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G L O B A L A P P L I C A T I O N S O F R E L A T I V E ( $ $ ) - M O D U L E S I 

by 

Fabrizio Andreatta & Adrian Iovita 

Abstract. — In this paper, given a smooth proper scheme X over a p-adic DVR and 
a p-power torsion étale local system L on it, we study a family of sheaves associated 
to the cohomology of local, relative (<̂ , r)-modules of L and their cohomology. As 
applications we derive descriptions of the étale cohomology groups on the geometric 
generic fiber of X with values in L, as well as of their classical (ip, r)-modules, in 
terms of cohomology of the above mentioned sheaves. 

Résumé (Applications globales des (<p, r)-modules relatifs I). — Étant donné un schéma 
propre et lisse X défini sur un anneau de valuation discrète et un système local L, 
étale, de torsion sur X on étudie une famille de faisceaux associés à la cohomologie 
des r)-modules locaux relatifs de L et leur cohomologie. Comme application on 
déduit une description des groupes de cohomologie étales sur la fibre générique géo­
métrique de X à valeurs dans L, et de leurs ((p, r)-modules classiques en termes de 
la cohomologie des faisceaux mentionnés plus haut. 

1. Introduction 

Let p be a prime integer, K a finite extension of Qp and V its ring of integers. 
In [15], J.-M. Fontaine introduced the notion of r)-modules designed to classify 
p-adic representations of the absolute Galois group Gy of K in terms of semi-linear 
data. More precisely, if T is a p-adic representation of Gy, i.e. T is a finitely gen­
erated Zp-module (respectively a Qp-vector space of finite dimension) with a con­
tinuous action of Gy, one associates to it a (<£>, r)-module, denoted Dy(T). This is 
a finitely generated module over a local ring of dimension two Ay (respectively a 
finitely generated free module over By := Ay (g>zp Qp) endowed with a semi-linear 
Probenius endomorphism ip and a commuting, continuous, semi-linear action of the 
group Ty := Gal(K(/Jbpoo)JK) such that (Dy(T),y?) is étale. This construction makes 
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340 FABRIZIO ANDREATTA & ADRIAN IOVITA 

the group whose representations we wish to study simpler with the drawback of mak­
ing the coefficients more complicated. It could be seen as a weak arithmetic analogue 
of the Riemann-Hilbert correspondence between representations of the fundamental 
group of a complex manifold and vector bundles with integrable connections. The 
main point of this construction is that one may recover T with its Gy-aetion directly 
from Dy(T) and, therefore, all the invariants which can be constructed from T can 
be described, more or less explicitly, in terms of Dy(T). For example 

(*) one can express in terms of Dy(T) the Galois cohomology groups W(K,T) = 
W(Gv,T) of T. 

More precisely, let us choose a topological generator 7 of Ty and consider the 
complex 

<*f(T) :Dy(T) do DV(T)®DV(T) di Dv(T) 

where d0(x) = ((1 - (p)(x), (1 - "y)(x)) and di(a,b) = (1 - 7)(a) - (1 - <p)(6). It is 
proven in [18] that for each i > 0 there is a natural, functorial isomorphism 

H*(^*(T)) ^IT(Gy,T) . 

Moreover, for i = 1 this isomorphism was made explicit in [9]: let (x, y) be a 1-cocycle 
for the complex ^*(T) and choose b G A ®z T such that (y? — 1)(6) = x. Define the 
map C(XiV): Gy —• A (g>zp T by 

C(Xty)(<r) = W - l ) / (7 - % - - 1)6, 

where a' is the image of a in IV. One can prove that the image of C(Xj2/) is in 
fact contained in T, that C(X)3/) is a 1-cocycle whose cohomology class [C(x?2/)] G 
H1(Gy,T) only depends on the cohomology class G H1(^*(T)). Moreover, 
the isomorphism H1(^7#(T)) ^ H ^ G y , ^ above is then defined by [(x,y)] ^ [C{x,y)]. 

As a consequence of (*) we have explicit descriptions of the exponential map of 
Perrin-Riou (or more precisely its "inverse" (see [15], [7], [9]) and an explicit relation­
ship with the "other world" of Fontaine's modules: DdR(T), Dst(T), Dcris(T) (see [9], 
[5]). 

Despite being a very useful tool, in fact the only one which allows the general 
classification of integral and torsion p-adic representations of Gy, the (<p, r)-modules 
have an unpleasant limitation. Namely, Dy(T) could not so far be directly related 
to geometry when T is the Gy-representation on a p-adic étale cohomology group 
(over K) of some smooth proper algebraic variety defined over K. Here is a relevant 
passage from the Introduction to [15]: "Il est clair que ces constructions sont des 
cas particuliers de constructions beaucoup plus générales. On doit pouvoir remplacer 
les corps que l'on considère ici par des corps des fonctions de plusieurs variables ou 
certaines de leurs complétions. En particulier (i) la loi de réciprocité explicite énoncée 
au no. 2.4 doit se généraliser et éclairer d'un jour nouveau les travaux de Kato sur ce 
sujet; (ii) ces constructions doivent se faisceautiser et peut être donner une approche 
nouvelle des théorèmes de comoaraison entre les cohomoloeries o-adiaues." 
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GLOBAL APPLICATIONS OF RELATIVE (cp, T)-MODULES I 341 

The first part of the program sketched above, i.e. the construction of relative 
r)-modules was successfully carried out in [1]. The main purpose of the present 

article is to continue Fontaine's program. In particular various relative analogues, 
local and global, of (*) are proven. 

Let us first point out that in the relative situation, over a "small"-F-algebra R 
(see §2) there are several variants of (<£, r)-module functors, denoted £)#(—) (arith­
metic), DR(-) (geometric), £)#(—) (tilde-arithmetic), D#(—) (tilde-geometric) and 
their overconvergent counterparts £)#(—), D^(—), £)#(—) and D^(—). For simplicity 
of exposition let us explain our results in terms of £)#(—) and 5)R(—). 

I) Local results. This is carried on in §3 together with the appendices §A and §B. 
Let R be a "small" F-algebra. Fix an algebraic closure Q, of the fraction field of R 
and let 7] be the associated geometric generic point of Spec(R). Denote by R the 
union of all normal finite extensions of R contained in ft, which are etale R-algebras 
after inverting p. Let M be a finitely generated Zp-module with continuous action of 
<gR := 7Tilg(Spm(JRK,̂ )) and let D := ®R(M). Then D is a finitely generated A^-
module endowed with commuting actions of a semi-linear Frobenius (p and a linear 
action of the group TR (see §2.) As in the classical case, TR is a much smaller group 
that &R. It is the semidirect product of Fy and of a group isomorphic to where d 
is the relative dimension of R over V. 

Let <^*(r^,D) be the standard complex of continuous cochains computing the 
continuous T^-cohomology of D and denote ^R(D) the mapping cone complex of the 
morphism ((p-1): ^(TR, D) —> ^(TR, D). Then, Theorem 3.2 states that we have 
natural isomorphisms, functorial in R and M, 

HLnt(%,M)- f f (5}?(D)) for all i > 0. 

The maps are defined in §3 in an explicit way, following Colmez's description in the 
classical case. The input of Fontaine's construction of the classical (<̂ , r)-modules 
was to replace modules over perfect, non-noetherian rings with modules over smaller 
rings: "C'est d'ailleurs [...] que j'ai compris l'intérêt qu'il avait à ne pas remplacer 
fc((7r)) par sa clôture radicielle" Indeed, "[...]ceci permet d'introduire des techniques 
différentielles". Motivated by the same needs, in view of applications to comparison 
isomorphisms, we show in appendix §A that one can replace the module 1)R(M) over 
the ring A^, which is not noetherian, with the smaller (^, r#)-module 1)R(M) C 
/DR(M) over the noetherian, regular domain A# of dimension d + 1. We show that 
the natural map 

HJont(rfi,DR(M)) > B.iont(TR, VR(M)) for all i > 0 

is an isomorphism. The proof follows and slightly generalizes the Tate-Sen method in 
[21. In particular, one has a natural isomorohism 

H^ont(%,M) H*(^S(3)«(M))) for all i > 0, 
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342 FABRIZIO ANDREATTA & ADRIAN IOVITA 

where ^0S)R{M)) is the mapping cone complex of the map 

( ^ - l ) : i f (rÄ,S)Ä(M)) Sf(rÄ,©Ä(M)) 

II) Global results. This is carried on in §4, §5, §6. The setting for §4 and §5 is the 
following. Let X be a smooth, proper, geometrically irreducible scheme of finite type 
over V and let L denote a locally constant étale sheaf of Z/psZ-modules (for some 
s > 1) on the generic fiber XK of X. Let 3£ denote the formal completion of X 
along its special fiber and let XT^G be the rigid analytic space attached to XK- Fix a 
geometric generic point r\ = Spm(C^r) and set L the fiber of L at 77. 

To each % —> 2£ étale such that ^ is affine, % = Spf(iî^), with a small V-
algebra and a choice of local parameters (Ti, T2,. . . , To) of (as in §2) we attach the 
relative (</?, r)-module 5)^(L) := T)R^(L). However, the association —• £)^(L) 
is not functorial because of the dependence of £)^(L) on the choice of the local 
parameters. In other words the relative (</?, r)-module construction does not sheafify. 

Nevertheless due to I) above, the association —• (33 (L)) is functo­
rial for every % > 0 and we denote by J^l(L) the sheaf on the pointed étale site 
associated to it. In §4 we prove Theorem 4.1: there is a spectral sequence 

E™ = H « ( 3 £ , J ^ ( L ) ) HP+*(XK,et,L). 

We view this result as a global analogue of (*): the etale cohomology of L is calculated 
in terms of local relative (cp, r)-modules attached to L. 

The proof of Theorem 4.1 follows a roundabout path which was forced on us by lack 
of enough knowledge on etale cohomology of rigid analytic spaces. More precisely, 
for an algebraic, possibly infinite, extension M of K contained in K, Faltings defines 
in [14] a Grothendieck topology XM on X (see also §4). The local system L may be 
thought of as a sheaf on XM and it follows from [14], see 4.4, that there is a natural 
isomorphism: 

(**) IT ( 1 M , I«) = Hz (XM,et, L), 

for all i > 0. The main tool for proving (**) is the result: every point x G XK has 
a neighborhood W which is K(7r, 1). Such a result, although believed to be true, is 
yet unproved in the rigid analytic setting. Therefore the proof of Theorem 4.1 goes 
as follows. Let Lrig be the locally constant etale sheaf on XT^G associated to L. We 
define the analogue Grothendieck topology XM on 3C, prove that there is a spectral 
sequence with E™ = H«(^J, JTp(Lris)) abutting to W+Q(XM,Lrig), then compare 
W{XMM t0 H*(£M,Lrig) and in the end use Faltings' result (**). 

In §5 we introduce a certain family of continuous sheaves which we call Fontaine 
sheaves and which we denote by ^ ( ^ _ ) , A^^ff). There are algebraic and an­
alytic variants of these: the first are sheaves on XM and the second on XM- We 
would like to remark that the local sections of the Fontaine sheaves are very compli­
cated and they are not relative Fontaine rings. Continuous cohomology of continuous 
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sheaves on XM and XM respectively is developed in §5. As an application a geometric 
interpretation of £)y(Wi), where Wi = Hl(X^et,L), for L an etale local system of 
Z/psZ-modules on XK as above is given. More precisely, it is proven in §5 that there 
is a natural isomorphism of classical (<p, r)-modules: 

H* ttf~,lL"6® AI, X w Dy u*Ute. . , I 

Finally, in §6 we relax our global assumptions. Now 3£ denotes a formal scheme 
topologically of finite type over V, smooth and geometrically irreducible, not neces­
sarily algebrizable, and Xj£g denotes its rigid analytic generic fiber. 

In §6 we set up the basic theory for comparison isomorphisms between the different 
p-adic cohomology theories in this analytic setting. Our main result is that, if Lrig 
is a p-power torsion local system on XT^G and £/Font is one of the analytic Fontaine 
sheaves on XM listed above, then the cohomology groups H2(3tM5Lng 0 g/Font) can 
be calculated as follows. Let us first recall that we fixed a geometric generic point 
rj = Spm(C^r), where C r̂ is a complete, algebraically closed field which can be 
chosen as in 4.4. For each étale morphism tyt —• such that is affine, = 
Spf(iî^) with R<% a small V-algebra, let R<% denote the union of all normal R<&-
algebras contained in C r̂ which are finite and étale over R<% after inverting p. Write 
7rilg(<^M,77) for the Galois group of ®v M C R<% <S>v K. Let œfFont(R& <g> K) 
denote the Fontaine ring constructed starting with the pair (Rq/,R<&) as in [15] and 
denote by L, as before, the fiber of Lrig at rj. One can show that the association % —• 
IT(7if g(^M, î?), L 0 £/Font(Rw <g> K)) is functorial and denote Jtffo(Lrig <g> j^Font) the 
sheaf on 3C*^ associated to it. 

Notice that, due to the generalized Tate-Sen method of §A, if srfFont = A^f(7?<g ) , 
the inflation defines an isomorphism: 

(FR^I'SRW (L)) H4rß^,DjR^(L)j E* 7TfIg(̂ ,77 L ® Atf(Rv ® K)} 

Hence, the sheaf Jff^ (Lng <g> ) is defined locally in terms of T-cohomology 
of relative (<p, r)-modules. 

It is proved (Theorem 6.1) that there exists a spectral sequence 

(* * *) E™ H9(^Te*t,^C(Lrig ® ^Font)) Hp+9(XM,Lrig®^Font) 

At this point we would like to remark that our results in §6 are distinct from 
those of Faltings in [12], [13], [14]. Namely let us consider the following diagram of 
categories and functors: 

Sh(X^) N !—I Sh(^)N 

a 

S h ( ^ ) 
HO(k°et,-

AbGr 
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where if ̂  is a Grothedieck topology then we denote by Sh^) the category of sheaves 
of abelian groups on ̂  and by Sh(^)N the category of continuous sheaves on ̂  (see 
§5). We also denote a = limV&^M,* and /3 = l imH°(^*, —). 

We analyze the spectral sequence attached to the composition of functors: 
i f° (^J,—) o a while it appears, although very little detail is given, that Faltings 
considers the composition of the other two functors in the above diagram (in the al­
gebraic setting). We believe that our point of view is appropriate for the applications 
to relative (<£, r)-modules that we have in mind. 

The analysis in §6 and the spectral sequence (***) have already been used in order 
to construct a p-adic, overconvergent, finite slope Eicher-Shimura isomorphism and 
to give a new, cohomological construction of p-adic families of finite slope modular 
forms in [19]. 

In a sequel paper ("Global applications of relative (<£>, r)-modules, II") we plan to 
first extend the constructions and results in §6 of the present paper to formal schemes 
over V with semi-stable special fiber and use them in order to prove comparison 
isomorphisms between the different p-adic cohomology theories involving Fontaine 
sheaves in such analytic settings. We believe that we would be able to carry on this 
project for spaces like: the p-adic symmetric domains, their etale covers (in the cases 
where good formal models exist), the p-adic period domains of Rapoport-Zink, etc. 

Acknowledgements. — We thank A. Abbes, V. Berkovich and W. Niziol for in­
teresting discussions pertaining to the subject of this paper. We thank O. Brinon 
and J. Pottharst for several useful remarks. Part of the work on this article was 
done when the first autor visited the Department of Mathematics and Statistics of 
Concordia University and the second author visited the IHES and il Dipartimento di 
matematica pura ed applicata of the University of Padova. Both of us would like to 
express our gratitude to these institutions for their hospitality. 
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I. LOCAL THEORY 

2. Preliminaries 

2.1. The basic rings. — Let V be a complete discrete valuation ring, with perfect 
residue field k of characteristic p and with fraction field K = Frac(F) of character­
istic 0. Let v be the valuation on V normalized so that v(p) = 1. Let K C K be 
an algebraic closure of K with Galois group Gal(K/K) =: Gy and denote by V the 
normalization of V in K. Define the tower 

K0 := K C Kx = K(CP) C-"CKn = K((pn) c • • • 

where (pn is a primitive pn-th root of unity and Ĉ n+i = Cpn f°r every n G N. Let Vn 
be the normalization of V in Kn and define := Unlfn. Write IV •= Gal(Koo/K) 
and Hy := GalO^/i^) so that IV = Gv/Hv. _ 

We also fix a field extension C M C if so that K C M is Galois with 
group Gal(M/lf). We let W be the normalization of V in M. The two important 
cases are M = with W = and M = K with W = V. 

Let be a F-algebra such that k C R ®v is geometrically integral. Let i2° = 
V {T^1 , . . . , T*1} be p-adic completion of the polynomial algebra V [T^1,..., T*1]. 
Assume that R is obtained from R° iterating finitely many times the following oper­
ations: 

et) the p-adic completion of an etale extension; 
loc) the p-adic completion of the localization with respect to a multiplicative system; 

comp) the completion with respect to an ideal containing p. 
Define 

Rn := R®Vn 
v 

i - i i - i rri pn rjn pn rjn pn rji pn 11 , ll , . . . , 1 d ,1, RQO '•— Uni?n. 

Let R be the direct limit of a maximal chain of normal Roo-algebras, which are 
domains and, after inverting p, are finite and etale extensions of R^ [^]. 

Let m G N and let S be a i2m-algebra such that S is finite as .Rm-module and 
Rm C S is etale after inverting p. Define Sn as the normalization of S 0̂ ™ Rn 
in S®Rm Rn [p_1] for every n>m. Let 5«, : = Un>mSn. 

Write 5^ for the normalization of Sn in 5n 0yn M and 5 ^ for the normalization 
of Soo in S ^ v ^ M . We put S' := 5^. Note that i?' = #<8v W and R'^ = 
Roo ®Voo W. 

Proposition 2.1. — There exist constants 0 < e < 1 and N = iV(5) G N, depending 
on S, and there exists an element p£ OJVN of valuation e such that S^+1 +peSn+\ C 
Sn + p€Sn+i (as subrings of Sn+i) and S'n+lp +p£S'n+1 C S'n + p£Sn+i fas subrings 
of S'n+i) for every n> N. 

SOCIETE MATHEMATIQUE DE FRANCE 2008 



346 FABRIZIO ANDREATTA & ADRIAN IOVITA 

Proof. — The claim concerning Sn+i follows from [1, Cor. 3.7]. It follows from [1, 
Prop. 3.6] that there exists a decreasing sequence of rational numbers {Sn(S)} such 
that pSn(s) annihilates the trace map Tr: S'n —> Hom#/n (S'n, R'n)> This implies that 
p5n^S'n+1 C S'N®R'nR'n+\\ see loc. cit. This, and the fact that the proposition 
holds for R' by direct check, allows to conclude; see the proof of [1, Cor. 3.7] for 
details. • 

Definition 2.2. — For every -R-subalgebra S C R as in 2.1 such that S'^ is an integral 
domain, viewed as a subring of R, define 

% := Gal R 
1 

P 
IS 

1 

P 
Ts := Gal 

1 

p 
IS 

Q 
P 

and 
J * & : = K e r ( S f e - r s ) . 

Analogously, let 

Gs := Gal R 
1 

P-
/S' 

1 

•P 
, R's Gal /S' 

1 
IS' 

1 

P 

and 

H5 := Ker(G5^r'5) = Gal 9' 
1 

-p-
/ 5 ' 1 

P-
Since 5 ^ is an integral domain, the map J^s/Hs —> G a ^ M / i ^ ) is an isomorphism. 
Furthermore, is isomorphic to the semidirect product of Ty and of T^. The latter 
is a finite index subgroup of T'R = 2A. We let 7 1 , . . . ,7d be topological generators of 
1 fi-

2.2. RAE. — Following Faltings [12, Def. 2.1] we say that an extension Roo C 5 ^ 
is almost étale if it is finite and étale after inverting p and if, for every n G N, the 
element p^too is in the image of S^. Here eoo G £00 QR^ £00 [p_1] is tne 
canonical idempotent splitting the multiplication map 5oo $00 [p_1] "~* ôo [p-1] • 

We say that such extension satisfies (RAE), for refined almost étaleness, if the 
following holds. For every n > m let en be the diagonal idempotent associated to 
the étale extension jRn[p_1] C 5n[p-1]. There exists < G N , independent of m, such 

that there exists an element e 
pv^ 

of Vn of valuation j _ and en lies in the image of 

SN®RN Sn. 

We assume that (RAE) holds for every extension itoo C arising as in 2.1. If 
this holds, we say that R or equivalently Spf(jR) is small 

Remark 2.3. — It is proven in [1, Prop. 5.10 & Thm. 5.11] that (RAE) holds if R is of 
Krull dimension < 2 or if the composite of the extensions V Î T * 1 , - . . , Г * 1 ! -
R is flat and has geometrically regular fibers. For example, this holds if it is obtained 
bv taking the completion with respect to an ideal containing p of the localization of 
an étale extension of y f r * 1 , . . . , ^ 1 ] ; see [1, Prop. 5.12]. 
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2.3. The rings E5oo, E5, ES^ and E's. — Let S be as in 2.1. Define 

E ^ :=lm(Sœ/peSoo), E ^ := l i m ^ / p ^ ) 

where the inverse limit is taken with respect to Probenius. Using 2.1 define the 
generalized ring of norms, 

e 5 C E <L ' E ' + C E + 

as the subring consisting of elements (ao, . . . , an,... ) in ËJ^ (resp. in ËJ, ) such that 
an is in Sn/p£Sn (resp. S'n/p£S'n) for every n > N{S). 

By construction E j ^ , E j (resp. Ej , and E^T) are endowed with a Probenius 
homomorphism (p and a continuous action of Ts (resp. To). Denote by e the element 

(i? Cp) • • • 5 Cpn > • • • ) G E t and by 7T := c - 1 Put E5/ : = E + J T T - 1 ] , ESOO 

E + Ï T T - ^ E ' : = Е'Лтг-1! and E5 := ^[w1' 
By abuse of notation for a G Q, we write 7Toa for a = (a0 ,o i , . . . , an , . . . ) G E£ , if 

it exists, such that v(a^) ^ for i » 0. For example. — p—l Tr = 7T0P ; see [2, Prop. 4.2(d)]. 

For every i = 1, ,.. j d j let 3/ j . — №,77,77*, . . . ) e Eoo The following hold: 

1. there exists iV(5) G N such that the map Ei/7r? £Et —• Sn/p£Sn and the map 
E L K £E+ Soo/pPSoo, sending [ao,... ,an, . . . ) H-» an, are isomorphisms 
for every n > iV(S) (see 1, Thm. 5.1 ); 

2. E j is a normal ring, it is finite as E^-module and it is an etale extension of 
E^, after inverting 7f, of degree equal to the generic degree of #m C S (see [1, 
Thm. 4.9 & Thm. 5.3]); 

3. E j is normal and coincides with the 7f-adic completion of the perfect closure 
of E t (see [1, Cor. 5.4]); 

4. there exists £ G N and maps 7f£Et -» E t <8>F+ E t -+ E t which are iso­

morphisms after inverting 7r. In particular, E+ [tt-1] = Et <8>F+ Et -+ Et 
(see [1, Lem. 4.15]); 

5. consider the ring 
lim Soo 

00 <—n 
(r(0) T(l) r(m) *(m) G 5oo, ж(т+1) V x(m) 

where 5QO is the p-adic completion of 5^ , the transition maps are defined by 
raising to the p-th power, the multiplicative structure is induced by the one 
on Soo and the additive structure is defined by 

í...,a;(m),...) + ( . . . ,y(m), . . . ) . . . . lim (x(m+n) Wm + n ) i p " . . . . 
n—»oo 

The natural map linioo^ 5 ^ —> E j ^ is a bijection (see [1, Lem. 4.10]) 

It follows from (1), see [1, Cor. 4.71, that 

E+ ^k^ÌTTKÌ and T7»+ ~ 17» + х1 ч • • • 5 xdi 
1 

x3 , . . . , 
1 

x1 
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where koo is the residue field of and TTK = (..., rn, rn+i , . . . ) , with n G Vi for i ^> 
0, is a system of uniformizers satisfying rf^ = T\ mod p£. The convergence in 
xf1i"">xd1 1S Ie^lye to the 7f-adic topology on Ey. Eventually E^ is obtained 
from E^o iterating the operations 

et) the 7f-adic completion of an etale extension; 
loc) the 7f-adic completion of the localization with respect to a multiplicative system; 

comp) the completion with respect to an ideal containing a power of W. 

In particular, {7TK, %I, • • • > %d} is an absolute p-basis of E t . 

Lemma 2.4. — Let S be as in 2.1. The following hold: 

1. the maps E ^ / T ^ E ^ -> S'Jp'S'^ and E ' + / < " £ E ' + - S'Jp£S'n, given by 

(ao, . . . , on , . . . ) i—> an, are isomorphisms for n > N(S). In particular, E i , 

coincides with the Jf-adic completion of E ^ ®g+ E ^ and E^~ coincides with 

£/ie n-adic completion ofER ®E+ E ^ ; 

2. tte extensions ER —• E ^ , E j —• E#, and E^ —• E'̂ " are faithfully flat. For 

every finitely generated E^-module M, the base change of M via any of the 

above extensions is W-adically complete and separated; 
3. we have maps 7r£Eg, —> E j ®e+ E j , —> Ej , and 7feEfg —> E j ®E+ E^~ -» 

E'ct. TAey are isomorphisms after inverting W. 

Proof. — Statements (1) and (3) follow from 2.2 arguing as in the proofs of [1, 
Thm. 5.1] and [1, Lem. 4.15] respectively. 

(2) By 2.3 we have E J / T T ^ E J ^ Rn/p£Rn and É + / T T ^ Ê * W/p£W. One 

deduces form (1) that E ^ / T T ^ " E £ = (Rn/p£Rn) ®Vn W and that É J , / T T ^ É J ^ ^ 

(Roo/p£Roo) ®VOO W. By construction î oo (gy^ W is a free i2n <g)yn VF-module with 

basis { T ^ - •TJé} for m > n and 0 < a* < pm"n. Hence, E'+ (resp. Ê + J is 

the 7f-adic completion E^ ®E+ E ^ (resp. of Un (E^ 0E+ E^) [xfn , . . . , xf*]). The 

Ey-algebra E ^ is the 7r-adic completion of finite, normal and generically separable 
extensions of the DVR Ey. Those are free as E^-module. We may then apply [1, 
Lem. 8.7] to conclude. • 

Given an R^-algebra SQQ, finite and etale over R^ |^J, there exists m G N and 

there exists a i?m-algebra 5, finite and etale over i?m [ j ] such that SQO, defined as 
in 2.1, is the normalization of S ®Rn R^. 

Theorem 2.5. — The functor SOQ —• E ^ defines an equivalence of categories from 
the category R^-AEiD of R^-algebras which are normal domains, finite and etale 
over ROQ after inverting p to the category E ^ - A E D ojE^-algebras, which are normal 
domains, finite and etale after inverting It. In particular, this realizes J^R as the 
Galois group ofEiR. 
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Proof. — See [1, Thm. 6.3]. 

Let E±- be Us E t where the union is taken over all .Roo-subalgebras Soo C R 

such that Soo is finite étale over R^ [p-1]- Similarly, define E^t to be the 

union Us ^ E ^ . Let E± = lim(i?/p£i?), where the inverse limit is taken with respect 

to Probenius. It coincides with the 7f-adic completion of U s ^ E ^ . Denote E-^ := 

E £ F ] . e'ë ••= E £ L* ] and = 5 := E £ F J 

Proposition 2.6. — Let S be as in 2.2. Then, 

(a) R = and R = S' (here denotes the p-adic completion); 
(b) we have 

(КГ3 = E J , E f s = Es, ( Ê ± r s = É b E ^ S = Eq 
R B°° 

and 

№ H s = E*> (Êh)HS=Ê^; ( Ê h ) H S = Ê ^ ; 

(c) £/&e maps 

EHoc 0 E5 EHoc E'fl 0 Es 
ER 

E's, Efl/^ 0 E5 
ER 

EHoc 

are isomorphisms. In particular, the maps Es ®EV Ew E'5 ana7 

Ê oo ®gv Ew -» Es^ are infective with dense image. 

Proof. — (a) The fact that R = Soo is proven in [1, Lem. 6.13]. The second 
equality follows arguing as in loc. cit. 

(b) The equalities in the first displayed formula hold due to [1, Prop. 6.14]. Those 
in the second displayed formula follow arguing as in loc. cit. In fact, E± (resp. Et, ) 

can be written as in 2.3(5) as the limit lim R (resp. lim S^). The last two equal-

ities in the second displayed formula follow then from (a). The fact that the inclu­

sion E'5 C (Ef—)Us is an equality can be checked after base change via E'̂ j" —> E^, 

since the latter is faithfully flat by 2.4(2). But Efs ®E,+ E+ ^ E5/ by 2.4(3) and 

(E£)Hs®E<+É+ c ( È ± ) H s = É + . 

(c) The first equality follows from 2.3(4). The others follow from 2.4(3). In the 
case S = R the last statement follows from 2.4(1). The general case follows from this, 
the equalities just proven and the fact that E# C Es is finite etale by 2.5. • 
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2.4. The rings A5OO, A ^ , A 5 , A ^ , A ^ , A ^ , A's and A'<! 

Definition 2.7. — Define A ^ := W(E^). It is endowed with the following topology, 
called the weak topology: Consider on E^ the topology having {^nE±}n as funda­
mental system of neighborhoods of 0. On the truncated Witt vectors Wm(E^) we 
consider the product topology via the isomorphism Wm (E-̂ ) = (E^)m given by the 
phantom components. Eventually, the weak topology is defined as the projective limit 
topology W ( % ) = lim W m ( % ) . 

Alternatively, let TT := [e] — 1 where [e] is the Teichmiiller lift of e. Put A ± := 

W(E^) . For every n and / i 6 N define Un^ := pnA-^-\- irhA^. The weak topology 

on A-et has {Un,h}n,hew as fundamental system of neighborhoods. 

Define VE: E^ —> Q U {oo} by v&(z) = oo if z = 0 and VE(^) = p_ 
p-i 

tnaxin G 

Q\W~nz € E + } . For z = :k[zk]pk e and AT e N we put 

vi (z) inf vE(2fc)|0 <k<N 

For every N € N we have 

(i) v|JV(x) = +oo«x€piv+1A+; 

(ii) ^N(xy)>^N(x) + viN(y): 

(iii) v^N(x + y) > min(v| (x),v^N(y)) with equality if vg (*)^vg (y); 
(IV) V|JV(TT) = and v^N(TTX) = VË W + V È (X); 

(v) v l ^ M x ) ) (x),v^N(y)) 
(vi) v |"(7(z) ) <A// > for every 7 G ^R. 

The second claim in (iii) and property (v) follow since E± is by construction the 
7f-adic completion of Us^Ej^ and each E ^ is normal by 2.3(3). Note that the 
topology on A^/pIV+1A-^ induced from the weak topology on A ^ coincides witl 
the v|N topology. 

For everv S as in 2.2 define 

ASOO : = W ( E S J , A L : = W ( Ê + O O ) , 

As, : = W ( E S / ) and AL:=W(Ê+OO), 

They are subrings of W(Ep) closed for the weak topology. 

Overconvergent coefficients. — For r G Q>o define A^|,R' as the subring of elements 
R 

Z • oo 

k=0 
pk[zk] of A ^ such that 

lim rv-B.(zh) + k = +00; 
K—+00 
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see [2, Prop. 4.2]. Write AL = U 
rGQ>o 

T(0,r 
AR 

For z = 
kez 

pk[zk] T(0,r 
AR 

put 

wr(z) = 
oo 
inf (rv^(zh) + A;) 

kEZ 

if z = 0; 

otherwise. 

Thanks to [2, Prop. 4.2] one knows that the map wr: A(M ^ R u { o o } satisfies 

(Y) wr(x) = +oo 4=> x = 0; 
(ii) ttfrfcj/) > wr(a?) + wr(y); 

(iii) wr(x + 2/) > min(wr(x),ttfr(j/)); 
(iv) ti;r(p) = 1 and wr(px) = wr(p) + uv(a;). 

For every 5 ^ define A £ / := A5oo n A '̂rJ and ASOO /:= ASoo fl AL. Similarly, 

define AS,r' := AS' n A^'r] and At, := A5/ n XL. By [2, Prop. 4.2] they are 

wr-adically complete and separated subrings of A^. 

2.4.1. Noetherian coefficients. — Let S be as in §2.1. In [1, Appendix II] a ring A s C 
W(Esoo) has been constructed, functorially in 5, with the following properties: 

(i) it is complete and separated for the weak topology. In particular, it is p-adicall^ 
complete and separated. 

(ii) A 5 n f c W ( E p ) ) =pAs; 
(iii) As/pAs ^ E5. In particular, it is noetherian and regular. 
(iv) it is endowed with continuous commuting actions of Ts and of an operator <p 

lifting those defined on Es; 
(v) AR contains the Teichmuller lifts of e, xi, . . . , Xd', 

(vi) As is the unique finite and étale Aj^-algebra lifting the finite and étale exten­
sion ER C E S -

One also requires the existence of a subring A^ lifting Ej , with suitable properties, 
so that As is unique. We refer to [2, Prop. 4.42] for details. Define A^'^ := As fl 
A^'rl and At := As fl AL. Define A'9 to be the closure of the image of As <8>Av Aw 
in AR for the weak topology. Put A^ := A^ fl AL. 

Eventually, let A^ (resp. AL) be the completion for the p-adic topology of Us^ As 
(resp. Us^As), where the union is taken over all normal .Roo-subalgebras Soo C R 
such that Soo [P'1] *s finite étale over AL := ARD AL. Write AL := ARD AL (resp. A -̂ := 

A L n AL). 
R RJ 

Proposition 2.8. — The extensions A^R C A^ and A^R C A^ are finite and étale. 

Their reduction modulo p coincide with E^^ C Es^ and E# C Es respectively. 

Proof. — It is clear that A^ coincides with Es^ modulo p since it contains A 

and pAR n A ^ = pA^Soo. The fact that A ^ C A ^ is finite and etale is proven 

in [2, Prop. 4.7]. See [2, Prop. 4.28] for the statements regarding A^ C A^. • 
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Lemma 2.9. — The following hold: 

(a) A s = Xf, A's = (ALfs, ASoo = Af, and As^ = A | s . The same 

equalities hold considering overconvergent coefficients i. e., Â 0'7̂  = (A^'^)^5, 

A ^ 1 = ( A g - r l ) * , A ™ = <A%*Y' and Al = ( A y * A L = 

A k = ( 4 ) H s -

(b) The natural maps AR^ <8>AR AS —» A s ^ , AfR<g>ARAs ~* Afs and 

AR^ ®AR AS —» A^/^ are isomorphisms. Similarly, considering overcon­

vergent coefficients, the maps A ^ ®At A^ —> A ^ , A^ ® At A^ —• A^ and 

A^, (8)At A^ —> AJj, are isomorphisms. 

(c) We ftave A^/pA^ = A5/pA5 = Es, A'<t/pA'<t = A'5/pA'5 = E'5 and 

/ P X ^ = A5^ /pA5^ = . 

(d) T/ie maps A s ^ 0 - A ^ —> A s ^ and As ®AV AW —• A's are injective and 

Ziave dense image for the weak topology. The image of A^'r' ®x«>,r] A^,r^ —> 

A&r' ¿5 dense for the wr-adic topology for every r € Q>o-

Proof. — (a) & (b) We have inclusions A5 C Ap, A'5 c (A^)Hs, ASoo C 

ATTS' A5~ C AlP and MAPS A ^ O O ^ A H A 5 -> A5oo, A'R®ARAS - * A's anc 

A-ij' <8>AH A5 —• As^ . The extension AR —» A 5 is finite and etale and, hence, Ac 
is projective as A^-module. Since A ^ , A^ and AR^ are p-adically complete anc 
separated and p is a not a zero divisor in these rings, AR^ <8>AR A S , (8>AR AC 
and AR^ (g>AH A s are p-adically complete and separated and p is a non-zero divisor 
The same holds for A5, , A5oo, A^p , A^s, A's and A5^. To check that all the 
inclusions and all the maps above are isomorphisms it then suffices to show it mod 
ulo p. This follows from 2.6 if we prove that A's/pA's = E's and As^/pAg^ = Es^ 
Once this is established the other statements in (a) and the first part of (b) follow. 

(c) Since by construction A^ fl pA-^ = pA^, Ag, fl pAR = pAg, , A^ fl pA-^ = 

pA^ and A's f)pAR = pA'5, A'Soo CipAR = pAs^, As HpA^ = pAs the mapi 

Al/pAl - As/pAs -> Ef = E5, A'j/pA'j -> A'5/pA'5 -> {Ef-fs = E's anc 

A^, /pA\, -> As^/pAs^ -+ E^p = Es^ are injective. It follows from [2, §4.3(e 

& Lem. 4.15] that there exists A J C A ^ {^F} C ^S^> ôr su^able Q , J 8 G N anc 

r G Q>o5 so that Ag/^pAg = Eg and A|" is complete for the weak topology. Here 

AXo {TT^} denotes the completion of A ^ with respect to the weak topology. Ii 

particular, since 7r-adic convergence in A j ^ {^r} implies convergence for the weal 

topology, A J is 7r-adically complete. Note that A J ®A+ A ^ and A ^ ®~+ A^ 
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map to the 7r-adic completion of the image of ®~+{I£w} hi ^L{I£w} hi ^ L ^ { ^ } 

and that the latter is contained in A^rK We conclude that Ag/pAg, Ag/pAg 

and A^, /pAg, contain the 7f-adic completion of the image of E|", E J ®E+ E^y and 

E j ^ ®g+ Ejy respectively. Claim (c) follows then from 2.6. 

(b) The fact that A ^ ® At̂  A^ = A ^ follows from 2.8. Since A^ C A^ 

is finite and etale by 2.8 there is a unique idempotent CS/R of A^ ®At A^ such 

that for every x G A^ ®At A^ we have m(x) — TrAtyAt (xeS/R). Here, m is 

the multiplication map. Write e$/R = X^=ia i®^ with a* and bi G A^0'̂  for 

some s G Q>o- Then, eg/R is an idempotent of A'] (8>A't A'<t and of At, ®~t At, . 
R oo s' oo 

By the first part of (b) the extensions C A^ and A ^ C A are finite and 
etale and m(x) = TTA' /A'H (xes/R) and m(x) = Tr~ f ,~ f {xeS/ii). We then get 

that for every x e A 'J (resp. A^, ) we have x = m(x®\) = Y^=i^A'S/A'R{.xai)h 

(resp. x = ra(x<g>l) = ££=i Trj . IA , (xai)bi)- SINCE ^ A ' / A ' and Tr~ ~ 
send overconvergent elements to overconvergent elements, we conclude that the maps 
in the second part of (b) are surjective. 

Since the extension A^ C A^ is finite and etale, A^ is projective as A^-module. 
In particular, p is not a zero divisor in A^ ®At A^ and in A^, ®At A^ and those 
rings are p-adically separated. Thus, to prove that the maps in the second part of (b) 
are injective, and hence are isomorphisms, it suffices to prove that they are injective 
modulo p. This follows from (c). 

(d) Since the extensions Ay c Ay^ C Aw are extensions of DVR's, they are flat. 
Since p is not a zero divisor in As^ and As , it is not a zero divisor in A^^ ®~ Aw 

and A s ®Av Aw- Thus, to check the injectivity in (d) we may reduce modulo p. The 
density can be checked modulo pn for every n G N and, using induction, it suffices in 
fact to prove it for n = 1. Then, the first claim of (d) follows from 2.8 and 2.6(c). 

We prove the second claim of (d). Suppose that r = a/b with a and b G N and let 

4Soo,(a,6) (resp. As^,(a,&)) denote the p-adic completion of Ag T) 

[II](p-1)b 
(resp. of 

ôo 
pa 

[II](p-1)b 
), where [IT] is the Teichmuller lift of 7r. Arguing as in the proof of [2, 

Lem. 4.15] one has 

4^,(a,6) Q x G T(0,r] wr(x) > 0 C AS'°°(a,b) 
1 

'Tfl 

Since wr([7r]) > 0, we conclude that ^5^,(0,6) []fj] 1S dense in A^,'r' for the itv-adic 

topology. Since the [7f]-adic completion of ASoo^a,b) ®A+ W *s contained in the 
0̂0 
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wr-adic closure of Ag^r' ®£<o,r] ̂ -w^ an(̂  imaee m ^5 ,̂(a,6) contains ''As^^b) 

by 2.4, the conclusion follows. • 

Corollary 2.10. — The extensions AR^ C A S ^ , A^, C A^, , A'^ c A's and A^ c 

A^ are finite and étale. Their reduction modulo p coincide with E j ^ C Es^ and 
Ei'R C E'5 respectively. 

2.5. r)-modules and Galois representations. — Let S be as in 2.2. Let 
Rep(ëfs) be the abelian tensor category of finitely generated Zp-modules endowed 
with a continuous linear action of 

Let A be one of the rings As^ , A ^ , As, A^, As^ , A^, , A^ and A^ and let T 
be respectively Ts or Tfs. Let — ModA (resp. (<£,T) — Mod^) be the tensor 
category of finitely generated A-modules D endowed with 

(i) a semi-linear action of T; 
(ii) a semi-linear homomorphism ip commuting with T (resp. so that (p ® 1 : 

D <g)̂  A —> D is an isomorphism of A-modules). 

Note that if A = As , then A s is noetherian and (<^,Ts) — ModAs (resp. (ip,Ts) — 
Mod^s) is an abelian category. 

For any object M in Rep(^s)5 define 

3)(M) := An ® M 
ri „ 

Hs 
5 D(M) := A^®M 

< K z„ 

Ho 

J)(M) := Ap <8> M 
Hs 

D(M) := A-p 0 M 
zp 

Ho 

Note that 1)(M) (resp. 3)(M)) is an As-module (resp. Âs^-module) endowed with 
a semi-linear action of Ts- Analogously, D(M) (resp. D(M)) is a A^-module (resp. a 
A s ^ -module) endowed with a semi-linear action of T's. Analogously, define 

£>f(M) := A <̂8> M 
^ Rzr> 

ffîs 
DUM) := A l ® A4 

Rzp 

Ho 

©f(Af) := A^<8> M 
^ Rzr> 

J4?s 
D+(M) := A\-® M 

< Rzp 

Ho 

Then, 2)t(M) (resp. 2)t(M)) is an A^-module (resp. A^ -module) endowed with a 
semi-linear action of Ts- Analogously, D^(M) (resp. D^(M)) is a A^-module (resp. a 
At, -module) endowed with a semi-linear action of T'q. 

The homomorphism <p on A-^ and AjL defines a semi-linear action of (p on all these 
modules commuting with the action of Ts (resp. of T's). 

Theorem 2.11. — The functor 55 defines an equivalence of abelian tensor categories 
from the category Rep(éfs) to the category (ip,Ts) — Mod^- Let M be a finitely 
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generated Zp-module endowed with a continuous action of^s- The inverse is defined 

associating to an etale ((p,Ts)-module D the ^R-module y(D) := (^A-^(S>as 

Proof — See [1, Thm. 7.11]. • 

Lemma 2.12. — Let M be a finitely generated Zp-module endowed with a continuous 
action of^s- Then, 

(i) £)(M) (resp. D(M), £)(M), B(M)) is an étale (cp^Ts)-module over As 

(resp. A's, ASoo, As>J'>_ 
(i') ©t(jkf) (resp. Df(M), 2)f(M), D+(M)j is an étale (if,Ts)-module over AÎ> 

(resp. A ' J , A t , AL ); 
(ii) we havt J)(M) = lim 1)(M/pnM), 

oo<—n 
D(M) = lim D(M/pnM), 

oo<—n 
D(M) = lim lS(M/pnM), 

oo<—n 
D(M) = lim D(M/pnM), 

oo<—n 
where the limits are inverse limits with respect to n G N. More pre­
cisely, ®(M)/Pn®(M) = ®{M/pnM), D(M)/pnD(Ml ^ D(M/pnM), 
S(M)/pnS(M) 9* £(M/pnM) and D(M)/pnD(M) ^ D(M/pnM) /or ev­
ery n G N. 

(ii') ifM is torsion, then 2)t(M) = ©(M), Dt(M) = D(M), $ t (M) = 2>(M) and 
Dt(Af) = D(M); 

(iii) t/ie natural maps 

2)(Af) <g> A'5 D(M), O(M) (8) A ^ M ® A ^ 
zp 

and 

3)(M) (8) A5oo 
As 

S)(M), ©(M) ® ASio • D(M) 

ore isomorphisms; 
(iii') £/ie natural maps 

3)(M) (8) A5oo 
As 

Dt(M), 
©(M) ® ASio 

m <g> a ! 

and 

S ^ M ) <g> A s Sf(M), S ^ M ) O A ^ Df(M) 

are isomorphisms; 
(iv) t/ie natural maps 

&(M) ® A s 5>(M), D+(M) <g> A's D(M) 
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and 

£t (M) ® ASoo »(M), £t(M) ® ASoo 

ASoo 
D(M) 

are isomorphisms. 

Proof. — We refer the reader to [1, Thm. 7.11] and [2, Thm 4.35] for the proofs 
that 2)(M) and Sf(M) are étale (y>, r5)-modules and that D(M) = 2)t(Af) ® At A5, 

that 2)(M)(8)AS ^ M ® Z P A ^ and 2)T(M)®At AL ^ M ® Z P A t . Claims (i), 

(i7) and (iv) follow from this and the displayed isomorphisms. We prove the other 
statements. 

Due to 2.8, 2.9 and 2.10 to prove (ii7), (iii) and (iii7) one may pass to 

an extension C in R finite, étale and Galois after inverting p. For 

example, (M®ZpA^) T = (M(8)ZpA^) s ®As AT and (M®zpAs) T = 

(M 0zp A^)Hs <8>A's Ay by étale descent. Hence, if (M ®Zp A-^f^T ® A t Ay —» 

(M(g)Zp A^)Ht is an isomorphism, taking the J^-invariants, we get the claimed 

isomorphism (M ®Zp A^)^s ® As A75 -» (M ®Zp A^)Hs. 
Suppose first that there exists N G N such that pNM = 0. Then, there exists an ex­

tension 5oo C Too such that JKT C J#S acts trivially on M. Replacing Soo with T^, 
we may then assume that Jffs acts trivially on M. By 2.9 we have Ag/pNA^s = 
As/p^As, A2/pNA'^= A's/p»A's, ÀljpNVSoo = ÀSx/pNASoo and eventu-
ally A^, /pNAg, = A^/pJVA5/Q. Furthermore, we have in this case 2)(M) = 

M®ZpAs, D(M) = M®Zp A;5, S (M) = M(8)ZpA5oo, D(M) = M <g>Zp A ^ and 
similarly for the overconvergent (ip, r(s)-modules. Then, the claims follow from 2.9. 

Assume next that M is free of rank n. It follows from [2, Thm. 4.35] that 
there exists an extension C Too in R finite, etale and Galois after invert­
ing p such that 2)t(M)®At Ay is a free Ay-module of rank n. As we have 

seen above we may and will replace Soo with Too so that 2)t(M) (resp. 2)(M)) 
is a free A^-module (resp. As-module). Fix a basis { e i , . . . , en} of 2)1" (M). 
It is also a A^-basis of J)(M). Hence, it is a basis over A^- (resp. A^L 

A^, A s ) of M ® Z p A l (resp. M®ZpAl , M®ZpA^, M®ZpA^). Since Jt?s 
and H5 act trivially on { e i , . . . , e s } , we get claims (iii) and (iii7). For example, 

© (M) = (M ®Zp A s ) ^s = A5oo ei 0 • • • © ASoo en = © (M) ® As A5oo. 
We are left to prove (ii). We may assume that M is torsion free, since the claim for 

the torsion part is trivial. Note that 2)(M), 2)(M), D(M) and D(M) are submodules 
of invariants of free modules over p-adically complete and separated rings. For exam­
ple, 2)(M) = (M®Zp A-^)^s C M®Zp A^. Hence, they are themselves p-adically 
complete and separated. It suffices to show that for every n G N the map from their 
quotient modulo pn to Z>(M/pnM) (resp. £(M/pnM), D(M/pnM), D(M/pnM)) is 

ASTÉRISQUE 319 



GLOBAL APPLICATIONS OF RELATIVE (y?, T)-MODULES I 357 

an isomorphism. Due to (iii) it suffices to show it for S)(M) and in this case it follows 
from the fact that 2) is an exact functor by 2.11. • 

2.6. The weak topology on the (</?, T)-modules. — Suppose that M = ZJJ x 

N£Li Z/pSiZ as a Zp-module. Then, M ® is isomorphic to A ^ x HTLi A-^/p^A-^ 

as A-^-module and, in particular, the product topology defines a topology on M ® A-^. 
It is independent of the choice of the presentation of M as Zp-module and the action 
of <SS is continuous for such topology. Note that S(M), S(M), D(M), D(M) ,&(M) , 
2r (M), D*(M) and D*(M) are by construction submodules of M<g> A ^ . They are 
then endowed with the topology induced from the one just denned onMig) A ^ . We 
call it the weak topology. 

We state the following theorem relating the cohomology (continuous for the weak 
topology) of the various (<£, r)-modules introduced above. 

Theorem 2.13. — The natural maps 

Hn(TsMM)) ET(r'5,D(M)) H71 % , M <g> An 

H"(r'5,D(M)) ET(r'5,D(M)) H71 Gs, M 0 A-D 

HN(R5,Df(M)) H ^ I ^ S ^ M ) ) H71 
Gs, M 0 A-D 

and 

H"(r's,Dt(M)l H"(r's,Dt(M)) jjn 1 
GS,M® A l 

are a// isomorphisms. 

Proof. — See A. 14. 

3. Galois cohomology and ((p, r)-modules 

In this section we show how, given a finitely generated Zp-module M with continu­
ous action of ^5, one can compute the cohomology groups Hn(£fs, M) and Hn(Gs, M) 
in terms of the associated (y>,rs)-modules D(M), 2)(Af), S^M) , Sf(M), D(M), 
D(M), D*(M) and DUM). We start with the following crucial: 

Definition 3.1. — Let D be a continuous (<p, rs)-module over As or A s ^ or A^ 
or A ^ (resp. over A's or A 5 ^ or A'J or A% ) . Define V(rs,V) (resp. #*(r'5,D)) 
to be the complex of continuous cochains with values in D. 

Let ^*(D) (resp. <^'*(D)) be the mapping cone associated to ip — 1: ^*(rs ,D) —• 
V(TS,T>) (resp. to - 1: i f (r;5,D) -> tf#(r'5,D)). 
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Theorem 3.2. — There are isomorphisms of 6-functors from the category o/Rep(£fs) 
to the category of abelian groups: 

jyi:ir(^"(D(_)))^.H<(G5,-)1 

jyi:ir(^"(D(_)))^.H<(G5,-)1 

p\:W{t?'{&Q))^W(<#s,-) 

jyi:ir(^"(D(_)))^.H<(G5,-)1 

^ ( ^ " ( D g ^ H ^ G s , . ) , 

jy i : ir(^"(D(_)))^.H<(G5,-)1 

^ : H i ( ^ ' , ( D t ( _ ) ) ) ^ H i ( G s , _ ) , 

^ : H i ( ^ ' , ( D t ( _ ) ) ) ^ H i ( G 5 , - ) . 

The isomorphisms p\, ft, p? and p} are Gal(M/K)-equivariant. 
Furthermore, all the maps in the square 

H*(^',(S>t(-))) 

r P ( ^ V 2 ) ( _ ) ) ) 

H*(^',(S>t(-))) 

>H'(^«(0(_))) 

induced by the natural inclusions of ((p, F s) -modules &(W) C 5)(W) C lb{W) and 
&(W) C 2)t(W) C VÇW), for W € Rep(êfs), are isomorphisms and they are com­
patible with the maps p\, jiï, pi and p^. Similarly, all the maps in the square 

^ ( ^ " ( D t g ) ) ^(^"(Dtg)) 

IT(^"(D(_)); >H'(^'*(D(_))) 

are isomorphisms and are compatible with the maps p?, ¿7?, p[ and ft 

Proof. — First of all we exhibit in 3.1 the maps pi and ft (with or without ~or f) 
so that they are compatible with the displayed squares and they are compatible with 
the residual action of Gy (if one exists). We then prove that they are isomorphisms 
in 3.3. Eventually, we show that they are isomorphisms of (5-functors in 3.4. • 

3.1. The maps. — Let W be a Zp-representation of Let D(W) and A be (1) 
®(W) and A, (2) 2) and A, (3) &(W) and A* or (4) &(W) and At. Since in 
each case D(W) ®As — W ®zp A-^ by 2.12 and since the sequence (22) admits a 
rierht continuous solittiner. we have exact seauences of ^--modules 

(i) 0 • W • D(W) 
As 

AR e-1 D(W) 
4c 

AR 0 

Similarly, let D'(W)jmd A' be (1) D(W) and A', (2) D and A, (3) Dt(W) and A* 
or (4) Dt(W) and At. In each case D\W)®A>sA^ ^ W®ZpA'- by 2.12. Thanks 
to B.l we get exact sequences of %-modules 

(2] 0 • W • D'(W] 
A's 

A5 
e-1 D'(W) 

A' 
A' 0 
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The maps in both exact sequences are continuous for the weak topology by 2.12 and 
admit a right splitting as Zp-modules by B.l. 

Let (a,/3) be an n-cochain of f(D(W)) i. e., in if""1^,D(W))x(é?n(Ts,D(W)). 
Define 

C / 5 == P + (-l)nd(a(a)) e-Г1 H*(^',(S>t(-))) 

where d is the differential operator on ^n(Ts, D(W)) and a is the left inverse of ip — 1 
denned in B.l (for each of the four possibilities for A). 

Recall that the derivation on &*(D(W)) is given by d((a, (3)) = ((-l)n(<^-l)(/?) + 
da, d/3). Thus, (a, /3) is an n-cocycle if and only if it satisfies (—l)n(ip — 1)/? + da — 0 
and d(3 = 0. In this case, d c ^ = 0 and (^-l)c^p = (ip-l)f3+(-l)nd(ip-l)a(a) = 
{ip - 1)13 + (- l )nda = 0. Thus, is an n-cocycle in <*?n(̂ s, W) by (1). 

Choose a different continuous left inverse a' of ip — 1. Then, (ip — l)(cr/ — a) = 0 so 
that (a'-a)(a) lies in if"-1 (Sfe, W). T h u s , / ? + ( - l ) n d ( a ; ( a ) ) ( - l ) n d ( a ( a ) ) = 
(—l)nd(cr/ — cr)(a). In particular, ^ depends on the choice of cr up to a continuous 
coboundary with values in W. 

Let (a,(3) = ( ( - l ) n - % - l)6 + da,d&) € S f " - 1 ^ , / ? ^ ) ) x <*?n(r5, L>(W0) be 
an n-coboundary in &9(D(W)). Then, c£>/3 = db + ( - l ) 2 " " 1 ^ o (y> -
(-l)nd(cr(d(a))). Note that (l - (cr o (<p - l))b and a(d(a)) - d(a(a)) are annihilated 
by ip — 1. Hence, c™)/3 is the image via the differential of (1 — (a o ((p — 1))(6) + 
( - l )n (cr(d(a)) - d(cr(a))) which lies in ^?n~1(Sf5, W). In particular, it is a continuous 
coboundary. 

We thus get a map 

rY:W(^{D(W))) H»(âfe,wo. 

By construction it is functorial in W. In case (1) we get the map pi, in case (2) we 
get fa, in case (3) we get the map p\ and in case (4) we get p\. By construction they 
are compatible with the first commutative displayed square appearing in 3.2. 

Analogously, using (2), one gets the claimed map . In case (1) we get the 
map p'{, in case (2) we get p̂ , in case (3) we get the map p} and in case (4) we get *p}. 
They are compatible with the second commutative displayed square appearing in 3.2. 
Furthermore, we also have actions of Gy and we claim that r'™ is Gy-equivariant. 

Indeed, let (a,/?) be an n-cocycle in ^^(T^ Df(W)) x tfn(TfSyD'(W)). Let g G 
Gy. Then, g((a,l3)) = (<7(a),<?(/?)) and = g(/3) + (-l)»d(<r(fl(a))). On 
the other hand, g(c™ J) = g((3) + (—l)ng(d(cr(a))). Note that g o d = d o g and 
(ip - l)(a o g - g o a) = 0 since </? is Ty-equivariant. Thus, c£((ttj/3)) - g(c™p) = 

(-l)nd((a og-go a) (a)) is a coboundary in <*fn(%, W). 

Proposition 3.3. — The maps pif piy p\, p\, p'if ft, p} and are isomorphisms. 
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Proof. — We use the notation of 3.1. Since ^*(D) and &'*(Df) are mapping cones, 
we get exact sequences 
(3) 
En-L(rs, D(W)) s„ Hn(3"(D{W))) Kn(Ts,D(W)) (-i)"(v>-i) Un(rs,D(W)) 

and 
(4) 
Rn^(T's,D'{W)) Un(£r"(D'(W))) Rn(T's,D'(W)) (_1)п( 1 } Rn(T's,D'(W)) 

They are compatible with respect to the natural inclusions S)'(W) C 1)(W) C $)(W) 
and &{W) C &{W) C ®(W) (resp. &(W) C D(W) C T>(W) and D+(W) C 
E)t(W) c D(W)). Thanks to A. 14 we deduce that the horizontal arrows in the two 
displayed squares of 3.2 are isomorphisms. We are then left to prove that pi, pj, ft 
and ft} are isomorphisms. 

Prom the exactness of (1) and (2) and the existence of a continuous right splitting 
we get the exact sequences 
(5Ì 
H W <g> A-s) 

Zp 
<5n Hn(&s,D(W) ®As) Hn Sfe, W <g> As e-1 H" [<gs,W®As\ 

and 
6 

Hn-1 Gs, W ® ^ 
Zp 

S'h H" GS,W H" Gs, W ® ^ 
zP 

e-1 H" [<gs,W®As\ 
Zp 

Thanks to A. 14 the inflation maps 

Inf„:H"(rs,D(W)) Hn(&s,D(W) ®As) 
As 

H" Gs.W® AU 
Zp 

and 

Inf„:H" r'5,D'(W) H" Gs,£»'(W) A'R 
As 

H" G s . W ® AU 
Zp 

in cases (2) and (4) of 3.1 are isomorphisms. Take a cocycle r in ^n 1(Ts,D(W)). 
One constructs 5„(lnf„_1(r)) as d(cr(lnfn_i(r))). On the other hand, ôn(T) = 
(r,0) in ^n-\Ys,D{W)) x ^(rs,Z?(PF)) and c?j0 = (- l )"d(a(r)) . Thus, <5n o 
( - l ^ ^ I n f n - i = o ( - 1 ) 4 - If (a,P) is an n-cocycle in 3T*{D{W)), its image 
in En(Ts,D(W)) is the class of /?. The image of t£)/3 in H.n(&s,W®Zp As) is the 
class of (3+(—l)nd(cr(a)) i. e., of f3. We conclude that the exact sequences (3) and (5) 
are compatible via and the inflation maps Inf„ and Inf„_i i. e., the following di­
agram commutes (the rows continue on the left and on the right): 

Hn~1(rs,D(W) 
-6n 

Kn(3~'(D(W))) >H"(rs,£>(W0)( 
:-D"(<p-i) 

(-1) n-1Inf n-1 ' n Inf„ 

En(&s,W®ZpA1i, On En(&s,W® En(&s,W®ZpA1i, e-1 
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An analogous argument implies that the exact sequences (4) and (6) are compatible 
via and the inflation maps Inf^ and Inf^^. The proposition follows. • 

Proposition 3.4. — The functors pi, pi, p\, p\, ft, ft, p^ and ft} are isomorphisms 
of 5-functors. 

Proof. — We use the notation of 3.1. We prove the proposition for r̂ . The proof for r[ 
is similar. Let 0 —» W\ —> W2 —> W3 —> 0 be an exact sequence of ^-representations. 
We need to prove that one has a connecting homomorphism S: Hn (D(W3))) —• 

(D(Wi))), making Hn(^* (£>(_))) into a 5-functor, and that the diagram 

Hn(&m(D(W3))) à Hn+1(^#(£>(Wi))) 

rw3 
i 

1 i 

h<+1(%,wU 
5' 

h < + 1 ( % , w U 
where 8' is the connecting homomorphisms, commutes. 

We start defining S. Let (a, ¡3) be an n-cocycle in ^n(D(W3)) = ^^(Ts, D(W3))x 
tfn(rs,D(W3)). Due to A.5.2 there exist a e ^^(TS,D(W2)) and b € 
tfn(rs,D(W2)) lifting a and /? respectively. Then, d(a,b) = ((-l)n(<p - 1)6 +da, d&) 
is an element of ^n{Ts,D{W{)) x ^n+1(r5, D(W^i)) and it is a n + 1-cocycle of 
&*(D(Wi)). Its cohomology class is, by definition, 6((a,/3)). Note that 

ud(a,V = db + - 1 2n+ld a o(^- ! ) (&)) (-l)n+1d(a(da)) 

On the other hand CU) = ß (-l)»d(<x(a)). Consider . = 6+(-l)nd(<r(a)) 
in lies in ^n(îfs,W2). Then, 7 == <?0>6) - <T Ь-Ща,Ъ)) lies in ^n(îfs,W2). 

Furthermore, it lifts c™Q/3) since <r((<£ — l)c™a/3̂ ) = 0 because (a,(3) is a cocycle. 
Then, the class of $'(c?ag)) is dj. To compute it we may take the differential 
in ^ ( S f e . W b B z ^ s ) i. e., 

< , 6 ) - da >-1 ) (сГа ,Ь ) ) = db-d ao{v-\)(b)) {-l)n+1d(a(da)). 

Here, we used that d<7 (G?-l)(d(<7(a)))) = d(cr(da)). The conclusion follows. 
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II. GLOBAL THEORY 

4. Étale cohomology and relative (<p, r)-modules 

As in the Introduction, let X denote a smooth, geometrically irreducible and proper 
scheme over Spec(F). Fix a field extension K C M C K. In this section we review 
a Grothendieck topology on X, introduced by Faltings in [14] and denoted XM5 and 
its relation to étale cohomology; see 5.11. We also define the analogue Grothendieck 
topology, Xm on the formal completion 2£ of X along its special fiber. In this sec­
tion we study p-power torsion sheaves for these Grothendieck topologies and compare 
their cohomology theories. The main result of this section is the following. Let L 
be an étale local system of Z/pnZ-modules on Xk, for some n > 1 and let Lrig be 
the corresponding étale local system on the rigid space XT^G attached to Xk- For 
every pointed étale open of 2£ (see 4.4) such that ^ = Spf(i?^) is affine 
and Rq/ is a small F-algebra (see 2.2), let L be the fiber of Lrlg at the geometric 
generic point of ^/^ë defined by s (see 4.5). As the notation suggests it is indepen­
dent of % and s. Let £)^(L), D^(L), 2)^(L), D^(L) denote the respective (<p,T)-
modules over R<%. For each i > 0 the associations (^ , s ) —• H*(^#(D^(L))), 
(&j8) _ > H*(^(D*(L))) , (<2r,a) — W(f@v(L))), % — W (^(D^(L))) 
are functorial and we denote by J^'ar(L), ^'ge(JL), ^'*'ar(L) and (L) re­
spectively the associated sheaves on the pointed étale site We have 

Theorem 4.1. — There are spectral sequences 

i) E?'9 = H" tre#t,jrp'*'ge(L) Hp+q XK, et, L 

ii) i)E?'9 = H" ^ , ^ p ' * ' a r ( L ) Hp+q XK, et, L 

where * stands for nothing or t. Moreover, the spectral sequence i) is compatible with 
the residual Gy-action on all of its terms. 

The proof of theorem 4.1 will take the rest of this section. In particular, see 4.5. 

4.1. Some Grothendieck topologies and associated sheaves. — Following 
[14, §3, p. 214] we define the following site: 

Let X be a scheme flat over V. We denote by XM,et the small étale site of Xm 
and by Sh(XM,et) the category of sheaves of abelian groups on lM,et-

The site Xm- — The objects consist of pairs (U, W) where 

(i) U —> X is étale; 
(ii) W —• U <8>v M is a finite étale cover. 

The maps are compatible maps of pairs and the coverings of a pair (£/, W) are fam­
ilies {(Ua, Wa)}a over ([/, W) such that UaUa —• U and Ila^a —> W are surjective 
It is easily checked that we get a Grothendieck topology in the sense of [3, 1.0.1] 
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It is noetherian if X is noetherian; see [3, 11.5.1]. Note that one has a final object, 
namely (X, XM)- Let S1I(3£M) be the category of sheaves of abelian groups in XM-

Let 3E be a formal scheme, flat over Spf(F) and with ideal of definition generated 
by p. Denote by the small etale site on 3£ and by S h ( ^ t ) the category of 
sheaves of abelian groups on 3£et. 

The sites <^M>fet and ^M,fet- — Let % —• 3£ be an etale map of formal schemes. 
Define ^M'fet to be the category whose objects are pairs (W, L) where 

(i) L is a finite extension of K contained in M; 
(ii) W —> WRIG ®K L is a finite etale cover of L-rigid analytic spaces; here ^rig 

denotes the if-rigid analytic space associated to °t/. 

Define Hom^M,fet ((W,L'),(W,L)) to be empty \l L <jL L1 and to be the set of 
morphisms g: W —> W®LL' of //-rigid analytic spaces if L C V. The coverings 
of a pair (W,L) in ^M>fet are families of pairs {(WA,LA)}A over {W,V) such that 
H«3^a —> W is surjective. Define the fiber product of two pairs (W, L') and (W, L") 
over a pair (W,L) to be (W xWW',L"F) with V" equal to the composite of V 
and L". It is the fiber product in the category ^M>fet 

Let ^2 —> be a map of formal schemes over SC. Assume that they are etale 
over 3£. We then have a morphism of Grothendieck topologies p^1?^2: ^M,fet 
%MM given on objects by (W,L) i-> {W x^ns %^,L). It is clear how to define 
such a map for morphisms and that it sends covering families to covering families. 

Let y><% be the system of morphisms in ^M>fet of pairs (W,L') —• (W,L) such 
that g: W —• W <8>L L' is an isomorphism. Then, 

Lemma 4.2. — The followinq hold: 

i) the composite of two composable elements of is in ó?<% ; 
ii) given a map % ~~* of formal schemes étale over 3£', we have p^1}̂ 2 (-^Wi) C 

ih) t/ie frase change of an element of via a morphism in ^M>fet %s again an 
element of 

iv) if f : (# i ,L i ) —> L) and (#2,-^2) —• (^,L) are morphisms lying in 
and if h: (# i ,L i ) —> (#2,^2) ^ a morphism in ^M'fet s^c/i ^at f = g o h, 
then h is in . 

Proof — Left to the reader. 

Thanks to 4.2 the category ^M'fet localized with respect to SP<% exists and we 
denote it by ^M,fet- Note that the fiber product of two pairs over a given one exists 
in ^M,fet and it coincides with the fiber product in ^M'fet. The coverings of a 
pair (W, L) in ̂ Af,fet are families of pairs {(>^*, LA)}A over (W, L) such that Ua^a 
W is surjective. By 4.2 the category ^M,fet and the given families of covering define 
a Grothendieck topology. It is a noetherian topology if the topological space 2£ 
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is noetherian. By abuse of notation we will simply write W for an object (W^L) 
OF ̂ M,FET-

We recall that, given pairs (# i ,L i ) and (W2,L2) in ^M,FET> one defines the set of 
homomorphisms 

H o m ^ ^ f ( ^ i , L i ) , ( ^ 2 , L 2 ) i := lim 
(W',L')->(W'1,L'1) 

HomtìVM.fet (W',L'),(W2,L2) 

where the direct limit is taken over all morphisms V) —» (W\, Li) in • Equiva-
lently, due to 4.2, it is the set of classes of morphisms Lx) «- I/) —• (>^2, ¿2), 
where (>r',Z/) (#i,Zq) is in J ^ , and two such diagrams (# i ,L i ) <- Or ' ,L ' ) -> 
(#2,^2) and <- (W",L") -> pT2,L2) are equivalent if and only if there is 
a third one (* i ,Li ) «- (#"",£/") -> (#2,L2) mapping to the two. If (* l ,Li) <-
(>T/,L/) (#2,L2) and (#2,L2) <- (W",L") -> ( ^ , ¿ 3 ) are two homomorphisms, 
the composite +- (W'",V") -> 0T3,L3) is defined by taking (W'h\Lm) to 
be the fiber product of {W,U) and (W",L") over (>T2,L2). 

Let ^2 ^1 be a map of formal schemes étale over Due to 4.2, the map 
P^i,^2: ^/^iîet —> 2̂M'fet extends to the localized categories and defines a morphism 
of Grothendieck topologies ^2 m FET - ^ ^ i m FET which, by abuse of notation, we write 
W->WxUrig U2rig. 

The site XM- — Define XM to be the category of pairs where W —> 3E 
is an étale map of formal schemes and W is an object of ^M,FET- A morphism 
of pairs -> is denned to be a morphism 9/ as schemes 
over and a map W -> >T x^rig ^'rig in ̂ j f e t . A family 
(^,y^,L) is a covering if {&a}a is an étale covering of °i/ and, for every a, 
(^,/3,LA,/3)/3 is a covering of >^ x^rig ^rjig in %,M,FET. 

Remark that the fiber product of two pairs and 
over a pair (<2r, >T) exists putting 9/'" := W and to be the fiber prod­
uct in &MM of x^rig ^'"rig and W" x^rig ^'"rig over W x^rig ^"'rig. The 
pair (^T, (^Tng, K ) ) is a final object in Xm- We let S1I(3£m) be the category of 
sheaves of abelian groups on XM-

We remark that in all the categories Sh(_) introduced above AB3* and AB5 hold 
and the represent able objects provide families of generators. In particular, one has 
enough injectives; see [3, Thm. II. 1.6 & § 11.1.8]. 

4.2. Morphisms of Grothendieck topologies. — One has natural functors: 

(I) UX,M • XM (X 0 y M)pt with uxMU, W) := W; 
(Il.a) VX,M ' Xet XM given by VX,M(U) :=Z (U,U®VM)-

(Il.b) V^rM' &et XM given by v^M(^) '•= (W,(Wrìz,K)). 

Assume that 3C is the formal scheme associated to I i. e,, that it is the formal 
completion of X along its special fiber. We then have: 
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(III) fix,M '• %M —> XM given by fix,M (U, W) := {ftt, (W, L)) where % is the formal 
scheme associated to U and if the cover W —• U ®v M is defined over a finite 
extension K C L, contained in M, then W —> is the pull-back via ^/lg —> 
£/£lg of the associated finite and etale cover of rigid analytic spaces Wng —> C/̂ lg; 

(IV) i/x : Xet —• given by vx{U) = 9/ where tyt is the formal scheme associated 
to U. 

Let K C Mi C M2 C K be field extensions. Define 
(V.a) (3MuM2 : XMl *M2 by 0MLTM2(U,W) = {U,W®Ml M2). 

(V.b) PMUM2:XMi->XM2 by ^ M I , M 2 ( ^ , ^ ) = 

Due to the definition of XM? the functors /XX,M and (3M1,M2 are weu* defined. More 
precisely, given (17, W), the image /J>X,M(U, W) does not depend on the subfield L C 
M to which descends. Analogously, given tyt G then (3M1,M2 sends the 
multiplicative system S?<%, used to define XMX »to the multiplicative system used 
to define XM2 -

It is clear that the above functors send covering families to covering families and 
commute with fiber products. In particular, they are morphisms of topologies, see [3, 
Def. 11.4.5]. Given any such functor g, we let g* and g* be the induced morphisms 
of the associated category of sheaves for the given topologies; see [3, p. 41-42]. Note 
that the functors above preserve final objects and commute with finite fibred prod­
ucts. Therefore, the induced functor g* on the categories of sheaves is exact by [3, 
Thm. 11.4.14]. 

We work out an example. If & is a sheaf on XM-> then /XX,M,* is the sheaf on XM 
defined by (U,W) «^(/XX,M(£J, W)). If & is a sheaf on X M , then fJL*XiM{&) is the 
sheaf associated to the separated presheaf defined by (^, W) i—• l i m ^ w ) ^(Uf, W) 
where the limit is the direct limit taken over all pairs (U\ W) in XM and all 
maps - HX,M(U',W) in XM-

Notation. — If & is a sheaf on XET or is in Sh(XET)N (see section 5 for the definition), 
we write J2"form for respectively for i/£N(«^). 

If L is a locally constant sheaf on XM,et > by abuse of notation we denote L its push 
forward UX,M,*(^) £ SIi(XM)- It is a locally constant sheaf on XM-

If & is a sheaf on XM or is in S1i(£M)N? we denote by Ĵ *ng the pull-back \i*x M(^)-
Note that if & G SIi(£M) is locally constant, then "̂rig is also a locally constant sheaf 
on XM-

4.3. Stalks [14, p. 214]. — Let KX be a finite field extension of K contained in K 
and denote by Vx its valuation ring. 

Fix a map x: Spec(T4) —• X of F-schemes and denote by x: Spec(V) —> X the 
composite of x with the natural map Spec(V) —> Spec(Vrx). Let be the the 
direct limit lim^ Ri taken over all pairs {(Ri, /*)}» where Spec(i?^) is etale over X and 
fi: Ri —• V defines a point over x. Let & be a sheaf in Sh(XET). The stalk &x of 
at x is defined as &x — ^{&sxx) DV which we mean the direct limit lim; ^"(Spec(i?i)). 
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Define &X,X,M as the direct limit lim^j R[^ over the pairs {(R^J^R^J —> V)}ÌJ 

where (1) R^ • is an integral i^-algebra and is normal as a ring, (2) (g)y K is a 
finite and étale extension of Ri (g) y M, (3) the composite Ri <8>y M —> R[ 3;<g>v K —• K 
is r®£ »—• fi(r) - £. If ^ is a sheaf in Sh(3tM)? we then write ^ or equiv-
alently &(ûxtx,M®v K) for the direct limit lim^ ^ ( S p e c ^ ) , Spec(#- ̂  ®v If)). 
We call it the stalk of & at x. 

Let GX,M be the Galois group of & X,X,M ®V K over <8v M. Then, &x is 
endowed with an action of GX>M-

Let V C 1 4 be a finite extension of DVRs. Let x: Spf(Vx) —> be a map of In­
formal schemes and let x : Spf (V) —• 3C be the composite of x with Spf (V) —» Spf (Vx). 
Define â*o£ x be the direct limit lim^ Si over all pairs {(Si, gi)}iei such that 5; is p-
adically complete and separated F-algebra, Spf (Si) —̂  is an étale map of formal 

schemes and ^ : Si —• V defines a formal point over x. If & is a sheaf in S h ( ^ t ) » the 
stalk of ^ at x is defined to be the direct limit := limie/ ^"(Spf(Si)). 

Write Ûx,X,M for the direct limit lim^- S^- over all triples {(S^ -,S^- —> V, LÌJ)}ÌJ 

where (1) L^- is a finite extension of K contained in M, (2) S[j is an integral ex­
tension of Si and is normal as a ring, (3) S[^ ®y K is a finite and étale Si ®y L^j-

algebra, (4) the composite Si <8>y L^j —> 5^- -K" —> if is a ® £ i—• ̂  (a) • Given 
a sheaf & in S1I(£M)? denote by or equivalently % ,X,M ®V K), the direct 
limit lim*j (Spf(Si), (Spm(5-jj ®v K), Litj)). We call it the stalk of & at x. 

Denote by GXJM the Galois group of @ x,X,M ®V K over ûsJjr x • M. Then, is 
endowed with an action of GX M • 

Lemma 4.3. — Let k(x) (resp. k) be the residue field of Vx (resp. V) and denote by 
Xk' Spec(fc(rr)) —• Xk (resp. Xk : Spec(fc) —> Xk) the points induced by x or x (resp. x 
orfi) on the special fiber Xk of X or of ^ . Then, 

i. û*x x coincides with the strict henselization of &x,xk and x coincides with 
the strict formal henselization of 0sc,xk • 

Assume that 3£ is the formal scheme associated to X and that x is the map of 
formal schemes defined by x. Then, 

ii. (^xx» (P)) and {P% X'(P)) are noetherian henselian pairs and the natural map 
&sx,x ~~®% x is an isomorphism after taking p-adic completions; 

iii. the base change functor from the category of finite extensions ofû^x, étale after 
inverting p, to the category of finite extensions of x, étale after inverting p, 
is an equivalence of categories; 

iv. the maps 0$Jp0$tX -> ^x^IV^xa AND ~^X,XM/P^X^M 

& se ,X,M lv@ sc ,X,M are isomorphisms. 
v. Frobenius on &,X,Mlv@3£,X,M is surjective with kernelpv 0^ xMjp&^ xM. 
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Proof. — (i) The strict henselization of &x,xk is defined as the direct limit limj Tj 
over all pairs {(Tj,tj)}j where Spec(Tj) is etale over X and tji Tj —> k is a point 
over Xk- In particular, we get a map &x,x = 1™* R% —* x̂,Xfc = Tj by associating 
to a pair (Ri, fim. Ri —* V) the pair (Ri,iJ^ —> V —> fc). To conclude that such a map 
is an isomorphism it suffices to show that for any pair (Tj,tj) there is a unique map 
of V-algebras Tj —> V lifting tj and inducing the point x. The base change of Tj 
via x defines an etale F-algebra Aj and tj induces a map of V-algebras Aj —» k. 

By etaleness of Aj the latter lifts uniquely to a map of F-algebras Ai —> V which, 
since Tj is of finite type over V, factors via V. 

The strict formal henselization of & gc ,xk is defined as the direct limit lim^ Qj 
over all pairs {Qj,qj}j where Qj is a p-adically complete and separated V-algebra, 
Spf(Qj) —> is an etale map of formal schemes and qj: Qj —> A: is a point over 
The proof that - is the strict formal henselization of &%:,xk is similar to the first 
part of the proof and left to the reader. 

(ii) It follows from (i) that &xx (resP- @% x) is a local ring with residue field k and 
maximal ideal mx (resp. mx) generated by the maximal ideal of &x,xk- In particular, 
the graded rings grm^5£x and grm&0sJjr,x are noetherian so that &*x,x an<^ @%are 
noetherian. 

We claim that x,xtix) is a henselian pair; see [11, §0.1]. This amounts to 
prove that any etale map 0^ x —> B, such that k = 0*% £/xnx0s^- x —> B/mxB is an 
isomorphism, admits a section. Note that there exist i and an etale extension Si —* A 
such that B is obtained by base change of A via 5j —> £• Via a: ^/m^^4 —• 
B/xaxB = A; the pair (A, a), where A is the p-adic completion of A, appears in the 
inductive system used to define the strict formal henselization of &s£,xk so that, 
thanks to (i), we get a natural map A —> £ and, hence base-changing, a map of 

x-algebras B —• @% x. Analogously, one proves that (G^x,mx) is a henselian 
pair. 

Note that p is contained in mx, so that (G^x, (p)) aRd (^^,X'(p)) are 
henselian pairs. Let &sx®¥p,xk be the strict henselization of the local ring 
of X<g>y VypF at Xfc. By construction we have natural injective maps ^ x x / p ^ h x —> 

,x/P^&,x ~^ ^X(g)Fp,xfc- We claim that such maps are isomorphisms. It 
suffices to show that the composite is surjective. Using (i) this is equivalent to 
prove that the map from the strict henselization of &x,xk to the strict henseliza­
tion of &x®Fp,xk is surjective. This amounts to show that given an etale map 
/ : Spec(i^) —> Spec(€?x ®Fp,xk), there exists an etale map g: Spec(5) —* Spec(£?x,Xk) 
reducing to / modulo p. By the Jacobian criterion of etaleness we have R = 
0x®Fp,xk[Ti,...,Td]/(h1,...,hd) with det (dhi/dTj)dij=1 invertible in R. Then, 

S := 0x,xk[Tu...,Td]/(qi,...,qd) \det(dqi/dTj)~1^, with q{ lifting hu is an etale 
&x,xk-algebra and lifts R as wanted. Since p is not a zero divisor in x anô  
in 6*% £, we conclude that the graded rings grp^j£x and in g*p&% x are isomorphic, 
concluding the proof of (ii). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



368 FABRIZIO ANDREATTA & ADRIAN IOVITA 

(iii) Let ûfx (resp. 0*£ x) be the p-adic completion of 0*£x (resp. Thanks 
to [11, Thm. 5] one knows that the category of finite extensions of ûj^x, étale after 
inverting p (resp. the category of finite extensions of x, étale after inverting p), is 

equivalent to the category of finite extensions of &*xx = x> étale after inverting p. 
The claim follows from (ii). 

(iv) The first claim follows from (ii). The second follows from the first and (iii). 
(v) Note that pa G & se ,X,M for every a G Q>o- It follows from [14, §3, Lemma 

5] that Probenius is surjective on & gc ,X,M I Ve* @ 3C ,X,M for every 0 < a < 1. Let a G 
@3C,x,M' Write a — bP +ppc with b and c G 6gc,x,M- Write c = dp +p1~pe 
with e G & se % M> Then, a = (b + pp1 d)p modulo pu gç x M • 

Let a G Û gr x M be such that aP G pO gr x M. Then ap 
P 

a 
l 

pP 

P 
lies in G qr A M . 

Since the latter is a normal ring, this implies that a 
1 € @3£,X,M as claimed. 

Proposition 4.4. — The notation is as above (in (2), (3) & (5) below we also assume 
that 3£ is the formal scheme associated to X and that x is the map of formal schemes 
associated to x: Spec(T4) —• X). 

1) Suppose that X (resp. 2£) is locally (topologically) of finite type overV and that 
every closed point of X maps to the closed point o/Spec(Vr). Then, a sequence 
of sheaves & —> —> Jtf on XET (resp. XM, resp. 3£et, resp. XM) is exact if 
and only if for every point x of X (resp. x of 2£) as above the induced sequence 
of stalks &x —• % —• (resp. 

2) let & be in Sh(Xet). Then, v*x(&)x = &xl 
3) if& is in Sh(3tM), then, MX,M(^)X = &xl 

4) fix field extensions K C Mi c M2 C K. Then, PMUM2 (resP- $MXmJ °f 
a flasque sheaf is flasque. Furthermore, if ^ is in Sh(XMi) (resp. & is in 
Sh(XMi)^ then one has natural identifications: 

а) вХ*. „(&)x = (resp. вЬ. МЛ&)& = 
b) if MA C MO is Galois with arouv G. then *H°(£M. = 

н° (£м2,/^1)М2(^)) (resp. H°(XMl,^) H° % , ^ M 1 ) M 2 ( ^ ) ) ) 

Assume that Kx is contained in M. Then, 
5) we have a natural isomorphisms GX,M — GX,M and, if & is in XM, the isomor 

phism n*x M(^)X — is compatible with the actions of GX,M and GX,M 
6) let & be a sheaf in XM> Then, (RqvX,M,*(^))X ~ H<?(G*,M, ^ r ) / 

7) let & be a sheaf in XM- Then, (Rqv%- M*(^)k = H9(Gx,M,^r). 

Proof. — (1 ) In each case it suffices to prove that a sheaf is trivial if and only if all 
its stalks are. 

We give a proof for a sheaf on XM and leave the other cases to the reader. Let & G 
S1I(3£M) such that for every point x of X, defined over a finite extension of if, we 
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have &x = 0. Let (17, W) G XM and let a G &(U, W). Then, for every x: Spec(Vx) -» 
U and every point y: Spec(Ky) —» W over x(8>yK, which exists since W —> 17M is 
finite, there exist (C7X, WY) G XM and a map (Ux, Wy) —• (£7, W ) such that (1) x ®v V 
factors via Ux, (2) y<8>K K factors via Wy and (3) the image of a in &(UX, Wy) is 0. 

Due to the assumption, the set of points x (resp. y) as above are dense in U 
(resp. W) so that there exist points Xi and yi such that Hi(UXi,Wy.) —> ((7, W) is 
a covering of (U,W) in XM- Since & is a sheaf, the homomorphism &(U,W) —> 
["Ii ^(UXi,Wyi) is injective. Hence, a = 0 to start with. 

(2) Since any sheaf is the direct limit of representable sheaves and direct limits 
commute with vx and with taking stalks, we may assume that & is represented by an 
etale X-scheme Y —» X. In particular, fx(&) is represented by the formal scheme <3f 
associated to Y. Let Yx (resp. be the pull back of Y (resp. <3f) to Spec(^x,a;) 
(resp. Spec(<^r,x)). We then have the following diagram 

FX 

H o m ^ е9л,е%А 

VU&ÌA 

н о т , - . [е9л,е%А > Homk(ûYx ®vk,k) 

By 4.3(i) these maps are bijective as claimed. 
(4) If & is in Sh(XMi), then /?мьм2(^) is the sheaf in Хм2 associated to the 

presheaf /?м15м2(^) defined by (U,W) lim&(U', W) where the limit is taken 
over all the pairs (UF,W) in XMl and all the maps (U,W) -> (U',W'®MLM2). 
This is equivalent to take the direct limit over all pairs (U,W) in XMI and over 
all maps (17, W) —• (17, W) as UM1 -schemes. If Mx С M2 is finite, there exists 
an initial pair, namely ([7, W) itself, viewed in Хмг via the finite and etale map 
W -> U®VM2 -> 17 ® v Mi, so that 0MIM2(&)(U,W) = &(U,W). In general, 
there exists a finite extension Mi с L contained in M2 and a pair (17, WL) in XL 
such that W = WL ®L M2. Since any morphism of pairs in Хм2 descends to a finite 
extension of Mb we conclude that P]£liM2(&)(U,W) = & (U,WL®L M2), defined 
as the direct limit \imL> ^(U, WL <8>L L') taken over all finite extensions L С V 
contained in M2, considering (17, WL <8>L L') in Хмх via the finite and etale map 
WL <8>L —> U <g>v L ^ U C*V K. In any case, we conclude that Мз is already 
a sheaf i. е., = FMliMl(&). Furthermore, /3*Mi M2 preserves flasque objects 
and satisfies (a). 

For (b), recall that XMx and Хм2 have final objects so that global sections can be 
computed using the final objects. Since Хм2 ~^ Хмг is a limit of finite and etale covers 
with Galois group G and & is a sheaf on XMI , one has &(X, X M J = ^ " ( X , XM2)G. 

Then, H°(XMl,^) = ^ ( X , X M L ) = ^ ( X , X M 2 ) G = H° ( X M 2 , / ^ , M 2 ( ^ ) ) G and (b) 
follows. 

A similar argument works for . Details are left to the reader. 
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(3) & (5) The first claim in (5) follows from 4.3(iii). To get the second claim and (3), 
one argues as in (2) reducing to the case of a sheaf represented by a pair (C7, W), so 
that V*X,M(UIW) = and using 4.3(iii). 

(6) Consider the functor SIL(XM) —• (GX)M-Modules), associating to a sheaf & its 
stalk &x. It is an exact functor. Recall that &x — lim^ J^*(Spec(i?i), Spec(i?J • ®y if)) 
Thus, the continuous Galois cohomology H* (GX>M> &X) is the direct limit over i and j 
of the Chech cohomology of & relative to the covering (Spec(i?f), Spec(i?£ • <g>v K))-
In particular, if & is injective, it is flasque and H9(GXJM,^X) = 0 for q > 1. 

Both {(Rqv^MA^))x}q and {H9(Gx,M,^r)}g are J-functors from Sh(XM) to 
the category of abelian groups. Also (Rqv$;:M,*(<^))X is zero for q > 1 and & 
injective. For q = 0 we have 

(R O V , M , . ( R) ) , lim F 
i 

Spec(A), SpecfÄ <g> if) F @X.xM ® i^ 
v 

Cx,m 

This proves the claim. 
(7) The proof is similar to the proof of (6) and left to the reader. 

Lemma 4.5. — Assume that 2£ is the formal scheme associated to X, thatX is locally 
of finite type over V and that every closed point of X maps to the closed point of 
Spec(V). We then have the followinq equivalences of 8-functors : 

i. Rq(vxovx,M,*) = VxoRqvx,M,* and RQ RqvX,M,* (UX,MA^) = °2µ*X,M °2µ*X,M 

ii. v*x O RQVX,M,* Rqvx,M,* °2µ*X,M 

Proof. — (i) Since v\ and \i*x M are exact and VX,M,* and V^t,M,* are left exact, the 
derived functors of ux o VX,M,* and V&^M,* ° H*x M exist. By 4.4 we have 

*4 R ' » m , , ( ^ ) X RqvX,M,* (UX,MA^) }x 
H9 GXIMI ^x 

and 

Rqv$riM,* Rqv$riM,* x RQ Gx,M, Дх,м(^")ж 

This implies that if & is injective, vx (Rqvx,M,*(^)) = 0 and Rqv%-,M,* (a*X,M(^)J = 
0 for q > 1. Hence, Rq(yx ° = ^x ° RPVX,M,* (RESP- Rq(v%-,M,* ° A*X,M) = 

R9;?^r,M,* ° H*x M)- Indeed, they are both S-functors since ux (resp. fix M) is exact, 
they are both erasable and they coincide for q = 0. 

(ii) We construct a map 7 j ? : ux ( ^ X , M , * ( ^ ) ) — • «̂2T,M,* (/ix,M(t^)) functorial 
in &. The sheaf ^ (^X,M,*(^)) is the sheafification of the presheaf &\ which asso­
ciates to an object % in &et the direct limit lim^*(C7, UK) taken over all U G XET 
and all maps from to the formal scheme associated to U. On the other hand, 
the presheaf ^2 '= V^,M,* ( a O ^ M ^ ) ) ( / / X , M ( ^ ) is taken as presheaf) associates 
to G JTet the direct limit lim <^(U, W) over all ([/, W) in 3£M and all maps from 9/ 
to the formal scheme associated to U and from ^rig to the rigid analytic space defined 
by WTlg Xf/rig ^ng. We thus get a morphism at the level of presheaves &\ —> 
Passing to the associated sheaves we get the claimed map. 
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The map 7 ^ induces Rqj&: Rq(vx 0 « X , M , . ) ( ^ ) —> R 9 ( ^ , M , * O M X , M ) ( ^ ) -
Using (i), we get a natural transformation of ̂ -functors as claimed in (ii). We are left 
to prove that it is an isomorphism. This can be checked on stalks and, as explained 
in the proof of (i), it amounts to prove that for any sheaf & one has H9 (GX)M» &X) — 

H9 (GX,M>Mx.AF ( ^ ) S ) - Tne conclusion follows since ^X,M(^)X — and GX:M = 
GX,M thanks to 4.4. • 

For later purposes we introduce the following variants of the topologies introduced 
above: 

4.4. Pointed étale sites. — Les 3£ be a p-adic formal scheme, formally smooth 
over Spf (V) and with 3£ <g>v k geometrically irreducible. Let K be a separable closure 
of the field of fractions of 3£ <g>y k. Let W K be a Cohen ring for K i. e., a complete 
DVR such that W K / ^ W K = K. Let be the p-adic completion of an algebraic 
closure of the fraction field of W i containing K. 

The site 3C*V — Denote by X*t the following Grothendieck topology. As a category 
it consists of pairs (^, 5) where —• X is an étale morphism of formal schemes and 
s is a morphism Spf (WK ®w(fc) V) —> tft of V-formal schemes inducing a geometric 
generic point of A map of pairs (^ , s ) —> (W,s') is a map of JT-schemes 
^ —• W such that the composite with s is s'. A covering Hi€j(%,s») —> (^ , s ) is 
defined to a map of pairs (%,Si) —> (^ ,s) for every i such that —• ̂  is an 
étale covering. 

Fix £: Spf(T4) —> I F as in 4.3 and choose a homomorphism 77̂  : ^ —• 
W K ®w(fc) ^ inducing the geometric generic point IK on (G)y k. Given a sheaf Ĵ " 
on X*t define to be &{0%^x) as in 4.3 i. e., if 6% x is the direct limit lim* S{ 
as in loc. cit. and if si : Spf (WK ®w(fc) V) ~~* Spf(£I) is defined composing with rjx, 
then '•= LINIIG/ ^"((Spf(S'I), SI)) . One then proves that a sequence of 
sheaves on X*t is exact if and only if the associated sequence of stalks is exact for 
every x: Spf(V^) —• 3C. 

The site X*M. — Define X*M to be the following Grothendieck topology. Its objects 
are the pairs s), W, L) where (^f,W,L) is an object of XM and (^ , s ) is an 
object of SQ. A morphism ( ( ^ , s), W, L) -* s'), W, V) in X9M is a morphism 
(<^,^,L) (^', #" , ! / ) in such that the induced map arises from a 
map (<2r,s) -+ (W,s') in .TJJ. A covering UieI((Wu Si),WuL{) ((^',s'), £') 
is the datum of morphisms ((%5 s^), Li) —> ( (^' , s')> -^0 f°r every z G I such 
that TLi(%,Wi,Li) -> (WW,L') is a covering in XM. 

Fix £: Spf (14) —> X as in 4.3. Choose a map r?£ : x —• W K ®w(fc) V inducing 
the geometric generic point K on X (&yk. Given a sheaf & on X*M put &x := 
^{P,X,M ®v K) where, using the notation of 4.3, we write &{&ge,X,M ®V K) '•= 

]hmtj ^((Spf(Si), Si), Spm(5^- ®v K), Litj). Then, a sequence of sheaves on X*^ is 
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exact if and only if the associated sequence of stalks is exact for every x: Spf(Vx) —> 
X 

We have functors 
(i) a: -> $ret given by a(W,s) = <%\ 

(ii) b: X*M -> XM given by b '(W,s),W,L) = («r,5T,L); 
(ih) VgrM • ^et -> *M given by var.Af (^,«) = ( (^ , s ) ,^r ig , t f ) . 

As in 4.4(7) one proves that for every point x: Spf(Vx) —• 3£, 

H* (Gx,M5 ^ir) 5 H* (Gx,M5 ̂ ir) 5 GX,M ;— Gal V 3C,x,M WJ\/V$;,x ' ш 
Then: 

Lemma 4.6. — Assume that X is smooth and geometrically irreducible over V and let 
X be the associated p-adic formal scheme. Then: The categories 2£*t and X*M admit 
final objects. Furthermore, a (resp. b, resp. V^,M) send final object to final object 
and a (resp. b) are surjective. 

Proof. — Since X is formally smooth over Spf(Vr), for every étale map °i/ —• X 
also 9t is formally smooth over V. Thus, if <ft irreducible and if we fix a geometric 
generic point 5^ : Spec(K) —> there exists a map s<% : Spf (WK ®w(fc) V) —> 
lifting s<fy. This proves that a, and hence 6, are surjective. 

We claim that ( JT, s j ) is a final object in 3£*t. This implies that ((<>£", s ^Trig, K) 
is a final object in X*M and that a, b and vgc ,M preserve final objects. To prove 
the claim it suffices to show that given two maps s, s': Spf (WK ®w(fc) V) ~* X as 
V-formal schemes, inducing the generic point of there exists an automorphism p 
of W K ®w(fc) ^ (as ^-algebra) such that sf = s o p. Let i2 be the p-adic completion 
of the localization of X at its generic point. It is a DVR. Write Z for W K ®w(fc) 
Then 5 and s' induce maps / and / ' : # — > Z such that, considering / or / ' , the 
maximal ideal of Z is generated by the maximal ideal of R and the residue field of Z 
is a separable closure of the residue field of R. By uniqueness of étale extensions, 
there exists an automorphism h of Z, as V-algebra, such that g = h o f. • 

Corollary 4.7. — Let & be a sheaf on Xet (resp. XM)- We have a natural iso­

morphism of S-functors W(X^a^)) ^ W(S£eU&) (resp. H * ( 3 C ^ , ^ 

W(XM^))-

Proof. — We have functors 

a*: Sh(<Tet) S h ( ^ ) , 6. : Sh(£M) Sh ( rM), 

which send flasque objects to flasque objects. Since a and b are surjective by 4.6, a* 
and K are also exact. Since H°(^TJJ,a+(&)) = R°(XeU^) and H°(XmM,h(^)) ^ 

H ° ( X M , the lemma follows. • 

This allows to work with pointed sites, which are better suited for Ga­
lois cohomology computations. Indeed, let £ ^ * with <9t connected 
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and let rjs: Spm(C^r) —• ty£g be the composite of sT^ and the morphism 
W K ®w(fc) K ~^ chosen in 4.4. It induces a map R<% c C^r. Let R^ C R& be 
the union of all finite and normal i^^-subalgebras of C^r, which are etale after invert­
ing p. Define 7 r f s ( ^ g , 77J, or simply TTI(^m), to be Gal (R& <g>v K/R& ®v M) and 
let Repdisc(7Ti(^M)) be the category of abelian groups, with the discrete topology, 
endowed with a continuous action of 7TI(^M)-

Lemma 4.8. — The category ^M,fet is equivalent, as Grothendieck topology, to the 

category of finite sets with continuous action O/7TI(^M ) := Gal (Rq/ [^] /R<% <S>v . 

In particular, 

1) the functor 

Sh(^M,fet) RePdisc^iC^Af)), 9 ^ &(Rv®K), 

with <^(Rqs®vK) := \im^^^(^,W) where the direct limit is over all 
elements o/^M,fet; defines an equivalence of categories; 

2) for & G Sh(^M,fet) we have W(WMm^) = H ^ T T ^ M ) , & ( R & ®y X)) , 
w/iere £/ie /after ¿5 £/ie derived functor o/Repdisc(7Ti(^M)) 3 A H ^i(^M)^e 
Galois invariants of A). 

Proof. — The first claim follows noting that %f,fet is the category of finite and etale 
covers of R& <8>y M. By Grothendieck's reformulation of Galois theory the latter is 
equivalent to the category of finite sets with continuous action of 7Ti(%f)-

An inverse of the functor given in (1) is given as follows. Let G G Repdisc (ni (%m)) • 
Let Li)) G 3t*M with ^ = Spm(Si) and S ^ L i M a domain and fix an em­
bedding fi \ Si®LiM ^R& <g>y K. Let Hi := Gal(#^ <g>y # / S ; ®L M) C TTI(^M) 

which is independent of fa. Then, define ,Ui(Wi,Li)) = C?̂ *- One verifies 
that is a sheaf and that the two functors are the inverse one of the other. 

For claims (2) we note that the cohomology groups appearing are universal S-
functors coinciding for i — 0. • 

We next show that the sites introduced above are very useful in order to compute 
etale cohomology: 

Proposition 4.9— (Faltings) Assume that X is locally of finite type over V and that 
every closed point of X maps to the closed point o/Spec(F). Let L be a finite locally 
constant etale sheaf on Xm annihilated by ps. For every i the map H* (Xm ? L) —• 
LP (XM,et,^), induced by pull-back along UX,m, is an isomorphism. 

Proof. — [14, Rmk. p. 242] Put Gm := G&\(K/M). We have a spectral sequence 

IP GM,H9(X^et,L) Hp+q X"M,et? L 

and, thanks to 4.4(4.b), a spectral sequence 

IP GM,H9(X^et,L) Hp+q Хм, L 
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Hence, it suffices to prove the proposition for M = K. Let zx-^: XET —> X^et 
be the map U —> U <8>v K. We can factor it via the maps vx ^ : XET —» Xj^ and 
UXK: ^Ic ~~* % e f ^n*s mcmces a spectral sequence Rpvx ^ o Rqux^ ^(L) =>-
Rp+9zx ^ +(L) which provides with a map Rpvx ^ ^ (-ux +(L)) —> Rp£x -^(L) . As 
usual we write L for ux-^ #(L). Furthermore, since L is a finite locally constant etale 
sheaf on XK, for every point x: Spec(Vx) —• X the stalk (wx ̂  *(^))x is isomorphic to 
LXK. One knows from [12, Cor. II.2.2] that Spec (&xiX ®v is K(ir, 1). This implies 
that the stalk (R^x7^(L))x is H9(Gx^,Lx). By 4.4 also the stalk faqvx^^(L))x 
coincides with Rq (Gx ^, Lx). Hence, R9^x k * W — k * (^) • Using the spectral 
sequences 

Hp *euRqZx^)) цр+q XK,eVL 
and 

Hpl * e t , R V , K , * ( L ) Hp+q XK,eVL 
the proposition follows. 

4.5. Comparison between algebraic cohomology and formal cohomology 
Assume that X is locally of finite type over V and that every closed point of X maps 

to the closed point of Spec(F). Let X be the associated formal scheme. Since v*x is 
an exact functor, given an injective resolution / • of Ĵ ", then 0 —» vx{<^) —> vx(I9) ls 
exact so that given an injective resolution J* of *̂form = vx(^) we can extend the 
identity map on & to a morphism of complexes vx(Im) —> J*. Since vx sends the 
final object X of Xet to the final object X of i£^t, one has a natural map I*(X) —• 
z4 ( / # ) ( . r ) . Then, 

Definition 4.10. — One has natural maps of J-functors 

H«(âret,^ H«(âret,^ H«(âret,^form) 

%M,%M 
( : H« Хм, & Hp Хм,^"е) 

Note that one has spectral sequences 

(7) Hp XET,Rpvx,M Hp+q Хм,^"е) 

and 

(8) Hp A'et,I/ÌR,,«A-,ilf,.(^'): Hp ^et,RP^,M,.(^rÌg:(Frig Hp+q ^rÌg:(Frig 

where the equality on the left hand side is due to 4.5. 

Proposition 4.11. — The following hold: 
a. If & in Sh(X'et) is torsion, the map px ^{^) is an isomorphism; 

b. the spectral sequences (7) and (8) are compatible via pqx % and pp+(?^ ; 

c. if & is a torsion sheaf on XM, the map pq ^ (&) is an isomorphism. 
XM ,3CM 
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Proof. — (a) Let Xk := X <8>v k and denote by ¿: Xet —• Xk,et and T: «2̂ t —* ^k,et the 
functors induced by the closed immersions Xk C X and Xk C X respectively. In fact, 
Tis an equivalence, since the etale sites of X and of Xk coincide, and to vx = i>- For 
any sheaf & on Xet denote &k := **(^) or, equivalently, ?(&ioTm). We then have 
H«(Xet,^) -> H«(^Tet,^form) = H*(Xfc,et, J^) where the first map is px,x(&)q-
The composite is defined by restriction and is an isomorphism if & is a torsion sheaf 
due to [16, Cor. 1] and the fact that X is proper over V. The conclusion follows. 

(b) Left to the reader. 
(c) The left hand side of the spectral sequences (7) and (8) are isomorphic by (a) 

since RPVX,M,* sends a torsion sheaf to a torsion sheaf. The conclusion follows 
from (b). • 

Corollary 4.12. — Let L be a locally constant sheaf on XM annihilated by ps. Then, 
the two sides of the Leray spectral sequences 

HP <^et,R^,M,*(Lrig) Hi+J *M,Lrig 

and 

HP Xet,R^X,M,*(L) Hi+J *M,Lrig 

obtained from the morphisms of topoi VX,M • XM —> Xet ^nd VX,M • XM —• Xet, are 
naturally isomorphic. 

Proof. — The statements follow from 4.11. • 

Proof of Theorem J^.l. — Let L be an etale local system of Z/pnZ-modules on XK, 
for some n > 1 and let Lrig be the corresponding etale local system on the rigid space 
Xp* attached to XK. Let (W,s) € Xe\ with = Spf(iJ^) small affine; see 2.2. 
Put := Lng(jR^ ®y jff); the notation is as in 4.8. It has a continuous action 
of the algebraic fundamental group ^i^i^^^s)- Since Lng is finite and locally 
constant there exists (^, W) € fet such that Lrig(^, W) is trivial and then := 
Lrlg(^, W). As a Z-module it is independent of and W and we simply write L by 
abuse of notation. It follows from 3.2 that Jtfh*,ge(L) is the sheaf on Xe* associated 

to the following functor —• W (n*lg Vs)^)- Analogously, J^*'ar(L) is 

the sheaf on XJt. associated to the following functor (^ , s ) —• Hz(7rfIg(^£lg, 77J, L). 
We come to the proofs of (i) and (ii) of 4.1. Since they are very similar we prove 

only (i). Consider a point x: Spf(T4) —> X of X and let Spf(F) —• X be 

the composite of x with Spf(F) —• Spf(V^). Then, G ^ is the direct limit of the 

fundamental groups ^f8 ( ^ J 1 ^ ??Sa) over a set (^a, sa) of affine small neighborhoods 

of x, which is cofinal among such etale neighborhoods and is totally ordered with 
respect to morphisms in X*t. As remarked above one has a canonical identification 
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(Lrig)£ ^ L (as groups). We conclude that the stalk of J#^*'ge(L) at x can be 
described as follows: 

J^*'ge(L 
X H* Gx.K> L 

On the other hand for every yu,s) € <xe* with °u = Spf(Rq/) small, the map of 
Grothendieck topologies i: '&^fet —* (see 4.1) induces a spectral sequence 

Hi %ifet ,R^(L"s) J^*'ge(L H^+^x^,L 

The category of sheaves on fet *s equivalent to the category of discrete groups with 
continuous action of 7Tilg(^^g,^s) by 4.8. Via this equivalence £*(Lrig) = L as repre­
sentation of 7rfg(^g,77s). Furthermore, H*(%|fet,^*(Lrig)) ^ H*(7rfg(^g,fja),L) 
by loc. cit. We then obtain a natural, functorial map 

o 4 : I T -*-als 
^1 ^*'ge(L; J^*'ge(L H^+^x^,L 

which induces a morphism of sheaves on 3£°t 

a': ^*'ge(L; x ^*'ge(L; x 

For every point x of <2T the map a | induced by a* on stalks is the canonical morphism 

4 : ^*'ge(L; x i t G^>(Lrig), H^+^x^,Lrig; x 
which by proposition 4.4(7) is an isomorphism. Therefore, a1 induces an isomorphism 
J^;*'ge(L) = Wvg- -g + (Lng) of sheaves on 3£*t. Thus, the Leray spectral sequence 
takes the form 

E™ = Rq H^+^x^,Lrig; H^+^x^,Lrig; 

It follows from 4.7 that W+«(3%, Lrig) HP+9(X^, Lrig). Furthermore, by 4.12 we 
have HP+«(%, Lrig) ^ Hp+«(%, L) and, thanks to 4.4, we know that №>+«(%, L) ^ 
jjp+<? ( X ^ et, L). All these isomorphisms are equivariant for the residual action of Gy-
This proves the claim. • 

5. A geometric interpretation of classical (ip, r)-modules 

Let the notations be as in the previous section and fix as before M an algebraic 
extension of K contained in K. In this section we work with continuous sheaves on 
all our topologies (see §4). We define families of continuous sheaves denoted &xM-> 
« f ( ^ M ) , A^n{{&XM) and call them algebraic Fontaine sheaves on XM (respectively 
û-z , [û-z ) , AÏ* [ûc: ) called analytic Fontaine sheaves on XM) and study their 
properties. In this section we compare the cohomology on XM of an étale local system 
L of Z/psZ-modules on XK tensored by one of the algebraic Fontaine sheaves with 
the cohomology on XM of its analytic analogue. As a consequence we derive the 
following result. 
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Let us fix M = = K(fipoo) and consider the sheaf ^ := Lrig <g> Atf ( £ 9 ) 

On XKOO-

Theorem 5.1. — Let L be an etale local system L of Z/psZ-modules on XK- We have 
natural isomorphisms of classical (ip, IV)-modules 

H*i3£ir..,^v,ì =DV IT XK,ev4 

for all i > 0. 

The proof of theorem 5.1 will take the rest of this section 

5.1. Categories of inverse systems. — We review some of the results of [20] 
which will be needed in the sequel. Let si be an abelian category. Denote by si™ the 
category of inverse systems indexed by the set of natural numbers. Objects are inverse 
systems {An}n :=•.•—> An+i —» An ... A2 —> A\, where the A^s are objects of si 
and the arrows denote morphisms in si. The morphisms in si™ are commutative 
diagrams 

An+i 

Bfl+l 

An 

Bn 

A2 

B2 

¿ 1 

Bi, 

where the vertical arrows are morphisms in si. Then, si is an abelian category 
with kernels and cokernels taken componentwise and if si has enough injectives, 
then si™ also has enough injectives; see [20, Prop. 1.1]. Furthermore, there is a fully 
faithful and exact functor si —> si™ sending an object A of si to the inverse system 
{A}n := ••• —» A —> A - • • —» A with transition maps given by the identity and a 
morphism / : A —> B of si to the map of inverse systems {A}n —* {B}n defined by / 
on each component. By [20, Prop. 1.1] such map preserves injective objects. 

Let h: si —• SB be a left exact functor of abelian categories. It induces a left exact 
functor /iN: si™ —* SB™ which, by abuse of notation and if no confusion is possible, 
we denote again by h. If si has enough injectives, then also si™ does and the injective 
objects of si™ are of the form (In,dn) where In G si is injective and dn is a split 
surjection; see [20, Prop. 1.1]. One can derive the functor h™. It is proven in [20, 
Prop. 1.2] that R*(ftN) = (R^)N. 

If inverse limits over N exist in SB, define the left exact functor lim h: si™ —> SB 

as the composite of h™ and the inverse limit functor lim: SB™ —• SB. Assume that si 

and SB have enough injectives. For every A = {An}n G si™ one then has a spectral 
sequence 

lim^Rqh(An) Rp+q(\im h{A)), 

where l im^ is the p-th derived functor of lim in SB. If in SB infinite products exist 

and are exact functors, then l im^ = 0 for p > 2 and the above spectral sequence 
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reduces to the simpler exact sequence 

(9) 0 • lim^R*-1 h(An) R*(lim/i)(A) limR1 h(An) 0; 

see [20, Prop. 1.6]. In particular, if A is injective, then \im^p)Rqh(An) = 0 for q > 1 
and for q = 0 and p > 1 by the structure of the injective objects in s/™. In a 
particular, injective objects of s/N are acyclic for Rp+(? lim h. 

Note that via the map srf —» given above, if A G srf then R^N({A}n) = 
{R^(A)}n and RMim/i({A}n) = R{h{A). 

5.2. Example. — [20, §2] Let G be a profinite group. Let sé be the category of 
discrete modules with continuous action of G and let & be the category of abelian 
groups. For every j let № (G, _) : s/™ ^ be the j-th derived functor of lim H°(G, _) 
on J2^N. By loc. cit. for every inverse system T = {Tn}n G s/™ we have an exact 
sequence 

(10) 0 lim^IF'-1 (G,T„) HJ(G,T) lim IF(G,Tn) 0. 

Moreover given {(Nn, dn)}n € one computes linv^iV,, as the cokernel of the map 

(H) l[(ld-dn): 
n 

Nn 

n 
l[Nn. 

n 
For later use we remark the following. Assume that each Nn is a module over a ring C 
and that dn: iVn+1 —• Nn is a homomorphism of G-modules. Suppose that for every n 
there exists an element cn G C annihilating the cokernel of dn. One then proves by 
induction on m G N that the cokernel of f lnO^ — dn): []n<m Nn —• []n<miVn is 
annihilated by ci — -cm. In particular, if C is a complete local domain and cn = 
CP^gC for every n for some c in the maximal ideal of C so that the product fjm cm 
converges to CP31 in G, then annihilates lim^iVn. 

For every {(Tn,dn)} G one defines H ônt G, lim Tn 
oo-*—n 

as the continuous co­

homology defined by continuous cochains modulo continuous coboundaries with val­
ues in lim Tn endowed with the inverse limit topology considering on each Tn the 

oo<— n 
discrete topology. As explained in [20, Pf. of Thm. 2.2] there exists a canonical com­
plex D*(G, Tn) whose G-invariants define the continuous cochains G#(G, Tn) of G with 
values in Tn and such that each Dl(G,Tn) is G-acyclic. This resolution is functorial 
so that we get a resolution 

(Tn,dn)d{D\G,Tn)id1n) (D\G,Tn),dl) 

The continuous cohomology H*ont (G, lim Tn) is obtained by applying lim H (G,_) 
v oc<—n ' ocx— n 

to this resolution and taking homology. Due to (10), since Dl(G,Tn) is G-acyclic, we 
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have 

(12) H;ont(G,lim(^(G,Tn),4)) 

0 

(1) 
\vmC3{G,Tn/ 
lim Cj(G,Tn) 

00<—Tt 

iîi>2 

for i = 1 

if ¿ = 0 

In particular, if the system {Tn}n is Mittag-Lemer, then (DJ (G,Tn),dJn) is acyclic for 
every j and we obtain 

•"•cont G, lim Tn) 
oo<—n 

•H*(G,T). 

Next, assume as before that there exists a complete local domain C such that Tn is 
a C-module and dn is a homomorphism of G-modules. Suppose also that there is c 
in the maximal ideal of C such that £ C and annihilates the cokernel of dn. 
Then, annihilates also the cokernel of Cl(G, Tn+i) —> C*(G, Tn) so that c^1 
annihilates Hjont(G, (D^(G, Tn), d*)). This implies that if we invert c^71 we have an 
isomorphism 

(13) rri 
•"•cont 

G, lim Tn 
oo<—n 

C P_1 •H*(G,T) c p-1 

5.3. Fontaine sheaves on XM and £ m • — We now come to the definition of a 
family of sheaves on XM and XM which will play a crucial role in the sequel. See 
5.11. 

Definition 5.2. — [14, p. 219-221] The notation is as in 4.1. Let &xM be the sheaf of 
rings on XM defined requiring that for every object ([/, W) in XM the ring @xM (17, W) 
consists of the normalization of r(£7, @u) in T(W, &w)-

Denote by &(0xM) the- sheaf of rings in S h (XM)N given by the inverse system 
{ ^ M / A M } ; where the transition maps are given by Frobenius. 

For every s G N define the sheaf of rings s (&xM) in S h (XM)N as the inverse 
system {Wa(0xM/p0XM)}. Here, W8(0xM/p0XM) is the sheaf ( ^ M K M ) S 
with ring operations defined by Witt polynomials and the transition maps in the in­
verse system are defined by Frobenius. Define A^f (&xM) to be the inverse system 
of sheaves {^n(^xM/P^xM)}n where- the transition maps are defined as the com­
posite of the projection Vfn+i{GxMlpGxM) -> Wn{^xM/P^xM) and Frobenius on 
W n ( ^ M / p ^ M ) . 

Similarly, &^ is the sheaf of rings on XM associating to an object (^,#^,L) 
XM 

in XM the r ing^(^ , W) defined as the normalization of 0<%) mT(W, Gy,) ®L M 

Let S% ) be the sheaf of rings in Sh(£M)N given by { / p f f ^ )}, where 
the inverse system is taken using Frobenius as transition map. • 

For s e N define the sheaf of rings A4fs(^£M) in SII(;£m)N as the inverse 

system |WS(^9 lp@^ ) \ with transition maps given by Frobenius. Eventually, 
v. XM XM ' y 
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let Aff ) in Sh(XM)N be the sheaf { w n ( ^ /p@~ ) } where the transition 
maps are defined as the composite 

w n + 1 ( ^ A f / P ^ M ) \ хм1 ЭЕм' wn+1(^Af/P^M) 

here, the first map is the natural projection and the second is Frobenius. 
We denote by ip the Frobenius operator acting on the sheaves, or inverse systems 

of sheaves, introduced above. One can define analogous sheaves for the pointed sites 
X*M and X*M; we leave the details to the reader. 

Remark 5.3. — Note that if X = V and M = K, one has Hgont((V,A'),^(%)) = 
E±, Hc°ont ((y,K), A+nf,s(^)) = WS(E+) and H°ont ((V^A&fe)) = A+. 

For later use, we recall that we denote by 7r the element [e] — 1 of Ay where e is 
the element (1 , £P, (P2, • • •) e Ey and [e] is its Teichmuller lift. 

Notation. — If & is in Sh(3tM)N (resp. Sh(3CM)N) write H*ont(3£M, ̂ ) (respectively 
Hcont(^M5^)) for the z-th derived functor of limH°(XM5— ) (resp. limH°(XM5— )) 

applied to Note that if & = {^}n with # € Sh(XM) (resp. in Sh(XM)), then 
HJont^M,^) = H*(£M,#) (resp. ffcont(XM,^) = H*(XM,#)). 

One proves as in 4.7 that if ^ G Sh(^fet)N 
(resp. S1I(JCM)N), we have a natural isomorphism of J-functors H*ont(J^*, a™(J?)) = 
H*ONT( jret, ^ ) (resp. H^ONT(^ , & N ( ^ ) ) s H L ^ M ^ ) ) . 

From now on we assume that X is locally of finite type over V and that every 
closed point of X maps to the closed point of Spec(Vr). We let X be the formal 
scheme associated to X. 

Lemma 5.4. — One has Att^XM)"^Att^M) where * = s E N or* = 0 . 

Proof. — Consider a pair (17, W ) in X M , with W defined over some finite extension 
K C L contained in M. Recall from section 4 that ^X,M(U,W) := (^,W,L). 

We have a natural map <^£M({7, W) —> fix M * ( ^ 9 ) (17, W) i. e., a map from the 
normalization of T(U,@u) in T(W,&W)®LM to the normalization of T ( ^ , ^ ) 
in r ( f , ^ ) 0 i , M . This induces a natural morphism & xM ~"* MX,M,* ( ^ M ) 

and, hence, a morphism y?XM (^xM) —> ^xM' com^nS fr°m adjunction of /ÌX,M,* 
and /jLX M. We then get a homomorphism 

*,N wn+1(^Af/P^M) wn+1(^Af/P^M) 

We claim that these maps are isomorphisms. It suffices to prove it componentwise 
and by devissage it is enough to show that fi*x M (&XMIV@XM) — > ^ 9 / P ^ 9 1S 
an isomorphism. Due to 4.4(3) this amounts to prove that, for every point x of X as 
in 4.3, the natural map &X,X,M/P&X,X,M —• @ sc ,X,MIV@ 3C ,X,M is an isomorphism. 
This follows from 4.3(iv). • 

Lemma 5.5. — We have the following equivalences of S-functors : 
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i. R« *,N NVX °VX,M,^ *,N NVX °VX,M,^ and Rq *,N NVX °VX,M,^ X °VX,M,^ 

*,N 

*,N T>/J N 
il. ^ oR««5iM>. 

X °VX,M,^ *,N 
5 ^X.M' 

Proof. — The result follows for lemma 4.5 and 5.1. 

5.4. Comparison between algebraic and formal cohomology of continuous 
sheaves. — Since i/£N is an exact functor, as in section 4.5, given an injective 
resolution I9 of a continuous sheaf Ĵ ", then 0 —• v*x —• v*£ (I9) is exact so that 
given an injective resolution J9 of *̂form = ux we can extend the identity map 
on & to a morphism of complexes i/£ (/*) —> J*. Since i/*- sends the final object X 
of Xet to the final object X of Xet, one has a natural map I*(X) —• ^N(/#)(^T). 
Then, 

Definition 5.6. — One has natural maps of (5-functors 

A W H9 
XAcont 

X et,F ricont Oy ô£ÎOXYC\ 

and 
cont.q F • -"xont X et,F •"•coni H^(XM,^)rig 

Note that one has spectral sequences 

(14) •"•cont ^et5RP^,M,*(^rÌS) H ^ ( X M , ^ ) 

and 
(151 
Rq Xet, VX^V"%M^^ AJ-cont ^et5RP^,M,*(^rÌS) •"•cont H^(XM,^)rig 

where the equality on the left hand side is due to 5.5. 

Proposition 5.7. — The following hold: 

a. If & is a torsion sheaf on Sh(Xet)N, then P x ^ ( ^ ) ^s an isomorphism; 

b. the spectral sequences (14) and (15) are compatible via Px^9 and pcont'J!+9; 

c. if is a torsion sheaf in S1I(3£M)N, the map pcont,l is an isomorphism. 
XM ,%M 

Proof — (a) follows from 4.11 (a) and the exact sequence (9) noting that the inverse 
limit of a torsion inverse system of sheaves is itself torsion; (b) is left to the reader; 
(c) is proven similarly to 4.11 (c). • 

Corollary 5.8. — Let L be a locally constant sheaf on XM annihilated by ps. Then, 
the two sides of the Leray spectral sequences 

•"•cont Xet^V^gr M,* XetìRtVxìMì* "•cont £M,lL®A+FJS(^M) 

and 

^cont XetìRtVxìMì* L®A+nf,s(^M) •"•cont £ M , l L ® A + F J S ( ^ M ) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



382 FABRIZIO ANDREATTA & ADRIAN IOVITA 

are isomorphic. 

Proof. — The statements follow from 5.7 and 5.4. • 

Proposition 5.9. — (Faltings) Let L be a finite locally constant étale sheaf on Xj^ 
annihilated by ps. For every i the kernel and the cokernel of the induced map of 
Ws (E-t) -modules 

H* ( % , L ) ® W . ( E + ) -"-cont * t f , L ® 4 t f , . ( ^ ) ) 

are annihilated by the Teichmuller lift of any element in the maximal ideal of E±. 

Proof. — By dévissage one reduces to the case s = 1. The statement follows then 
from [14, §3, Thm. 3.8]. C 

Proposition 5.10. — We have a commutative square 

H» % L r i ^ W s ( E + 

lim H* (%, Lrlg) 0 Ws (V/pV] 

•"•cont %,Lr i«®A+f )8 (^_ ) 
' K 

lim H % , L r i g ® W s [0~Jp0~(^_) 

where the inverse limits are taken with respect to Frobenius. The kernel and the 
cokernel of any two maps in the square are annihilated by the Teichmuller lift of any 
element in the maximal ideal of E±.. Furthermore, each map 

(i6) H* %,Lrig®Ws ®Ws(V/pV) H* H* (%,L)®W.(E+)[0~Jp0~(^_) 

appearing in the inverse limits in the displayed square, has kernel and cokernel anni­
hilated by the Teichmuller lift of any element in the maximal ideal of E i . 

Proof — We first of all construct the maps in the square. The top horizontal map 
is defined by the natural map Lrig —* Lrlg 0 [0~Jp0~ • Similarly, the lower 

horizontal arrow is induced by the mapLrig Lrig(g)Ws [0~Jp0~ . Note 

that H£ont(3t^, (^n)n) is the composite of the functors lim H°(X^, ^n)n- This 

gives a spectral sequence in which the derived functors lim^ of lim on the category 

of abelian groups appear. Since lim^ = 0 for i > 2, see [20, §1], we get an exact 
sequence 

0 -+ l im^H^1 % , L R I G 0 W S 
%,Lrig<g>W; K 

-"xont %,Lrig<g>W; 
K 

limHJs %,Lrig<g>W; 
%,Lrig<g>W; 

0. 
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This provides the right vertical map in the square. Clearly the square commutes. 
The fact that the top horizontal arrow has kernel and cokernel annihilated by the 
Teichmiiller lift of any element in the maximal ideal of E i follows by 5.8 and 5.9. 
The equality on the left hand side follows since IP (%p Lng) is a finite group being 
isomorphic to IP (X-^et,L) by 4.12 and 4.4. 

To conclude the proof, it suffices to show that the kernel and cokernel of (16) are 
annihilated by the Teichmiiller lift of any element in the maximal ideal of E i . We 
may reduce to the case s = 1 i. e., to prove that the map 

fj: BP (%, L"«) ® E+ • Elnt (%, I /* ® Si ) 

has kernel and cokernel annihilated by any any element in the maximal ideal of E i . 

For any integer ra > 1 let (@^_lv@^\ ~ De the inverse system 
where the transition maps are the identity in degree > m and are Frobenius in de­
gree < ra. Let Pm: 8% —> ( D e the maP of inverse systems 
whose n-th component is <pn-m: &^_/p&^_ —> 0^jp&^ for n > ra and is the iden-

K K 
tity for n < m. We claim that /?m is surjective. It suffices to check it componentwise 
and, for each component, to check surjectivity of (pn: @^_jp@^_ —> &Y_/P&?_ ON 

stalks. This follows from 4.3(v). Consider TTQ 8% with TTO := (p,pp ,p**, • • •). 

Then, 7TQ 8$ is the inverse system {ppn~m @^_lp@^_}n with transition map 
given by Frobenius. We claim that Ker(/3n) = 7TQ This also can be 
checked componentwise, for each component it can be checked on stalks and it follows 
from 4.3(v). Note that 

Кот Хм, (0?_/p0z_) = H¿ (xM, tejpé??) -

Indeed, by [20, Prop. 1.1] an injective resolution of {^_/p^_)-rn is given by an 
injective resolution of each component of this inverse system which is constant in 
degree n > m. Take the long exact sequence of the groups H*ont -) associated 
to the short exact seauence 

О —- Lri« ® 1 0 < ) Lrig в # 10/?т" » (Lrig ® >т —» С 
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We get the exact sequence 

IT* 
ncont 

% , Lrig(8)^ 0X-
K > 

IIopm 
FT* 
•̂ cont 

%,Lrig<g><^ 
^ к • 

H* %,Lrig®<^è_/ i>^_ 
g2 TTÌ+1 

ncont 
%,Lrig<g><^ 

H-
IIpom 

HI+1 
•̂ cont 

%,Lrig<g><^ H-

which we will compare with the exact sequence 

IT (%,Lrig) 
®EÌ!HÌ+1 

%,Lrig ®EÌ!HÌ+1 ®EÌ ®EÌ!HÌ+1 ®EÌ!HÌ+1 o 

®EÌ ®EÌ!HÌ+1 ® E Ì ! H Ì + 1 ®EÌ!HÌ+1 ®EÌ!HÌ+1 

via the map H* (3%, Lrig) ® V/pF — • H*ONT (%, Lrig ® 0£_/p0£_), defined 

by (16), and via /,• for j = i or j = i + l. 
Set = 0 and let us denote for the rest of the proof & := Lrig <g» ^^—fP^r—' 

^ K K 
$ := LTis®&(0~) and E : = E ± . Fix m > 1 and i > 0 and consider the (not 

X „ V necessarily commutative) diagram 

EP Hcont \XK^\ ®V/pV 0 H=I+j ^%,Lrig OE 
IIopm 

H*+i ^%,Lrig (8) E 

9i /¿+1 H*+i 

Hcont \XK^\ gi 
Hcont \XK^\ 

< Hcont \XK^\ 

Let us remark that the right square of the diagram is commutative and that the 
rows are exact. We claim that the image of Si is annihilated by every element of the 
maximal ideal of E , i.e. that Si is "almost zero". For every e G Q with e > 0 let 
us denote by TTQ any element r of E such that ^E(^) = e. Let us fix any such e and 
let x G H*ont Denote by y = Si{x) G Ker(7i-Q ). As the cokernel of /¿+1 

is annihilated by any element of the maximal ideal of E , 7r^2y = /*+i(£) for some 
t e IT+1 (%,L"«) ® E and therefore 0 = TT£ ( V y ) = TRG fi+i(t) = /i+i(7RG t). 
As the kernel of /¿+1 is also annihilated by every element of the maximal ideal of E 
we have 0 = TTQ (TTQ t) = TTQ (TTQ t) and because multiplication by 7Tq is injective 
on the top row of the diagram, we deduce 7r^2t = 0. Thus TTQS^X) = -K^2 {fi+\(t)) = 
fi+i(7r^/2t) = 0, which proves the claim. 
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Now we consider the diagram. 

0 W (%,Lris)®E 
IIop 

W (%,Lrie)<8)E H¿ (%,Lris)<g>F/pF 0 

fi fi 9i 

0 HJont(%^) /Mi-, 
IIop 

Hcon XK,G - H* 
•"•cont 

XK,F 
gi 

Mi 

where for every ¿ > 0 we denoted by Mi the image of Si in H*¿¿t an(̂  A 
is the composition of /¿ with the natural projection. It is clear that the diagram is 
commutaive and the rows are exact. Moreover, the snake lemma and the fact that 
S{ o g¿ = 0 give the following exact sequence of E-modules. 

Ker(/<) - Kei(9i) -> Cokerfo) -> Coker(/¿) -> Cokeria) -* M». 

As Coker(/i) is a quotient of Coker(/i), we deduce that the modules Ker(/^), 
Coker(/i), Coker(/f) and M» are annihilated by every element of the maximal ideal 
of E, and therefore the same holds for Ker(^) and Coker(^). This finishes the proof 
of Proposition 5.10. • 

Theorem 5.11. — Let h be a locally constant étale sheaf on XM annihilated by ps. We 
have a first quadrant spectral sequence: 

H6 ay pi^cont Xet, IT Vgr^M,* Lris®A+„f ,s(^J Jji+j 
AAcon 

;%,L®A+fi5(^_); 

If M = K, there is a map of Ws (ÉÌ) -modules 

H " f e e t - L ) ® w s ( E + ; rrn 
•"•cont 

; % , L ® A + f i 5 ( ^ _ ) ; 

which is an isomorphism after inverting n. 

Proof. — The first spectral sequence abuts to H ^ t \ XM,Lrig <g> A[ni s[0-£M))• The 
first statement follows then from 5.8. The second one is the content of 5.9. • 

5.5. Proof of theorem 5.1. — The groups H™ont (XK^^OO) [fl"""1] are modules 

for the ring W(E,y)Hv = W^Ey^) and have residual action of Ty and (p. By 4.4 the 

functor (3*'N —: Sh(Xxoo)N —• Sh(3£^)N is exact, sends flasque objects to flasque ob-

jects and K°cont(XKoo,&) is equal to limH0 ( h v , H & ( % , f o r every & 

in Sh(3£JK-00) • Here, H^(X^,_) is the functor from Sh(X^) to the category of 
inverse systems of i/y-modules mapping {Sfn}n |-* {H°(£^, £fn)}n. We then get a 
spectral sequence 

(17) H" H"H" ;%,L®A+fi5(^_); 
> К •"•cont H"H" 

Here, HJ'(fZV,_) stands for the j-th derived functor of limH°(Hy, _) on the category 
of inverse systems of ify-modules. 
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Put M := H^^%,Lrig(8)i4^fj8^-__Jj. Then, M is the inverse system {Mn}n 

with Mn := H^£F,Lr ig(8)Ws(^_/p^_) ) and transition maps dn: Mn+i -» Mn 
given by Probenius. By 5 .10 each dn has cokernel annihilated the Teichmuller lift 
of any element in the maximal ideal of E±.. Let C*(Hy,Mn) be the complex of 
continuous cochains with values in Mn. For every i 6 N the transition maps in 
{C*(i?V, Mn)}n are given by Frobenius and their cokernels are also annihilated the 
Teichmuller lift of any element in the maximal ideal of E±.. We deduce from (13) and 
the following discussion that we have a canonical isomorphism 

-"-̂ cont Hv, lim Mn 
oo<— n 

TT"1' Н^Яу.М)^"1] 

where H* +Cffv, lim Af„) is continuous cohomology. Eventually, we conclude 
oo«— n from 5 .11 that 

ffCffv.M)]*--1] Н^ Н^Яу. Н^Яу. ®W(Er) 

By A.5 the latter is zero for j > 1 and is equal to the invariants under Hy for j = 0. 
In particular, the spectral sequence (17) degenerates if we invert IT. Since L is defined 
on XK the isomorphism one gets is compatible with respect to the residual action 
of Ty and the action of Frobenius. The Hy-invariants of Hn(X^et ,L) 0 W(E^) 
coincide by definition with Dy (Hn(X^ et,L)). 

6. The cohomology of Fontaine sheaves 

In this section X denotes a formal scheme topologically of finite type, smooth 
and geometrically irreducible over V and let XT^Ë be its generic fiber. Let XT^Ë be 
the Grothendieck topology defined by étale and quasi-compact maps. We refer to 
[21, §3.1 & 3.2] for generalities about étale morphisms of rigid analytic spaces. We 
study the cohomology on XM of continuous sheaves satisfying certain assumptions 
(see 6 .10) . For example, it follows from 6 .16 that these sheaves & can be taken to be 
of the following form: 

1) If L is a p-power torsion étale local system on we set & := L® ) • 

2) If L is an étale sheaf on XT^G such that L = limLn, with each Ln a locally 

constant Z/pnZ-module and we set & := Ldx^c: . 
XM 

Then the cohomology groups H 1 ( J C M , ^ ) i71"-1] can be calculated as follows (here 
7T is [e] — 1 G Afaf (V) if 3? is of the first type and n is p if & is of the second). 

Let us fix a geometric generic point rj = Spm(C^r) as in §5 and for each small 
formal scheme % = Spî(R^) (see 6.9) with a map —• 3£ which is étale, define 
R<& to be the union of all finite, normal i&^-algebras contained in C^r, which are 
étale after inverting p. Denote by ̂ (R^ <g> K) the inductive limit of the sections 

where W runs over all objects of ̂ e t . Then &{R®y K) is a continuous 
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representation of ir?e(WK, n). Moreover (see 6.20) 0<g (R<& ®yK) [p'1] = [p'1] 

and A^nf(G^M)(R^ <8>v K)^'1] is isomorphic to the relative Fontaine ring Afni (in 
which 7r was inverted) constructed using the pair (R<&,R<%). For any such tft = 

Spf( i^) , the association W —> W(nfg{WK,n),&{Rw (g>y K)) [TT-1] is functorial 
and we denote by J^q&\m {^) the sheaf on Xet associated to it. Then the main result 
of this section is: 

Theorem 6.1. — Assume that the above assumption holds. Then, there exists a spec­
tral sequence 

L'. XM,Z&T • XML'. XM,Z&T • XML'. XM,Z&T • XM 

As mentioned in the Introduction, theorem 6.1 is the main technical tool needed 
to prove comparison isomorphisms relating different p-adic cohomology theories on 
Xftg. The proof of theorem 6.1 will take the rest of the section. 

6.1. Remarks on various Grothendieck topologies. — Denote by ^zar the 
Zariski topology on 3£. 

The site XM,Z&T- — Let the underlying category of XM,Z&T be the full subcategory of 
the category of XM defined in 4.1 whose objects are pairs (^, W) with W) G XM 
and % —* X is a Zariski open formal subscheme. We define a family of maps in 
^M,Zar to be a covering family if it is a covering family when considered in XM- We 
let 

L'. XM,Z&T • XM 

be the natural functor. We also denote by 

y^T,M ' «̂ Zar • XM,Z&T 

the map of Grothendieck topologies given by VS^,M(^) '>= (^ng, K)). Since ¿ 

sends covering families to covering families, it is clear that L* : S\I(XM) —• Sh(3tM,Zar) 

and : S1I(3£M)N —• Sh(XM,Zar)N send flasque objects to flasque objects. 

Stalks. — Let x: Spf(V^) -> f be a closed immersion of formal schemes 
with V C Vx(c K) a, finite extension of discrete valuation rings. Let 6 $ be 

the local ring of @ % at x. Define & % x M to be the limit lim^j Sij over all quadru­
ples (R{, Sij, S{j —> V,Lij) where (1) Spf(i^) C 3£ is a Zariski open neighborhood 
of x, (2) Lij is a finite extension of K contained in M, (3) Ri C Sij is an integral 
extension with Sij normal, (4) Sij ®y K is a finite and etale Ri <S>y L>ij-algebra, (5) 

the composite Ri^yLij —• Sij®yK —> K is a<8> £ x*(a) - £. If & is a sheaf 
on £M,Zan define the stalk of & at x to be 

L'. XM,Z&T • XM lim F 

i,J 
Spf (Ri)JSpm( Si* ®K), Li*)] 

v 
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A sequence of sheaves on XM,Zar is exact if and only if the induced sequence of stalks 
is exact for every closed immersion x: Spf(V^) —• 3£ as above. As in 4.4 one proves 

that (Rqv^MA^))x = H9(G*,M,^x) where G&M ~ G a l ^ ^ ^ / ^ r , * ®v K). 

6 .1 .1 . The site ^M,fet- — Let ty C SC be a Zariski open formal subscheme or an 
object of 3£*t. Let ^M,fet be the Grothendieck topology ^M,fet introduced in 4 .1 . 
It is a full subcategory of XM,Zar (resp. XM)- If —• ^ is a morphism in ^zar 
(resp. we have a map of Grothendieck topologies 

P^,^' • ^M,fet • ^M,fet 

letting (ty, W) be the pair (ty', W) where >T' : = W x^rig ^'ris; see 4 .1 . 
Assume that ty — Spf ( i^) is affine. By 4.6 we have an inclusion R^ C C^r (this 

way we work with ^ * instead of Let R<% C i?^ be the union of all finite 
and normal i^-subalgebras of C^r, which are etale after inverting p. If ty = Uityi, 
with tyi of the type above for every i, define R<% := ]Ji R^-

Define -K\{tyM) to be Gal (R& ®v K/R& ®v M) and let Repdisc(7Ti(^M)) be the 
category of abelian groups, with the discrete topology, endowed with a continuous 
action of 7TI(^M)- We have proved in 4.8 that the functor & \-+ ^{R^^yK) 
defines an equivalence of categories from the category Sh(^M,fet) to the category 
Repdisc(7Ti(^M))- Taking continuous sheaves we get: 

Lemma 6.2. — 1) The functor 

Sh(̂ M,fet)N RePdisc(^l(^M))N, Fn &n(Rv®K) 
v 

is an equivalence of categories; 
2) for every & G Sh (^M,fet)N we have 

Kant (^M,fet , ^ ) = H* (TT! (WM), &(R* ® K)) , 
V 

where the latter is the i-th derived functor of Repdisc(7ri(<&M)) —* AbGr given by 

{An}^ lim Apt*"). 
oo<—n 

Definition 6.3. — Let & be in Sh(XM,zar) (or in Sh(X^), or in Sh(XM,Zar)N, or 

in Sh(X^)N). We define &(R<& ®y K) as the image of & in Repdisc(7Ti(^M)) (or 

in Repdisc(7Ti(^M)j ) of & via the pull-back maps Sh(XM,Zar) —• Sh(^M,fet) — 

RePdisc(7ri(^M)) (respectively via the pull-back Sh(X^) —> Repdisc(7Ti(^M))5 etc.). 

Convention 6.4. — Prom now on we simply write XM,* for XM,Zar or XMM and 
for ^zar or, respectively, 
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6.2. The sheaf J^alM — Let & G Sh(XM,*). Let ^ ' ^ f be a map in ̂ T* 
with tft1 and 9t affine. We then get an induced map 

НГ Tri WM), ^ ( Д * ® А У 
v 

НГ Tri WM), ^(Д*®АУ 
v 

In particular, —• H*(7TI(^M)> ^{RW ®V K)) is a contravariant functor on the 
category of affine objects of ^T*. 

Definition 6.5. — Define ^QQ\M{^) to be the sheaf on associated to the con­
travariant functor given by —• H1 (KI^M), ^{Rty <8>v K)) for ^ affine. 

6.2 .1 . The standard resolution. — Let if be a presheaf on XM,*- For z G N and 
for 9t = Spf(jR^) an affine object of JT*, define 

E\if)w :=Homz НГ Tri WM), ^(Д*®АУ,G(RUOK) 
v 

It is endowed with an action of ITI{^M) defined as follows. For every 7, #o> • • • ,9% £ 
TTI(^M) and every / G E^if)^ put 7 • f(g0,... = 7_1(/(7tfo, • • • , 7 0 * ) ) . Denote 
by Cl(if)<& C E%(<£)q/ the subgroup of invariants for the action of 7TI(^M)- Consider 
the map 

di'. Z Ы < В Д + 1 ~> Z ШФмУ] : 

(So, •••,&) 
j=0 

( - 1 ) (Po,..., 9j-i, >•••>&) 

for z > 1 and given by #0 • 1 for i = 0. We then get an exact sequence of TTI(^/M)-
modules 

• z M ^ M ) 2 ] Z M ^ M ) 1 ] Z 0. 

Taking Homz if (Rqs <8>y X)) we get an exact sequence of 7Ti(^M)-modules 

(18) 0 Ы<ВД+1 
v 

Ы<ВД+1 Ы<ВД+1 .... 

which provides a resolution of if{R<^ <S>v K) by acyclic 7Ti(^M)-modules. Using 4.< 
we define the sheaf W 1—• El(if)(^/, W) on the category ^M,fet associated to El(if)^ 
Furthermore, W) i-> El(if)(W, W) is a contravariant functor defined on the sub 
category of XM,* of pairs (^, W) with ^ affine. 

Definition 6.6. — Let & G S1I(XM,*)- For every i G N define <£l(̂ ") to be the sheaf 
on XM,* associated to the contravariant functor ,W) —• i ? * ( ^ " ) ( ^ , ^ ) for ^ 
affine. Define c€%{̂ ) to be the sheaf on associated to the contravariant func­
tor associating to an affine the continuous z-th cochains of 7TI(^M) with values 
in &(Rv ®v K) i. e., « * ( ^ ) ( ^ ) = E\&)^M\ 

Proposition 6.7. — The following hold: 
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i) the differentials d{ of 6.2.1 define an exact sequence of sheaves on XM,* 

0 > & • <E°{J?) > <*l(^) > <*2(3?) • • • • ; 

ii) for every j > 1 and every i one has RJV%-,M,*£1(<^) — 0; 
iii) for every i one has V&^M,*^1^) = ^(^)-

Proof — (i) let (ty,(W,L)) e XM,* with ty affine. Suppose that W = Spm(S) 
with S®LM an integral domain. Write GalM(^0 := G a l < S > v K/S<S>L M). 

Then, E\&)(ty,W) is E\&)^M{yt/)'. In particular, using (18), it follows that 

the kernel of E°(^)(ty, W) -> E\&)(<& ,W) is ^ ( 5 * ®y X)GalAfW. This coin­
cides with ^{ty,W) since ^ is a sheaf thanks to 6.2. In particular, the kernel of 
(£°(^*) —• (B1^) is Ĵ *. To check the exactness of the sequence in (i) it is enough 
to pass to the stalks. Given x: Spf(V^) —> X as in 6.1 or 4.4, the stalk <£l(^)x is 
the direct limit l imE\&)( ty, W) over all (ty,W) with ^ an affine neighborhood 
of x and ^ = Spm(S) with 5 (g)L M c (g>v If. Hence, e ( ^ ) £ = l i m P ^ ) ^ 
where the limit is now taken over all affine open neighborhoods ty of x. Since for any-
such (18) is exact, we conclude that the stalk at x of the sequence in (i) is exact as 
well. 

(ii) The claim can be checked on stalks. As explained in 6.1 or 4.4, given 
x: Spf (14) - ^ J a s before, one has (Rq v ̂  ,M ,*(&(&))) X = H*(G£,M , &(&)X)' But 

£l(<^)x coincides with the direct limit lim(£2(^")^ taken over all affine neighbor­
hoods ty of x. Hence, 

= lim <?(&)*, 
xEW 

= lim Horn 
xEW 

KV= Hom(z[(Gâ)i+1],^; 
v 

= Horn limZ[7ri(%f)i+1l ]xm&(Rq,®K 
V 

= H o m ( z [ ( G â ) i + 1 ] , ^ ; 

where GX is G f ^ or G^M depending whether XM,* is XM,z&r or 3 ^ . In particular, 
(Rqv^M,*(^(^)))x = 0 if q > 1. Claim (ii) follows. 

(iii) For every affine open ty C 3£ there exists a map from the group of z-th 

cochains G ' ( 7 r i ( ^ M ) , ^ C R ^ ®v # ) ) = (£ i )M^M) to VX,M*&№№\ This Pro" 
vides a natural map ^(^") —> ?^T,M,*^1(^)- On the other hand, it follows from 
the discussion above that (V^T,M,*(^2(^))) - LS equal to the group of z-th cochains 
G*(G?a^, i. e., the stalk of The'claim follows. • 

Corollary 6.8. — If & e Sh(£M,*), then R^^,M,*(^) = ^GaiM(^) fanctorially 
in &. 

6.3. The sheaf ^GaiM,conf — We- wish to prove an analogue of 6.8 in the case of 

a continuous sheaf & = {^n}n £ Sh(£M,*)N- We need some assumptions. 

Definition 6.9. — Consider a small object ty of Define R<&,M,OO to be the normal­
ization of Rqs,oo in the subring of i?^ (g)y K generated by M and Rq/,oo, where R^^oo 
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is defined as in 2.1. Denote by IV ?m the group Gal(jR^5M,oo ®v K/R& ®v M). Let 
^%r,M be the kernel of the map 7Ti(^m) —• T^,m- Let us remark that the definitions 
of i?^,oo5 ^,m,OO) A , M i r^5jy depend on a choice of local parameters of R<% and 
so are not canonical. 

6.3.1. The site 11m,*(oo). — Let % be a small object of For every map W —> ^ 
with ~ Spf(i?^/) affine and R^> <S>v K an integral domain, we let J^%/,m be the 
kernel of KI^M) —> IV?m- Note that such a map is surjective. 

Let Hm,*(oo) be the following full subcategory of 11m,*- Let (^', W) G Hm,* and 
assume that W := 11*^/ with ^ / connected. Then, lies in fet which, via the 
equivalence of 6.2, is equivalent to the category of finite sets with continuous action 
of t t i ( ^ ) = I L ^ i ^ ' m ) ' We then sav that lies in itM,*(oo) if and only 
if W lies in the subcategory of finite sets with continuous action of \\i IV (viewed 
as a quotient of 7Ti(^(f)). We then have natural maps of Grothendieck topologies 

—->ilM,*(oo)-^->iiM,* giving rise to maps on the category of sheaves 

Sh(iÌM,*ì 
/5* Sh(ÏÏM,*(oo) a* Sh(^*) 

whose composite is v<&tM,*- As in 6.1 or 4.4 one has a notion of stalks in Sh(iiM,*(oo))-
For x: Spf(14) —» .ST a point as in 4.3, let #£,m be the kernel of the map GX,M —> 
IV,m- If & G Sh(iljvf) and is its stalk, one proves as in 4.4 that 

R9/3*(^)x = H«(tfX)M,J?x) 

Caveat: The site Hm(oo) depends on the choice of an extension R<% C iZ^j0o- In 
particular, if is a covering of X by small objects, the sites HI,m(oo) do not 
necessarily glue so that the site XM(OO) is not defined in general. 

Assumption 6.10. — We suppose that 

i) {«?n}n6N is a sheaf of Afni (Vr00)-modules (resp. of {Foo/^Foojn-modules) on 

ii) X admits 
a) a covering 5? := in by small objects ^ := Spf(iZ^), 
b) a choice R^ C Rwuoo as in 2.1, 
c) for every z a basis ^ := of by small objects such that, 

putting RwiJi0o to be the normalization of R<%.d <8>Rw. Rwi,oo<> condi­
tion (RAE) holds for Rwitji00. 

Furthermore, for every z, j and n G N , putting ^ := the following hold: 
iii) the cokernel of ^n+iO&ar ®v K) —• ^n(R<% ®v K) is annihilated by any ele­

ment of the maximal ideal of W(V/pV) (resp. V); 
iv) for every q > 1 the group H.q ( ^ , M j ^ n ( % ®v K)) is annihilated by any 

element of the maximal ideal of W(V/pV) (resp. V); 
v) the cokernel of the transition maps ^n+i (R&,M,OO ®V K) —> <^n(Rfy,M,°o ®v K) 

is annihilated by any element of the maximal ideal of W(Vr00/pV00) (resp. V ô); 
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vi) for every covering Z£ —• ty by small obiects in and every q > 1 the Chech co­
homology group H9(J^ —> ^n(R^,oo ®v K)) is annihilated by any element 
of the maximal ideal of W(Vr00/pV00) (resp. Voo). 

We write 7r for the element [e] — 1 in if {^n}neN is a sheaf of -modules. 
Instead, we put 7r = p if {̂ "n}nGN is a sheaf of {Voo/p^ooJ-n-modules. It follows 
from (iii) and 5.2 that we have an isomorphism 

HLntM^M), lim ^fe^ììfi-1! HLntM^M), lim ^ f e ^ ì ì f i - 1 ! 
oo<—n 1/ 

If —> ^ is a map in with ty' and ^ small objects in we then get an 
induced map 

НЧ7Г1(<2Гм),^(Д*®ЛО) к - 1 ITU (^),^(A»r/®/iOÏÏ7r-1l 
V 

As in 6.5, we define 

Definition 6.11. — Assume that & satisfies the assumption above. Let ^QalM cont(̂ ) 
be the sheaf on JT* associated to the contravariant functor sending an object ty of 

with ty G Uift, to ff(7ri(^M),^(^ ®y HQ) fa"-1]. 

We want to prove the following: 

Theorem 6.12. — Let & G Sh(3tM,*)N be such that the conditions of 6.10 are fulfilled. 
Then, R ^ ^ T , M , * ( ^ ) [TT-1] — ^GaiM cont(^)- The isomorphism is functorial in &. 

Proof — It suffices to prove that for every small object Wi G 5?, we have an iso­
morphism R^stmA^)^'1]^ ~ ^GaiM(^)ki functorially in Wi and We 
construct the isomorphism and leave it to the reader to check the functoriality in Wi 
and • 

We may and will, till the end of this section, assume that 3C = Wi is small. We 
put & := 2?i and we write T for IVI?M- Consider the maps on the category of sheaves 

Sh(3£M,*)N 
V Sh(XM,*(oo))N lim<_ a* Sh(^), 

introduced in 6 .3 .1 . The composite is l imv^M,*- Since a* and /3* are left exact 

and /3* sends injective to injective, we have a spectral sequence 

(19) Rp l i m a . ( R ^ ( J 0 RP+«(lim^)M,.)(^) 

Lemma 6.13. — For every q>l the group R9/3*(^") is annihilated by any element of 
the maximal ideal of WfVoo/pVoo) (resp. Voo). 

Proof. — Since Rq(3™ = (R9/3*)N as remarked in 5 .1 , it suffices to prove thai 
for every n G N and every q > 1 the sheaf Rq(3*(<^n) is annihilated by an̂  
element of the maximal ideal of W(Vr00/pV00) (resp. V^). It suffices to prove 
the vanishing on stalks. But for x: Spf(Vx) —> 2£ a point as in 4 .3 , we hav< 
Rq/3*(<^n)x = H.q(HX^M^x) as explained in 6 .3 .1 . The latter coincides with th< 
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direct limit limH9 ( ^ % , M , ^ N ( % ®v-K")) taken over the small objects belonging 
to a basis of containing x. The claim then follows from 6.10(i) & (iv). • 

Using 6 . 1 3 and (19) we conclude that 

Rp lim a. (/3? [^~r R ^ l i m ^ . M , . ) ^ ) ^ " 1 ] . 

We are left to compute Rplima*. For this we use the analogue of 6.2.1 on 3EM,*(OO)-
Given ^/ in ¿7, write i?^,M,OO as the union UniJ^}M,N of finite R<%-algebras such 

that R<% ®v K C IW,M,N ®v ^ is finite and etale. Then, for every covering W —> ^ 
with G ^ , we have Rq/>,M,OO ®V ̂  — ̂ nR^/' ®R<& ,M,n K by construc­
tion. Let <2r" -> ^ ' x t ^ ' b e a covering with fy" in Then, we also have 
Rw,M,oo ®v K — UnjR /̂/ R<&yM,n ®v K- Since &n is a sheaf, we conclude 
that the sequence 

0 >#n(Rw ,M,OO #n(Rw ,M,OO ,M,OO®K) — ^ n ( v ,M,OO 

is exact i. e., ^ —• ^n\Rty,M,<X> ®V K) satisfies the sheaf property with respect to 
coverings W —> ̂  with and ^ small and lying in ST. Then, the following makes 
sense: 

Definition 6.14. — For every small object —> 3E lying in & and every i, n G N 
define E^r,^)^ to be Homz (Z [ri+1] ,^„(-R^,M,OO ®V # ) ) • Define e ( I \ J^n) to 
be the sheaf on 3£M,*(°O) characterized by the property that, for every small ob­
ject % G its restriction to ^M,fet (see 4 .1 ) is El(T, ^n)q/ as representation of T^. 
L e t e ( r , ^ ) : = { e ( r , ^ n ) } n . 

Let C*(r,^"n)^ C El(T1 <^n)<zr be the subgroup of invariants for the action of 
r i. e., the group of i-th cochains of T with values in ^n(R^,M,oo De­
note by ^(Tj&n) the unique sheaf on whose value for every small object ^ 
is C*(r,^n)^. Eventually, let ^ ( r , ^ ) := (T,&n)} . 

Proposition 6.15. — Assume that & satisfies 6.10. Then. 

i) we have an exact sequence in Sh(%M *(co))N 

О—»/3**(.*") — . €° (Г ,^) —» ^ ( Г , ^ ) —» ••• 

ii) Rq lim a* (<E*(r, ^")) [n x] = 0 /or every <j > 1 and evert/ i; 

iii) lim a* (<£*(I\ J?)) [7r-1] ¿5 ifte sheaf associated to the contravariant functor send­

ing a small object 9/ to lim ^ 
00 <— n 

r, ^JRW.M.00 ®K 
v 

r1] 

In particular, R9lima»(^?,(^"))[7r *] is the q-th cohomology of the complex 

lim ^ r . ^ H T r - 1 ! 
OO<—N 

lim ^ V r . ^ H T r - 1 
OO«— N 

lim ^ ( r . ^ f f f - 1 ! 
OO<— N 

... 

proving 6.12. 
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Proof. — Claim (i) can be checked componentwise and then it follows as in the proof 
of 6.7(i). 

(ii)-(iii) We use the spectral sequence 

lim ^ ( R % * ( e ( r , ^ n ) ) ) Rp+q lim a l o ? , 

given in 5.1. Since each &n is a sheaf we have ^n)(P^,M,OO ®V K) = 
Ei(T, &n)ty. Hence, H*(l\ e ( I \ &n)(Rw,M,oo ®v K)) is 0 for every q > 1 and it 
coincides with the cochains ^l(T, ^n)(Rty,M,<x> ®v ^0 ~ C*(r, &n)<2t for q = 0. 

Arguing as in 6.7(h) we conclude that R9a*(/?*(<£*(r, &n))) = 0 for g > 1. We are 
left to compute lim(p) a * ( e ( r , J^n)) = lim(p) ^(r ,J^n). 

Due to 6.10(vi), for every small object ty G & and every n the Chech cohomology 
group Hq (3? —» ty, ^n(R^,oo <S>v K)), relative to every covering 2f —> ty by smal] 
objects lying in is annihilated by any element of the maximal ideal of W(V00/pV00) 
(resp. Voo). But we have 
(20) 
« Ч Г . ^ Л Д . о о в А ' ) ) lim c£t(ThmT,&JR n®K\ 

ra—>-oo 
lim 

m—>oo r/pmr 
?n(Ä,oo№); 

As both inductive limit and finite products are exact functors we deduce that the 
Chech cohomology group Rq (3? -» ty, «^n(^j00 ®y K))) relative to every 
covering ^ ^ ty with and ^ G 2T is annihilated by any element of the maximal 
ideal of W(Vr00/pVr00) (resp. V^). Hence, the restriction of ^ (T, ^(R^ ®v K)) 
to ty is flasque, see [3, II.4.2], up to multiplication by any element of the maximal ideal 
of W(V00/pV00) (resp. Voo). In particular, Hq(ty,^(I\ &n)) is almost zero for ev­
ery q > 1; see [3,11.4.4]. Due to 6.10(v) the projective system {^n(R^,M,OO ®V K)}n 
is almost Mittag-Lefler and using once again (20) we also have that the projective sys­
tem { ^ ( r , J^n)}n is almost Mittag-Leffler. Hence, lim(1) <*f*(r, &n) is almost zero. 

By [20, Lemma 3.12] the sheaf l im^ ^ ( T , is the sheaf associated to the 
presheaf ty i—> Hq(ty, (^(T, ^"n)) ). We have, for each q > 1, exact sequences 

O ^ l i m ^ H ^ 1 ^ , ^ ^ , ^ ) ) —+ H9(^ , (^( I \ J^n))J —* ^ ( ^ ^ ( r , ^ ) ) -> 0. 

For g > 2, using the fact proved above that W(ty, ^{T, <^n)) is almost zero for 
s > 1, we deduce that W(ty, (^(T, ^n))n) is almost zero. We conclude that 
l im^ ^2(r,^"n) is annihilated by every element of the maximal ideal W(Voo/.pVoo) 
(resp. VQO) for q>2. 

Thus 

Äplma.(ei(r ,^'))[7r-1] = 0 

for p > 1 and all j > 0, and 

lima.CVI1, J ^ k " 1 ! ^ lim #VI\«^„)k"1 
oo«— n 

The conclusion follows. 
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Theorem 6.16. — Let X be formally smooth, topologically of finite type and geomet­
rically irreducible over V. Let L = QLn)n be a projective system of sheaves such that 
Ln = Ln_|_i/pnLn+i for every n. Let Ĵ * G Sh(JT*)N be a sheaf of one of the following 
types: 

A) 9 ^ ® A + „ f ( % J == M w ^ / p ^ j ) = ̂ ®A+„f(%J == 

B)9 ^®A (inVi^/lM*)) where û~ /pn+1u^ 
XM XM 

lpn&^ is the 
XM XM 

natural projection for each n G N . 
Then, the assumptions in 6.10 hold. 

Remark 6.17. — Assumption (ii) of 6.10 holds. Indeed, X is formally smooth and 
topologically of finite type over V. In particular, it is Zariski locally the p-adic comple­
tion of a smooth scheme over Spec(F). Thus, 2£ admits a basis by affine subschemes 
satisfying (RAE) due to 2.3. 

In case (A), assume further that L is a p-power torsion i. e., annihilated by ps 
for some s. Then, one can compute the sheaf ^G&1m COnt(̂ ) introduced in 6.11 via 
relative ((£>, r)-modules. Indeed, assume that = Spf(iZ^) is small and that (RAE) 
holds for R<%f,oo. 

For M = K we have K\{$/M) = ^R^ and by A. 14 the inflation 

ff(r^,S(L)) IT тпСЙГк- , L ® A-s . 
zp 

IT 'ir, Ra, Gl K))\K-V 
v 

is an isomorphism. 
Analogously, for M = K we have T^\(^M) = GR^ SO that 

ff(r^,D^(L)) IT тпСЙГк- ,L® A-s. 
Zp 

WU, &(R», to k"1! 
v 

Here, D-^r(L) is the r^)-module associated to L and the field K as in §2. 
For M = ifoo, the group T^\{^M) is the subgroup of ^R^ generated by GR^ 

and Hy. In this case 

^ ( r ' ^ D ^ L ) H W % 0 , L ® AT, ) 
zp 

Hp IT тпСЙГк- ,L® A-s. 
V 

where D^OO(L) is the (<p, r'H)-module defined in §2 using the field K^. 

6.4. Proof of Theorem 6.16. — We start with some preliminary results. 

Lemma 6.18. — Let R be as in 2.1. Let Soo C Too be integral extensions of R^ 
such that Soo ®v K = ôo ®v K and R^ C Soo is almost étale (see 2.2). Then, the 
cokernel of Soo C Too is annihilated by any element of the maximal ideal of Voo. 

Proof. — Let eoo be the canonical idempotent of the etale extension R^ [p-1] C 
Soo[p_1] = Toofp-1]. Since i?oo C 5oo is almost etale, for every a G Z[p_1]>() 
we may write patoo as a finite sum ^ a ; ® ^ with ai and b{ in SQQ. Let 
™>'> [p~x] QR^ SOO —• ^oo^-1] be the multiplication map and let 
Tr* S'oofp-1] —• RQOIP-1] be the trace map. Then, is characterized by the 
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property that m(x<g>y) = (TV ® Id)((x <g> y) • eoo). In particular, for every x G Too 
we have pax = m(pax®l) = Tr(aia;)&i. But Tr(a,ix) € since x and a* are 
integral over and Roo is integrally closed. Hence, pax — J2i Tr(aix)bi lies in SQO 
as claimed. • 

Lemmao.19. — Let °a = bpt(R^) be an affine small object of <x* and let °a —> °ii 
be a covering with ty' affine. Then, RW,M,OO — R<&,M,OO ®R<& Rw • 

Proof. — Write the composite of M and Koo (in K) as the union UnMn where Mo = 
K C • • • C Mn C • • • and K C Mn is a finite extension for every n. Let Wn be the ring 
of integers of Mn and let Fn be its residue filed. Let T i , . . . , Td G R<% be parameters 

as in 2.1. Since R<% <g>y A; is a smooth fc-algebra, then R<% [Txp , . . . , TJ ] ®v Fn is 

a smooth fc-algebra. Hence, R<% ®y Wn [T{*,..., TJ*] is a regular ring modulo the 
maximal ideal of Wn and, hence, it is a regular ring itself. In particular, it is normal. 

This implies that RvtM,oo = U„il^ ®v Wn [ T ^ , . . . , TJ*]. 
Since ty' —• ^ is formally etale, then il^/ <8v & is a smooth fc-algebra. Reasoning 

as above we conclude that R^> M <X> ^ U„ ft*/ ®v Wn [ T ^ , . . . , R F ] . The lemma 
follows. • 

Let ty — Spf (ft*) be an affine small object of 3£*. Let A be the union of some 
collection of almost étale, integral ft<*?M,oo-subalgebras of R<&- Write 

A/pA-^(^Jp^J(A®K) lim (A/pA-^(^Jp^J(A®K) 

where the direct limit is taken over all (ty, (W,L)) G XM with = Spm(SV) such 
that S<w <8)L M C A <S>v K> 

Proposition 6.20. — Assume that R<% is small over V. Then, the natural map 

A/pA-^(^Jp^J(A®K^Jp^J(A®K)) 

has kernel and cokernel annihilated by any element of the maximal ideal of Voo • 

Proof. — The presheaf 0~ /p~&~ is separated i. e., if (ty', W, V) -> (ty, W, L) is 
a covering map, the natural map 

A/pA = fff (A®K)/pÛ~ (A®К) A/pA = fff (A®K)/pÛ~ (A®К)ty, W, L) 

is injective. This implies that we have an injective map 

A/pA = fff (A®K)/pÛ~ (A®К) (A®K)/pÛ~ (A®К) 

We also get that the sheaf associated to the presheaf associating to a triple , W', L) 
the ring 0~ {W,W,L)/p0c: C&,TT,L) is defined by taking /p&~ )(<%,W,L) 
to be the direct limit, over all coverings (ty', W\ L') of (ty, W, L) with ty' affine, of 
the elements b in the group 6~ (ty', W, L')/p&~ (ty', W, L') such that the image 
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of b in e~ (<&", W", L")/p0~ (<&", W", L") is 0 where W\ L") is the fiber 
product of (<2r', W, V) with itself over >T, L). Hence, 

/Р&г )(A®K) 
У-M ' лм/ч \r 7 

: lim Kerc T1 
5,7 

where the notation is as follows. The direct limit is taken over all normal Rqt,M,oo-
subalgebras S of A, finite and étale after inverting p over ì^,M,oo> all covers W —• 
^ and all normal extensions R<%>,M,OO ®R<& S —* T, finite, étale and Galois after 
inverting p. Eventually, we put := Spf(i2^") to be the fiber product of fy' with 
itself over °l/ i. e., Rq/» := R%> ®R<K R<%'. We let 

Kers5x := Ker T / P T = T T S / V T S T S / V T S 

where To is the normalization of the base change to R<%« of T ®( D , W ^ _T.V °« ', 

For every 5 and T as above, write GS,T •= Gal(T<8v I f / S 0R^)MJOO -&&",M,oo ®V ^0 
Then, Ts is the product n^GGs T T®R<K, R<%" where tilde stands for the normal­
ization (of T ® / ^ , R<%») and we view R<%» as i?^>-algebra choosing the left action. 
Hence, 

Ker^y = Ker T/pT Kers5x : 
Р&г )(A®K) 

Р&г )(A®K) 

The two maps in the display are a i—• (a , . . . , a) and a f-> (9(a)) geGs T-
For the rest of this proof we make the following notations: if B is a R<%,M,00-algebra 

we denote by B' := B <8>H ,̂M)00 #^',M,oo = B A*, , by B" := 5 <8>fl̂ ,)Moo 
RW,M,OO = B ®R<K, RW (the second equalities above follow form 6.19) and by B 
the normalization of B in We then get a commutative diagram 

(21) 0 

0 

S/PS 

KerS7 

S'/pS' 

o 

T/vl 

S"/vS" 

b 

Ts/pTs = X[g€GsT{T»/pT"). 

The top row is exact by etale descent and the bottom row is exact by construction. 
We claim that the kernel and cokernel of the map S/pS —• Kers^ are annihilated 
by any element of the maximal ideal of V^. To do this we analyze the maps a and /?. 

Analysis of Ker(a) and Ker(/?). — Note that he extension i?^,M,oo C S is integral 
and almost etale by 2.3. Hence, the extensions i&&",M,oo C S ' and .R^",M,oo C S" are 
integral and almost etale as well. Since the extension R^ —> R^> (resp. Rc% —• R<%") 
is faithfully flat, the rings 5 ' and S" have no non-trivial p-torsion. In particular, 
S" (resp. 5 " ) injects into its normalization S" (resp. 5 " ) which is TGST. Thanks to 
Lemma 6.18 the cokernel of S' -> S' = TGST (resp. S" -> S") is annihilated by any 
element of the maximal ideal of . 
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Consider the following. If 0 —• B —• C —• D —• 0 is an exact sequence 
of abelian groups then the kernel of the induced map B/pB —> C/pC is the image 
in B/pB of the group of p-torsion elements of D. In particular if B,C,D are V^-
modules and D is annihilated by an element a G Voo then Ker(B/pB —> C/pC) is 
also annihilated by a. It follows from this obvious fact that the kernel of the map 
S'/pS' -> S'/pS' and the kernel of the map S"/pS" -+ S"/pS" are annihilated by 
any element of the maximal ideal of Voo. 

Thejnap S'/pS' T/pT (resp. S"/pS" -+ fs/pfs) is injective since S' -> T 
(resp. S" —> Ts) is an integral extension of normal rings. Hence, the kernel of a and 
the kernel of /3 are annihilated by any element of the maximal ideal of Voo. 

Analysis of the image of Coker(5/p5 —• KeiS,T) i>n Coker(a). — Define Z as 
Z := Coker(S'/pS' (T/pT)Gs>T) c Coker (a). Since Ker5jT is Gs,T-invariant 
(by definition), the image of Coker(S/pS —• Ker^y) in Coker(a) is contained in Z. 
Put Y := Coker(S'/pSf —> S'/pS'). Let us remark that we have an exact sequence 
of groups: 

0—> Y—> Z—> Cokev(S'/pS' —> (T/pT)Gs>T) 0. 

We know that Y is annihilated by any element of the maximal ideal of , so let us 
examine the last term of the sequence. This is the same as Coker (TGs>T /pTGs'T —• 
(T/pT)Gs>T). Consider the exact sequence 

E rpGs,T lpr[ì<^s,T (T/pT)Gs>T (T/pT)Gs>T 

Since ft*',M,oo —»• T is almost étale, the group H1 (GS,T, T) is annihilated by any 
element of the maximal ideal of V^; see [12, Thm. 1.2.4(h)]. Hence, the cokernel of 
TGs>T/pTGs'T —> (T/pT)Gs'T is annihilated by any element of the maximal ideal 
of Voo- We deduce that the same is true for the module Z above. 

Now using the snake lemma applied to the commutative diagram (21), we get that 
the kernel and cokernel of the map S/pS —• KerS,T are annihilated by any element 
of the maximal ideal of Voo as claimed. 

This concludes the proof in the case that A is the union of almost étale, integral 
and normal ft&'^oo-subalgebras of R<%. In the general case, assume that Q is an 
almost étale, integral ft*5M,oo-subalgebra of A and let S be its normalization. Then, 
the cokernel of Q —• S annihilated by any element of the maximal ideal of Voo by 
Lemma 6.18. The same then applies to the kernel and the cokernel of Q/pQ —> S/pS. 
The conclusion follows. • 

6.4.1. End of proof of 6.16. — Assumption (i) clearly holds. We let {/^}* = y be 
a covering of 3£ and let 3% := {%j}j be a basis of Wi as in 6.10(h). Let ty G 3% for 
some i. 

(iii) The group Ln(Rty <S>y K) is constant on the connected components of ty and 
does not depend on ty itself. It then suffices to verify assumption (iii) for Ln the 
constant sheaf i. e, Ln = Z/psZ for some s in case (A) or Ln = (Z/pnZ) in case (B). 
In this case (iii) follows from 6.20 with A = R^. 
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(iv) Due to 6 .20 it suffices to prove that Rq {jtifa, hn(R& <g)y K) <g> Wn(R^/pR<&)) 
(resp. H9 , hn(Rcfr <S)y K) ® -R^r/pnRty) is annihilated by any power of the max­
imal ideal of Wn(Vr00/pVr00) (resp. VQO) for every q > 1. In both cases, one reduces 
by dévissage to the case n = 1. The claim then follows from A.5 and A.3. 

(v) Given n G N, let R<% <g>y K C B be a finite and étale extension such that Ln+i 
and Ln are constant on the étale site of Bw We may assume that B is defined over 
a finite extension K C L contained in M and that R^ (g)y M C is a Galois 
extension of integral domains. Define A^ as the normalization of R^ in the subring 
of Rfy ®v M generated by R&,M,OO and £?. Then, assumption (v), with A^ in place 
of R®r,M,oc, holds due to 6 .20 since we may reduce to the case where L is trivial. 

Let Dn be the kernel of ^ ( i ^ ^ y K ) —• &n{A<% <8>v K). Let Mn be 
the kernel of Ln+i(B) —>• Ln(B). It is an Fp-vector space. In case (B), the 
sequence 0 —> A^/pA^ —> A^/pn+1A^ —> A<%/pnA<% —» 0 is exact 
since Aw is normal. Tensor it with Ln+\(B) and put En := Mn®(A<&/pA<&). 
Since Ln{B) = Ln+i(B)/pnLn+i{B), the sequence 0 —• Mn <g> A^/pA<% —• 
Ln+i(B)<8> Aw/pnJrlAw —• Ln(B)<8> A^/pnA^ -> 0 is exact. Thanks to 6 .20 
we get that the natural map En —> Dn has kernel and cokernel annihilated by any 
element of the maximal ideal of V^/pV^. 

In case (B) consider the exact sequence 0 —> A^/pp A^ —• Wn+i (A<%/pA<&) —i 
Wn(A^/pAfy) where the last map is the natural projection composed with Frobe­
nius. Tensoring it with Ln+i (B) we get the exact sequence 0 —> Mn ® A%/pp A<% —• 
Ln+1 (B) ® Wn+i {A* IpAw ) —-> Ln (B) ® Wn (A* /pA&). Put 

Fn := Mn® Aw /pp Aw. Also in this case the natural map Fn —> Dn has ker­
nel and cokernel annihilated by any element of the maximal ideal of Kx>/pVoo- It 
follows from A.5 and A.3 that HQ(J^,En) and HQ(J^,Fn) are annihilated by any 
element of the maximal ideal of V^/pV^. Thus, the same applies to HQ(J^, Dn) and, 
hence, to the cokernel of the map from ^n+i(Afy ®v K)3^ = <^n+i(Rty ,M,OO ®V K) 
to &n(A& ®v K)3^ = &n(Rw,M,°° ®v K)- This concludes the proof of (v). 

(vi) For every covering 2? -> V in with 2? G 5- define H^JJ? ^ ^ ) as the 
Chech cohomoloecv SXOUD 

n%n(2?^W) := Rq 2? ^W,Ln(B)®Wn(Aw <g> Rx/pRx) 
R<% 

respectively 

H r̂ :=Rq(2? ^WXn{B)®(Aw <g> R£r/pnR<3?)), 

See the proof of (v) for the notation. For every q > 1 the group (¿2" —> fy) is 0 
since the sheaves considered are quasi-coherent. 

Due to 6 .20 we conclude that assumption (vi) holds using A<% <8>R^ R% <g>v K in­
stead of i? °̂,M,oo- Let G be the Galois group of A<% <S)v K over i?^,M,oo ®v K. Using 
the spectral sequence 

Kp(G.Kq(2Tq/.&AA*, to (Ra*toK\ ftP+Q(% _> ^ , & (R „ ^ 0 K\ ) 
V 
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we deduce that the group W(£e —* ty, &n\R&,oo ®v K)) is isomorphic to the grou] 
W(G,YL°(2? -> &,&n(Av®Rqf(R*®vK))) i. e., W(G,&n{Aw ®v K)). Let ( 
be the kernel of the surjective map ^% —> G. Consider the spectral sequence 

IP ( G, H* (G, Ln (B) ® ft<* /pft^ ' Hp+« , Ln (JB) <g> Rw IvRw ) 

Note that H*(G,Ln(£)<g>R^/pR^) and H*(J^,Ln(£) ® ft^/pft*) are anni­
hilated by multiplication by any element of the maximal ideal of W(Vr00/pV00) 
(resp. Voo) for q > 1 due to A.5 and A.3. Hence, the same must hold for 
H9(G,Ln(i?) (g> A<&/pA<&). By devissage and 6.20 one concludes that the same 
must hold for H9(G, &n(A<& (g>v K)). Thus, (vi) holds. • 

6.5. Proof of theorem 6.1. — By theorem 6.12 if & is a sheaf of Sh(3tM,*)N 
such that the assumptions 6.10 are satisfied then R^^M,*^)f71"-1] — ^GaiM(^)' 
Using this isomorphism the Leray spectral sequence for the composition of functors 
H°(.2T*, - ) o V^T,M,* becomes 

E?,9 = H W . , J # ? í \ (&)) HW.,J#?í\ (&)) 

In particular, we obtain a spectral sequence for * = •. Now theorem 6.1 follows as 
the functors W(X*M, —) and W(XM, ~) are canonically isomorphic; see 4.7. 

Appendix A 

Galois cohomology via the Tate-Sen method 

The goal of this section is to prove Proposition A.5 stating that, if M is a Zp-

representation of then the groups H*(^%, 2)(Af) ®As A^), H*(«^, 2)(Af) ®x A^). 

Hi(H5,^(M)®A^ A^) and H*(Hs,D(M) <g>~ ^ As) are trivial for % > 1. This is 

the key tool to compute the Galois cohomology of M in terms of the associated 
(<p,rs)-modules. 

To treat all the cases above, we follow the axiomatic approach started by Colmez 
in [10, §3.2 & 3.3] and developed in [2, §2]. 

A.l . The axioms. — Let be a profinite group and let A be Zp-algebra which is 
an integral domain and is endowed with a map v: A - > R U {+00} such that: 

(i) v(x) = +00 x = 0; 
(ii) v(xy) > v(x) + v(y)\ 

(iii) v(x + y) > mm(v(x),v(y))', 
(iv) v(p) > 0 and v(px) = v(p) + v(x). 

We endow A with the (separated) topology induced by v. We assume that A is 
complete for this topology and that it is endowed with a continuous action of $ such 
that v(g(x)) — v(x) for x £ A and for g £ . 

Let <ffl a closed normal subgroup of <S such that T — jjtf is endowed with a 
continuous homomorphism \ - F ~¥ with open image, with kernel isomorphic to 
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and such that 7*77 1 = gx^ for every g G Ker(x) and every 7 € T. Let 70 G T 
be such that Im(x) = Zpx(7o) 0 F with F a finite group. Assume that there exist 
7i> • • • > Id £ Aut(A) such that Ker(x) is an open subgroup of ZP7i 0 • • • 0 Zp7d and 
let mo G N be such that pm° ®f=1 ZP7i C Ker(x). Let G C be a closed normal 
subgroup, put H : = G f l J f and assume that f := G/H^-»Ker(x). 

Assume that for every open normal subgroup Jiff c Ji? there exists an integer 
™>o,jrf > such that for every i G { 0 , . . . , d] one has 

(a) a lifting 7fm°,Jr' G ^ /J f ' centralizing J T / J T ' ; 

(b) an increasing sequence ( A ^ ^ , ) of closed subrings of h3^'; 

(c) m a p s ( r i V : A - ' ^ A S ^ ) R O , I 0 , r 

and the following axioms a la Tate-Sen hold: 

(TS1) there exists ci G R>o such that for every open normal subgroups Hi C H2 of Jtf 
(resp. of H), there exists a G AHl such that v(a) > — c\ and Y] r(a) = 1; 

TeM2/H1 
(TS2) there exists C2 je» G R>o such that for every i and j G {0 , . . . ,dj and every 

m > m0<^: 
(a) rm;jT' 1S Am,J '̂-LINEAR AND rm,^(a;) = * if X ^ Am,^M 
(b) one has v {j^ > v(x) — c^^' and lim ^>,{x) = x for every 

x G A ^ ' ; 
(c) Tm? '̂ commutes with r^,^,; 
(d) the ring A ^ ^ / is stable under &/Jt?f and T^^>, commutes with the 

action of V/M" for i G { 1 , . . . , d}; 
(d') the ring A^'^, is stable under 7g ' and commutes with 7J 

and T^fjp, o T^jp, o • • • o r^jp, commutes with the action of £f/Jf7'; 
(e) we have A ^ ^ , C A ^ ^ „ , as subrings of A, for every open normal sub­

group M"1 C <ffl' and the following diagram commutes 

1 rr, 
1 rr, W 

Л™ до"/ 

1 rr, 
1 rr, W 

\(¿) 

(TS3) let X « = ( l - r « ) Then, 

(a) there exists 03^/ G R>o such that for every m > m o ^ / and every 

i G {0 , . . . the map 1 — 7? is invertible on X^^f and for every 

x e хт,ж-» one has w ( ( l - 7fm) (ж)) > v{x) - сг,ж.. 
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(b) There exists c^^» G R>o such that for every m > m§^> and every 
i G { 1 , . . . , d] and every x G A ^ ^ , , one has v ((7? — l ) > v(x) + 

(TS4) Let H' C H be an open normal subgroup. Assume that there exists an integer 
mo,w > ™>o and that for every i G { 1 , . . . , d} one has a lifting 7? ' G G/H' 
centralizing H/H' and an increasing sequence (A^H,) of closed subrings 

of AH' stable under G/H' and maps (t^H,: AH' -> A^H,) such that 

the analogues of (TS2) and (TS3) hold. 

We followed closely the formalism of [2, §2] with the differences that we 
added (TS2)(e) and (TS4). 

A.2. Notation. — Let W be a free A-module of finite rank a i. e., W := Aa. We 
consider it as a topological module with respect to the (separated) topology defined as 
the product topology considering on A the v-adic topology. Note that such topology 
is independent of the choice of A-basis of W. For every positive n G Q write A>n 
for the subgroup of A consisting of elements x such that v(x) > n. They are a 
fundamental system of neighborhoods for the topology on A for n —> 00. Let W>n be 
the image of A>n in W; they form a fundamental system of neighborhoods for the 
given topology on W. Assume that W is endowed with a continuous action of if. 
We consider continuous cohomology of a closed subgroup H' of with values in W. 
If / G Cr (Hr, W) is a continuous cochain, with r > 0 and with the profinite topology 
on H', write v(f) := min{n G N|(V#i,. . . ,gr G Hf)f(gu ...,gr) G W>n}. We write 
d: Cr(H',W) -> Cr+1(H',W) for the boundary map. 

Lemma A.1. — [23, §3.2] Let Ho be an open subgroup of H (resp. of and let f 
be an r-cochain of Ho with values in W for r > 1. 

(1) Assume that there exists an open normal subgroup Hi c Ho such that f factors 
via an r-cochain of Ho/H\. Then, there exists an (r — l)-cochain h of Ho/Hi 
with values in W such that v(f — dh) > v(df) — c\ and v(h) > v(f) — c\. 

(2) There exists a sequence of open normal subgroups Hn C Ho and continuous 
cochains fn G Cr(Ho/Hn, W) forn G N such that f = fn modulo W>n forn —> 
00. 

Proof. — We work out the case of HQ C H. For H0 C the argument is analogous 
and the details are left to the reader. 

(1) Let a G A^1 be an element satisfying (TS1). Define the (r - l)-cochain a U / 
of HQ/Hi with values in W by 

(a U/)(<?!, . . . , := ( - I f 
teHo/Ht 

Ql • • • Qr-it(a) • /FOI, . . . , Qr-l,t) 
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One computes that 

d(a U / ) ( a i , . . . , qr) = ai ((a U / ) (o2 , . . . , gr)) 
r-l 

¿=1 
- i ) > u / ) ( . . . , № , . . ) -

+ H № U / ) b i ^r-l) = 
+ (-l)r 

teHo/H! 
gi--grt(a) • gif {92, • • • ,0r,*) + 

+ ( - l )r 
R-1 

j=i teHo/H 
(-l)39i ' ' ' 9rt(a) • /(01,...,9jgj+i,9r, t) 

teH0/Hx 
gi • • • flfr_it(a) • / ( 0 1 , . . . , gr-i,t) 

and 

( a u a / ) ( ^ i , . . . ^ r ) = (-l)r+1 
teHo/H! 

gi - • -grt(a) - df(gi,...,gr,t) = 

(-l)r+1 
teHo/m 

9i"' 9rt(a) • #i/(#2, • • •, #r, *)4 

+ ("l)r+1 
teHo/B 

9i"' grt(a) 
r-l 

(—• • • ,9j9j+u9r,t) + 

teHo/Hx 
gi - -grt(a) - f(gi,. • • ,grt) + 

teHo/H! 
gi--grt(a) • / ( # 1 , . . . ,#r) 

Since J^teHo/m = 1, we have (aUdf) = f - d(a U / ) . Put A = a U / . Then: 
v(ft) > - Ci and v ( / - dh) = v(a U df) > v(a) + 

(2) Since / is continuous there exists an open normal subgroup HN such that the 
composite fn: HQ —> W —> W/W>n factors via (H0/HN) . Let /n be the composite 
of /n with a splitting W/W>n —» (as sets). Then, /n is a continuous cochain and 
v(f - U) >n. C 

PropositionA.2. — [23, Prop. 10] We have W(R,W) = 0 for r > 1 anc 
W(jf,W) = 0 for r > 1. in particular, Hr(G, W) = Hr(r',W^) anc 
Hr(^,W) = H r ( r , w ^ ) . 

Proof — The last statement follows from the first one and from the spectral 
sequences HP(JP,_)) Hi+'(#,_) and ff'(r,,№(H,_)) Hi+'(G,_). 
Let #0 :— -ff or Let / be an r-th cochain of HQ, for r > 1, with values in W. 
Let {HN, fn}n be as in A.1(2) and, for each n, write hn for the continuous (r — 1)-
cochain satisfying A.1(1) i. e., v(fn — dhn) > v(dfn) — ci and v(hn) > v(fn) — c\. 
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Then, {hn} is Cauchy so that it converges to a continuous (r — l)-cochain h. Further­
more, v(fn — dhn) > n — C\ for every n so that dhn —• / for n —• oo. We conclude 
that / = dh as claimed. C 

Let A>n be the subset of A consisting of elements b such that v(b) > n. Then, A>c 
is a ring and A>n is an ideal for every n > 0 due to the properties of v. We write Â  
for the quotient A>0/A>n. Assume that the following strengthening of (TS1) holds: 

(TSl/) for every c G R>o and for every open normal subgroups Hi C H2 of J? 

(resp. of H), there exists a G A^l such that v 
T€H2/HI 

r(a) < c. 

One then has the following variant of A.2: 

Proposition A3. — Let W be a free Kn-module of finite rank a endowed with a con­
tinuous action of &. Then, for every c G R>o and every integer r > 1 there ex­
ists an element jc G Aff0 of valuation v(^yc) < c such that jc • Hr(H, W) = 0 and 
1c.Hr(jt?,W) =0. 

A.3. Decompletion. — The notation is as in A.2. Write T>(W) := 
and D(W) := Wn. They are closed subgroups of W endowed with the topology 
induced from W. 

It is proven in [2, Cor. 2.3] that (TSl) implies that there exists an open 
normal subgroup J#w C Jt? and a A-basis e i , . . . , ea of W such that W3^>w = 
A^wei ® • • • 0 Ajrwea. For every i = 0 , . . . , d and every m > mw = ^o,^w define 
the map : W** - W*» by £?=1 №i - E"=i ^ U w ( A ) ^ Due to (TS2) 
such map is independent of and the basis e i , . . . ,ea and it descends to a map 
on T>(W) = W^. Due to (TS2)(b) it is continuous for the topology on W^w 
induced from W. We then drop the index and we write simply 

T$ : ®(W) > 33 (W) for % = 0 , . . . , d, m > mw. 

Using (TS4) and repeating the construction above, we get similarly continuous maps 

t$ : D{W) • D(W) for i = 1 , . . . , d, m > mw. 

For every m > mw due to (TS2) we have a decomposition 

®(W) := ®m(w)®®w>(w) e • • • e © ^ ( w o , 

where := (l - r i*) (J)(W)), ^^(W) := ( l - r ^ ) (©(W)T(-)=1), • • •, 
© ^ ( W ) := (1 - ri0)) (©(W)T(?)=1|...|T(i)=1) and ©m(W) = D(W)T(d)=1| >>jT(o)=1. 
They are closed T-submodules of 2)(W). We endow them with the induced topol­
ogy. By (TS2) the decomposition above is an isomorphism of topological T-modules. 
Similarly, we have an isomorphism of topological T'-modules 

D(W) := Dm(W) e D « ( W ) 0 • • • 0D<f (W), 

ASTÉRISQUE 319 



GLOBAL APPLICATIONS OF RELATIVE (œ. TVMODULES I 405 

where DX>(W) := {l-ffl)(D(W)),...,DW(W) := ( 1 - ^ ) (D (WOtoj>=li...,t2>=1) 
and Dm(W) = D(W).(d)_1 are closed T-submodules of D(W). ™ 

Proposition A.4. — There exists an integer N > m\y such that for every n > N, 

if 7? € r t/ie map 7? — 1 25 bijective with continuous inverse on Dm (W) /or i = 
0 , . . . ,d fresp. D ^ T ^ / o r i ^ l , . . . , ^ . 

Tften, t/ie maps of continuous cohomology groups HJ'(r,2)m(W)) —> HJ'(r,2)(W)) 
and №'(r',Dm(WO) -> №'(r',D(W0) are isomorphisms. 

Proof. — We deduce from the first statement that № (ZP7f , Dm {W)j = 0 and that 
BP (Zp7f ,Dm (W)) = 0 for every j > 0. We get from the Hochschild-Serre spectral 
sequence that BP (r,Q$(WJ) = 0 and BP (r,D£?(W0) = 0 for i > 1. For i = 0 the 
first statement implies that 7Q — 1 is bijective with continuous inverse on the group 
BJ(r',D$(W)). By Hochschild-Serre № (r,©£?(W0) = 0 for t = 0 as well. The 
second statement follows. 

Since 7f — 1 = (7? - l)(X)j=o 1 7f J) f°r ^ > 5, if 7f - 1 is bijective with 
continuous inverse on 5)m(W) (resp. Dm (WO) also 7f - 1 is. Hence, it suffices to 
prove that 7? — 1 is invertible with continuous inverse. 

We prove the statement for 5)£ (W). The proof for Dm (WO is similar and the 
details are left to the reader. Write W^w = A^w ex © • • • © A^w ea as in A.3 and 
write wfwM := (1 - T$) ( w ^ 1 } _ ) . Due to the assumptions in A.l 

we have a lifting jp ' w G &/Jff\y commuting with the elements of Jf?/J4?w. 

Since ©^(WO - (Wfw'{i))^ by (TS2) it then suffices to prove that - 1 is 

invertible with continuous inverse on 
Extend v on Ae± © • • • © Aea by v(J2]=i zjej) := ^{v(zj)\j = 1 , . . . ,a} . It 

defines the weak topology on Aei © • • • © Aea. Since the action of &/J#w on W^w 
N 

is continuous, there exists an integer N > mo^w such that 7? acts trivially 
on W^/Wf^w+l * ®«=1A^/Af^w+iej. Take m > N. Following [8, 
Prop. II.6.4] define 

fi \ W^w^ > w<#?w,(i)^ fi 
a 

3 = 1 
Z3 ej, 

a 

3 = 1 
( l - 7 f ) " 1 ( ^ ) e j . 

It is well defined, continuous, bijective and with continuous inverse (for the weak topol-

ogy) due to (TS3). Then, z - ¿ ( (1 - 7 f )(*)) = -fi (E"=i if ~ if)^))-
Write 

fi \ W^w^ > w<#?w,(i)^ 9iAv) -y-fi((i-^m)(y)-z) 

Then, v(fi(z)) > v(z) - c3,jew by (TS3) and v(gifi(y)) > v(y) + mi{v({l -

if )(e<))|J = I,..-,a} - c3tJffw > v(y) + 1. Hence, v(gitZ(y1) - gitZ(y2)) = 
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v(9i,o(yi — 2/2)) > v(yi — y2) + 1- This implies that giiZ is a contracting operator for 
the f-adic topology so that there exists a unique fixed point yz. Since fi is bijective, 
we get that yz is the only solution of (l — 7? )(y) = z. We deduce that 1 — 7? 
is bijective on W^fw^l\ Furthermore, since yz is the limit of the sequence gfz(z) 
and gilZ(z)-z = fi(ifm(z)), we have v(yz-z) > v(giiZ(z)-z) > v(^/fm(z)) -c3^w. 
Hence, (l — 7? ) is continuous on W^fw'^\ • 

We are ready to apply the considerations above in the cases of interest to us. Let 
S be as in 2.2. Let M be a Zp-representation of Let M ^ Z£ ®J=1 Zp/pCiZp. 
For A = S ^ y K , A s , A l , or A t , then M0Zp A = A° ®*=1 (A/pc*A). We 
consider M ®zp A as topological module for the product topology considering on A 
the topology induced from the p-adic topology on R ®y K or form the weak topology 
on A-^ and considering on each A/pCiA the quotient topology. 

Proposition A.5. — We have: 

1) the rina A := R®v K with v(b) := min j^s,M®Zp(E®v K) satisfies (TSl). Fur­
thermore, the following holds 

(TSl') for every c G R>o and every open normal subgroups Hi C H2 of M 
(resp. ofH), there exists a G R such that 

TGHO Мл 

r(a) is an element 

of V of valuation < c; 
2) for every r G Q>o the ring A := A^' J with v = wr satisfies (TSl); 
3) for every N G N the ring A := A^/pjV+1A^ with v = v | N satisfies (TSl); 
4) W(j^s,M®Zp(E®v K)) = 0 /or every i > 1; 
5) (a) H* (^5, M 0Zp A5) - 0, (b) H* ( j ^ , AT 0Zp AL) - 0 /or every1 > 1; 

6) (a) H*(H5, M ®Zp = 0, (b) H* (Ks, M ®Zp A* ) = 0 for every i>l. 

Proof — For open normal subgroups ^1 C of claim (1) follows from [2, 
Prop 3.4 & Rmk. 3.5] and claim (2) follows from [2, Prop. 4.4]. 

Let Hi C H2 be normal subgroups of H. They correspond to extensions R'^ C 
S^2 C S^1 which are finite and Galois over R'^ [p-1] of degree d\ and d2 respectively. 
In particular, there exists an extension C V^, finite and Galois after inverting p, 
such that they arise by taking the normalization of the base change of extensions 
of Roo ®Voo Voo* finite and Galois after inverting p of degree di and d2 respectively. 
This is equivalent to require that there exist open normal subgroups of M{ C Jf2 
of such that ^ n H = Hi, ^ n H = H2 and Hi/H2 = Jft/Jft. Then, (TSl) 
(resp. (TSl')) for J^i c J% implies (TSl) (resp. (TSl')) for Hi C H2. Hence, (1) 
and (2) follow. 

(3) Let Hi C H2 be open normal subgroups of (resp. H) and let ar be an element 
of A^'r' satisfying (TSl). If we write ar := J2kPk[zk] with Zk G E^, since wr(ar) = 
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inf{rvE(^jt) + k} > —ci, we get that V E ( ^ ) > Clr k. Hence, for every N G N we 
have v^N(ar) > ~Cl~N. In particular, the claim follows. 

(4) It follows from A.2. 
(5)-(6) Since AL /pN+1AL = A^/pN+1A^ claims (5) and (6) follow from A.2 

for M a ^-representation which is free as Zp/piV+1Zp-module. In particular, (5) 
and (6) hold for torsion representations. 

We may then assume that M is torsion free. Let A := A ^ or At- and let H = J#s 

or H5. Let / be an z-th cocycle of H with values in M ®zp A, continuous for the weak 

topology. If A = Â -, then A ^ ='UrA^'r' and Â |'r' is open in for the weak 

topology since it contains A±. In particular, since H is compact in this case / takes 

values in M <8>zp Â 'r̂  for some r. 
Since / is continuous, for every n G N there exists an open normal subgroup Hn 

of H such that the composite fn: Hl —> M®Zp A-> M<g)Zp(^/(^n+1[£i±^]+n H A)) 

factors via (#o /#n)*; see 2.4 for the notation Unjh- Here, for u G Q we write [u] 
for the smallest positive integer bigger or equal to u. Let fn be the composite of fn 
with a splitting M0Zp(^/(^n+1 [£i±»]+n H A)) —> M(g)Zp A (as sets). Then, /n is 
a continuous i-cochain and we also have fn = / , if viewed as cochains with values 
in M(g)Zp (i4/(t/"n+1 pi+nj ( n fl A)). For every n let hn := ar U /n be the continuous 
(i — l)-cochain defined as in the proof of A.l(l) . The computations in loc. cit. show 
that fn-dhn = aU dfn = 0 and hn+1 = hn in M <8>Zp (A/(Un+lin fl A)). Then, {/in} 
is Cauchy for the weak topology and {dhn}n converges to / for the weak topology. In 
particular, hn converges to a continuous (i — l)-cochain h with values in M(g)zp A-^ 
and dh = /. 

If A = A^, this concludes the proof. If A = AL, since pnA^ n A^'r] = pnA^'r] 
and since wr{p) = 1 and wr(7r) > by [2, Prop. 4.2(d)], we conclude that {hn} 

is Cauchy for the uv-adic topology as well. Since A^'r' is complete and separated 
for the w;r-adic topology by [2, Prop. 4.2(c)], we conclude that h in fact takes values 
in M 0zo A^'7 .̂ The conclusion follows. • 

P R 

A.4. Sen's theory for R[p 1], — Before passing to the (tp,r)-modules, we first 

show that our theory applies in the case of i?[p_1] -representations. These results are 
due to Sen [22], in the classical case of a DVR with perfect residue field, and are due 
to [6] for a DVR with imperfect residue field. The key point is of course to show 
that A.4 applies. This follows essentially from results proven in [2]. We review some 
of the basic definitions and properties from loc. cit. 

d 
Let S be a ii-algebra as in 2.1. Fix ra0,s G N such that pm°>s 0 ZP7» C Ts. 

i=l 
Then, for every m > mo,5, the ring 5m+i[p_1] is a free 5m[p_1]-module of rank pd+1 
(resp. 5m+i • W[p_1] is a free Sm -\V\p~1 ]-module of rankpd). For every i G { 1 , . . . , d} 
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and every n G N , define 

f\ 1 1 1 1 
ON,* — ,...,li_l1li+lì...ìld \.Vn 

and 
q \}) Qf [rp'pn rpp^ rpp7^ rppK' 
ON,* — O [11 , . . . , l-i+ii • • • , J-d 

For i = 0, one puts q(i) C [rpp7r rp~pfc 
ON,* — O [ 11 , . . . , ±d 

Eventually, let = M Sn% and 
nGN о'(О 11 Sn (u) 

xEN 
For every z G {0 , . . . , d} and m G N , one defines 

ç(0 
sss m, k 

's(0) - y > 

' ai*) Q 

b"1] if * = o, 

p-1] if i€ {!,...,<*} 

where the hat stands for p-adic completion. Similarly, for i G { 1 , . . . , d} and m G N , 
put 

°oc,m,K 
q'(i) q OOO,*.OM p - 1,2 

Note that 5^jm K C Socb"1] for every i G {0 , . . . , d} and m G N and that S™m K C 

S'\v~x\. For n> m> mo and # G SLfp-1!, one puts 

UH*) 

1 
pn — M Äs»/s<0>.-v,>) if t = 0 

i 
pT>-M 

Äs»/s<0>.-v,>) if i G {! , . . . , d}. 

For n> m > mo and # G 5n[p *] and every z = 1,..., d define 

pT>-M i 
pTi—m 

Äs»/s<0>.-v,>) 

Such maps do not depend on n for n > 0 so that they are defined on o ^ b x] 
(resp. S^b"1])-

Proposition A.6. — For every i = 0 , . . . , d and every m > mo £/ie map ¿5 contin­
uous for the p-adic topology so that it extends to a unique m K-linear map 

Äs»/s<0>.-v,>) °oo,m,K' 

Analogously, for every i = 1 , . . . , d and every m > mo the map tm is continuous for 

the p-adic topology so that it extends to a unique K-linear map 

Äs»/s<0>.-v,>) q'(i) 
Joo,m,K-

Proof. — The claim for Tm follows from [2, Lem. 3.8]. Since tm is obtained from Tm 
by base-change from Voo to W, the claim for tm follows as well. • 

Note that {R[p-l])^s = S^p'1} and (^[p"1])"5 = ^ [ p - 1 ] due to 2.6. Fur­
thermore, 
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Proposition AJ. — The rings m K and the applications Tm satisfy (TS2) and 

(TS3). The rings S^m K with the applications tm satisfy (TS4)-

Proof — The fact that (TS2) and (TS3) hold is proven in [2, Prop. 3.9] and in [2, 
Prop. 3.11]. Axiom (TS4) follows from this since tm is obtained from Tm by base-
change from Voo to W and taking p-adic completions. • 

Lemma A.8. — We have (Jm (f^ S^mK^j — £00 [p-1]- Analogously, we also have 

Um (niSSm,K)=\JmSL[p-1]-

Proof — The first claim follows from [2, Lem. 3.12]. The second is proven as 
in loc. cit. • 

Let M be a Zp-representation of and let Q := M<g>zp i2[p-1]. Due to A.2 we 
know that the natural maps 

Hn(r5,Q^s) - + H n ( % , Q ) and Hn(r,s,QH*) • Hn (GS,Q) 

are isomorphisms. Furthermore, 

Theorem A.9. — There exists a finitely generated, projective [p x] -submodule N c 

Q^s, stable under Ts, such that N^s^ Soo = and the natural map 

Hn(r5,iV) > H n ( r 5 , Q ^ ) 

is an isomorphism. Furthermore, if N' :— N^s^ ( U M S'mh ^en Nf = 

QUs and the natural map 

En(r's,N') > H " ( r % Q H S ) 

is an isomorphism. 

Proof. — Put N to be the base change of £>m((2), as defined in A.3, via the natural 
map p|i K —> 5oo [p~X] • Similarly, put Nf to be the base change of Dm(Q) via 

f)i Slc^m,K ~~> UM S'm ' ^ ^ 

Due to [2, Thm. 3.1] there exists an i2[p-1]-basis e i , . . . ,ea of M <S>zp R[p~X] sta­
ble under an open subgroup J£Q of J#s, normal in Let Soo\p~l] C T^lp-1] be 
the corresponding Galois extension. Then S)m(Q) (resp. Dm(Q)) is by construction 
the set of c^/J^-invariants (resp. Hs/HQ-invariants) of the free f]t T^m ^-module 

(resp. f|i ^M, irmodule ) with basis e i , . . . , ea. By [1, Cor. 3.11] we have 7^[p_1] = 
S'OOB-1] ®Soo ^00 so that the extension S ^ B " 1 ] C Too[p_1] is finite, etale and Galois 
with group Jf?s/Jf?Q. Similarly, one proves that T^[p_1] ^ s£[p_1] ^s^ so that 
the extension S^jp-1] C T ^ B - 1 ] is also finite, etale and Galois with group H S / H Q . 

Then, the claims that N1 = N ®Soo (IJM ^M) AND THAT N and N' satisfy the require­
ments of the theorem follow as in the proof of A.4 and etale descent. • 
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A.5. Sen's theory for and A^. — We recall some facts proven in [2, §4" 
needed in order to prove that (TS2) and (TS3) hold also for the rings A-p and A^-
Let S be a i?-algebra as in 2.1. For every i = 0 , . . . , d let 

A^(oo) := UnAs [хо] рП , . . . , [Xi-l] w 'xi+1]'n,...,[xd]'n 

and let A^(oo) be the closure of A^(oo) in AS^ for the weak topology. Here 
we write xo for the element e and we write [x{\ for the Teichmuller lift of X{. B] 

a 
construction it is stable under if i ^ 0 and it is stable under 7Q , for s >̂ 0 
if i = 0. Then, 
Proposition Â.10. — For every m > 0 and every i = 0 , . . . , d there exists a homomor-
phism 

r(0 _r(<) . Te A^(oo) [fa]**' 

called the generalized trace à la Tate, such that 

(i) it is A^(oo) [[xi] p™ j -linear and it is the identity on A^(oo) [[a;*] 
(ii) it is continuous for the weak topology; 

(iii) it commutes with the action of Gal (SQO/R) if i ^ 0 and it commutes with the 

action ofjQP ifi = 0. Furthermore, Tm 0 = TnJ>} o Tm for m, n G N and i, 

j G { 0 , . . . , d} and ri°^ o r i^ o • • • o rffl commutes with the action of ^R; 
(iv) for every n G Z such that m + n>0 we have (pn o T^+n = ri^ o <̂ n; 
(v) z£ is compatible for varying S i. e., given a map of R-algebras S —> T as in 2.1 

we have that T^t restricted to As^ coincides with T^S; 
(vi) there exists rs G Q>o such that (TS2) and (TS3) hold for every 0 < r < 

rs with A := A '̂7^ and v = wr, taking Am for m > 0 to be the closure of 
Ajg^nA^(oo) [[a;*]*™"] in A^'r^ and taking form > 0 to be the restriction 
of the maps defined in (i); 

(vii) for every N G N (TS2) and (TS3) hold for A := A^/pN^A^ and v = , 

taking Am for m > 0 to be A^(oo)/piV'flA^(oo) [[#¿1*™"] and taking RS(i), m 

for ra > 0 to be the reduction modulo p1*^1 of the maps defined in (i); 

(viii) there exists ms G N such that for m > ms the map 7; — 1 is an isomorphism 

on (l — Tm)(As ) with continuous inverse (for the weak topology). 

Proof. — Claims (i)-(v) follow from [2, Prop. 4.11]. The verification of (TS2) (resp. of 
(TS3)) in (vi) follows from [2, Prop. 4.19] (resp. [2, Prop. 4.26 & Prop. 4.28]). The 
fact that (TS2) holds in (vii) follows from (ii) and the fact that the weak topology 
on A-=/pN+1AR- is the v ^ - a d i c topology. 

Since (l — Tm) {ASEV) is p-adically complete and separated, the fact that 7? — 1 
is bijective can be verified modulo p and follows from [2, Prop. 4.26 & Prop. 4.28]. 
In particular, (7? — 1)_1 is bijective on pAr+1(l — Tm^As^) and, consequently, 
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on (1 - r^))(A5oo/piV+1A5oo) for every N G N . Note that for every h G N the 

group 7rhAg is contained in the subgroup of elements x G A ^ ^ such that wr(x) > 

hwr(7r). By (TS3) for A '̂7^ there exist constants C3 s and C4 5 such that for every 

element z in Trh(l - r & ^ A ^ (resp. A ^ ( o o ) [[a;*]**"'] HTT^A^) one has 

rvB(zfc)^((l - lf)-\z)) > wr((l - Tf")"1^)) — N > wr(z) - c3)s - N 

and, respectively, 

rvB (**)-"((! - 7 f )(*)) > «»r((l - t T )(*)) - N > wr(z) + c4,s - N. 

Since wr(z) > rv^N(z), we conclude that vE(zfc)^iV((l - 7fm)_1(«)) > v|JV(z) -
2 ^ and vE(*fc)^((l - 7 f )(*)) > v |w(z) + N > wr(z) + c4,s - NHence, (vii) and (viii) 
follow. 

bimilarly, given a it-algebra b as in 2.1, tor every z = 1 , . . . ,d let A5V (00) := 

UnA'5 [xi] pn , . . . , pn , [#¿+1] pn , . . . , [xd] pn j and let A's^(oo) be the closure 

of A^^(co) in As^ for the weak topology. Note that since i > 1 the ring A^(oo) 

contains the closure for the weak topology of UnAy [xo\ pTl j which is Ay^ by [2, 

Cor. 4.10]. Then, A^(oo)(g)~ Aw maps to A^^(oo) and the image is dense 

for the weak topology. Recall that As^ (g)~^ Aw injects and is dense in As^ 

and As (8>Av Av^ injects and is dense in A^ by 2.9. Hence, for every i = 1 , . . . , d we 

may base-change Tg m via ®~ Aw and complete with respect to the weak topology. 
We obtain a map 

Ai) _Ai) . A A's(i)(oo) [[xi]&] 

Proposition A.11. — The analogues of the statements (i)-(viii) of A.10 hold for As^, 

the rings Afs^\oo) [[#¿1*™"] and the maps tm\ 

Proof. — The proposition follows from A. 10, from the construction of t$ and density 

arguments. For (vi) note that A^0^ <8>£(o,r] ^-w^ maPs to As^0^ and has dense 

image for the wr-adic topology by 2.9(d). • 

~T<°>-1 r(d)-l , ~ t{d)~l 
Lemma A.12. — We have A ^ " 0 " = A5 and ( A 5 J 0 ""' 0 = A'5. 

Proo/. — By [2, Cor. 4.10] the monomials {[x0] pn • • • , [xd] pTl }o<ai<pn form an A5-

basis of ip~n(As) = As [x0] pU ,..., [xd] pn and Un<^~n(As) is dense in ASoo for th( 

weak topology. In particular, Un^~n(A5)ro°)"1'-'Tod)"1 is dense in A ^ ~1'"''T° _1 

and Un(^_n(A5^AV Aiy)^0^1'-'^^1 is dense in (As^)*0 _1 respectively 
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From the fact that r0(i) ([x*]^) = 0 for 0 < a < pn, we get that flf=0A^(oo) = 
~R(0)=1 r(d) = 1 ~ ~ \t(1)=l, t(d)=l 

A5 is dense in A ^ ' ' 0 and A5 <8>av is dense in (As^ J 0 ' 0 
respectively. The conclusion follows from 2.9. • 

A.5.1. The operators Tm and tm on ((p^T)-modules. — Let 5 be as in 2.2. Let 

M be a Zp-representation of gf5. If M = Z£ ef=1 Zp/pCiZp, then M(g>Zp A ^ ^ 

A^©£=1 Aft/p^Aft and on the latter we have the product topology considering 

on A-^ the weak topology. Recall that we have defined £)(M) = (M <g>zp A^)^s 

and D(M) := (M <g>zp A^)1*5. We then define the weak topology on £)(M) and 

D(M) to be the topology induced from the inclusions 2)(M) C D(M) C M <g>Zp A^. 

Assume first that M is killed by pN+1. Since A := A^/pN+1A^ satisfies (TS1)-

(TS4) due to A. 10 & A. 11 (vii), we may apply A.3 and define the operators Tm 

(resp. tm) on J)(M) and on D(M) and we get decompositions 

D ( M ) : = 3 )M(M) © © w ( M ) e • • • e (M; 

and 
D(M) := Dm(M) 0 D (M) © . . . 0 D£> (M) 

By dévissage we get the operators rV (resp. tm) on 2)(M) and on D(M) and the 
decomposition above for any torsion %-representation M. 

If M is torsion free, £ ( M ) := lim S(M/pnM) and D(M) := lim D(M/pnM) 
by 2.12. Using the construction for the torsion case and passing to the limit, we get 
the operators Tm (resp. tm) on £)(M) and on D(M) and the decomposition above. 

Proposition A.13. — Let S be as in 2.2 and let M be a Zp-representation of&s- Then, 

1) S>o(M) = S)(Af) and D0(M) = D(M); 
2) £/*e operators Tm (resp. tm) on S (M) (Vesp. D(M)^ are continuous for the weak 

topology; . . _ 
3) ifte operators Tm (resp. tm) preserve 2)t(M) fresp. D+(M),). /n particular, we 

have 
&(M) := ©^(M) ©2)^°)(Af) © • • • ©©J,i(d)(Af.) 

and _ 
Dt(M) := Dj^M) © D^^(M) © • • • © D#d>(M), 

where the modules on the right hand side are defined as in A.3; 
4) if e Ts (resp. T's) then jf -1 is bijective on S ^ ( M ) (resp. Dm\M)) with 

continuous inverse (for the weak topology); 
5) if-if e Ts (resp. r's) then - 1 is bijective on $Ji(i)(M) (resp. Dm(i\M)) 

with continuous inverse (for the weak topology); 

6) ®m{M) =_5m ( M ) n © t ( M ) , S ^ 0 ( M ) = ©W(M) n £+(M), D ^ ( M ) -
D $ ( M ) n Dt(M) and D^(M) = Dm(M) n D*(M). /n particular, ©J(M) = 
2)t(M) and D$(M) = Dt(M). 
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Proof. — Since jf — 1 = (jf - l)(Y%=o 1 j) f°r * > s> it suffices to prove 
the bijectivity and the existence of a continuous inverse in (4) and (5) for n > 0. 
Assuming (3), we have 5m(i)(M) = £>$(M) n ©t(M) and Dm(0(M) = Dm}(M) n 

(M). Then, (4) and the bijectivity in (5) imply the existence of a continuous inverse 
in (5). Claim (6) follows from the others. For every m and n € N the maps 

ipn 0 1: 3)(M) ® A 5 - ^ D ( M ) ; 
As 

n 
y>n®l: £+(M) ® A ^ - ^ D ^ M ) 

and 

<pn <g) 1 : D(M) ® A/o^D(M); 
A5 

p n ® l : D+(M) ® A ^ - ^ D ^ M ) 

are isomorphisms by 2.12(i). It follows from A. 10 and A.ll(iv) that (ipn (g> l) o r ^ n = 

Tm ° (<£n <8> l) and (</?n ® l) o r ^ n = tm ° (<£n 0 l) and that (pn ® 1 defines an isomor­

phism from 2)m+n(M) As (respectively from 3)m+n(M)®£ As , respectively 

from Dm+n(M)®£, A'5, respectively from Dm)+n(M) ®£s As) to Sm(Af) (respec­

tively 5m}(M), Dm(M), Dm(M)). Hence, it suffices to prove claims (2), (4) and (5) 

for m >̂ 0 to deduce it for everv m G N. 
Since D(Af) := lim D(M/pnM) and D(M) := lim D(M/pnM) by 2.12 and the 

oc*—n oo«—n 
operators Tm (resp. tm) are constructed on each fD{M/pnM) (resp. D(M/pnM)) 
passing to the limit, to prove (1), (2) and (4) one may assume that M is a torsion 
representation. By devissage one may also assume that M is a free Z/piv+1Z-module 
for some N £ N. Note that Tm and tm commute with the Galois action and are 
compatible with extensions C and C by A. 10 and A.ll . Due to 2.8, 
2.9 and 2.10 and etale descent, it then suffices to prove (1), (2) and (4) passing 
to an extension Soo C in R finite, etale and Galois after inverting p i. e., for 
(M®Zp A^)^T instead of 2)(M) and (M®Zp A^)Ht instead of D(M). We may 
then assume that J^j1, and hence HT, act trivially on M. Claim (1) follows then 
from A.12. Claim (2) follows from A.10(ii) and A.ll(ii). Claim (4) for m > 0 follows 
from A.4 since A := A-^/pN+LA^ satisfies (TS1)-(TS4). This concludes the proof 
of (1), (2) and (4). 

If M is a torsion representation, then (3) and the bijectivity in (5) follow 
from 2.12(ii/). Assume that M is free of rank n. Thanks to 2.8, 2.9 and 2.10 and 
etale descent we may pass to an extension S^ C in R finite, etale and Galois 
after inverting p. By [2, Thm. 4.35] there exists such an extension Soo C Too so 
that 2)t(M)®At A^ is a free A^-module of rank n. Fix a basis {e i , . . . , en} and 
choose r G Q>o such that these elements lie in M ® z A^K By 2.12(iii/) we have 

M®ZpAjL = AjLei0- . .Alen . For every 5 < min{r,rT}, see A.10(vi) & A.ll , 
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let Ws := M®z„ A^'sl . Define &°-'l(M) := W / ^ and D^(M) := WfT. Then, 
" R 

2)t(M) = Ua2>^8l(Af) and D+(M) = UaD^Ä'(Af). 
Note that A^1 satisfies (TS1)-(TS4) by A.lO(vi) & A.ll . Hence, the operators T% 

R 
(resp. tm) preserve S)̂ 0'S1(M) (resp. D^°^(M)) and we further have decompositions 

j)(M(M) := ^ ' s ] ( M ) e ^ ' s ] ' ( 0 ) ( M ) e • • • e D ^ ^ ( M ) 

and 
D<°'*1(M) := D#*](Af) e D^^iM) 0 • • • 0 D ^ ' ^ M ) 

by A.3. This proves (3) in the overconvergent case. It follows from A.4 that if 7? G Ts 
(resp. T5) then 7 f - 1 is bijective on 5S,s],(i)(Af) (resp. D^,al,(0(M) for m > 0. 
We conclude that the bijectivity in (5) holds. Claim (5) follows. • 

We deduce from A.4, A.5 and A. 13 the following theorem which summarizes the 
results proven so far: 

Theorem A.14. — The natural maps 

Hn(r5,D(M)) Hn(r5,2)(M)) rrn (&s, M <g> A ^ 

H"(r's,D(M)) H"(r's,D(M)) H" GS,M ® A-5 

H"(r's,D(M)) H.n(rs,&(M] H" H»(r's,Dt(M)] 
ZP 

ana H»(r's,Dt(M)) • H»(r's,Dt(M)] IT Go, M ® A t 
Zip 

are all isomorphisms. 

A.5.2. T/ie structure of 6-functors. — The cohomology groups appearing in A. 14 
are 5-functors i. e., given an exact sequence 0 —> W\ —• —> W3 —• 0 of 
representations we get an associated long exact sequence of cohomology groups, func-
torial with respect to morphisms of short exact sequences. 

For the cohomology groups on the right hand side it suffices to construct a left 
inverse (as sets) of the surjection W2 <S>zp A-^ —• Ws (g>zp A ^ which is continuous for 
the weak topology and has the property that the image of Ws ®zD A^- is contained 

in W2 <8>z A^-. We consider two cases. 
The first case is that Ws is a free Zp-module. Any left inverse W2 —> Ws as 

Zp-modules induces by extension of scalars the claimed inverse. 
The second case is that Ws is a torsion Zp-module. By devissage one can suppose 

that Ws is a free Z/pnZ-module. The splitting is defined lifting a basis of Ws 
to W2 and constructing a left inverse (n to the projection A ^ —• A^/pnA^. 
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Since AWpnA^ = Wn(E-ô) we define such inverse sending (ao,...,an) i—> 
ao,.. . , an, 0 , . . . 

For the cohomology groups of (<p, r)-modules we argue as follows. Due to A. 13 
we have continuous right inverses of the inclusions 1)*(Wi) C S*(Wî) and D*(Wi) C 
D*(Wi), where * stands for nothing or f. Such inverses are compatible with the 
morphisms of (<p, r)-modules induced by the map W2 —» W3. Thus, it suffices to 
construct a left inverse to the map 6 ( ^2 ) —> 6 (^3) sending D^(W3) to D^W^) 
(resp. to the map ©(W2) -> ©(W3) sending &(W3) to ©f(W2)). As before we 
distinguish two cases. 

The first is when W3 is a free Z^-module. Due to [2, Thm. 4.35] there exists an 
extension S C T, finite and étale after inverting p, so that 1)^(Ws) <8>At A ^ is a free 

Ay-module. Since A^ C A^ is finite and étale by 2.8 we deduce that ©^(^3) is a 
projective A^-module so that we can find a continuous left inverse to the surjection 
&(W2) -> ©f(W3) as A^-modules. Thanks to 2.12 we conclude the construction in 
this case simply extending scalars. 

The second case is when W3 is a torsion Zp-module. By dévissage we may assume 
that Ws is a free Z/pNZ-module. Let S C T be an extension such that &T acts 
trivially on W3. Then, ©(W3) ®AS A T = W3 ® AT is a free AT/pnAT-module. Due 
to 2.9 and 2.12 the various (ip, r)-modules associated to Wi as ^-representations, for 
i = 2 and 3, are defined by the corresponding (<p, r)-modules as ^-representations 
extending scalars via the finite and étale extension A^ c A^. A splitting as A ^ -
modules to the inclusion A^ c A^ produces at the level of (ip, r)-modules a left 
inverse (T/$ to the process of extending scalars. To conclude it suffices to construct 
the inverse considering ^-representations composing then with CT/S- One gets the 
seeked for map lifting a basis of W3 to W2 and using the left inverse to the projection 
AjL —• A^/pnA-^ constructed above. This map has the required properties since 
(n: A^/pnA^ -> A ^ sends AToo/pnAToo to A ^ and AToo>/pnAToo> to A ^ , . 

Appendix B 
Artin-Schreier theory 

The aim of this section is to prove the following: 

Proposition B.l. — The map <p — 1 on A^, Â L, A^, AjL, A ^ and A ^ is surjective 
and its kernel is Zp. Furthermore, the exact sequence 

(22) 0 >ZP t A â ^ A â , 0 

admits a continuous right splitting a: A^- —• A ^ (as Zp-modules) so that so that 
"(A*) C A5, oft-) c A^, a(A^) C A^, a(A'-) c A ^ and „(AJ) C A*. 
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Proof. — Note that by [2, Prop. 4.2] we have <p(A^'r]) C A^'r/p] and <p(A.^'r]) C 
A(o,r/P] go that ^ _ X)(At) c At and (y, _ i ) (At ) c A L . We know from 2.4 

and 2.9 that p is a regular element of A^, A ^ and A ^ and that A-^/pA^ = E^, 

A^/pA^ = E-^ and that, thanks to 2.6, the image of E ^ ® E V EVT —• ^R/P^'R is 

dense for the 7r-adic topology. In particular, to prove that ip — 1 on A-^, A ^ and A ^ 

is surjective and its kernel is Zp, it suffices to prove that the kernel of <p — 1 on E ^ 

is Fp and that ip — 1 is surjective on E^, on E ^ and on the completion of E ^ (g)Ev 

for the 7f-adic topology. Since E ^ is an integral domain by 2.3(5), the kernel of ip — 1 

is FD. The other claim follows from B.2. 

Since AX- = A-p f l A^, to conclude that ip — 1 is surjective on A\- and on A\-, 

it suffices to prove that for every z G A ^ the solutions y G A-^ of (ip — l)(y) = z 

lie in AjL. Since any such solutions differ by an element of Zp and the latter is 

contained in A^, it suffices to show that ip — 1 is surjective on AjL. Let z G A*L 

and choose r £ Q>o so that z G A^r\ Write z = ^2k[zk]pk with zk G E-^. Then, 
putting c = min{—1, wr(z)}1 we have rv&(zk) + k > c for every k G N i. e., V E ( ^ ) > 

By B.2 there exists yk G E ^ such that (ip-l)(yk) = zk and 0 < v&(yk) < vE(zk) 

if vE(2fc) > 0 or vE(2/fc) = if vE(*fc) < 0. In any case, vB(Vk) > ^ r . Hence, 

V := EkPklVk] lies in A^pr] and (ip - l)(y) = z. • 

Lemma B.2. — The map ip — 1 is surjective on E^, E±, E ^ and E i . Furthermore, 

given a and b G E-^ such that ap — a = b we have 0 < vE(a) < vE(6) if vE(6) > 0; 
and vE(a) = vE(o)/p vE(6) < 0. 

Proof. — Recall that E ^ := Us^Es (resp. E i := Us^Ej) and the union is taken 

over a maximal chain of finite normal extensions of E# (resp. E^), etale after invert-

ing TT. Then, ^ ( E j j , Z/pZ) = 0 and H*t(E+, Z/pZ) = 0, H ^ - ~ ( E g ) , Z/pZ) = 0 

and Hjt(yr°°(E±),Z/pZ) = 0. By Artin-Schreier theory E^/(y? - 1)E^ injects in 

H^t(E^, Z/pZ) and, hence, it is zero. Analogously, E±/(<p - 1)E± = 0. This im­

plies that V-~(Eg)/fo> - l)(^-°°(Eg)) = 0 and <r°°(E±)/fo> -JL)(<T~(E±)) = 0. 

By 2.3 the ring E± is the 7f-adic completion of y>~°°(E±) and E ^ = E±[7f-1]. In 

particular, E ^ = <^~°°(E^) + ?rEi and we are left to prove that given a power se­

ries 6 = Yln=i bnK71 with {bn}n in <£"°°(Ei), we can solve the equation (ip — l)(a) = 6. 

It suffices to find {an}n in </?~°°(E±) such that 7f̂ p-1̂ nâ  — an = bn. Indeed, if we 

put a := Y2™=ianKni then (ip — l)(a) = b. Given bn G <£_00(E±) there exists 

and m such that bn G (^~m(E^). But E j and <^~m(Ej) are 7f-adically complete and 

separated, the equation W^p~l^nXp — X = 6n in the variable X has 1 as derivative and 
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admits bn as solution modulo n. By Hensel's lemma it admits a unique solution an 
in <^~m(E^). The first part of the lemma follows. 

Assume that ap — a = b. Then, the properties of v^1 recalled in 2.4 imply that 
if VE(O) < 0 we have vE(ap) = pv&(a) < vE(a) and vE(6) = vE(ap — a) = pvE(a). 
On the other hand, if vE(a) > 0 we have vE(ap) = pvE(a) > vE(a) and vE(6) = 
vE(ap - a) = vE(a). If vE(a) = 0, then vE(ap - a) > 0 and vE(6) > vE(a). The 
second claim follows. • 

LemmaB.3. — For every m andneN we have (<p-l)([7f]nW(E±) + pmW(E±)) = 

[7r]nW(E±)-fpmW(E—) where [if] is the Teichmuller lift oflf. In particular, the map 

ip — 1: A-D —» A-^ zs open for the weak topology. 

Proof. — By construction {MnW(E±) + pmW(E±)}m>n is a fundamental system 

of neighborhoods for the weak topology on A ^ . Since ip — 1 is linear, the first claim 

implies the second. Since - l)(pma) = pm(<p - l)(a) for every a € W(E^), 

since ip-1 is surjective on W(E±) by B.2 and since Wm(E±) = W(E±) /pmW(E±), 

it is enough to prove that for every n we have (ip — 1)([7r]nWm (Ei ) ) = [7r]nWm (Ei) , 

Indeed, (tp - l)([7f]nWm(E±)) C (ffinWm(E±)) remarking that (tp - l)([7f]na) = 
[7f]pnaP _ ^j„a = |-jn([W](p-i)nap _ a) 0n the other hand? [W]nWm(g+) c -

l)([7f]nWm(E±)) since for every b e Wm(E±) the equation [Tr]*"-1)"** - X = I 

admits a solution modulo p (cf. proof of B.2) and, hence, in Wm(E±) by Hensel's 
lemma. The lemma follows. • 

Lemma BA. — There exists a left inverse p as Zp-modules of the inclusion t: Zp —• 
A-^ of (22), which is continuous for the weak topology. 

Proof. — Let R* be the p-adic completion of the localization of R at the generic 
point of R<g>v k. We then have a map A ^ —> A^r , which is continuous for the weak 
topology, so that it suffices to construct p for R*. We may then assume that R = R* is 
a complete discrete valuation ring with residue field L. In particular, E# is a discrete 
valuation field with valuation ring E j and AR is a complete discrete valuation ring 
with uniformizer p and residue field E#. 

Recall that E-^ is the union U5E5 over all finite normal extensions R c S C i2, 
étale after inverting p. Let R C S be any such. Since R is a complete discrete 
valuation ring, also 5 is a complete discrete valuation ring. Then, E | is a complete 
discrete valuation ring. For S C T C R finite normal extensions, étale after inverting p 
of degree n^T, we get that E j is a finite and torsion free as E^-module, of rank ns,T] 
see 2.3. By loc. cit. the choice of a E^-basis of E j determines a <^~m(E^)-basis 
of <£~m(Ej£) for every m G N and maps 

£S,T ~ . 
T f ^ E i 

100 

Tf^Ei 
Tf^Ei 

Tf^Ei Tf^Ei ns,T 
1 oc 
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where £$,T is a constant depending on S C T. We thus get an isomorphism E ^ T —> 
E T ^ as topological groups (for the 7f-adic topology). Since E j is integrally closed 
in E j , we may assume that the given E^-basis of E j contains 1. Suppose furthermore 
that ^f- < 1. We then get a splitting of the inclusion E^^ C EToo as Es^-modules 
such that TTEJ^ is mapped to E . Consider the set & of pairs (A, t) where A is a 
normal sub-Ej^-algebra of U^-Es^ and t: A —> E j ^ is a splitting of the inclusion 
^Rao C A as -modules such that t^An (if • UsEj^)) C E ^ . It is an ordered 
set in which every chain has a maximal element. Zorn's lemma implies that & has 
a maximal element which, by the discussion above, must coincide with UsEs^. We 
conclude that there exists a left inverse £ as E / ^ -modules of the inclusion E ^ C 
UsEs^ such that TTEJ^ is mapped to E ^ for every S. Since E ^ (resp. E±) is 
the 7f-adic completion of Us-Es^ (resp. U^Ej^) and since E^^ (resp. E# ) is 7f-
adically complete and separated, £ extends to a left inverse £ as E ^ -modules of the 
inclusion E ^ C Ê r mapping TTEIL to E ^ . In particular, ( is continuous for the 
7f-adic topology. 

On the other hand, recall from 2.3 that E t = L®k /Coolf̂ /fl and that E t is the 

completion of UnE^ 
l l l 

p-n pn p-fT 
7TK , XX ,...,XD 

for the topology denned by the fundamenta] 

system of neighborhoods 7TM UnL0fc E+[7r^n] 
l _j_ ' 

p-fT pn 
Xl 5 ' ' ' 1 Xd m 

Define 

6: LL / ^ ( ( W Y 
k 

l l l 
pTl pTl pfl 

nK » Xl ' • • • ' xd 

/^((WY 

k 
as the L-linear map sending ir^x1^ • • • x%£ to 0 for every (¿0, ¿1,.. . , id) € Qd+1 such 
that (¿1,..., id) is not equal to 0 in (Q/Z)d. It is well defined since {7TK,XI, . . . , 

is an absolute p-basis of E^. Furthermore, S is continuous for the 7rx-topology 
and, hence, it extends to a continuous left inverse v as L-modules of the inclu­
sion L<S)k koo C E / ^ considering the 7f-adic topology on E ^ and the discrete topol­
ogy on L. Finally, choose a left splitting r as Fp-vector spaces of Fp C L<S)k k^. 

Let S: A-^ —> Zp be the map sending a Witt vector (ao, . . . , an , . . . ) of A-^ = 
W(E-^r) to (T o v o £(ao), . . . , r o 1/ o £(an),. . .). It is a left inverse of the inclusion 
7iP C A ^ and it is continuous for the weak topology on A-^ and on Zp. Note that the 
topology induced on Zp from the weak topology on A-^ is the p-adic topology. The 
lemma follows. • 

End of the proof of Proposition B.l. — With the notations of B.4, let e := 
LO p: A-^ —> A-^. It is a continuous homomorphism of Zp-modules and e2 = e. Thus, 
if M := Ker(e) = Im(e — 1), we have that M is closed in A ^ and A ^ = ZP®M. 
Then, {up — 1)|M* M —> A ^ is bijective. It is open thanks to B.3. Hence, its 
inverse is a continuous homomorphism of Zp-modules. We let a be the composite 
of ((<p — 1) |M) 1 and the inclusion M C A-^. It satisfies the requirements of B.l. • 
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