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GEOMETRIC STRUCTURES ON UNIRULED PROJECTIVE 
MANIFOLDS DEFINED BY THEIR VARIETIES 

OF MINIMAL RATIONAL TANGENTS 

by 

N g a i m i n g M o k 

Abstract. — In a joint research programme with Jun-Muk Hwang we have been inves­
t igating geometric structures on uniruled projective manifolds, especially Fano mani­
folds of Picard number 1, defined by varieties of minimal rational tangents associated 
to moduli spaces of minimal rational curves. In this article we outl ine a heuristic 
picture of the geometry of Fano manifolds of Picard number 1 with non-linear vari­
eties of minimal rational tangents , taking as hints from prototypical examples such as 
those from holomorphic conformai structures. On an open set in the complex topol­
ogy the local geometric structure associated to varieties of minimal rational tangents 
is equivalently given by families of local holomorphic curves marked at a variable 
base point satisfying certain compatibil ity conditions. Differential-geometric notions 
such as (null) geodesies, curvature and parallel transport are a source of inspiration 
in our study. Formulation of problems suggested by this heuristic analogy and their 
solutions, somet imes in a very general context and at other t imes applicable only to 
special classes of Fano manifolds, have led to resolutions of a series of well-known 
problems in Algebraic Geometry. 

Résumé (Structures géométriques sur des variétés projectives uniréglées définies par leurs variétés 
de tangentes rationnelles minimales) 

Dans un programme de recherche avec Jun-Muk Hwang nous avons étudié des 
structures géométriques sur les variétés projectives uniréglées, en particulier les va­
riétés de Fano de nombres de Picard égaux à 1, définies par les variétés de tangentes 
rationnelles minimales associées aux espaces de modules de courbes rationnelles mi­
nimales. Dans cet article nous esquissons un dessin heuristique sur la géométrie des 
variétés de Fano de nombres de Picard égaux à 1 dont les variétés de tangentes ration­
nelles minimales sont non linéaires, en prenant comme prototypes les exemples tels 
ques les structures conformes holomorphes. Dans un ouvert par rapport à la topologie 
complexe, la structure géométrique associée aux variétés de tangentes rationnelles mi­
nimales équivaut aux données de familles de courbes holomorphes locales marquées 
à un point de base variable vérifiant des conditions de compatibil ité. Des notions 
de la géométrie différentielle comme les géodésiques (nulles), la courbure et le trans­
port parallèle constituent une source d'inspiration dans notre étude. Des formulations 
de problèmes suggérés par cette analogie heuristique et leurs solutions, parfois dans 

2000 Mathematics Subject Classification. — 14J45, 32M15, 32H02, 53C10. 
Key words and phrases. — Geometric structure, minimal rational curve, variety of minimal rational tan­
gents, tangent map, analytic continuation, Cauchy characteristic, curvature, prolongation, parallel 
transport, nef tangent bundle, distribution, differential system, deformation rigidity. 

Research partially supported by a CERG grant of the Research Grants Council of Hong Kong. 

© Astérisque 322, SMF 2008 



152 N. MOK 

un contexte très générale et parfois applicables seulement aux classes de variétés de 
Fano spéciales, ont conduit a des résolutions d'une série de problèmes bien connus en 
géométrie algébrique. 

1. Introduction 

1.1. Background and motivation. — In 1979, Mori [45] established the funda­

mental existence result on rational curves on a projective manifold where the canonical 

line bundle is not numerically effective, thereby resolving the Hartshorne Conjecture. 

When the manifold is Fano, Miyaoka-Mori [38] (1986) proved tha t the manifold is 

uniruled. In a joint research programme undertaken with Jun-Muk Hwang, we have 

been studying algebro-geometric and complex-analytic problems on uniruled projec­

tive manifolds basing on geometric objects arising from special classes of rational 

curves, viz., minimal rational curves. In this article the author would like to highlight 

some geometric aspects of the underlying theory. 

Given a uniruled projective manifold X and fixing an ample line bundle L, by a 

minimal rational curve we will mean a free rational curve of minimal degree with 

respect to L among all free rational curves. A connected component K, of the space of 

minimal rational curves will be called a minimal rational component. In practice we 

will fix a minimal rational component K, and consider only minimal rational curves 

belonging to /C. Associated to /C, there is the universal family p : U —> /C, p : U —» X, 

where p : U —» JC is a holomorphic P1-bundle, and p : U —» X is the evaluation 

map. In connection with U there is the tangent map r : U —> FTx- For a minimal 

rational curve C marked at x G X and immersed at the marking, and for a denoting a 

nonzero vector tangent to C at the marking, the tangent map associates to the marked 

point the element [a] G FTX(X). For a general point x G X we define the variety of 

minimal rational tangents (VMRT) Cx at x to be the strict transform of the tangent 

map rx :UX —• FTX(X). The basic set-up of our study takes place on the total space 

of the double fibration given by the universal family p :U —> X, p : U —> X, equipped 

with the tangent map r :U —• ¥TX(X) and the fibered space n : C —> X of VMRTs. 

The overriding question is the extent to which a uniruled projective manifold X is 

determined by its VMRTs. 

Given a uniruled projective manifold (X, K) equipped with a minimal rational com­

ponent /C, and a connected open subset U C X in the complex topology, we consider 

(U,C\u) as a complex manifold equipped with a geometric structure. Here the term 

'geometric s t ructure ' is understood by analogy to s tandard examples. As a prototype 

in the context of smooth manifolds, a real m-dimensional Riemannian manifold (M,g) 

can be understood as one equipped with a reduction of the frame bundle from the 
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structure group GL(ra ,R) to 0 ( r a ) . In the context of complex manifolds, a simplest 

example of a holomorphic geometric structure relevant to the study of uniruled pro­

jective manifolds is the case of holomorphic conformal structures, alias hyperquadric 

structures. A holomorphic conformal structure on an n-dimensional complex manifold 

X determines at every point x G X its null-cone, defining equivalently a holomorphic 

fiber subbundle Q C PTx consisting of fibers Qx isomorphic to an (n — 2)-dimensional 

hyperquadric. It corresponds to a reduction of the holomorphic frame bundle from 

GL(n;C) to C* • 0 ( n ; C ) , and this reduction is completely determined by Q C F T * . 

When X — Qn, the n-dimensional hyperquadric, Qx agrees with the VMRT Cx, and 

by analogy we speak of the geometric structure on a uniruled projective manifold 

(X, /C) equipped with a minimal rational component as defined by its fibered space 

7r : C —> X of VMRTs. As our geometric study of VMRTs are in many cases motivated 

by differential-geometric consideration, especially in relation to global properties tha t 

can be captured by local differential-geometric information, we will be considering a 

general point x £ X, and the local geometric structure defined by the germ of the 

fibered space n : C —> X at x, equivalently the restriction TT\U : C\u :—» U to arbitrarily 

small Euclidean open neighborhoods U of x. 

1.2. A heuristic picture. — While a substantial part of our programme applies 

generally to any uniruled projective manifold, our focus of investigation has been 

primarily on those of Picard number 1. These manifolds, which are necessarily Fano, 

are not amenable to further reduction by means of extremal rays in Mori theory, 

and as such they are called 'hard nuts ' among Fano manifolds in Miyaoka [36]. Our 

geometric theory on uniruled projective manifolds based on VMRTs serve in particular 

as a basis for a systematic study of all Fano manifolds of Picard number 1. There 

emerges a dichotomy between those for which the VMRT at a general point is the 

union of finitely many projective linear subspaces and the rest. We will say tha t 

(X, JC) has linear VMRTs in the former case and non-linear VMRTs otherwise. The 

linear case includes those for which the VMRT at a general point is O-dimensional, 

where the fibered space 7r : C —> X gives rise to a geometry on X resembling tha t 

of web geometry. We will discuss in this article exclusively the non-linear case and 

refer the reader to Hwang-Mok [20] (2003) for results in the case of O-dimensional 

VMRTs, and to Hwang [13] (2007) for a problem which necessitates the study of the 

hypothetical case of linear VMRTs of higher dimensions. 

At this stage of the investigation we have the following heuristic picture in the 

case of non-linear VMRTs. The universal P1-bundle p : U —• K associated to the 

minimal rational component /C gives rise via the tangent map to a tautological multi-

foliation on the fibered space TT : C —> X of VMRTs, and the 'local' geometric structure 

(U,C\u) on open subsets U C X in the complex topology corresponds to the da ta of 
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families of local holomorphic curves marked at points x G U. The local holomorphic 
curves are then solutions to a system of partial differential equations which in the 
case of holomorphic conformal structures correspond to the null geodesies. We may 
think of the local holomorphic curves as analogues of (null) geodesies. The fact 
tha t these 'geodesies' can be extended to minimal rational curves on (X, /C) should 
impose serious constraints on the underlying geometric structure. In the case of the 
holomorphic conformal structure on the hyperquadric, the splitting type of the tangent 
bundles on minimal rational curves is enough to force the vanishing of the holomorphic 
Bochner-Weyl tensor and thus to force flatness of the structure. In the general case 
of (X,/C), for a general /C-minimal rational curve the normal bundle has only direct 
summands of degree 1 or 0. Such a rational curve, to be called a s tandard rational 
curve, resembles minimal rational curves on a hyperquadric, and there ought to be 
partial 'flatness' of the geometric structure of (X,C) along s tandard rational curves 
which places serious restrictions on geometric structures tha t can possibly arise from 
VMRTs. The heuristic analogy between minimal rational curves and (null) geodesies 
also goes further as the former should serve to propagate geometric information from 
a germ of geometric structure to the ambient Fano manifold X of Picard number 1. 
In this case, any two general points can be connected by a chain of minimal rational 
curves, and the bad set of 'inaccessible points ' must be of codimension > 2. 

A further geometric concept tha t ought to play an important role in the study 
of geometric structures defined by VMRTs is the notion of parallel t ransport along 
a s tandard rational curve. In the special case of irreducible Hermitian symmetric 
spaces of the compact type the VMRTs are invariant under parallel t ransport with 
respect to any choice of a canonical Kahler-Einstein metric. For Fano manifolds of 
Picard number 1, endowed with geometric structures arising from VMRTs but without 
privileged local holomorphic connections, the only general source for the notion of 
parallel t ranspor t arises from splitting types over minimal rational curves. In this 
direction it is found tha t for the germ of families of VMRTs along the tautological 
lifting C of a s tandard rational curve, the second fundamental in the fiber directions 
can be identified as a section of a flat bundle over C, and as such one can speak of 
the parallel t ransport of second fundamental forms along a s tandard rational curve. 

Other than geometric structures defined by VMRTs, in important classes of Fano 
manifolds X of Picard number 1 there are additional underlying structures with 
differential-geometric meaning. These are the cases where the VMRTs are positive-
dimensional, irreducible and linearly degenerate at a general point. They span distri­
butions which give rise to differential systems by taking Lie brackets. The study of this 
class of manifolds, which is particularly important for questions on deformation rigid­
ity, reveals an intimate link between issues of integrability and projective-geometric 
properties of the VMRT at a general point. 
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1.3. Summary and presentation of results. — While some aspects of the over­
all heuristic picture on geometric structures defined by VMRTs can be confirmed to 
a large extent, other aspects are only beginning to be explored. In the research pro­
gramme emphasis has been placed on solutions of concrete problems, and in some 
cases confirmation of some conjectural properties on VMRTs in special cases can al­
ready lead to important consequences. Here we describe general results and highlights 
of applications tha t fall within the framework of the heuristic picture discussed. 

For the prototypical examples of geometric structures on irreducible Hermitian 
symmetric spaces S of the compact type and of rank > 2, Ochiai's result [47] (1970) 
can be interpreted as saying tha t a local VMRT-preserving holomorphic map nec­
essarily extends to an automorphism of S. In Hwang-Mok [17] (1999), [18] (2001) 
we established the analogous phenomenon, which we call Cartan-Fubini extension, 
for Fano manifolds of Picard number 1 with positive-dimensional VMRTs under the 
additional assumption tha t the Gauss map of the VMRT is generically finite, proving 
at the same time tha t the tangent map at a general point is birational under the same 
assumption. In conjunction with the works of Kebekus [26] (2002) on the tangent map 
and Cho-Miyaoka-Shepherd-Barron [3] (2002) on a characterization of the projective 
space in terms of minimal rational curves we proved in Hwang-Mok [21] (2004) tha t 
the same results hold t rue for any Fano manifold of Picard number 1 with non-linear 
VMRTs at a general point, resulting in a new solution of the Lazarsfeld Problem in 
[32] (1984) regarding finite holomorphic maps on rational homogeneous spaces G/P 
of Picard number 1 (Hwang-Mok [21]). Cartan-Fubini extension has recently been 
extended to non-equidimensional VMRT-respecting local holomorphic maps between 
uniruled projective manifolds in Mok [42] and Hong-Mok [9] with applications to the 
characterization of certain submanifolds saturated with respect to minimal rational 
curves, in analogy to totally geodesic submanifolds in Riemannian geometry. 

The idea of exploiting the splitting type of the tangent bundle over s tandard ra­
tional curves to prove vanishing theorems on curvature has given rise to a character­
ization of irreducible Hermitian symmetric spaces S of the compact type and of rank 
> 2 as the unique uniruled projective manifolds admitt ing G-structures for reductive 
complex Lie groups G (Hwang-Mok [14], 1997), leading also to an analogous result 
of Hong [6] (2000) for geometric structures modeled after Fano homogeneous contact 
manifolds of Picard number 1. The idea of parallel t ransport of second fundamental 
forms was first used in relation to the Campana-Peternell Conjecture, leading to the 
characterization of Fano manifolds of Picard number 1 with 1-dimensional VMRTs 
and nef tangent bundle under the additional assumption tha t the fourth Betti num­
ber equals 1 (Mok [41], 2001), a condition tha t was removed in Hwang [12] (2007), 
resulting together with earlier works in the confirmation of the Campana-Peternell 
Conjecture for 4 dimensions. The same idea was further exploited to yield for rational 
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homogeneous manifolds G/P of Picard number 1 defined by long simple roots a char­
acterization of G/P by the VMRT at a general point (Mok [43] and Hong-Hwang [8]). 
The study of distributions spanned by irreducible linearly degenerate VMRTs has led 
to projective-geometric necessary conditions on such VMRTs (Hwang-Mok [15], 1998; 
[17], 1999), and applications of such results to deformation of complex structures are 
important in the final confirmation of rigidity of rational homogeneous manifolds 
G/P of Picard number 1 under Kahler deformation (Hwang-Mok [23] (2005) and ref­
erences therein). Another important element in relation to deformation rigidity is the 
study of Lie algebras of holomorphic vector fields by means of prolongation theory for 
infinitesimal automorphisms of VMRTs. 

In the current article results falling within the general geometric framework de­
scribed revolving around the geometry of VMRTs will be stated and discussed, with 
(sketches of) proofs of special cases for the purpose of illustration, in an order different 
from the above tha t conforms more (but not strictly) to the chronology. The reader 
may consult Hwang-Mok [17], Hwang [11] (2000) for more systematic overviews at 
earlier stages of the programme, Mok [40] (1999) for aspects of the theory in relation 
to G-structures, Hwang-Mok [21] for general results on the tangent map, and Hwang 
[12] (2007) for an overview on rigidity of rational homogeneous manifolds. We have 
completely omitted the important role played by VMRTs on the geometry of moduli 
spaces of stable vector bundles on an algebraic curve, for which the reader is referred 
to Hwang-Ramanan [24] (2004) and the references contained therein. 

Acknowledgement. — This article is an outgrowth of a lecture given by the author 
in the conference "Differential Geometry, Mathematical Physics, Mathematics and 
Society" celebrating the 60th bir thday of Professor Jean Pierre Bourguignon held in 
August 27-31, 2007 at IHES. He would like to thank the organizers and IHES for 
their invitation and for their hospitality during the conference. The author wishes 
to dedicate this article to Jean Pierre, with whom among many other things we co-
organized the Prance-Hong Kong Geometry Conference in Hong Kong, 2002, for his 
relentless efforts to help bring together mathematicians across different cultures, and 
for his unfailing friendship. While the article serves to elaborate on the author 's 
lecture in the conference and his other recent lectures on the subject, needless to say 
the bulk of the article is a rendition of the fruits of a long series of joint works with 
Jun-Muk Hwang, to whom the author wishes to express his thankfulness. 

2. Varieties of minimal rational tangents 

2.1. Minimal rational curves. — By a projective P1-fibered space v : Z —» B we 
mean an irreducible reduced projective variety Z equipped with a surjective holomor­
phic map v onto a projective variety B, such tha t the general fiber of v is an algebraic 
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curve of genus 0, i.e., isomorphic to the Riemann sphere P1. A projective manifold 

X is said to be uniruled if there exists a projective P1-fibered space v : Z —> B and 

a dominant holomorphic map (p : Z —> X onto X. By restricting v to a properly 

chosen subvariety of B of dimension equal to d im(X) — 1, without loss of generality 

we may assume tha t the dominant holomorphic map (p : Z —> X is generically finite. 

Replacing Z by its normalization we may also assume tha t Z is a projective manifold. 

By Miyaoka-Mori [38] (1986) any Fano manifold is uniruled. 

By a parametrized rational curve on a projective manifold X we mean a noncon-

stant holomorphic map / : P1 —> X from the Riemann sphere P1 into X. We say tha t 

two parametrized rational curves / i and / 2 are equivalent if and only if they are the 

same up to a re-parametrization of P1, i.e., if and only if there exists 7 G Aut(P1) such 

tha t / 2 = / 1 0 7 . By a rational curve we mean an equivalence class [/] of parametrized 

rational curves / : P1 —• X under this equivalence relation. We will sometimes also 

refer to the nontrivial image / (P1) = C (as a cycle) as a rational curve. 

Let X be a uniruled projective manifold and fix an ample line bundle L on X. By 

the degree of an algebraic curve C on X will will mean the degree of C with respect 

to L, i.e., the integral of a (positive) curvature form of L over C. Let tp : Z —• X 

be a generically finite dominant holomorphic map from a projective P1-fibered space 

v : Z —> X onto X where Z is nonsingular. From the surjectivity of tp : Z —• X 

it follows tha t for a general P1 -fiber E of v : Z —> X, A : P1 = E, and for the 

parametrized rational curve / : P1 —> X defined by / := (p o A, the holomorphic 

vector bundle / * T x must be spanned by global sections at a general point. By the 

Grothendieck Splitting Theorem any holomorphic vector bundle over P1 splits into 

the direct sum of holomorphic line bundles, and it follows tha t f*Tx is nonnegative 

in the sense tha t it is a direct sum of holomorphic line bundles of degree > 0. 

By a free rational curve on X we mean the equivalence class of a nonconstant 

holomorphic map / : P1 —> X such tha t f*Tx is nonnegative. From the above 

discussion it follows tha t any uniruled projective manifold admits a free rational curve. 

Conversely, if a projective manifold X admits a free rational curve parametrized as 

/ : P1 -> X, then H°(¥1J*TX) is spanned by global sections, and fl^P1, f*Tx) = 0 

since H1(F1iO(k)) = 0 whenever k > —1, so tha t there is no obstruction in the 

deformation of / : P1 —> X as a parametrized rational curve. By deforming / and 

considering Chow spaces it follows readily tha t there exists a projective Px-fibered 

space v : Z —• B such tha t Z dominates X. As a consequence, a projective manifold 

X is uniruled if and only if X admits a free rational curve. 

By a minimal rational curve on X we will mean a free rational curve of minimal 

degree among all free rational curves on X. The set of minimal rational curves can 

be given naturally the structure of a complex manifold, a connected component of 

which will be called a minimal rational component /C. A rational curve belonging to 
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/C will sometimes be called a /C-curve. The degree of /C, to be denoted by deg(/C), is 
the degree of one and hence any /C-curve. 

For a general reference on rational curves in Algebraic Geometry we refer the reader 
to Kollar [29]. The reader may also consult Hwang-Mok ([15], §2; [17], (1.1)) for basic 
facts on the deformation theory of rational curves relevant to our discussion. 

2.2. The universal family of /C-curves and the canonical double fibration. 
— Associated to (X, /C) there is the universal family p :U —> K of /C-curves, where U 
is smooth and p : U —• /C is a holomorphic P1-bundle, constructed as follows. Let H 
be the connected component of the space of all parametrized free rational curves / : 
P1 —• X such tha t K = W/Aut(P1). Since f*Tx is nonnegative, the obstruction group 
H1(F1,f*Tx) = 0, hence H carries naturally the structure of a complex manifold with 
tangent spaces Tf(H) = # ° ( P \ / *TX) . Recall tha t /C is the quotient of H by the 
group Aut(P1), which acts on H by setting 7 ( / ) = / 0 7 for 7 G Aut(P*) and / G U. By 
the minimality of /C any / G W must be generically injective, from which it follows tha t 
Aut(P*) acts effectively on H , so tha t K inherits the structure of a complex manifold 
with Tm(/C) = H0(F\f*Tx)/df(H°(F\TFi)). The canonical projection p : H K 
realizes H as a principal Aut(P1)-bundle over /C. Aut(P*) ^ S L ( 2 , C ) / { ± / } is a 3-
dimensional complex Lie group which acts transitively on P1, and we can represent 
P1 ^ Aut (P1) /Aut (P1;0) ) , as a homogeneous space, where Aut(P1;0)) C Aut(Px) 
is the (2-dimensional) isotropy subgroup at 0 G P1. Define U := 7 i /Aut (P1; 0). 
Associated to the principal Aut(P1)-bundle p : H K we have thus a holomorphic 
bundle of homogeneous spaces p : U -> K with fibers Aut (P1) /Aut (P1; 0)) = P1, 
which gives the universal family TT : U —•> /C. 

It can be proven tha t as a complex manifold /C is biholomorphic to a quasi-
projective manifold. In fact, there is a canonical injective holomorphic map from 
JC into the Chow space of X whose image is a dense Zariski-open subset /Co of a pro­
jective subvariety Q of some irreducible component of the Chow space of X. Thus, 
/C can be identified as the normalization of /Co and must itself be quasi-projective. 
From this identification the universal P1-bundle p : U —• /C can be compactified to a 
projective P1-fibered space. In particular, U is also quasi-projective. 

The fiber p-1(ft) = P1 of a point K G /C gives a copy of the Riemann sphere P1 
corresponding to the rational curve represented by K. From any choice of parametriza-
tion / : P1 —• X of «, a point on p_1(ft) gives a point of the cycle C = / (P1) C X 
determined by ft, and we have in fact a canonical holomorphic map p : U —> X 
which we call the evaluation map. From the nonnegativity of f*Tx it follows read­
ily tha t p : U —* X must be a holomorphic submersion. Thus, the universal family 
comes equipped with a canonical double fibration p : U —• /C, p : U —> X such tha t 
p(U) must contain a dense Zariski-open subset of X. As X is of Picard number 1, 
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any /C-curve must intersect any nontrivial divisor D, hence /C-curves must cover the 

complement of a subvariety Z c X o f codimension > 2; i.e., \x{U) D X — Z. 

2.3. /C-curves marked at a point. — Fix a point x G X and consider the set Hx 

of all holomorphic maps / : P1 —> X belonging to H such tha t / ( 0 ) = x. As a space 

of free rational curves marked at x, Hx carries naturally the structure of a complex 

manifold, as follows. The infinitesimal deformation of / G Hx as a parametrized 

rational curve marked at x is given by H°(F1J*TX (8) J0) , while the obstruction 

group to the deformation of / fixing the marking at x is given by i f1(P1, f*Tx ® Jo) , 

where Jo stands for the ideal sheaf defined by the reduced point 0 G P1. Since / * T x is 

nonnegative, f*Tx 0 Jo — /*Tx <8> O(-l) is a direct sum of holomorphic line bundles 

of degree > - 1 , and we still have Hl{¥x,pTx 0 Jo) = 0. Again Aut(P1;0) acts 

effectively on Wx, and we have a nonsingular quotient manifold Kx = W:c/Aut(P1; 0) 

serving as the base manifold of a holomorphic principal Aut(P1; 0)-bundle qx : Hx —• 

K,x. Through a general point x G X any rational curve of degree < deg(/C) must 

be free. It follows tha t /C-curves marked at such a point x cannot be decomposed 

into two or more irreducible components under deformations fixing the base point x. 

Thus, Kx must be compact, hence projective for a general point x € X. 

For a point x G X , although the complex structures on Jix and Ti arise from 

two distinct classification problems, set-theoretically Hx can still be identified with 

a subset of the complex manifold H. For every / G Hx the canonical inclusion 

i : Hx C H identifies the tangent space Tf(Hx) = H°(F1J*TX <8> Jo) as a vector 

subspace of H°(F1, f*Tx) = Tf(H) so tha t i : Hx C H is a holomorphic immersion, 

hence an embedding. We can therefore identify Hx as a complex submanifold of 

Ti. After this identification, in the construction of the universal family p : U —* /C, 

¡1 : U —• X the //-fiber Ux over any x G X is nothing other than 7Yx/Aut(P1; 0), so 

tha t JCX can be identified with Ux. On the other hand, p\ux : Ux —> /C need not be an 

embedding. In fact, it need not be bijective as a priori the cycle C = / (P1) underlying 

/ G Hx may be locally reducible at a;. At the same time, a simple calculation also 

shows tha t p\ux is an immersion at u G U precisely when the /C-curve K — p(u) 

is immersed at x := /x('u). Thus, it fails to be an immersion at a point u G Ux 

corresponding to a cusp on the minimal rational curve K = p(u). 

2.4. The tangent map and varieties of minimal rational tangents. — By 

Mori's Breaking-up Lemma, on a projective manifold X there does not exist any 

nontrivial algebraic family of rational curves fixing 2 distinct points. In fact, to each 

nontrivial algebraic 1-parameter family of rational curves fixing two distinct points 

one can associate a ruled surface 7r : S —• B over an algebraic curve B equipped with 

two disjoint holomorphic sections T0 and corresponding to the two distinct fixed 
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points. On the one hand, each of the two sections must have negative self-intersection 
number as it is an exceptional divisor on S. On the other hand, TQ = — as disjoint 
sections of a ruled surface, thus leading to a contradiction. 

Let now (X, K) be a uniruled projective manifold equipped with a minimal rational 
component. For x G X denote by Kx the moduli space of /C-curves marked at x. From 
Mori's Breaking-up Lemma one deduces (cf. Mok [39], Lemma (2.4.3), pp . 203ff.) 

Lemma 1. — For a general point x G X, a general member [/] G Kx is standard in 
the sense that f*Tx = 0 ( 2 ) 0 [0( l ) ]p 0 Oq for some nonnegative integers p and q. 

Proof. — Suppose otherwise. Then, a general /C-curve is not s tandard. Hence there 
exists a nonempty open subset W C H and a holomorphic vector field Z on W 
such tha t for every / G W, Z{f) vanishes at 0, oo G P1 and does not belong to 
df(H°(F1, Tpi)). Integrating Z and descending from H to /C we obtain some nontrivial 
holomorphic 1-parameter family {$t : t G A } of /C-curves passing through two distinct 
points x, y G X. Identifying /C as the normalization of a Zariski-open subset /Co of a 
projective subvariety Q of the Chow space of X , the set of /C-curves passing through x 
and y is naturally endowed the structure of a quasi-projective variety. The existence 
of a nontrivial holomorphic 1-parameter family of such curves implies therefore tha t 
there also exists a nontrivial algebraic 1-parameter family {tyt • t G B} of such curves. 
We may choose x such tha t any rational curve passing through x of degree < deg(/C) 
must be free, in which case any /C-curve passing through x cannot decompose under 
deformation fixing x, and the base curve B can be taken to be projective, leading to 
a contradiction with Mori's Breaking-up Lemma. • 

We have the following important notion of the tangent map and the associated 
varieties of minimal rational tangents. 

Definition 1 (the tangent map & VMRTs). — Let (X, /C) be a uniruled projective man­
ifold equipped with a minimal rational component K. Over a general point x G X we 
have a rational map called the tangent map rx : Kx —• FTX(X) defined by assigning 
each rational curve [/] marked and immersed at x to the complex line Cd/(To(P1)) C 
TX(X). The total transform Cx := rx{Kx) C FTX(X) is called the variety of minimal 
rational tangents, alias VMRT, of (X, K) at x. 

Note tha t a s tandard rational curve is immersed, since the natural map v : 0 ( 2 ) = 
TPi -> f*Tx = 0 ( 2 ) ® 0(l)]p ® Oq is injective at every point. For x G X a general 
point and [a] G Cx a smooth point such tha t a is tangent to a s tandard /C-curve 
I, assumed embedded for convenience, we write Pa for the positive par t ( 0 (2 ) 0 
0 ( 1 ) * % C TX(X) at x with respect to a splitting of Tx\i- The following result 
highlights the role of s tandard rational curves in relation to the tangent map. 
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Lemma 2. — Let (X, /C) be a uniruled projective manifold equipped with a minima^ 

rational component. Suppose x G X, and A G JCX is a marked K-curve which u 

immersed at its marking at x. Then, the tangent map rx : JCX —• FTX(X) is a holo­

morphic immersion at A if and only if the underlying K-curve is standard. Moreover, 

writing rx{\) = Ca, in the latter case we have T^(CX) = Pa/Ca. 

Proof — Parametrize A by / : P1 —• X such tha t / ( 0 ) = x. A tangent vector in 

T\(HX) is equivalently a holomorphic section a G H°(F1,f*Tx <S>2o). Write a := 

a mod df^F1) 0 J O ) . Let rj G ^ ( P 1 ) and write a := df(r)) G TX(X). Let T C X 

be a germ of holomorphic curve at x G X which is the image under / of the germ 

of P1 at 0. The germ of s at 0 corresponds to a section s in H°(T1Tx) vanishing at 

x. Extend s to a holomorphic vector field s on a neighborhood of x in X. Choose 

any holomorphic coordinate system at x G X and denote by V the flat connection 

defined by it. Va( s ) is independent of the extension s, and it is further independent 

of the choice of holomorphic coordinates since s(x) = 0. The differential of the 

tangent map drx at s G T\(JCX) is an element of Hom(TA(/Cx),T[oi]{FTx(X))). Now 

T[a](FTx(X)) = H o m ( C a , T x ( X ) / C a ) , so tha t we can interpret drx as an element oi 

Hom(T\(lCx) (8) Ca,T[a](PTa;(X))/Ca) canonically. In local coordinates we have 

drx(s)(a) = Va(s) mod C a . 

Thus s G Ker(drx) if and only if Va(s ) G C a , which is the case if and only if s vanishes 

to the order > 2 at x modulo C a . Hence Ker(drx) = 0 if and only if / G Hx C H is 

s tandard. The last statement in Lemma 2 follows readily from the proof. • 

By a line on a projective subvariety S C FN we will mean a projective line lying 

on S. Regarding minimal rational components and their VMRTs on a projective 

submanifold X c FN uniruled by lines we have 

Lemma 3. — Let X c P ^ be a projective submanifold equipped with the polarization 

inherited from the projective space, and K be a minimal rational component of X 

corresponding to a uniruling of X by lines. Then, at a general point x G X, the 

variety of minimal rational tangents Cx C FTX(X) is nonsingular, and the tangent 

map TX : Kx —• FTX(X) is a biholomorphism onto Cx. 

Proof — A /C-curve is a line I on X , and we have Tx\e C TFn\e ^ (9(2) 0 ^ ( l ) ^ - 1 . 

When £ is a free rational curve on X , Tx\i is a direct sum of holomorphic line bundles 

of degree > 0. Since 0 ( 2 ) = T£C Tx\u we conclude tha t Tx\£ ^ 0(2) 0 0(l)p 0 Oq 

for some nonnegative integers p and q. Now every /C-curve passing through a general 

point x is free, and the moduli space ICX of /C-curves marked at x is projective. By 

Lemma 2 the tangent map Tx : JCX —> FTX(X) is a holomorphic immersion. On the 

other hand, for each nonzero vector f G TX(X) C TX(FN) there is at most one line £ 
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on X tangent to £, so tha t rx must be injective. In other words, rx : K,x —> FTX(X) 

is a biholomorphism onto its image Cx, the VMRT at as desired. • 

While for projective submanifolds X C FN uniruled by lines the tangent map at a 

general point is an isomorphism, and the same remains t rue for all known examples, on 

a theoretical level the behavior of the tangent map on an abstract uniruled projective 

manifold (X, /C) is far from being fully understood. In Hwang-Mok [17] (1999) it was 

proven tha t the tangent map rx : Kx —» FTX(X) is birational under an additional 

non-degeneracy assumption on the Gauss map of the VMRT. On the other hand, the 

tangent map rx is holomorphic whenever every /C-curve marked at x is immersed at 

the marking. In 2002, Kebekus [26] showed by studying cusps of rational curves on 

X t ha t this is indeed the case at a general point x G X. He proved in fact tha t the 

tangent map is a finite holomorphic map at a general point x G X. In conjunction 

with [26] and Cho-Miyaoka-Shepherd-Barron [3], we proved 

Theorem 1 (Hwang-Mok [21]). — Let (X, /C) be a uniruled projective manifold 

equipped with a minimal rational component JC and x be a general point on X. 

Then, {JCX is projective and) the tangent map rx : JCX —> Cx is a finite birational 

holomorphic map onto its image. In other words, JCX is the normalization of the 

variety of minimal rational tangents Cx at a general point x G X. 

Remarks. — The results on the tangent map apply to a rational component /C when­

ever the variety of /C-tangents is projective at a general point. In the literature /C is 

referred to as a non-splitting family of rational curves on X. One may extend the 

notion in (2.1) of a minimal rational component to mean a rational component JC 

such tha t the variety of /C-tangents at a general point is projective. In this article we 

use the term 'minimal ' to mean minimality of degrees among free rational curves, but 

s tatements of results remain valid for the extended meaning of 'minimality' . 

2.5. Examples. — As first examples we consider the n-dimensional Fermat hyper-

surface X of degree d in Pn+1, where 1 < d < n. Thus, 

X [ZQ,ZI, • • • ,zn+i] £ p n + 1 . z0 + tw0)d H[ZQ,ZI,[ZQ, 

To determine the VMRT at a general point x = [ZQ, zi,..., zn+i] € X, it is equivalent 

to find all (wo,w\,..., wn+i) such tha t for every t € C, [zo+two, z\ +twi,..., zn+i + 

twn+i] 6 X. In other words, we have 

(z0 + tw0)d H + (zn+1 + twn+i)d = 0, i.e., 

(4 +••• + 4) + *(*o_1™o + • • • + 4+\wn+i) • d 

+ t2(zd-2wl + -.- + zdn-+lwl+1)-
d(d-l) 

2 
\----+td(wd + wf + --- + wdn+1)=0. 
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When (¿0, ¿ 1 , . . . , zn+i) is fixed, we get d + 1 homogeneous equations given by 

(b)fc -̂*wg + .-. + z ^ X + i ; o < f c < d 

The equation (b)o says tha t x — [20,21, • • • , 2n+i] lies on X . The equation (b)i says 

tha t the vector (wo, wi , • • • , tun+i) mod C(^o, ¿1, • • • , £n+i) is tangent to X at The 

d — 1 other equations describe Cx as the intersection of d — 1 hypersurfaces of degree 

2 ,3 , • • • , d in PTX(X) ^ Pn_1 . Geometrically the system of equations (b)fc, 0 < k < d, 

says tha t a line ^ touching X at a; to the order > d must necessarily lie on X. By 

Lemma 3, Cx is smooth for a general point x G X . The anti-canonical line bundle of 

Pn+1 is isomorphic to 0(n + 2). Since X C Pn+1 is of degree d, the normal bundle 

iVx|p™+i on X is isomorphic to the restriction of 0(d) to X . By the Adjunction 

Formula, de t (Tx) = 0(n + 2 - d)\x. Over a line ^ C X C Pn+1 which is free as 

a rational curve we have Tx\t = 0 ( 2 ) 0 ( 0 ( l ) ) n _ d 0 Od~l by the proof of Lemma 

3, so tha t the VMRT at a general point of X is of dimension n — d. It follows tha t 

for 1 < d < n, the degree-d Fermat hypersurface X C Pn+1 is uniruled by lines 

such tha t the VMRT at a general point is the (n — d)-dimensional smooth complete 

intersection of d — 1 hypersurfaces on PTX(X) = Pn_1 , which is necessarily connected 

whenever n — d > 0. Wi th exactly the same argument the VMRT at a general point 

of any smooth Fano hypersurface of Pn+1 of degree d < n — 1 must necessarily be a 

(connected) smooth complete intersection of dimension n — d> 1. 

Note tha t in general for any smooth hypersurface X C Pn+1, K^1 = G{n + 2 — d) 

is in fact ample for 1 < d < n + 1. In the case where d = n + 1, the minimal rational 

curves are however no longer lines. They are quadric curves C of Pn+1 which lie on 

X , and Tx\c = 0 ( 2 ) 0 £>n-1, so tha t VMRTs are O-dimensional at a general point. 

Table 1 gives a description of the (smooth) VMRT at a general point of a smooth 

Fano hypersurface of degree < n in Pn+1 highlighting some examples of special inter­

est. Here we denote by X ^ a smooth hypersurface of degree d in Pn+1. 

The first problem tha t we treated in our programme is the question of rigidity 

of irreducible Hermitian symmetric spaces under Kahler deformation (Hwang-Mok 

[15]) by a s tudy of deformation of their VMRTs. Table 2, taken from [15] ((2.1), 

p. 440), gives their VMRTs. In this table G s tands for the identity component of 

the isometry group of (5 , #), where g is a canonical Kahler-Einstein metric on 5 , and 

K C G denotes the isotropy subgroup at 0 G S. G(p, q) s tands for the Grassmannian 

of p-planes in Cp+9, G7 / (n ,n ) c G ( n , n ) the complex submanifold of n-planes in C2n 

isotropic with respect to a non-degenerate symmetric form, G7/(n , n) C G(n, n) the 

complex submanifold of n-planes in C2n isotropic with respect to a symplectic form. 

O stands for the octonions. 
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X VMRT Cx at a general point 

pn jpn — 1 

Qn QU-2 c p n - 1 

smooth cubic C Pn+1 quadric D cubic in Pn 1 

X¡ CP6 if3-surfaces 

Xn c p n + 1 n\ points 

MXN c p n + l 5 d < n codim—(d — 1) complete intersection C Pn 1 

of hypersurfaces of degrees 2 , . . . , d 

TABLE 1. V M R T at a general point for smooth hypersurfaces of degree 

D < N in Pn+1 

Type G K G/K = S Co Embedding 

I \sU(p + q) S{U{p) x U(q)) G(p,q) pp - i x pq - i Segre 

II SO(2n) U(n) GH(n,n) G ( 2 , n - 2 ) Plücker 

III Sp{n) U(n) Gni(n,n) pn —1 Veronese 

IV SO(n + 2) SO(n) x 5 0 ( 2 ) Qn Qn~2 by 0(1) 

V 
E6 

Spin(lO) x [7(1) P2(0) ®RC G /7(5,5) by 0(1) 

VI E7 E6 x ¡7(1) exceptional P2(0) 0 R C Severi 

TABLE 2 . Table of irreducible Hermitian symmetric spaces S of the com­

pact type and their VMRTs Co 

3. Linearly degenerate VMRTs 

3.1. Distributions and differential systems generated by VMRTs. — Let 

(X, /C) be a uniruled projective manifold equipped with a minimal rational component. 

Suppose the VMRT Cx at a general point x G X is irreducible and linearly degenerate. 

Then, it spans a meromorphic distribution W C Tx- The singularity set Sing(W) is of 

codimension > 2 in X. Suppose W is integrable, then a leaf L of W is quasi-projective, 

and its compactification L can be obtained as follows. Pick a point x G X — Sing(VF). 

Consider the subvariety V\(x) swept out by all /C-curves passing through x. Enlarge 

Vi(x) to obtain V2(x) by adjoining all minimal rational curves passing through general 

points on V\(x) and taking topological closure. Repeating this process a finite number 

of times, we obtain a compactification of the leaf Lx through x (Hwang-Mok [15], 

Proposition 11). By definition, any /C-curve £Q emanating from x lies on Lx, and 

ASTÉRISQUE 322 



GEOMETRIC STRUCTURES DEFINED BY VMRTS 165 

by the deformation theory of rational curves £o can always be deformed to avoid the 

set Sing(VF) which is of codimension > 2 in X , yielding a /C-curve £ disjoint from a 

hypersurface Tí C X swept out by compactifications of leaves of W. This is possible 

only if X is of Picard number > 2. We have in fact 

Proposition 1. — Let (X, /C) be a Fano manifold of Picard number 1. Suppose for a 

general point x G X the associated variety of minimal rational tangents Cx is irre­

ducible and linearly degenerate. Then, the distribution W spanned at a general point 

by Cx cannot be integrable. More generally, any proper distribution D on X containing 

W cannot be integrable. 

In general, from W C X one can derive a finite series of distributions W = W\ C 

W2 C • • • C Wk = Wk+i = • • • where Wi is defined by induction by setting W¿+i = 

[Wj, Wj] as sheaves. We have thus the weak derived system generated by W. In case 

X is of Picard number 1, Proposition 1 applies to D = Wk to show tha t the tangent 

bundle can be recovered from W by successively taking Lie brackets. 

3.2. Integrability of distributions via projective geometry of VMRTs. — 
While [(3.1), Proposition 1] forces a distribution spanned by the VMRT at a general 

point to be non-integrable when the uniruled projective manifold X is of Picard 

number 1, we prove on the other hand tha t sufficient conditions for integrability of 

W can be deduced from projective-geometric properties of VMRTs. The argument 

goes as follows. The lack of integrability of W is encoded in the Probenius form 

<p : A2W —> Tx/W, and integrability amounts to the vanishing of ip by the Probenius 

Theorem. To prove tha t W is integrable it suffices to produce at a general point 

x G X enough elements of Ker((px) to span A2WX. In particular, if E is a germ 

of complex-analytic integral surface of W passing through x and TX(E) is spanned 

by rji and 772, then 771 A 772 G Ker(<px). We consider a s tandard /C-curve i passing 

through x and smooth at x, and take a smooth point XQ G I distinct from x. Then, 

any pencil of rational curves emanating from XQ including £ and smooth along £ 

produces a germ of surface E at x. Since the pencil fixes y,Tx(E) is spanned by 

Tx£ = Ca and a vector belonging to Pa. Thus TX(E) c Pa C S p a n ^ ) = Wx. An 

analogous statement holds for any y G E sufficiently close to x, implying tha t E is 

a germ of integral surface of W at x. By linear algebra as explained in Hwang-Mok 

([14], §2) we derived the following sufficient conditions for the integrability of W in 

terms of projective-geometric properties of VMRTs. For the formulation, given a 

finite-dimensional complex vector space V and any irreducible subvariety Z C PV, its 

tangent variety T C ¥(A2V) is by definition the closure of the set of elements [a A /3] 

where a is a smooth point of Z and j3 G Ta(Z). We have 
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Proposition 2. — The distribution W is integrable if the tangent variety Tx C 
P(A2W/X) of Cx is linearly non-degenerate for a general point x G X. The latter is in 
particular the case whenever the second fundamental form < 7 [ a ] : T[aj(Cx) xT[aj(Cx) —• 
Ncx\FWx,[ct] °& a general smooth point [a] of Cx is surjective. 

Proposition 3. — Suppose at a general point x G X the variety of minimal rational 
tangents Cx C FW C FTX(X) is irreducible and smooth anddim(Cx) > y rank ( V F ) - l . 
Then, W is integrable. 

3.3. Fano homogeneous contact manifolds. — From the perspective of geo­
metric structures associated to VMRTs, after the irreducible Hermitian symmetric 
spaces of the compact type one naturally turns to rational homogeneous manifolds 
S = G/P of Picard number 1. Here G is simple and P C G is a maximal parabolic, 
corresponding to the choice of a simple root in the Dynkin diagram of the Lie alge­
bra g of G. For the background on rational homogeneous manifolds, especially root 
space decompositions, graded Lie algebras and G-invariant distributions we refer the 
reader to Hwang-Mok ([16], (3.3)-(3.4)). Among them, the Fano homogeneous con­
tact manifolds were studied in relation to rigidity under Kahler deformation in Hwang 
[10] (1997). On a complex manifold X of dimension > 2, a holomorphic distribution 
W C Tx is said to be a contact distribution if and only if W is of co-rank 1 and the 
Frobenius form ip : A2W —> Tx/W is non-degenerate at every point x G X. 

For the classification of Fano homogeneous contact manifolds we follow Boothby 
[1]. In the case of g = Ak, k > 2, S is of Picard number 2, S = FT*k. For the case of 
g = Ck we have S = P2fc_1 as a complex manifold. These cases will be excluded. For 
any other simple complex Lie algebra g there is a unique choice of a long simple root in 
the Dynkin diagram of £j, corresponding to a choice of a maximal parabolic subalgebra 
peg, such tha t the associated rational homogeneous manifold S = G/P is of contact 
type. We write S = K(g). In Table 3 we list the relevant Fano homogeneous contact 
manifolds of Picard number 1 according to the classification of with information on 
the Levi factor q C p, and a description of the VMRT Co C PWo as given in Hwang 
([10], Proposition 5). 

As examples of Fano homogeneous contact manifolds described in geometric terms 
consider those arising from hyperquadrics as follows. For the hyperquadric Qn of 
dimension n > 5 consider the minimal rational component / C ( Q N ) , i.e., the moduli 
space of lines £ on Q N , which is a rational homogeneous manifold. We have TQ™^ = 
0 ( 2 ) 0 ( 0 ( l ) ) n _ 2 0 ( 9 for every £ G / C ( Q N ) . The normal bundle Ne]Qn ^ ( 0 ( l ) ) n - 2 0 0 . 
At any £ G K,(Qn) the tangent space T^{K{Qn)) can be identified with the vector space 
H°(£, Ni\Qn) and it contains a vector subspace № ( £ , (0 ( l ) )n~2) ) of codimension 1 

which defines, as £ varies, a holomorphic distribution V C T^Qn) of co-rank 1. Since 
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9 q Co Embedding 

Bk Ax x Bk-2 P1 x Q2k~5 Segre* 

Dk A1 x Dk-2 p i x Q 2 f c - 6 Segre* 

G2 A1 p i by 0 ( 3 ) 

F4 Cs G7/(3,3) by 0 ( 1 ) 

E6 A5 

E7 D6 

G(3,3) 

G/7(6,6) 

by 0 ( 1 ) 

by 0 ( 1 ) 

Es E? exceptional** by 0 ( 1 ) 

* Here k > 3 for q = Bk, k > 4 for g = D/e. The embedding arises from the Segre 

embedding of P1 x Pm into P2m+1 and the canonical embedding Qm_1 C Pm. 

** In this case CO is biholomorphic to the irreducible compact Hermitian symmetric space 

of type VI pertaining to E7, of dimension 27. 

TABLE 3. Table of Fano contact homogeneous spaces S ¥ P2n_1 of Picard 

number 1 and their varieties of minimal rational tangents 

ft > 5, Cx = Qn~2 is of Picard number 1, and the base manifold JC(Qn) of the double 

fibration 11 : U —> Qnp : U —> JC(Qn) is also of Picard number 1. For any x G Qn 

any vector a tangent to Cx arises from an element of H°(£,N¿\Qn) vanishing at 

thus taking values in ((D(l))n-2, and Cx projects under the canonical map p' : C —> K 

to a submanifold Qx G JC(Qn) which is tangent to V. The VMRT Cx is isomorphic 

to Qn~2 = Pn_1, and it contains a projective line A whose image under p' gives a 

minimal rational curve on K,{Qn). (For this n > 4 is enough.) Thus, any minimal 

rational curve on K(Qn) is tangent to V. From [(3.1), Proposition 1], V C 3jc(Qn) 

is not integrable. Qn is associated to the classical groups G of type Bk or for 

which every rational homogeneous manifold S = G / P of Picard number 1 has at 

most 1 proper G-invariant distribution. Hence, denoting by (p : A2T> —> T^Q^/V 

the Frobenius form, the kernel Ker(^) C P must be trivial, and we conclude tha t the 

Frobenius form (p defines a twisted symplectic form on the distribution V, and K{Qn) 

is a Fano homogeneous contact manifold of Picard number 1. 

For any I G /C(Qn), any x G £, Tx(£) = C a , FTe(Qx)nFT£(IC(Qn)) parametrizes the 

space of lines on Cx passing through [a], and it defines a hyperquadric in P7]a](Cx), 

of dimension n — 4. As the point x varies over £, we recover a P1-family of disjoint 

(n - 4)-dimensional hyperquadrics which exhausts the VMRT C'e G FT£()C(Qn)). This 
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family is actually isomorphic to the product P1 x Qn 4. (This product structure can 

be explained in terms of the parallel t ransport of second fundamental forms along £ to 

be given in (6.2).) For n = 2k - 1 with k > 3, /C(Qn) - K(Bk) and C'£^¥1x Q2k~5; 

for n = 2k - 2 with k > 4 we have K(Qn) = K{Dk) and P1 x Q2k~6. 

Excepting for P2n_1 of dimension > 3, which we exclude, for any Fano homogeneous 

contact manifold (S,D) of Picard number 1, dim(S) = 2s + 1, the line bundle L := 

Ts/D is isomorphic to 0 ( 1 ) , the positive generator of the Picard group Pic(S) . Thus 

for any minimal rational curve I on 5 , = 0 ( 2 ) must project to 0 on L — Ts/D, so 

tha t £ is tangent to D. Over a minimal rational curve £ on S we have D\t = 0 ( 2 ) 0 

( 0 ( 1 ) ) P ® 0 P 0 0 ( — 1 ) by root space decomposition. All known Fano contact manifolds 

are homogeneous. The question of characterization of Fano contact manifolds (X, D) 

is known to be reducible to the essential case where X is of Picard number 1 and where 

L := Tx/D ^ 0 ( 1 ) (Kebekus-Peternell-Sommese-Wisniewski [27] (2000)). Kebekus 

[25] (2001) proved in this case tha t X is uniruled by degree-1 curves. From elementary 

consideration involving splitting types and the non-degeneracy of the Frobenius form 

<p : A2D —• L one deduces readily tha t all minimal rational curves £ passing through 

a general point x are s tandard. In [25] it was proven tha t £ is actually smooth. Thus, 

Cx C ¥TX(X) is a Lagrangian submanifold with respect to the symplectic form (px. 

It is tempting to believe tha t the complex structure of X can be recovered from its 

VMRTs. 

Conjecture 1. — Let X be a Fano contact manifold. Then, X is biholomorphic to a 

Fano homogeneous contact manifold. 

Confirmation of Conjecture 1 would imply the same for the LeBrun-Salamon Con­

jecture (LeBrun [34], 1995), according to which a compact quaternionic Kahler mani­

fold (M, h) of positive scalar curvature is Riemannian symmetric. The link is given by 

the twistor construction, by which one obtains from (M, h) a twistor space X which 

admits the s tructure of a Fano contact manifold. We note tha t for a Fano contact 

manifold X of Picard number 1 other than p2n_15 the contact s tructure is unique 

since the contact distribution is spanned at a general point by the VMRT. 

Among Fano homogeneous contact manifolds of Picard number 1 other than p2n-15 

the one of smallest dimension is i f (G2), of dimension 5, where the VMRT is the cubic 

rational curve in FDX = P3 for the contact distribution D of rank 4. Other than 

the projective plane P2 and the 3-dimensional hyperquadric Q3, K(G2) is the only 

rational homogeneous manifold of Picard number 1 with 1-dimensional VMRTs. 

3.4. Applications to rigidity under Kahler deformation. — Regarding the 
problem of rigidity of rational homogeneous manifolds S = G/P of Picard number 

1 under Kahler deformation, the first result was established for the special case of 
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irreducible Hermitian symmetric spaces of the compact type in Hwang-Mok ([15], 

1998). After a series of articles we have now settled the problem, as follows. 

Theorem 2 (Hwang-Mok [23]). — Let S = G/P be a rational homogeneous manifold 

of Picard number 1. Let n : X —> A := {t G C, \t\ < 1} be a regular family of projective 

manifolds such that Xt := is biholomorphic to S for t ^ 0. Then, Xo is also 

biholomorphic to 5 . 

S = G/P is determined by the choice of a simple root in the Dynkin diagram. 

When it is a long root, considerations on integrability of distributions spanned by or 

derived from VMRTs enter in an essential way. In the case of irreducible Hermitian 

symmetric spaces 5 , excluding the obvious case of PN, we make use of 5-structures (cf. 

(4.2)). An 5-structure on a complex manifold M can be equivalently defined by the 

varieties of highest weight tangents 7r : W ( M ) —• M , and in the case of M = 5 , the 

latter agrees with the fibered space n : C —• 5 of VMRTs. The idea is to consider the 

VMRT CXO(XQ) at a general point of X0. Suppose CXo(Xo) c PTXo(X0) is congruent 

to the model Co C PTQ (5 ) . Prom closedness of the flatness condition (cf. (4.3)) the 

5-structure at x$ G Xo is flat. By Matsushima-Morimoto [35] the moduli space of 

projective submanifolds A C FV congruent to Co C PT0(5) is isomorphic to an affine 

algebraic variety. Let E C Xo be the singularity set of the 5-structure defined at 

general points of X Q . Since E C X is of codimension > 2 we have by [35] Hartogs 

extension of 5-structures on the relative tangent bundle of TT : X —> A, and Xo carries 

a flat 5-structure, implying tha t Xo is isomorphic to the model space 5 from Ochiai's 

Theorem [47] on 5-structures (cf. (4.2) here) and the method of developing maps. 

Thus it remains to identify the VMRT at a general point xo G XQ with tha t of 

the model space. For t G A, at xt G Xt denote by JCXt the moduli space of minimal 

rational curves marked at Xt. For a generic choice of holomorphic section a : A —> X, 

as t varies over A, {ICa^} constitutes a regular family of projective manifolds such 

tha t lCa(t) — Co(5) for t t£ 0. Noting tha t Co(5) is itself a Hermitian symmetric 

space (cf. (2.5)), irreducible except in the case of the Grassmannian, by an inductive 

argument coupled with cohomological considerations in the case of the Grassmannian, 

/CA(0) remains biholomorphically equivalent to Co (5) . To reconstruct an 5-structure 

on Xo it remains to examine the tangent map rCT(0) : /CA(0) —» PTcr(0)(^o)- From 

the rigidity of JCa^ at t = 0, degeneration of VMRTs can only arise from a linear 

projection on the model Co(5). If this happens at a general point of XQ , we obtain a 

distribution W C Tx0 generated at a general point by its VMRT. On the one hand, 

by [(3.1), Proposition 1] W is not integrable since Xo is of Picard number 1. On the 

other hand, from the description of Co (5) as the closure of the graph of a vector-valued 

quadratic polynomial, at any [a] G Co (5) the second fundamental form a is surjective. 

By linear projection the same remains t rue for Ca{o){Xo)-> and by [(3.2), Proposition 
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2] the distribution W C Tx0 is integrable, yielding a contradiction and proving tha t 

the VMRT is linearly non-degenerate at a general point of X Q , implying X0 = S. 

In the case where 5 is a Fano homogeneous contact manifold other than p2n-15 

the VMRT Co (S) c P£>0, where D C Ts is the contact distribution. The kernel of 

the Frobenius form ip0 : A2D0 —> T0(S)/Do = C is of codimension 1. Theorem 2 

for the contact case was established in Hwang [10]. Following the same scheme as 

in the Hermitian symmetric case, the problem reduces to showing tha t for a generic 

choice of a holomorphic section a : A —• X, the linear span Wa(0) of C£7(0)(X0) is of 

codimension 1, and C£7(o)(X0) C PWCT(0) is congruent to the model C0(5) C PZ>o- In 

fact, granting this one can recover the structure of a Fano contact manifold on the 

central fiber Xo, and we have Xo = S by the local rigidity result of LeBrun [34] for 

Fano contact manifolds. It remains to rule out degeneration of VMRTs at a general 

point xo G Xo corresponding to a proper linear projection of Co (S). Such a linear 

projection cannot occur, because the second fundamental form cro of Co C PL>o at 

[a] G Co(S) has image of codimension 1, and any proper linear projection \ °f Co(S) 

renders the second fundamental form surjective at a general point [/?] of the image 

x(Co(S)). In other words, if the VMRT at a general point on X0 were more linearly 

degenerate than the model case, the distribution W on Xo would become integrable, 

violating [(3.2), Proposition 2]. 

Given a distribution on a complex manifold, one can define a differential system 

by successively taking Lie brackets. On a uniruled projective manifold (X, /C) with 

an irreducible and linearly degenerate VMRT a general point, the distribution W 

spanned by VMRTs gives rise to such a differential system. When S = G/P is 

defined by a long simple root but is neither of the symmetric nor of the contact 

type, Theorem 2 was solved by Hwang-Mok ([19], 2001). We make use of the work 

of Yamaguchi [51] on symbol algebras arising from differential systems on rational 

homogeneous manifolds. Following the same scheme of proof for Theorem 2 as above 

and making use of [51], the key issue is to prove tha t the differential system on the 

central fiber derived from the VMRTs is isomorphic to tha t of the model space. The 

VMRTs are tangents to minimal rational curves, and the argument using pencils of 

minimal rational curves in (3.2) produces elements in the kernel of the Frobenius 

form (px : K2WXQ —• TXQ(Xo) /WXo at a general point Xo G X Q . We can consider the 

universal Lie algebra defined by taking elements of WXQ as generators, and by taking 

the relations to be those generated by the argument of pencils of minimal rational 

curves in (3.2). Using Serre relations, we show tha t this universal Lie algebra is 

isomorphic to the symbol algebra at 0 G S defined by To (S) as a nilpotent algebra. 

In particular, proper linear projection of Co (S) will yield a distribution such tha t 

the maximal distribution obtained by successively taking Lie brackets, which is by 

definition integrable, remains a proper distribution W$ C TxQ- This violates [(3.2), 
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Proposition 1] and solves the key difficulty of Theorem 2 for the long root case being 

considered. 

The method of using distributions associated to VMRTs does not in general work 

for the short root case. In all remaining cases one imitates the same scheme of proof, 

but in a typical case defined by a short root the key difficulty occurs after we already 

know tha t the VMRT at a general point of the central fiber agrees with tha t of the 

model space. New ideas are needed to complete the proof of Theorem 2. In (4.4) 

we will examine the degeneration of the Lie algebras of holomorphic vector fields 

associated to TT : X —• A by resorting to a study of prolongation of algebras of 

infinitesimal automorphisms associated to VMRTs. 

4. Holomorphic G-structures and prolongations associated to VMRTs 

4.1. Holomorphic conformal structures. — By a holomorphic metric on a com­

plex manifold M we mean a nowhere degenerate holomorphic symmetric 2-tensor. In 

local holomorphic coordinates (zi), we have g = gij(z)dzl®dzi sucn tha t det(gij)(z) 

is nowhere zero. For x G M , a tangent vector a G TX(M) is called a null vector if 

and only if g(a, a) = 0. The space Mx of null vectors at x is called the null cone at 

x. It corresponds to a hyperquadric Qx C FTX(M) which we call the variety of null 

tangents. On (M,g) there is a unique holomorphic torsion-free connection V such 

tha t V# = 0 on M , analogous to the Levi-Civita connection in Riemannian geometry, 

given by the same formula 

1 ij ~ 
1 

£ 

gM dgu 
dzj 

dgu 
dzi 

dgij 

dze 

for the Riemann-Christ off el symbols (T^-). On a complex manifold M two holomor­

phic metrics g and g on are said to be conformally equivalent to each other if and 

only if there exists a nowhere vanishing holomorphic function A such tha t g — Xg. 

The Riemann-Christoffel symbols (rfj) of g are related to those of g by 

ij 
1 

2X9 
H£ < d 

\dzj 
*9u) + Q^SX9ji) ~ Q^^j\ 

= TK 4 
I>3 

1 

2 

d 

dzj 
log A 4 

1 

2 

d 

dzi 
log A 

1 

2 
£ 

9M 
d 

dz£ 
log A 9ij • 

A (parametrized) complex geodesic on M is a nonconstant holomorphic map 7 : D —• 

M defined on some domain D c C satisfying in analogy to geodesies in Riemannian 

geometry the second order differential equation 

d27 

dt2 
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Replacing g by g = Xg we have 

¿>27 
dt2 r77 = (di loS A)7 

1 

2 
ù*$ 

*$ù a 
ù*$ù 

log A #77 ' 

where 7 s tands for In invariant form the differential equation is given by V77 = 0. 

A complex geodesic 7 is called a null geodesic if and only if j(t) lies on the null cone 

jV7(t) for every t G D. Since V# = 0, for a complex geodesic #77 is a constant. In 

particular, 7 is a null geodesic if and only if 7 is a null vector at one point. Suppose 7 

is a null geodesic on (M,g). Then, with respect to the holomorphic metric g we have 

¿^7 

at2 
- r 

1 77 
(d7 log A)7 . 

Write f(t) := d7logA(£). At a point to G D , making a local holomorphic change of 

variable s = s(t) at ¿0 and writing t = (p(s),^(t) = p(s), we have 

d2fi 

ds2 

=$ dp 

yds ds = <p'(sY-
ah 
at2 

[ZQ,ZI, 
dj 

dt 
\-<p\a)2T¥l = v"(s) + {<p'(s)2f(<p(t))) 

$7 

at 

Thus, making a change of variables by solving by means of power series the second 

order differential equation ip"{s) + ((p'(s)2f((p(s))) = 0 admits a unique solution 

subject to a choice of so = y~l{to) and a choice of <¿/(so). In other words, a germ 

of null geodesic on (M,g) can be re-parametrized to give a germ of null geodesic 

on (M,g). We will sometimes speak of a complex geodesic to mean the image of a 

parametrized complex geodesic. In this sense, the space of null geodesies on (M, g) is 

a property of the conformai equivalence class of g. 

By a holomorphic conformai s tructure on M we will mean a holomorphic line 

subbundle A c S'2T^f, generated at each point by a non-degenerate holomorphic 

symmetric 2-tensor. Equivalently, it is given by the da ta (t/a, ga)aeA consisting of 

holomorphic metrics ga on open subsets Ua covering M such tha t over the non-empty 

overlaps Uap = UanUp, ga and g@ are conformally equivalent. A holomorphic confor­

mai s tructure on M is equivalently defined by the fibered space of varieties of null tan­

gents 7T : Q —• M, and we will speak of (M, Q) as a complex manifold equipped with 

a holomorphic conformai structure. Each null geodesic lifts to a local holomorphic 

curve on Q by sending a point *y(t) to [y(i)] G Q[7(t)], which we call the tautological 

lifting, and we have a 1-dimensional holomorphic foliation on (M, Q) by liftings of 

null geodesies. In Riemannian geometry, for computations at a given base point one 

often makes use of local coordinates with respect to which the Riemann-Christ off el 

symbols ( r * - ) vanish at the base point 0. The proof of existence of such coordinates 

works verbatim in the holomorphic situation. Starting with a given holomorphic local 

coordinate system (ZÍ) at a point x G M , z(x) = 0, such tha t gij(0) = ¿¿j, we intro­

duce a new holomorphic coordinate system (vjj) such tha t w(0) = 0 and ^ - ( 0 ) = . 
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Writing 

kcc 

1 gijdz1 0 dz^ = 
k,£ 

hkedwk 0 dwe , hke = 

*,3 

9IJ 

ù*$ 

dwk 

dzj 
^ù$ 

dhk£ 

dws 
(0) 

dgki 
dzs 

(0) 

[ZQ,ZI, 

dwsdwk 
-(0) 

d2zk 

dwsdw£ 
( 0 ) . 

Now choose (wk) such tha t [ZQ,ZI, [ZQ,ZI,[ZQ,Z where = cks. Then, setting 

ù*$ 1 

2 

m:ù 

*ù* 
daks 
dz£ 

dgS£ 
dzk 

(0) = -ri(o). 

we conclude tha t ^ ^ ( 0 ) = 0, and as a consequence r^-(0) = 0 in w coordinates. 

In Riemannian geometry for a given base point x there is a privileged coordinate 

system adapted to x given by the geodesic normal coordinates in terms of which 

in particular the Riemann-Christoffel symbols vanish at x. The notion of geodesic 

normal coordinates generalizes in the setting of holomorphic metrics. 

To start with we note tha t complex geodesies can be re-parametrized by a rescaling 

of the domain variable. Let D C C be a domain containing 0, x G M , and 7 : D —» M 

be a parametrized complex geodesic such tha t 7(0) = x. Then, given any nonzero 

complex number A G C, the function S : -j^D —> M defined by S(t) = 7(At) is again 

a parametrized complex geodesic, as can be seen from the defining equation for a 

complex geodesic. On the total space n : L —> PTX(M) of the tautological line bundle 

over PTX(M), for a sufficiently small neighborhood U of FTX(M) one can define a 

holomorphic map $0 : U —> M, as follows. For [a] G PTX(M) and rj G L[a] = C a , 

x] — toe sufficiently small, let 3>oM De 7a (*) > where 7 is the unique germ of complex 

geodesic at 0 6 C such tha t 7(0) = x and |t=o = a- If we replace a by Aa for 

some nonzero A, then 7Aa(^) = 7«(*) fr°m uniqueness of geodesies with fixed initial 

value and initial first derivative. It follows tha t $(77) is well-defined, and we have a 

holomorphic map $0 : U —> M which collapses FTX(M) to x, from which it follows 

readily tha t $0 descends to a holomorphic map $ : Q —• M , where O is a neighborhood 

of 0 in Tx. From the construction we have readily d$(0) = id. (p is the holomorphic 

exponential map, and it defines holomorphic geodesic normal coordinates at x. Wi th 

respect to these coordinates, obviously the Riemann-Christoffel symbols vanish at 

0. Moreover, by the same proof as in Riemannian geometry, the holomorphic metric 

admits a power series expansion at 0 in terms of the curvature tensor and its covariant 

derivatives at x. In particular, if the curvature vanishes identically, the holomorphic 

geodesic normal coordinates define a coordinate system with respect to which the 

holomorphic metric tensor (gij) is of constant coefficients. We may take gij to be 6ij. 

Exactly as in Riemannian geometry, the curvature tensor Ri3k of (M,g) admits a 

decomposition Rijk£ = Aiju'+Wyk1, where W = (Wijk£) G # ° ( M , A2T^(g)End(TM)) 
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is the Bochner-Weyl tensor, which is unchanged when a holomorphic metric is mod­
ified by a conformal factor. A holomorphic metric is by definition conformally flat if 
and only if W = 0. A conformally flat holomorphic metric g is conformally equivalent 
to a holomorphic metric h with vanishing curvature, i.e., Rh — 0. Using holomorphic 
geodesic normal coordinates for h, we have seen tha t g is conformally flat if and only 
of it is given locally by gij = for an appropriate choice of holomorphic coordinates 
and for some non-zero holomorphic function A. 

4.2. G-structures associated to irreducible Hermitian symmetric spaces of 
rank > 2. — The model space of a holomorphic conformal s tructure is the hyper-
quadric Qn,n > 3. In terms of Harish-Chandra coordinates on an open Schubert 
cell U C Qn, the Euclidean translations on U extend to automorphisms of Qn, and 
the null-cones N on Qn form a constant family since they are invariant under auto­
morphisms of Qn, showing tha t the the holomorphic conformal s tructure on U C Qn 
is defined by the equivalence class of a holomorphic metric of constant coefficients. 
Holomorphic conformal structures will also be referred to as hyperquadric structures, 
or <2n-structures, in a sense tha t applies in general to Hermitian symmetric spaces 
S of the compact type and of rank > 2. In this general context the hyperquadric 
s tructure on Qn is said to be flat (or integrable) in the sense tha t there exists local 
holomorphic coordinates (the Harish-Chandra coordinates) with respect to which the 
null cones N C Tgn form constant families over the coordinate charts. 

The notion of a hyperquadric s tructure generalizes to 5-structures for any irre­
ducible Hermitian symmetric space of rank > 2. For the fibered space of null cones 
7T : N —» M of a complex manifold M equipped with a holomorphic conformal struc­
ture, there is an underlying complex Lie group consisting of linear transformations 
preserving a model light cone A/ó C V := To(Qn). The group is precisely the reductive 
complex Lie subgroup C • 0 ( n ; C) C GL(V). In general for any complex Lie subgroup 
G of GL(V) for a finite-dimensional complex vector space we have the notion of a 
(holomorphic) G-structure. For its formulation let n be a positive integer, V be an n-
dimensional complex vector space, and M be any n-dimensional complex manifold. In 
what follows all bundles are understood to be holomorphic. The frame bundle T{M) 
is a principal GL(F)-bundle with the fiber at x defined as Jr{M)x — Isom(V, TX(M)). 

Definition 2 (G-structure). — Let G C GL(V) be any complex Lie subgroup. A holo­
morphic G-structure is a G-principal subbundle Q(M) of T{M). An element ofQx(M) 
will be called a G-frame at x. For G C GL(V) we say thatQ(M) defines a holomorphic 
reduction of the tangent bundle to G. 

We have in general the notion of a flat G-structure, as follows. 
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Definition 3 (flat G-structure). — In terms of Euclidean coordinates we identify ^{UQ/) 

with the product G L ( y ) x Ua. We say that a G-structure Q(M) on M is flat if and 

only if there exists an atlas of charts {(pa : Ua —> V} such that the restriction Q(Ua) 

ofG(M) to Ua is the product G x Ua C GL(V) x Ua. 

Let (S,g) be an irreducible Hermitian symmetric space of the compact type and 

of rank > 2. Write Gc for the identity component of the isometry subgroup of (S,g), 

and K C Gc be the isotropy subgroup at a reference point 0 G S. As a rational 

homogeneous manifold S = G/P, where G is a complexification of Gc and P C S is 

a maximal parabolic subgroup. We have the Harish-Chandra decomposition of the 

Lie algebra g of G, g = m+ 0 £c 0 m~, in which tc is the complexification of the 

Lie algebra t of K. Regarding g as the Lie algebra of holomorphic vector fields on 

S, m~ stands for the vector space of holomorphic vector fields vanishing to the order 

> 2 at 0. P admits a Levi decomposition P = Kc • M~. Here Kc = exp(£c) is the 

reductive group consisting of automorphisms of S fixing 0, identified with a complex 

linear subgroup of GL(T0(S)) where 7 G Kc is mapped to (¿7(0), and M~ = exp(m~). 

S then carries a G-structure with G = Kc. Regarding .S-structures we have 

Theorem 3 (Ochiai [47]). — Let S be an irreducible Hermitian symmetric space of the 

compact type and of rank > 2. Let X be a compact simply-connected complex manifold 

with a flat S-structure. Then, X is biholomorphic to S. 

Kc acts irreducibly on the model vector space V = To (5) , and its highest weight 

orbits define a rational homogeneous manifold Wo C PTo(S), leading to a fibered 

space of highest weight tangents 7r : W —• M on any complex manifold equipped with 

a i fc-s t ructure . Let (Mi , Q\) resp. (M2, G2) be two complex manifolds equipped with 

G-structures, G = Kc, with fibered spaces of highest weight tangents TT\ : Wi —> Mi 

resp. 7T2 : W2 —> M2. A biholomorphism / : M i —> M2 preserves the G-structures if 

and only if it preserves the fibered spaces of highest weight tangents, i.e., /* Wi = W2. 

Denote by 0(1) the ample line bundle on S which is the positive generator of 

the Picard group of S. S can be embedded into the projective space by (9(1), e.g., 

the Grassmannian is embedded by the Plucker embedding. Wi th respect to this 

embedding, S is uniruled by lines. When S itself is considered as the underlying 

space of an 5-structure, the variety of highest weight tangents Wx agrees with the 

VMRT Cx at any x G S. This follows from the construction of lines on S by means 

of SL(2,C) orbits highest weight vectors (cf. Mok ([40], (1.4)) for a verification in 

the case of Grassmannians). To give a proof of Ochiai's Theorem using VMRTs, the 

starting point is the following result on local VMRT-preserving holomorphic maps. 

Lemma 4. — Let S be an irreducible Hermitian symmetric space of the compact type 

and of rank > 2. Let D,D' C S be nonempty connected open subsets of S and 
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/ : D —• D' be a VMRT-preserving biholomorphic map. Then, for any line on S 

intersecting D, f(L fl D) is an open subset of some line L' of S 

Proof. — Denote by 7r : C —> S the fibered space of VMRTs over 5 and by T the 

tautological foliation on C. By assumption [d/](C|£>) = C\D'> We have to show tha t 

for any line L c S such tha t L D D ^ 0 , [df](L C\C\D) is an integral curve of the 

tautological foliation on S. This is the case if and only if f*T agrees with T on C\D, 

i.e., if and only if the image under [df] of each L C\C\D is tangent at every point to 

the tautological lifting U of some line V. Equivalently this means tha t the image 

of each L fl D is tangent at every point to a line on S up to the second order. To 

prove Lemma 4 it suffices therefore to show tha t <92/(a,a) is proportional to df(a) 

for any minimal rational tangent [a]. In these coordinates IT : C —> S is a constant 

family. Let a , /3 be vectors in Co. (For a projective subvariety A C PN we denote 

by AC CN+1 - {0} its homogenization.) Then, d2f(a,(3) = da(df(/3*)), where 0* 

stands for the constant vector field on D such tha t /3^(0) = /3. Thus, d2f{a,f3) is the 

tangent at (3 to some holomorphic curve on Co, so tha t d2f(a,(3) G Pp = T^(Co)- By 

symmetry we have d2f(a,(3) G Pa H Pp. 

It remains to derive tha t for any a G C, d2f(a,a) — \a for some A. On a 

non-linear projective submanifold, by Zak's Theorem (Zak [52]) the Gauss map is 

non-degenerate at a general point. Thus, the kernel of the second fundamental form 

<j is trivial at a general point. In the case of Co C PTo(5), which is homogeneous as a 

projective submanifold, Ker(<j) = 0 everywhere. Equivalently, lifting to homogeniza-

tions, Ker(<ja) = C a for the (Euclidean) second fundamental form aa at any a G Co, 

and it remains for the proof of Lemma 4 to show tha t d2f(a,a) G Ker(5Q;) for any 

such a. Fix now a £ Co and let (3 = a(£), a (0) = a , vary holomorphically on Co in the 

complex parameter t. Writing £ = (a)(0) , from d2f(a,a(t)) G Pa it follows tha t 

92f(oi,0 e Pa. On the other hand dt(d2f(a(t),a(t))\t=0 = 2<92/(a,£), and hence 

V ^ ( 9 2 / ( a ( t ) , a(t))\t=o G Pa in terms of the Euclidean flat connection V on To(S). It 

follows tha t ÍJa(£, d2f(a, a ) ) = 0. Since £ can be chosen to be any tangent vector in 

Ta(Co) = Pa, we conclude tha t 9 2 / ( a , a ) G Ker(5a) , and we are done. • 

By means of Lemma 4 the mapping / : D —> D' can be analytically continued to 

give an automorphism of S. The idea is to pass to the moduli space K of lines. For 

each x G S denote by Qx C /C the projective submanifold consisting of lines passing 

through x. We may assume D to be convex in Harish-Chandra coordinates. For any 

i G K sufficiently close to Qx, i fl D is non-empty and connected, and / ( ¿ fl £>) is 

an open subset of some line £'. Thus, for a sufficiently small open neighborhood U 

of Qx in /C, / induces a holomorphic map : U —• /C. The problem of analytic 

continuation can be solved first by meromorphically extending to F$ : K, —> K and 

then by recovering F : S —• S by considering a point y G S as the intersection of 
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all lines passing through it, and by defining f{y) := f] {f^(£) : y G £} for a general 

point y G S. The meromorphic extension of f$ to F$ is plausible because U is a 

'big' open set in an analytic sense, as it contains the projective subvarieties Qy for 

y sufficiently close to x. This latter extension problem can be solved by methods of 

Hartogs extension as done in Mok-Tsai [44]. The extension F : S —> S thus obtained 

may have singularities, but they are proven to be removable by arguments involving 

deformation theory of rational curves (cf. Mok [40], (2.4)). 

4.3. Flatness of G-structures via VMRTs. — Let V be a fixed n-dimensional 

complex vector space and G C GL(V) be a connected complex Lie subgroup. Let X 

be an n-dimensional complex manifold endowed with a G-structure Q C F(X). We 

examine necessary and sufficient conditions for the G-structure to be flat. Recall tha t 

the G-structure Q is flat if local holomorphic trivializations of Q can be realized by 

choices of local holomorphic coordinates on X. Flatness imposes therefore differential 

constraints on (X, (?). The problem of identifying flat G-structures was solved in 

terms of obstructions to prolongations of G-structures (cf. Guillemin [4]). 

Given a G-structure (X, (?) and a biholomorphic map f : X —> Y onto another 

complex manifold Y, we have an induced G-structure (Y, /*(?). Let (X, (?) and (X ' , Q') 

be two complex manifolds endowed with G-structures. For x G X denote by (X, x) the 

germ of complex manifolds defined by X at a;, etc. A germ of local biholomorphism 

/ : (X,x) —> (X',xf) is said to be (0-th order) structure-preserving if (f*G)x> = G'x>> 

For k a positive integer, / is said to be k-th order structure-preserving if furthermore 

/*(? is tangent to Q' along G'x to an order > k. This notion depends only on the (fc+1)-

jet of / . For k > 0 the G-structure (X, G) is said to be fc-flat at x if there exists a local 

biholomorphism / : (X, x) —• (V, 0) which is k-th order structure-preserving, when V 

is endowed with the trivial G-structure V x G. 

When (X, (?) is uniformly fc-flat, i.e., fc-flat at every point x G X , one can de­

fine in a canonical way some structure function ck on some prolongation bundle over 

(?, such tha t ck = 0 if and only if (X, (?) is uniformly (A; + l)-flat (Guillemin [5], 

Cor. to Theorem 4.1). By the Cartan-Kahler Theorem (Singer-Sternberg [49]) a 

G-structure is flat if and only if it is fc-flat for every integer k > 0. In the case 

where G is reductive, the structure functions can be translated as obstruction ten­

sors 6k G # 0 ( X , H o m ( A 2 T x , T x o SkT£)). In the case of 5-structures (cf. (4.2)) 

corresponding to G = Kc it is known tha t (X, (?) is flat if and only if it is uni­

formly 2-flat. When S is Qn, n > 3, given a point x G X the fibered space 

7T : Q —* X of null tangents is always tangent at x to tha t of the flat Qn-S^ructure 

in terms of holomorphic normal coordinates at x. Thus, the only obstruction tensor 

is 0i G F 0 ( X , H o m ( A 2 T x , E n d ( T x ) ) ) , which agrees with the Bochner-Weyl tensor 

(Wijk£) of the holomorphic conformal structure. 
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Theorem 4 (Hwang-Mok [14]). — Let X be a uniruled projective manifold admitting 

an irreducible reductive G-structure, G C G L ( F ) . Then, X is biholomorphic to an 

irreducible Hermitian symmetric space of the compact type and of rank > 2. 

Outline of Proof — Associated to a G-structure with G C GL(V) reductive, there 

is on X the fibered space A : W —> X of highest weight tangents. We show first of 

all tha t the latter agrees with the fibered space n : C —• X of VMRTs. The proof 

makes use of Grothendieck's classification of G-principal bundles on P1 in [4]. Then, 

we show tha t the G-structure is flat by proving successively the vanishing of the 

structure functions ck. Finally, we identify the candidates of VMRTs on X to show 

tha t they correspond to ^-structures in the Hermitian symmetric case, and conclude 

tha t X = S by observing tha t X is rationally connected, hence simply connected. 

To prove the vanishing of the structure functions ck it suffices to prove the van­

ishing of the obstruction tensors 0 = 0k, which give in the reductive case sections in 

i J ° ( X , H o m ( A 2 T x , T x <8> SkT%)). Let £ be a s tandard rational curve, assumed em­

bedded for convenience, so tha t Tx\t = 0 ( 2 ) 0 {0(l))p 0 Oq. Each direct summand 

of {Tx <S> SkTJ,)\e is of degree < 2. If we fix x G X, then 0x(a, f) = 0 whenever a G Cx 

and £ G Ta(Cx) = Pa, since a A $ belongs to a direct summand of degree 3. By [(3.2), 

Proposition 3], such elements generate A2TX(X), and we conclude tha t 0 = 0. • 

In the same vein Hong ([6], Proposition (3.1.4)) established the following charac­

terization of Fano homogeneous contact manifolds of Picard number 1. The statement 

here is a slight modification of the original one which is implicit from the proof there. 

Theorem 5 (Hong [6]). — Let S be a Fano homogeneous contact manifold of Picard 

number 1 different from an odd-dimensional projective space. Let Co C PTb(S) be 

the VMRT of S at a reference point 0 G S. Let X be a Fano manifold of Picard 

number 1 whose VMRT Cx C TTX(S) at x G X is isomorphic to C0 c PTo(S) as 

a projective subvariety for x lying outside a subvariety Z C X of codimension > 2. 

Denoting by D the distribution on X spanned by VMRTs, assume that the Frobenius 

form if : A2D —> Tx/D is everywhere non-degenerate on X — Z. Suppose furthermore 

that at every point x G X — Z, a general minimal rational curve passing through x 

lies on X — Z. Then, X is biholomorphic to S. 

4.4. Prolongation of linear subalgebras of infinitesimal automorphisms of 
VMRTs. — Let (X, K) be a uniruled projective manifold equipped with a minimal 

rational component with non-linear VMRTs, and x G X be a general point. Regarding 

the VMRTs in a neighborhood of x as defining a germ of geometric s tructure at x, 

we are interested to study its germs of infinitesimal automorphisms vanishing at x. 

By Cartan-Fubini extension, as to be explained in §5, this is the same as studying 

holomorphic vector fields on X vanishing at x. As a preparation we have 
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Lemma 5. — Let X be a complex manifold, x G X be any point, m > 1 be a positive 

integer and Z be a holomorphic vector field vanishing at x to the order > m. Let {(ft} 

be the complex 1-parameter group of automorphisms on X generated by Z. Let E C 

FTx be an irreducible subvariety invariant under the induced automorphisms on 

PTx- Assume that 7T\E ' E —• X is a holomorphic submersion at a general smooth 

point of Ex := EC\FTX. In terms of local holomorphic coordinates (zi) at x; ZI(x) = 0; 

write Z = J2i1...irn;kAi1...irnzil "-zim^ + 0 ( | z | m + 1 ) , where the Taylor coefficients 

... im are symmetric in i\, - - - IM- Then, regarding the Taylor coefficients of m-th 

order terms as coefficients of a homomorphism A : SmTx —> Tx; for any choice of 

m — 1 tangent vectors 771, • • • , r/m_i; the linear vector field £^ wlA(rji, • • • , rym_i, ^ 7 ) 

on Tx is tangent to Ex at its smooth points. 

Proof — Write (p*(z) = z + T,Bi1---irn(t)zilm''zim + 0{\z\m+1) for z lying on a 

small neighborhood of x and for t sufficiently small, where the summation is over 

(hr" >*m)- We have J^B*...^(t)\t=o = -^H-IM- Writing (wi) for fiber coordinates 

for Tx induced by (zA, the induced automorphism $ t on Tx is given by 

$t(z,w) = {<Pt(z);d<pt(z)(w)) = 

[ZQ,ZI, [t)zix • -zimek 0(|*P+1); ™Bk, [t)zh • • • z^-'w^ek + 0(|z|mM) 

Here ek = and ek = [ZQ,ZI, Since ipt preserves the subvariety E, the infinitesimal 

automorphism Z = ^^t\t=o is tangent to E at smooth points. It is given by 

Z = (<...im^ • • • z'-ek + 0 ( | , r + 1 ) ; m 4 . . , m ^ • • • z^w^e, + 0(\z\m\w\J) 

showing tha t the latter vanishes on Tx to the order > m - 1. Taking partial deriva­

tives m — 1 times against horizontal constant vector fields 771, • • • r]M-i. we obtain 

* '•= Ei^K-VRN-^d^ = Hi^Mviim,'- ^ m - i , a | - ) . When m = 1 no dif­

ferentiation is involved, and a is simply the restriction of Z to Tx. Since at a smooth 

point of Ex, cr is both tangent to E and to Tx, it must be tangent to Ex, as desired. • 

Lemma 6. — Let X be an n-dimensional uniruled projective manifold admitting a 

minimal rational component whose VMRT CX C PTX at a general point x is p-

dimensional; 0 < p < n — 1; nonsingular and linearly non-degenerate. Given a general 

point x G X, let Z be a holomorphic vector field vanishing at x to the order > 2. In 

terms of local holomorphic coordinates (z^ in a neighborhood of x; ZI(x) = 0; write 

Z = Eij.fc A^z^z*+ 0(\z\3), where Ak- = Akj{. Then, regarding AKJ as coefficients 

of a linear homomorphism A : S2TX —» Tx we have Aaa G Ca for any a G CX. 

Proof — By Lemma 5, for any 77 G Tx and any nonzero a G CX we have Aarj G 

TA{CX) = Pa. In particular, if 77 is itself a nonzero vector in Cx, we have from the 
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symmetry of A the property tha t Aap G Pa^ Pp- The rest of the proof is the same 

as in Lemma 2. (Here A^p plays the same role as d2f(a,f3) there.) • 

Proposition 4. — Under the hypothesis in Lemma 6 and in the notations there, sup­

pose for the holomorphic vector field Z vanishing at x to the order > 2 we have 

Aaa = 0 for any a G Cx, then A = 0. 

Sketch of proof — Fixing rj G TX(X), Aari G Pa. From Aaa = 0 for every a G 

Cx, varying a = a(t) holomorphically and differentiating against t we conclude tha t 

Aa£ — 0 for every £ G Pa. Regarding Aa as an endomorphism of TX(X) given by 

Aa(v) ~ Aar], we have lm(Aa) C Pa C Ker(Aa) , so tha t A2a = 0. Thus, choosing 

sufficiently general points a,/3 G Cx, the closure of the orbit of [a] under exp(tAp) is 

a line joining [a] to [£], where £ := ^ a,/3; likewise with a and ¡3 interchanged. 

Hence Cx is rationally 2-connected by lines. Proposition 4 is proven inductively. We 

denote by K! a minimal rational component consisting of lines on Cx, and the 

associated VMRT at [a]. For induction we replace x by [a], X by Cx, and consider 

the VMRT at [a] G Cx. Given a holomorphic vector field Z vanishing at x to the 

order > 2 for which Aaot = 0 for every a G Cx, we derive a holomorphic vector field 

Z on Cx vanishing at [a] to the order > 2 such tha t — 0 for every fi G C'a. 

Start ing with the da ta (X, /C, x,Cx, Z, (Aij)) we derive (Cx, K', [a],C^, Z, (AM)), 

noting tha t C âj is nonsingular at a general point [a] G Cx, by Lemma 3. To be able 

to proceed by induction on the dimension, it remains to prove tha t C PT[a](Cx) 

is linearly non-degenerate. From the fact tha t C'^ is rationally 2-connected by lines, 

it follows tha t dim(C[a]) > ^-dim(PT[a](Cx)), and by [(3.2), Proposition 3] it would 

follow tha t C^a| is linearly non-degenerate in PX[a](Cx), if we knew tha t C[a] is of 

Picard number 1. However, the latter need not be the case. Nonetheless, the proof of 

Proposition 3 still works since we know tha t the VMRT is rationally 2-connected by 

lines as explained, making it possible to prove Proposition 4 by induction. 

Write f for the germs of C-preserving holomorphic vector fields at x. For £ > — 1, 

write f for the vector subspace of all Z G f vanishing to the order > £ + 1 at x. 

Then Proposition 4 says tha t , under the assumption tha t the VMRT Cx C FTX(X) 

is irreducible, nonsingular and linearly non-degenerate, there is an injection of f1 

into r(Cx,Hom(L2,L)) = r(Cx,L*), where L s tands for the tautological line bundle 

over FTX(X). If furthermore Cx is linearly normal in FTX(X), i.e., the embedding of 

Cx C VTX(X) is defined by a complete linear system, then dim(fx) < n. From the 

proof of Proposition 4 it follows readily tha t f = 0 for £ > 2, i.e., there does not 

exist any nontrivial holomorphic vector field vanishing at x to the order > 3. In fact, 

if a C-preserving germ of holomorphic vector field Z vanishes at x to the order > 2, 

and Aijk are the coefficients of the third order terms of the Taylor expansion of Z at 

x, then for any 7 G TX(X), Bap = Aap7 defines a 2-tensor for which the arguments 
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apply, and from there the vanishing of follows easily. The same arguments apply 

to the leading terms of any nontrivial holomorphic vector field Z vanishing at x to 

the order s > 3, and we have a contradiction unless Z = 0. • 

Lemma 5 can be stated in the language of prolongation theory for Lie subalgebras 

of End(Tx(X)) , as follows. Let V complex vector space, dim F = n, and g C End(V) 

be a Lie subalgebra. For k > — 1 denote by gW C Sk+1V* (g) V the vector subspace 

consisting of all a G 5fe+1 V* ® V such tha t , writing aVl,... ̂ Vk (v) = a(v; vi,..., VK), we 

have 0"Vlv„jVfc G g. Let now Y C FV be a projective subvariety, and Y C V be its 

lifting to V. We write aut(Y) := {A G End(V) : exp( tA) (? ) C ? for all t G C}. Then 

for every £ > 0, f C aut(Y")^. The argument in the proof of Proposition 4 applies to 

elements of aut(Cx)^ to imply tha t dim (aut(Cx)^) < d imr (Cx ,L*) , and hence tha t 

aut(Cx)W = 0 whenever £ > 2. In relation to holomorphic vector fields on a Fano 

manifold of Picard number 1 there are the following conjectures and results. 

Conjecture 2. — Let X be a Fano manifold of Picard number 1. Then, at a general 

point x G X there does not exist any nontrivial holomorphic vector field Z vanishing 

at x to the order > 3. 

Conjecture 3. — Let X be an n-dimensional Fano manifold of Picard number 1. Then, 

dim(Aut(X)) < n2 + 2n. Moreover, equality holds if and only if X = Pn. 

Theorem 6 (Hwang-Mok [23]). — Let (X, /C) be a uniruled projective manifold 

equipped with a minimal rational component. Suppose the variety of minimal 

rational tangents Cx C FTX(X) at a general point x G X is irreducible, nonsingular 

and linearly non-degenerate. Then, at a general point x G X there does not exist any 

nontrivial holomorphic vector field vanishing at x to the order > 3. If furthermore 

Cx C FTX(X) is linearly normal, then dim (out(Cx)^) < n, and equality holds if 

and only if Cx C FTX(X) is congruent to Co C PT0(5) for the variety of minimal 

rational tangents of an irreducible Hermitian symmetric space of the compact type. 

Furthermore, d im(Aut(X)) < n2 + 2n, and equality holds if and only if X = Pn. 

Remarks. — As will be seen in (6.3) the statement tha t Cx C FTX(X) is congruent 

to Co C FTQ(S) implies tha t X is biholomorphic to 5 . 

Corollary 1. — Let X be an n-dimensional Fano manifold of Picard number 1, and 

denote by (9(1) the positive generator of P ic (X) = Z. Assume that (9(1) is very 

ample. Suppose ci(X) > Then, for a general point x G X there does not exist 

any nontrivial holomorphic vector field vanishing at x to the order > 3. Suppose X 

satisfies the stronger condition c\(X) > 2i^t2l; then d im(Aut(X)) < n2 + 2n, and 

equality holds if and only if X = FN. 
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In relation to VMRTs in general the following conjecture summarizes what one can 
optimistically hope as compared to known results in [(2.4), Theorem 1]. 

Conjecture 4. — Let (X, K) be a uniruled projective manifold equipped with a minimal 
rational component, and TT : C —• X be the fibered space of varieties of minimal rational 
tangents associated to K. Then, at a general point x G X, either Cx is finite, or it is 
irreducible, nonsingular and linearly normal in its linear span FWX C FTX(X). 

Regarding Conjectures 2 and 3, the fundamental assumption in the partial result 
(Theorem 6) is the linear non-degeneracy of the VMRT Cx at a general point. At 
least the statement regarding vanishing orders of holomorphic vector field is accessible 
whenever an irreducible component of Cx is linearly non-degenerate. 

4.5. Applications to rigidity under Kahler deformation. — We return to the 
question of rigidity of rational homogeneous manifolds S = G/P of Picard number 
1 under Kahler deformation, as given in [(3.4), Theorem 2]. In (3.4) we explained 
tha t for the case of P C G defined by a long simple root, the problem is solved 
by studying the integrability of distributions spanned by or derived from VMRTs. 
In Hwang-Mok [22] we settled the problem for G = F4 for the 20-dimensional F4-
homogeneous space associated to a short root. There we have the nilpotent graded 
algebra n = Qi 0 Q2 0 03 0 04- As opposed to the long root case the VMRT does not 
lie in FDi for the minimal proper G-invariant distribution D\, but it remains linearly 
degenerate, spanning the proper G-invariant distribution D2 ^ T 5 , and the method 
using distributions spanned by VMRTs and Yamaguchi [51] is still applicable. 

W h a t remain are the cases of S = G/P defined by short simple roots in the cases 
of Gn, and the 15-dimensional case of type F4. In both cases we have n = Qi 0 0 2 , the 
VMRT Cx at any point x G S is almost homogeneous with two orbits corresponding 
to highest weight vectors in $i resp. g2> and Cx C FTX(S) is linearly non-degenerate. 
The problem is solved in Hwang-Mok [23] (2005). To proceed we showed tha t the 
VMRT at a general point of the central fiber X0 of TT : X —> A remains isomorphic 
to tha t of the model space Co C PT0(5). On X0 we still have a 2-step filtration 
0 C D1 C D2 = Tx0, but CXQ fl FDlQ does not have an algebro-geometric meaning, 
and the methods involving distributions spanned by VMRTs do not apply. 

To solve the problem we examine the Lie algebra of holomorphic vector fields on 
X0 which occur as limits of those on Xt,t ^ 0, with an aim to recuperating the 
Lie algebra g on l o - For illustration we consider the Hermitian symmetric case and 
sketch a proof in the last step using holomorphic vector fields in place of Ochiai's 
Theorem on 5-structures. We assume already known tha t , over a suitably chosen 
holomorphic section a : A —> X, the VMRTs of Ca(t) C FTa^(Xt) on Xa(t) form a 
holomorphically trivial family of projective submanifolds all congruent to Co C TQ(S) 
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on the model space S. Writing T for the relative tangent sheaf of 7r : X —> A, the 

direct image V = 7r*T is the sheaf of germs of sections of a holomorphic vector bundle 

V on A, where for t ^ 0,0* := Vt carries naturally the structure of a Lie algebra 

isomorphic to the Lie algebra g of G = Auto (5) , and our aim is to prove tha t this 

remains t rue at t = 0. The idea is to reconstruct the Lie algebra structure from da ta 

tha t can be recovered along a : A —• X. For the model space S = G/P we have the 

decomposition of the Lie algebra g of G as a graded Lie algebra, and equivalently the 

Harish-Chandra decomposition (in the notations of (4.2)) given by 

fl = fl-i0flo00i = m 0 r e m + ; 

[m",m"] = [m+,m+] = 0, where m- = {Z G T(S,TS) : ord0Z > 2}. 

For k,k' G £c, ra+ G m+ and m~ G m~ the Lie brackets [A;,m+] G m+,[A:,m~] G 

m~, [A;, &'], [m~,m+] G £c are completely determined by the leading terms of the Lie 

algebra elements at 0. Here the leading term stands for the 0-th order term for ra+, 

the first-order term for k and k1', and the second-order term for m~. For a holomorphic 

vector field Z on Xt vanishing at a(t) we denote by Az the coefficient matr ix for the 

linear term of Z , which defines an element of Eiid(Ta^(Xt)). Define 

4k) = {Z G g1 : orda(t)(Z) > fc}; /t = {Z e fl* : Z(a(t)) = 0 , A z G C • id} 

For t ^ 0 we have dimJtv = n;dimJtv = 0 for any /c > 3, and dimIT = n + 1, and 

any Z E IT, Az ^ 0 determines a C*-action. Since CCT(0) C PTcr(0)(^) is conjugate to 

C0 C PT0(5), by [(4.4), Theorem 6] we have 

dim 42) < n , 4k) = 0 for fe > 3 

Thus, d im/0 < n + 1 while dim Jo > n + 1 by upper semicontinuity of d i m / t in t G A. 

Therefore, dim Jo — n + 1» so tha t there exists Z G Jo such tha t ^4^ ^ 0 and such 

tha t exz defines a C*-action on Xo of period 27ri in A. This C*-action on XQ can be 

extended to a holomorphic family Tt of C*-actions on Xt, of period 2ni in A, given 

by Tt(A) = eXEt, E0 = Z . Finally, defining 

g\ := {Z eg* : [Eu Z] = zZ}; we have gl = g^ © gf0 0 

For t ^ 0, 

8 ^ {A G Enda(t)(Ta(i)) : A | ? is tangent to Cff(t)}. 

Dimension count forces the same for t = 0. The Lie algebra structure on g° is 

determined by leading terms at cr(0) of elements in g°_x, and 8?. Clearly, the rules 

for taking Lie brackets by means of the leading terms at o~o agrees with those at 0 G 5 

for the model space, and we have shown tha t X0 = G/P = S. 

Let n > 2 and W be a, 2n-dimensional complex vector space equipped with a 

symplectic form v. For 1 < k < n we denote by Sk,n the symplectic Grassmannian of 
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fc-planes V in W isotropic with respect to v. The symplectic Grassmannian S = Sk,n 

is clearly homogeneous under the group G of symplectic transformations of W, G = 

Sp(n, C) . It is a complex submanifold of the Grassmannian Gr(/c, W) of fc-planes in 

W. Wi th respect to the Plucker embedding p : Gr(fc, W) —> PN, a line £ on S passing 

through the point [V] G 5 , where V = V^k\ is defined by the choices of a (k — 1)-

plane f?^"1) and a (k + l)-plane [ZQ,ZI, such tha t E**"1) C C [ZQ,ZI, There are 

precisely two distinct isomorphism classes of lines with respect to the action of Sp(W), 

according to whether u\p is isotropic or otherwise. The VMRT Co at 0 G S is only 

almost homogeneous with precisely two orbits. Since S C Gr(fc, W) C P ^ is uniruled 

by lines, Co C FTQ(S) is non-singular. As a rational homogeneous manifold Sk,n is of 

type Cn, corresponding to a short simple root ak, 1 < k < n. The tangent bundle 

of Tsk has exactly one proper invariant distribution, and we have a decomposition 

0 = 0-2 0 0-1 © 0o © 01 © 02- Prom this description the SL(2, C)-orbit of a highest 

weight vector of Qi gives a highest weight line which is a minimal rational curve. Such 

a line corresponds to a line £ C Sk,n arising from the choice of some F(fe+1) Z) E^ for 

which V\F = 0. When S = G/P is defined by a short simple root, the SL(2, C)-orbit 

Cs defined by a highest weight vector of 0S need not be of degree s. In the case of 

s = 2 for S — Sfc,n, C = C2 is in fact a line, and it corresponds to the generic choice of 

so tha t v\F ^ 0. Prom this description the VMRT C0 C PT0(5/C,n) is linearly 

non-degenerate, and the question of rigidity under Kahler deformation of symplectic 

Grassmannians 5fc?n, 1 < k < n is therefore susceptible to be studied by means of the 

method of prolongation of infinitesimal automorphisms of VMRTs, as is the case of 

irreducible Hermitian symmetric spaces of rank > 2. 

The proof of deformation rigidity for Sj^n and also for the remaining 15-dimensional 

case of type F4 were settled along the line of arguments as sketched for the Hermitian 

symmetric case. For the graded Lie algebra g = g_2 0 0 - i 0 0o 0 0i 0 02 of the 

model space, the summands gi can be described in terms of conditions on vanishing 

orders and leading terms of holomorphic vector fields, and the multiplication table of 

g as a Lie algebra can be determined to a good extent from the leading terms. For 

instance, denoting by D C T5 the proper invariant distribution D C Ts, Q-i consists 

of holomorphic vector fields Z vanishing at 0 G S to the order > 1 with leading terms 

corresponding to Az G End(T0(S)) satisfying A\Dl = 0, and 0_2 C 0 is the subspace 

consisting of holomorphic vector fields vanishing to the order > 2. Nonetheless, as 

opposed to the Hermitian symmetric case, the structure of the Lie algebra 0 thus 

obtained is incomplete. In the case of the symplectic Grassmannian S = Sk,n the 

missing element is some symplectic form appearing implicitly in the Frobenius form 

ip : A2D —• Ts/D. From 7r : X —> A we are able to identify the s tructure of the Lie 

algebra 0° of limit holomorphic vector fields at the central fiber X0, thereby showing 

tha t Xo is obtained by blowing down some holomorphic fiber bundle, and the final step 
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is achieved by showing tha t , in the event tha t there is actually a degeneration of the 

Lie algebra structure, singularities must occur in the blown-down space, contradicting 

the start ing point tha t n : X —> A is a regular family. 

5. Analytic continuation of VMRT-preserving maps 

5.1. Characterization of the tautological foliation under a non-degeneracy 
condition on the Gauss map. — Let x G X be a general point and u G Ux be a 

point such tha t K := p(u) G /C is a s tandard rational curve. Then, the tangent map r 

is a holomorphic immersion at i¿, and it maps some open neighborhood W of u in U 

biholomorphically onto some locally closed complex submanifold SI of FTX • & gives 

the germ of some irreducible branch of C at [a]. Choosing x and u G Ux sufficiently 

general and W sufficiently small we assume furthermore tha t [a] G C is a smooth 

point and tha t Q, is a neighborhood of [a] in C. 

On il we define a distribution P , as follows. Let / : P1 —• U be a parametrization 

of n. The base point x e X is a, smooth point of the support C := of the 

s tandard rational curve K. The decomposition f*TX = 0 ( 2 ) 0 ( 0 ( l ) ) p 0 Oq over P1 

gives a filtration TPi C Q C f*TX of /*TX over P1, where Q = 0 ( 2 ) 0 ( 0 ( l ) ) p is 

the positive part of f*TX, which is well-defined since Q <g> 0 ( - l ) C / * T x 0 0 ( - l ) 

is the vector subbundle spanned by global sections. At the point x = / ( 0 ) we have 

correspondingly a filtration TX(C) C Px C TX(X), where Px = df(Q0). Define now 

V[a] C T[a] (C) to be the vector subspace consisting of all tangent vectors rj such tha t 

dn(r]) G Px. The tangent vector rj is equivalently the image under dr of some <r, where 

cr G ^ ( P 1 , / * ^ ) , and a := a mod ¿ / ( Í T ^ P 1 , TPi 010)) . For the universal family 

p : —• /C we have dp(a) = a mod ( ^ ( P 1 , T p i ) . Equivalently, writing jo := por-1 

over fi, where r _ 1 : O —> W, we have áp(?7) = a mod c¿/(üí0(P1, TPi)). The assumption 

tha t d7r(r¡) G Px means precisely tha t a(0) G Q0, thus cr ' : = cr mod Q G ^ ( P 1 , ^ 9 ) 

must vanish at 0 and hence on all of P1, showing tha t cr G ^ ( P 1 , ^ ) . On an open 

neighborhood U of K in JC consisting solely of s tandard rational curves we define a 

distribution V c TK|u by setting VK := # ° ( P \ Q) mod ¿ / ( ^ ( P 1 , TPi)) ^ C2p. Then, 

for £ G T[a] we have dp(£) G P „ if and only if dn(£) G Px, hence V[a] = (dp)~l(VK). 

Finally there is a 1-dimensional distribution underlying the tautological foliation T 

on ÍÍ which will be denoted by the same symbol T. Thus, := T^(p 

To relate the distributions f , P on i ] and the distribution V on Q we recall the 

notion of the Cauchy characteristic of a distribution. Given a complex manifold M 

and a holomorphic distribution E C TM and denoting by £ the corresponding locally 

free sheaf of germs of holomorphic sections of E, then Ch(£) C £ is the subsheaf 

consisting of germs of holomorphic sections £ such tha t [(,£] C £. Thus, the Cauchy 

characteristic Ch(£) = £ if and only if E C TM is integrable. Outside an analytic 
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subvariety of codimension > 2 the Cauchy characteristic is locally free, and from now 

on we will make no distinction between a distribution and its associated locally free 

sheaf, and think of the Cauchy characteristic as a distribution defined outside an 

analytic subvariety of codimension > 2. To proceed we note 

Lemma 7. — Let U c Cn, V c Cm be Euclidean domains, and A : U x V —> V be the 

canonical projection. Let S C Ty be a holomorphic distribution and G := (dX)~1(S). 

Write H C Tuxv for the distribution corresponding to the foliation by fibers of X, 

i.e., H = (dX)-1^). Then, H c Ch(G). 

At a general point of the fibered space ir : C —• X of VMRTs, a priori there can 

be more than one tautological foliation coming from different sets of families of local 

holomorphic curves. The question whether the tangent map rx is birational at a 

general point x G X has to do with uniqueness of the tautological foliation. Such a 

uniqueness result would follow if the tautological foliation T can be characterized as 

in fact the Cauchy characteristic of V at a general point of C. We have proven tha t 

T C Ch(V). For the inverse inclusion we impose an additional assumption on the 

Gauss map on the VMRT Cx C FTX(X) at a general point, a condition tha t is always 

satisfied whenever the Cx is nonsingular and non-linear. 

Proposition 5. — Let (X, /C) be a uniruled projective manifold equipped with a minimal 

rational component, and TT : C —> X be the associated fibered space of VMRTs. Let 

Q C C be a connected nonempty open subset consisting of nonsingular points on 

which both a tautological foliation T by standard JC-curves and hence the corresponding 

distribution V are defined. Suppose at a general point [a] G Ct, 7r([a]) := x, the Gauss 

map of Cx C FTX(X) is a holomorphic immersion at [a]. Then, T — Ch(P). 

Proof. — In what follows we denote by Q = 7r_1(f2) C C, V — (d7r ) -1 ( 'P ) , etc., by 

lifting to homogenizations. At a general point a G ^ choose local holomorphic co­

ordinates (zi , • • • , zn) at x = ir(a) and corresponding fiber coordinates (wi, • • • ,wn) 

on Tx in a neighborhood of u. Suppose s := 9%-§^. + ]C ^ *s a Serm of holo­

morphic section of V at u such tha t [s, rj] is a germ of V at a. Denote by V C V the 

subbundle of vertical vectors, i.e., of vectors tangent to the fibers Cy of TT\Q. Now for 

77 an arbi trary germ of vertical holomorphic vector field at a we have 

9l 
d 

dzi 
hj-

d 

dwj 
*$ 

d 

dwk 
$ù dg* 

dwk 

d 

dzi 
mod V . (*) 

The condition tha t [5,77] takes values in V implies tha t ^* *$ù 
dwk 

d 
dwi 

[ZQ,ZI, Since the 

germ of vertical vector field 77 is arbitrary, it follows tha t *$ù d 
dwi (a) G Ker(cra) = Ca. 

Thus, s = X ù d 
dzi *$ù _d_ 

dwj 
for some A holomorphic. Suppose the holomorphic 

vector field ^ù^ù d 
*$ù 

r3. d_ 
dwj takes values in T. Since T C Chip), comparing s 
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with T we conclude tha t for £ := ^{hP — Ar7') G Ch(V), and to prove Proposition 

5 it remains to show tha t £ is pointwise a multiple of the Euler vector field ^2 

(which descends to 0 when we project from C to C). Write £J := h? — \rK By the same 

formula (*) above for Lie bracket, replacing rjk by £fc and letting Y^9l~&r + S ^"aS" 

now stand for an arbitrary germ of valued holomorphic vector field at a we conclude 

tha t S £ f c J ^ d i r ^ f°r anY choice of (gl) such tha t ^g1-^: *s a V-valued germ 

of holomorphic vector field at a. Hence £ G Ker(cra) = C a , as desired. • 

5.2. Birationality of the tangent map and Cartan-Fubini extension. — 
The characterization of the tautological foliation under the Gauss map condition (f) 
in [(4.1), Propoition 5] implies the birationality of the tangent map rx : Kx —> Cx 
under the same condition (Hwang-Mok [17], 1999). Kebekus [26] (2002) proved tha t 
any /C-curve marked at a general point x is immersed at the marking, and deduced 

Theorem 7 (Kebekus [26]). — Let (X, K) be a uniruled projective manifold equipped 
with a minimal rational component. Then, at a general point x G X, the tangent map 
Tx ' K>x —> №TX(X) is a finite holomorphic map. 

Together with Theorem 7 one obtains a proof of [(2.4), Theorem 1], the structure 
theorem on the tangent map and VMRTs stating tha t the tangent map is a birational 
finite holomorphic map at a general point, under the additional Gauss map condition 
(f). To remove (f) the first question is to characterize the case where Cx = ¥TX(X). 

This was obtained by Cho-Miyaoka-Shepherd-Barron ([2], 2002) by a method involv­

ing the holomorphicity of the tangent map made possible by Kebekus [26]. 

Theorem 8 (Cho-Miyaoka-Shepherd-Barron [3]). — Let (X, /C) be a uniruled projective 

manifold equipped with a minimal rational component, d im(X) := n. Suppose at a 

general point x G l the associated variety of minimal rational tangents Cx is the same 

as FTX(X). Then, X is biholomorphic to Fn. 

To prove [(2.4), Theorem 1] in its full generality, we considered in Hwang-Mok 

[21] (2004) the integrable distribution Ch(V) for the distribution V defined in (4.1). 

We showed using [26] and [3] tha t a local leaf of Ch(P) is the projectivized tangent 

bundle of a locally closed complex submanifold on X which extends to an immersed 

projective space, and deduce from there the birationality of the tangent map at a 

general point, leading to a proof of Theorem 1. 

The statement of birationality of the tangent map leads to a method of analytic 

continuation, which we call Cartan-Fubini extension, for local VMRT-preserving bi­

holomorphic maps. In 2004 we proved 
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Theorem 9 (Hwang-Mok [21]). — Let X and X' be Fano manifolds of Picard number 

1 with minimal rational components. Assume that at a general point x G X the variety 

of minimal rational tangents CX(X) of X is non-linear and of positive dimension. Let 

f : U —• U' be a biholomorphic map from an open connected subset U C X onto 

U' C X'. Suppose the differential df sends each irreducible component of C(X)\u 

to an irreducible component of C(X')\u> biholomorphically. Then, f extends to a 

biholomorphic map F : X —> X'. 

Sketch of proof. — In the case of an irreducible Hermitian symmetric space S of the 

compact type and of rank > 2, Cartan-Fubini extension is equivalent to Ochiai's 

Theorem, and in (4.2) we sketched a proof using VMRTs. The analogue of [(4.2), 

Lemma 4] for Theorem 9 under the additional Gauss map condition (f) is given by 

[(5.1), Proposition 5]. In Hwang-Mok [18] we proved Theorem 9 under the condition 

(f), and in [21] the latter condition was removed start ing with an extension of the 

birationality result for non-linear VMRTs. To explain the special case in [18], along 

the line of argument of (4.2) for a proof of Ochiai's Theorem we can likewise pass to 

the moduli space /C resp. KJ of minimal rational curves on X resp. X'. Picking a 

base point x G l , and denoting by Qx C /C the subspace of minimal rational curves 

passing through x, f : U = U' extends by Proposition 5 to some holomorphic map 

ft on some neighborhood U of Qx in /C as in (4.2). In the general case we do not 

however have the Hartogs-type extension theorem as used in Mok-Tsai [MT] to extend 

ft meromorphically to /C. Instead, we developed in [18] a method of parametrized 

analytic continuation along minimal rational curves. Let p : U —• /C, \i : U —> X 

be the universal family of (X, JC). Fix a s tandard /C-curve £ G /C passing through 

x G U. We have a map X := ft o p o r~1 which is defined on some arbitrarily small 

neighborhood ft of the tautological lifting £ of £ in C. To extend / meromorphically 

on a neighborhood of £ G X by the argument in (4.2) in which a point y is regarded 

as the intersection of minimal rational curves passing through y, it is not necessary 

to have A defined on all of C\i. It suffices to have A defined on the arbitrarily small 

neighborhood Q, of £, and the upshot is tha t we can do meromorphic extension of 

/ and ft simultaneously along a s tandard /C-curve issuing from U. Each general 

point of X is accessible from U by a finite chain of s tandard /C-curves. Since X is 

of Picard number 1, the inaccessible points can be cut down to codimension > 2. A 

major difficulty in completing the proof after meromorphic extension along s tandard 

/C-curves lies in the lack of univalence, and, after proving univalence, there remains 

the difficulty due to singularities of the extended map. Overcoming these difficulties 

necessitates the use of the deformation theory of rational curves, and for the latter 

difficulty we need to further use the Fano property of both X and X\ which gives 

rise to projective embeddings using positive powers of the anti-canonical line bundle. 
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The proof of Theorem 9 in the general case requires a combination of [18] and the 

use of integral manifolds of Ch(V) as mentioned in relation to Theorem 8. • 

The method of analytic continuation on VMRT-preserving maps makes explicit use 

of the geometry arising from minimal rational curves. Prom the perspective of Several 

Complex Variables, it would be of interest to prove an extension result solely basing 

on the neighborhood structure of the cycles Qx C K. Examination of the Hermitian 

symmetric case suggests tha t in general one can hope for constructing a fundamen­

tal system of pseudoconcave neighborhoods Qx, thereby guaranteeing meromorphic 

extension of f$ and hence of / from methods in Several Complex Variables. In this 

direction the following formulation in a special case is of independent interest. 

Conjecture 5. — Let (X, /C) be a Fano manifold of Picard number 1 equipped with a 

minimal rational component. Assume that at a general point x G l the moduli space 

fcx of K-curves marked at x is irreducible and non-linear, and that the tangent map 

TX • £>x —*• Cx is a biholomorphism onto Cx, so that, denoting by p : Kx —> /C the 

canonical map, the image Qx = p(JCx) is nonsingular. Let U D Qx be any connected 

open neighborhood of Qx in K. Then, any meromorphic function on U extends to a 

meromorphic function on /C. 

5.3. The Lazarsfeld Problem and other applications of Cartan-Fubini ex­
tension. — As an application of the Cartan-Fubini extension on uniruled projective 

manifolds with non-linear VMRTs ([(5.2), Theorem 9]) we have the following result 

on the local rigidity of generically finite surjective holomorphic maps of a fixed pro­

jective manifold X' onto a Fano manifold (X, /C) of Picard number 1 equipped with 

a minimal rational component with non-linear VMRTs. We have 

Theorem 10 (Hwang-Mok [21]). — Let n : X -> A := {t G C,\t\ < 1} be a regular 

family of Fano manifolds of Picard number 1 so that Xo = 7r-1(0) has a minimal 

rational component with non-linear varieties of minimal rational tangents. For a 

given projective manifold Y, suppose there exists a surjective holomorphic map f : y = 

Y x A —> X respecting the projections to A so that ft :Y —• Xt is a generically finite 

for each t G A. Then, there exists e > 0 and a holomorphic family of biholomorphic 

maps 3>¿ : XQ —• Xt for \t\ < e, satisfying $o = id and ft = $t ° /o-

Sketch of proof — Fix a minimal rational component /Co on Xo with non-linear 

VMRTs. To simplify notations we assume minimal rational curves to be embedded. 

Let £Q C XO be a /Co-curve. £0 is also free on X since Tx\e0 = Tx0\e0 0 O. Consider 

the space /C of free rational curves on X obtained by deforming some £o in X. Any 

I G /C must lie on some Xt,t G A. We may think of (# , /C) as a holomorphic family 

of (Xt, /Ct) fibered over A. To simplify the discussion we assume tha t the VMRTs are 
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irreducible at a general point of X = X0. Shrinking A around 0 if necessary we may 
assume tha t the VMRT at a general point of XT remains irreducible. 

In Hwang-Mok [16] we introduced the notion of varieties of distinguished tangents 
on a projective manifold Y (cf. Hwang-Mok [17], §5) which generalizes the notion of 
VMRTs. Let y G Y be a very general point, i.e., a point outside some countable union 
of proper subvarieties. Consider an irreducible component M of the Chow space of 
curves on y , and denote by My C M the subvariety corresponding to curves through 
y. For curves belonging to My and smooth at y we have the notion of the tangent 
map. The rank on the tangent map leads to stratifications of My such tha t the 
tangent map is of constant rank on each s t ra tum. Fix a uniruled projective manifold 
(X, /C) equipped with a minimal rational component and denote by Cx C FTX(X) the 
VMRT at a general point x G X. For a generically finite surjective holomorphic map 
h : Y —> X and for a very general point y eY such tha t dh(y) is of maximal rank at 

[dh{y)]~l{Ch{y)) is a variety of distinguished tangents at y. 
If we take y G Y to be a very general point of Y, a variety of distinguished tan­

gents at y is the closure under the tangent map of a s t ra tum of My. Since there are 
only countably many irreducible components of the Chow space of curves on Y, from 
the construction by stratification there are at most countably many varieties of distin­
guished tangents passing through y. In the context of Theorem 10, choose a connected 
open subset U C Y such tha t ft is a biholomorphism of U onto Vt C XT. Let y eY be 
a very general point lying on U. We have a holomorphic family of VMRTs CfT(Y)(XT). 
Then, for each t G A, ff1(CFT(Y))(XT)) := Vt c FTy(Y) is a variety of distinguished 
tangent at y. By the countability of the space of varieties of distinguished tangents 
at y it follows tha t Vt is actually independent of t. There is an obvious identification 
<Pt-VT = V0 given by (pt = ft o and we have [dipt](Cf(T)(XT)) = C/(0)(X0). Thus 
ipt is VMRT-preserving, and by Cartan-Fubini extension as given in Theorem 9, <pt 
extends to a biholomorphism $T : XQ = XT such tha t f0 = $t o ft. • 

In relation to finite holomorphic maps on rational homogeneous manifolds S = 
G/P, Lazarsfeld [32] proved tha t for any finite holomorphic map / : Pn —> X from 
the complex projective space onto a projective manifold X , X must itself be biholo-
morphic to Pn. He raised the question of characterizing finite holomorphic maps 
/ : S —• X from a rational homogeneous manifold S of Picard number 1 onto a 
projective manifold. Hwang-Mok [16] solved the problem in 1999, and obtained [21] 
(2004) a new proof using Cartan-Fubini extension as given in Theorem 10. 

Theorem 11 (Hwang-Mok [16], [21]). — Let S = G/P be a rational homogeneous man­
ifold of Picard number 1. Let f : S —> X be a nonconstant surjective holomorphic 
map onto a projective manifold X. Then either X = Fn, where n = d i m ( 5 ) ; or f is 
a biholomorphism. 
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In the first proof in [16] we considered intertwining maps of / : S —> X , as follows. 

Suppose / : S —> X is not a biholomorphism and X ^ Pn, and write s for the 

sheeting number of the map. The image manifold X is necessarily Fano. Equip 

X with a minimal rational component /C. Denote by Cx the variety of /C-tangents 

at x and assume known in the ensuing discussion tha t Cx ^ FTX(X) at a general 

point. Let x G X be outside the branch locus of / , and let V be a sufficiently small 

connected open neighborhood of x in X such tha t decomposes into a union 

of s open subsets [/¿,1 < i < s„ where fa := f\u. : [/* —• V is a biholomorphism 

for each i. For i j let ip : U{ —> Uj be defined by (p(z) = f~x o Consider 

the pull-back P := [d/]_1(C|y). We have tautologically [d<p] : P|c/. = V\Vj. For a 

general point s G 5 , P s is a variety of distinguished tangents. At any such point P s 

is shown to be invariant under the isotropy subgroup Ps C G at s. For instance, in 

the Hermitian symmetric case this implies tha t Vs must be one of the finitely many 

proper Ps-invariant subsets defined in terms of ranks of tangent vectors, V is actually 

G-invariant, and the condition [dip] '-D\ui = V\uj forces [dip] to be VMRT-preserving, 

since at s G S the variety of minimal rational tangents CS(S) is the most singular Ps-

invariant s t ra tum of Vs. In this case by Ochiai's Theorem [47] the intertwining map 

must extend to an automorphism of S, and tha t is enough to force a contradiction. In 

the general case there may be continuous families of Ps-orbits, but using the fact tha t 

there are at most countably many distinct varieties of distinguished tangents at s G 5 , 

it remains t rue tha t V is G-invariant. This leads to the conclusion tha t either Vs C 

FTS(S) is linearly non-degenerate, in which case we proved using Hwang-Mok [14] 

tha t S must be Hermitian symmetric, or Vs C FTS(S) is linearly degenerate, and the 

intertwining map (p must preserve some proper G-invariant distribution, after which 

we can work with results of Yamaguchi [51] to show tha t ip extends to $ G Aut(5') 

to reach a contradiction. This line of argument has been recently generalized to the 

case of rational homogeneous spaces of Picard number > 2, leading to a solution to a 

generalized Lazarsfeld Problem. 

Theorem 12 (Lau [31]). — Let G be a simple complex Lie group and Q C G be a 

parabolic subgroup. Denote by S = G/Q the corresponding rational homogeneous 

manifold, d im(5) = n. Let f : S —> X be a surjective holomorphic map from S onto 

a projective manifold X. Then one of the following holds: (1) / is a biholomorphism; 

(2) / : S —> X is a finite map and X is the projective space Fn; (3) there exists 

a parabolic subgroup Q' of G containing Q as a proper subgroup such that f factors 

through a finite map g : G/Q' —> X. 

The generalized Lazarsfeld Problem for S = G/Q of Picard number > 2 leads to 

a Fano manifold (X, /C) equipped with a minimal rational component and admitt ing 

the structure of a holomorphically fibered space A : X —> B such tha t the /C-curves 
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lie on the fibers of A. The principal algebro-geometric difficulty, solved in [31], is to 
produce a minimal rational component K! such tha t the /C'-curves are transversal to 
the fibration A. After tha t Lau made use of multi-graded differential systems using 
Yamaguchi [51]. As in [16] the proof involves a substantial amount of Lie theory. 

As far as the original Lazarsfeld Problem is concerned, Hwang-Mok [21] gave a new 
proof which frees the solution from Lie theory, deriving Theorem 11 as a consequence 
of Theorem 10, as follows. Let S = G/P be an n-dimensional rational homogeneous 
manifold of Picard number 1 and / : S —» X be a generically finite surjective holomor­
phic map onto a projective manifold X , which is necessarily Fano, such tha t X ^ Pn 
and / is not a biholomorphism. Equip X with a minimal rational component /C and 
suppose tha t the associated VMRT at a general point is non-linear. Let 6 be a holo­
morphic vector field on S and Qt = exp(t0) be a holomorphic 1-parameter group of 
automorphism of S. Write ft = f °@t- Then, applying the local rigidity result Theo­
rem 11 we have ft = $tof. Thus dft(r)) = 0 whenever df(rf) = 0. Thus the non-empty 
ramification divisor R of / = /o remains the ramification divisor of ft for t ^ 0. On 
the other hand from the definition ft = f o @t it follows tha t the ramification divisor 
of ft is 0 _ t ( P ) , and a contradiction is obtained when we choose the vector field 0 
not to vanish identically on R. Finally, it remains to rule out the possibility tha t the 
VMRT of (X, /C) is linear at a general point x G X . Choose a general point x G X 
lying outside the branching locus of / , s G S such tha t f(s) = x. An irreducible com­
ponent of [df]~1(Cx) then gives a Ps-invariant projective linear subspace of FT8(S), 
giving rise to one of the finitely many G-invariant holomorphic distributions on S. 
D is non-integrable since S is of Picard number 1. On the other hand in the case 
of linear VMRTs on X an irreducible component of C over a sufficiently small open 
subset corresponds to an integrable distribution, a contradiction. 

It would be interesting to give a proof of Theorem 12 along the line of Cartan-Fubini 
extension for special classes of Fano manifolds of Picard number > 2. 

6. Parallel transport of the second fundamental form 

6.1. VMRTs in a differential-geometric context-parallel transport in the 
solution of the Generalized Frankel Conjecture. — In Algebraic Geometry 
Hartshorne conjectured tha t over an algebraically closed field a projective manifold 
with ample tangent bundle is isomorphic to the projective space. The conjecture was 
solved by Mori [45] (1979) by proving an existence theorem on rational curves using 
methods of characteristic p > 0, and the deformation theory of rational curves. In 
the context of Káhler Geometry, Frankel conjectured tha t a compact Káhler man­
ifold of positive holomorphic bisectional curvature is biholomorphic to the complex 
projective space. The conjecture was resolved in the affirmative by the method of 
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stable harmonic maps by Siu-Yau [50] (1980) who further formulated the conjecture 
tha t a compact Kahler manifold of nonnegative holomorphic bisectional curvature is 
locally symmetric. The latter conjecture, commonly called the Generalized Frankel 
Conjecture, was resolved in the affirmative by Mok [39] (1988). 

Mok [39] made use of the Kahler Ricci flow, proving tha t nonnegativity of holomor­
phic bisectional curvature is preserved under the flow for the evolved metric gt,t > 0. 
Prom earlier reduction of the problem, to confirm the Generalized Frankel Conjecture 
it suffices to consider the case where we have a compact Kahler manifold (X, g) of non-
negative holomorphic bisectional curvature and of positive Ricci curvature at some 
point such tha t furthermore &2 (X) = 1. For the latter class of (X, g), the evolved 
Kahler metric (X,gt) is shown to be of positive Ricci curvature. Thus, X is Fano 
and hence uniruled by Miyaoka-Mori [38]. Since (X, g) is of nonnegative holomor­
phic bisectional curvature, the pull-back of its tangent bundle by any / : P1 —> X 
is nonnegative, hence every rational curve on X is free. In [39] we studied mini­
mal rational curves on X and the associated varieties of minimal rational tangents 
Cx C FTX(X) (although the terminology was not used there). We proved tha t there 
are the following alternatives on the evolved metrics gt defined for t > 0 sufficiently 
small. For such t > 0, either (X,gt) is of positive holomorphic bisectional curvature, 
or (X,gt) admits non-trivial zeros of holomorphic bisectional curvature at any point 
of X. Write n for dim(X). If the VMRT Cx C FTX(X) is of dimension p < n - 1 at 
a general point, we showed tha t C is invariant under parallel t ransport of (X,gt). If 
however Cx agrees with FTX(X), we showed tha t there exists a hypersurface S C FTx 
such tha t S is invariant under parallel t ransport of (X,gt). In either case we applied 
Berger's Theorem which characterizes Riemannian locally symmetric spaces by the 
fact tha t at any point there exists some proper subset of the unit sphere invariant 
under parallel t ransport . Thus (X,gt) is an irreducible Hermitian symmetric space 
of the compact type for t > 0 and hence for t = 0; go = g> More precisely we have 
proved 

Theorem 13 (Mok [39]). — Let (X, g) be a compact Kahler manifold of nonnegative 
holomorphic bisectional curvature and of positive Ricci curvature at some point. As­
sume that X is of Picard number 1. Then, either X is biholomorphically equivalent to 
the complex projective space, or (X, g) is biholomorphically isometric to an irreducible 
Hermitian symmetric space S of rank > 2. 

On an irreducible Hermitian symmetric space of the compact type and of rank > 2, 
the fibered space 7r : C —> S is invariant under parallel t ransport with respect to any 
choice of a canonical Kahler-Einstein metric, an elementary fact tha t follows from the 
parallelism of the Riemannian curvature tensor. Theorem 13 says in particular tha t on 
S this basic fact can be derived from curvature properties. In the negative direction, 
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Berger's Theorem implies tha t for a rational homogeneous manifold S = G/P of 

Picard number 1 which is not isomorphic to a Hermitian symmetric space, the VMRTs 

are not invariant under parallel t ransport . In an algebro-geometric context it remains 

interesting to introduce some algebraic notion of parallel t ransport applicable to any 

uniruled projective manifold (X, /C) equipped with a minimal rational component. A 

related problem is the Campana-Peternell Conjecture, which is a form of Generalized 

Hartshorne Conjecture (cf. (6.4)). Here the principal geometric problem is whether 

the notion of invariance of VMRTs under some restricted form of parallel t ransport is 

sufficient to characterize rational homogeneous manifolds S = G/P of Picard number 

1 by means of some algebro-geometric condition of nonnegativity on the tangent 

bundle. Such an approach in a very special situation has been established for Fano 

manifolds of Picard number 1 with nef tangent bundle and 1-dimensional VMRTs by 

Mok [41] (2001) and Hwang [13] (2007). 

6.2. Propagation of the second fundamental form along a standard rational 
curve. — Let (X, /C) be a uniruled projective manifold equipped with a minimal 

rational component, p :U —> /C, // : —> X be the universal family of /C-curves and 

7r : C —> X be the fibered space of varieties of minimal rational tangents. Let B C X 

be the largest subvariety, necessarily of codimension > 2, such tha t TT\X-B C\X-B —• 

X — B is flat. Let / : P1 —• X be a parametrized s tandard rational curve, / (P1) := C, 

such tha t C C X — B. C lifts canonically to C C U, whose image under the tangent 

map gives the tautological lifting C C C. At each of the finitely many points Xk of 

Cfl / i_1(x) there is an open neighborhood Uk such tha t rx embeds Uk holomorphically 

onto a smooth submanifold C£, which is the germ of some irreducible component of 

CX at [c*fc] = rx(xk)- In what follows C will mean the pull-back of the tautological 

lifting of C to /*C, so tha t C is smooth. For t G P1 we write CT for (/*C)t, [a(t)) for 

C H CU and VT for / *T / ( t ) (X) . We have CT C FVt. For every t G P1 we have a germ 

of smooth projective submanifold Cf C CT C FVt at [a(t)] corresponding to one of the 

germs C%,x = / (£ ) , chosen in such a way tha t the union of Cf is a germ of complex 

submanifold along the smooth curve C C FV. Write Tja(t)j for T[A(T)](C°). In Mok 

[14] (§3.2, p . 2651ff.) we introduced implicitly the notion of parallel t ranspor t of the 

second fundamental form along the tautological lifting C of a s tandard rational curve 

C. By this we mean tha t the second fundamental form can be interpreted in a natural 

way as a holomorphic section of a vector bundle which is trivial over C. We formulate 

the notion of isomorphisms of second fundamental forms and the result on parallel 

t ransport , as follows. 

Definition 4. — Let V and V be two complex Euclidean spaces of the same dimension, 

and A C FV, A! C PV7 be two local complex submanifolds of the same dimension. Let 

aeA, a= [a); a! G A!, a' = [a'\. Write Ta(A) = FE/Ca (resp. Ta(Af) = FE'/Ca' 
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where E C V (resp. E' C V) is a vector subspace containing a (resp. a'). We 

say that the second fundamental form aa of A C FV at a £ A is isomorphic to the 

second fundamental form aa> of A' C FV at a' G A' if and only if there exists a linear 

isomorphism ip : V = V such that <p(a) = a', <p(E) = E', and such that (p satisfies 

the following additional property (fl) 

(tt) Let Tp : V/E —> V/E' be the linear map induced by <p, <p(E) = E', and denote 

by cra (resp. 5a/) the second fundamental form of A at a (resp. of A' at af). 

Then, for any £,r? G E we have <?a, (y>(£), ¥>fa)) = v{°a(C,v)) • 

Proposition 6. — For every t G P1 , denote by cr[açt)] S2T[a^ —> NCO\F>vT,[A(t)] the 

second fundamental form of C° C FVt at [a(t)]. Then, for t\,ti G F1, cr[a(tx)] is 

isomorphic to 0"[a(t2)]-

Proof. — Write v : FV —• P1 for the canonical projection, where V = f*Tx, and Tv 

for its relative tangent bundle. Write A = v\f*c, and recall tha t T[a^ = Xja(t)](C°). 

Write N[a(t)] = TI/?[a(t)]/T[a(t)]. Put t ing together T|a(t)], t G P1, we obtain a holomor­

phic vector bundle T\\^ on C. Likewise, put t ing together N[a^, t G P1, we obtain 

a holomorphic vector bundle N\\Q on C. For a nonzero vector a(t) G Vt we have 

the canonical isomorphism T^t^(FVt) ® — v*Vt/L[a(t)], where — C a ( t ) 

is the tautological line at . Varying over C we obtain a canonical isomorphism 

Tv 0 L = v*Vt/L over C Since L|g- = canonically, and C is a s tandard rational 

curve, we have ^ 0(2) © (0(1))P 0 0*, so tha t 

T„\d v*V\d/Te <g> TX^ {(0(1))P 0 0 « ) 0 0(-2) (0(-l))p 0 (0( -2) )* . 

Since at [a(£)],T[a(t)] 0 p(p+i) — PA(T)/Ca(t), where Pa(t) c VT is the positive par t 

of Vt at [a(t)], over C we have TA|g 9* (0(l))p ® C(-2) ^ ( 0 ( - l ) ) P and iVA|£ ^ 

0« 0 0(-2) *È ( 0 ( - 2 ) ) 9 . Thus, over C 

Hom(52TA|a,7VA|a) ^ H o m 
p(p+i) > 

( 0 ( -2 ) ) 2 , ( < 9 ( - 2 ) ) ^ 
[ZQ,ZI,p(p+i) 

is holomorphically trivial. Hence, at ¿ 1 , £2 G P1 the second fundamental forms <7[A(TI)] 

S2T\a(t)] —• N\a(t)]: i = 1,2; must be isomorphic to each other, as desired. 

Taking <T[a(t)] as defining a holomorphic section of a holomorphically trivial vector 

bundle E := S2T\\^ <8> iV^|g over P1, parallel t ransport of the second fundamental 

form from t\ G P1 to ¿2 G P1 can be understood as sending an element of et1 G 

Etl to the unique element et2 G Et2 for which there exists e G T(F1,E) such tha t 

e(ti) = €tl, e(£2) = ^ 2 . Fixing a decomposition of V = f*Tx over P1 given by 

V = 0 ( 2 ) 0 (0(l))p 0 Oq, there is a linear isomorphism tp:Vtl-> Vt2 which respects 

the decomposition of V and which induces parallel t ransport from p(p+i)and cr[a(t2)]. 
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6.3. Recognition of certain rational homogeneous manifolds from VMRTs 
at a general point. — We consider the question of characterizing certain rational 
homogeneous manifolds of Picard number 1 by their VMRTs at general points. Let 
S be an irreducible Hermitian symmetric space of Picard number 1, and denote its 
VMRT at 0 G 5 by C0 C PT0(5). Suppose (X , /C) is a uniruled projective manifold 
equipped with a minimal rational component such tha t at a general point x G X the 
VMRT Cx C FTX(X) is congruent to C0 C FT0(S) of the model space. Let B c X 
be a proper subvariety such tha t 7T\X-B : C ^ J is a locally trivial holomorphic 
fiber bundle with fibers Cx C FTX(X) being congruent to Co C PTo(5) as a projective 
submanifold. By [(4.3), Theorem 4], which in particular characterizes irreducible 
Hermitian symmetric spaces S of rank > 2 by means of .^-structures, to prove X = S 
it suffices to show tha t B can be reduced to the empty set by methods of holomorphic 
extension. By Hartogs extension of 5-structures (cf. (3.4)) it is enough to show 
tha t for every irreducible component Ei C B of codimension 1 in X and any general 
point y e Ei, there exists a neighborhood Uy of y such tha t ir\uy-Ei : C\uy-Ei —> 
Uy — Ei extends holomorphically across Uy fl Ei as a holomorphic fiber subbundle of 
7r : FTjjy —> Uy. Since X is of Picard number 1, for y G Ei sufficiently general there 
exists a s tandard parametrized rational curve / : P1 -> X such tha t / ( 0 ) g B and 
/ ( o o ) = y. The idea is to consider the tautological lifting of C = / (P1) to C C / *C , 
and to recapture C ^ which corresponds to Cy by knowing its second fundamental form 
at the point [OJ(OO)] G C ^ corresponding to [d/(oo)] G Cy. 

The simplest case for this to work is the case of the n-dimensional hyperquadric 
Qn,n > 3. For the family f*C C F(f*Tx), the general fiber is isomorphic to a 
hyperquadric in Pn_1 . Degeneration of the hyperquadrics can occur at t = oo, to give 
a degenerate hyperquadric defined by a degenerate symmetric bilinear form. However, 
this is precisely the case if and only if the second fundamental form cr at a general 
point of Coo is degenerate. The method of parallel t ransport of second fundamental 
forms then rules out the latter possibility, showing tha t Cy C FTy(X) is congruent 
to the VMRT of the model space for a general point y of the hypersurface Ei. Wi th 
this holomorphic extension result of VMRTs across general points of hypersurfaces 
and Hartogs extension for bad sets of codimension > 2 we have shown tha t X is 
biholomorphically isomorphic to the hyperquadric whenever the VMRT at a general 
point is congruent to Qn~2 C Pn_1 . 

As seen from the table in (2.4) in the general symmetric case the VMRT Co C 
PTo(5) is itself a Hermitian symmetric space, either of rank 2 and embedded by the 
minimal canonical embedding, or of rank 1 and embedded by the second canonical 
embedding. In some sense they are quadratic objects. In fact, Co is the closure 
of the graph of a vector-valued quadratic function Q on the tangent space T[Q](Co). 
Q is essentially the second fundamental form. To illustrate how the argument of 
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parallel t ransport of second fundamental forms works in the other cases, we consider 
the cases where Co C FT0(S) is an irreducible Hermitian symmetric space of rank 
2, so tha t it carries a canonical G-structure for some reductive Lie subgroup of the 
general linear group. In the notations analogous to those in the preceding discussion, 
Coo C P ( / * T x ) has the same second fundamental form at [«(00)] as tha t of the 
model space. Co C FTo(S) is uniruled by lines. Denoting by K' the minimal rational 
component on Co consisting of lines, the G-structure of Co is completely determined 
by VMRTs C[aj associated to (Co,/C;), where is defined by the set of non-zero 
tangent vectors rj G 7]a](Co) such tha t o-[aj(rj,rj) = 0. Parallel t ransport of second 
fundamental forms then implies tha t C^ inherits a G-structure. By making use of 
developing maps C^ C F(f*Ty(X) can be shown to be congruent to Co C FT0(S). 
Here one has to exclude the possibility of linear degeneration of C^ C F(f*Ty(X), a 
possibility tha t is ruled out by the surjectivity of the second fundamental cr[a] on the 
model space, and hence of 0"[a(oo)] at 2/ = /(00) on X by parallel t ransport . 

The preceding line of argumentation can be strengthened to yield 

Theorem 14 (Mok [43], Hong-Hwang [8]). — Let G be a simple complex Lie group, 
P C G be a maximal parabolic subgroup corresponding to a long simple root, and by 
S := G/P be the corresponding rational homogeneous manifold of Picard number 1. 
Denote by Co C FTQ(S) the variety of minimal rational tangents at a reference point 
0 G S associated to the minimal rational component of lines on S. Let X be a Fano 
manifold of Picard number 1 and K be a minimal rational component on X. Suppose 
the variety of K-tangents Cx C FTX(X) at a general point x G X is congruent to 
Co C FTo(S) as a projective submanifold. Then, X is biholomorphic to S. 

For the case where S is the projective space Theorem 14 follows from [3]. A sketch 
of the proof for S Hermitian symmetric and of rank > 2 has been given in the above. 
When P C G corresponds to a long simple root, the VMRT Co C FDo for the minimal 
nontrivial G-invariant distribution D on S. Co is the highest weight orbit in FDo, and 
it is itself a Hermitian symmetric space. D Ts unless S is Hermitian symmetric. 
When S is non-symmetric and Co is irreducible as a Hermitian symmetric space, it 
is of rank 3, embedded by the minimal canonical embedding. In general Co C FDo 
is of rank 3 as an embedded Hermitian symmetric space, when the degree for the 
embedding on each irreducible factor of Co is taken into account in the obvious way. 
In fact, Co C FDo is a cubic object, being the closure of the graph of a vector-valued 
cubic polynomial on the tangent space T[a](Co) (cf. Hwang-Mok [17], p . 377). The 
cubic nature of the VMRT is reflected in the table for Fano contact homogeneous 
manifolds of Picard number 1 in (3.1), and applies in general to the long-root case. 

For non-symmetric S there is an additional notion of the third fundamental form 
for Co C FDo, defined as follows. The image of the second fundamental form <7[a] : 
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S2T[a} —> To(S)/Pa is not surjective. For a G Co one can define a filtration Ca C Pa C 

C T0 (5) , where Qa is obtained by adjoining the image of the second fundamental 

form at a. This filtration corresponds to the splitting D\¿ = O(2) 0 {0{l))p 0 O9 0 

l ) ) r for the minimal proper distribution D C T^. At every point [a] C Co one 

can define the third fundamental form K[Q] : 53X|a] —> To(S)/QA. In the case of a 

Fano manifold X of Picard number 1 satisfying the hypothesis of Theorem 14 for a 

non-symmetric S defined by a long simple root, Proposition 6 generalizes to show 

tha t over a s tandard parametrized rational curve / : P 1 —• X , the corresponding 

third fundamental form on its tautological lifting C defines a holomorphic section of a 

holomorphically trivial vector bundle over P 1 . Using this we have a version of parallel 

t ransport of the third fundamental form /t, with which one can prove extension results 

of VMRTs across a general point of a hypersurface as in the Hermitian symmetric 

case. In the contact case Theorem 14 is proved in Mok [43] by resorting to Hong's 

characterization of Fano contact homogeneous manifolds of Picard number 1 in [Ho]. 

In the remaining cases Theorem 14 was established in Hong-Hwang [8]. 

In view of Theorem 14, one may raise the following conjecture. 

Conjecture 6. — Let S = G/P be any Fano homogeneous manifold of Picard number 1 

and denote by Co{S) C FTo(S) its variety of minimal rational tangents at a reference 

point 0 G S. Let (X, K) be a Fano manifold of Picard number 1 equipped with a 

minimal rational component such that the associated VMRT at a general point is 

congruent to Co(S) C PTo(S). Then, X is biholomorphic to S. 

To resolve Conjecture 6 it remains to consider the short-root case. Confirmation of 

the conjecture would provide a unified proof of rigidity of Fano homogeneous manifolds 

of Picard number 1 under Káhler deformation [(3.4), Theorem 2]. 

6.4. Projective manifolds with nef tangent bundles and 1-dimensional 
VMRTs. — In analogy with the Generalized Frankel Conjecture in Káhler Geom­

etry one can formulate a Generalized Hartshorne Conjecture in Algebraic Geometry. 

This is given by the Campana-Peternell Conjecture [2] (1991). In particular, restrict­

ing to Fano manifolds X of Picard number 1, the Campana-Peternell Conjecture 

asserts tha t X is biholomorphic to a rational homogeneous manifold S = G/P when­

ever the tangent bundle of X is nef, i.e., numerically effective. The latter assumption 

implies tha t the deformation of any rational curve on X is unobstructed. As a 

consequence, for any choice of a minimal rational component /C on X , the evaluation 

map p : U —> X associated to the universal family for /C gives a regular family of 

projective manifolds. This imposes some restrictions on possible complex structures 

of moduli spaces )QX — Mx of /C- curves marked at x by restricting U over minimal 

rational curves. While there is so far no strong evidence why the Campana-Peternell 
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Conjecture should hold, with the latter fact in mind Mok [41] considered a special 

case of the conjecture, under the restrictive assumption tha t the VMRT at a general 

point is 1-dimensional. In [41] we considered Fano manifolds whose second and 

fourth Bett i numbers are equal to 1. The condition on the fourth Betti number was 

removed recently by Hwang [12], and we have now 

Theorem 15. — (Mok [43], Hwang [12]) Let X be a Fano manifold of Picard number 

1 with nef tangent bundle. Suppose X is equipped with a minimal rational component 

for which the variety of minimal rational tangents at a general point x G X is 1-

dimensional. Then, X is biholomorphic to the projective plane F2, the 3-dimensional 

hyperquadric Q3, or the 5-dimensional Fano contact homogeneous manifold i f (G2) of 

type G2. In particular, X is a rational homogeneous manifold. 

We note tha t the only algebro-geometric property used which arises from the nef-

ness of the tangent bundle is the fact tha t the restriction of the tangent bundle to 

any /C-curve is nonnegative. In particular, the nefness assumption in Theorem 15 can 

be replaced by the assumption tha t any rational curve on X is free. The approach of 

[41] was to reconstruct X under the given assumptions from its VMRTs by making 

use of the canonical double fibration p : U —> /C , ¡i : U —• X associated to /C. We 

note tha t no a priori assumption is placed on d im(X) . 

To start with, restricting fi : U —• X to a minimal rational curve we obtain an 

algebraic surface E holomorphically fibered over P1 which admits a holomorphic sec­

tion r corresponding to the tautological lifting of the minimal rational curve. Thus, 

T C E is an exceptional curve. Since the base is P1, if the fibers are of genus > 1 

the family must be holomorphically trivial, and the existence of the exceptional curve 

r C E forces a contradiction. Thus, any tix is isomorphic to P1. At a general point 

x G X the tangent map rx : Ux —> FTX(X) is a holomorphic map. To determine the 

VMRT at a general point the next step is to bound d := deg(r*((9( l)) . For this pur­

pose we introduce the use of Chern class inequalities. First, the universal P1-bundle 

p \ U —> JC gives rise to a holomorphic rank-2 vector bundle v : V —> /C such tha t 

FV = U. We prove tha t V is stable and deduce tha t d < 4 from the Bogomolov 

inequality c2(V) • [u;]n~2 < 4c2(V) • [o;]n~2 for stable rank-2 vector bundles V over 

an n-dimensional projective manifold, where u s tands for the first Chern form of a 

positive line bundle on X, and [LJ] for its cohomology class. It is here tha t we make 

use of the assumption 64 (X) = 1 when applying Chern class inequalities. Using the 

existence of Hermitian-Einstein metrics due to Uhlenbeck-Yau the equality case in 

the Bogomolov inequality can be ruled out, and we end up with d = 1,2,3, which we 

eventually prove to correspond to the three examples in the statement of Theorem 

15. To proceed we make use of results from (2.3) on the integrability of differential 

systems generated by VMRTs to show tha t in each of the three cases d = 1, 2 ,3 the 
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VMRT Cx C FTX(X) is congruent to Co C S of the model space, and the proof is com­

pleted by invoking special cases of Theorem 14. The condition 64 (X) = 1 is removed 

in Hwang [10] by resorting to the determination of a certain Chow group pertinent 

to the problem in the application of the Bogomolov inequality. 

Finally, from Theorem 15, together with earlier works of Campana-Peternell [2] and 

Zheng [53], and Miyaoka's characterization of the hyperquadric [37], one confirms the 

Campana-Peternell Conjecture up to 4 dimensions. More precisely, we have 

Theorem 16. — Let X be a Fano manifold of dimension < 4 on which all rational 

curves are free. Then, X is biholomorphic to a rational homogeneous manifold. 

7. Privileged subvarieties of uniruled projective manifolds 

7.1. Subvarieties saturated with minimal rational curves. — In analogy to 
totally geodesic submanifolds in Riemannian geometry we introduce for uniruled pro­

jective manifolds (XK,) endowed with minimal rational components the notion of 

/C-saturated subvarieties, as follows. 

Definition 5. — Let (X, K) be a uniruled projective manifold equipped with a mini­

mal rational component, IT : Cx —> X be the associated fibered space of varieties 

K-tangents. Let E C X be an irreducible analytic subvariety of some connected open 

subset U C X and £ C be an analytic subvariety. For y G S denote by £y the 

fiber of 8 over y. We say that ( E , £ ) (X, Cx) is JC-saturated if and only if 

(a) Sy = PT2/(E) f lCx ^ 0 for a smooth point y G S , and 

(b) for a general smooth point y on E, and for the germ C of an irreducible branch of 

a standard K-curve passing through y, C must lie on E whenever [Ty(C)] G Ey. 

When the choice of /C is understood, we simply say tha t E is saturated with respect 

to minimal rational curves. If we take a minimal rational curve on (X, JC) to play the 

role of a geodesic, a /C-saturated subvariety is the analogue of a totally geodesic 

subspace in Riemannian geometry, except tha t the 'geodesies' are now only defined 

for tangent directions corresponding to varieties of minimal rational tangents. 

7.2. A relative version of the Gauss map condition for linear sections of 
VMRTs. — In (5.1) we have introduced a non-degeneracy condition (f) on the 

Gauss map of the variety of minimal rational tangents Cx at a general point x of 

a uniruled projective manifold (X, K) equipped with a minimal rational component, 

viz., we require tha t the Gauss map is generically finite on Cx. Equivalently (f) is 

satisfied if and only if at a general smooth point [a] of Cx, the kernel Ker a^a] = 0 for 

the second fundamental form cr[a] at [a] G Reg(Cx). We extend this to the situation 

of a linear section of Cx and define a non-degeneracy condition (ff) which reduces 
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to (f) when the linear section is Cx itself. Recall tha t a variety is said to be of pure 
dimension n if and only if each irreducible component is of the same dimension n. 

Definition 6. — Let m > 2, A C Pm be a projective subvariety of pure dimension 
a > 1. Let II C Pm be a projective linear subspace, and B := U D A be a non-empty 
projective subvariety of pure dimension b > 1. We say that the pair (#, A) satisfies the 
non-degeneracy condition ( f f ) if and only if for every general smooth point [/?] G B, 
[P] is also a smooth point of A and Ker cr^] (T^(B), •) = 0. 

By an adaptat ion of the proof of Cartan-Fubini extension in the equidimensional 
case under the non-degeneracy assumption (f) as explained in (5.2) we have the fol­
lowing non-equidimensional analogue of Cartan-Fubini extension under some non-
degeneracy assumption involving (ff) on second fundamental forms. For the formu­
lation a point x G X is said to be a good point if and only if every minimal rational 
curve passing through x is free, and a general element of every irreducible component 
of Kx represents a s tandard rational curve, otherwise x is called a bad point. The 
bad locus of (X, K) is the set of bad points on X , which is a subvariety of X . 

Theorem 17 (Hong-Mok [9]). — Let (Z, TL) and (X, K) be two uniruled projective man­
ifolds equipped with minimal rational components. Assume that Z is of Picard number 
1 and that CZ(Z) is of positive dimension at a general point z G Z. Let U C Z be 
a connected open subset and f : U —> X be a holomorphic embedding onto a lo­
cally closed complex submanifold S C X lying outside the bad locus of (X, /C). Sup­
pose f respects varieties of minimal rational tangents in the sense that df(Cz(Z)) = 
df(Tz(Z)) Pi Cf(z)(X). Assume furthermore that at a general point x G S, the 
non-degeneracy condition ( f f ) on second fundamental forms is satisfied for the pair 
(Cx fl PTX(5),CX). Then, f extends to a rational map F : Z —> X . 

In terms of the holomorphic map / , the non-degeneracy condition on second fun­
damental forms translate into 

Ker âdfia)(Tdfia)(df(Cz(Z))), •) = C4f(a). 

As an important intermediate step in the proof of Theorem 17, Hong-Mok established 
under the assumption there the following result. 

Proposition 7. — Under the assumptions of Theorem 17 and in the notations there, 
f sends germs of standard H-curves into germs of standard K-curves. In particular, 
(S,C f lPTs) c (X,C) is saturated with respect to K-curves. 
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7.3. Parallel transport of VMRTs along minimal rational curves. — As an 
application of non-equidimensional Cartan-Fubini extension, Mok [42] gave a charac­

terization of s tandard embeddings between Grassmannians of rank > 2. The result 

by itself had been known and proven by different methods by Neretin [46] and Hong 

[7]. Our proof started with non-equidimensional Cartan-Fubini extension in the Her­

mitian symmetric case with a proof relying on the use of Harish-Chandra coordinates. 

More recently, Hong-Mok [9] have established the general form of Proposition 7, ob­

taining at the same time a characterization of a general class of s tandard embeddings 

between rational homogeneous manifolds of Picard number 1. On a rational homo­

geneous manifold Y of Picard number 1 we consider the minimal rational component 

consisting of lines on Y and denote by Cy(Y) the associated VMRT at y G Y. 

Theorem 18 (Hong-Mok [9]). — Let X = G/P be a rational homogeneous manifold of 

Picard number 1 associated to a long simple root and let Z = GQ/PQ be a rational 

homogeneous space associated to a subdiagram of the marked Dynkin diagram of G/P. 

Assume that Z is not linear. If f : U —> X is a holomorphic embedding from a 

connected open subset U of Z into X satisfying dfz(CZ(Z)) = dfZ(TZ(Z)) nCf^(X) 

for a general point z eU, then f extends to a standard embedding of Z into X. 

Sketch of proof — A marked Dynkin subdiagram defines naturally an embedding A 

from Z = Go/Po into X = G/P. By a s tandard embedding from Z into X we mean 

(p o A for some ip G A u t ( X ) . For the proof of Theorem 18, first of all the method 

of non-equidimensional Cartan-Fubini extension as given in [(7.2), Theorem 17] can 

be implemented by checking the validity of the non-degeneracy condition (ff) on the 

Gauss map yielding therefore a rational extension F : Z —» X. Write S = F(Z) for 

the total transform of F. By Proposition 7, S C X is /C-saturated. The condition 

dfz(CZ(Z)) = dfZ(TZ(Z)) C\Cf(z)(X) says tha t S is tangent at a general point s G f(U) 

to a (unique) copy ZS of a s tandard embedding of Z into X. Extending f : U —> X 

to F : Z —> X the same applies for a general point s G S. 

Start with a base point 0 E Z , / ( 0 ) = 0. ZQ and S are tangent to each other at 

0 and they share the same VMRTs at 0. Let A be the subvariety on ZQ swept out 

by lines £ on ZQ passing through 0. Since S C X is /C-saturated, £ G A C ZQ fl S. 

At a general point s G £, write £s := PTS(5) fl CS(X) = FTS(ZS) fl CS(X). We 

argue tha t ZQ and S are tangent at s G £, i.e., CS(ZQ) = £S. Write TS{£) = Ca. 

From the deformation theory of rational curves T^(CS(ZQ)) = TS(A)/TS(£) while also 

T[a](£s) = TS(A)/TS(£). This means tha t £s and CS(Z0) are tangent to each other at 

[a]. In general the tangency property does not imply identity of the two VMRTs, but 

we have found tha t this is the case for pairs (Z, X) of rational homogeneous manifolds 

of Picard number 1 as given in Theorem 18. We may think of this as a form of parallel 

t ranspor t of VMRTs for /C-saturated subvarieties along a minimal rational curve in 

ASTÉRISQUE 322 



GEOMETRIC STRUCTURES DEFINED BY VMRTS 203 

special situations. Thus, Zs = ZQ for any line I on Z0 passing through 0 and for a 

general point s G £. It follows tha t Zs = Zo for a general point s G A, and s can now 

play the same role as the initial base point 0. Finally, S = F(Z) can be recovered 

from the single point 0 G Z in a finite number of steps by the procedure of adjoining 

minimal rational curves (cf. (3.1)), and we have proven tha t S = ZQ, as desired. • 
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