U VE ) = 5 B ( 4 + nEd%). 
i€IE E'>E 

Proof. — Let £E De the size of the largest chain of divisors in B(C) starting at E. 
We prove the lemma by induction on HE- If £E = 1? then E is a maximal bifurcation 
divisor of G(C). In this case, the equality (4) turns into 

mo(UielECi) = nE{dE + nEd2E) 

and it can be directly deduced from the properties of G(C). Assume now that £E > 1 
and let Ei,.....,Ea be the bifurcation vertices of G(C) which are consecutive to E, 
that is, E < Ei without any other bifurcation divisor between E and Ei. Put JE = 
IE \ Uf=1IEi and t = $JE. Note that t + s = dE + d2E. Then we have the following 
equalities 

m0( (J Ci) - m0( (J rB') = 
ieiE E'>E 

= 
jeJE 

m0(Cj) + 
s 

i=l 
m0( 

jeiEi 
Ci)-

s 

i=l 
m0( 

Ef>Ei 
Te ) + 

s 

1=1 
m0(TE<) 

= 
ieJE 

m0(Ci) + 
s 

i=l 
m0( U W-rnoi (J r * ) 

jeiEi E'>Ei 
– 

s 

2=1 

mo{TB<). 

For each i = 1,........,s, we have that TOo(UjejB Cj) — moiUE'>EiTE') = n ^ d ^ + 
dE.nEi) by the induction hypothesis and mo(TEi) = nEiidE. + dEnEi — 1) by theo­
rem 4. Hence, we deduce that 

m0( M Ci) - mo( U rE') = 
ie/fi E'>E jeJE 

moiCj) + 
s 

2=1 
nE. 

Now three situations may happen: 

- If E is a contact divisor, then nE = 1, nE1 = nE for i; = 1, . . . , s and rao(Cj) = 
n# for j G JE. Moreover, d2E — 0 and £ + s = dE. 

— If E is a Puiseux divisor which belongs to a dead arc, then nE. = nEnE with 
nE > 1 for each z = 1,... ,s and rao(Cj) = nEnE for j G J#. In this case, 
d^ = 0 and t + 5 = d|2E. 
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— If E is a Puiseux divisor without dead arc, then dE = 1 and t + s — 1 = d2E. 
Moreover nE > 1 and there is: 

• either a divisor Eio, with ¿0 G {1 , . . . , s}, such that nE = nE and nE. = 
nEriE for i ^ ¿0; in this situation ÏÏÏQ{CJ) = nEUE for all j G J^. 

• or a curve Cj0 with jo G J# such that rao(Cj0) = nE and rao(Cj) = nEUE 
if j ^ joî m this case n^. = nEriE for all i G {1 , . . . , 5}. 

It follows that J2jeJE mo(^j)~^J2i=i ^EI = HEi^E + d^nE) and the result is straight­
forward. • 

Take a bifurcation divisor E of G(C). Let Fi < F2 < • • • < Fm < Fm+i = E be 
the bifurcation vertices in the geodesic of E in G(C) and denote Bi = {E' G #(C) : 
•E' > -fi}- Then we have the following result 

Lemma 9. — Consider a foliation T G G£» and letT,T be two generic curves of 
with decompositions V — UEeB(C)FE and T = UEeB(C)¥E - Let 7 be an irreducible 
component of VE C T. Denote by {v0,v1 , U^,..., i/J } the characteristic exponents of'7, 

fry {(m^, ̂ 7)}£i ^e Puiseux pairs of 7 and fry {̂ o>"7> • • • >̂ p7} the minimal of 
generators of the semigroup 0 / 7 . T/ien we have that 

(5) 
m 

1=1 i E IF1 \ IF1 - 1 
(Q, 7 )0 -

E'eBi^Bl+1 
(T^,7)o = vkE - nKyE VykE 

Proof. — By the properties of the decomposition of a generic curve of AF given in 
theorem 4, we have that: 

• C(Ci^) = v(Fi)iUeIFl\IFl+1; 

• C(CE' ,*y) = v(Ft) if (E' is an irreducible component of TE' with E' G B\ \B/+i. 

For each I G {1 , . . . , m}, let t{l) be the integer in {0,1, . . . , #7} such that 

7̂(1) ^ mo(l)v(Fi) < ̂ 7(i)+i 

v 1 
gy + 1 

= +oo). Note that t(l) < kE < g1 for I = 1,. . . , m and t(m) = kE- We use 
now the relationship between the coincidence and the intersection multiplicity given 
in lemma 2 to compute (Ci,7)o and ((E ,7)0- We have that 

(ft, 7)0 
rao(C») = 

v 7 
*(0 f(l) 

7 
*(0 + m0(7)^№)-^7(r 

nî ' * ' nUl) 
, for i G 7Fi \ JFI+I, 

and 

(C£',7)o 
mo(CB') 

= 
-7 7 
^ ( 0 ' N'(0 

+ 
7 7 

ni " ' nt(Z) 

n*o(y) v(M*i) - Vy t (1) 
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for each irreducible component (E' of T^' with E' G Bl \ Bl + 1 Consequently, we 
obtain that 

i E IFl \ IFl - 1 
(Ci, 7 ) 0 -

E'eBi^Bi+1 
(Ts,7)o = 

KieIFl^I*rl + l 
m0(Ci) -

E'eBi^sl+1 
m0 (YE') »t(i) ' nt(i) + mo(vnFi) ~ "t(i) 

ni"' ntm 

By lemma 8, we have that 

ieiFl 
m0(Ci) -

E'eBi 
m0(TE ) = nFl(dFl +dFlnFl) -m0(T l) = nFl, 

and hence it follows that 

ieiFl^iFl+1 
m0(Ci) -

E'eBi^Bl+1 
m0(TE') = nFl -nFl+i =nFl(l-nFl). 

By definition nF, is given by 

nFl = 
1, if Fi is a contact divisor; 
nXn, if Fi is a Puiseux divisor. 

Moreover, mQ(/y)v(Fi) = 1/^ and nFl = ni"-nt(/)_i if Fj is a Puiseux divisor. 
Therefore, we deduce that 

ieiFl \/FZ+1 
(Ci, 7 ) 0 -

E'eBi^Bi+1 
(T£',7)o = 

0, if Fi is a contact divisor; 
(1 — ^yn)^7(0' if Fi is a Puiseux divisor. 

To finish the proof we use the relationship between the characteristic exponents of 7 
and the minimal system of generators of the semigroup 5(7) given in equation (2). 
The following computations complete the proof: 

m 

i=l i£lFl\IFl + 1 
(C<,7)o-

E'eBi^Bi+1 
(T*,7)o = 

k1 

j = 1 
(l - nyj) vyj 

= v1 — nyKE vyKE + 
kE-l 

j = 1 
{9!+1-njP!) = Н - П Ь Л V K E + 

k = 1 

j = 1 
("/» - -7) 

= Dl - nlE »lE + vlE - "I = vlE - nlE »lE • 

4. Base points of the polar pencil 
Consider a morphism A : JV —• (C2,0) composition of a finite number of punctual 

blow-ups. A point P G 0"_1(O) is a ease pom£ of the pencil A^ if P is an infinitely near 
point of each generic curve of A^. More precisely, P is a base point of A^ if and only 
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if, there is an irreducible component 7 of T such that a*7 fl cr_1(0) = {p}, for each 
generic fiber T of A^. 

A first property concerning the resolution of singularities of the polar foliation, 
and hence of the polar pencil, is the property of "separation of the séparatrices" 
(see [12]). Let II be a morphism which is a partial reduction of Vjr and also a 
reduction of singularities of T. We say that T satisfies the property of separation of 
the séparatrices if the geodesic in G(II) of any separatrix of T does not go through 
a dicritical component of V?, except maybe E\. We proved [5] that the foliations in 
G£ satisfy the property of separation of the séparatrices. From this property we can 
deduce the following result: 

Lemma 10. — Consider a foliation T G G£ and take any generic curve T of A jr. If 
E is a bifurcation divisor of G(C), E ^ Ei, then the points n^T fl E are base points 
of the polar pencil A jr. 

Proof — The result is a direct consequence of the property of separation of the 
séparatrices since E cannot be a dicritical component and hence the points of the set 
7r̂ r fl E are base points of A^. • 

Remark 11. — Note that, if E\ is a bifurcation divisor, the points 7r£r D E\ are not 
base points of the polar pencil. In fact, if T = r ^ j , then the set TT^T^.^ fl E\ has 
exactly bEl — 1 points which depend on [a : b] (see [7]). 

Let <TA,C : ^A , c -> (C2,0) be the minimal reduction of singularities of A^ that 
factorizes by 7rc- The next result describes how to construct <TA,C fr°m ^c-

Proposition 12. — Assume that C is a curve with kind equisingularity type and let T G 
G£ be a Zariski-general foliation. There is a morphism a\ : MA,C —* Mc composition 
of a finite number of punctual blow-ups such that aA,C = ncwi- Moreover, the centers 
of the blow-ups to obtain &\ are not singular points of n^T. 

Proof — Let T, T' be two generic curves of A^. If the morphism -KQ is also a reduction 
of singularities of T U T' we take o\ : Mc —> MQ to be the identity map IDMC ON 
Mc and hence <JA,C = fl"c- Otherwise, let {R1 . . . , JRs} be the points of the set 
7rjr n 7r^1(0); observe that these points are not singular points of TTQT since ire is 
a reduction of singularities of C U T. By theorem 5, there is a unique irreducible 
component 7» of T such that N*E cuts transversally 7r̂ 1(0) at Ri for I = 1,... ,5. 
Moreover, a point Ri belongs either to a bifurcation divisor of G(C) or to the terminal 
divisor of a dead arc in G(C). There are three possible situations: 

— If Ri belongs to Ei, then Ri is not a base point of A^ by remark 11. 
— If Ri belongs to a bifurcation divisor E, E ^ Ei, then Ri is a base point of A^ 

by lemma 10. Hence, there is a unique irreducible component 7̂  of V such that 
7TQJ[ HE = {Ri} by theorem 5. 

— If Ri belongs to the terminal divisor E of a dead arc, then there is a unique 
irreducible component 7̂  of Tf such that 71̂ 7̂  fl E •=/=• 0. In this case, the point 
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Ri can be either a base point or not. If it is a base point, then n^Yi ^ E = 
7T̂ 7j HE = {Ri}. Otherwise, 'KCLI E # {Ri} and E is a dicritical component 
for Ap. 

Put Xi = Mc and consider the morphism rz- : (Xi - 1, Ri + 1) —> (Xi,Ri), for i = 
1,.. . , 5, defined by 

• TI = idxi if Ri is not a base point of Ajr\ 
• TI is the minimal reduction of singularities of the strict transform of 7rj7̂  U TT£7^ 

by Ti o T2 o • • • o n-i when Ri is a base point of A^. 
The morphism 01 : Xj+i —• Mc with A\ = T\ O • • • o r s fulfils the requirements of 
the statement because TTC 0 0"i is a reduction of singularities of Y U r'. Moreover, it 
is clear by construction that nc 0 o\ is the minimal resolution of Ap which factorizes 
by 7rc; hence aA,c = nc 0 &i : M^c -* (C2,0) with MA,c = X8+1. • 

5. Dicritical components 
In this section we give some characteristics of the dicritical components which 

appear in a resolution of singularities of AJF- Note that the degree and the valence v(D) 
of a dicritical component D do not depend on the choice of the resolution. Hence to 
determine these values it is enough to consider the morphism crA?c

 : MA,C -• (C2,0). 
Next lemma gives the degree of the dicritical components 

Lemma 13. — Consider a foliation T G G*C and let a : X —> (C2,0) be any resolution 
of singularities of AF . Then 

1. The divisor Ei of G(C) is dicritical for Aj? if and only ifbEl > 2. Moreover, in 
that case, the degree of Ei as a dicritical component of A? is equal to bEl — 1. 

2. If J7 is a Zariski-general foliation, each dicritical component D of a~1(0), D ^ 
Ei, has degree equal to 1. 

Proof — The first assertion is a direct consequence of remark 11. The second one 
follows straightforward from the construction of the morphism a^c given in propo­
sition 12. • 

Next result determines the valence v(D) of a dicritical component D of Ajr in terms 
of the data in G(C). It is a key result in the proof of theorem 1. 

Theorem 14. — Let T G G£ be a Zariski-general foliation and let a : X —» (C2,0) be 
any resolution of singularities of the polar pencil A jr. Given any dicritical component 
D o/cr_ 1(0) and any D-curvette 7, we have that 

(6) v(D) = 2 sup {C(Ci,7)}-l. 
L<I<R 

If T, T are two generic curves of A^, then v(D) is equal to C(7D5 (D) where 7D, Cz> 
are irreducible components of T and T respectively such that (7*7^ fl D ^ 0 and 
ct*CD H JD 7̂  0. Moreover, if we denote by ED the bifurcation divisor of G(C) such 
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that 7£> is a branch of the curve TED of the decomposition of T (and also (D C TED), 
then sup1<i<r{C(Ci,7£))} — V(ED)- Consequently, equation (6) can be written as 
follows 

(7) v(D) = 2v{ED) - 1. 

Proof of theorem 14- — Consider two generic curves T, T of Ajr with decompositions 
given by T = ^EeB{C)FE and T = ^EeB{C)^E'• Let D be a dicritical component of 
<j_1(0). If D is equal to the first divisor E\ of G(C), then ED = E\ and equation (6) 
is held. Assume now that D ^ E\. Let 7, £ be irreducible components of V and 
T respectively, with (7*7 fl D ^ 0 and a*£ H D / 0 ; note that they are unique by 
lemma 13 and mo(7) = mo(C)- Let us compute (7, C)o- By lemma 7, we have that 

(8) (TBD,7)O + 
EEB(C) 
E^ED 

(T£;,7)0 + m0(7) = 
r 

i=l 
(C«,7)e>. 

The intersection multiplicity ( T ^ , 7)0 can be computed using the decomposition of 
TED into irreducible components: 

(9) (TEd,7)O = (7,C)O + 
C'CTED 
C4 # C 

(C',7)o. 

From equalities (8) and (9) we deduce that (7, C)o is given by 

(7,<)o = 
r 

i=l 
(Ci,7)o-

EEB(C) 
E^ED 

(C',7)o-
£GB(C) 
E^ED 

(TB,7)o-m0(7) 

= 
i E l ED 

(Ci,7)o-
C'CTED 

(C',7)o + 
i E l ED 

(Cit 7 ) 0 -
EGB(C) 
E^ED 

(TB,7)o-m0(7). 

Denote by Fi < F2 < • • • < Fm < Fm+i = F# the bifurcation vertices in the geodesic 
of ED in G(C) and put B{ = {Ef G B{C) : E' > F*} for i = 1,..., m. Thus we have 
that 

(7,C)o = 
i€lEo 

(Ci,f)0-
EEB(C) 
E^ED 

(C ,7)o-
E£B(C) 
E>ED 

(T£,7)o 

+ 
m 

¿=1 ieiFl\iFl+1 
(Ci, 7 ) 0 -

E E Bi \ Bl + 1 
( T * 7)0 -m0(7j. 

We shall use lemmas 8 and 9 to compute the right side of the equality above. Note 
that 

• C(Ci,7) = V(ED) for each i G IED, by theorem 4. 
• C(C',7) = v(FD) for each branch £' of T^, with F > FD. 
• C(C',7) = v(Er>) for each branch (' of TSd, with (' 7̂  £> by theorem 5, since T 

is a Zariski-general foliation. 
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Let {UQ , v[,..., v^} be the characteristic exponents of 7, {(m?, n ? ) } ^ the Puiseux 
pairs of 7 and {Z7Q , ^1 ? • • • > ^ } the minimal set of generators of the semigroup 5(7) 
of 7. Prom lemma 6, we deduce that Vgyr < m0{^)V(ED)• Consequently, applying 
lemmas 2 and 8, we get that 

ieiED 
(Ci,7)o-

EEB(C) 
E>ED 

(C ',7)o-
EEB(C) E>ED 

(T£,7)o = 

= 
ieiED 

m0(Ci) -
E>ED 

m0(T£;)-mo(T^\C) "я, "я. + m0(j)v(ED) - и] 
m0(7) 

= (nED +m0(C)) 
^ ™L + m0(l)v(ED) - ul 

m0(7) 
We use now the equality above and the result given in lemma 9 to compute (7, C)o-
We obtain that 

(7,C)o = {(RED +m0(C)) 
Vgyr ny + m0(i)v(ED) - и] 

m0(7) + vKED -nkED VkED -mo (y). 

To finish the computation of (7, C)o we consider the different possibilities for the 
bifurcation divisor ED and we use the expression of the characteristic exponents of 
the irreducible components of the generic curves of AF given in lemma 6. 

— If E is a contact divisor, then mo (7) = mo(C) = ILEd = ni ''' np7 w^n 9i = 
kED. Then 

(7,C)o = 2[^7n^ + m0(i)v(ED) - Vgyr] + i/£ - P^n^ - m0(7) 

= 2ra0(7M#D) + ^ 7 n ^ - Vgyr - m0(7). 

Moreover, by lemma 2, the relationship between (7, £)o and C(7, £)o is given by 
(7, C)o = ^ ^ + m0(7)^(7, C) " ^ • Taking into account that £ (7 , C) = v(D), 
we conclude that 

v(D) = 2v(ED) - 1. 

— Assume now that ED is a Puiseux divisor which belongs to a dead arc. By 
lemma 6, the multiplicity mo (7) can be either nE or nEDnED with UED > 1. 
If mo (7) = ILED, the same computations as in the previous case give the result. 
Consider now the case mo (7) = nEDnED' Thus we have that mo(7)t?(£x>) = 
z/J , g1 — kEn + 1 and UEd = n1 . Hence we get that 

(7,C)o = [HEd +nEDnED 
V1 - Vtn 

HEDnED 
+Vgy-1 Vy gy - 1 - ^ - i < - i - ^ m 0 ( y ) 

= (1 + ngW + Vgyr] - 9] - m0 (7) = NGY VYGR + VYG + vl - m0(7). 

By lemma 2, we have that (7, C)o = Ĵ7np7 +mo(7)^(7, C) — • We obtain that 

C(7,C) = 2 
z> •7 

P7 
m0(7) 

- 1 = 2v(ED) - 1. 
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— If ED is a Puiseux divisor which does not belong to a dead arc, then 
mo(l)^(ED) = V]^, 9-Y = KED + 1 and TIED = n^ . Hence the computa­
tions in the previous case give the result. • 

6. Resolution of singularities 

In this section we give the proof of the main result of the paper and some conse­
quences than can be deduced from it. 

Proof of theorem 1. — In proposition 12 we have shown that &A,C is obtained from 
7Tc by a finite number of punctual blow-ups with centers at non-singular points of 
7rJ.F. Recall that cr\c — NC 0*1? where &\ is obtained by blowing-up following 
the infinitely near points of the irreducible components of a generic curve V of A jr. 
Moreover, since TT^T is non-singular, then the centers of the blow-ups to get o\ are 
free infinitely near points of T. 

Let {Ri,..., Rs} be the points of the set TT^T D 7r^1(0). By theorem 5, there 
is a unique irreducible component 7¿ of T such that 7r£7¿ cuts transversally 7r¿1(0) 
at Ri for i = 1,...,5. Let Di be the dicritical component of ^ ^ ( 0 ) such that 
AA c^i ^ A 7̂  0 and denote by ERÍ the irreducible component of 7r^1(0) such that 
nQ^nER. = {Ri}. Note that it is possible that ERi = ERj for i ^ j . Moreover, ERÍ 
is either a bifurcation divisor of G(C) or the terminal divisor of a dead arc in G(C). 

Let OLÍ = OCER. be the number of blow-ups needed to obtain Di from ER^ Let 
us show that the value of a¿ is given by equation (1). We consider separately the 
different possibilities for ER^. 

— ERÍ is the first divisor E\ of 7r¿1(0), then it is a dicritical component for A jr. 
Hence, OLÍ = 0 and the equality a¿ = ,^ÍI(ERÍ)(V(ERÍ) — 1) holds since v(E\) = 1. 

— ERÍ is a bifurcation divisor different from JE?i, then Ri is a base point of A^. 
The valuation v(Di) is equal to 

v(Di) = 
m{ERi)v{ERi) + ai 

m(ERi) 

By theorem 14, we have that v(Di) = 2V(ERÍ) — 1. Hence, we deduce that 
ai = m(ERi)(v(ERi) - l). 

— ER1 is the terminal divisor of a dead arc with bifurcation divisor E. Using the 
fact that C has a kind equisingularity type, we get that 

(10) m(ERi) = m(E)/2; v(ERi) = (m(E)v(E) + l)/m(E). 

By theorem 14, we have that v(Di) = 2v(E) — 1. Thus we obtain the following 
equality 

m(ERi)v(ERi) + a>i 
m{ERi) = 

2m(ERi)v(ERt) - 1 
m{ERi) 

- 1 , 

and we conclude that oti = m(ERi)(v(ERi) — 1) — 1. 
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Note that, in general, the minimal resolution of singularities o~\ of Ajr is not a 
reduction of singularities of the foliation T. Consider, for instance, the foliation T 
given by d(y2 — x3) = 0. The generic curves of Ajr are the parabolas {2by — 3ax2 = 0}; 
the minimal resolution of singularities crA of Ajr is a composition of two blow-ups 
whereas the separatrix of T is a (3,2)-cusp. The dual graphs G(C) and G(ax,Ajr) 
are given by 

Ex E3 
£?2 

G(C) 

Ei E2 

G(0A, AF) 

Next result characterizes the curves C such that <TA,C coincides with the minimal 
reduction of singularities of A jr. 

Corollary 15. — Let C be a curve with kind equisingularity type and consider a 
Zariski-general foliation T G G£. The following statements are equivalent: 

1. The morphism <TA,C is the minimal resolution of singularities of Ajr. 
2. There is no maximal bifurcation divisor of G(C) which belongs to the geodesic 

of only one irreducible component of C. 

Proof. — Let T = UEeB(C)^E De a generic curve of A^. Assume that CJA,C is the 
minimal resolution of singularities of A^. If there is a maximal bifurcation vertex E 
of G(C) which belongs to a dead arc and with bE = 2, then TE is irreducible and TE 
cuts the terminal divisor F of the dead arc starting at E (by theorem 5). Hence, nc 
is not the minimal reduction of singularities of T and consequently <JA,C cannot be 
the minimal resolution of Ajr. 

Assume now that G(C) satisfies the conditions in the second statement. This 
implies that, for each maximal bifurcation divisor E of G(C), there is an irreducible 
component 7 of V with 7r̂ 7 fl E / 0. If E ^ Ei, then 7r̂ 7 n E is a base point of Ajr 
and hence the minimal resolution of singularities of Ajr factorizes by nc. If E — £1, 
then no is a resolution of Ajr. We conclude that <JA,C is the minimal resolution of 
AF 

Finally we characterize when a terminal divisor of a dead arc is a dicritical com­
ponent for the pencil Ajr. 

Corollary 16. — Let C be a curve with kind equisingularity type and consider a 
Zariski-general foliation T G G£. Let F be terminal divisor of a dead arc in G(C) 
starting at the bifurcation divisor E. The divisor F is dicritical for Ajr if and only if 
v(E) = 3/2. 

Proof. — If v(E) = 3/2, then v(F) = 2 and m(F) = 1 because C has kind equisin­
gularity type. Thus, by theorem 1, a(F) = 0 and hence F is a dicritical component 
for Ajr. 
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Conversely, assume that F is a dicritical divisor for Ajr and then v(F) = l + l/m(F) 
by theorem 1. Since C has a kind equisingularity type, the relationship between v(F) 
and v(E) is given by equation (10), thus v(E) = 1 + l/m(E). 

Let {(^i/,7i/)}fi! be the Puiseux pairs of an irreducible component d of C. We 
have that m(E) = n\ • • • nlkEnlkE+1 and v(E) = m\.E+1/m(E) for i € IE because 
E is a Puiseux divisor. Consequently, the dicriticalness of F implies that mkE_^_1 = 

1^ni"'nkEnkE + l' Bllt 

1 < 
m i 

kE n\ • • • n\ kE 
< 

mL+i 
n\---n\E n kE + 1 

by the properties of the Puiseux pairs. This implies that n\ • • • rikEnkE+i ̂  
™>kEnkE+i < mkE+i = 1 + ni ' * 'nkEnkE+i' ^ne previous inequalities hold only if 
kF = 0, i.e., m\E = 0. Consequently v(E) = (1 + n^ /n j and the result follows since 
TIE = n\ = 2. • 

7. Examples 

We illustrate here some different behaviours of a polar pencil Ajr when T is not a 
Zariski-general foliation. 

Example 1. — There can be dicritical components of AJF with degree > 2, which are 
different from E\. Consider the foliation T given by d(y3 — x5) = 0; note that C has 
not a kind equisingularity type. The pencil Ajr has a dicritical component of degree 2 
which corresponds to the terminal divisor E2 of the unique dead arc in G(C). In this 
case, 7TC gives a resolution of singularities of Aj? but it is not the minimal resolution 
of AJF-

Ei Es 
E4 

E2 

G(C) 

E\ E3 
E4 

E2 

G(7TC,A^) 

Example 2. — Consider the foliation T given by u = x5dx — y3dy = 0. The minimal 
reduction of singularities nc of T is not a reduction of singularities of a generic fiber 
F[a-.b] — {axb — by3 — 0}. It is necessary to blow-up the corner £3 fi E2 of 7r^1(0) 
to obtain an elimination of indéterminations a\ of A^; hence we need to blow-up a 
singular point of K*CT. 
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Ei 
E3 

E2 
G(F) 

E± Es E4 

E2 

G(0A, AF) 

Notice that v{E±) = 5/3 and v(E3) = 3/2, thus equation (7) is not true for this 
foliation. In this example, the curve of séparatrices C has a kind equisingularity type 
but the foliation T is not Zariski-general. 
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