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GLOBAL APPLICATIONS OF RELATIVE (¢,I')-MODULES I

by

Fabrizio Andreatta & Adrian Iovita

Abstract. — In this paper, given a smooth proper scheme X over a p-adic DVR and
a p-power torsion étale local system L on it, we study a family of sheaves associated
to the cohomology of local, relative (p,I')-modules of L and their cohomology. As
applications we derive descriptions of the étale cohomology groups on the geometric
generic fiber of X with values in L, as well as of their classical (¢, I')-modules, in
terms of cohomology of the above mentioned sheaves.

Résumé (Applications globales des (i, I')-modules relatifs I). — Etant donné un schéma
propre et lisse X défini sur un anneau de valuation discréte et un systeme local L,
étale, de torsion sur X on étudie une famille de faisceaux associés a la cohomologie
des (¢, T')-modules locaux relatifs de L et leur cohomologie. Comme application on
déduit une description des groupes de cohomologie étales sur la fibre générique géo-
métrique de X a valeurs dans L, et de leurs (¢, ')-modules classiques en termes de
la cohomologie des faisceaux mentionnés plus haut.

1. Introduction

Let p be a prime integer, K a finite extension of Q, and V its ring of integers.
In [15], J.-M. Fontaine introduced the notion of (¢,I')-modules designed to classify
p-adic representations of the absolute Galois group Gy of K in terms of semi-linear
data. More precisely, if T is a p-adic representation of Gy, i.e. T is a finitely gen-
erated Z,-module (respectively a Q,-vector space of finite dimension) with a con-
tinuous action of Gy, one associates to it a (¢, I')-module, denoted Dy (T'). This is
a finitely generated module over a local ring of dimension two Ay (respectively a
finitely generated free module over By := Ay ®z, Qp) endowed with a semi-linear
Frobenius endomorphism ¢ and a commuting, continuous, semi-linear action of the
group 'y := Gal(K (up=)/K) such that (Dy (T), ¢) is étale. This construction makes
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340 FABRIZIO ANDREATTA & ADRIAN IOVITA

the group whose representations we wish to study simpler with the drawback of mak-
ing the coefficients more complicated. It could be seen as a weak arithmetic analogue
of the Riemann-Hilbert correspondence between representations of the fundamental
group of a complex manifold and vector bundles with integrable connections. The
main point of this construction is that one may recover T with its Gy -action directly
from Dy (T) and, therefore, all the invariants which can be constructed from T can
be described, more or less explicitly, in terms of Dy (T"). For example

(*) one can express in terms of Dy (T') the Galois cohomology groups H'(K,T) =
HY(Gy,T) of T.

More precisely, let us choose a topological generator v of 'y and consider the
complex

%*(T) : Dy(T) —25 Dy(T) ® Dy/(T) -2 Dy/(T)

where do(z) = ((1 - ¢)(z),(1 - 7)(z)) and di(a,b) = (1 - 7)(a) = (1 = @)(b). It is
proven in [18] that for each ¢ > 0 there is a natural, functorial isomorphism

HY(%*(T)) = H(Gy, T).

Moreover, for ¢ = 1 this isomorphism was made explicit in [9]: let (z,y) be a 1-cocycle
for the complex ¢’*(T') and choose b € A ®z, T such that (¢ — 1)(b) = z. Define the
map C(z,y)3 Gy — A ®z, T by

Clay)(0) = (0’ =1)/(y — 1)y — (0 — 1)b,

where o’ is the image of o in I'y. One can prove that the image of C(; ) is in
fact contained in T, that C(;,) is a 1-cocycle whose cohomology class [C(; )] €
H!(Gy,T) only depends on the cohomology class [(x,y)] € H!(%*(T)). Moreover,
the isomorphism H'(%*(T)) = H'(Gy, T) above is then defined by [(z,y)] — [C(z,y))-

As a consequence of (*) we have explicit descriptions of the exponential map of
Perrin-Riou (or more precisely its “inverse” (see [15], [7], [9]) and an explicit relation-
ship with the “other world” of Fontaine’s modules: Dygr(T"), Dgt(T'), Deris(T") (see [9],
[5]).

Despite being a very useful tool, in fact the only one which allows the general
classification of integral and torsion p-adic representations of Gy, the (p,I')-modules
have an unpleasant limitation. Namely, Dy (T") could not so far be directly related
to geometry when T is the Gy -representation on a p-adic étale cohomology group
(over K) of some smooth proper algebraic variety defined over K. Here is a relevant
passage from the Introduction to [15]: “Il est clair que ces constructions sont des
cas particuliers de constructions beaucoup plus générales. On doit pouvoir remplacer
les corps que on considére ici par des corps des fonctions de plusieurs variables ou
certaines de leurs complétions. En particulier (i) la loi de réciprocité explicite énoncée
au no. 2.4 doit se généraliser et éclairer d’un jour nouveau les travaux de Kato sur ce
sujet; (ii) ces constructions doivent se faisceautiser et peut étre donner une approche
nouvelle des théorémes de comparaison entre les cohomologies p-adiques.”
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GLOBAL APPLICATIONS OF RELATIVE (¢,I')-MODULES I 341

The first part of the program sketched above, i.e. the construction of relative
(¢, T)-modules was successfully carried out in [1]. The main purpose of the present
article is to continue Fontaine’s program. In particular various relative analogues,
local and global, of (*) are proven.

Let us first point out that in the relative situation, over a “small”-V-algebra R
(see §2) there are several variants of (¢,I")-module functors, denoted ®g(—) (arith-
metic), Dgr(—) (geometric), D r(—) (tilde-arithmetic), Dgr(-) (tilde-geometric) and
their overconvergent counterparts CDL(—), DJI‘%(—), 5};(—) and ]j):}%(—). For simplicity
of exposition let us explain our results in terms of Dg(—) and Dg(—).

I) Local results. This is carried on in §3 together with the appendices §A and §B.
Let R be a “small” V-algebra. Fix an algebraic closure Q of the fraction field of R
and let 7 be the associated geometric generic point of Spec(R). Denote by R the
union of all normal finite extensions of R contained in {2, which are étale R-algebras
after inverting p. Let M be a finitely generated Z,-module with continuous action of
Gp = 28 (Spm(Rk,7)) and let D := Dr(M). Then D is a finitely generated K—}?
module endowed with commuting actions of a semi-linear Frobenius ¢ and a linear
action of the group I'r (see §2.) As in the classical case, I'g is a much smaller group
that ¥g. It is the semidirect product of I'y and of a group isomorphic to Zg where d
is the relative dimension of R over V.

Let €*(T'r,D) be the standard complex of continuous cochains computing the
continuous I'g-cohomology of D and denote 73 (D) the mapping cone complex of the
morphism (p—1): €*(T'r,D) — ¥*(I'r, D). Then, Theorem 3.2 states that we have
natural isomorphisms, functorial in R and M,

H. (YR, M) 2 H' (I3 (D)) foralli> 0.

The maps are defined in §3 in an explicit way, following Colmez’s description in the
classical case. The input of Fontaine’s construction of the classical (¢, I')-modules
was to replace modules over perfect, non-noetherian rings with modules over smaller
rings: “C’est d’ailleurs [...] que j’ai compris 'intérét qu’il avait & ne pas remplacer
k((m)) par sa cléture radicielle” Indeed, “[...]Jceci permet d’introduire des techniques
différentielles”. Motivated by the same needs, in view of applications to comparison
isomorphisms, we show in appendix §A that one can replace the module D r(M) over
the ring Kﬁ, which is not noetherian, with the smaller (¢,T'g)-module Dr(M) C

D r(M) over the noetherian, regular domain A g of dimension d + 1. We show that
the natural map

H:  .(Tg,®r(M)) — H'__(Tr, Dr(M)) foralli>0

cont

is an isomorphism. The proof follows and slightly generalizes the Tate-Sen method in
[2]. In particular, one has a natural isomorphism

H! one(9r, M) = HI (T3 (Dr(M))) for all i > 0,
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342 FABRIZIO ANDREATTA & ADRIAN IOVITA

where 7% (Dg(M)) is the mapping cone complex of the map
(p—1): €*(Tr,Dr(M)) — €*(T'r,Dr(M)).

ITI) Global results. This is carried on in §4, §5, §6. The setting for §4 and §5 is the
following. Let X be a smooth, proper, geometrically irreducible scheme of finite type
over V and let L. denote a locally constant étale sheaf of Z/p°Z-modules (for some
s > 1) on the generic fiber Xx of X. Let £ denote the formal completion of X
along its special fiber and let X 2,; be the rigid analytic space attached to Xx. Fix a
geometric generic point 7 = Spm(C g ') and set L the fiber of L at 7.

To each % — % étale such that % is affine, % = Spf(R« ), with Ry a small V-
algebra and a choice of local parameters (T, T, . .., Ty) of Ry (as in §2) we attach the
relative (o, I')-module Do (L) := 5;@ (L). However, the association % — 5%(L)
is not functorial because of the dependence of D (L) on the choice of the local
parameters. In other words the relative (¢,T')-module construction does not sheafify.

Nevertheless due to I) above, the association % — H'(J, (DR, (L)) is functo-
rial for every i > 0 and we denote by J#%(L) the sheaf on the pointed étale site 2.}
associated to it. In §4 we prove Theorem 4.1: there is a spectral sequence

E}? = HY(23, #7 (L) = BP* (X e, L),

We view this result as a global analogue of (x): the étale cohomology of L is calculated
in terms of local relative (o, I')-modules attached to L.

The proof of Theorem 4.1 follows a roundabout path which was forced on us by lack
of enough knowledge on étale cohomology of rigid analytic spaces. More precisely,
for an algebraic, possibly infinite, extension M of K contained in K, Faltings defines
in [14] a Grothendieck topology X, on X (see also §4). The local system L may be
thought of as a sheaf on X, and it follows from [14], see 4.4, that there is a natural
isomorphism:

(**) Hl(vaL) = Hi(XM,eta]L)a

for all 4 > 0. The main tool for proving (*x) is the result: every point x € Xk has
a neighborhood W which is K(m,1). Such a result, although believed to be true, is
yet unproved in the rigid analytic setting. Therefore the proof of Theorem 4.1 goes
as follows. Let L™ be the locally constant étale sheaf on X3 associated to L. We
define the analogue Grothendieck topology x M on &, prove that there is a spectral
sequence with EY'? = H1( 2%, #P(L"8)) abutting to HP+9(% )y, L"€), then compare

HE(%ps,L) to Hi (X, L78) and in the end use Faltings’ result (xx).

In §5 we introduce a certain far_nily of [ continuous sheaves which we call Fontaine
sheaves and which we denote by & , Z(6 ), At (6 ). There are algebraic and an-

inf
alytic variants of these: the first are sheaves on X)s and the second on X,,. We
would like to remark that the local sections of the Fontaine sheaves are very compli-
cated and they are not relative Fontaine rings. Continuous cohomology of continuous
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GLOBAL APPLICATIONS OF RELATIVE (¢,I')-MODULES 1 343

sheaves on Xjs and x M respectively is developed in §5. As an application a geometric
interpretation of Dy (W;), where W; = H: (X?et’l‘)’ for L an étale local system of
Z /p*Z-modules on Xk as above is given. More precisely, it is proven in §5 that there
is a natural isomorphism of classical (¢, I')-modules:

H' (2., L7 @ 4% (P3, ) = Dy (H'(Xg L))

Finally, in §6 we relax our global assumptions. Now 2  denotes a formal scheme
topologically of finite type over V, smooth and geometrically irreducible, not neces-
sarily algebrizable, and X "€ denotes its rigid analytic generic fiber.

In §6 we set up the basw theory for comparison isomorphisms between the different
p-adic cohomology theories in this analytic setting. Our main result is that, if L™&
is a p-power torsion local system on X ;ég and &/F°" is one of the analytic Fontaine
sheaves on X listed above, then the cohomology groups H’(.’% M, L7E @ orFort) can
be calculated as follows. Let us first recall that we fixed a geometric generic point

= Spm(Cg ), where Cg is a complete, algebraically closed field which can be
chosen as in 4.4. For each étale morphism % — % such that % is affine, =
Spf(R4 ) with Ry a small V-algebra, let Ry denote the union of all normal Ry -
algebras contained in C4 which are finite and étale over Ry after inverting p. Write
ﬂflg(?/M,n) for the Galois group of Ry v M C Ry ®y K. Let ™ (Ry ® K)
denote the Fontaine ring constructed starting with the pair (R%, R ) as in [15] and
denote by L, as before, the fiber of L*'& at 5. One can show that the association % —
Hi (7' (21, m), L ® /T (Ry, ® K)) is functorial and denote %5, (L"8 ® 2/Font) the
sheaf on 2 associated to it.

Notice that, due to the generalized Tate-Sen method of §A, if @t = A, (Exx)’

the inflation defines an isomorphism:
Hi(FR% ’DR% (L)) = Hi(FR% ) 53% (L)) = Hl( alg(% 77)7L ® Amf(R% ® K))

Hence, the sheaf 5, (]L“g ® Amf(ﬁég,()) is defined locally in terms of I'-cohomology

of relative (¢, ')-modules.
It is proved (Theorem 6.1) that there exists a spectral sequence

(* * *) Equ = H‘I(%;’ %&(Lrig ® dFont)) — Hp+Q(§M’]Lrig ® dFont)'

At this point we would like to remark that our results in §6 are distinct from
those of Faltings in [12], [13], [14]. Namely let us consider the following diagram of
categories and functors:

AN
Sh(%s, )N M Sh( )N

al (2, )ﬁl

Sh(Z3) —*'AbGr
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344 FABRIZIO ANDREATTA & ADRIAN IOVITA

where if ¥ is a Grothedieck topology then we denote by Sh(%) the category of sheaves
of abelian groups on € and by Sh(%)N the category of continuous sheaves on € (see
§5). We also denote o = lim¥g,p,« and 8 = li_l_llHO( ot )

We analyze the spectral sequence attached to the composition of functors:
HO(A2,—) o a while it appears, although very little detail is given, that Faltings
considers the composition of the other two functors in the above diagram (in the al-
gebraic setting). We believe that our point of view is appropriate for the applications
to relative (¢, I')-modules that we have in mind.

The analysis in §6 and the spectral sequence (** x) have already been used in order
to construct a p-adic, overconvergent, finite slope Eicher-Shimura isomorphism and
to give a new, cohomological construction of p-adic families of finite slope modular
forms in [19].

In a sequel paper (“Global applications of relative (¢,I')-modules, II"”) we plan to
first extend the constructions and results in §6 of the present paper to formal schemes
over V with semi-stable special fiber and use them in order to prove comparison
isomorphisms between the different p-adic cohomology theories involving Fontaine
sheaves in such analytic settings. We believe that we would be able to carry on this
project for spaces like: the p-adic symmetric domains, their étale covers (in the cases
where good formal models exist), the p-adic period domains of Rapoport-Zink, etc.

Acknowledgements. — We thank A. Abbes, V. Berkovich and W. Niziol for in-
teresting discussions pertaining to the subject of this paper. We thank O. Brinon
and J. Pottharst for several useful remarks. Part of the work on this article was
done when the first autor visited the Department of Mathematics and Statistics of
Concordia University and the second author visited the IHES and il Dipartimento di
matematica pura ed applicata of the University of Padova. Both of us would like to
express our gratitude to these institutions for their hospitality.

ASTERISQUE 319



GLOBAL APPLICATIONS OF RELATIVE (¢,I')-MODULES I 345

I. LOCAL THEORY

2. Preliminaries

2.1. The basic rings. — Let V be a complete discrete valuation ring, with perfect
residue field k of characteristic p and with fraction field K = Frac(V) of character-
istic 0. Let v be the valuation on V normalized so that v(p) = 1. Let K C K be
an algebraic closure of K with Galois group Gal(K/K) =: Gy and denote by V the
normalization of V in K. Define the tower

Ko:=KCK;=K(()C - CKp=K((n)C---

where (p» is a primitive p"-th root of unity and C]’;n +1 = Cpn for every n € N. Let V;,
be the normalization of V' in K, and define K, := U, K,,. Write I'y := Gal(K/K)
and Hy := Gal(K/K) so that I'y = Gy /Hy.

We also fix a field extension Koo C M C K so that K ¢ M is Galois with
group Gal(M/K). We let W be the normalization of V' in M. The two important
cases are M = Ko, with W =V, and M = K with W = V.

Let R be a V-algebra such that k C R®y k is geometrically integral. Let R® =
|% {Tlil, .., T fl} be p-adic completion of the polynomial algebra V [Tlﬂ, RN ,Tfl] .
Assume that R is obtained from R iterating finitely many times the following oper-
ations:

ét) the p-adic completion of an étale extension;
loc) the p-adic completion of the localization with respect to a multiplicative system;
comp) the completion with respect to an ideal containing p.
Define

=1

1 1 =1
R, := R@Vn I:Tl?r,TIFW,.. .,TdF,Td;W] ’ Ry = UpR,.

Let R be the direct limit of a maximal chain of normal R.-algebras, which are
domains and, after inverting p, are finite and étale extensions of R, [%]

Let m € N and let S be a R,,-algebra such that S is finite as R,,-module and
R,, C § is étale after inverting p. Define S, as the normalization of S®g, R,
in S®r,, Rn [p~!] for every n > m. Let Soo 1= Up>mSn.

Write S), for the normalization of S, in S, ®y, M and S for the normalization
of S in Seo ®v,, M. We put S’ := S,,. Note that " = R®y W and R, =
Roo ®vw w.

Proposition 2.1. — There exist constants 0 < € < 1 and N = N(S) € N, depending
on S, and there exists an element p° of Vi of valuation € such that S,’;H +pSp4+1 C
Spn + p°Sny1 (as subrings of Spy1) and S}, " 4+ p°S) ., C Sk +D°Sh,1 (as subrings
of 87, 41) for everyn > N.
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346 FABRIZIO ANDREATTA & ADRIAN IOVITA

Proof. — The claim concerning Sy, +1 follows from [1, Cor. 3.7]. It follows from [1,
Prop. 3.6] that there exists a decreasing sequence of rational numbers {4, (S)} such
that p®»(S) annihilates the trace map Tr: S}, — Hompg/, (S,, R'»). This implies that
p(9)S! . C S, ®ps, R'ni1; see loc. cit. This, and the fact that the proposition
holds for R’ by direct check, allows to conclude; see the proof of [1, Cor. 3.7] for
details. O

Definition 2.2. — For every R-subalgebra S C R as in 2.1 such that S’_ is an integral
domain, viewed as a subring of R, define

s (a2 5[2). 5o ca(su 2 (2]

Hs :=Ker (¥9s — I'g).

and

Analogously, let

Gs = Gal (Ti E] /8’ E]) , T :=Gal (Séo B] /S ED

1o Ker @ T = 0 (5 [2] 5 []).

Since S’ is an integral domain, the map #%/Hs — Gal(M/K) is an isomorphism.
Furthermore, I'g is isomorphic to the semidirect product of I'v and of I'. The latter

is a finite index subgroup of I'; = Zg. We let v1,...,74 be topological generators of
I'y.

and

2.2. RAE. — Following Faltings [12, Def. 2.1] we say that an extension Ry C Soo
is almost étale if it is finite and étale after inverting p and if, for every n € N, the
element pFl" oo is in the image of Soo ® g, Soo. Here e € Soo R, Soo [p_l] is the
canonical idempotent splitting the multiplication map Sec ® g, Soo [P™}] = Seo [p71].

We say that such extension satisfies (RAE), for refined almost étaleness, if the
following holds. For every n > m let e, be the diagonal idempotent associated to
the étale extension R, [p~!] C Sn[p~']. There exists £ € N, independent of m, such
that there exists an element pFe"T of V,, of valuation z% and pFl” ¢, lies in the image of
S, ® R, Sn.

We assume that (RAE) holds for every extension R, C So arising as in 2.1. If
this holds, we say that R or equivalently Spf(R) is small.

Remark 2.3. — 1t is proven in [1, Prop. 5.10 & Thm. 5.11] that (RAE) holds if R is of
Krull dimension < 2 or if the composite of the extensions V[Tftl, i ,Tdil] — R0 —
R is flat and has geometrically regular fibers. For example, this holds if R is obtained
by taking the completion with respect to an ideal containing p of the localization of
an étale extension of V[Tlﬂ, e ,Tfl]; see [1, Prop. 5.12].
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2.3. The rings Esm, Eg, Eséo and E5. — Let S be as in 2.1. Define
Ef_ =1m(Se/p°Sw),  E§ :=1im(SL,/p°SL,)

where the inverse limit is taken with respect to Frobenius. Using 2.1 define the
generalized ring of norms,

EfcEf, E§cCE}

as the subring consisting of elements (ag, . ..,an,...) in E;Cm (resp. in f);r, ) such that
an is in S, /p°Sy (resp. S,,/p°S,,) for every n > N(S). ~

By construction Ef_, E} (resp. Ef, and EJ) are endowed with a Frobenius
homomorphism ¢ and a continuous action of g (resp. I's). Denote by € the element
1,y -y Cpry...) € E‘t and by 7 := € — 1. Put E‘S;o = Egéo [f_l], Esm =
]E‘;oo [771], Eg := E¢ [7!] and Eg := E{ [771].

By abuse of notation for a € Q, we write 7o for a = (ag,a1,...,0n,...) € E‘J;w, if

»

it exists, such that v(a;) = 1% for ¢ > 0. For example, 7 = nf~"; see [2, Prop. 4.2(d)].
1
For every i = 1,...,d, let z; := (Ti,TZ-%,TZ?, --) € E;o. The following hold:

1. there exists N(S) € N such that the map E}/ ng"EEg — S, /p° Sy, and the map
Egoo /ng"ffzzgw — 8o /P Swo, sending (ag,-...,an,...) — a,, are isomorphisms
for every n > N(S) (see [1, Thm. 5.1]);

2. Eg is a normal ring, it is finite as E+R-m0dule and it is an étale extension of
EE, after inverting 7, of degree equal to the generic degree of R, C S (see [1,
Thm. 4.9 & Thm. 5.3]);

3. f}gm is normal and coincides with the 7-adic completion of the perfect closure
of E} (see [1, Cor. 5.4));

4. there exists £ € N and maps ffﬁgw — Eg ®E; E;m — Eg’w which are iso-
morphisms after inverting 7. In particular, E-‘S.oo [f_l] = E‘Ew ®E; Ef; [ﬁ_l]
(see [1, Lem. 4.15]);

5. consider the ring

lim S0 = {(2@,2®,...,20™,.. )]a™ € 5, (atmD)? = gtm},

o0—n

where g; is the p-adic completion of S, the transition maps are defined by
raising to the p-th power, the multiplicative structure is induced by the one
on S, and the additive structure is defined by

Cooz™ )+, y™, ) = (...,nlillgo(w(m“L") +ymEmy ).

The natural map limeo.n Seo — f)gm is a bijection (see [1, Lem. 4.10]).
It follows from (1), see [1, Cor. 4.7], that

1 1
E;Ekwﬂﬂ'l{ﬂ and E;OEE${$1,...,xd,—,...,—},
Iy Tqd
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348 FABRIZIO ANDREATTA & ADRIAN IOVITA

where ko, is the residue field of V,, and 7x = (.. ,Tn,Tn+1, ..), with 7, € V; for i >

0, is a system of uniformizers satisfying 7., = 7; mod p°. The convergence in

xlﬂ, ,xdil is relative to the 7-adic topology on E+. Eventually EE is obtained

from E}, iterating the operations

ét) the T-adic completion of an étale extension;
loc) the T-adic completion of the localization with respect to a multiplicative system;
comp) the completion with respect to an ideal containing a power of 7.

In particular, {mk,%1,...,24} is an absolute p-basis of E}.

Lemma 2.4. — Let S be as in 2.1. The following hold:

1. the maps EZ, /Wgnei)} — S/ /DS, and E'+/7rp ‘EY — S.,/p°S., given by
(agy---yQn,y-..) > an, are isomorphisms for n > N(S). In particular, E&o
coincides with the T-adic completion of EEW ®E‘+, EI’,LV and E’ﬁ' coincides with
the T-adic completion of EE ®E¢ E?}V,

2. the extensions E} — ng, EL — EE(” and Ef, > E} are faithfully flat. For
every finitely generated E+-m0dule M, the base change of M wvia any of the
above extensions is w- adzcally complete and separated;

3. we have maps ﬂeEg, — ES ®E+ ER, — Es' and 71'£E'+ — ES ®E+ E’+
E'+. They are isomorphisms after inverting T.

Proof. — Statements (1) and (3) follow from 2.2 arguing as in the proofs of [1,
Thm. 5.1] and [1, Lem. 4.15] respectively.

(2) By 2.3 we have E+/7r8p E} = R,/p°R, and B, /7P B, = W/pEW One
deduces form (1) that E'+/7r5p E = (R./p°Rn) ®v, W and that E+, Jmer” EJr =
( 00/ D Roo) ®v,, W. By construction Ry @y, W is a free R, ®v, W-module w1th

1 ~
basis {T7" ---Tf*} for m > nand 0 < a; < p™ ™. Hence, E'}%', (resp. Ef, ) is
- 3
the 7-adic completion Ef, ®gy Ef; (resp. of U, (E} ®g Ef )[:151 yooszl]). The

E‘J;—algebra E?,{, is the 7-adic completion of finite, normal and generically separable
extensions of the DVR E‘t Those are free as E‘t-module. We may then apply [1,
Lem. 8.7] to conclude. O

Given an R..-algebra S, finite and étale over R, [%], there exists m € N and

there exists a R,,-algebra S, finite and étale over R,, [%] such that S, defined as
in 2.1, is the normalization of S®pg, Roo

Theorem 2.5. — The functor Soo — E; defines an equivalence of categories from
the category Roo-AED of R..-algebras which are normal domains, finite and étale
over Ry after inverting p to the category E;-AED of EE-algebms, which are normal
domains, finite and étale after inverting ™. In particular, this realizes 7% as the
Galois group of Eg.
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Proof. — See [1, Thm. 6.3]. O

Let E% be Us_E} where the union is taken over all Ro-subalgebras So, C R
such that S [p~'] is finite étale over Ro [p~!]. Similarly, define E%' to be the
union Ug,_ Eg" Let 173% = lim(R/pe_), where the inverse limit is taken with respect

to Frobenius. It coincides with the 7-adic completion of Ug_ E;oo Denote Eg :=
Et (7], B := B (7] and Bp = B [71].
Proposition 2.6. — Let S be as in 2.2. Then,

25— =Hs _— e
(a) R =8x and R = S' (here ~ denotes the p-adic completion);
(b) we have

(BH)™ =B}, EX=Es, (B =Ef 6 EX=E,,
and
(Bp)"" =B (BY™ =B}, (Bp)" =Es;

(c) the maps

EROO QR Eg — Esoo, EIR R Eg — Efg, ER/ ® Eg — ESI
Egr Egr * Egr °

are isomorphisms. In particular, the maps EgsQ®g, EW — Ey and
Eg ®%, Ew — Eg/_ are injective with dense image.

—

I
Proof. — (a) The fact that R - Soo is proven in [1, Lem. 6.13]. The second
equality follows arguing as in loc. cit.

(b) The equalities in the first displayed formula hold due to [1, Prop. 6.14]. Those
in the second displayed formula follow arguing as in loc. cit. In fact, E% (resp. Eg, )
can be written as in 2.3(5) as the limit lim R (resp. lim §§,) The last two equal-

o0—n oo+—nN
ities in the second displayed formula follow then from (a). The fact that the inclu-
sion Efy C (E’E)HS is an equality can be checked after base change via E'g’ — EE&,
since the latter is faithfully flat by 2.4(2). But Ef Bprt Ef, = Eg_ by 2.4(3) and
Hs = ~\H =~
(E7) ° ®p+ Ef, C (ER) ™ =E§ .
(c) The first equality follows from 2.3(4). The others follow from 2.4(3). In the

case S = R the last statement follows from 2.4(1). The general case follows from this,
the equalities just proven and the fact that Egr C Eg is finite étale by 2.5. a
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2.4. The rings As_, AL _, As, Af, Ag,, XTS;}, Al; and A

Definition 2.7. — Define Kﬁ = W(Eﬁ). It is endowed with the following topology,

called the weak topology: Consider on Eﬁ the topology having {f”ﬁ%}n as funda-
mental system of neighborhoods of 0. On the truncated Witt vectors W, (Eﬁ) we

consider the product topology via the isomorphism W, (f‘,ﬁ) = (Eﬁ)m given by the

phantom components. Eventually, the weak topology is defined as the projective limit
topology W (E) = lim W,,(Eg).
o0+—m

Alternatively, let m := [¢] — 1 where [¢] is the Teichmiiller lift of €. Put X% =
W(EE)Jr. For every n and h € N define U, j, := p"XE + whx%. The weak topology
on Ag has {Up p}n nen as fundamental system of neighborhoods.

Define vg: ]:jﬁ — QU {oo} by ve(z) = ¢ if 2 = 0 and vg(z) = ;Eymax{n €
Q7 "z € E%} For z = 3 [zk]p* € X'E and N € N we put

v (2) := inf{vg(2:)|0 < k < N}.
For every N € N we have
() vi¥(@) =40 ez € pN“K%;
(i) v§" (zy) = v§" (@) + v (¥);
(i) v" (z +y) > min(vE" (2), va" (1)) with equality if v§" (2) £ v (v);
(iv) vi" (7) = 21 and v (Fz) = vi" (7) + v5" (2);

V) v (p(2) = pvi" (@);
(vi) véN (v(z)) = VEN(az) for every v € 9.

The second claim in (iii) and property (v) follow since iiv% is by construction the
7-adic completion of Ug_, E;w and each INE'bfw is normal by 2.3(3). Note that the
topology on Kﬁ/pN +1K-§ induced from the weak topology on Kﬁ coincides with
the véN topology.

For every S as in 2.2 define

As,=W(Es.), A} =W(E}),

As, =W(Es,) and Af =W(E}).
They are subrings of W(EE) closed for the weak topology.

Owerconvergent coefficients. — For r € Qs define K%)’r] as the subring of elements

z= Y p*[zx] of Kﬁ such that
k=0

lim ruvg(zx) + k = 4o00;
k—o00
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see [2, Prop. 4.2]. Write XTE = U Kg’r]. For z = Y p*lzk] € X%)’r], put
T€EQ>0 k€EZ
if 2 =0;

wr(2) =< . :
l?élfz‘ (rve(zx) + k) otherwise.

Thanks to [2, Prop. 4.2] one knows that the map w;,: X%)’T] — R U {00} satisfies
(i) wr(z) = +o00 &z =0;
(ii) wr(zy) > wr(z) + we(y);
(i) wr(z +y) > min(w, (), wr(y));
(iv) wr(p) =1 and w,(pz) = wr(p) + wr(z).
For every S., define Kg’c’:} = Xsw N K(Eo’r] and ALOO = Ag_ N K% Similarly,
define Xg),’r] = Ks;o N K%’T] and A, = Kgéo N K% By [2, Prop. 4.2] they are
w,-adically complete and separated subrings of KE'

2.4.1. Noetherian coefficients. — Let S be as in §2.1. In [1, Appendix II] aring Ag C
W(ESW) has been constructed, functorially in S, with the following properties:

(i) it is complete and separated for the weak topology. In particular, it is p-adically

complete and separated.

(ii)) AgN (pW(EE)) = pAg;

(iii) Ag/pAs = Eg. In particular, it is noetherian and regular.

(iv) it is endowed with continuous commuting actions of I's and of an operator ¢
lifting those defined on Eg;

(v) AR contains the Teichmiiller lifts of €, z1, ..., z4;

(vi) Ag is the unique finite and étale A p-algebra lifting the finite and étale exten-
sion Er C Eg.

One also requires the existence of a subring A"S~ lifting EY, with suitable properties,
so that Ag is unique. We refer to [2, Prop. 4.42] for details. Define Ag)’rl = AgnN
K(ﬁo’rl and A:rg = Ag DK%. Define A’; to be the closure of the image of As ®a,, KW
in Xﬁ for the weak topology. Put Ag =ALN K%

Eventually, let A (resp. A/E) be the completion for the p-adic topology of Us_ As
(resp. Ug, A’s), where the union is taken over all normal R.-subalgebras Soc C R
such that S, [p~!] is finite étale over Ry, [p~!]. Write A% = AgN XTE (resp. A%. =
AZNnAL).

Proposition 2.8. — The extensions XLOO C ng and AE C ATS are finite and étale.
Their reduction modulo p coincide with ER“, - ]R*jgco and Er C Eg respectively.

Proof. — 1t is clear that KL@ coincides with Esw modulo p since it contains X}'oo
and pAz N AJ’Sw = pATSm. The fact that KTROO - Xf‘»'m is finite and étale is proven
in [2, Prop. 4.7]. See [2, Prop. 4.28] for the statements regarding A;% C AL. O
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Lemma 2.9. — The following hold:

(a) As = %fs, s (A’) , As_ = K%fs, and Xséo = K%S. The same
equalities hold conszdemng overconvergent coefficients i. e., Ag)’rl = (A%)’r])%)s
~(0,r ~(0,7]\s FK(0,r ~(0,7]\H Hs ¥ H
A= ()™ A= (R mdal = (), &L = (4
AL, =(AD™

(b) The natural maps Ap_ ®anAs — As_, AL®a,As — Af and
A R ®apAs — AS/ are isomorphisms. Similarly, considering overcon-
vergent coefficients, the maps KTROO ® Al AL — Kgm, Ag ® Al A:rg — Ag and

’

K;‘Q, ®al AJr — KTS, are isomorphisms.

(c¢) We have AL/pA = AS/pAs = Eg, 'f/pAS = A%/pAs = E§ and
AT, /pAT, —ASI /pASr —ESI .

(d) The maps ASw ®%, AW — AS;o and As®a, XW — Ay are injective and
have dense image for the weak topology. The image of X_(SO:] ®K$,r1 KE,?,’T] —

X(SO,’T] is dense for the w,-adic topology for every r € Qsg.

Proof. — (a) & (b) We have inclusions Ag C A%?S, Ay C (A’E)Hs, KSOO C
5%?5, ngx’ C K%S and maps XROO ®apAs — Xsm, ARr®AarAs — Al and
Ar,_ ®apAs — Ag, . The extension Agp — Ag is finite and étale and, hence, Ag
is projective as A g-module. Since Ag_, Az and A R, are p-adically complete and
separated and p is a not a zero divisor in these rings, Ar_ ®a, Ag, AR ®ax Asg
and A R, ®Ap Ag are p-adically complete and separated and p is a non-zero divisor.
The same holds for As, AZ*, As,, AZ%, A%, Al and A, . To check that all the
inclusions and all the maps above are isomorphisms it then sufﬁges to §£10w it r~nod—
ulo p. This follows from 2.6 if we prove that A'5/pA’s = Eg and As, /pAs: = Eg/ .
Once this is established the other statements 1n (a) and the first part of (b) follow.
(c) Since by construction Ag N pA— = pA A:.r;, N pA—- = pA s Af N pA— =
pAS and Af ﬂpAE = pAj, A ﬂpA = pAs/ Ag ﬂpA— = pAg the maps
Al/pAl — As/pAs — EX* = Eg, AY/pAl — Al/pAls — (EL)" = Ej and
ATS‘;O /pAJf,°<> — As_[pAs — EE = Es{m are injective. It follows from (2, §4.3(e)
& Lem. 4.15] that there exists Ag C Agw {;L;} C Ag)o’:], for suitable o, 8 € N and
r € Qsg, so that A; / %;Ag = E; and A; is complete for the weak topology. Here,
A'gw {;L;c:} denotes the completion of A"S'w [%;;] with respect to the weak topology. In
particular, since m-adic convergence in A;m {i—;} implies convergence for the weak

topology, A}' is m-adically complete. Note that Af; ® A} K"V;, and X§ Qx+ K"ﬁ'v
=S Voo
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. . . Xz + A+ = A+ o
map to the 7-adic completion of the image of Ag ®th Aj, {gg} in AE {1;—5}
and that the latter is contained in AgJ,’T]. We conclude that ATS/pAT, Agf /pAg
and KTS;O / pXT . contain the 7-adic completion of the image of Efg', E; ®E¢ E‘TV and
E; Q-+ E"v{, respectively. Claim (c) follows then from 2.6.
=) Voo
(b) The fact that Ak ®,1 AL = AL follows from 2.8. Since AL C A}

is finite and étale by 2.8 there is a unique idempotent eg/r of AL @pt Ats such
R

1 1 — :

that for every x € Ag ®at A we have m(z) = TrAfs/A;(xeS/R). Here, m is

the multiplication map. Write eg/p = > i, a; ®b; with a; and b; € Ag)’s} for

some s € Qs¢. Then, eg/p is an idempotent of Ag ®A’,{ A’SJr and of Al . ®Z‘;' K:r?go

oo

By the first part of (b) the extensions A, C A and A r, C KS;O are finite and
étale and m(z) = Tray /A, (xeS/R) and m(z) = Trg (zes/r). We then get

st /K
that for every z € A (resp. A s' ) we have r = m(z®1) = Yic1 Tray/ay, (zai)bs
— u ! ’
(resp. z = m(z®1) = > i, Trx . re (za;)b;). Since Trp /A, and TrAS/ e

send overconvergent elements to overconvergent elements, we conclude that the maps
in the second part of (b) are surjective.

Since the extension A - AJr is finite and étale, Al g is projective as Al gr-module.
In particular, p is not a zero divisor in A} ® AL AL and in A;%go ®al, AL and those

rings are p-adically separated. Thus, to prove that the maps in the second part of (b)
are injective, and hence are isomorphisms, it suffices to prove that they are injective
modulo p. This follows from (c).

(d) Since the extensions AV C Av - KW are extensions of DVR’S they are flat.
Since p is not a zero divisor in As and Ag, it is not a zero divisor in Ag ®x AW

and As®a,, AW. Thus, to check the injectivity in (d) we may reduce modulo p. The

density can be checked modulo p™ for every n € N and, using induction, it suffices in

fact to prove it for n = 1. Then, the first claim of (d) follows from 2.8 and 2.6(c).
We prove the second claim of (d). Suppose that r = a/b with @ and b € N and let

As., (ab) (tesp. Ag:_ (ap)) denote the p-adic completion of K;oo [ﬁ] (resp. of
A

Xg“, [—(%] ), where [7] is the Teichmiiller lift of 7. Arguing as in the proof of (2,
= Lm
Lem. 4.15] one has

< (O0,r 1
As:(ab) € {x € A(S(Zo”wr( ) > } C Asr_ (ab) [[ ]]

Since w,([7]) > 0, we conclude that Ag_ (a) [%] is dense in XE.;O,’TJ for the w,-adic

topology. Since the [7]-adic completion of As_ (a,b) ®5+ A}, is contained in the
Voo
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. ~x©, (0, s . A
wy-adic closure of Afg "] ®7% (0,7 A%VT] and its image in Ags_ (q) contains wtAg (a,b)
oo AV oo ’ oo’ )

by 2.4, the conclusion follows. O

Corollary 2.10. — The extensions KR’OO c ngoy K;%o C XT&,’ Ay C Ay and A?; C

Agr are finite and étale. Their reduction modulo p coincide with ER;Q C Esg,o and
's C E respectively.

2.5. (¢,I')-modules and Galois representations. — Let S be as in 2.2. Let
Rep(%g) be the abelian tensor category of finitely generated Z,-modules endowed
with a continuous linear action of ¥. _ _

Let A be one of the rings As,,, AL, As, AL, As, , AL, , Al and A and let T
be respectively I's or I'y. Let (¢,I') — Moda (resp. (¢,I') — Mod%) be the tensor
category of finitely generated A-modules D endowed with

(i) a semi-linear action of T';
(ii) a semi-linear homomorphism ¢ commuting with I' (resp. so that ¢ ®1:
D ®% A — D is an isomorphism of A-modules).

Note that if A = Ag, then Ag is noetherian and (¢,I's) — Moda (resp. (¢,T's) —
Mod$% ) is an abelian category.
For any object M in Rep (gs), define

D(M) = (Aﬁg M) D)= (A’E? M) e
~ ~ ’ Hs ~ ~ ’ Hs
Sy = (Rzo M), D= (& ® M)

Note that D(M) (resp. 5(M )) is an A g-module (resp. Xsw-module) endowed with
a semi-linear action of I's. Analogously, D(M) (resp. D(M)) is a A's-module (resp. a
A/ -module) endowed with a semi-linear action of T's. Analogously, define

DY (M) := (A*ﬁgb M) DM = (A%%a M)HS
. .
D (M) = (K%g@ M)%S, Dt (M) = (K%g@ M)HS.

Then, D'(M) (resp. 5T(M )) is an A:rg—module (resp. K:gm—module) endowed with a
semi-linear action of I's. Analogously, Df(M) (resp. Dt (M))isa Ag—module (resp. a
Al, -module) endowed with a semi-linear action of I'.

The homomorphism ¢ on Xﬁ and AL defines a semi-linear action of o on all these
modules commuting with the action of I's (resp. of I'y).

Theorem 2.11. — The functor © defines an equivalence of abelian tensor categories
from the category Rep(ffs) to the category (p,T's) — Mod% s+ Let M be a finitely

ASTERISQUE 319



GLOBAL APPLICATIONS OF RELATIVE (y,I')-MODULES I 355

generated Z,-module endowed with a continuous action of 9s. The inverse is defined

=1
associating to an étale (p,T's)-module D the ¥g-module ¥ (D) := (AE ®Ag D)‘p .
Proof. — See [1, Thm. 7.11]. d0

Lemma 2.12. — Let M be a finitely generated Z,-module endowed with a continuous
action of Ys. Then,
(i) D(M) (resp. D(M), 5(M), D(M)) is an étale (p,T's)-module over Ag
(resp. A%, As,,, As:_);
(') DH(M) (resp. DY(M), DI(M), D(M)) is an étale (p,Ts)-module over A%
(resp. Ag, Agw, ATS, );
(i) we have D(M) = lim D(M/p"M),
D(M) = lim D(M/p"M

)

),

D(M) = lim D(M/p"M),

D(M) = lim D(M/p"M),
where the limits are inverse limits with respect to n € N. More pre-
cisely, D(M)/p"D(M) = D(M/p"M), D(M)/p"D(M) = D(M/p"M),
D(M)/p"D(M) = D(M/p"M) and D(M)/p"D(M) = D(M/p"M) for ev-
eryn € N. N "

(ii') if M is torsion, then ot(M) = D(M), D'(M) = D(M), DI(M) = D(M) and
Df(M) = D(M);

(iii) the natural maps

D(M) ® Ay — D(M), D(M)® Ag— M ®Ag
As Ag ZP

and
D(M) ® As, — D(M), D(M)® As. — D(M)
As As

are isomorphisms;
(iii") the natural maps
t 4 t t i 1
CD(M)SAS——»D(M), CD(M)?AE—AM%AE
S S
and
Dt (M) ® AL, —2tm), D'(M) e AL, — Di(M)
Al o

s

are isomorphisms;
(iv) the natural maps

DH(M) ® As — D(M),  D'(M) & A — D(M)
AL A

S
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and

D'(M) ® As, — D(M), Di(M) ® As. — D(M)
at Tt hed

Soo AS{,O

are isomorphisms.

Proof. — We refer the reader to [1, Thm. 7.11] and [2, Thm 4.35] for the proofs
that D(M) and Dt (M) are étale (¢,I's)-modules and that D(M) = D (M) ®at, Ag,
that D(M)®a; Ax = M ®z, Az and DI(M)®,1 AL = M@z, AL Claims (i),
(') and (iv) follow from this and the displayed isomorphisms. We prove the other
statements.

Due to 2.8, 2.9 and 2.10 to prove (ii’), (iii) and (iii'’) one may pass to
an extension So, C To, in R finite, étale and Galois after inverting p. For
example, (M ®z,Ap)”" = (M®z,Ag)"" ®asAr and (M®z, Ax)"" =
(M ®z, AE)HS ®ay, AT by étale descent. Hence, if (M ®z, A-E)XT Qar Ay —
(M ®z, AE)HT is an isomorphism, taking the .#%-invariants, we get the claimed
isomorphism (M ®z, A—ﬁ)%s ®ags Al — (M Rz, AE)HS.

Suppose first that there exists N € N such that p?Y M = 0. Then, there exists an ex-
tension So, C T such that S C %% acts trivially on M. Replacing S, with Tt
we may then assume that %5 acts trivially on M. By 2.9 we have A:E; /o™ ATg =
Ags/pNAg, Ag/pNAg = Aly/pNV A%, ng/pNng = sz/pNXsw and eventu-
ally Ktéo/pNKTéo = Xséo/pNKS(X,. Furthermore, we have in this case D(M) =
M®z,As, D(M) = M ®z, A, D(M) = M ®z, As_, D(M) = M ®z, As,_ and
similarly for the overconvergent (¢, I's)-modules. Then, the claims follow from 2.9.

Assume next that M is free of rank n. It follows from [2, Thm. 4.35] that
there exists an extension R, C T, in R finite, étale and Galois after invert-
ing p such that DI(M)® Al Al is a free Al-module of rank n. As we have
seen above we may and will replace So, with Ts, so that Df(M) (resp. D(M))
is a free ATS-module (resp. Ag-module). Fix a basis {e,...,e,} of DT(M).
It is also a Apg-basis of ©D(M). Hence, it is a basis over A% (resp. XTE,
Az, Xﬁ) of M ®z, A% (resp. M ®z, K%, M®z, Az, M®z, Xﬁ). Since %
and Hg act trivially on {ej,...,es}, we get claims (iii) and (iii’). For example,
5(M) = (M®ZPX§)”S szwel@'-'@xswen ZD(M)®AS Ksoo.

We are left to prove (ii). We may assume that M is torsion free, since the claim for
the torsion part is trivial. Note that D (M), D (M), D(M) and D(M) are submodules
of invariants of free modules over p-adically complete and separated rings. For exam-
ple, (M) = (M ®z, Aﬁ)xs C M ®z, Ag. Hence, they are themselves p-adically
complete and separated. It suffices to show that for every n € N the map from their
quotient modulo p™ to D (M/p™M) (resp. 5(M/p"M), D(M/p"M), ﬁ(M/p"M)) is
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an isomorphism. Due to (iii) it suffices to show it for ®(M) and in this case it follows
from the fact that © is an exact functor by 2.11. O

2.6. The weak topology on the (yp, F)-modules. — Suppose that M = Zp x
Hz_ Z/p*Z as a Z,-module. Then, M ®A is isomorphic to K" x iz A A /psiX—

as Aﬂmodule and, in particular, the product topology defines a topology on M® A—
It is 1ndependent of the choice of the presentation of M as Z,-module and the actlon

of Y5 is continuous for such topology. Note that D (M), D(M), D(M), D(M ), DY (M),
Dt(M), D' (M) and D'(M) are by construction submodules of M ® A—. They are
then endowed with the topology induced from the one just defined on M ® AE' We

call it the weak topology.
We state the following theorem relating the cohomology (continuous for the weak
topology) of the various (¢, I')-modules introduced above.

Theorem 2.13. — The natural maps

H"(T's,D(M)) — H"(T's,D(M)) — H" (%, M@ Kﬁ) :

H" (s, D(M)) — H"(Is,D(M)) — H" (GS,M ® KE) ,

and

H"(Ts,D'(M)) — H"(T's, D' (M)) — H" (%, M@ K%)
R (5, DY) — (5%, 51 0n) — 1

are all isomorphisms.

Proof. — See A.14. O

3. Galois cohomology and (¢,I')-modules

In this section we show how, given a finitely generated Z,-module M with continu-
ous action of ¢s, one can compute the cohomology groups H" (95, M) and H*(Ggs, M)
in terms of the associated (p,I's)-modules (M), fD(M) DI (M), CDT(M) D(M),
D(M), Dt (M) and Dt(M). We start with the following crucial:

Definition 3.1. — Let D be a continuous (¢,I's)-module over Ag or sz or AL
or ng (resp. over A’y or Ks{” or Ag or AL, ). Define €*(T's,D) (resp. ¢*(I's,D))
to be the complex of continuous cochains with values in D.

Let 7°*(D) (resp. Z’°*(D)) be the mapping cone associated to ¢ —1: €*(I's,D) —
¢°*(I's,D) (resp. to ¢ — 1: €*(I's, D) — ¥*(I', D)).
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Theorem 3.2. — There are isomorphisms of §-functors from the category of Rep(¥s)
to the category of abelian groups:

pi: H(7*(D())) SoH! (95, ), pi: H'(7"*(D(1))) =H!(Gs, ),
pi: H (7°(D())~-H (%, ), 7 H(7"°(D(1)) ~-H!(Gs, ),
pl H (T (D)) H (¥s,), ol HY(I7°(DY())=H!(Gs, )
pliH(7°(®N()-oH s, ), A HI(Z7°(DY())=>H!(Gs, ).

The isomorphisms p;, p., p? and Z)? are Gal(M/K)-equivariant.
Furthermore, all the maps in the square

H(7°(®1()) — Hi(7*(@'()))

| l

H (7*(D(.) —— H (73 ()

induced by the natural inclusions of (¢,T's)-modules DT (W) C D(W) C D(W) and
DI W) Cc DI (W) Cc D(W), for W € Rep(¥s), are isomorphisms and they are com-
patible with the maps pI, ,52, p; and p;. Similarly, all the maps in the square

H!(7'°(D'())) — Hi(Z"*(D())

| l

Hi(7*(D()) —— H (7" (B()
are isomorphisms and are compatible with the maps p?, ﬁ?, o, and p,

Proof. — First of all we exhibit in 3.1 the maps p; and p} (with or without ™ or f)
so that they are compatible with the displayed squares and they are compatible with
the residual action of Gy (if one exists). We then prove that they are isomorphisms
in 3.3. Eventually, we show that they are isomorphisms of é-functors in 3.4. O

3.1. The maps. — Let W be a Z,-representation of ¥s. Let D(W) and A be (1)
D(W) and A, (2) D and A, (3) DI(W) and At or (4) D'(W) and Af. Since in
each case D(W) ®a; Ag = W ®z, Ay by 2.12 and since the sequence (22) admits a
right continuous splitting, we have exact sequences of ¥s-modules

(1) 0——>W—>D(W)1;®A§—“3:LD(W)£€>A§—>O
S S

Similarly, let D’(W) and A’ be (1) D(W) and A’, (2) Dand A, (3) DY (W) and A"t
or (4) Df(W) and A'. In each case D'(W) ®a AIE = WeRz, Aiﬁ by 2.12. Thanks
to B.1 we get exact sequences of ¥s-modules

(2) 0—>W—>D’(W)®A’E—“2»D’(W)I<48>A’E———>O
A 5
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The maps in both exact sequences are continuous for the weak topology by 2.12 and
admit a right splitting as Z,-modules by B.1.

Let (o, 8) be an n—cochaln of 7*(D(W))i.e.,in " }(T's, D(W))x€™(Ts, D(W)).
Define

cp 5 =B+ (-1)"d(c(a)) € €"(Ys, W%@ Ag),

where d is the differential operator on €™ (I's, D(W)) and o is the left inverse of ¢ — 1
defined in B.1 (for each of the four possibilities for A).

Recall that the derivation on 7 *(D(W)) is given by d((a, 8)) = ((—=1)"(¢—1)(8)+
da, dﬂ). Thus, (e, 8) is an n-cocycle if and only if it satisfies (—1)"(¢—1)8+da =0
and d@ = 0. In this case, dcj, 5 = 0 and (p—1)c; 5 = (p—1)B+(-1)"d(p—1)o(a) =
(p = 1)B+ (-1)"da = 0. Thus, cj, 5 is an n-cocycle in €™ (s, W) by (1).

Choose a different continuous left inverse ¢’ of ¢ — 1. Then, (¢ —1)(¢’ — o) =0 so
that (0’ —0)(a) lies in €1 (¥s, W). Thus, B+ (-1)"d(c’(a)) — 8- (-1)"d(0(a)) =
(=1)"d(¢’ — o)(a). In particular, cf, ; depends on the choice of o up to a continuous
coboundary with values in W.

Let (a, 8) = ((=1)" (¢ — 1)b + da, db) € €™~ (T's, D(W)) x €*(T's, D(W)) be
an n-coboundary in J*(D(W)). Then, c; 5 = db + (=1)2""1d(o o (¢ — 1))(b) +
(=1)"d(c(d(a))). Note that (1 — (s o (¢ —1))b and o(d(a)) — d(c(a)) are annihilated
by ¢ — 1. Hence, cj, 5 is the image via the differential of (1 — (0 o (¢ —1))(b) +
(=1)" (o (d(a)) — d(o(a))) which lies in €™~ (¥s, W). In particular, it is a continuous
coboundary.

We thus get a map

rV: H(T*(D(W))) — H{(Ys, W).

By construction it is functorial in W. In case (1) we get the map pi, in case (2) we
get p;, in case (3) we get the map p;f and in case (4) we get pz By construction they
are compatible with the first commutative displayed square appearing in 3.2.
Analogously, using (2), one gets the claimed map r;W. In case (1) we get the
map p}, in case (2) we get g}, in case (3) we get the map p? and in case (4) we get ﬁ?.
They are compatible with the second commutative displayed square appearing in 3.2.
Furthermore, we also have actions of Gy and we claim that 7. is Gy -equivariant.
Indeed, let (o, 8) be an n—cocycle in ¢"~1(I'y, D'(W)) x €™ (s, D'(W)). Let g €
Gy. Then, g((e,8)) = (9(a),9(8)) and Chrapy = 9(B) + (-1)"d(a(g(a))). On
the other hand, g(c} 5) = g(ﬂ) (-1)"g(d(o(a))). Note that god = do g and
(p —1)(cog—go a) = 0 since ¢ is T'v-equivariant. Thus, cf, g — g(cz’ﬁ) =

(-1)*d((c 0o g — goo)(a)) is a coboundary in €"(¥s, W).

Proposition 3.3. — The maps p;, pi, pI, ﬁz, Pi P P;T and ,5? are isomorphisms.
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Proof. — We use the notation of 3.1. Since .7*(D) and J'*(D’) are mapping cones,
we get exact sequences

(3) 8 (=)™ (p—-1)

H"}(I's, D(W))—>H"(J*(D(W))) — H"(T's, D(W)) ——"— H"(T's, D(W))
and

(4)

H1 (I, D' (W) 25 H (77 (D (W))) — B (T, D'(W)) S0 ie(r, D)),

They are compatible with respect to the natural inclusions (W) c D(W) ¢ D (W)
and D1 (W) c DI(W) c D(W) (resp. DI(W) c D(W) c D(W) and DI(W) C
D' (W) c D(W)). Thanks to A.14 we deduce that the horizontal arrows in the two
displayed squares of 3.2 are isomorphisms. We are then left to prove that p;, ﬁ;-r, A
and ,T)'Z.T are isomorphisms.

From the exactness of (1) and (2) and the existence of a continuous right splitting
we get the exact sequences

(5)
H"(4s, W © A) " H'(@s,W) — H"(95, W ® Ag) T H"(&s, W ® Ag)

and

(6) s
n— n n n -1 n
H 1(GS,W%A'E)—>H (Gs,W) — H (Gs,WgA'E)__»H (GS,W%A’E)

Thanks to A.14 the inflation maps
Inf,,: H*(T's, D(W)) — H"(Ys, D(W) ,? Ag) = H"(%S,W%b Ag)
S P

and

Infl,: H"(Is, D'(W)) — H"(Gs, D'(W) @ Af) = H"(Gs, W © A7)
S 4

in cases (2) and (4) of 3.1 are isomorphisms. Take a cocycle 7 in €™~ }(I's, D(W)).
One constructs &, (Inf,_1(7)) as d (o (Inf,—1(7))). On the other hand, b,(r) =
(1,0) in €"~}(T's,D(W)) x ¢"(T's, D(W)) and %o = (~1)"d(o(r)). Thus, &, o
(=1)"nf,_; = p¥¥ o (=1)b,. If (a,B) is an n-cocycle in F*(D(W)), its image
in H*(T's, D(W)) is the class of 3. The image of cj, 5 in H"(¥s, W ®z, Ag) is the
class of B+ (—1)"d(a(e)) i. e., of 8. We conclude that the exact sequences (3) and (5)
are compatible via r,‘:V and the inflation maps Inf,, and Inf,,_; i. e., the following di-
agram commutes (the rows continue on the left and on the right):

HL(T's, D(W)) —2% s HY(Z*(D(W))) ——— H(Ts, DW)} ...

l(—l)"_llnfn_l r,‘:vl Jlnfn
5 -
H'1(Gs, W @2, Ag) — s H(@s, W) — H" (s, W ®2, Ag) = - -

ASTERISQUE 319



GLOBAL APPLICATIONS OF RELATIVE (¢,I')-MODULES I 361

An analogous argument implies that the exact sequences (4) and (6) are compatible
via 7, and the inflation maps Inf/, and Inf/, ;. The proposition follows. O

Proposition 3.4. — The functors p;, p;, p;r, Z)’I s Py P p'iT and Z)? are isomorphisms
of d-functors.

Proof. — We use the notation of 3.1. We prove the proposition for r;. The proof for r}
is similar. Let 0 —» W; — Wy — W3 — 0 be an exact sequence of ¥s-representations.
We need to prove that one has a connecting homomorphism §: H"(7*(D(W3))) —
H"+1(7*(D(W1))), making H™ (7 *(D(_))) into a é-functor, and that the diagram

H"(7*(D(W3))) — H+1(7*(D(Wh))

W3 Wl
6/

Hi(g5'7 W3) — Hi+1(gSa W1)7
where ¢’ is the connecting homomorphisms, commutes.

We start defining 8. Let (a, 8) be an n-cocycle in 7™(D(W3)) = €™~ *(I's, D(W3)) x
¢"(I's,D(W3)). Due to A.5.2 there exist a € ¥" 1(I's,D(W;)) and b €
%" (I's, D(W3)) lifting o and 3 respectively. Then, d(a,b) = ((—1)"(p — 1)b+ da, db)
is an element of " (I's, D(W;)) x €™t} (I's, D(W;)) and it is a n + 1-cocycle of
F*(D(Wr)). Its cohomology class is, by definition, §((c, 8)). Note that

CZ(J;}b) =db+ (-1)*"*'d(0 0 (¢ — 1)(b)) + (—1)"*'d(o(da)).

On the other hand, cf,, 5 = 8+ (-1)"d(o(a)). Consider Clapy = b+ (-1)"d(o(a))
in €"(Ys, W2 ®z, Ag). Then, v := c’(’“a,b) - a((go - 1)(0’(’a’b))) lies in €™ (Ys, Wa).
Furthermore, it lifts cf’, ;) since o((e — 1)c?a,ﬁ)) = 0 because (a,3) is a cocycle.

Then, the class of &’ (c?a ﬂ)) is dy. To compute it we may take the differential
in €™(Ys, Ws ®z, AE) i. e.,

dely by — do((p — 1)(c?a,b))) =db—d(co(p—-1)(b) + (-1)"*'d(c(da)).
Here, we used that do((¢ — 1)(d(o(a)))) = d(o(da)). The conclusion follows. O
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II. GLOBAL THEORY

4. Etale cohomology and relative (p,T')-modules

As in the Introduction, let X denote a smooth, geometrically irreducible and proper
scheme over Spec(V). Fix a field extension K C M C K. In this section we review
a Grothendieck topology on X, introduced by Faltings in [14] and denoted Xjs, and
its relation to étale cohomology; see 5.11. We also define the analogue Grothendieck
topology, x M on the formal completion 2" of X along its special fiber. In this sec-
tion we study p-power torsion sheaves for these Grothendieck topologies and compare
their cohomology theories. The main result of this section is the following. Let L
be an étale local system of Z/p"Z-modules on X, for some n > 1 and let L& be
the corresponding étale local system on the rigid space X;}g attached to Xg. For
every pointed étale open (%,s) of 2 (see 4.4) such that % = Spf(Ry ) is affine
and Ry is a small V-algebra (see 2.2), let L be the fiber of L& at the geometric
generic point of %I?g defined by s (see 4.5). As the notation suggests it is indepen-
dent of % and s. Let D4 (L), Dy (L), Do (L), Dy (L) denote the respective (¢, I')-
modules over Ry. For each i > 0 the associations (%,s) — H'(Z7*(D%(L))),
(%,s) — B(T*(Dx (L)), (%,5) — H(T*(D%(L))),  — H(T*(Dx(L)))
are functorial and we denote by J#%?7 (L), s#>8%(L), "% (L) and #*"8%(L) re-
spectively the associated sheaves on the pointed étale site 2. We have

Theorem 4.1. — There are spectral sequences
i) Equ = H4 (%fe;v HP*-8e (]L)) _ HPH4 (X? ot IL).
ii) Eg,q = H¢ ('%;:’ HPP-ar (]L)) [ Hp+q (XK,et, ]L).

where * stands for nothing or t. Moreover, the spectral sequence i) is compatible with
the residual Gy -action on all of its terms.

The proof of theorem 4.1 will take the rest of this section. In particular, see 4.5.

4.1. Some Grothendieck topologies and associated sheaves. — Following
[14, §3, p. 214] we define the following site:

Let X be a scheme flat over V. We denote by Xy .4 the small étale site of X,
and by Sh(Xset) the category of sheaves of abelian groups on Xz et.

The site Xpr. — The objects consist of pairs (U, W) where
(i) U — X is étale;
(i) W — U ®y M is a finite étale cover.

The maps are compatible maps of pairs and the coverings of a pair (U, W) are fam-
ilies {(Uq, Wa)}a over (U, W) such that II,U, — U and I, W, — W are surjective.
It is easily checked that we get a Grothendieck topology in the sense of [3, 1.0.1].
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It is noetherian if X is noetherian; see [3, I1.5.1]. Note that one has a final object,
namely (X, Xpr). Let Sh(X)s) be the category of sheaves of abelian groups in Xjs.

Let 2 be a formal scheme, flat over Spf(V') and with ideal of definition generated
by p. Denote by Z¢ the small étale site on 2" and by Sh(Z.) the category of
sheaves of abelian groups on Z:.

The sites % Mfet gnd Un ger- — Let %4 — & ‘be an étale map of formal schemes.
Define % M-t to be the category whose objects are pairs (¥, L) where

(i) L is a finite extension of K contained in M;
(ii) # — %" @k L is a finite étale cover of L-rigid analytic spaces; here %™&
denotes the K-rigid analytic space associated to % .

Define Homy, m.cet ((#/,L'),(#,L)) to be empty if L ¢ L’ and to be the set of
morphisms g: #’ — # ®p L' of L'-rigid analytic spaces if L C L’. The coverings
of a pair (#,L) in ™Mt are families of pairs {(#a, La)}a over (#,L) such that
I, #, — ¥ is surjective. Define the fiber product of two pairs (#”,L’) and (#", L")
over a pair (#,L) to be (#' x» #",L") with L' equal to the composite of L’
and L”. Tt is the fiber product in the category % Mfet

Let % — %, be a map of formal schemes over £ . Assume that they are étale
over & . We then have a morphism of Grothendieck topologies pa, %, : %IM’M —
UM given on objects by (#,L) — (”/V X gy ris %;ig,L). It is clear how to define
such a map for morphisms and that it sends colvering families to covering families.

Let .#4 be the system of morphisms in % ¢ of pairs (#',L') — (#,L) such
that g: #’ — # ®p L' is an isomorphism. Then,

Lemma 4.2. — The following hold:

i) the composite of two composable elements of Fo is in Foy;

ii) given a map % — % of formal schemes étale over X", we have pa, a, (Yaz/l) -
Sy ;

iii) the base change of an element of %4 via a morphism in %M is again an
element of Sy ;

iv) if f: (M,L1) - (#,L) and g: (#a,L2) — (#,L) are morphisms lying in Fo
and if h: (#1,L1) — (#a,Ly) is a morphism in %Mt such that f = go h,
then h is in Sy .

Proof. — Left to the reader. a

Thanks to 4.2 the category % M-ft localized with respect to . exists and we
denote it by % fes. Note that the fiber product of two pairs over a given one exists
in % gev and it coincides with the fiber product in % *ft. The coverings of a
pair (¥, L) in % e are families of pairs {(#4, L)} over (#/, L) such that 11, %, —
W is surjective. By 4.2 the category % st and the given families of covering define
a Grothendieck topology. It is a noetherian topology if the topological space 2
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is noetherian. By abuse of notation we will simply write # for an object (#,L)
of %M,fet-

We recall that, given pairs (#1, L1) and (#2, L2) in %1 get, one defines the set of
homomorphisms

Homa,, ... ((#1, L), (#2, L2)) = Homg msee (#', L"), (#2, L2)),

lim
(#',L")—(#1,L1)
where the direct limit is taken over all morphisms (#”,L’') — (#1, L,) in %4 . Equiva-
lently, due to 4.2, it is the set of classes of morphisms (#4, L1) « (#’,L’) — (#5, L),
where (#',L') — (#1,L;) is in 4, and two such diagrams (#;1,L,) — (#',L') —
(#3, La) and (#1,L1) «— (#",L") — (#3,Ls) are equivalent if and only if there is
a third one (#1,L1) « (#"", L") — (#2,L2) mapping to the two. If (#7,L;) «
(#',L'") — (#3,Ls) and (#3,L2) — (#",L") — (#3,L3) are two homomorphisms,
the composite (#1,L1) «— (#"',L"") — (#45,L3) is defined by taking (#”", L") to
be the fiber product of (#’,L’) and (#", L") over (#2, Ls).

Let % — % be a map of formal schemes étale over 2. Due to 4.2, the map
pan.ay s UM — UM extends to the localized categories and defines a morphism
of Grothendieck topologies % ar et — %1,M 5t Which, by abuse of notation, we write
W W X gria Uy .

The site X3;. — Define X5 to be the category of pairs (%,#’) where % — %
is an étale map of formal schemes and # is an object of % fet. A morphism
of pairs (%', #') — (% ,#') is defined to be a morphism %’ — % as schemes
over 2 and a map #' — W Xqyus % "€ in Ung ter A family {(Za, Wo,6) La,g)to —
(%,#,L) is a covering if {%,}a is an étale covering of % and, for every «,
(Wayg, La,g)ﬂ is a covering of ¥ X o+ %8 in U, M fet -

Remark that the fiber product ("', #"") of two pairs (%', #") and (%", #")
over a pair (%, %) exists putting %" := %' xq %" and #"" to be the fiber prod-
uct in %} gy of W' Xgpres %7€ and W' X gyres U 1€ over W xqus %M€, The
pair (%, (2", K)) is a final object in Xp;. We let Sh(i%M) be the category of
sheaves of abelian groups on x M-

We remark that in all the categories Sh(_) introduced above AB3* and AB5 hold
and the representable objects provide families of generators. In particular, one has
enough injectives; see [3, Thm. I1.1.6 & § I1.1.8].

4.2. Morphisms of Grothendieck topologies. — One has natural functors:
(D) ux,pm: Xy — (X Qv M), with ux p(U,W) := W,

(ILa) vx,m: Xet — XM given by vx m(U) 1= (U,U®v M);

(ILb) Bar ar: Loy — Ear given by Dar (%) := (%, (%78, K)).

Assume that £ is the formal scheme associated to X i. e., that it is the formal
completion of X along its special fiber. We then have:
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() pxp: X — Zpr given by pux s (U, W) := (%, (#, L)) where % is the formal
scheme associated to U and if the cover W — U ®y M is defined over a finite
extension K C L, contained in M, then # — ?/L'ig is the pull-back via %; ¢ —
Uzig of the associated finite and étale cover of rigid analytic spaces W*& — Uzig ;

(IV) vx: Xet — Zet given by vx (U) = % where % is the formal scheme associated

to U.

Let K € M; C M, C K be field extensions. Define
(V.a) ﬁMl,M2: Xum, — X, by ng,Mg(U, W) = (U,I’V@M1 Mz).
(V.b) ,BMI,Mzt le g xM2 by ,BMth(?/,W) - (%,W)

Due to the definition of X, the functors p x,m and 8 M., M, are well defined. More
precisely, given (U, W), the image pux,a (U, W) does not depend on the subfield L C
M to which W descends. Analogously, given % € Z, then EMl, M, sends the
multiplicative system %% , used to define x M, , to the multiplicative system .5 used
to define X M-

It is clear that the above functors send covering families to covering families and
commute with fiber products. In particular, they are morphisms of topologies, see (3,
Def. 11.4.5]. Given any such functor g, we let g, and g* be the induced morphisms
of the associated category of sheaves for the given topologies; see [3, p. 41-42]. Note
that the functors above preserve final objects and commute with finite fibred prod-
ucts. Therefore, the induced functor g* on the categories of sheaves is exact by [3,
Thm. I1.4.14].

We work out an example. If & is a sheaf on .’%M, then px a,« (&) is the sheaf on X s
defined by (U, W) — Z (ux,m (U, W)). If & is a sheaf on Xy, then p 5, (F) is the
sheaf associated to the separated presheaf defined by (%, #') — limy: w) F(U', W’)
where the limit is the direct limit taken over all pairs (U’,W’) in Xj; and all
maps (%, ¥) — ,uX,M(U’,W’) in %M.

Notation. — If F is a sheaf on X4 or is in Sh(Xet)N (see section 5 for the definition),
we write F°T™ for v} (F), respectively for 1/;(’1\1(3Z )-

If L is a locally constant sheaf on Xz ¢, by abuse of notation we denote L its push
forward ux ar,«(L) € Sh(Xr). It is a locally constant sheaf on X .

If # is a sheaf on X or is in Sh(Xp)™, we denote by #™'¢ the pull-back u% 5 (F).
Nots, that if & € Sh(X ) is locally constant, then .8 is also a locally constant sheaf
on Xy.

4.3. Stalks [14, p. 214]. — Let K, be a finite field extension of K contained in K
and denote by V,, its valuation ring.

Fix a map z: Spec(V,) — X of V-schemes and denote by #: Spec(V) — X the
composite of r with the natural map Spec(V) — Spec(V;). Let ﬁﬁ}“z be the the
direct limit lim; R; taken over all pairs {(R;, f;)}; where Spec(R;) is étale over X and
fi: R; — V defines a point over Z. Let . be a sheaf in Sh(Xet). The stalk %, of &
at x is defined as #, = & (ﬁﬁ‘z) by which we mean the direct limit lim; % (Spec(Ri)).

SOCIETE MATHEMATIQUE DE FRANCE 2008



366 FABRIZIO ANDREATTA & ADRIAN IOVITA

Define Ox ;- » as the direct limit lim; ; R} ; over the pairs {(R} ;, R; ; — V)}i;
where (1) R; ; is an integral R;-algebra and is normal as a ring, (2) R 5\ ®V K isa
finite and étale extension of R; ®y M, (3) the composite R; ®y M — Rg’j v K - K
is r®¢ — fi(r)-£ If F is a sheaf in Sh(iM), we then write %, or equiv-
alently F (Ox,¢,m ®v K) for the direct limit lim; ; F (Spec(R;), Spec(R; ; ®v K)).
We call it the stalk of F at z.

Let Gz m be the Galois group of _OZX,%M ®v K over ﬁ;}"z ®v M. Then, %, is
endowed with an action of G .

Let V C V; be a finite extension of DVRs. Let &: Spf(Vz) —» 2 bi a map of V-
formal schemes and let Z: Spf(V) — £ be the composite of & with Spf(V') — Spf(V).
Define ﬁs“’j be the direct limit lim; S; over all pairs {(S;, g;) }ics such that S; is p-
adically complete and separated V-algebra, Spf(S;) — £ is an étale map of formal

schemes and g;: S; — V defines a formal point over Z. If % is a sheaf in Sh(.%”et), the
stalk .%; of .Z at & is defined to be the direct limit 53(05“ 3) = lim;e; Z(Spf(S))).

Write € o 3 a for the direct limit lim; ; S j over all triples {(S; ;, S} ; = V, L; ;) }i 5
where (1) L;; is a finite extension of K contained in M, (2) 5] ; is an integral ex-

tension of S; and is normal as a ring, (3) Sg’j ®v K is a finite and étale S; @y L; ;-
algebra, (4) the composite S; v L; ; — SZ{’]- Qv K — K is a®{ +— g;(a) - £. Given
a sheaf # in Sh(% M), denote by Z3, or equivalently % (ﬁ xiem®v K ), the direct
limit lim; ; % (Spf(S;), (Spm(S} ;®v K),L; ;). We call it the stalk of # at Z.

Denote by Gz, the Galois group of é’gg &M ®v K over ﬁSh - M. Then, %; is
endowed with an action of Gz ar.

Lemma 4.3. — Let k(z) (resp. k) be the residue field of V, (resp. V) and denote by
zx: Spec(k(z)) — Xx (resp. Tr: Spec(k) — X ) the points induced by = or & (resp. T
or ) on the special fiber Xy of X or of Z . Then,

i 6’ Xz coincides with the strict henselization of Ox 5, and oh % : coincides with

the strict formal henselization of Oq 5, .

Assume that Z is the formal scheme associated to X and that & is the map of
formal schemes defined by x. Then,

ii. (0%,,(p) and (6% ;,(p)) are noetherian henselian pairs and the natural map
ﬁﬁ}‘z — ﬁj{l 18 an isomorphism after taking p-adic completz'ons,

iii. the base change functor from the category of finite extensions of & X «» €lale after
inverting p, to the category of finite extensions of O % 4 Etale after inverting p,
is an equivalence of categories;

iv. the maps O, /pO%, — O ./p0%; and Ox.m/POxzm —
O o .5.m/PO o 3 m are isomorphisms.

v. Frobenius on E‘%’@YM/])EQ’,@YM is surjective with kemelp%?,%,j,M/pﬁg[@,M.
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Proof. — (i) The strict henselization of &x 5, is defined as the direct limit lim; Tj
over all pairs {(T},t;)}; where Spec(T}) is étale over X and t;: T; — k is a point
over Zy. In particular, we get a map 6%, = lim; R; — 6%, = lim; T; by associating
to a pair (R;, fi: R; — V) the pair (R;, R; >V — k). To conclude that such a map
is an isomorphism it suffices to show that for any pair (Tj,¢;) there is a unique map
of V-algebras T; — V lifting t; and inducing the point Z. The base change of T}
via T defines an étale V-algebra A; and ¢; induces a map of V-algebras A; — k.

By étaleness of A; the latter lifts uniquely to a map of V-algebras A; — V which,
since Tj is of finite type over V, factors via V.

The strict formal henselization of &g x, is defined as the direct limit lim; Q;
over all pairs {Q;,q;}; where Q; is a p-adically complete and separated V-algebra,
Spf(Q;) — & is an étale map of formal schemes and g;: Q; — k is a point over Zy.
The proof that &S} , is the strict formal henselization of &4 x, is similar to the first
part of the proof and left to the reader.

(ii) It follows from (i) that ﬁﬁé"x (resp. ﬁsﬁllz) is a local ring with residue field k and
maximal ideal m, (resp. m;) generated by the maximal ideal of Ox ., . In particular,
the graded rings gr, ﬁ%z and gr, ﬁ}t}lj are noetherian so that ﬁjé“x and ﬁ}?’ ; are
noetherian.

We claim that ( f{&’i,mj) is a henselian pair; see [11, §0.1]. This amounts to
prove that any étale map % , — B, such that k = 0%} ,/m; 0%} . — B/m,B is an
isomorphism, admits a section. Note that there exist 4 and an étale extension S;i— A
such that B is obtained by base change of A via §; — 0% ;. Via a: A/m;A —
B/myB = k the pair (A\, a), where A is the p-adic completion of A, appears in the
inductive system used to define the strict formal henselization of &g ., so that,
thanks to (i), we get a natural map A — ﬁSh@ and, hence base-changing, a map of
0% ;-algebras B — 6’2{11 Analogously, one proves that (6% ,,m,) is a henselian
pair.

Note that p is contained in m,, so that (6%,,(p)) and (ﬁ%{l@, (p)) are
henselian pairs. Let O3y F,z, D€ the strict henselization of the local ring
of X ®y V/pV at x. By construction we have natural injective maps ﬁﬁ:z / pﬁ?’z —
6’(5%‘1@ /pﬁ’}?’j - O%s Fpaz.- We claim that such maps are isomorphisms. It
suffices to show that the composite is surjective. Using (i) this is equivalent to
prove that the map from the strict henselization of x ,, to the strict henseliza-
tion of Ox gF, .z, is surjective. This amounts to show that given an étale map
f: Spec(R) — Spec(Ox g F,,z, ), there exists an étale map g: Spec(S) — Spec(Ox,z,)
reducing to f modulo p. By the Jacobian criterion of étaleness we have R =
Ox @¥FyaelTh,- -, Tal/ (P, ..., ha) with det (h;/0T;); _ invertible in R. Then,
S = Oxa,[T1,..., Tal/ (a1, ..., qa) [det (8g;/OT;) "], with g; lifting hy, is an étale
Ox z,-algebra and lifts R as wanted. Since p is not a zero divisor in 65, and
in ﬁf%l,i, we conclude that the graded rings grpﬁ}}"w and in grpﬁSh & are isomorphic,
concluding the proof of (ii).
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(iii) Let 0%, (resp. 6% z) be the p-adic completion of 6%, (resp. 6% ;). Thanks
to [11, Thm. 5] one knows that the category of finite extensions of ﬁ%z, étale after
inverting p (resp. the category of finite extensions of ﬁf@lly > €tale after inverting p), is

—

equivalent to the category of finite extensions of ﬁ}h’z = ﬁs%}i z, étale after inverting p.
The claim follows from (ii).
(iv) The first claim follows from (ii). The second follows from the first and (iii).
(v) Note that p* € O g ;M for every a € Qso. It follows from [14, §3, Lemma
5] that Frobenius is surjective on ﬁ,@’yi,M/paﬁg{@,M forevery 0 < a < 1. Let a €
ﬁg@,M. Write a = bP +p%c with b and ¢ € ﬁgg,i,M. Write ¢ = dP +p1“%e
_ 1 —_
with e € O 3 m. Then, a = (b+ pr?d)P modulo pO g ;z M.
— — p —
Let a € O 2 ;M be such that a? € p& g ; p. Then, % = (—"l—) liesin O g ;M.
Since the latter is a normal ring, this implies that %- € & 9 ; a»r as claimed. O
pp
Proposition 4.4. — The notation is as above (in (2), (3) & (5) below we also assume
that & is the formal scheme associated to X and that Z is the map of formal schemes
associated to x: Spec(V;) — X).

1) Suppose that X (resp. Z ) is locally (topologically) of finite type over V and that
every closed point of X maps to the closed point of Spec(V'). Then, a sequence
of sheaves F — 4 — I on Xe (resp. Xnr, resp. Zet, resp. Xpr) is exact if
and only if for every point © of X (resp. T of & ) as above the induced sequence
of stalks F, — Yy — H, (resp. Fz — Yy — ;) is exact;

2) let Z be in Sh(Xet). Then, vi(F)z = Fu;

3) if F is in Sh(Xn), then, p 3 (F)z = Fo;

4) fiz field extensions K C My C My C K. Then, By, 5, (vesp. E}‘VII’MJ of
a flasque sheaf is flasque. Furthermore, if F is in Sh(.’{Ml) (resp. F is in
Sh(ﬁ% M1) ), then one has natural identifications:

a) ﬁX/Il,Mz(y)w = Fy (resp. ,81*\/1,,1\42(9)@ = Fs);
b) if My C M, is Galois with group G, then H®(Xpr,, ) =

H (Xary, B3, 00, (9)) (resp. BB rs,, &) = HO (Rasy, By 1 (9)) ).

Assume that K, is contained in M. Then,
5) we have a natural isomorphisms Gz pm = G m and, if F is in Xy, the isomor-
phism ;L}’M(f)j > %, is compatible with the actions of Gz m and Gz m
6) let F be a sheaf in Xpr. Then, (RIvx p+(F)), = H"(szM,fz);
7) let F be a sheaf in Zpr. Then, (R%War ar(F)), = HY(Gsmr, Fz).
Proof. — (1) In each case it suffices to prove that a sheaf is trivial if and only if all
its stalks are.

We give a proof for a sheaf on X s and leave the other cases to the reader. Let # €
Sh(Xjs) such that for every point z of X, defined over a finite extension of K, we
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have %, = 0. Let (U, W) € X and let « € F (U, W). Then, for every z: Spec(V;) —
U and every point y: Spec(K,) — W over x ®y K, which exists since W — Uy, is
finite, there exist (U, W) € X and amap (Us, W) — (U, W) such that (1) z®v V
factors via Uy, (2) y®k K factors via W, and (3) the image of o in & (U, W) is 0.

Due to the assumption, the set of points = (resp. y) as above are dense in U
(resp. W) so that there exist points z; and y; such that II;(U,,, W,,) — (U,W) is
a covering of (U,W) in Xps. Since & is a sheaf, the homomorphism & (U,W) —
[1: # (Us,, W,,) is injective. Hence, a: = 0 to start with.

(2) Since any sheaf is the direct limit of representable sheaves and direct limits
commute with v% and with taking stalks, we may assume that .# is represented by an
étale X-scheme Y — X. In particular, vk (%) is represented by the formal scheme %
associated to Y. Let Y, (resp. %;) be the pull back of Y (resp. %) to Spec(Ox )
(resp. Spec(@« z)). We then have the following diagram

«T»z v (#)z

Homg, , (ﬁyz, ﬁ%z) —— Homg,, , (ﬁ%, ﬁ’%@) e Homk(ﬁyx Qv k,E).

By 4.3(i) these maps are bijective as claimed.

(4) If Z is in Sh(Xyy, ), then B, 5, (F) is the sheaf in Xy, associated to the
presheaf ,8;,111, M, (F) defined by (U,W) — lim #(U’,W’) where the limit is taken
over all the pairs (U’,W’) in Xy, and all the maps (U,W) — (U, W' ®um, M2).
This is equivalent to take the direct limit over all pairs (U, W') in X, and over
all maps (U,W) — (U,W') as Upy,-schemes. If M; C M, is finite, there exists
an initial pair, namely (U, W) itself, viewed in X via the finite and étale map
W — U®y My — U®y My, so that 83/ 4 (F)(U,W) = F(U,W). In general,
there exists a finite extension M; C L contained in My and a pair (U, W) in X
such that W = W ®, M,. Since any morphism of pairs in Xjs, descends to a finite
extension of M;, we conclude that 51;111,M2(9)(U’ W) =ZUW.eL Mz), defined
as the direct limit limyp, % (U, WL L L’) taken over all finite extensions L C L'
contained in Mj, considering (U, Wy ®p L’) in Xp; via the finite and étale map
Wr L L' - U®y L — UQ®y K. In any case, we conclude that ﬁ;,,llyMz (F) is already
asheafi.e., ﬂ;,,ll, m,(F) = Bis, 1, (F). Furthermore, B3/, 1, preserves flasque objects
and satisfies (a).

For (b), recall that X5y, and Xps, have final objects so that global sections can be
computed using the final objects. Since Xps, — X4, is a limit of finite and étale covers
with Galois group G and .Z is a sheaf on Xy, , one has # (X, Xur,) = F(X, X, )C.

G
Then, H(Xu,, #) = #(X, Xu,) = F(X, Xa,)¢ = H (X1, B3, 11, (F))  and (b)
follows. R
A similar argument works for B, ,m,- Details are left to the reader.
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(3) & (5) The first claim in (5) follows from 4.3(iii). To get the second claim and (3),
one argues as in (2) reducing to the case of a sheaf represented by a pair (U, W), so
that u (U, W) = (%,#,L), and using 4.3(iii).

(6) Consider the functor Sh(Xs) — (G m-Modules), associating to a sheaf Z its
stalk Z,. It is an exact functor. Recall that %, = lim; ; % (Spec(R;), Spec(R;, ;®v K)).
Thus, the continuous Galois cohomology H* (Gz, M, 3@) is the direct limit over 7 and j
of the Chéch cohomology of % relative to the covering (Spec(Ri), Spec(R; ; ®v K )
In particular, if Z is injective, it is flasque and H9(Gq,u, ;) = 0 for ¢ > 1.

Both {(qugg,M,*(.?))z}q and {H? (GI,M,ﬁm)}q are d-functors from Sh(Xy,) to
the category of abelian groups. Also (R%wa am«(F))
injective. For ¢ = 0 we have

Rz M (F)), = lim Z (Spec(R;), Spec(R; ® K)) =ZF(Oxzum ® K)G“’M.

is zero for ¢ > 1 and &

x

This proves the claim.
(7) The proof is similar to the proof of (6) and left to the reader. g

Lemma 4.5. — Assume that 2 is the formal scheme associated to X, that X is locally
of finite type over V and that every closed point of X maps to the closed point of
Spec(V'). We then have the following equivalences of §-functors :

i. RI(vxoux,m,s) = Vx ORIx v and RY(Var amwopiy pr) = (R%War m,e) 0% ars
i, vk o RIvx M= (R0, M) © Wi, ar-

Proof. — (i) Since v} and Kx p are exact and vx, v« and Uar M, are left exact, the
derived functors of v o vx a,« and Vg a,« © u;(,M exist. By 4.4 we have

vx (R7ux, M4 (F)); = Rlvx, M (ux,m(F))), = H (Go,m, F)
and
R0a me (Wi, (F)), =B (Ga,m, i 01 (F)a) -

This implies that if & is injective, v% (Rvx m«(F)) = 0 and R%a u « (u},M(ﬁ?)) =
0 for ¢ > 1. Hence, R?(v} o vx,m,s) = vk © RPux,m« (resp. RT(Var a,v 0 i pr) =
R%g M« © i pr)- Indeed, they are both d-functors since v (resp. pk p) is exact,
they are both erasable and they coincide for ¢ = 0.

(ii) We construct a map vg: vy (vx,mM+(F)) — Var M. (uj{‘M(ﬂ)) functorial
in Z. The sheaf v (vx,m«(F)) is the sheafification of the presheaf .#; which asso-
ciates to an object % in Ze the direct limit lim % (U, Uk) taken over all U € X
and all maps from % to the formal scheme associated to U. On the other hand,
the presheaf Fa 1= Uz m (u}’M(ﬂ)) (1x m(F) is taken as presheaf) associates
to % € Zet the direct limit lim & (U, W) over all (U, W) in X7 and all maps from %
to the formal scheme associated to U and from % ™ to the rigid analytic space defined
by W™& xrig 8. We thus get a morphism at the level of presheaves #; — %;.
Passing to the associated sheaves we get the claimed map.
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The map v induces R¥yz: RI(v} o vx,m«)(F) — RI(Va mx © ,u}’M)(ﬂ‘).
Using (i), we get a natural transformation of §-functors as claimed in (ii). We are left
to prove that it is an isomorphism. This can be checked on stalks and, as explained
in the proof of (i), it amounts to prove that for any sheaf .# one has H? (G4 v, %)
He (G@,M,uj‘x,M(y)i). The conclusion follows since pk 3 (F): = F; and Gu,m
Gz, m thanks to 4.4.

0O R 1R

For later purposes we introduce the following variants of the topologies introduced
above:

4.4. Pointed étale sites. — Les £ be a p-adic formal scheme, formally smooth
over Spf(V) and with 2" ®y k geometrically irreducible. Let K be a separable closure
of the field of fractions of Z ®y k. Let Wk be a Cohen ring for K i. e., a complete
DVR such that Wk /pWk = K. Let Co be the p-adic completion of an algebraic
closure of the fraction field of Wk containing K.

The site Z. — Denote by Z.¢ the following Grothendieck topology. As a category
it consists of pairs (%, s) where % — % is an étale morphism of formal schemes and
s is a morphism Spf (WK QW (k) V) — % of V-formal schemes inducing a geometric
generic point of %. A map of pairs (%,s) — (%',s') is a map of Z -schemes
% — %' such that the composite with s is s’. A covering ;c1(%, i) — (%, s) is
defined to a map of pairs (%,s;) — (%,s) for every i such that II;%; — % is an
étale covering.

Fix &: Spf(V;) — 2 as in 4.3 and choose a homomorphism 7;: 6% ; —

Wk ®w k) V inducing the geometric generic point K on 2 ®y k. Given a sheaf F#
on Z. define Z; to be ﬂ(ﬁ}?z) as in 4.3 i. e., if ﬁfo{li is the direct limit lim; S;
as in loc. cit. and if s;: Spf(Wk ®@w k) V) — Spf(S;) is defined composing with 7z,
then ﬁz(ﬁ;}}m) := lim;es # ((Spf(S;),s:)). One then proves that a sequence of
sheaves on 2.} is exact if and only if the associated sequence of stalks is exact for
every &: Spf(Vy) — 2.
The site 27\4 — Define .’%;M to be the following Grothendieck topology. Its objects
are the pairs ((?/,3),7/,L) where (%,#,L) is an object of Xy and (#,s) is an
object of Z.t. A morphism ((%,s),#,L) — ((%',s'),#",L') in i%j\,[ is a morphism
(%,#,L)— (%', #' L) in i";w such that the induced map % — %’ arises from a
map (%,s) — (%',s') in Z4. A covering W;er (%, s:), %, Li) — (%',8'),#', L")
is the datum of morphisms ((%, s;), #;, Li) — ((%',s'),#',L') for every i € I such
that IL;(%, #;, L;) — (%'#"’,L') is a covering in I%M.

Fix : Spf(V,) — % as in 4.3. Choose a map 7 : %,i — Wk ®w(r) V inducing
the geometric generic point K on 2 ®vy k. Given a sheaf % on %}VI put &; =
F (0 o ,2,m ®v K) where, using the notation of 4.3, we write # (0 a3 » ®v K) :=
lim, ; % ((Spf(Si), s:),Spm(S; ; ®v K), Li ;). Then, a sequence of sheaves on X3, is
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exact if and only if the associated sequence of stalks is exact for every &: Spf(V,) —
Z.
We have functors
(i) a: Z& — Zet given by a(%,s) = %;
(i) b: X3, — X given by b((%,s), #,L)

=(%,V,L);
(ili) Vg m: £t — X3 given by Vg (%, 8) =

(%,s), %", K).
As in 4.4(7) one proves that for every point £: Spf(V,;) — £,
(Ri’ﬁgy,M,*(ﬂ))ﬁ ~ H (Gie,my Fz), Gim = Gal(ﬁgg’@,M %K/ﬁi”?,a‘: . M)
Then:

Lemma 4.6. — Assume that X is smooth and geometrically irreducible over V and let
Z be the associated p-adic formal scheme. Then: The categories Z.% and -%7\/1 admit
final objects. Furthermore, a (resp. b, resp. Va m) send final object to final object
and a (resp. b) are surjective.

Proof. — Since % is formally smooth over Spf(V'), for every étale map  — %
also % is formally smooth over V. Thus, if % irreducible and if we fix a geometric
generic point 34 : Spec(K) — %, there exists a map s¢ : Spf (W ®w) V) — 2
lifting S . This proves that a, and hence b, are surjective.

We claim that (2, s 2) is a final object in Z}. This implies that ((2",sa), Z 8, K)
is a final object in 3/%;\,1 and that a, b and Ug p preserve final objects. To prove
the claim it suffices to show that given two maps s, s’: Spf (WK QW (k) V) — % as
V-formal schemes, inducing the generic point of 2}, there exists an automorphism p
of Wk ®w (k) V (as V-algebra) such that s’ = s o p. Let R be the p-adic completion
of the localization of 2 at its generic point. It is a DVR. Write Z for Wk ®w ) V.
Then s and s’ induce maps f and f': R — Z such that, considering f or f’, the
maximal ideal of Z is generated by the maximal ideal of R and the residue field of Z
is a separable closure of the residue field of R. By uniqueness of étale extensions,
there exists an automorphism h of Z, as V-algebra, such that g = ho f. O

Corollary 4.7. — Let & be a sheaf on Zo (resp. %M ). We have a natural iso-
morphism of §-functors H (2%, ax(F)) = HY(Zer, F) (resp.  HY(X3,b.(F)) =
Hz(vay))

Proof. — We have functors
av: Sh(Zy) — Sh(22),  b.: Sh(Xm) — Sh(E}),

which send flasque objects to flasque objects. Since a and b are surjective by 4.6, a.
and b, are also exact. Since HO(2%, a.(F)) = H(Zu, #) and HO(X3;,b.(F)) =
HO(.’% M,F), the lemma follows. a

This allows to work with pointed sites, which are better suited for Ga-
lois cohomology computations. Indeed, let (%,s) € %% with % connected
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and let 7,: Spm(Cgq) — I? € be the composite of s}i(g and the morphism
Wk ®w (k) K — Ca chosen in 4.4. It induces a map Ry C Cg. Let Ry C R be
the union of all finite and normal R4 -subalgebras of C -, which are étale after invert-
ing p. Define n2'8(%i8,7,), or simply m1(%r), to be Gal (R ®v K/Ry ®y M) and
let Repgiq. (71(%a1)) be the category of abelian groups, with the discrete topology,
endowed with a continuous action of 71 (%).

Lemma 4.8. — The category % ter s equivalent, as Grothendieck topology, to the
category of finite sets with continuous action of w1 (%) := Gal (R% [%] /Ry ®v M )
In particular,

1) the functor

Sh (%M,fet) E— Repdisc (71'1 (%M)), F - Q(Rq/ @ K),

with F(Ray Qv K) := limgy ») F(U, W) where the direct limit is over all
elements of % set, defines an equivalence of categories;

2) for F € Sh (% tet) we have Hi(%Myfet,y) = Hi(m(%M),ﬁ(R% Qv K)),
where the latter is the derived functor of Repyie. (m1(%n)) 3 A — A™ (%) (the
Galois invariants of A).

Proof. — The first claim follows noting that %z set is the category of finite and étale
covers of Ry ®y M. By Grothendieck’s reformulation of Galois theory the latter is
equivalent to the category of finite sets with continuous action of 71 (Zs).-

An inverse of the functor given in (1) is given as follows. Let G € Repgq. (m1(%nr))-
Let (% ,11;,(#;,L;)) € .’%;\4 with #; = Spm(S;) and S; ®, M a domain and fix an em-
bedding f;: S;®r, M — Ry ®v K. Let H; := Gal(Ry ®y K/S; ®1L M) C m1(%m)
which is independent of f;. Then, define ¢ (% ,1L;(#;,L;)) = [[; G¥:. One verifies
that ¢ is a sheaf and that the two functors are the inverse one of the other.

For claims (2) we note that the cohomology groups appearing are universal -
functors coinciding for ¢ = 0. O

We next show that the sites introduced above are very useful in order to compute
étale cohomology:

Proposition 4.9. — (Faltings) Assume that X is locally of finite type over V' and that
every closed point of X maps to the closed point of Spec(V). Let L be a finite locally
constant étale sheaf on Xpr annihilated by p*. For every i the map H* (X37,L) —
H (Xpse1, L), induced by pull-back along ux ar, is an isomorphism.

Proof. — [14, Rmk. p. 242] Put G := Gal(K/M). We have a spectral sequence
HP (G, HY (X5 o, L)) = HPP9(Xpg,e1, L)
and, thanks to 4.4(4.b), a spectral sequence

HP (G, HY (%5, L)) = HPT9(%,L).
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Hence, it suffices to prove the proposition for M = K. Let Zx R Xet — XE,et
be the map U — U®y K. We can factor it via the maps VxR Xet — X and
uy i Xg — Xg - This induces a spectral sequence RPvy % o Rluy % (L) =
R”J'qzxf,*(]L) which provides with a map RPvy % , (“X,F,*(H‘)) — RPzy % . (L). As
usual we write L for uy % ,(L). Furthermore, since L is a finite locally constant étale
sheaf on X, for every point z: Spec(V;) — X thestalk (uy % , (L)), is isomorphic to
L;,. Oneknows from [12, Cor. I1.2.2] that Spec (ﬁ?&w Qv f) is K(m,1). This implies
that the stalk (R%2y (L)), is H(G, %, Lz). By 4.4 also the stalk (R%y (L)),
coincides with H?(G 3 L,). Hence, R%u x%+(L) = Rizy z (L). Using the spectral
sequences
HP (Xer, B2y o (L) = BP9 (X L)
and
HP (Xer, Rlvy (L)) => HP™ (X5, L)

the proposition follows. O

4.5. Comparison between algebraic cohomology and formal cohomology

Assume that X is locally of finite type over V' and that every closed point of X maps
to the closed point of Spec(V'). Let 2 be the associated formal scheme. Since v} is
an exact functor, given an injective resolution I*® of %, then 0 — v (%) — v (I°®) is
exact so that given an injective resolution J® of F©r™ = v% (F) we can extend the
identity map on % to a morphism of complexes v (I*) — J°®. Since vx sends the
final object X of X to the final object 2~ of %o, one has a natural map I*(X) —
vx(I*)(Z'). Then,

Definition 4.10. — One has natural maps of §-functors
pg{,.%"(tgz) Hq(Xet,f) — I—Iq('%'et,(g'form)7

P (F): HI (o, F) - H(Rag, 5)

Note that one has spectral sequences
(7) Hq(Xet,R”vx,M,*(f)) = HPY9(X ), F)
and
(8) Hq(ﬁﬁ’et, VxRPv 2 M i (F)) = HY(Zet, RPU2 M+ (frig)) = H”+q(£M,frig)
where the equality on the left hand side is due to 4.5.

Proposition 4.11. — The following hold:

a. If & in Sh(Xe) is torsion, the map pgg - (F) is an isomorphism;

p+q

T, Xn

c. if & is a torsion sheaf on Xz, the map p‘; 2 (&) is an isomorphism.
M M

)

b. the spectral sequences (7) and (8) are compatible via p% 4 and p
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Proof. — (a) Let Xj := X Qv k and denote by ¢: Xey — X ot and 0: £y — X et the
functors induced by the closed immersions X C X and Xy C % respectively. In fact,
7 is an equivalence, since the étale sites of 2" and of X}, coincide, and Tovx = ¢. For
any sheaf # on X denote %y := 1*(&) or, equivalently, Z*(f f°"“). We then have
HY(Xe, F) — HY(Zet, FO™) = HI(Xp,e1, Fi) where the first map is px, o (F)7.
The composite is defined by restriction and is an isomorphism if % is a torsion sheaf
due to [16, Cor. 1] and the fact that X is proper over V. The conclusion follows.

(b) Left to the reader.

(c) The left hand side of the spectral sequences (7) and (8) are isomorphic by (a)
since RPvx pr,» sends a torsion sheaf to a torsion sheaf. The conclusion follows
from (b). O

Corollary 4.12. — Let . be a locally constant sheaf on Xpr annihilated by p®. Then,
the two sides of the Leray spectral sequences

B9 (2o, R0z 0 (1779) ) = HH (Eay, 17
and
H (Xet, Rivx,me (L) ) = B (Xag, L),

obtained from the morphisms of topoi Vg a: %M — Zet and vx pr: Xy — Xet, are
naturally isomorphic.

Proof. — The statements follow from 4.11. O

Proof of Theorem 4.1. — Let L be an étale local system of Z/p™Z-modules on Xg,
for some n > 1 and let "¢ be the corresponding étale local system on the rigid space
X & attached to Xk. Let (%,s) € Zg with % = Spf(Ry ) small affine; see 2.2.
Put Ly := L& (_R% Ry K); the notation is as in 4.8. It has a continuous action
of the algebraic fundamental group Wi‘lg(%;g,ﬁs). Since L& is finite and locally
constant there exists (%, %) € %?,fet such that L78(%, #') is trivial and then Lo, :=
L&(%,#). As a Z-module it is independent of % and # and we simply write L by
abuse of notation. It follows from 3.2 that J#2"*°(LL) is the sheaf on 2} associated
to the following functor (%,s) — H* (Tr‘l’lg(%;g,ﬁs),L). Analogously, Jf%*’ar(lh) is
the sheaf on 2% associated to the following functor (%, s) — H?(n3'%(%%,7,),L).

We come to the proofs of (i) and (ii) of 4.1. Since they are very similar we prove
only (i). Consider a point #: Spf(Vz) — 2 of 2 and let Z: Spf(V) — 2 be
the composite of £ with Spf(V) — Spf(V;). Then, G, % is the direct limit of the
) over a set (%, So) of affine small neighborhoods

fundamental groups 7' (%:%» PR
of Z, which is cofinal among such étale neighborhoods and is totally ordered with

respect to morphisms in Z;. As remarked above one has a canonical identification
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(Lr8), = L (as groups). We conclude that the stalk of jf%*’ge(]L) at £ can be
described as follows:

(27 (L)), 2 H' (G, %, L)
On the other hand for every (%,s) € 2% with % = Spf(R% ) small, the map of
Grothendieck topologies ¢: %‘E,fet — 35% (see 4.1) induces a spectral sequence

Hi(%met, Ri., (L") = Ri%x*(vig)(%, s).

The category of sheaves on %E,fet is equivalent to the category of discrete groups with
continuous action of 72'2 (%%ig, 7,) by 4.8. Via this equivalence ¢, (LL"'8) = L as repre-
sentation of 7 (%®,7,). Furthermore, H* (% g, 1 (L7€)) = H (w?lg(%%ig,ﬁs), L)
by loc. cit. We then obtain a natural, functorial map

oly s B (n} 8 (%58,7,), L) — Rivy,  , (L78)(%, 9),
which induces a morphism of sheaves on 2.}
a's AZE(L) — Ry g, (L),
For every point £ of 2 the map o induced by o on stalks is the canonical morphism
o s (L)), X H(G, g, (L)) — (RiDy 2 (L79)),,

which by proposition 4.4(7) is an isomorphism. Therefore, o induces an isomorphism
jf%*’ge(ll,) = Riﬁxfy* (L*&) of sheaves on 2. Thus, the Leray spectral sequence
takes the form

ERY = H (23, #4275 (L)) = HPH(X3, L7S).

It follows from 4.7 that HPt4 (%’E, Lrig) =~ Hp*’q(.'%—f, L&), Furthermore, by 4.12 we
have Hp+q(£f, LLri&) = HP*9(X%, L) and, thanks to 4.4, we know that HPT9(X%, L) &
Hrte (X?,et, L). All these isomorphisms are equivariant for the residual action of Gy .
This proves the claim. O

5. A geometric interpretation of classical (p,I')-modules

Let the notations be as in the previous section and fix as before M an algebraic
extension of K contained in K. In this section we work with continuous sheaves on
all our topologies (see §4). We define families of continuous sheaves denoted O'%x,,,
%’(5; M), A;f (ﬁgg M) and call them algebraic Fontaine sheaves on Xy (respectively
ﬁgM A (E/fm ), A, (E'fM) called analytic Fontaine sheaves on £ ) and study their
properties. In this section we compare the cohomology on Xjs of an étale local system
L of Z/p*Z-modules on X tensored by one of the algebraic Fontaine sheaves with
the cohomology on x M of its analytic analogue. As a consequence we derive the
following result.
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Let us fix M = Ko = K(up=) and consider the sheaf Z,, := L& @ A, (ngm)

on X koo
Theorem 5.1. — Let L be an étale local system L of Z/p*Z-modules on Xg. We have
natural isomorphisms of classical (o, T'v)-modules
Hi(:%Kooa Foo) & 5V (Hi(X?,et’]L))’
for alli > 0.

The proof of theorem 5.1 will take the rest of this section.

5.1. Categories of inverse systems. — We review some of the results of [20]
which will be needed in the sequel. Let &/ be an abelian category. Denote by 2N the
category of inverse systems indexed by the set of natural numbers. Objects are inverse
systems {Ap}n := -+ = Apy1 — An ... A2 — Aj, where the A;’s are objects of &/
and the arrows denote morphisms in &/. The morphisms in &N are commutative
diagrams

"'—>A’n+l \An PN \142 Al
o+ —— Bnt1 B, B, By,

where the vertical arrows are morphisms in /. Then, &/N is an abelian category
with kernels and cokernels taken componentwise and if &/ has enough injectives,
then /N also has enough injectives; see [20, Prop. 1.1]. Furthermore, there is a fully
faithful and exact functor & — &/ sending an object A of &7 to the inverse system
{A}, =-++ > A — A..- > A with transition maps given by the identity and a
morphism f: A — B of & to the map of inverse systems {A},, — {B}, defined by f
on each component. By [20, Prop. 1.1} such map preserves injective objects.

Let h: & — % be a left exact functor of abelian categories. It induces a left exact
functor AN : N — %N which, by abuse of notation and if no confusion is possible,
we denote again by h. If & has enough injectives, then also &N does and the injective
objects of &N are of the form (I,,,d,) where I,, € & is injective and d,, is a split
surjection; see [20, Prop. 1.1]. One can derive the functor AN. It is proven in [20,
Prop. 1.2] that Ri(AN) = (R'h)".

If inverse limits over N exist in 4, define the left exact functor lEnh: N - B
as the composite of AN and the inverse limit functor lim: B~ — %. Assume that &

and % have enough injectives. For every A = {A4,}, € &/~ one then has a spectral
sequence
lim®RIA(A,) = RPT?(lim h(4)),

where im® is the p-th derived functor of lim in %. If in & infinite products exist

and are exact functors, then lim® = 0 for p > 2 and the above spectral sequence
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reduces to the simpler exact sequence

(9) 0 — UmMWRh(4,) — R(limh)(4) — imR*h(4,) — 0;

see [20, Prop. 1.6]. In particular, if A is injective, then lim(”)th(An) =0forg>1

and for ¢ = 0 and p > 1 by the structure of the injective objects in &#/N. In a
particular, injective objects of @™ are acyclic for RP*?lim h.

—

Note that via the map & — @™ given above, if A € & then R'AN({A4},) =
{R*h(A)}, and R'lim h ({A},) = R*h(A).

5.2. Example. — [20, §2] Let G be a profinite group. Let & be the category of
discrete modules with continuous action of G and let & be the category of abelian
groups. For every j let HI(G,_): @™ — 2 be the j-th derived functor of lim H°(G, )

on @/N. By loc. cit. for every inverse system T = {T,}» € &N we have an exact
sequence

(10) 0 — limWH (G, T,) — H(G,T) — lim B’ (G, T,) — 0.

Moreover given {(N,,,d,)}n € BN, one computes lim™™ N, as the cokernel of the map

(11) [[ad—dn): [ Na — J] Nn-

For later use we remark the following. Assume that each IV, is a module over a ring C
and that d,,: N1 — N, is a homomorphism of C-modules. Suppose that for every n
there exists an element ¢, € C annihilating the cokernel of d,. One then proves by
induction on m € N that the cokernel of [[,(Id — dn): [Tp<m NVn = [ln<m Nn is
annihilated by c¢; ---¢,,. In particular, if C is a complete local domain and Cn =
¢# € C for every n for some c in the maximal ideal of C so that the product [],, ¢m
converges to ¢7=1 in C , then ¢7>1 annihilates IEII(I)NH.

For every {(T,,d,)} € &N one defines H (G, oglgn Tn) as the continuous co-

homology defined by continuous cochains modulo continuous coboundaries with val-
ues in lim T, endowed with the inverse limit topology considering on each T, the

o0+—n
discrete topology. As explained in [20, Pf. of Thm. 2.2] there exists a canonical com-
plex D*(G, T,,) whose G-invariants define the continuous cochains C*(G, T,,) of G with
values in T,, and such that each D*(G,T,) is G-acyclic. This resolution is functorial

so that we get a resolution

(T,,d,) C (DYG,T,),d) = (D*(G,T,),d2) — --- .

The continuous cohomology HZ . (G, lim Tn) is obtained by applying lim H°(G,_)
o0+—n o0 +—n
to this resolution and taking homology. Due to (10), since D¢(G,T},) is G-acyclic, we
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have
0" ifi>2
(12) H.,.. (G, li}_n(Dj (G, T,),d)) = 1(111)1 C'(G,T,) fori=1
oZiLnnC'f(G, T,) ifi=0

In particular, if the system {7}, }, is Mittag-LefHler, then (D’(G,T,), d’,) is acyclic for
every j and we obtain
Hiont (G’ oggn T") —H (G,T).

Next, assume as before that there exists a complete local domain C such that T, is
a C-module and d, is a homomorphism of C-modules. Suppose also that there is ¢
in the maximal ideal of C such that c?™ € C and ¢# annihilates the cokernel of dy,.
Then, ¢ annihilates also the cokernel of C(G,Tny1) — CYG,T,) so that =
(G,(D¥(G,T,),dL)). This implies that if we invert c7~T we have an

1e 1
annihilates H_

isomorphism
" Heon (G, Jim, To) [e” 7] =B (G, T)[e7 7).
5.3. Fontaine sheaves on X and %j. — We now come to the definition of a

family of sheaves on X, and Z%M which will play a crucial role in the sequel. See
5.11.

Definition 5.2. — [14, p. 219-221] The notation is as in 4.1. Let O,, be the sheaf of
rings on X s defined requiring that for every object (U, W) in X the ring Ox,, (U, W)
consists of the normalization of P(U, ﬁy) in F(W, ﬁw).

Denote by # (ﬁx M) the sheaf of rings in Sh(X;)N given by the inverse system
{0z, /pOx, }, where the transition maps are given by Frobenius.

For every s € N define the sheaf of rings A  (Ox,,) in Sh(Xy)N as the inverse
system {W,(Ox,,/pOx,)}. Here, W,(Ox,,/pOx,,) is the sheaf (ﬁxM/pﬁxM)s
with ring operations defined by Witt polynomials and the transition maps in the in-
verse system are defined by Frobenius. Define A:;f (ﬁx M) to be the inverse system
of sheaves {Wn (ﬁx u/POx M)}n where the transition maps are defined as the com-
posite of the projection Wy11(0x,,/pO%,) = Wn(Ox, /pOx,,) and Frobenius on

Similarly, Eff\M is the sheaf of rings on X,s associating to an object (%,%# ,L)
in X s the ring @(% , #') defined as the normalization of U(%,04) inT(¥,0x) ®L M.

Let Z (E’fM) be the sheaf of rings in Sh(.’% )N given by {(EQM / pﬁ;M)}, where
the inverse system is taken using Frobenius as transition map.-

For s € N define the sheaf of rings A7 (EEEM) in Sh(Xy)N as the inverse

inf,s

system {Ws (5351\4 /pﬁgM)} with transition maps given by Frobenius. Eventually,
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let Af, ( AM) in Sh(%M)N be the sheaf {Wn (EQM /pﬁ/x\M)} where the transition
maps are defined as the composite

Wai(0z,,/p03,,) — Wa(0z,,/p03,) — Wa(0z,,/p0%,,);

here, the first map is the natural projection and the second is Frobenius.
We denote by ¢ the Frobenius operator acting on the sheaves, or inverse systems
of sheaves, introduced above. One can define analogous sheaves for the pointed sites
Y and .’%;M, we leave the details to the reader.

Remark 5.3. — Note that if X = V and M = K, one has HY,((V,K),Z(0%)) =
EL, HY,, (V. K), A . (OF)) = W, (EZ) and H,,, (V,K), mf(ﬁz)) =A%

For later use, we recall that we denote by 7 the element [¢] — 1 of A; where ¢ is
the element (1, ¢y, (p2, ) € EJ, and [¢] is its Teichmiiller lift.

Notation. — If Z is in Sh(%)N (resp. Sh(X)N) write H:__, (X1s, F) (respectively
H: ..(Xn,F)) for the i-th derived functor of lim H? (%57, ) (resp. lim H® (X, ))

applied to #. Note that if # = {¢},, with &4 € Sh(X) (resp. in Sh(i"M)), then
Heone (%Mv F) = Hz(xM7 9) (resp Hcont(va f) = Hz(vag))

One proves as in 47 that if & € Sh(Ze:)N
(resp. Sh(Xr)N), we have a natural isomorphism of §-functors Hi, (2., al (F)) =
Hiont(‘%tag) (resp. Hf:ont( ;Wvblj(y)) cont(%Mﬂy))

From now on we assume that X is locally of finite type over V and that every
closed point of X maps to the closed point of Spec(V). We let 2  be the formal
scheme associated to X.

Lemma 5.4. — One has A} ¢ *(ﬁxM)”g—>A+

inf,*

(ﬁgM) where x = s € N or x = &.

Proof. — Consider a pair (U, W) in X, with W defined over some finite extension
K C L contained in M. Recall from section 4 that ux p(U,W) = (%, #,L).
We have a natural map Ox,, (U, W) — ux a« (E'fM) (U,W) i. e., a map from the
normalization of I'U, 6y) in I'(W, 0w )®L M to the normalization of I'(%, O)
in I(#,0x)®r M. This induces a natural morphism Ox, — WX, M (EEEM
and, hence, a morphism p% 5 (Ox,) — E;M, coming from adjunction of px s«
and p 5. We then get a homomorphism

IJ’;(’T\IIVI ( inf,* (ﬁ:{M)) - Al_;f *(ﬁ/x\M)
We claim that these maps are isomorphisms. It suffices to prove it componentwise
and by devissage it is enough to show that u’ », (_ﬁ-x v /POx M) — EA / pﬁ is
an isomorphism. Due to 4.4(3) this amounts to prove that, for every pomt T of X as

in 4.3, the natural map ﬁ’x <, M/pﬁxgﬂ M = ﬁg & M/pﬁgg #,M is an isomorphism.
This follows from 4.3(iv). O

Lemma 5.5. — We have the following equivalences of §-functors :

ASTERISQUE 319



GLOBAL APPLICATIONS OF RELATIVE (¢,I')-MODULES I 381

. af, N N N p, N q (N * Ny _ anN
i. R (I/X °'UX,M,*) =vy oR VX M, and R (Uﬁ’,M,* O“X,M) = (R vg’My*) o
* N
HX M;
. N ~ ~N *, N
i, N oRWY 4/ 5 (RITY 1/ ,) o X a-

Proof. — The result follows for lemma 4.5 and 5.1. O

5.4. Comparison between algebraic and formal cohomology of continuous
sheaves. — Since V;(’N is an exact functor, as in section 4.5, given an injective
resolution I* of a continuous sheaf %, then 0 — v} N(F) - vy N(I *) is exact so that
given an injective resolution J® of Fform = V}N(? ) we can extend the identity map
on % to a morphism of complexes I/;(’N (I*) — J*. Since vx sends the final object X
of Xt to the final object 2™ of Zet, one has a natural map I°(X) — V;N(I')(ZZ').
Then,

Definition 5.6. — One has natural maps of §-functors
Px" (F): Blone (Xet, F) = Hione (Zer, ),
and R .
p;);t”;‘M (y) . Hgont (xM’ ‘92.) - Hgont (xM’ fng)’

Note that one has spectral sequences

(14) Hcont (XetyR vX M, *(f)) == Hg;x%(xMay)v
and
(15)

Hgont ('%;t, V;(vag’,M,*(‘gz)) = Hgont (‘%;t’ R’pag,M,* (yrig)) == ch_)tl({: (x yng)
where the equality on the left hand side is due to 5.5.

Proposition 5.7. — The following hold:

a. If F is a torsion sheaf on Sh(Xe )N, then pm“t’q(ﬁ) is an isomorphism;
cont,q cont,p+q
Ea,Ear
c. if F is a torsion sheaf in Sh(X )N, the map p;"“t’ée‘l (ﬂ) is an isomorphism.
M XM

b. the spectral sequences (14) and (15) are compatible via p and p

Proof. — (a) follows from 4.11 (a) and the exact sequence (9) noting that the inverse
limit of a torsion inverse system of sheaves is itself torsion; (b) is left to the reader;
(c) is proven similarly to 4.11 (c). d

Corollary 5.8. — Let L be a locally constant sheaf on Xp; annihilated by p°. Then,
the two sides of the Leray spectral sequences

Hgont (%t? Riﬁ%, (]Lng ® Amf S (ﬁxM ) )) = Hz:jlzt (xM ]Lng ® Amf s (_xM ))
and

Hcont (Xet?R' Ux,Mm *(]L®Amfs(ﬁxM))) = H?:—(tlzt (xMiL@Amfs(ﬁxM))
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are isomorphic.
Proof. — The statements follow from 5.7 and 5.4. O

Proposition 5.9. — (Faltings) Let L be a finite locally constant étale sheaf on X3
annihilated by p°. For every i the kernel and the cokernel of the induced map of
W, (E%) -modules

H (%, L) @ W, (B5) — iy (%5, L® A, (Fx))

are annihilated by the Teichmiiller lift of any element in the maximal ideal of f}%

Proof. — By devissage one reduces to the case s = 1. The statement follows then
from [14, §3, Thm. 3.8]. 0O
Proposition 5.10. — We have a commutative square

H* (if, ]Lrig) R W, (E"’) - H::ont (}j_ Lrig ® Amf s (_x-f))

nl |

lim H' (27, L) @ W, (V/pV) — lim ' (R, L™= 0 W, (3_/p0% ),

where the inverse limits are taken with respect to Frobenius. The kernel and the
cokernel of any two maps in the square are annihilated by the Teichmiiller lift of any
element in the mazimal ideal of E% Furthermore, each map

(16) H* (§f7 ]L'ig) W, (V/pV) — H (:%f, L& @ W, (E/x\?/pﬁf\?)) ,

appearing in the inverse limits in the displayed square, has kernel and cokernel anni-
hilated by the Teichmiiller lift of any element in the mazimal ideal of E%

Proof. — We first of all construct the maps in the square. The top horizontal map
is defined by the natural map L& — ]L“g®Amfs (EEE—)‘ Similarly, the lower
K

horizontal arrow is induced by the map L8 — L'&@ W, (ﬁA /pﬁ/\ ) Note
that H? (%7{—, (Zn)n) is the composite of the functors lim H° (%K,é’? ),,- This

cont coen

gives a spectral sequence in which the derived functors lim® of lim on the category

-

of abelian groups appear. Since lim® = 0 for i > 2, see [20, §1], we get an exact
sequence

0 - lim VB! (R, L0 W, (EA_/pﬁA_)) (EA_)) s
— H

(R L0 AL, (7)) —

— lim Hy (R, L5 0 W, (Eg? /pwsﬁ%\?) ) —o.
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This provides the right vertical map in the square. Clearly the square commutes.
The fact that the top horizontal arrow has kernel and cokernel annihilated by the
Teichmiiller lift of any element in the maximal ideal of E% follows by 5.8 and 5.9.

The equality on the left hand side follows since H* (5:?, IL’ig) is a finite group being

isomorphic to H* (X?’et, ]L) by 4.12 and 4.4.

To conclude the proof, it suffices to show that the kernel and cokernel of (16) are
annihilated by the Teichmiiller lift of any element in the maximal ideal of E; We
may reduce to the case s =1 i. e., to prove that the map

fi W (X, L) @ B, — HY,,, (55?, L™ @% (5557))

has kernel and cokernel annihilated by any any element in the maximal ideal of Ei.
— — >m
For any integer m > 1 let (ﬁ’g_/pﬁ’fx\_) be the inverse system {ﬁ’A /pﬁA }
K K
where the transition maps are the identity in degree > m and are Frobenlus in de—
— — — 2m
gree < m. Let Bp: Z (é’fi_) — (0’;_ / pﬁg_) be the map of inverse systems
K — X_ KZ_ —
whose n-th component is ¢"~™: O3 _/pO% — O%/pO% for n > m and is the iden-
K K
tity for n < m. We claim that G, is surjective. It suffices to check it componentwise
and, for each component, to check surjectivity of ¢™: O~ /pO~ — Oz /pO= on
[ R 35?1 ] x5
stalks. This follows from 4.3(v). Consider 7§ % (ﬁg_) with mg := (p,p?,p?*,--+).
K
1 —
Then, 75 "% (6’/\ ) is the inverse system {p»"~™ 6’;_/ pO3_}n with transition map
K K
given by Frobenius. We claim that Ker(8,) = wom% (ﬁA ) This also can be

checked componentwise, for each component it can be checked on stalks and it follows
from 4.3(v). Note that

Heont (xM, (ﬁgy/l’ﬁg?) Zm) (%M, 0z /pﬁA ) .

Indeed, by [20, Prop. 1.1] an injective resolution of (ﬁA /pﬁA )2™ is given by an
injective resolution of each component of this inverse system Wthh is constant in
degree n > m. Take the long exact sequence of the groups Hf_,, (.’%?, _) associated
to the short exact sequence

1®

0— L% % (ﬁgy) g L7 ®% (E?{\E) 180 ? (Lrig ® ?g_) = — 0.
K
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We get the exact sequence

p™

Hiw (R L 0% (0 _)) 7 Hio (R L0 % (75 )) —
H (Rp L® 005 /p0; ) — HE, (Rp L™ 02 (05 ))

T m, (R L 02 (75 )

K

which we will compare with the exact sequence

H' (X7, L") ® E;’iiﬁ (Rg L) o EX — W (R, }:g) ®(V/pV)-L
— H'*! (X7, L) @ BEL ™ H (X5, L) 9 B

via the map g;: H* (if, ]L“g) ®V/pV — HE ., (Z%—Ig, Lrie ®5§_/pﬁg_), defined
K K
by (16), and via f; for j=¢or j =i+ 1.
Set §_; = 0 and let us denote for the rest of the proof & := L8 ®5§_/pﬁ§_,
~ K K
9 = L"8®%(05 ) and E := E% Fix m > 1 and ¢ > 0 and consider the (not
K

necessarily commutative) diagram

m

H¢ (:%?’ ]Lrig) ®V/pv l_} Hi+L (%?? Lrig) QE i Hi+L (%ﬁ’ Lrig) QE

gil fz‘+1l N fi+1J

B (B 7) " B (R )~ B (309).

cont cont

Let us remark that the right square of the diagram is commutative and that the
rows are exact. We claim that the image of §; is annihilated by every element of the
maximal ideal of E, i.e. that §; is “almost zero”. For every ¢ € Q with € > 0 let
us denote by 7§ any element r of E such that vg(r) = €. Let us fix any such € and
let z € H (.’%—E,? ) Denote by y = 6;(z) € Ker(ngm). As the cokernel of f;+1

is annihilated by any element of the maximal ideal of E, 7r8/ 2y = fiy+1(t) for some
t € Hit! (.’%R—, ]L'ig) ®E and therefore 0 = m2" (r&/%y) = 72" fis1(t) = firr(nd ).
As the kernel of f;1; is also annihilated by every element of the maximal ideal of E
we have 0 = ¢/ *(n" t) = 72" (n</*t) and because multiplication by 7% is injective
on the top row of the diagram, we deduce 7rf,/2t = 0. Thus n§d;(z) = ﬂé/z(fi+1(t)) =

fir1(ne/?t) = 0, which proves the claim.
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Now we consider the diagram.

™

0 —— H (¥, L) 9 E g (%% L7%)  E —— H (%%, L) @ V/pV —— 0

.l .|

0— Hf’ont (2?’ g) /Mi_l L) Hf:ont (gf’ g) _— Hiont (2?, 9) b -+ M;

where for every i > 0 we denoted by M; the image of §; in H.SL (Z’%\ff, 54’) and f;
is the composition of f; with the natural projection. It is clear that the diagram is
commutaive and the rows are exact. Moreover, the snake lemma and the fact that
d; 0 g; = 0 give the following exact sequence of E-modules.

Ker(f;) — Ker(g;) — Coker(f;) — Coker(f;) — Coker(g;) — M;.
As Coker(f,) is a quotient of Coker(f;), we deduce that the modules Ker(f;),

Coker(f,), Coker(f;) and M; are annihilated by every element of the maximal ideal
of E, and therefore the same holds for Ker(g;) and Coker(g;). This finishes the proof
of Proposition 5.10. O

Theorem 5.11. — Let 1L be a locally constant étale sheaf on Xy annihilated by p°. We
have a first quadrant spectral sequence:

HY (%ta Riﬁ?é)’!,‘?\l,* (]Lrig ® A;;f,s (EQM ) )) = Hitx{t (:*:M> L® Aitlf,s (ﬁxm )) .
If M = K, there is a map of W (f);) -modules
H (X o0 L) @ W (Bf) — Hiop (¥, L® AL (Ox))

which is an isomorphism after inverting 7.

Proof. — The first spectral sequence abuts to H.}?, (I% M, L1 ® A;fys (EQM))' The
first statement follows then from 5.8. The second one is the content of 5.9. O
5.5. Proof of theorem 5.1. — The groups H]_ (%Koo,j"oo) [Tr‘l] are modules
for the ring W(Ev) Hv _ W(EVOO) and have residual action of I'yy and ¢. By 4.4 the
functor ,8;(’:1?: Sh(i K..) N_, Sh(ﬁf)N is exact, sends flasque objects to flasque ob-
jects and HO__ (Xk_,.%) is equal to lim H° (Hv, HY (%5, ﬁ;jN =(F ))) for every F
in Sh(i%KN)N. Here, HY (¥, -) is the functor from Sh(.’%f)N to the category of

inverse systems of Hy-modules mapping {%,}, — {H° (%7(,—, gn)}n We then get a
spectral sequence

(17) H (HV, Hi, (3%?, L7 @ A, (ﬁ;},) )) = HH, (Rio, Foo) -

Here, H’ (HV, _) stands for the j-th derived functor of lim H°(Hy,,_) on the category
of inverse systems of Hy-modules.
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Put M := HY (f%f, Le® A, (5’327)) Then, M is the inverse system {M,}.

with M,, := H? (Z%f, Lrie @ W, (555_/ pﬁ;_)) and transition maps d,,: M, 11 — M,
given by Frobenius. By 5.10 eacthn hasK cokernel annihilated the Teichmiiller lift
of any element in the maximal ideal of E; Let C*(Hy,M,) be the complex of
continuous cochains with values in M,. For every ¢ € N the transition maps in
{Ci(HV, M,)}» are given by Frobenius and their cokernels are also annihilated the
Teichmiiller lift of any element in the maximal ideal of f‘% We deduce from (13) and
the following discussion that we have a canonical isomorphism

Heone (Hy, lim M,) [n~'|-=H (Hy, M)[n71],

where H: . (Hy, lim M,) is continuous cohomology. Eventually, we conclude
o0+—n
from 5.11 that

W (Hy, M)[n '] = W (Hy, B (Xg,, L) ® W(Ey)).

By A.5 the latter is zero for j > 1 and is equal to the invariants under Hy for j = 0.
In particular, the spectral sequence (17) degenerates if we invert 7. Since L is defined
on Xk the isomorphism one gets is compatible with respect to the residual action
of I'y and the action of Frobenius. The Hy-invariants of H" (X?,ewﬂ‘) ®W(]737)

coincide by definition with Dy (H™ (XE,etv]L))'

6. The cohomology of Fontaine sheaves

In this section 2  denotes a formal scheme topologically of finite type, smooth
and geometrically irreducible over V' and let X;}g be its generic fiber. Let X;}g be
the Grothendieck topology defined by étale and quasi-compact maps. We refer to
[21, §3.1 & 3.2| for generalities about étale morphisms of rigid analytic spaces. We
study the cohomology on x M of continuous sheaves satisfying certain assumptions
(see 6.10). For example, it follows from 6.16 that these sheaves % can be taken to be
of the following form:

1) If L is a p-power torsion étale local system on X% we set & := L@ A}, (EQM)'
2) If L is an étale sheaf on X;g such that L. = limL,, with each L, a locally
constant Z/p"Z-module and we set & := ]L®5§M.

Then the cohomology groups H’(.’% M, ZF)[r71] can be calculated as follows (here
mis [¢] =1 € Af((V) if Z is of the first type and 7 is p if F is of the second).

Let us fix a geometric generic point 7 = Spm(Cg) as in §5 and for each small
formal scheme % = Spf(R« ) (see 6.9) with a map % — % which is étale, define
Ry, to be the union of all finite, normal R4 -algebras contained in C g4, which are
étale after inverting p. Denote by # (R ® K) the inductive limit of the sections
F(U, W), where # runs over all objects of ZS**. Then # (R ®y K) is a continuous
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representation of 7'8(%, n). Moreover (see 6.20) 5551\4 (Rz®vK)[p~!] 2 Ry p7?]
and A} (03 )(Ra ®v K)[r'] is isomorphic to the relative Fontaine ring A (in
which 7 was inverted) constructed using the pair (Rs, R ). For any such % =
Spf(Rx ), the association % — H*(n3'8(%k,n), F(Ra ®v K))[7~1] is functorial
and we denote by H#,, (F) the sheaf on £, associated to it. Then the main result
of this section is:

alM

Theorem 6.1. — Assume that the above assumption holds. Then, there exists a spec-
tral sequence

Ep? = HY(23, #E,,, () = B Ry, 7).

et

As mentioned in the Introduction, theorem 6.1 is the main technical tool needed
to prove comparison isomorphisms relating different p-adic cohomology theories on
X3E. The proof of theorem 6.1 will take the rest of the section.

6.1. Remarks on various Grothendieck topologies. — Denote by 27, the
Zariski topology on Z.

The site X M,Zar- — Let the underlying category of x M,Zar be the full subcategory of
the category of X s defined in 4.1 whose objects are pairs (%, %) with (%, #) € Xu
and  — % is a Zariski open formal subscheme. We define a family of maps in
3 M,Zar t0 be a covering family if it is a covering family when considered in x M. We
let

v XM Zar — Eum
be the natural functor. We also denote by
Vo m: Xgar — En,zar

the map of Grothendieck topologies given by Vg m(%) = (%, /g?/ e K)). ASince L
sends covering families to covering families, it is clear that ¢, : Sh(Xp) — Sh(Xnm,zar)
and NN : Sh(./'% M)N — Sh(ﬁ% M,Zar)N send flasque objects to flasque objects.

Stalks. — Let &: Spf(Vz) — X2 be a closed immersion of formal schemes
with V' C Vz(C K) a finite extension of discrete valuation rings. Let Og ; be
the local ring of &4 at Z. Define E?TI M to be the limit lim; ; S; ; over all quadru-
ples (R;,S; ;,Si; — %, L; ;) where (1) Spf(R;) C & is a Zariski open neighborhood

of &, (2) L;; is a finite extension of K contained in M, (3) R; C S, ; is an integral
extension with S; ; normal, (4) S; ; ®v K is a finite and étale R; ®y L, j-algebra, (5)

the composite R; ®v L;; — S;;®v K — K is a®{ — £*(a) - £. If F is a sheaf
on X zar, define the stalk of Z at & to be

—Zar

Fe=F(Oq s.m) = l;l.l}ly(sl)f(Ri), (Spm(S; ; “% K),Lij;)).
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A sequence of sheaves on % M,Zar is exact if and only if the induced sequence of stalks

is exact for every closed immersion Z: Spf(V;) — £ as above. As in 4.4 one proves
—Zar

that (R M+ (F)); = HI(Gs,m, Fz) where Gz = Gal(Og 5 0/ Oz ®v K).
6.1.1. The site U fer- — Let % C Z be a Zariski open formal subscheme or an
object of 2. Let %t be the Grothendieck topology % fet introduced in 4.1.

It is a full subcategory of x M, Zar (T€SD. 3 Mm). ¥ %' — % is a morphism in 27,
(resp. Z.%), we have a map of Grothendieck topologies

!
P, Ut — Ung get

letting p%,a;/f(ai/, W) be the pair (%', #"') where #' := W Xqyus % ©8; see 4.1.

Assume that % = Spf(R4 ) is affine. By 4.6 we have an inclusion Ry C Cg (this
way we work with 2.} instead of 2;). Let Ry C R be the union of all finite
and normal Ry -subalgebras of C g, which are étale after inverting p. If = II,%;,
with %; of the type above for every i, define Ry := I R

Define 71 (%) to be Gal (Ry ®v K/Ry ®y M) and let Repgs. (m1(%ar)) be the
category of abelian groups, with the discrete topology, endowed with a continuous
action of m(%m). We have proved in 4.8 that the functor # — Z#(Ry ®v K)
defines an equivalence of categories from the category Sh (% tt) to the category
Repgise (M1 (%)) Taking continuous sheaves we get:

Lemma 6.2. — 1) The functor

Sh (%t o) — Rebyise (11(%n))s  {Fn} = {Fn(Bar ® K))

is an equivalence of categories;
2) for every & € Sh (%M‘fet)N we have

Hiont(%M,fetay) = Hi(ﬁ(%M),f(R% %}K)),

where the latter is the i-th derived functor of Repdisc(ﬂ'l(%M))N — AbGr given by
{A,} — lim AT (%m),

Definition 6.3. — Let Z be in Sh(f’%Myza,) (or in Sh(.’%;\,,), or in Sh(%M‘zM)N, or
in Sh(f;%;\,,)N). We define #(Ry ®v K) as the image of # in Repgq. (m1(%u)) (or
in Repdisc(m(%M))N) of Z via the pull-back maps Sh(Xus zar) — Sh(Zas et) =
Repyis (11(%r)) (respectively via the pull-back Sh(E$,) — Repyis (m1(%r)), ete.).

Convention 6.4. — From now on we simply write X M« for x M,Zar OT f%;v! and Z.
for Zzar or, respectively, Z.%.
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6.2. The sheaf ji”éalM (9) — Let & € Sh(§M7*). Let ' — % be a map in %,
with %' and % affine. We then get an induced map

H (m1 (%), & (Ra @ K)) — H (m1(%), F (Ra § K)).

In particular, % — H'(m1(%n), # (Re ®v K)) is a contravariant functor on the
category of affine objects of Z.,.

Definition 6.5. — Define %‘éﬁaIM (&) to be the sheaf on %, associated to the con-
travariant functor given by % — H'(my(%wm), F (Ry ®v K)) for % affine.

6.2.1. The standard resolution. — Let ¢ be a presheaf on %M,*. For i € N and
for % = Spf(R4 ) an affine object of Z, define

E'(¥)s := Homg (Z [m1(%m)*] 4 (Ra @K)) .

It is endowed with an action of 71 (%)) defined as follows. For every +v,go,...,9; €
(%) and every f € B'(@)a put 7- £(go,---91) = v~ (F(190, - -,79:))- Denote
by C*(4)a C E*(¥)a the subgroup of invariants for the action of 71 (%s). Consider
the map

dii Z [ﬂl(%M)H_l] — Z [Wl(%M)i] ;

(905---,9i) — Z(“l)j(go, o 95-1, 95415+ i)
=0

for i > 1 and given by go — 1 for ¢ = 0. We then get an exact sequence of 1 (%)-
modules

Taking Homz (-, 9(R% ®v K)) we get an exact sequence of m(%)-modules
(18) 0— YRy @K) — E*#)o — E'@)a — -

which provides a resolution of (R4 ®yv K) by acyclic m;(%s)-modules. Using 4.8
we define the sheaf # +— E*(4)(%,#’) on the category % tet associated to E*(¥).
Furthermore, (%, %) — E‘(¥4)(%,#) is a contravariant functor defined on the sub-
category of x M« of pairs (%, ') with % affine.

Definition 6.6. — Let & € Sh(%M,*). For every i € N define €(#) to be the sheaf
on %M,* associated to the contravariant functor (%,%) — EY(F)(%,¥) for %
affine. Define €*(#) to be the sheaf on %, associated to the contravariant func-
tor associating to an affine % the continuous i-th cochains of (%) with values

in #(Ra ®v K) i e, €1(F)(%) = B (F)5 "),

Proposition 6.7. — The following hold:

SOCIETE MATHEMATIQUE DE FRANCE 2008



390 FABRIZIO ANDREATTA & ADRIAN IOVITA

i) the differentials d; of 6.2.1 define an ezact sequence of sheaves on .’%M,*

0 — F — &(F) — eH(F) — E*(F) — -+

b

ii) for every j > 1 and every i one has Ritg p € (F) =0;
iii) for every i one has Dg € (F) = € (F).

Proof. — (i) let (%,(#,L)) € :%M,* with % affine. Suppose that # = Spm(S)
with S®p M an integral domain. Write Galpy(#) := Gal(ﬁ% Qv K/S®L M)
Then, E{(ZF)(%,¥) is Ei(ﬂ)%al’”(w). In particular, using (18), it follows that
the kernel of E®(F)(%,#) — EN(F)(%, W) is F (R @v K) ™). This coin-
cides with F (% ,#) since & is a sheaf thanks to 6.2. In particular, the kernel of
¢%(ZF) — €(&F) is #. To check the exactness of the sequence in (i) it is enough
to pass to the stalks. Given Z: Spf(Vz) — 2 as in 6.1 or 4.4, the stalk €*(F); is
the direct limit lim E*(%#)(%,#’) over all (%,#’) with % an affine neighborhood
of # and # = Spm(S) with S®, M C Ry ®v K. Hence, €¢(%); = lim € (F)y
where the limit is now taken over all affine open neighborhoods % of . Since for any
such (18) is exact, we conclude that the stalk at & of the sequence in (i) is exact as
well.

(ii) The claim can be checked on stalks. As explained in 6.1 or 4.4, given
&: Spf(Vz) — & as before, one has (R0 m«(€'(F))), = HY(Gs m, E(F)z). But
€ (F); coincides with the direct limit lim €'(#)4 taken over all affine neighbor-
hoods % of . Hence,

EH(F); = lim E(F)y = Jim Hom (z [r1(Zm)tY] , F(Ra @K)) =
= Hom (1131 Z [m (%)) lim F (R @K)) =Hom (Z [(G:)™""], %2)

where G; is Gf"}f,[ or G; m depending whether x M 1S s M,Zar O /}\27\4 In particular,
(R u,+(€(F))), = 0 if ¢ > 1. Claim (ii) follows.

(iii) For every affine open % C Z there exists a map from the group of i-th
cochains C' (my (%), F (Bay @v K)) = (B )™ ™™ to0 9 11, €1(F)(%). This pro-
vides a natural map € (F) — Va M€ (F). On the other hand, it follows from
the discussion above that (Do a,«(€*(F))), is equal to the group of -th cochains
i ( fj{l, Z3) 1. e., the stalk of €*(F). The claim follows. O

Corollary 6.8. — If & € Sh(f*\IM,*), then R0a M« (F) = Ha,, (F) functorially
in F.

6.3. The sheaf %}, .- — We wish to prove an analogue of 6.8 in the case of

a continuous sheaf & = {#,}, € Sh(f% M«)N. We need some assumptions.

Definition 6.9. — Consider a small object % of 2. Define Ry u 00 to be the normal-
ization of Ro  in the subring of R4 ®v K generated by M and Ry 00, where Ry o
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is defined as in 2.1. Denote by 'y ps the group Gal(Rq,,M,oo ®v K/Ry Qv M) Let
H ,m be the kernel of the map wl(%M) — 'y M. Let us remark that the definitions
of Ry 00y R M ,00r # .M, T, depend on a choice of local parameters of R and
so are not canonical.

6.3.1. The site ﬁM,*(oo). — Let % be a small object of Z. For every map %' — %
with %' := Spf(R4 ) affine and Ry ®y K an integral domain, we let 5% be the
kernel of m1(%};) — T'a,m. Note that such a map is surjective.

Let ﬁM,*(oo) be the following full subcategory of ﬁM,*. Let (%', ') € ﬁM,* and
assume that %' := II;% with %, connected. Then, #" lies in %} ¢, which, via the
equivalence of 6.2, is equivalent to the category of finite sets with continuous action
of m1(%y) = [1; m1(%pr)- We then say that (%', #") lies in ﬁMY*(oo) if and only
if #" lies in the subcategory of finite sets with continuous action of [J; 'y (viewed
as a quotient of m1(%},)). We then have natural maps of Grothendieck topologies

~

U i>5/.\1M7*(oo)—»).,lM,* giving rise to maps on the category of sheaves
Sh(fin.) —2 Sh(fly . (00)) 2 Sh(%,)

whose composite is Uy ar,«. Asin 6.1 or 4.4 one has a notion of stalks in Sh(ﬁM7*(oo)).
For &: Spf(Vz) — % a point as in 4.3, let H; as be the kernel of the map G p —
Ta m. If F € Sh(iyr) and #; is its stalk, one proves as in 4.4 that

RIB.(F)s = HI(Hs, M, Fs)-

Caveat: The site ﬁM(oo) depends on the choice of an extension Ry C Ry 0. In
particular, if {%;}; is a covering of 2 by small objects, the sites {; pr(o0) do not
necessarily glue so that the site Xs(c0) is not defined in general.

Assumption 6.10. — We suppose that
i) {Z.}nen is a sheaf of A}, (Vio)-modules (resp. of {Vio/p™ Vo }n-modules) on
iM,*;
ii) & admits

a) a covering . := {#;}; in 2, by small objects #; := Spf(Ry,),

b) a choice Ry, C Ry, o as in 2.1,

c) for every i a basis J; := {%;}; of #; by small objects such that,
putting Ry, ;. to be the normalization of Ry, ; ®r,, Ry, condi-
tion (RAE) holds for Ry, ; co-

Furthermore, for every 4, j and n € N, putting % := %; ;, the following hold:

iii) the cokernel of %, 1(Re ®v K) — %,(Ry ®y K) is annihilated by any ele-
ment of the maximal ideal of W (V' /pV) (resp. V);

iv) for every ¢ > 1 the group H (/% u1, #n(Ra ®v K)) is annihilated by any
element of the maximal ideal of W (V /pV) (resp. V);

v) the cokernel of the transition maps %, 1(Ro M,00 Qv K) = Fn(Ra ,M,00 ®v K)
is annihilated by any element of the maximal ideal of W (Voo /pVoo) (resp. Vio);
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vi) for every covering 2 — % by small obiects in 2, and every q¢ > 1 the Chech co-
homology group HY(% — %, #n.(R# 0 ®v K)) is annihilated by any element
of the maximal ideal of W (Vi /PVio) (resp. Vo).

We write 7 for the element [¢] — 1 in A+ if {#n}nen is a sheaf of A"'oo-modules
Instead, we put 7 = p if {ZFn}nen is a sheaf of {Voo /D" Voo }n-modules. It follows
from (iii) and 5.2 that we have an isomorphism

H' (71 (%), F (Ra %K)) [r71] = HL oy (71 (Zur), Jim Zn(Ry ® K))[=1].

If ' — % is a map in Z, with %’ and % small objects in .7;, we then get an
induced map

H' (wl(%M), Z(Ray @K)) [71'_1] — H (ﬂl(%&),ﬂ(ﬁ%/ Q‘?K)) [w‘l].
As in 6.5, we define

Definition 6.11. — Assume that . satisfies the assumption above. Let #g,,, cont(F)

be the sheaf on Z, associated to the contravariant functor sending an object % of
Z, with % € U; 7, to Hi(m(%M),ﬁ(ﬁq, Qv K)) [w‘l].

We want to prove the following:

Theorem 6.12. — Let F € Sh(f% M«)N be such that the conditions of 6.10 are fulfilled.
Then, R0a o (F)[r71] = +(F). The isomorphism is functorial in F.

GalM con

Proof. — 1t suffices to prove that for every small object #; € .¥, we have an iso-
morphism RB g ar,«(F) 17|, = Gaty (F)lw; functorially in #; and #. We
construct the isomorphism and leave it to the reader to check the functoriality in #;
and %#. O

We may and will, till the end of this section, assume that 2 = %#; is small. We
put J := 7 and we write I for 'y, 5. Consider the maps on the category of sheaves
~ N ~ im. oy
Sh(Far)N 2 Sh(Fpr..(00))N 229" Sh(Z3),
introduced in 6.3.1. The composite is lim¥g ar«. Since a, and f, are left exact

and [, sends injective to injective, we have a spectral sequence

(19) R?lim o, (R7B} (F)) = RPH (lim By a0 (F).

Lemma 6.13. — For every q > 1 the group R13,(%) is annihilated by any element of
the mazimal ideal of W (Voo /PVeo) (Tesp. Vo).

Proof. — Since RIgN = (Rqﬁ*)N as remarked in 5.1, it suffices to prove that
for every n € N and every ¢ > 1 the sheaf R73,(%,) is annihilated by any
element of the maximal ideal of W (Vi /pVio) (resp. Vo). It suffices to prove
the vanishing on stalks. But for Z: Spf(V;) — £ a point as in 4.3, we have
RIB.(%n): = HY(Hz um, %) as explained in 6.3.1. The latter coincides with the
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direct limit lim H? (%% v, #n(Ra ®v K)) taken over the small objects belonging
to a basis of Z, containing . The claim then follows from 6.10(i) & (iv). ]

Using 6.13 and (19) we conclude that
RPlim o, (B (£)) [ '] 2 RP(limba a4 ) (F) [r71].

We are left to compute R? lim a,. For this we use the analogue of 6.2.1 on 3 M, (00).

Given % in , write Ry M, as the union U, R m,n of finite Ry -algebras such
that Ry ®y K C Ry m,» Qv K is finite and étale. Then, for every covering %' — %
with %' € &, we have Ry’ Moo Qv K = UpRay Qr,y Ru M ®v K by construc-
tion. Let %" — %' xq %' be a covering with %" in 7. Then, we also have
Ry Moo ®v K = UpReyn ®R, Ray o ®v K. Since %, is a sheaf, we conclude
that the sequence

0 fn(R”]/,M,oogK)—"’yn(R%’,M,oogK)“’yn(R%",M,oogK)

is exact i. e., # — Fn(Ru M0 ®v K) satisfies the sheaf property with respect to
coverings %' — % with %' and % small and lying in 7. Then, the following makes
sense:

Definition 6.14. — For every small object  — % lying in < and every i, n € N
define E*(T, #,)% to be Homz (Z [I**!] , #.(Ra m,00 ®v K)). Define €'(T, #,) to
be the sheaf on X M,x(00) characterized by the property that, for every small ob-
ject Z € 7, its restriction to % tet (see 4.1) is E*(T', #,)4 as representation of 'y .
Let €(T, %) := {€(T, fn)}n.

Let CYT, #n)o C E'(, %,)a be the subgroup of invariants for the action of
I' i. e., the group of i-th cochains of I' with values in %, (Ru m,00 ®v K). De-
note by €*(T', #,) the unique sheaf on %, whose value for every small object %
is C(T, #,)a - Eventually, let (T, #) := {€*(T, %)},

Proposition 6.15. — Assume that & satisfies 6.10. Then:
i) we have an ezact sequence in Sh(iM,*(oo))N
0— N(F) — &, F) — e, F) — -
ii) R? lgn Qy (@(I‘,?)) [7r_1] = 0 for every ¢ > 1 and every i;

iii) lim o, (€4(T, F)) [w~1] is the sheaf associated to the contravariant functor send-

ing a small object % to lim %" (F,fn(R%,M,oo ®K)) [71'_1].
1%

In particular, R? lim o, (8N (%)) [7r_1] is the g-th cohomology of the complex
lim €°(T, %,)[7"!] — lim €'(T, Fn)[n7!] — lim €3(T, F)[n ] —
o0+—n o0+—nN oo—n

proving 6.12.

SOCIETE MATHEMATIQUE DE FRANCE 2008



394 FABRIZIO ANDREATTA & ADRIAN IOVITA

Proof. — Claim (i) can be checked componentwise and then it follows as in the proof
of 6.7(i).
(ii)—(ili) We use the spectral sequence

1im® (R%a, (€/(T, £,))) = RP7lim o (€(T, %))

given in 5.1. Since each %, is a sheaf we have €Y(T,.%,)(Ru Mmoo Qv K) =
EYT, #n)a. Hence, HI(T, € (T, #,)(Ra ,m,00 ®v K)) is 0 for every ¢ > 1 and it
coincides with the cochains €*(T, %, )(Ra M,00 ®v K) = CH(T, %)% for ¢ = 0.

Arguing as in 6.7(ii) we conclude that R%a, (8.(€*(T', #,))) = 0 for ¢ > 1. We are
left to compute lim® a, (€(T, %,)) = im® ¢4, £Z,).

Due to 6.10(vi), for every small object % € 7 and every n the Chech cohomology
group H? (% — %, #.(Rz « Qv K)), relative to every covering 2 — % by small
objects lying in .7, is annihilated by any element of the maximal ideal of W(Voo /PVoo)
(resp. Vo). But we have
(20)

E'(T, Fn(R_ o®K)) = Jim € (T /p™T, Zn(R_0®K)) = Jim ( I %-(R.-®K)).

T'/pmI

As both inductive limit and finite products are exact functors we deduce that the
Chech cohomology group H? (% — %,€¢" (T, Z.(Rz, ®v K))) relative to every
covering & — % with & and % € 7 is annihilated by any element of the maximal
ideal of W(Voo/pVoo) (resp. V). Hence, the restriction of %* (F,fn(R_,oo Qv K))
to % is flasque, see [3, I1.4.2], up to multiplication by any element of the maximal ideal
of W (Voo /PVio) (resp. Vio). In particular, HY(%,%¢*(T, #,)) is almost zero for ev-
ery ¢ > 1; see [3, I1.4.4]. Due to 6.10(v) the projective system {.%,(Ra M 00 ®v K)},
is almost Mittag-Lefler and using once again (20) we also have that the projective sys-
tem {‘Ki (F, fn)}n is almost Mittag-Leffler. Hence, lim™® €' (T', #,) is almost zero.

By [20, Lemma 3.12] the sheaf lim® €*(T', %,) is the sheaf associated to the
presheaf % — HY (% , (Cﬂ(l", yn))n) We have, for each ¢ > 1, exact sequences

0 — limMH"Y (%, ¢4 (T, #,)) — HI(%, (¢'(T, %n)),) — lim HY(%, €T, %,)) — 0.

For ¢ > 2, using the fact proved above that H*(%,%*(T, %#,)) is almost zero for
s > 1, we deduce that H?(%, (¢*(T,.#,)) ) is almost zero. We conclude that

lim(? ¢*(T', #,) is annihilated by every element of the maximal ideal W(Voo /PVoo)
(resp. Vo) for ¢ > 2.
Thus,

RPlima, (¢/(T, %)) [n"'] =0
for p > 1 and all j > 0, and
lima,&* (T, Z)[r '] 2 lim €°(T, %) [r"'].

The conclusion follows. O
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Theorem 6.16. — Let Z be formally smooth, topologically of finite type and geomet-
rically irreducible over V. Let L = (L,)n be a projective system of sheaves such that
Lp &2 Lpt1/p"Lpy for every n. Let F € Sh(Z.)N be a sheaf of one of the following
types:
i + (7 — B Infi~ .
A) f 18 Lng ® Ainf (ﬁ’x‘M) = (]Ln ®Wn(ﬁxM/pﬁxM))ny
B) # = (]Ln®(ﬁ§M/p"ﬁ§M))n where ﬁEEM/anﬁEEM — ﬁgM/p"ﬁ’gM is the
natural projection for each n € N.
Then, the assumptions in 6.10 hold.

Remark 6.17. — Assumption (ii) of 6.10 holds. Indeed, £ is formally smooth and
topologically of finite type over V. In particular, it is Zariski locally the p-adic comple-
tion of a smooth scheme over Spec(V). Thus, £  admits a basis by affine subschemes
satisfying (RAE) due to 2.3.

In case (A), assume further that L is a p-power torsion i. e., annihilated by p°®
for some s. Then, one can compute the sheaf #g,), oni(-#) introduced in 6.11 via
relative (¢, I')-modules. Indeed, assume that % = Spf(R« ) is small and that (RAE)
holds for Ry oo

For M = K we have m1(%um) = ¥R, and by A.14 the inflation

H'(Tr,, , D(L)) — Hi(m (%), L ® Az,) = H (m (%), 7 Ra ® K))[r7Y]

is an isomorphism.
Analogously, for M = K we have m1(%um) = Gr,, so that

H'([,, , D (L)) =>H' (m (%), L & Az,) 2 H (m(%g), 7 (Ra ® K))[r71].

Here, Dz(L) is the (p,I'z)-module associated to L and the field K as in §2.
For M = K, the group m;(%um) is the subgroup of ¥g, generated by Gg,,
and Hy . In this case

H'(I'z, » Di.. (L)) =H (11 (%, ), L e Az,) = H (m(%k,,), F(Ra ® K))[r7Y]
P
where Dg__ (L) is the (¢,I'y)-module defined in §2 using the field K.

6.4. Proof of Theorem 6.16. — We start with some preliminary results.

Lemma 6.18. — Let R be as in 2.1. Let Soo C T be integral extensions of Roo
such that Soo ®y K = Too ®y K and R C S s almost étale (see 2.2). Then, the
cokernel of Soo C Too is annihilated by any element of the mazimal ideal of V.

Proof. — Let ¢o, be the canonical idempotent of the étale extension R, [p‘l] C
Seo[p7!] = Tw[p7?]. Since Re C Ss is almost étale, for every a € Z[p"l]>0
we may write p“e,, as a finite sum > ;a;®b; with a; and b; in S. Let
m: Soo[P7'] ®Ro Soo[P7}] — Swo[p™'] be the multiplication map and let
Tr: Seo [p_l] — Ry [p_l] be the trace map. Then, e, is characterized by the
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property that m(z®y) = (Tr®Id)((z®9y) - x). In particular, for every = € Too
we have p®z = m(p"‘a;@l) = >, Tr(a;x)b;. But Tr(a;x) € R since z and a; are
integral over Ry, and R is integrally closed. Hence, p®x = }_; Tr(a;x)b; lies in Soo
as claimed. (]

Lemma 6.19. — Let % = Spf(R«) be an affine small object of Z. and let %' — %
be a covering with %' affine. Then, Ray' Moo = Ry Moo ®Ry Ry’

Proof. — Write the composite of M and K, (in K) as the union U, M,, where My =

Kc---CcM,C--- and K C M, is a finite extension for every n. Let W,, be the ring

of integers of M,, and let F',, be its residue filed. Let T1,...,T4 € Ry be parameters
1 1

as in 2.1. Since Ry ®v k is a smooth k-algebra, then Ry [TY" ..., T | ®y Fy is
1 1

a smooth k-algebra. Hence, Ry ®y W, [T ,...,T;" | is a regular ring modulo the
maximal ideal of W,, and, hence, it is a regular ring itself. In particular, it is normal.

1 1
This implies that Rz a,00 2 UnRey ®@v Wi [T ..., T ].
Since ' — % is formally étale, then Ry Qv k is a smooth k-algebra. Reasoning

1 1
as above we conclude that Ry 100 = UnRa ®v W, [Tf”, ...,TF"]. The lemma
follows. O

Let = Spf(R4 ) be an affine small object of Z,. Let A be the union of some
collection of almost étale, integral R  u, o.o-subalgebras of Ry, . Write

(03,,/0%,,)(AQ K) :=1lim(0z /p03 )% W, L)

where the direct limit is taken over all (%, (#,L)) € X with # = Spm(Sy/) such
that Sy @, M C AQy K.

Proposition 6.20. — Assume that Ry is small over V. Then, the natural map
has kernel and cokernel annihilated by any element of the mazimal ideal of V.

Proof. — The presheaf E’fm /pﬁ»iM is separated i. e., if (%', %', L") —» (%, ¥ ,L) is
a covering map, the natural map

03, %W, L)[p03 (%W ,L)— Oz (%' W' L)pO; (%' W' L)
is injective. This implies that we have an injective map

AlpA=T3, (AR K)[v03, (AGK) — (O3, /v03, ) (AQK).

We also get that the sheaf associated to the presheaf associating to a triple (%, #, L)
the ring EQM (%,¥, L)/pﬁgM (% ,# L) is defined by taking (?%\M /pﬁ;M)(%, ¥,L)
to be the direct limit, over all coverings (%', #"',L’) of (%,# ,L) with %’ affine, of
the elements b in the group EgM (%', #', L) /pEEM (#%',#',L') such that the image
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of b in _dng (", W”,L")/p?gM(%”,W”,L”) is 0 where (?/",-W”,L") is the fiber
product of (%', #", L) with itself over (% ,#,L). Hence,

(75,1975, (A5 ) = g Kers

where the notation is as follows. The direct limit is taken over all normal Ry af,c0-
subalgebras S of A, finite and étale after inverting p over Re um,o0, all covers %' —
% and all normal extensions Ry’ a0 ®Rr, S — T, finite, étale and Galois after
inverting p. Eventually, we pﬂ?{_”:\: Spf(Ra ) to be the fiber product of %' with

itself over % i. e., Ry := Ry ®pr, Rayr. We let

Kers 1 := Ker ( T/pT —= Ts/pTs ) ,
where TS is the normalization of the base change to Ro/ v of T ® (g @' Moo ®Ray ag o0 S) T.
For every S and T as above, write Gg,r := Gal(T ®v K/S ®Rqy 1100 R’ M,00 @V K).
Then, TS is the product ngG s Tmu where tilde stands for the normal-

ization (of T'®g,,, R% ) and we view Ry~ as Rq-algebra choosing the left action.
Hence,

T ®r,, Rur )
pT ®r,,, Rar

The two maps in the display are a — (a,...,a) and a — (g(a))

Kers 1 = Ker ( T/pT —= HgGGS‘T

9€Gs, T’
For the rest of this proof we make the following notations: if B is a Ry um,c0-algebra

we denote by B’ := B ®Ry po0o B/, Moo = B ®Ryq Ray, by B” := B®r,, ,, ..
Rav Mo = B ®R,,, Roy (the second equalities above follow form 6.19) and by B
the normalization of B in B [p“l]. We then get a commutative diagram

(1) 00— S/pS—— §'/pS’ 3 S" /pS"

| ls

0 — Kergr —— T/pT =—= Ts/pTs = [eecsr (f"/pf").

The top row is exact by étale descent and the bottom row is exact by construction.
We claim that the kernel and cokernel of the map S/pS — Kerg r are annihilated
by any element of the maximal ideal of V,,. To do this we analyze the maps o and .

Analysis of Ker(a) and Ker(3). — Note that he extension Ry a0 C S is integral
and almost étale by 2.3. Hence, the extensions Ry pm,00 C S’ and Ry pm,00 C S” are
integral and almost étale as well. Since the extension Rgy — Rg (resp. Rgyy — Royn)
is faithfully flat, the rings S’ and S” have no non-trivial p-torsion. In particular,
S’ (resp. S") injects into its normalization S’ (resp. §”) which is T65. Thanks to
Lemma 6.18 the cokernel of &' — S’ = TCs.T (resp. §” — S") is annihilated by any
element of the maximal ideal of V.
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Consider the following. If 0 — B — C — D — 0 is an exact sequence
of abelian groups then the kernel of the induced map B/pB — C/pC is the image
in B/pB of the group of p-torsion elements of D. In particular if B,C, D are V-
modules and D is annihilated by an element a € V, then Ker(B/pB — C/pC) is
also annihilated by a. It follows from this obvious fact that the kernel of the map
S’ /pS’ — §'/pS’ and the kernel of the map S”/pS” — 5" /pS" are annihilated by
any element of the maximal ideal of V.

The map S’/pS’ — T/pT (resp. S"/pS” — Ts/pTs) is injective since §' — T
(resp. S — TS) is an integral extension of normal rings. Hence, the kernel of o and
the kernel of B are annihilated by any element of the maximal ideal of V.

Analysis of the image of Coker(S/pS — Kergr) in Coker(a). — Define Z as
Z := Coker(S'/pS' — (T/pT)%s7) C Coker(a). Since Kergr is Ggr-invariant
(by definition), the image of Coker(S/pS — Kerg 1) in Coker(a) is contained in Z.
Put Y := Coker(S’ /pS’ — S’ /pg’ ) Let us remark that we have an exact sequence
of groups:

0—Y —Z — Coker(g'/pgl — (T/pT)%s7) — 0.

We know that Y is annihilated by any element of the maximal ideal of V., so let us
examine the last term of the sequence. This is the same as Coker(T¢s.T [pT¢s.T —
(T/pT)Ss7). Consider the exact sequence

0 795 (7O s (1)) B (G, ).

Since Roy ' M0 — T is almost étale, the group H'(Ggr,T) is annihilated by any
element of the maximal ideal of V; see [12, Thm. 1.2.4(ii)]. Hence, the cokernel of
TGs7 [pTCsT — (T/pT) @ST is annihilated by any element of the maximal ideal
of V. We deduce that the same is true for the module Z above.

Now using the snake lemma applied to the commutative diagram (21), we get that
the kernel and cokernel of the map S/pS — Kerg 1 are annihilated by any element
of the maximal ideal of V, as claimed.

This concludes the proof in the case that A is the union of almost étale, integral
and normal Ra a, o-subalgebras of Ry . In the general case, assume that ) is an
almost étale, integral Ry o0-subalgebra of A and let S be its normalization. Then,
the cokernel of Q — S annihilated by any element of the maximal ideal of Vo, by
Lemma 6.18. The same then applies to the kernel and the cokernel of Q/pQ — S/pS.
The conclusion follows. O

6.4.1. End of proof of 6.16. — Assumption (i) clearly holds. We let {#;}; = . be
a covering of 2 and let .J; := {%;}; be a basis of #; as in 6.10(ii). Let % € J; for
some 1.

(iii) The group L, (R% ®y K) is constant on the connected components of % and
does not depend on % itself. It then suffices to verify assumption (iii) for L, the
constant sheaf i. e, L, = Z/p*Z for some s in case (A) or L, = (Z/p"Z) in case (B).
In this case (iii) follows from 6.20 with A = R .
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(iv) Due to 6.20 it suffices to prove that H? (5%, L,(Re ®v K) ® W, (Ra /pRw))
(resp. H4 (%, Ln(R% ®v K) ® Ry /p" Ry ) is annihilated by any power of the max-
imal ideal of W, (Vi /pVoo) (resp. Vo) for every ¢ > 1. In both cases, one reduces
by devissage to the case n = 1. The claim then follows from A.5 and A.3.

(v) Given n € N, let Ry ®y K C B be a finite and étale extension such that L,
and L,, are constant on the étale site of By;. We may assume that B is defined over
a finite extension K C L contained in M and that Ry ®y M C B®y M is a Galois
extension of integral domains. Define A9 as the normalization of R4 in the subring
of Ry ®y M generated by Re 0o and B. Then, assumption (v), with A in place
of Ry M0, holds due to 6.20 since we may reduce to the case where L is trivial.

Let D, be the kernel of Z,11(A% ®v K) — Fn(Ae ®yv K). Let M, be
the kernel of L,11(B) — L,(B). It is an F,-vector space. In case (B), the
sequence 0 — Ag /pAy — Ag/p"TtAy — Ag/p"Ay — 0 is exact
since Ag is normal. Tensor it with L,41(B) and put E, := M, ®(Ay /pAx).
Since Ln(B) = Ljt1(B)/p"Lnt+1(B), the sequence 0 — M, ® Ay /pAqyy —>
Lot (BY® Ay Jp" 1 A9y — L, (B)® A9y /p" A%y — 0 is exact. Thanks to 6.20
we get that the natural map E, — D, has kernel and cokernel annihilated by any
element of the maximal ideal of V. /pVeo.

In case (B) consider the exact sequence 0 — Ag, / pr Ag —> W1 (Aw /pAz) —
W, (A% /pAa) where the last map is the natural projection composed with Frobe-
nius. Tensoring it with L, 11 (B) we get the exact sequence 0 — M, ® A/ p% Ay —
Lny1(B)® Wi (A /pAw) — Ln(B)® W, (A% /pAw). Put
F, = Mn®Ao;//p%A%, Also in this case the natural map F,, — D, has ker-
nel and cokernel annihilated by any element of the maximal ideal of Voo /pVe. It
follows from A.5 and A.3 that HY(5%, E,,) and H?(#%, F,,) are annihilated by any
element of the maximal ideal of V,, /pV,. Thus, the same applies to H(%,, D,,) and,
hence, to the cokernel of the map from %, 1(Ay ®y K)** = Foi1(Roy M0 ®v K)
to Fn(Azy ®v K)?* = F,(Ra m00 ®v K). This concludes the proof of (v).

(vi) For every covering 2 — % in 2, with 2 € J; define Hy; (2 — %) as the
Chech cohomology group

HL (Z - %)= HY(Z — % ,L,(B)® W,(A%y R® Rz /pRx))
U

respectively

HY, (2 = %) :=H'(Z - %,L.(B)®(4s ® Ro/p"Rz)).

See the proof of (v) for the notation. For every q > 1 the group H}n(.@f - Y)is 0
since the sheaves considered are quasi-coherent.

Due to 6.20 we conclude that assumption (vi) holds using A% ®g,, Rz ®v K in-
stead of R p,00. Let G be the Galois group of A ®v K over Ry 1,00 ®v K. Using
the spectral sequence

HP (G, HU(Z — U, Fn(Aw }? (Ry%)K)) = HPH(Z — %,ﬂn(Rgx,ooQ‘?K))
U
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we deduce that the group HP (2 — %, #,(R# o ®v K)) is isomorphic to the group
HP(G, Ho(ﬂp — %,fn(Aa)/ ®Ra (Rg Rv K))) i. e., HP(G, 9,,(14% Rv K)) Let C
be the kernel of the surjective map 5% — G. Consider the spectral sequence

Note that H9(C,L,.(B)® Ra /pR%) and HY(#%,L,(B)® Ry /pRe) are anni-
hilated by multiplication by any element of the maximal ideal of W(Voo /PVoo)
(resp. V) for ¢ > 1 due to A.5 and A.3. Hence, the same must hold for
H"(G, L.(B)® Ay /pAo;,). By devissage and 6.20 one concludes that the same
must hold for HY(G, #,(A% ®v K)). Thus, (vi) holds. O

6.5. Proof of theorem 6.1. — By theorem 6.12 if # is a sheaf of Sh(iM,,,)N
such that the assumptions 6.10 are satisfied then RDg ar,.(F)([r 1] = Ky, (F).
Using this isomorphism the Leray spectral sequence for the composition of functors
HO(Z.,—) o Ua am,+ becomes

By = HY(Z, #E,, () = B (R, F).

In particular, we obtain a spectral sequence for * = e. Now theorem 6.1 follows as
the functors H*(X$,, —) and H*(X s, —) are canonically isomorphic; see 4.7.

Appendix A
Galois cohomology via the Tate-Sen method

The goal of this section is to prove Proposition A.5 stating that, if M is a Z,-
representation of ¥, then the groups H*(#%, D(M) @ Ag), H' (4%, D(M) ®z. Ag),
H(Hs, D(M) ®ar, Afﬁ) and Hi(Hg, D(M) ®Ks{x, Kﬁ) are trivial for ¢ > 1. This is
the key tool to compute the Galois cohomology of M in terms of the associated
(¢, T's)-modules.

To treat all the cases above, we follow the axiomatic approach started by Colmez
in [10, §3.2 & 3.3] and developed in (2, §2].

A.1. The axioms. — Let ¢ be a profinite group and let A be Z,-algebra which is
an integral domain and is endowed with a map v: A->RU {+00} such that:

(i) v(z) =40z =0;

(i) v(zy) 2 v(z) + v(y);
(iii) v(z +y) 2 min(v(z),v(y));
(iv) v(p) > 0 and v(pz) = v(p) + v(z).

We endow A with the (separated) topology induced by v. We assume that A is
complete for this topology and that it is endowed with a continuous action of ¢ such
that v(g(z)) = v(z) for = € A and for g € ¥.

Let J# a closed normal subgroup of ¢ such that I' = ¥/ is endowed with a
continuous homomorphism x: I' — Z; with open image, with kernel isomorphic to

ASTERISQUE 319



GLOBAL APPLICATIONS OF RELATIVE (¢, I')-MODULES I 401

Zg and such that ygy~! = gX(") for every g € Ker(x) and every v € . Let 7o € T

be such that Im(x) = Z,x(v)® F with F a finite group. Assume that there exist
Yiy---yVd € Aut(K) such that Ker(x) is an open subgroup of Z,v; ®---® Z,7yq and
let mg € N be such that p™ &¢_; Z,v; C Ker(x). Let G C ¢ be a closed normal
subgroup, put H := G N J# and assume that IV := G/H—Ker(x).

Assume that for every open normal subgroup J#’ C J# there exists an integer
mo,x > mg such that for every i € {0,...,d} one has

(a) a lifting 77 o e g /' centralizing S [ H#;

; ; (%) ; A
(b) an increasing sequence (Am, ”')mzm.),x»f of closed subrings of A”*

(c) maps ( ,(n)ﬂ . A —»Af:l)yf,)

m2mg, e
and the following axioms a la Tate-Sen hold:

(TS1) there exists ¢; € Rsg such that for every open normal subgroups H; C Hj of 5#
(resp. of H), there exists & € A¥! such that v(a) > —c; and Y. 7(a)=1;
TEHz/Hl
(TS2) there exists cz ' € Rso such that for every ¢ and j € {0,...,d} and every
m 2 Mg,
(a) 7(;)%,, is AG )W,—hnear and T af' (r)=zifz e Am s

( )”, (z) = z for every

(b) one has v( myf,(z')) > v(z) — o, and hm T
ze A,
(c) 'rm e commutes with 'r 9) e

(d) the ring Afn, s 18 stable under ¥/ and T,(;) 4 commutes with the
action of ¥/5#" for i € {1,...,d};

(d') thering A(O) e 18 stable under v§ **" and 7',(,?’)3{,, commutes with v} o
and T(O)‘%p, o 7-( ) 1 0000 TT(: )”, commutes with the action of ¥ /5#”,

(e) we have Af:l’ s C Af:t) e, 88 subrings of A, for every open normal sub-
group J#” C ' and the following diagram commutes

O]

(TS3) let X\ = (1= 7 ,,,) (A%"). Then,
(a) there exists 03_ s € Ry such that for every m > mg » and every
i € {0,...,d}, the map 1 — 'yfm is invertible on X,(;?%,, and for every

T € X,(,?%,,, one has v ((1 - fyfm)_l (x)) > v(z) — ¢3¢0
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(b) There exists cs,5 € Rso such that for every m > mg » and every
i€{1,...,d} and every z € Af,?’”,, one has v (('yfm - 1) (:1:)) > v(z) +

Cq,5¢7 -
(TS4) Let H' C H be an open normal subgroup. Assume that there exists an integer
mo,ir > Mo and that for every i € {1,...,d} one has a lifting 'yfmo'H, € G/H
centralizing H/H' and an increasing sequence (Ai,?,H,) of closed subrings

m2mg g/
’

of A" stable under G/H’ and maps (tgl),H/: A - Af,?,H,
the analogues of (TS2) and (TS3) hold.

We followed closely the formalism of [2, §2] with the differences that we
added (TS2)(e) and (TS4).

such that

)mzmo'”/

A.2. Notation. — Let W be a free A-module of finite rank a i. e, W:= A®. We
consider it as a topological module with respect to the (separated) topology defined as
the product topology considering on A the v-adic topology. Note that such topology
is independent of the choice of A-basis of W. For every positive n € Q write XZn
for the subgroup of A consisting of elements z such that v(z) > n. They are a
fundamental system of neighborhoods for the topology on A for n — oco. Let W>, be
the image of K‘;n in W; they form a fundamental system of neighborhoods for the
given topology on W. Assume that W is endowed with a continuous action of ¥.
We consider continuous cohomology of a closed subgroup H’ of &4 with values in W.
If f € C"(H',W) is a continuous cochain, with 7 > 0 and with the profinite topology
on H', write v(f) := min{n € N|(Vg1,...,9, € H)f(g1,.-.,9r) € W>n}. We write
9: C"(H',W) — C™*!(H',W) for the boundary map.

Lemma A.1. — [23, §3.2] Let Hy be an open subgroup of H (resp. of 7€) and let f
be an r-cochain of Hy with values in W for r > 1.

(1) Assume that there exists an open normal subgroup Hy C Hy such that f factors
via an r-cochain of Hyo/H;. Then, there exists an (r — 1)-cochain h of Ho/H;
with values in W such that v(f — 8h) > v(8f) — 1 and v(h) > v(f) — c1.

(2) There exists a sequence of open normal subgroups H, C Hy and continuous
cochains f, € C” (HO/Hn, W) forn € N such that f = f, modulo W>, forn —

Q.

Proof. — We work out the case of Hy C H. For Hy C S the argument is analogous
and the details are left to the reader.

(1) Let oo € AH* be an element satisfying (TS1). Define the (r — 1)-cochain a U f
of Hy/H; with values in W by

(@Uf) (g1, 9r-1) = (=1)" Y g1--gro1t(@) - F(g1,-- -1 Gr-1,t).

teHo/H,
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One computes that

AU f)(g1,---,9r) = g1 ((@U f)g2---,9r)) +Z(—l)j(an)(~~,gjgj+1,---)+

+ (—1)T(01U .f)(gl’ .. 7g7‘—1) =
=(-1)" > g1--grt(@) - g1f (92, r 9 t)+

teHo/H;
r—1
- )TZ Z (1) g1+ -grt(a) - f(g1,---+9iGi4+1,9rrt)+
j=1teHo/H:
+ Y ggrat(@) - f(g1,- o gr1st)
teHy/H;
and
(@Udf)(g1,---r9:) = (1) D" g1 git() - Of (91,590, t) =
teHo/H,
= (- Z g1 grt(@) - g1f(92,- -, 9r, )+
teHo/H,
7‘—1
+ (=D Y g get(a) - flg1s--+19595+1,9r, 1)+
tEHo/H, j=1
> g1--get(@) fg1,-- -, 900)+
tEHU/H1
+ Z 91 grt(@) - f(g1,---,9r)
teHo/H,

Since Y ;e g,/ H, t(@) = 1, we have (aUdf) = f—08(aUf). Put h =aU f. Then,
v(h) > v(f) — 1 and v(f — Oh) =v(aU8f) > v(a) + v(df).

(2) Since f is continuous there exists an open normal subgroup H, such that the
composite fy,: Hj - W — W/W5, factors via (Ho JH, ) Let f, be the composite
of f, with a splitting W/W>,, — W (as sets). Then, f, is a continuous cochain and

o(f — fn) > n. O

Proposition A.2. — [23, Prop. 10| We have H"(H,W) = 0 for r > 1 and
H"(#,W) = 0 for v > 1. In particular, H"(G,W) = H"(I',WH) and
H" (¢, W) = H" (T, W),

Proof. — The last statement follows from the first one and from the spectral
sequences H’(I',H/(s#,)) = H''(¥4,) and H/(I",H/(H,.)) = H"(G,.).
Let Hy := H or . Let f be an r-th cochain of Hy, for » > 1, with values in W.
Let {Hy, fn}n be as in A.1(2) and, for each n, write h, for the continuous (r — 1)-
cochain satisfying A.1(1) i. e., v(fn — 8hy) > v(8fn) — c1 and v(hy) > v(fn) — c1.
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Then, {h,} is Cauchy so that it converges to a continuous (r — 1)-cochain h. Further-
more, v(f, — Ohy,) > n — ¢; for every n so that dh, — f for n — oo. We conclude
that f = Oh as claimed. O

Let KZn be the subset of A consisting of elements b such that v(b) > n. Then, Kzo
is a ring and A, is an ideal for every n > 0 due to the properties of v. We write A,
for the quotient A>o/A>,. Assume that the following strengthening of (TS1) holds:

(TS1’) for every ¢ € R and for every open normal subgroups H; C H, of %

(resp. of H), there exists a € K’;cl, such that v > 7(a)) <Lec
- TEH2/H,

One then has the following variant of A.2:

Proposition A.3. — Let W be a free A,-module of finite rank a endowed with a con-

tinuous action of 4. _Then, for every c € R0 and every integer r > 1 there ez-

ists an element v, € A>0 of valuation v(v.) < ¢ such that v, - H"(H,W) = 0 and
H" (s, W) = 0.

A.3. Decompletion. — The notation is as in A.2. Write D(W) = W*
and D(W) := WH. They are closed subgroups of W endowed with the topology
induced from W.

It is proven in [2, Cor. 2.3] that (TS1) implies that there exists an open
normal subgroup FBy C H and a A-basis €1,...,eq of W such that Wow =

A”Wel ®D- EBA‘%JWea For every ¢ = 0,...,d and every m > mw = Mg 5, define
the map T( @ WKW L WA by S ﬂ,e, > S T e (Bi)ei. Due to (TS2)
such map is independent of &y and the basis e;,...,e, and it descends to a map

on D(W) = W?. Due to (TS2)(b) it is continuous for the topology on W¥*Ww
induced from W. We then drop the index %y and we write simply

T DW) — D(W) fori=0,...,d, m>mp.
Using (TS4) and repeating the construction above, we get similarly continuous maps
tW. D(W) — D(W) fori=1,...,d, m>mw.
For every m > mw due to (TS2) we have a decomposition
DW) =0, (W)aDOW)a-- - 02D (W),
where D% (W) := (1 - 7)) (@(W)), D5 VW) == 1 -7 ") (OW), @_,), -+

'DSS)(W) (1 - 7-(0)) (D(W)r,(f)=1,...,ﬂ(73)=1) and D, (W) = Q(W)Tf,:i)zl,.‘.,f,(.,?)zl'
They are closed I'-submodules of ®(W). We endow them with the induced topol-
ogy. By (TS2) the decomposition above is an isomorphism of topological I'-modules.
Similarly, we have an isomorphism of topological I'-modules

D(W) :=Dp,(W)®DP (W) --- @D (W),
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where DI (W) := (1)) (D(W)), ..., D (W) = (1~ 1)) (DW)0_;  o_y)

and Dy, (W) = D(W),w_, ,w_, are closed I'-submodules of D(W).

Proposition A.4. — There exists an integer N > mwy such that for every n > N,
if vF " €T the map v¥ "o 1is bijective with continuous inverse on Dg,?(W) fori=
.,d (resp. Dg,il)(W) fori=1,...,d).
Then, the maps of continuous cohomology groups H’ (T', D,,,(W)) — H’ (T, D(W))
and H (IV, D, (W)) — H (I, D(W)) are isomorphisms.

Proof. — We deduce from the first statement that H’ (Zﬂ,'yfJ " oW (W)) = 0 and that
H (Z ( v ,D(l)(W)) = 0 for every j > 0. We get from the Hochschild—Serre spectral
sequence that H7 (I‘, D%)(W)) =0 and H’ (I", %)(W)) =0 for i > 1. For i =0 the
first statement implies that 'y(’,’" — 1 is bijective with continuous inverse on the group
Hj(F’,Dsg)(W)). By Hochschild-Serre H? (I‘,CD%)(W)) = 0 for ¢ = 0 as well. The
second statement follows ,

Since 7¥ — 1 = ('yZ - 1)(2;—0 -1 f]) for t > s, if ¥ — 1 is bijective with
continuous inverse on D (W) (resp. DS,?(W)) also 7 " — 1is. Hence, it suffices to
prove that v* ™ — 1 is invertible with continuous inverse.

We prove the statement for CD%)(W). The proof for D%)(W) is similar and the
details are left to the reader Write W =~ Ave, @... @ AWe, as in A.3 and

write W%W’(l) (1 — ) (W{WU vy “’:1)' Due to the assumptions in A.1

we have a lifting fy”mo"yfw e G | commuting with the elements of ¢/ .

Since DY (W) = (W, Wk () ) by (TS2) it then suffices to prove that 7* — 1 is

Hw,
invertible with contlnuous mverse on Wi, W @,

Extend v on Aei @ ® Aeg by U(Z;:l zjej) = inf{v(z;)|lj = 1,...,a}. It
defines the weak topology on Kel ®D--- @Kea. Since the action of ¥/ on W*w

N
is continuous, there exists an integer N > mg 4, such that 47 acts trivially

on Wow /ng;v” . A%’W /A Take m > N. Following [8,

Prop. 11.6.4] define

2c3,06, +1€

a
B WO W0, () S0 e
j=1

It is well defined, continuous, bijective and with continuous inverse (for the weak topol-

ogy) due to (TS3). Then, z — f,-((l — 7fm)(z)) =—f; (Z?=1 ’szm (Zj)(l - ’Yfm)(ej))-
Write

Gie: W @ —— WO g () =y — i (1= )W) - 2).

Th"en, v(fi(2)) > v(z) — 3, by (TS3) and v(gio(y)) > wv(y) + inf{v((1
oNe))li = 1,...,a} — camy > v(y) + 1. Hence, v(gi.(y1) — 9i,2(¥2))
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v(gi,0(y1 — y2)) > v(y1 — y2) + 1. This implies that g; . is a contracting operator for
the v-adic topology so that there exists a unique fixed point y,. Since f; is bijective,
we get that y, is the only solution of (1 — % )(y) = 2. We deduce that 1 — ~?

is bijective on Wix® . Furthermore, since Y. is the limit of the sequence g, ()
and gi.(2) —z = fi(v} (2)), we have v(y. —z) > v(gi.(2) —2) 2 v(7} (2)) = 3,58 -

”W7(i).

Hence, (1 — 7 m)_1 is continuous on Wi, O

We are ready to apply the considerations above in the cases of interest to us. Let
S be as inA2.2. Let M be a Z,-representation of ¥s. Let M = Z2 ®;_, Z,/p“Z,.
For A = Rov K, Az, AL, Az or AL, then M®z, A = A®@%_, (A/p*A). We
consider M ®z, A as topological module for the product topology considering on A

the topology induced from the p-adic topology on R ®y K or form the weak topology
on Ay and considering on each A/p® A the quotient topology.

Proposition A.5. — We have:

1) the ring A := ﬁ@vK with v(b) := min {a € le% € ﬁ} satisfies (TS1). Fur-
thermore, the following holds

(TS1') for every ¢ € Rsg and every open normal subgroups Hy C Hy of 5
~H;
(resp. of H), there exists € R such that Y. 7(c) is an element
TEH2/H;

of V of valuation < c;
2) for every r € Qsg the ring A := A%)’T] with v = w, satisfies (TS1);
3) for every N € N the ring A := X-E/pN“KE with v = VEN satisfies (TS1);
4) H (A%, M ®z,(R®v K)) =0 for every i > 1;
5) (a) H (%, M ®z, Ag) =0, (b) H (%,M@zp A%) =0 for every i > 1;

~

6) (a) H? (HS,M®ZP Aﬁ) =0, (b) H* (Hs,MtX)zp K%) =0 for everyi > 1.

Proof. — For open normal subgroups 4 C 5% of S claim (1) follows from |2,
Prop 3.4 & Rmk. 3.5] and claim (2) follows from [2, Prop. 4.4].

Let H; C H, be normal subgroups of H. They correspond to extensions R, C
5'(’,02 C Sgol which are finite and Galois over R, [p‘l] of degree d; and dj respectively.
In particular, there exists an extension V,, C Vooh, finite and Galois after inverting p,
such that they arise by taking the normalization of the base change of extensions
of R Qv Voo finite and Galois after inverting p of degree d; and dy respectively.
This is equivalent to require that there exist open normal subgroups of JA C %
of % such that 4 NH = Hy, 5% NH = H, and H; /Hy; & 5 /5%. Then, (TS1)
(resp. (TS1')) for 4 C 5 implies (TS1) (resp. (TS1’)) for H; C H,. Hence, (1)
and (2) follow.

(3) Let H; C Hj be open normal subgroups of 5 (resp. H) and let o be an element
of K(ﬁo,r] satisfying (TS1). If we write o, := 3, p*[2x] with z € EE’ since w, (o) =
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inf{rvg(zx) + k} > —ci1, we get that vg(zx) > '—2—‘—'5 Hence, for every N € N we
have v%N (ar) > _C%I! In particular, the claim follows.

(4) It follows from A.2.

(5)-(6) Since K%/pN“K% = Ay/pN A5, claims (5) and (6) follow from A.2
for M a %s-representation which is free as Z,/pN*!'Z,-module. In particular, (5)
and (6) hold for torsion representations.

We may then assume that M is torsion free. Let A := KE or K% and let H = 5%
or Hg. Let f be an i-th cocycle of H with values in M ®z, A, continuous for the weak
topology. If A = K%, then K% = UTK%)’T] and K%)’T] is open in KE for the weak
topology since it contains X% In particular, since H is compact in this case f takes

values in M ®z, K(EO’T] for some 7.
Since f is continuous, for every n € N there exists an open normal subgroup H,
of H such that the composite fo: H* - M ®z, A - M ®z, (A/(Un+1 eatn )y, N A))

factors via (Ho/Hn)l; see 2.4 for the notation U, . Here, for u € Q we write [u]
for the smallest positive integer bigger or equal to u. Let f, be the composite of f,
with a splitting M ®z, (A/(Un+1,[¥i]+n NA)) - M®z, A (as sets). Then, f, is
a continuous i-cochain and we also have f,, = f, if viewed as cochains with values
in M ®z, (A/(UWA_L[ﬂ]_’_n N A)). For every n let hy, := o, U f, be the continuous
(¢ — 1)-cochain defined as in the proof of A.1(1). The computations in loc. cit. show
that f, — hn = U8 f, =0 and hyiy = hy in M ®z, (A/(Unt1,nNA)). Then, {h,}
is Cauchy for the weak topology and {0hy}, converges to f for the weak topology. In
particular, h, converges to a continuous (i — 1)-cochain h with values in M ®z, Xﬁ
and 6h = f.

If A= Kﬁ, this concludes the proof. If A = K%, since p"KE N K%”T] = p"K%)’T]
and since wr(p) = 1 and w,(7) > ;25 by [2, Prop. 4.2(d)], we conclude that {hn}
is Cauchy for the w,-adic topology as well. Since K%”Tl is complete and separated
for the w,-adic topology by [2, Prop. 4.2(c)], we conclude that h in fact takes values

in M ®z, K%)’T]. The conclusion follows. O
A.4. Sen’s theory for R[p~']. — Before passing to the (¢,I')-modules, we first

show that our theory applies in the case of R[p~'|-representations. These results are
due to Sen [22], in the classical case of a DVR with perfect residue field, and are due
to [6] for a DVR with imperfect residue field. The key point is of course to show
that A.4 applies. This follows essentially from results proven in [2]. We review some
of the basic definitions and properties from loc. cit.

d
Let S be a R-algebra as in 2.1. Fix mo s € N such that p™os @ Z,v; C I's.
=1

Then, for every m > my_ s, the ring Sy,+1[p~!] is a free S,,[p~!]-module of rank p?+!
(resp. Spt1-W(p~1 is a free Sy, - W[p~!]-module of rank p?). For every i € {1,...,d}
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and every n € N, define

89, = S[TF™, ... T, T, ... T | Va
and
S9 = ST, .. T T, T,
For ¢ = 0, one puts S,(f,)* = S[TI#,...,TfW]. Eventually, let S‘gﬁ,),* = LeJN S,(:)* and
n

S;Ef,)* = U S;(,i). For every i € {0,...,d} and m € N, one defines
neN

(S/@ Vo)l ifi=0,
(@-sm)[p—l] ifie{l,...,d},

where the hat stands for p-adic completion. Similarly, for ¢ € {1,...,d} and m € N,
put

SO

oco,m,K —

Note that S’\c()?,m’K C §°o [p~!] for every i € {0,...,d} and m € N and that §;f:)mK -
EZ[P*I]- For n > m > mgp and z € S,[p~], one puts

1 i —
(0 = | T T siov, (@) =0,
Iﬁ’[‘rsﬂ/sy’)‘_sm(x) ifi e {1,...,d}.
For n > m > mg and « € S,,[p~!] and every i = 1,...,d define

; 1
D(p) = .
tm (:L') = pn——m 'I‘I'S;I/Sn(’:)'sm (112)

Such maps do not depend on n for n > 0 so that they are defined on Soo[p™!]
(resp. SLo[p]).
(1)

Proposition A.6. — For everyi =0,...,d and every m > mg the map Tn’ is contin-
uwous for the p-adic topology so that it extends to a unique S(():)),m, K -linear map

w9 Slp) — 5

oco,m,K*
Analogously, for everyi=1,...,d and every m > mg the map tS,”) is continuous for
the p-adic topology so that it extends to a unique Sogz,)m, i -linear map
t®: S p7t — §;E:)mx
Proof. — The claim for ¥ follows from [2, Lem. 3.8]. Since t$) is obtained from 7.5
by base-change from V,, to W, the claim for tﬁ,’,) follows as well. O

Note that (fi[p‘l])é‘i‘"9 = E;[p‘l] and (I:Z[p‘l])ﬂs = §{;[p—1] due to 2.6. Fur-
thermore,
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Proposition A.7. — The rings gg),m, x and the applications Tr(,f) satisfy (TS2) and

(TS3). The rings g;g” x with the applications £88) satisfy (TS4).

Proof. — The fact that (TS2) and (TS3) hold is proven in {2, Prop. 3.9] and in (2,

Prop. 3.11]. Axiom (TS4) follows from this since ¢ is obtained from 7" by base-

change from ‘7; to W and taking p-adic completions. O
Lemma A.8. — We have |J,, (ﬂt §£i),m’K
Unm (N Sotm i) = Un S lp7']-

Proof. — The first claim follows from (2, Lem. 3.12]. The second is proven as
in loc. cit. O

) = Soo [p‘l]. Analogously, we also have

Let M be a Z,-representation of ¥s and let Q := M ®z, R[p~']. Due to A.2 we
know that the natural maps

H" (F37 QWS) — H" (gSa Q) and H" (FISa QHS) — H" (GS7 Q)
are isomorphisms. Furthermore,

Theorem A.9. — There ezists a finitely generated, projective S [p“l] -submodule N C
Q7% , stable under I's, such that N ®s,, Soo = Q7% and the natural map

H"(Ts, N) — H"(T's, Q)

is an isomorphism. Furthermore, if N' := NQ®g_, (Um S/’\m), then N'® S &

U 87, Do
QYs and the natural map
H" (T, N') — H*(T'%, Q")
is an isomorphism.

Proof. — Put N to be the base change of D,,(Q), as defined in A.3, via the natural
map (); 59 — Soo[p7!]. Similarly, put N’ to be the base change of D,,(Q) via

. oco,m,K

i Soomic = Un Slp™!].
Due to [2, Thm. 3.1] there exists an R[p~']-basis e, ...,eq, of M ®z, R[p~!] sta-
ble under an open subgroup % of /%, normal in ¥s. Let Seo[p™!] C Too[p~}] be
the corresponding Galois extension. Then D,,(Q) (resp. D,,(Q)) is by construction

the set of %5/ H#q-invariants (resp. Hg/Hg-invariants) of the free ; T\g)m x-module
(resp. N f;on‘K—module) with basis ej,...,eq. By [1, Cor. 3.11] we have CZ/";,[p‘l] =

Soolp™1] ®s.. Too s0 that the extension Seo[p~!] C Too[p~!] is finite, étale and Galois
with group %/ #,. Similarly, one proves that T/ [p~!] & S7_[p~}] ®s_ T so that
the extension §g[p‘1] C Té\o[p‘l] is also finite, étale and Galois with group Hg/Hg.
Then, the claims that N' = N ®g_ (Um S/’\m) and that N and N’ satisfy the require-
ments of the theorem follow as in the proof of A.4 and étale descent. O
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A.5. Sen’s theory for Kﬁ and K% — We recall some facts proven in [2, §4]

needed in order to prove that (TS2) and (TS3) hold also for the rings Kﬁ and X%
Let S be a R-algebra as in 2.1. For every i =0,...,d let

. 1 1 1 1
A (00) = UpAs [[20] ™ [201] 7, [20a] T[] ]

and let A z)( ) be the closure of Al )(oo) in ASoo for the weak topology. Here,
we write zo for the element ¢ and we write [:1:,] for the Teichmiiller lift of z;. By
construction it is stable under ¥g if i # 0 and it is stable under 75’8, for s > 0,
if ¢ = 0. Then,

Proposition A.10. — For every m > 0 and every i = 0,...,d there exists a homomor-
phism
) =7t Ko — AP (00) [[a] 7]
called the generalized trace a la Tate, such that
(i) it is Ag)(oo) [[x,]F}W] -linear and it is the identity on Ag)(oo) [[xz]ﬁ”],
(ii) 4t is continuous for the weak topology;
(iii) 4t commutes with the action of Gal (S /R) if i # 0 and it commutes with the

action of 'yoz" if i = 0. FPurthermore, T,(,:) o T(J) (’) o 'rm) form, n € N and 1,
j€{0,...,d} and T (0) ) T,(nl) 0--:0 TT(n) commutes with the action of Yr;

(iv) foreverynGZsuchthatm+n>0wehavego o ()Jrn_v-,(,i)ocp ;

(v) it is compatible for varying S i. e., given a map of R-algebras S — T as in 2.1
we have that " )T restricted to AS coincides with 7'( ) ;

(vi) there ezists rs € Qso such that (TS2) and (TS3) hold for every 0 < 7 <
rs with A := A(EO’T] and v = w,, taking K(i) for m > 0 to be the closure of
Kg):]ﬂAg)(oo) [[x,]#'”] in K%”T] and taking TS m form >0 to be the restriction
of the maps defined in (i);

(vii) for every N € N (TS2) and (TS3) hold for A := Ax/pN*'Ax and v = vg",
taking A for m > 0 to be AP (c0)/pN 1AL (00) [[:::Z]_"T] and taking Tszn
for m > 0 to be the reduction modulo pN*! of the maps defined in (i);

(viii) there ezzsts mg € N such that for m > mg the map 47 — 1 is an isomorphism

on (1-r )) (Ag ) with continuous inverse (for the weak topology).

Proof. — Claims (i)-(v) follow from [2, Prop. 4.11]. The verification of (TS2) (resp. of
(TS3)) in (vi) follows from [2, Prop. 4.19] (resp. [2, Prop. 4.26 & Prop. 4.28]). The
fact that (TS2) holds in (vii) follows from (ii) and the fact that the weak topology
on Ag/pV 1Az is the v N-adic topology.

Since (1 - 7',(1?) (Ksoo) is p-adically complete and separated, the fact that "1
is bijective can be verified modulo p and follows from [2, Prop. 4.26 & Prop. 4.28].
In particular, (7*" — 1)~! is bijective on p" (1 - T,(,f))(sz) and, consequently,
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on (1 - T(’))(KS /PN A ) for every N € N. Note that for every h € N the
i AL T] such that w,(z) >
hw,(7). By (TS3) for A%) "} there exist constants c3,s and 04,.9 such that for every

element z in 7 (1 — T,Si))K;w (resp. A (c0) [[mz]ﬁ”] n th;fm) one has
rve(z) SV (L=2")12) 2w, (1 =" )"M2) = N > w,(2) —c3s — N
and, respectively,
rve(z) <N (1= 12" )(2)) = we((1 =777 )(2)) = N > w(2) + ca5 — N.

Since w,(z) > rvg" (2), we conclude that VE(Zk)<N((1 fm)‘l(z)) > vil(z) -
.5tV and vg(ze) <N ((1 - 'yfm)(z)) sV (2) + “5=X_ Hence, (vii) and (viii)
follow. O

group 7rhA is contained in the subgroup of elements x € Ag

Similarly, given a R-algebra S as in 2.1, for every i = 1,...,d let Ag(i)(oo) =
1 1 1 1 —_—
UnAl [[zl] o [mid] P [T T 7] ”T] and let Afg(’)(oo) be the closure
of A_’g(i) (00) in KS;Q for the weak topology. Note that since ¢ > 1 the ring Ag)(oo)
contains the closure for the weak topology of U, Ay [[w ];ﬁ] which is Ay, by [2,
Cor. 4.10]. Then, A (oo) ®zx, Aw maps to A/ (l)(oo) and the image is dense
for the weak topology. Recall that As ®x AW injects and is dense in As/

and As®a, AW injects and is dense in A’ by 2 9. Hence, for every i = 1,...,d we

may base-change Té 2n via ®3, AW and complete with respect to the weak topology

We obtain a map
t9 =t As — AL (c0) [[wi] 7]

Proposition A.11. — The analogues of the statements (i)-(viii) of A.10 hold for KS;O,
the rings A's ) (c0) [[xz]—”] and the maps .

Proof. — The proposition follows from A.10, from the construction of ¢ and density
arguments. For (vi) note that A(0 e x©) A(0 "I maps to Ag _(©7 and has dense

image for the w,-adic topology by 2.9(d). - O

0oy, r®=1
Lemma A.12. — We have As

2d

Proof. — By [2, Cor. 4.10] the monomials {[ 0] ? , [£4] 7" Yo<ai<pr form an Ag-

basisof p™"(Ag) = Ag [[wo] oy ,. [:cd] ] and U,p~"(Ag) is dense in Xs for the

X (d) _ ~ (1)_ (d) _
weak topology. In particular, U,p~ (AS) L7 "=1 is dense in A "m LreoTo =1
o~ (0) (d) . . ~ (1) _ =1,..., (@) _ .
and Upp ™" (As ®a, Aw)too =Lty =1 ig dense in (Aséo)t fo =1 respectively.
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From the fact that 7{" ([z;]7) = 0 for 0 < & < p", we get that N& A (c0) =

~r Oy =1, 1P =1

Ag is dense in A o and As®a,, AW is dense in (Ag/ )
respectively. The conclus1on follows from 2.9. O

e Te D=1

A.5.1. The operators D and t& on (¢,T)-modules. — Let S be as in 2.2. Let
M be a Zp-representation of ¥s. If M = Zs®}_, Z,/p%Z,, then M ®z, A— =
K% EBLI Kﬁ/pcixﬁ— and on the latter we have the product topology considering
on Xﬁ the weak topology. Recall that we have defined D(M) = (M ®2z, K—)”S
and ]5(M ) = (M®z, K—)HS. We then define the weak topology on ’5( M) and

D(M) to be the topology induced from the inclusions ’D(M ycDM)c M ®z, A—

Assume first that M is killed by pNV*!. Since A := AE/pN +1A7€ satisfies (TSl)
(TS4) due to A.10 & A.11(vii), we may apply A.3 and define the operators ‘r,(n)
(resp. t(’)) on D (M) and on D(M) and we get decompositions

D(M) =D (M) DDO(M)®--- @DD (M)
and
D(M) := D (M)®DP (M) @ -- & DD (M).

By devissage we get the operators s (resp. t(’)) on 5(M ) and on ﬁ(M ) and the
decomposition above for _any torsion Ys- -representation M. 5

If M is torsion free, D(M) hm D(M/p"M) and D(M) lim D(M/p"M)
by 2.12. Using the constructlon for the torsion case and passing to tl;:nhmlt we get
the operators o) (resp. £ ) on fD(M ) and on D(M) and the decomposition above.
Proposition A.13. — Let S be as in 2.2 and let M be a Z,-representation of 9s. Then,

1) Do(M) = D(M) and Do(M) = D(M);

2) the operators T (resp. £ ) on CD(M ) (resp. D(M)) are continuous for the weak

topology; " _
3) the operators ) (resp. t(z)) preserve D1 (M) (resp. DY(M)). In particular, we
have
2i(M) =D}, (M)oDLOM) e D] P (M)
and

D'(M) := D}, (M) @ DLV (M) @ --- & D} (M),

where the modules on the right hand side are defined as in A.3;

4) ify*" €Tg (resp. I's) then V" —1 is bijective on DD (M) (resp. DY) (M)) with
continuous inverse (for the weak topology);

5) if 'yl € I's (resp. T's) then v — 1 is bijective on DL )( M) (resp. f)!,’l(i)(M))
with continuous inverse (for the weak topology);

6) D! (M) = D(M) N D (M), DS, “)( M) = D9 M) n Dt (M), DLED (M)
DY (M) n D' (M) and D} (M) = D, (M) N DH(M). In particular, D(M) =
Dt (M) and Di(M) = DY (M).

I
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Proof. — Since /¥ — 1 = (/%" — 1)(2”_0 1P for t > s, it suffices to prove
the bijectivity and the existence of a continuous inverse in (4) and (5) for n > 0.
Assuming (3), we have D5, (M) = DY (M) N Dt (M) and DLP (M) = DE (M) n
DY(M). Then, (4) and the bijectivity in (5) imply the existence of a continuous inverse
in (5). Claim (6) follows from the others. For every m and n € N the maps

ot ®1: 5(M):@ As25D(M), o"®1: DI(M) % AL ()
S

Ag

and

o"®1: D(M) ® Ay—D(M), ¢"®1: D'(M) "f@T A =Dt ()
A.’ ’

s s

are isomorphisms by 2.12(i). It follows from A.10 and A.11(iv) that (¢" ®1)o ,(,QM =
Vo o(p"® 1) and (¢" ® 1) QO (¢" ®1) and that ¢" ® 1 defines an isomor-

m+n

phism from Dy,4n (M )®4 As (respectively from Dm +n(M ) ®Xv; Ag, respectively
from D,y (M) ®A's ‘s, respectively from Dm+n(M) ®As As) to D, (M) (respec-

tively 55,?(M), D (M), ﬁ%)(M)) Hence, it suffices to prove claims (2), (4) and (5)
for m > 0 to deduce it fgr every m € N. _ N
Since D(M) := lim D(M/p"M) and D(M) := lim D(M/p"M) by 2.12 and the

operators Tp, @ (resp t( )) are constructed on each 5(M /P M) (resp. ]5(M /p"M))
passing to the limit, to prove (1), (2) and (4) one may assume that M is a torsion
representation. By devissage one may also assume that M is a free Z/p"¥ *!Z-module
for some N € N. Note that 7 and t{Y commute with the Galois action and are
compatible with extensions S, C T and S, C T/, by A.10 and A.11. Due to 2.8,
2.9 and 2.10 and étale descent, it then suffices to prove (1), (2) and (4) passing
to an extension S,, C Tw in R finite, étale and Galois after inverting p i. e., for
(M ®z, KE)MT instead of 5(M) and (M ®z, XE)HT instead of D(M). We may
then assume that ¢4, and hence Hr, act trivially on M. Claim (1) follows then
from A.12. Claim (2) follows from A.10(ii) and A.11(ii). Claim (4) for m > 0 follows
from A.4 since A := KE/pN +1K§ satisfies (TS1)-(TS4). This concludes the proof
of (1), (2) and (4).

If M is a torsion representation, then (3) and the bijectivity in (5) follow
from 2.12(ii"’). Assume that M is free of rank n. Thanks to 2.8, 2.9 and 2.10 and
étale descent we may pass to an extension So, C T in R finite, étale and Galois
after inverting p. By [2, Thm. 4.35] there exists such an extension S,, C T so
that ’i)f(M)®ATS Al} is a free A}-module of rank n. Fix a basis {ej,...,e,} and

choose 7 € Qo such that these elements lie in M ®z, K%)’r]. By 2.12(iii’) we have
M ®z, XT AL Fe1D - A_en For every s < min{r,rr}, see A.10(vi) & A.11,

SOCIETE MATHEMATIQUE DE FRANCE 2008



414 FABRIZIO ANDREATTA & ADRIAN IOVITA

let W, := M ®z, K%)’sl. Define /(M) := W2 and D©*)(M) := WHT. Then,
Dt (M) = U,D©I(M) and DT (M) = U,DOsI(M).

Note that A( ! satisfies (TS1)-(TS4) by A.10(vi) & A.11. Hence, the operators 7, T
(resp. g ) preserve D (0] (M) (resp. D©:sl(pr )) and we further have decompositions
DOI(M) := DO M) @ DL O (M) @ - - @D QhD (M)

and
DOsl(p) := DOI(M) @ DO (M) @ - - - & D51 (A1)

by A.3. This proves (3) in the overconvergent case. It follows from A.4 that if 47 " eTg
(resp. I's) then 7f — 1 is bijective on DY) m(M) (resp. ﬁg,?’s]’(i)(M) for m > 0.
We conclude that the bijectivity in (5) holds. Claim (5) follows. |

We deduce from A.4, A.5 and A.13 the following theorem which summarizes the
results proven so far:

Theorem A.14. — The natural maps

H"(Ts,D(M)) — H"([s,D(M)) — H" (% M ’})
H"(T's,D(M)) — H" (I, D(M)) — H" (Gs, )
H"(T's,®'(M)) — H*(T's, D' (M)) — H" (%,M ® AL )

and H" (I's, DY (M)) — H" (I, DT (M)) — H" (Gs, M® K%)
ZP
are all isomorphism&.

A.5.2. The structure of d-functors. — The cohomology groups appearing in A.14
are d-functors i. e., given an exact sequence 0 — W; — Wy — W3 — 0 of ¥s-
representations we get an associated long exact sequence of cohomology groups, func-
torial with respect to morphisms of short exact sequences.

For the cohomology groups on the right hand side it suffices to construct a left
inverse (as sets) of the surjection W, ®z, K'}i - W3Q®z, Kﬁ which is continuous for
the weak topology and has the property that the image of W3 ®z, K% is contained
in Wo ®z, X% ‘We consider two cases.

The first case is that W3 is a free Z,-module. Any left inverse Wy — W3 as
Z,-modules induces by extension of scalars the claimed inverse.

The second case is that W3 is a torsion Z,-module. By devissage one can suppose
that W3 is a free Z/p™Z-module. The sphttmg is defined hftmg a basis of W3

to Wy and constructing a left inverse (, to the projection A — AR/p"A
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Since Xﬁ/anE = Wn(ﬁﬁ) we define such inverse sending (ag,...,an) —
(ags-.,an,0,...).

For the cohomology groups of (p,I')-modules we argue as follows. Due to A.13
we have continuous right inverses of the inclusions ©*(W;) C 5*(W,) and D*(W;) C
ﬁ*(Wi), where * stands for nothing or {. Such inverses are compatible with the
morphisms of (¢,I')-modules induced by the map Wy — W3. Thus, it suffices to
construct a left inverse to the map D(W,) — D(W3) sending Df(Ws) to D (W5)
(resp. to the map D(Wg) — CD(Wg) sending @T(W3) to ’DT(WQ)) As before we
distinguish two cases.

The first is when W3 is a free Z,-module. Due to [2, Thm. 4.35] there exists an
extension S C T, finite and étale after inverting p, so that DT (W3) ® Al A;q is a free

Al:,«-module. Since Ajrg C A} is finite and étale by 2.8 we deduce that DT (W3) is a
projective Ag-module so that we can find a continuous left inverse to the surjection
DY (Wy) — DT (W3) as Ag-modules. Thanks to 2.12 we conclude the construction in
this case simply extending scalars.

The second case is when W3 is a torsion Z,-module. By devissage we may assume
that W3 is a free Z/p"Z-module. Let S C T be an extension such that ¥r acts
trivially on W3. Then, ®(W3) ®as Ar = W3 ® Ar is a free Ar/p™ Ar-module. Due
to 2.9 and 2.12 the various (¢, I')-modules associated to W, as %r-representations, for
it = 2 and 3, are defined by the corresponding (p,I')-modules as ¥s-representations
extending scalars via the finite and étale extension A}; C A;. A splitting as Ag—
modules to the inclusion Ag C A;W produces at the level of (¢, I')-modules a left
inverse (r/s to the process of extending scalars. To conclude it suffices to construct
the inverse considering &r-representations composing then with (7,5. One gets the
seeked for map lifting a basis of W3 to W» and using the left inverse to the projection
AJr — A 7/! /p"A—- constructed above. This map has the required properties since

R/p"AR — AR sends AToo /p”ATw to ATOO and AToo /p"ATwr to ATOO,.

Appendix B
Artin-Schreier theory

The aim of this section is to prove the following;:

Proposition B.1. — The map ¢ — 1 on Kﬁ, K%, A4, A%, A’ﬁ and A% is surjective
and its kernel is Z,. Furthermore, the exact sequence

(22) 0 Z, Ap £ AL 0

admits a continuous right splitting o : KE — XE (as Z,-modules) so that so that
~ ~
o(Ag) C Ag, o(AL) c AL, o(AL) c AL o(AL) c AL and o(AT) c AT
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Proof. — Note that by [2, Prop. 4.2] we have <p(A%]’r]) C Ag’r/ ?l and w(K%’”]) C
K%)’r/p] so that (p — 1)(At§) C A% and (p — 1)(:&%) C X% We know from 2.4
and 2.9 that p is a regular element of A4, AIE and Ay and that Ag/pAg = Ep,
A%/pAg = Eg and that, thanks to 2.6, the image of Ef ®g, EW~—> A/Ti/pA/E is
dense for the 7-adic topology. In particular, to prove that ¢ —1 on A%, Az and Ai}i
is surjective and its kernel is Z,, it suffices to prove that the kernel of ¢ — 1 on Eg
is F;, and that ¢ —1 is surjective on E, on Ef and on the completion of Ef ®g, Ew

for the 7-adic topology. Since ER’ is an integral domain by 2.3(5), the kernel of ¢ — 1
is Fp. The other claim follows from B.2.

Since AIR = AgnN K%, to conclude that ¢ — 1 is surjective on ATE and on X%,
it suffices to prove that for every z € K% the solutions y € KE of (p —1)(y) = =
lie in K% Since any such solutions differ by an element of Z, and the latter is
contained in X%, it suffices to show that ¢ — 1 is surjective on K% Let z € K%
and choose r € Qs so that z € K(EO’T]. Write z = 3, [2k]p* with 2 € EE' Then,
putting ¢ = min{—1,w,(2)}, we have rvg(zx) + k > c for every k € N i. e., vg(2x) >
C—Z—k. By B.2 there exists yx € Eg such that (¢—1)(yx) = zx and 0 < vE(yk) < vE(2k)

if vg(zk) > 0 or ve(yk) = % if vg(zx) < 0. In any case, vg(yk) > C;rk. Hence,
y = 34 p¥[yk] lies in A%)’prl and (¢ — 1)(y) = z. 0
Lemma B.2. — The map ¢ — 1 is surjective on Eg, E%, Eﬁ and Efﬁ Furthermore,

given a and b € EE such that a® — a = b we have 0 < vg(a) < vg(b) if ve(b) > O,
and vg(a) = ve(b)/p if ve(b) < 0.

Proof. — Recall that E := Us_Eg (resp. El"li := Ug, E¥) and the union is taken
over a maximal chain of finite normal extensions of Eg (resp. E}), étale after invert-
ing 7. Then, HY, (Eg,Z/pZ) = 0 and H}, (E%, Z/pZ) =0, H, (¢=>°(Eg),Z/pZ) =0
and Hl, (go‘w(E.J}%), Z/pZ) = 0. By Artin-Schreier theory Ex/(¢ — 1)Eg injects in
H;, (Ex, Z/pZ) and, hence, it is zero. Analogously, EX/(p — I)E% = 0. This im-
plies that o= (Eg)/(p — 1) (¢~ (Ex)) = 0 and p~=(E£)/ (¢ - 1) (¢~ (BE)) = 0.
By 2.3 the ring E% is the 7-adic completion of <p“°°(E%) and Ex = E% [77!]. In
particular, EE = p~*(Eg) - Trf)% and we are left to prove that given a power se-
ries b = 3.2 b, 7" with {b,}, in (p_w(E_;—), we can solve the equation (¢ —1)(a) = b.
It suffices to find {a,}» in cp_w(E%) such that f(’"l)”aﬁ — an = b,. Indeed, if we
put a := Y o2, a,7", then (¢ — 1)(a) = b. Given b, € (,0‘°°(E%) there exists Soo
and m such that b, € ¢~™(E}). But Ef and ¢~™(E{) are 7-adically complete and
separated, the equation 7P-UnXP_ X = b, in the variable X has 1 as derivative and
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admits b,, as solution modulo 7. By Hensel’s lemma it admits a unique solution a,
in o™ (EY). The first part of the lemma follows.

Assume that a? — a = b. Then, the properties of v%l recalled in 2.4 imply that
if vg(a) < 0 we have vg(aP) = pvge(a) < vi(ae) and vg(b) = vg(a? — a) = pvg(a).
On the other hand, if vg(a) > 0 we have vg(a?) = pvg(a) > vg(a) and vg(b) =
ve(a? — a) = vg(a). If vg(a) = 0, then vg(a? —a) > 0 and vg(b) > vg(a). The
second claim follows. 0O

Lemma B.3. — For every m and n € N we have (¢— 1)([%}"W(i‘%) +me(]§%)) =
[w"W (E%) +p™W (]73%) where [7] is the Teichmiiller lift of ™. In particular, the map
p—1: Xﬁ — Xﬁ is open for the weak topology.

Proof. — By construction {[7]"W (f%) + p’"W(f)%) }m,n is a fundamental system
of neighborhoods for the weak topology on KE Since ¢ — 1 is linear, the first claim
implies the second. Since (¢ — 1)(p™a) = p™(¢ — 1)(a) for every a € W(E—)
since ¢ — 1 is surjective on W(Ei) by B.2 and since W, (Ei) = W(E*) /p’"W(E+)

it is enough to prove that for every n we have (¢ —1)([7]" W, (E%)) = [7]"W,,, (E %)

Indeed, (¢ — 1)([7]"Wp, (E%)) c ("W (E%)) remarking that (p — 1)([7]"a) =
[@]Pra? — [7]"a = [7]"([7]P~Y"a® — a). On the other hand, [F|"Wr, (E%) C (p—
1)([7"Wn (E%)) since for every b € W, (173%) the equation [7]P~"XP — X = b
admits a solution modulo p (cf. proof of B.2) and, hence, in W, (E‘%) by Hensel’s
lemma. The lemma follows.

Lemma B.4. — There exists a left inverse p as Zy-modules of the inclusion v: Z, —
A of (22), which is continuous for the weak topology.

Proof. — Let R* be the p-adic completion of the localization of R at the generic
point of R®y k. We then have a map KE — K—R—,, which is continuous for the weak
topology, so that it suffices to construct p for R*. We may then assume that R = R* is
a complete discrete valuation ring with residue field L. In particular, Eg is a discrete
valuation field with valuation ring E; and AR is a complete discrete valuation ring
with uniformizer p and residue field Eg.

Recall that E is the union UsEg over all finite normal extensions R C S C R,
étale after inverting p. Let R C S be any such. Since R is a complete discrete
valuation ring, also S is a complete discrete valuation ring. Then, Eg is a complete
discrete valuation ring. For § C T C R finite normal extensions, étale after inverting p
of degree ng 1, we get that E; is a finite and torsion free as Eg—module, of rank ng 1;
see 2.3. By loc. cit. the choice of a Eg-basis of E; determines a w“m(Eg)-basis
of o~™(E}) for every m € N and maps

bgT ~ ~ ~
f—fv’rE;m N <p—m(E+) i (8£E+)E+ (Egm)ns,T N E}.oo’
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where g 7 is a constant depending on S C T. We thus get an isomorphism EgiT —
ETOO as topological groups (for the 7-adic topology). Since E} is integrally closed
in E; , we may assume that the given E}'-basis of E} contains 1. Suppose furthermore
that e‘;% < 1. We then get a splitting of the inclusion Esw - EToo as Esw-modules
such that ff);w is mapped to E:;m Consider the set .# of pairs (A,t) where A is a
normal sub-E R.,-algebra of USESoo and t: A — E R., is a splitting of the inclusion
Er_ C A as Ep_-modules such that ¢ (A N (- Usﬁgw)) C E;w. It is an ordered
set in which every chain has a maximal element. Zorn’s lemma implies that % has
a maximal element which, by the discussion above, must coincide with Usﬁsm- We
conclude that there exists a left inverse ¢ as E Rr..-modules of the inclusion E R, C
Usﬁsw such that ﬂégx is mapped to E;m for every S. Since EE (resp. E%) is
the 7T-adic completion of Usﬁg (resp. USE+ ) and since Eg_ (resp. E+ L) is 7
adically complete and separated, £ extends to a left inverse ( as E R.,-modules of the
inclusion ER C E— mapping 7rE+ to E+ . In particular, ¢ is continuous for the
7w-adic topology.

On the other hand, recall from 2.3 that EE = L ®k koo[7mx] and that E;w is the

1

1 1
completion of UnEE [wf{ﬁ , wfﬁ Yo ,x?} for the topology defined by the fundamental

1 1 1
system of neighborhoods {77 ( U, L ® EJ, x|z, .. zE . Define
K vIiTk 1 d

m
. 1 1 1
6: Up L®koo(7K)) [wgﬁ,x?,...,z?] — L®k
k k
as the L-linear map sending 7rK:c1 . -:cff to 0 for every (ig,41,...,iq) € Q%! such

that (iy,...,4q) is not equal to 0 in (Q/Z)%. It is well defined since {7k, z1,...,zq}
is an absolute p-basis of E+ Furthermore, § is continuous for the mwg-topology
and, hence, it extends to a continuous left inverse v as L-modules of the inclu-
sion L ® koo C E R., considering the 7-adic topology on E R., and the discrete topol-
ogy on L. Finally, choose a left splitting 7 as F,-vector spaces of F,, C L ®j koo

Let 6: A — Z, be the map sending a Witt vector (ao,...,@n,...) of Xﬁ =
W(E—) to (7- ovo((ag),...,7ovo((as),...). It is a left inverse of the inclusion
Z,C A and it is continuous for the weak topology on A and on Z,. Note that the

topology induced on Z, from the weak topology on A~ 7 is the p-adic topology. The
lemma, follows. |

End of the proof of Proposition B.1. — With the notations of B.4, let e :=
Ltop: A — A . It is a continuous homomorphism of Z,-modules and e? = e. Thus,

if M .= Ker( ) = Im(e — 1), we have that M is closed in A and A =Z,®M.

Then, (¢ — 1)|m: M — A— is bijective. It is open thanks to B.3. Hence, its
inverse is a continuous homomorphism of Zy,-modules. We let ¢ be the composite

of ((¢—1)] M)_1 and the inclusion M C Ag. It satisfies the requirements of B.1. [J
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