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Séminaire BOURBAKI 

59e année, 2006-2007, n° 972, p. 175 à 204 

Mars 2007 

ORDINARY DIFFERENTIAL EQUATIONS 
W I T H ROUGH COEFFICIENTS A N D 

THE RENORMALIZATION THEOREM OF AMBROSIO 

[after Ambrosio, DiPerna, Lions] 

by Camillo DE LELLIS 

INTRODUCTION 

Consider the Cauchy problem for transport équations on R + x RN: 

( i ) 

dtu(t, x) + b(t, x) Vxu(t,x) = 0 

u(0,x) • u(x). 

Here b : R + x RN —> RN is a given smooth vector field, û a given smooth initia] 

condition and u the unknown function. Smooth solutions of (1) are constant along 

curves 0 : [a, b] —> RN solving the System of ordinary differential équations <j)(t) = 

b(t,(f>(t)). Indeed, differentiating g(t) = u(t,(f)(t)) we find 

dg 

dt 
dMt d>(t)) + é(t) • VTu(t, 6(t)) dtu(t, (f)(t)) + b(t, 0 (0) ' Vxw(t, 0 (0) = 0. 

Thus, if $ : R + x RN —* RN is the one-parameter family of diffeomorphisms solving 

(2) 

dt®{x,t) = b{t,®{x,t)) 

$(0,x) ^ x 

and ^_1(t, •) dénotes the inverse of the diffeomorphism <£>(£, •), then the unique solu­

tion u of (1) is given through the formula u(t,x) = u(Q~l(t,x)). This is the classical 

method of characteristics for transport équations. Our discussion justifies the name 

transport équation: the quantity u is simply "transported" along the trajectories of 

the ODE (2). It is therefore not surprising that thèse équations appear in the math-

ematical description of many phenomena in classical and statistical physics. 

When b is Lipschitz, existence and uniqueness of solutions to (2) are given by the 

classical Cauchy-Lipschitz Theorem, but for less regular b this élégant and elementary 
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picture breaks down. On the other hand, many physical phenomena lead naturally to 

consider transport équations where the coefficients b are discontinuons. The literature 

related to this kind of problems is huge and I will not try to give an account of it here. 

Let me just mention that in many of thèse problems one deals with coefficients which 

typically have jump discontinuities, take for instance the theory of shock waves. 

It is therefore désirable to have a theory of solutions for ODEs and transport équa­

tions which allows for non-smooth coefficients. The Sobolev spaces W1,p (given by 

functions u G Lp with distributional derivatives in Lp) are probably the most popular 

spaces of irregular functions in partial différential équations. In their groundbreaking 

paper [28], motivated by their celebrated work on the Boltzmann équation, DiPerna 

and Lions introduced a theory of generalized solutions for transport équations and 

ODEs with Sobolev coefficients. Loosely speaking, this is done at the loss of a "point-

wise" point of view into an "almost everywhere" point of view. Though a generic 

function u G Wl'p(Q) might be extremely irregular, its singular set, at least in a suit-

able measure theoretic sensé, has necessarily codimension higher than 1. In particular, 

functions with jump discontinuities do not belong to W1,p. Indeed, if the discontinu­

ities are along nice regular surfaces, the distributional derivatives are nothing more 

than Radon measures. 

A commonly used functional-analytic closure of such "jump functions" is the BV 

space, i.e. the set of summable functions whose distributional derivatives are Radon 

measures. The extention of the DiPerna-Lions theory to BV functions has been for 

a while an important open problem. After some attempts by other authors leading 

to partial results (see [33], [15], [21]; some of thèse works were motivated by spécifie 

problems in partial differential équations and mathematical physics), Ambrosio solved 

the problem in its full generality in [6]. This note is an attempt to illustrate the most 

important ideas of the DiPerna-Lions theory and of Ambrosio's resuit. In order to 

focus on the main points, I will not consider the most gênerai results proved so far. 

Moreover, I will not follow the shortest proofs and often I will consider cases which 

later on become corollaries of more gênerai theorems. 

In the first section, I discuss the first key idea of [28]: the notion of renormalized 

solutions and its link to the uniqueness and stability for (1). In Section 2, I discuss 

the hard core of the DiPerna-Lions theory for Wlp fields: the so called commutator 

estimate. In Section 3, following the ideas of Ambrosio, I push gradually the DiPerna-

Lions approach towards the BV case. The proof of Ambrosio's Theorem is finally 

achieved in Section 4 in two différent ways, based on observations of Bouchut and 

Alberti. Section 5 discusses the third key idea of [28], a sort of converse of the classical 

theory of characteristics: appropriate results on transport équations can be used to 

infer interesting conclusions on ODEs. Section 6 surveys further results, conjectures 
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and open problems in three différent directions of research. Section 7 contains the 

proof of one technical proposition on BV functions used in Section 3. 

1. RENORMALIZED SOLUTIONS 

1.1. Distributional solutions 

Let us start by rewriting ( 1 ) in the following way: 

( 3 ) 

dtu + àivx(ub) — udivxb = 0 

u(0, x) — u(x) . 

Here and in what follows I dénote by divxb the divergence (in space) of the vector b. 

Clearly any classical solution of ( 3 ) is a solution of ( 1 ) and viceversa. However, équa­

tion ( 3 ) can be understood in the distributional sensé under very mild assumptions 

on u and b. This is stated more precisely in the following définition. 

DÉFINITION 1.1. — Let b and û be locally summable functions such that the distri­

butional divergence of b is locally summable. We say that u (E L™c is a distributional 

solution of ( 3 ) if the following identity holds for every test function ip G (M x MN) 

( 4 ) 
'OC 

0 
u [dt(f + b • V'x(p + <p divxb] dx dt 

M7 
u(x)ip(0, x) dx. 

Of course for classical solutions the identity (4) follows from a simple intégration by 

parts. The existence of weak solutions under quite gênerai assumptions is an obvious 

corollary of the maximum principle for transport équations combined with a standard 

approximation argument. 

LEMMA 1.2 (Maximum Principle). — Let b be smooth and let u be a smooth so­

lution of ( 3 ) . Then, for every t we have s\ipxeRn u(t, x) < supTeRri û(x) and 

infxGMn u(t,x) > mîxeRn û(x). Hence \\u{t, -)IIL-(M-) < ||ïl||oo-

Proof. — The lemma is a trivial conséquence of the method of characteristics. Indeed, 

arguing as in the introduction u{t,x) — û^"1 (t, x)), where $ is the solution of ( 2 ) . 

From this représentation formula the inequalities follow trivially. • 

THEOREM 1.3. — LetbeLp with divxb G L}oc and let û G L ° ° . Then there exists a 

distributional solution of ( 3 ) . 
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Proof. — Consider a standard family of mollifiers Çe and n£ respectively on RN and 

R x RN. Let b£ = b * r\£ and u£ — û * (£ be the corresponding regularizations of b 

and û. Then Ht̂ Hoo is uniformly bounded. Consider the classical solutions u£ of 

(5) 

dtu£ + b£ • Vxu£ = 0 

u£(0, •) = u£ . 

Note that such solutions exist because we can solve the équation with the method of 

characteristics: indeed each b£ is Lipschitz and we can apply the classical Cauchy-

Lipschitz theorem to solve (2). By Lemma 1.2 we conclude that ||we||oo 1S uniformly 

bounded. Hence there exists a subsequence converging weakly* to a function u G 

L ° ° ( R + x RN) . Let us fix a test function ip G C ^ ° ( R x RN) . Since the u£ are classical 

solutions of (5), the identity (4) is satisfied if we replace u, b and û with u£, b£ and 

û£. On the other hand, since b£ —• 6, àivxb£ —• d\vxb and û£ —» û locally strongly in 

L11oc, we can pass into the limit in such identities to achieve (4) for u, û and b. • 

1.2. Renormalized solutions 

Of course the next relevant questions are whether such distributional solutions are 

unique and stable. Under the gênerai assumptions above, the answer is négative, as 

it is for instance witnessed by the élégant example of [27]. However, DiPerna and 

Lions in [28] proved stability and uniqueness when b G Wl'p Pi L°° and d\vxb G L°°. 

THEOREM 1.4. — Let b G L X ( R + , W1^p(Rn)) n L ° ° with bounded divergence. Then 

for every û G L°° there exists a unique distributional solution of (3). Moreover, let 

bk and ïîk be two smooth approximating séquences converging strongly in L\oc to b and 

û such that HïZfclloo ^s uniformly bounded. Then the solutions ut of the corresponding 

transport équations converge strongly in L\oc to u. 

In order to understand their proof, we first go back to classical solutions u of (3), 

and we observe that, whenever (3 : R —> R is a C1 function, /3(u) solves 

(6) 
dt[p(u)}+dWx [!3{u)b] (5{u)àivxb = 0 

\0(u)] = 0(û) 

This can be seen, for instance, using the chain rule for differentiable functions, i.e. 

dt/3(u) + b • Vx/3(u) = f3'(u)[dtu + b • Vxu]. Otherwise, one can observe that, since 

u must be constant along the trajectories (2), so must be j3{u). Motivated by this 

observation, we introduce the following terminology. 

DÉFINITION 1.5. — Let b G L\oc withà\vxb G L\oc. A bounded distributional solution 

of (3) is said renormalized if (3(u) is a solution of (6) for any (3 G C1. The field b is 
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said to have the renormalization property if every bounded distributional solution of 

(3) is renormalized. 

When b and u are not regular we cannot use the chain rule, neither the theory 

of characteristics. Therefore, whether a distributional solution is renormalized might 

be a nontrivial question. Aetually, for quite gênerai 6, there do exist distributional 

solutions which are not renormalized (see again [27]). The proof of Theorem 1.4 by 

DiPerna and Lions consists of two parts, the first one, which is "soft" can be stated 

as follows. 

PROPOSITION 1.6. — IfbE L°° has the renormalization property and its divergence 

is bounded, then the uniqueness and stability properties of Theorem 1.4 hold. 

The second one, which is the "hard" part of the proof, states essentially that W1,p 

fields have the renormalization property. 

THEOREM 1.7. — Any b G I/1([0, oo[, W1,p(Mn)) has the renormalization property. 

We postpone the "hard part" to the next section and corne first to Proposition 1.6. 

Proof — Uniqueness. Fix a UQ and let u and v be two distributional solutions of 

(3). It then follows that w = u — v is a distributional solution of the same transport 

équation with initial data 0. By the renormalization property so is w2, i.e. 

( 7 ) 

dtw2 + divx(w2b) w2 divx6 

w2(0, •) = 0. 

Integrating (7) "formally" in space we obtain 

dt 
RN 

w2(t, x) dx = w2(t, x) divxb divxb | oo 
RTL 

w2(t,x) . 

Since JRn w*(0, x) dx — 0, by Gronwall's Lemma we would conclude JRri w'z(t, x) dx = 0 

for every t. We sketch how to make rigorous this formai argument. Assume for 

simplicity ||fr||oc < 1. Let T, R > 0 be given and choose a smooth cut-off function 

(f G Cc°°(IRxIRn) such that fi = 1 on [0,T]xBR(0) and dtifi < on [0, 2T] xRn. 

Now let ij) G C^{] - 2T,2T[) be nonnegative and test (7) with ip(t)fi(t,x). Define 

f{t) = fRn w2(t, x) fi(t, x) dx and use Fubini's Theorem to get 

oo 

'o 
f(t)dMt) dt 

•oc 

0 
é(t)(£(t, x) w2(t< x) divrb(t, x) dx dt 

'OO 

'0 
ib(t)w2(t, x) \dt.v(L x) + bit, x) • V„tû(L x)] dx dt 
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Note that the second intégral in the right hand side is nonpositive, whereas the first 

one can be estimated by Hdiv̂ Ĥoo f f(t)ip(t) dt. We conclude that / satisfies a "dis­

tributional" form of Gronwall's inequality for t G [0, 2T[. It can be easily seen that 

this implies / = 0. Thus w = 0 a.e. on [0,T] x J3#(0), and by the arbitrariness of R 

and T we conclude w = 0. 

Stability. Arguing as in Theorem 1.3, we easily conclude that, up to subsequences, 

Uk converges weakly* in L°° to a distributional solution u of (3). However, by the 

uniqueness part of the Theorem, this solution is unique, and hence the whole séquence 

converges to u. Since the bk and the Uk are both smooth, u\ solve the corresponding 

transport équations with initial data u2. Arguing as above, u\ must then converge, 

weakly* in L°°, to the unique solution of (3) with initial data u2. But by the renor-

malization property this solution is u2. Summarizing, Uk u and u2 u2 in L00, 

which clearly implies the strong convergence in L\QC. • 

2. THE C O M M U T A T O R ESTIMATE OF DIPERNA A N D LIONS 

In this section we corne to the "hard part", i.e. Theorem 1.7. We first prove a 

milder conclusion, neglecting the initial conditions, which will be adjusted later. 

PROPOSITION 2.1. — Assume b G VF1'P(MN)) and let u G L°° solve 

(8) dtu + div x(ub) — udivxb — 0 

distributionally on M+ x W1. Then, for every (3 G C1, 

(9) dt[f3(u)]+divx(p(u)b) - 0(u)d\vxb = 0. 

2.1. Commutators 

Let us fix u and b as in Proposition 2.1 and consider a standard smooth and even 

kernel p in IRn. By a slight abuse of notation we dénote by u * p£ the convolution 

in the x variable, that is [u * p£](t,x) = f u(t,y)p£(x — y)dy. Mollify (8) to obtain 

0 = dfu * pF + \d\vT(bu)] * p£ — \ud\vxb\ * p£. We rewrite this identity as 

(10) dtu * p£ + b- Vxu * p£ -R£ + [{u divxb) * p£ - u* p£ divxb] 

where R£ are simply the commutators 

( H ) R£ = [divx(bu)] * p£ - di\x[b(u * p£)} . 

Since R£ is a locally summable function, the identity (10) implies that dtu * p£ is 

also locally summable. Thus, u * p£ is a Sobolev function in space and time, and we 
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can use the chain rule for Sobolev functions (see for instance Section 4.2.2 of [30]) to 

compute 

dt\p(u*pe)] + b-Vx [0(u*pe)] (3\u * pe) [dtu * p£ + b • Vxu * p£] . 

Inserting (10 ) in this identity we get 

( 1 2 ) dt\J3(u*pe)] + b.Vx [0(u*pe)] P'(u*pe){R£ + [(u divx b)*p£-u*p£ dxvx b]} . 

Now, the left hand side of ( 1 2 ) converges distributionally to the left hand side of (9) 

Recall that ^ ' ( i ^ ) | | oo and \\u * p£\\oo are uniformly bounded, whereas 

[(udivxb) * p£ — u * p£ divxb] 0 

strongly in L\oc. Therefore, in order to prove Proposition 2.1 we just need to show 

that 3'(u * p£)R£ converges to 0. This is implied by the following lemma. 

LEMMA 2 . 2 (Commutator estimate). — Let b e L 1 ( M + , i y 1 ^ ( R N ) ; u e L°° and R£ 

as in ( 1 1 ) . Then R£ —> 0 in L\oc. 

2.2. The commutator estimate of DiPerna and Lions 

Proof of Lemma 2.2. — Without loss of generality we assume that the kernel p is 

supported in B^ ( 0 ) . First we use the elementary identity 

Re 

i 

(ubi) * dXip£ 

i 

bi(u * dXip£) u * p£ divxb 

and we expand the convolutions to obtain 

( 1 3 ) Re(t,x) u(t,y)(b(t,x) b(t,y)) • Vpe(x - y)dy [u * p£ dxvxb\ (t,x) . 

Since Vp£(0 = e-n-1Vp(Ç/e), we perform the change of variables z — (x — y)/e to 
get 

(14 ) Re(t,x) ^ u(t, x + ez\ 
b(t, x + ez) — b(t, x) 

e 
V'p(z) dz— [u*p£ divxb] (t, x) . 

Next, fix a compact set K. By standard properties of Sobolev functions (see for 

instance Section 5.8.2 of [29]), the différence quotients 

( 1 5 ) d£,z(t,x) 
6(t, x + ez) — b(t, x) 

6 

are bounded in LP(K) independently of z G ^di(O) and s GJO, 1[. We now let s i 0. 

For each fixed z, d£,z converges strongly in LP(K) to dzb. The functions uz,£(t,x) = 

u(t,x + ez) are instead uniformly bounded in L°°, and, by the L1-continuity of the 

translation, they converge strongly in LX(K) to u. 
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Therefore we conclude that R£ converges strongly in L\oc to 

Ro(t,x) —u(t, x) dzb(t, x) • Vp(z) dz — [u divxb] (t, x) 

—u(t, x) dib>(t,x) ZidZjp(z) dz — u(t, x) divx6(£, x) . 

Intégrâting by parts we have / ZidZjp = —ôij. So R0 = 0, which complètes the 

prooi 

2.3. The initial condition 

In order to prove Theorem 1.7 we still need to show that (3(u) takes the initial 

condition [/3(u)](0, •) = (3(u)(-). This is achieved with a small trick. 

Proof of Theorem 1.7. — Consider b and u as in Theorem 1.7 and extend both of 

them to négative times by setting b(t,x) — 0 and u(t,x) = û~(x) for t < 0. It is 

then immédiate to check that dtu + divx(bu) = udivxb distributionally on the whole 

space-time R x RN. On the other hand the proof of Proposition 2.1 remains valid if we 

replace R + with R (actually the proof remains the same on any open set Q C R x RN) . 

Therefore 

dt\0(u)] +divx [&/?(«)! = B(u)divxb 

distributionally on x i " . We test this équation with a <p G C£°(R x i " ) , recalling 

that [f3(u)](t,x) = f3(û(x)) and b(t,x) = 0 for t < 0. We then conclude 

(16 
r>00 

0 
j3(u) [dt(p + b • V'x<p + divxb <p] dx dt P(û(x) 

-0 

— oo 
dt<p(t, x) dt dx . 

On the other hand, since ip is smooth, we can integrate by parts in t in the right hand 

side of (16) in order to get J /3(u(x))<p(0,x)dx This concludes the proof. 

3. THE BV CASE: THE C O M M U T A T O R ESTIMATE 
OF AMBROSIO 

Let us try to push the proof of DiPerna and Lions to the BV case (we recall here 

that a function of bounded variation is simply a summable function whose distri­

butional derivatives are Radon measures). Notice however that, in order to make 

sensé of a distributional solution of (3) as in Définition 1.1, we do need the additional 

assumption divxb 6 L1, because for a generic BV function the divergence is only a 

Radon measure. 

The only point where the strategy of DiPerna and Lions does not work is in the 

proof of Lemma 2.2. There we can still conclude that the différence quotients (15) 
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are bounded in L\oc, but we cannot conclude that they converge strongly in L\QC to 

dzb. In fact, dzb is now a Radon measure, and de^z converges to it weakly* in the 

space of Radon measures (this weak* convergence is the one coming from duality 

with continuous functions through the Riesz Représentation Theorem). However, 

though we cannot conclude that Lemma 2.2 holds, we still get some information: the 

right hand side of ( 1 2 ) is uniformly bounded in L\oc, and hence converges (up to 

subsequences) to a Radon measure \i. We include this statement in a lemma to which 

we will refer later. 

LEMMA 3 . 1 . — Let u e L°° and b G L1 (R+, BV (W1)) with divxb G L1. Assume that 

dtu + divx(ub) — udivxb = 0 distributionally on M+ x W1. Then, for every (3 G C 

(17 ) dt\p{u)\ + divx(f3(u)b) - (3{u) dÏYxb = /i 

for some Radon measure \i. 

3.1. Différence quotients of BV functions 

In what follows we will dénote by Dxb the distributional differential in the space 

variables of the vector field b. That is, the matrix of distributional partial derivatives. 

In order to go beyond Lemma 3.1, consider that, by the Radon-Nikodym décomposi­

tion, the distributional derivative Dxb, which is a measure, can be split into the part 

which is absolutely continuous with respect to the Lebesgue measure and the singular 

part. We dénote them by Dxb and Dxb. The Sobolev space W1,1 is simply given by 

those BV functions b for which the singular part Dxb vanishes. For such functions, 

according to Proposition 2.1 , the measure \i in ( 1 7 ) vanishes. It is therefore natural 

to conjecture that, in the gênerai BV case, [i is a singular measure. 

In order to show this, we need a refined analysis of the différence quotients of 

BV functions. We start by introducing a bit of terminology. First of ail, we can 

regard Dxb as a matrix of measures or as a matrix-valued measure. Since Dxb is an 

absolutely continuous function, we can write it as fJ??n+1, where J2fn+1 dénotes the 

n + 1-dimensional Lebesgue measure, and / is a matrix-valued function. In this case 

/ is usually denoted by V'xb in the literature (indeed it coincides with an appropriate 

measure-theoretic notion of pointwise differential of 6, see [12]). 
Thanks to the Radon-Nikodym décomposition, a similar splitting holds for Dsxb 

as well. That is, we might write Dsxb = M\Dsxb\, where \Dsxb\ is the total variation 

measure of Dsxb (and hence a nonnegative measure), and M is a matrix-valued Borel 

function. We are now ready to state the following 

PROPOSITION 3.2. Let b G BV(R x MN,RN) and let z G Rn. Then the différence 

quotients 
b(t,x + ôz) - b(Ux) 

S 
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can be canonically written as b\ s(z)(t,x) + b2 ô(z)(t,x), where 

(a) b\j(z) converges strongly in L\oc to Vxb • z as ô l 0. 

(b) For any compact set K C M x W1 we have 

(18) lim sup \b2,ô(z)(t,x) dx dt < \Dsxb-z K 

(c) For every compact set K C R x EN we have 

(19) sup 
ÔE\0,e[ 

I6i *(z)(t.x) &2j(*(2)(*,a0 dx dt \z\\Dxb\{K£) 

where K£ {(t,x) dist ((£,x),iT) < s} 

Loosely speaking, in this canonical splitting b\j(z) is converging towards the abso-
lutely continuous part of dzb, whereas b2^{z) is converging towards the singular part. 
In order to understand why this décomposition is possible, consider the case when b 

is a function of one real variable, and split its dérivâtive b' into the sum b'a + b's of its 
absolutely continuous part and its singular part. Let b\ be a primitive of b'a and b2 a 
primitive of b's. For instance we can defîne b\(x) = b'a([0,r[) and b2(x) = b's([0,r[) for 
r positive and b\(x) = —b'a(]T,0]) and b2(x) = bfsQ — r, 0]) for r négative. The sum 
of the différence quotients of b\ and b2 give the différence quotients of 6, and it is, 
actually, the splitting of Proposition 3.2. For instance, since b\ is a W1,1 function, its 
différence quotients converge strongly in L1 to its derivative, that is b'a: this gives (a). 
The remaining points (b) and (c) follow in a similar way. The proof of the proposition 
in the gênerai case is perhaps the most technical part of this note, but it is based on 
the 1-dimensional case sketched above through the "slicing theory" of BV functions. 
The interested reader will find it in the appendix. 

Remark 3.3. — The décomposition of the proof is canonical in the sensé that we give 

an explicit way of constructing b\^ and b2^s from the measures D^b-z and Dsxb-z. One 

important conséquence of this explicit construction is the following linearity property: 

If fc1, b2 G BV]nc, Ai, Ào G R , and z G MN, then 

(\ib1 + \2b2)ilô(z)(t,x) \iblô(z)(t,x) + \2bls(z)(t,x). 

3.2. The commutator estimate of Ambrosio 

We now use the technical Proposition 3.2 to give a more careful estimate on the 

commutators R£. The idea is again to follow the proof of Lemma 2.2, but this time, 

once arrived to (14), we will substitute the différence quotients of b with the splitting 

given by Proposition 3.2. We will then show that the "&i,e" cancels with the divergence, 

whereas for the singular part "&2,e" we W1U use the crudest estimate available. In order 

to state the final resuit, we first need some notation. 

ASTÉRISQUE 317 



(972) THE RENORMALIZATION THEOREM OF AMBROSIO 185 

DÉFINITION 3 .4 . — For any rj G C £ ° ( R N ) and any n x n matrix M we define 

A(M,V) IV t /O) . M • z\ dz. 

We are now ready to state Ambrosio's Commutators Estimate. 

PROPOSITION 3 .5 (Commutators estimate). — Let b, u and 0 be as in Lemma 3.1. 

Let p be any even convolution kernel and let M be the matrix-valued Borel function 

such that Dsxb = M\Dsxb\. Then the measure p of ( 17 ) satisfies the inequality 

( 2 0 ) |//| <CA(M,p)\D°b\. 

Proof — Consider a continuous compactly supported test function (p and use the 

coniDutations of Subsection 2.2 in order to conclude 

(p du — lim 
e|0 

(fi0\u * p£)Re (fit3r(u)u divxb 

lim (fi(t, x)[/3'(u)u](t, x + ez] 
bit. x + ez) — bit, x) 

e 
• Vp(z) dz dx dt 

( 2 1 ) (fif3'(u)u divxb 

( 2 2 ) - lim 
elO 

v(t,x)\0'(u)u] (t,x + £z)bii£(z)(t,x) Vpiz) dz dx dt 

( 2 3 ) lim v(t,x)\B'{u)u] (t,X + £z)b2,£(z)(t,x) V'p(z) dz dx dt. 

We now use Proposition 3.2 to show that ( 2 2 ) vanishes and to estimate ( 2 3 ) with (a 

suitable modification of) the right hand side of ( 2 0 ) . 

Indeed, from Proposition 3.2(a) and (c), and from the strong L\oc convergence of 

u * pe to u, the second intégral in ( 2 2 ) converges to 

(24 ) (fi(t,x)0 (y(t,x))u(t,x] ej • Vb(t, x) • a ZjdZip(z) dz dx dt. 

Arguing as in Subsection 2.2, (24 ) is equal to 

fi(t, x)u{t, x)0f{u{t, x)) tr V6(£, x) dx dt 

On the other hand, tr Vb is just the absolutely continuous part of the divergence of b. 

Since by assumption àivxb is absolutely continuous, it coincides with its absolutely 

continuous part. Therefore, ( 2 2 ) cancels with ( 2 1 ) . 

We now corne to ( 2 3 ) . Since 0' and u are both bounded, ( 2 3 ) can be estimated by 

( 2 5 ) C lim sup \(fi(t,x) \bor(z)(t,X • Vp(z) \ dz dx dt. 
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Next, let S = \\<p\\c°i ^ Ka be the closure of {(t,x) : | a ; ) | > a} and rewrite (25) 

as 

(26) C lim sup 
£10 

s 

0 Ko 
\b2,e(z)(t,x) V'p(z) | dz dx dt da . 

From Proposition 3.2(c), we know that 

(27) lim sup 
e|0 Ko 

b2Az)(t,x Vp(z)\dt dx Dxb>X/p(z)\(Ka). 

Moreover, since for z outside the support of p the intégral in (27) vanishes, the map 

(o,z) 

Ko 
\b2,e(z)(t,x) Vp(z)\dt dx 

is bounded. Therefore, we integrate (26) first in (t, x) and use (27) and the dominated 

convergence theorem to bound (26) with a constant time 

(28) 
S 

/o 
\Vp(z) - Dsxb - z\(Ka) dz da 

Let vz be the measure \Vp(z)-Dxb-z |V>(z) • M • z\\D°xb\. Then (28) is simply 

\tp(t, x)\di'z(t, x) dz \p(t,x)\\Vp(z)-M(t,x) z\d\D3xb\(t,x) dz 

<p(t,x \Vp{z) • M(t,x) • z\dz d\Dsxb\(t,x) 

\<p(t,x)\A(M(t,x),p)d\Dxb\(t,x). 

Summarizing, we get 

(pdp < C \<p(t,x)\A{M(t,x),p)d\D'xb\(t,x) 

for any continuous compactly supported (p. This is indeed the desired claim (20). 

3.3. Optimizing the choice of the kernel 

Let us recollect what proved so far in this section. We started with a BV field 6, a 

distributional solution u of dtu + divx (ub) = udivxb and a function j3 G C 1 ( R ) and 

we have proved that the distribution dt[(3(u)} + divx[/3(u)b] — /3(u) divxb is a measure 

u satisfying 

(29) \p\<CA(M,p)\Dxb\, 

for any choice of an even convolution kernel p G C^° (RN) . 

Clearly our estimate is far from being optimal: the measure p and the constant 

C are both independent of the kernel p. We can therefore optimize in p. Since the 

estimate (29) has a local nature, this optimization procédure is, in a certain sensé, 
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équivalent to vary the regularizing kernel in t and x. In order to state our optimized 

estimate, we define the set of kernels 

(30) JC f] G C^°(B1(0)) such that r\ > 0 is even, and fBi^ rj = 1 

THEOREM 3.6. — Letu, b, and (3 be as in Lemma 3 .1 . Then dt[f3{u)] + à\vx[f3(u)b] -

f3(u) divxb = f\Dsb\ for some Borel function f satisfying 

(31) f(t,x) C inf A(M(tx),p) for \Dsxb\-a.e. (t,x). 

Proof — Let p be as in (17). The inequality (29) implies its absolute continuity 

with respect of \Dsxb\. Therefore there exists a Borel function / such that p = f\Dxb\. 

There is only one technical subtlety to take into account. From Proposition 3.5 we 

know that 

\f(t,x)\<A(M(t,x),p) for \Dsxb\-a.e. (t,x) 

whenever we fix a convolution kernel p. However, the set of measure zéro where the 

inequality fails might in principle dépend on p. This gives no trouble as soon as we 

infimize on a countable set of kernels JC' (because a countable union of sets of measure 

zéro has measure zéro!): 

f(t,x) inf A(M(t ,x) ,p) for |£>£&|-a.e. (t,x). 

However, for any fixed matrix M, the map p i-» A (M, p) is continuous for the W1'1 

topology. Therefore, if we choose KJ to be any countable subset of JC dense in the 

W1,1 topology, then the infimum over JC' coincides with the infîmum over JC. • 

4. THE LEMMAS OF BOUCHUT A N D ALBERTI 

Our plan so far leads us to the following question: given a matrix M, what is the 

infimum of the functional A (M, p) over the set of kernels JC? One lower bound for 

this infîmum follows from a simple intégration by parts: 

A(M,p) 
Bi(o; 

Vp(y) • M • ydy 

k,j 
M2j 

B1(o) 
YJ 

dp 

zk 
(y) dy{ 

(32) 

k,j 
Mjk 

Bi(0 
ôjkp(y) dy \trM 

Now, in the case at hand, recall that M\Dsxb\ is the singular part of the derivative 

Dxb. Therefore tr M\Dxb\ is just the singular part of the divergence, which by our 

assumptions is zéro. The proof that dt[/3(u)] + divx[/3(u)b] — 0 is therefore completed 

by the following; lemma, whose proof is due to Alberti: 
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LEMMA 4.1 (Alberti). — For any n x n matrix M we have 

(33) inf A(M,r>) = ItrAfl . 

However, Ambrosio's original proof was instead based on the following spécial case 

of Alberti's Lemma. 

LEMMA 4.2 (Bouchut). — For any pair of vectors £, x £ ^n we have 

(34) inf ACv 0 £,r?) lÉ'Xl = | t r ( x ® 0 | 

Actually this statement does not appear in Bouchut's work: the formulation above 

is due to Ambrosio, who introduced the whole framework containing the A-estimate 

for the commutators and the local optimization of the kernel. However the lemma is 

inspired by the paper of Bouchut [15], where the idea of using a certain class of very 

anysotropic kernels was used for the first time. 

Let us informally explain why Lemma 4.2 suffices. When M\Dsxh\ is the singular 

part of the distributional derivative of a BV function, M(t,x) is a rank-one matrix for 

\Dxb\-a.e. (t,x). This resuit, which is probably the deepest one in the theory of BV 

functions, is also due to Alberti (see [2]; for a récent brief, but nonetheless complète, 

account of the proof, see [26]). In order to understand its statement, the reader might 

check it on the easiest examples, i.e. functions which are piecewise constants. In this 

case the resuit is a trivial fact: the hard core of Alberti's resuit is that the same 

property holds also when (part of) the distributional derivative of b is a fractal-type 

measure. 

In any case, by Alberti's Rank-one Theorem, Bouchut's Lemma is already sufficient 

to prove the renormalization theorem of Ambrosio. 

THEOREM 4.3. — Let u, b, and (3 be as in Lemma 3.1. Then dt[/3(u)]+dïvx[(3(u)b] -

(3(u) drvxb = 0 

Moreover, arguing exactly as in Subsection 2.3, we can adjust the initial conditior 

to conclude 

THEOREM 4.4. — Let b G L1(IR+, BV(Rn)) with absolutely continuous divergence. 

Then b has the renormalization property. 

Before coming to the proof of thèse lemmas, we want to point out an important 

fact. As already said, we can regard the optimization procédure of Theorem 3.6 as an 

implementation of the idea "a varying regularizing kernel approximates better than a 

fixed one". Then both Bouchut's and Alberti's Lemmas tell us that, close to points 

where the singular part of Dxb is large, the optimal choice is a very anisotropic kernel. 

As already said above, this intuition originated in Bouchut's paper [15]. 
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4.1. Bouchut's Lemma 

The proof of Bouchut's Lemma is very elementary and it exploits convolution 

kernels which have a very simple structure, i.e. they are close to the indicator function 

of a very thin rectangle, whose long sides are parallel to x-

Proof of Lemma 4-2. — If d = 2 we can fix an orthonormal basis of coordinates 

zi, z2 in such a way that £ = (a, b) and x — (0>c)- Consider the rectangle r£ — 

[—e/2,e/2] x [—1/2,1/2] and consider the kernel r\£ = ^lrE. Let Ç G JC and dénote by 

the family of mollifiers generated by £. Clearly r\£ * Q G JC for e + S small enough. 

Dénote by v — (z^i, u2) the unit normal to dr£ and recall that 

(35) lim 
s io 

9(VE * CO 
dzi 

vi 

e 
.JTFYV_dr£ 

in the sensé of measures (here ^ \—dr£ dénotes the usual 1-dimensional measure on 

the boundary of r£). 

Thus, we can compute 

lim sup A (M, nF * Q) lim sud 
S10 R2 

[\aZl\ + | ^2 | ) | c | 9(ne*§6) 
dz2 

dz\dz2 

2\c\ 

e 

•s/2 

-e/2 
azi 

b 

2 
dz\ ac 

e 
2 

bc | 

Note that bc = tr M. Thus, if we define the convolution kernels X£^s = TJ£ * we get: 

(36) limsup limsup A(M, rj£ * Cs) < ItrMI 
S10 

For n > 2 we consider a System of coordinates x i , x2,. . . , x n such that 77 = 

(a, 6, 0,. . . , 0), £ — (0, c, 0,. . ., 0) and we define the convolution kernels 

ÏVe * Cô](xi,X2) ' C ( ^ 3 ) C ( X n ) • 

The conclusion of the lemma follows easily. 

4.2. Alberti's Lemma 

The proof of Alberti's Lemma is in a certain sensé a generalization of Bouchut's 

proof. The basic idea is to take a convolution kernel which is concentrated on a very 

long tube made of trajectories of the ODE 7 = M • 7 . 

Proof of Lemma J^.l. — By the identity Vri(z) • M • z = div (M • zrj(z)) - tr Mr](z), 

it suffices to show that for every T > 0 there exists r] G JC such that 

(37) |div(M • zrj(z))\dz 2 
T 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



190 C. DE LELLIS 

Given a smooth nonnegative convolution kernel 0 with compact support, we claim 

that the function 

7]{z) 
1 
T 

T 

0 
e [e-tM • z] e-'trMdt 

has the required properties. Here etM is the matrix txMl 
il 

That is, etM • z is just 

the solution of the ODE 7 = M • 7 with initial condition 7(0) = z, and e ttT M is the 

déterminant of e~tM. The usual change of variables yields 

rj(z)(p(z) dz 
1 

T 

T 
<p(z)0(e-tM • z)e~ttrM dzdt 

(38) 
1 

T 

T 

r0 
y>(etM.C)0(C)<*C<ft, 

for any integrable bounded ip. Hence ryJèfd is the time average of the push-forward of 

the measure OJfd along the trajectories of 7 = M • 7 . This is the point of view taken 

in [5] to prove (37), for which we argue with the direct computations shown below. 

Note that 

div (M • zrj(z)) 
1 

T . 

T 
div (M • zO(e-tM • z))e-ttrM dt. 

A tedious but straightforward computation (see [25]) shows 

div (M • zO(e-tM -z))e-ttrM 
d 

dt 
(0(e-tM • z)e-ttTM) 

Thus 

Rn 
div (M • zt](z))\ dz 

1 

T 

Rn 

n 
div (M • zO(e-tM • z))e-ttvM dt dz 

'R™ 

1 

T 

T 

Rn 

d 
dt 

(6(e-tM -z)e-ttTM) dt dz 

JRN 

1 

T 
\0(e-™ .z)e-Tt™ -0(z) dz 

1 

T R" 
Ole'™ .z)e-T%™ dz + 0(z)dz 

1 

T Rn 
#(C)^C + 

Rn 
0(z)dz 

2 
Rn 

This shows (37) and concludes the proof. 
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5. THE CONTINUITY EQUATION 
A N D REGULAR L A G R A N G I A N FLOWS 

Another major point of the DiPerna-Lions theory is that the classical road from 

characteristics to transport équations can be reversed: the renormalization property 

and the induced uniqueness and stability of weak solutions to transport équations can 

be used to infer existence, uniqueness and stability of a suitable generalized notion of 

flow for the ODEs (2). In his paper [6], Ambrosio has proposed a new way of looking 

at this side of the DiPerna-Lions theory, based on the analysis of probability measures 

on the space of paths. In the présent note we follow yet another présentation, given 

in [25]. 

We start by defîning our generalized notion of flow. 

DÉFINITION 5.1. - Let b e L°°([0,oo[xRn,]Rn) A map $ : [0,oc[xRn Rn is a 

regular Lagrangian flow for b if 

(a) for J??1-a.e. t we have \{x : x) € A}\ = 0 for every Borel set A with \ A\ = 0; 

(b) the followina identity is valid in the sensé of distributions 

(39) 
dt$(t,x) = b{t,Q(t,x)) 

$(0, x) = x . 

Note that assumption (a) guarantees that b(t,<&(t,x)) is well defined. Indeed, if 

b = b J^n+1-a.e., then b(t, $(t, x)) = b(t, $(£, x)) for J2?n+1-a.e. (t, x). 

Ideally one could divide the DiPerna—Lions theory into two separate parts: how 

to prove "renormalization-type" properties and which kind of "renormalization-type" 

properties implies existence, uniqueness and stability of regular Lagrangian flows. 

An example of this approach is given by the notes [25], where the two parts are 

presented in completely independent ways. Instead, here we focus on the spécifie 

theorem below, with the hope to keep the notation and détails to a minimum and 

highlight the mechanisms which link renormalized solutions to regular Lagrangian 

flows. 

THEOREM 5.2. — Let b e L1(R^, BV(Rn)) n L°° with bounded divergence. Then 

there exists a unique regular Lagrangian flow $ for b. Moreover, ifb^ is a séquence of 

smooth vector fields converging strongly in L\QC to b such that Hdiv̂ &Hoo is uniformly 

bounded, then the flows of bk converge strongly in Lloc to <I>. 

During the proof of this theorem we will recover an important fact: the regular 

Lagrangian flow is a suitable weak notion of characteristics for the transport équation. 
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5.1. The density of a regular Lagrangian flow and the continuity équation 

Dénote by p<£ the measure (id , <I>)#Jzfn+1 L([0, oo[xRn), i.e. the push-forward via 

the map (£, x) i—• (£, $(£, x)) of the Lebesgue n + l-dimensional measure on [0, oo[xRn. 

Such push-forward is simply defined by the property 

[̂0,oo[xIRri 
ip(t, x) dfj,&(t, x) 

[̂0,oc[xRn 
^(£,$(£,x))dJ^n+1(£,x) 

valid for every ip G CC(R x Rm). Observe that (a) is équivalent to the absolute 

continuity of p$ with respect to the Lebesgue measure, and hence to the existence of 

a p G LiOC([0,oo[xMn) such that p$ = pj£fn+1. 

DÉFINITION 5.3. — The p defined above will be called the density of the regular La­

grangian flow <ï>. 

When b is smooth and <É> is the classical solution of ( 3 9 ) , t \—• $(t, •) is a one-

parameter family of diffeomorphisms. For each t let us dénote by •) the inverse 

of $(£,•). Then p can be explicitly computed as p(£,x) = det VX<Ê>(£, 3>~1(£, x)) and 

the classical Liouville Theorem states that p solves the continuity équation dtp + 

div^pfr) = 0. Moreover, since <É>(0,x) = the initial condition for p is p(0 ,x) = 1. 

This property remains true for regular Lagrangian flows and it is simply the spécial 

case £ = 1 in the following proposition. 

PROPOSITION 5.4. — Let ^ be a regular Lagrangian flow for a field b. Let £ G 
L°°(Rn) set p = (id,$)#(CJ^n+1). Then there exists ( G LfOC([0,oo[xMn) such 

that u = I\Sfn+1. This C solves ( distributionallu) 

( 4 0 ) 

d*C +div JCb) = 0 

C(0,-) = C-

Proof — First of ail, notice that p < ||C||ooM<£>- So p is absolutely continuous and 

hence there exists a ( G L\oc such that p = C^n+1- Now, let ^ G CC°°(R x W1) be 

any given test function. Our goal is to show that 

( 4 1 ) 
' [0,oo[xRn 

C(t, x) (dtip(t, x) + b(t, x) • Vx^(t , x)) dx dt = 
Rn 

£(x)i/>(0, x) . 

By définition, the left hand side of ( 4 1 ) is equal to 

( 4 2 ) 

rRr 

§(x) 

0 

x 
{dt^it, x)) + Vx^(t , $(t, x)) • b(t, $(£, x)))dt dx . 

The proof would follow if we could integrate by parts in t, since ^ ( 0 , $ X ( 0 ) ) = ^ ( 0 , x) 

and îp(T, &X(T)) = 0 for any T large enough (because ip is compactly supported). On 
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the other hand this intégration by parts is easy to justify for a.e. x, since (39) implies 

that the curve t h-» <£>(£, x) is Lipschitz for a.e. x. • 

5.2. Uniqueness of solutions to the continuity équation 

Next, let us assume that divxb is bounded in L°°. Then we would expect, formally, 

that the density of $ is bounded away from 0 and +oc. Indeed, assume that b and $ 

are both smooth and rewrite the continuity équation as dtp + b • Vxp + pdivxb — 0. 

Fix x and differentiate the function uj(t) — p(t, <&(t, x)) to get 

du; 

dt 
dtp(t, x)) + dt®{t, x) • Vxp(t, x)) 

dtp(t,$t,x)) + b(t,${t,x)] •Vxp(t,&(t,x)) -divxb(t,Q{t,x))p(t,Q(t,x)) 

(431 —divxb(t, $(£, x))w(t). 

Since —Hdiv̂ bHoo < — divxb(t,<£(£, x)) < Hdiv̂ feUoo and u;(0) = 1, we can use Gron-

wall's Lemma to conclude exp(-T||divx6||00) < u(T) < e x p ^ d i v ^ H ^ ) . But $(T, •) 

is suriective, because it is a diffeomorphism. Therefore we conclude 

(44) exp(-T||divx6||oo) p < exp(T||diva;6||00). 

We cannot use this formai argument on the density of a gênerai regular Lagrangian 

flow. On the other hand, by a standard approximation procédure, we can show the 

following Lemma. 

LEMMA 5.5. — Let b G L00 with bounded divergence. Then there exists a p G L^c 

satisfyinq the bounds (44) and solvinq 

(45) 

dtp + div x(pb) = 0 

# 0 , 0 = î . 

Proof. — Let ip be a standard convolution kernel, and consider bk = b*(pk-i. Consider 

the densities pk of the classical flows of bk- Equation (40) holds with b and p replaced 

by bk and pk- On the other hand, for pk we can argue as above and get the bounds 

exp(-^||divx6/c||00) < pk(t,x) < exp(t\\divxbk||oo)- Since ||div:A||oo < Hdiv^Hoo, 
there exists a subsequence of pk which converges weakly* in L°° to a p satisfying (44). 

Arguing as in Theorem 1.3 we obtain (45) by passing into the limit in the continuity 

équations for pk- • 

If we knew the uniqueness of solutions to the continuity équation, this existence 

resuit would become a proof of the formai bound (44) for the density of any regular 

Lagrangian flow. As usual, we consider the case of b smooth in order to get some 
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insight. Let p and p be two smooth solutions of (45), with p > 0, and define u = p/p. 

Then we could use the chain rule to compute 

d+u + b • \7xu = p~2{p[dtp + b- VxP] - p[dtp + b'Vxp}\ . 

Adding and subtracting p 2 (pp div xb), we achieve 

dtu + b-Vxu = p 2{p[dtp + divx(pb)] - p[dtp + div x(pb)]} = 0. 

But since u(Q,x) = p(0, x)/p(0, x) = 1, we conclude u{t,x) = 1 for every t and x. 

The computations above are very similar, in spirit, to the renormalization property. 

It is therefore not a surprise that the theorem below follows from suitable modifications 

of the proof of Theorem 4.4. 

THEOREM 5.6. — Let b e L X ( R + , BV(Rn)) D L ° ° with bounded divergence and let p 

and C be L\oc functions solving respectively (45) and (40). If p > C > 0, then u = Ç/p 

is a distributional solution of 

(46) 

dtu + div x(ub) — u divxb — 0 

M(0,-) = C. 

By minor modifications of the ideas of Section 1, Lemma 5.5 and Theorem 5.6 yield 

the desired uniqueness for solutions of the continuity équations. 

COROLLARY 5.7. — Let b be as in Theorem 5.6. Then there exists a unique Ç G L\oc 

solving (40). Therefore, if <& is a regular Lagrangian flow for b, the density of $ 

coincides with the density p of Lemma 5.5 and hence satisfies the bounds (44). 

5.3. Uniqueness and stability of regular Lagrangian flows 

The uniqueness of solutions of the continuity équations yields easily the uniqueness 

and stability of regular Lagrangian flows. 

Proof of the uniqueness and stability parts in Theorem 5.2. — Uniqueness. Let <ï 

and \P be two regular Lagrangian flows for b. Fix a ( G CC(RN) and consider the 

unique solution C of (40). According to Proposition 5.4 we have (id, ̂ >)^(C^n+1) = 
Çjjfn+i = (id,^)#(Cj2?n+1). This identity means that 

(p(t,$(t,x))Ç(x)dtdx = <p(t,V(t,x))Ç(x)dtdx 

for every test function cp G CC(R x RN) . But since £ has compact support, one cai 

infer the equality even when <p(t,y) = x(t)Vi f°r X £ CC(R) . So 

/ ^i(t,x))X(t)C(x)dtdx ' -$i(t,x))x(t)Ç(x)dtdx 
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for any pair of functions \ £ CC(I&) and £ G CC(RN). This easily implies $i = a.e. 

Stability. Consider a séquence {bk} as in the statement of the theorem and let 

3>fc be the corresponding classical flows. Fix a ( G CC(RN) and consider the £fc and 

7i/c solving, respectively, the continuity équations and the transport équations with 

coefficients bk and initial data £. Recall that, if pk are the densities of then 

Cfc — ukPk- The w/;; are essentially bounded functions, and by the bounds in Subsection 

5.2, the pfc are locally uniformly bounded. Therefore the Çk are locally uniformly 

bounded and, up to subsequences, they converge, weakly* in to some £. Arguing 

as in Theorem 1.3, this £ must be the unique distributional solution of (40). So, fixing 

a test function (p G CC(R x RN) and arguing as in the uniqueness part, we get 

lim 
Ac joo , 

(p(t,$k(t,x))(;(x)dt dx (p(t,$(t,x))((x) dt dx , 

where we are allowed to test with (p\t,y) = Xx^jVi'- this gives the weak convergence 
of &k to <Ê> in L^c. Testing with (f(t,y) = xMM2> we conclude as well the weak* 
convergence of |<l>fc|2 to |<Ê>|2. This implies of course the strong L\oc convergence. C 

5.4. Existence of regular Lagrangian flows 

The proof of existence of regular Lagrangian flows follows from an approximation 
argument. Indeed, let bk be a standard regularization of 6, with ||&fc||oo + ||divxfr/c ||oo 
bounded by a constant C and bk —> b strongly in L\oc. Consider the flows $>h of 
bk. By the bounds of Subsection 5.2, exp(—Ct) < detX7x$h(t,x) < exp(Cï), which 
translates into the bounds exp(—Ct)\A\ < \&k(t, A)\ < exp(Ct)\A\ for every Borel set 
A. Assume for the moment that we could prove the strong convergence of $fc to a 
map Then, clearly exp(—Ct)\A\ < \®(t,A)\ < exp(Ct)\A\, and hence satisfies 
condition (a) in Définition 5.1. It is then an exercise in elementary measure theory to 
show that bk(t,$k(t,x)) converges to b(t,$(t,x)) strongly in L\QC. Since <ï>fc solves 

dt*k(t,x) = bk(t,®k(t,x)) 

$fc(0,x) = x 

it is straightforward to conclude that <ï> solves (39) distributionally. 

The main point is therefore to show the strong convergence of &k- This folios 

from the stability of the corresponding transport équations. 

Proof of the strong convergence of&k. — Consider, backward in time, the ODE 

(47) 
dtAk(t,x) = bk(t,Ak(t,x)) 

Ak(T,x) = x. 
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Let Tk(tr) be the inverse of the diffeomorphism Ak(t, •). If û € L ° ° ( R N ) , then 

Uk(t,x) = w(r/e(t,x)) is the unique (backward) solution of the transport équation 

dtUk + divx(bkuk) = /̂cdivx6/c 

uk(l, • = u(-). 

By Theorem 4.4 and Proposition 1.6, uk converges strongly in Lloc to the unique 

(backward) solution u of 

<9*u-f divx(£m) = uàivxb 

u(T,-) = û(-) . 

Choose ïZ(x) = x(x)x^ where x is a smooth cut-off function. Since uk(t,x) = 

x(rfc(t,x))Tk(t,x), we infer easily the strong L\oc convergence of the components 

Yk. This implies that Tk converges to a map T strongly in L11oc([0,T] x RN) . On 

the other hand, for any given x, Tfc(-,x) is a Lipschitz curve with Lipschitz constant 

bounded independently of k. It is then easy to see that Tk(t, •) is a Cauchy séquence 

in L (A) for every bounded A and every t e [0,T]. In particular, Fk(0r) converges 

to some map strongly in L\oc. 

Now, r/c(0, •) is the inverse of A/c(0, •), which in view of (47) is the inverse of 
$k(T7 •). Therefore we conclude that for each T there exists a map $(T, •) such that 
$>k(T, •) —» <Ê(T, •) strongly in L\oc. Again, using the fact that, for each x, ^fc(-, x) is a 
Lipschitz curve with Lipschitz constant bounded independently of k, it is not difficult 
to see that &k is a Cauchy séquence in Ll(A) for any bounded A C M+ x RN. This 
concludes the proof. • 

6. B E Y O N D BV A N D BEYOND RENORMALIZED SOLUTIONS: 
FURTHER RESULTS, CONJECTURES A N D OPEN PROBLEMS 

6.1. Nearly incompressible BV fîelde 

By nearly incompressible fields b we understand those fields for which there exists 

a regular Lagrangian flow <3> satisfying the bounds c(t)|A| < |$ ( t ,A) | < C(£)|A|. 

for some continuous and nonvanishing functions c and C. At a first glance there 

are at least two obstructions to build a theory of renormalized solutions for nearly 

incompressible flows. On the one hand, it seems necessary to give a meaning to u d\vxl 

in order to define distributional solutions u of (3). On the other hand, it is not cleai 

how to define nearly incompressible fields without referring to some flow. 
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Both thèse issues can be naturally solved by using the continuity équation. In-

deed, we can define nearly incompressible fields as those b for which there exists a 

distributional solution p of (45). Moreover, there are appropriate versions of the 

renormalization property which use only the continuity équation and hence can be 

stated without assumptions on the divergence of b. This point of view was first taken 

in [7] and it has been systematically explored in [25]. The "soft" part of the DiPerna-

Lions theory can be extended naturally to this setting. Concerning the "hard" part, 

i.e. the proof of the corresponding renormalization properties, the W1,p case of this 

theory follows from the DiPerna-Lions estimate for the commutators. The BV case 

is instead still open. Indeed, the motivation in [7] was the following conjecture raised 

by Bressan in [17]. 

CONJECTURE 6.1 (Bressan's compactness conjecture). — Let bk : M x Rn —• Rn be 

a séquence of smooth vector fields and dénote by Qk the corresponding flows. Assume 

that ||6fc Hoo + llVfrfcH î is uniformly bounded and that C"1 < det(Vx3>fe(£, x)) < C for 

some constant C > 0. Then the séquence {&k} is strongly precompact in L\oc. 

Bressan's conjecture was initially motivated by a problem in the theory of hyper-

bolic Systems of conservation laws. However, in order to solve this problem one does 

not need to tackle Conjecture 6.1: a milder statement, which is a corollary of Am-

brosio's resuit, suffices (see [10] and [7]). At présent, the best resuit available in the 

direction of Conjecture 6.1 is contained in [11] and goes towards a theory of renor­

malized solutions for nearly incompressible BV fields. This paper makes strong use 

of a refined theory of traces for transport équations, developed in [9]. 

6.2. Beyond BV fields 

Can one hope for the renormalization property when b is in a space larger than 

BV? The counterexamples available in the literature show fields which are quite 

close to be BV and do not have the renormalization property (see [27] and [22], both 

inspired by an older construction of Aizenmann [1]). Moreover, thèse examples have 

severe conséquences on the possibility of building a gênerai theory of existence for 

hyperbolic Systems of conservation laws on transport équations (see [23]). 

Nonetheless there are still many interesting open problems in this direction. For in­

stance, in two dimensions and for divergence-free autonomous fields, renormalization 

theorems are available even under very mild assumptions, because of the underlying 

Hamiltonian structure (see [16], [31], [20]). In the récent paper [3] the authors have 

given a necessary and sufficient condition for the renormalization property when b 

is divergence-free, planar, autonomous and bounded. In particular, they produce a 

striking example of such a b which does not have the renormalization property. 
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A very interesting open question, naturally linked to Euler's équations, is whether 

the renormalization property holds for divergence-free fields b G L°°(R, L2(R2)) when 

the vorticity of b is a measure. Another open question is whether the renormalization 

property holds for fields b with absolutely continuous divergence when the symmetric 

part of the gradient is a measure. The property indeed holds when the symmetric 

part of the gradient is in L1, see [19]. For a more gênerai resuit in this direction, see 

[9]. 

6.3. A direct Lagrangian approach 

In the DiPerna-Lions theory, conclusions on the "Lagrangian point of view" are re-

covered from theorems on the "Eulerian point of view". A natural question is whether 

one could get the same results directly, for instance proving a-priori estimâtes on 

the solutions of the ODEs. Indeed, the whole theory of regular Lagrangian flows 

for WllP fields with p > 1 can be recovered by proving appropriate estimâtes in the 

Lagrangian formulation, as it has been recently shown in [24]. Thèse estimâtes also 

provide mild regularity properties for regular Lagrangian flows and distributional so­

lutions to transport équations. In a nutshell, if b G W1,p and 3> is the corresponding 

flow, the Lp norm of the différence of $(£,•) — <&(£, • + ?;) can be estimated by a constant 

(depending on the compressibility of 6, and the Lp norm of V6) times | log(|^|)|_1. 

The estimâtes of [24] were inspired by some computations of [13], where the authors 

proved the approximate differentiability of regular Lagrangian flows. In turn, [13] 
was inspired by another resuit of [32] on weak differentiability properties for regular 

Lagrangian flows. See also [14] for a comparison among the various weak notions of 

differentiability used in thèse papers. 

The estimâtes of [23] quantify the compactifying properties of transport équations 

with Sobolev coefficients. In particular they imply the Lp version of a second conjec­

ture of Bressan on the mixing of flows (see [18]), which we state below. 

Fix coordinates x = (xi,x2) G [0, l[x[0,1[ on the torus T = R2/Z2 and consider 

the set A = {(xljx2) • 0 < x2 < 1/2} C T. Given a smooth divergence-free field 

b : [0,1] x T —> R2 dénote by $ its flow. For a fixed K G]0, l/2[, we say that <I> mixes 

the set A up to scale e if for every bail Be(x) we have 

K\B£(X)\ < \Be(x)n$(l,A)\ < (1 - K)\B£(X)\. 

CONJECTURE 6.2 (Bressan's mixing conjecture). — Under thèse assumptions, there 

exists a constant C depending only on K s.t., if & mixes the set A up to scale e, then 

i 

o T 
\Dxb\ dxdt > C| loge| for every 0 < e < 1/4. 
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7. APPENDIX: PROOF OF PROPOSITION 3.2 

Proof. — Let e i , . . . , en be orthonormal vectors in RN. In the corresponding System 

of coordinates we use the notation x — ( # i , . . . , xn-i,xn) — (x', xn). Without loss of 

gênerality we can assume that z = en. Recall the following élémentary fact: if fi is a 

Radon measure on R , then the functions 

UJiiT 
U(\T.T + Ô]) 

ô 
• a * 

lf-(5,0' 
ô (r) r G R 

satisfy 

(48) 
K 
lû/çl dr MKs) 

for every compact set K C R , where K$ dénotes the £-neighborhood of K. 

Consider the measure DGnb = Dxb • en, and the vector-valued function Vxb • en. 

Clearly this function is the Radon-Nikodym derivative of Denb with respect to Jzfn+1 

and we dénote by Dse b the singular measure Dsxb • en = DCnb — Vxb • enj2fn+1. 

We define 

bij(t,x',Xd] 
1 
S 

*xn+é 

x1 
Vxb-en(t,x',s)ds. 

By Fubini's Theorem and standard arguments on convolutions, we get that bits — 

Vxb - en strongly in L\oc. Next set 

b2,s(t,x',xn) 
b(t, x'', xn + ô) — b(t, x', 

(5 
frM(£,x',xn) , 

and, for ^n-a.e. (t,x) G R x RN_1, define bt,y : R —> R by &t,y00 = b(t,y,s). 

We recall the following slicing properties of BV functions (see Theorem 3.103, 

Theorem 3.107. and Theorem 3.108 of [121): 

(a) btiV G BVloc(R,Rn) for J^n-a.e. (t,y); 
(b) if we let Dsbt,y + b't J£l be the Radon-Nikodym décomposition of Dbt,y, then 

we have 

X7xb(t,y,s) • en = b'ty(s) for J^n+1-a.e. (t,y,s; 

and 

Di\(A) 
Rn 

\Dsbtly\(An {(t,y,s) : s G R})d£dy 

(c) fc* v(s + S) - btJs) DbtJ[s,s + ô]). 
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Therefore, for any ô > 0 and for n -a.e. (t, y) we have 

b(t,y,xn + ô) - b(t,y,xn) 
ô 

bt,y(Xn + S) ~ btfy(xn) 

ô 

DbtJ[xn,xn + (51) 

(5 

( ^ J ^ ( z n ) (D*bttV)s{xn) 

bi^(t,y,xn) (DSbt,y)ô{Xn) for J^-a.e. xn. 

Therefore 

K 
b2,b 

RN 

{xn:(t,y,xn)eK} 
(DSbt,y)8(Xn) dxn dy dt 

(49) DsbtJ ({xn : (t,y,xn) e Ks}) dy dt Dib-en\(K5 DsMKs, 

Letting £ 1 0 , this gives (18) 

Note moreover that 

K 

b1,8 
RN 

cn:(t,y,xn)£K) 
K ^ 1 

8 (xn) dxn dy dt 

(50) 
Kô 

Vxb • en t, v, xri dy dt dxn 

K8 
Vxb (t,y,xn)dydtdxn . 

Adding the bounds (49 ) and (50) we get ( 1 9 ) . 
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